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Abstract

This is a ‘sandwich thesis’ consisting of a publication that I contributed to during

my M.Sc. work. The thesis begins with an introduction section in Chapter 1 that

discusses the relevant physical concepts to the work performed in the publication.

These topics include, polymers in section 1.1, fluid dynamics in section 1.2, and

capillary effects in section 1.3. Chapter 2 contains an experimental technique section

that maps out the experiments performed in the manuscript.

The manuscript, Chapter 3, details the capillary driven levelling of thin polymer

step that is supported by an immiscible polymer film and the dissipation of the

capillary energy of the system. We find that the dissipation mechanism depends

strongly on the viscosity ratio between the top and the bottom films. We developed

a model of the energy dissipation that agrees well with the experimental results.
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Chapter 1

Introduction

Fluids flow. From the rivulets running down a car window to the global ocean cur-

rents, water flows over many scales. Air flows around you as you walk through a

room. Hydrogen and helium form convective flow cells in the bodies of stars. Fluid

dynamics is the fundamental study of all these types of flow, and more.

As with most fields of physics, counterintuitive behaviour happens at interfaces:

this is also true for fluid dynamics. For example, a fluid flowing in a chamber will

experience a boundary condition effect along the sides of the chamber. Fluids are often

treated as a continuum - meaning the fluid body is treated as a single, continuous body

[1]. A continuous fluid requires that the velocity inside a fluid must be continuous.

Therefore, near a boundary, the velocity of the fluid must match the velocity of the

boundary, and this results in a ∼ 100 nm thick boundary layer that forms at the

interface. The behaviour in the boundary layer can exhibit different properties than

the bulk flow; however, they are difficult to study due to their small size [2, 3]. In

this thesis, we will probe the dynamics within the boundary layer using thin liquid

films with thicknesses on the same scale as the boundary layer. Surprisingly, we find
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that continuum fluid dynamics works perfectly even on these small length scales, and

we employ it to explain the results obtained in this thesis.

Fundamentally, thin films are subjected to the same forces that any simple liquid

is subjected to. These forces include surface tension effects, which causes liquid to

assume a minimal surface area. Evidence of this is seen when water beads up on skin

after going for a swim, when water striders stay on top of the water, and even when

salad dressing separates after it has been shaken up. Most liquids that we encounter

in everyday life are difficult to study in the thin film geometry because they flow

quickly and are not stable as thin films. For this reason, we use thin films fabricated

out of polymers [4].

Polymers are perhaps the most diverse material found in everyday life. From the

plastic of your water bottle, to the coating on your phone screen, to the DNA in your

body, these molecules pervade every aspect of our life [5]. Thin polymer films are an

active area of study because they have several key roles in technological applications,

such as coatings for microelectronics or as thin adhesive layers [6]. Thin films have a

large surface area to volume ratio. Typically, most of the material that makes up an

object is contained within the bulk, but for thin films, the majority of the object is now

the surface of the film. Properties of surfaces can be different than those of the bulk,

and a good understanding of surfaces is essential to developing these technologies

[7, 8]. One other useful physical property of a polymer is the ability to transition

from a solid to a liquid with increasing temperature. Moreover, thin polymer films

lend themselves to study fundamental physics questions, like what happens in the

boundary layer of a fluid [6, 7, 9–12].
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While flow of thin liquid films has been highly studied, several fundamental ques-

tions on the effects of the boundary condition still remain [13]. This thesis investigates

how a liquid boundary condition affects the viscous flow profile in a thin liquid film

through the use of capillary levelling. In Chapter 1, polymer properties, viscous flow

and capillarity are discussed as they relate to the presented work. Chapter 2 discusses

the experimental details of the work presented in the proceeding chapters. Chapter

3 is a manuscript which has been prepared for publication and contains the major

results of this thesis. It is preceded by an introduction to the manuscript and my spe-

cific contributions to the research. In this manuscript, we examine capillary levelling

of a viscous liquid step that supported by a less viscous liquid substrate.

1.1 Polymers

Polymers are used in this thesis because of their easily tuned physical properties.

Polymers are ubiquitous in everyday life, and can be found in plastics, rubbers, and

even the cellulose that composes the paper this thesis is printed on. Furthermore,

DNA, RNA, and proteins are polymers that give rise to life. Polymers are a broad

range of materials, but at their essence, polymers are macromolecules made from

repeating subunits that are covalently bonded together [14]. Figure 1.1c) shows an

example the repeating molecules or monomers for a common polymer, polystyrene.

The monomers of polystyrene are called styrene and the covalent bonds between them

allow for rotation along the chain, which directly results in a highly flexible chain [15].

When a polymer is in a liquid state, the polymer will exhibit a random walk

due to the flexibility of the bonds [14]. Figure 1.1b) shows the scale of the random

walks. The repeating units can form many different architectures, including linear
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chains, branched chains, or stars [15]. In this thesis, I use linear, synthetic polymers.

Linear polymers are polymers with monomeric units that are bonded together into a

long flexible chain, similar in structure to a spaghetti noodle. Figure 1.1a) shows an

example of the overall linear structure of a molecule of polystyrene, a polymer used

in this thesis.

CH

CH

CH2

CH

CH2

a) b) c)

50 nm 5 nm 0.2 nm

Figure 1.1: a) An example of the overall structure of one linear polymer chain of
polystyrene. The size of the polymer molecule can range from mere nanometers up to
hundreds of nanometers in dimension, depending on polymer length. b) A close up
on a section of the polystyrene to show the random walk structure of the molecule.
c) A further close-up shows styrene monomers that are covalently bonded together

The length of the polymer can be described by the total number of repeat units,

denoted by N . Typical values of N can range from 103 - 106. N , however, is a difficult

value to measure directly. For a linear polymer, the length of the chain is proportional

to the molecular mass of the polymer; the longer the molecule is, the more massive the

molecule is. A way of measuring the length of polymers is to measure the molecular

mass.
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A typical ensemble of polymers will have chains with a variety of lengths. The

variance in lengths is known as polydispersity. Due to the polydispersity of a sample

of polymers, it is useful to measure the polymer ensemble as a whole by considering

the average molecular weight of the ensemble. The number molecular weight, Mn,

can be thought of as the first moment of the mass distribution [15]. The number

molecular weight is defined as the total mass of the system divided by the number of

molecules

Mn =

∑
iNiMi∑
iNi

=
∑

i

niMi, (1.1)

where ni is the number fraction of chains in the ensemble with molar mass, Mi. The

weight average molecular weight, Mw, is the second moment of the mass distribution

and it is defined in equation 1.2 [15]. The mass-weighted average is a different method

of averaging and it will tend to put more emphasis on longer chains

Mw =

∑
iWiMi∑
iWi

=
∑

i

wiMi, (1.2)

where Wi is the weighting that is associated with the total mass for the ith chain

length. The weighting can be defined as Wi = MiNi. The weight average molecular

weight can then be expressed in terms of the mass fraction, wi. Although there are

several ways of taking averages, the two defined above yield a useful quantity known

as the polydispersity index (PI),

PI =
Mw

Mn

≥ 1. (1.3)
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The polydispersity index gives indication of the distribution of the sample of poly-

mer. PI = 1 indicates that there is a perfectly monodisperse sample. For the work

conducted in this thesis, all polymers had a PI ≤ 1.1.

1.1.1 Viscoelasticity

At low temperatures, polymers form a glassy solid. In this state, the polymer chains

do not possess enough kinetic energy to freely move past the confining molecules

around them. The molecular movements are no larger than what is dictated by

thermal noise. At high temperatures, these fluctuations become sufficiently large so

the chains are free to escape the confining cage created by neighbouring polymers. At

these temperatures, a polymer is free to move in response to an applied stress. If the

stress occurs over a short time scale, the polymer will have an elastic response due to

the polymer entanglement and the system acts as an entropic spring [15]. However, if

the stress is applied over a long period of time, the chains have time to slip past each

other, exhibiting viscous flow. In the work reported in this thesis, we work on the

time scale where only viscous behaviour is exhibited, and the system can be treated

as a simple viscous fluid.

The viscosity of a polymer melt is highly dependent on temperature [16]. Con-

ceptually, one can imagine that as the temperature increases, the kinetic energy of

the polymer molecules increases, giving them more energy to move and flow. When

an external stress is applied to the polymer, the polymer will respond more quickly,

and thus is less viscous. Likewise, lowering the temperature will cause the chains to

respond more slowly, increasing the viscosity.

Conveniently, it has been observed that the flow behaviour of a polymer at a lower
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temperature has the behaviour as the same polymer at a higher temperature; it just

proceeds more slowly [15]. This relationship is known as time-temperature superpo-

sition. Time-temperature superposition is the general relationship between time and

temperature for the viscoelastic properties of a polymer melt. For example, a polymer

will flow the same amount at a certain temperature for a certain amount of time as it

will for less time when it is at a higher temperature. Thus, the flow of a system can

be probed over several orders of time scales by simply changing the temperature and

then shifting the viscosity-time behaviour appropriately [16]. Viscoelastic behaviour

can be rescaled by a simple shift along the time axis of viscosity-time plot at different

temperatures. This shift is denoted by aT(T ) [17]

aT(T ) =
η(T )

η(To)
=
τ(T )

τ(To)
. (1.4)

This equation states that the viscosity, η, at a temperature, T , is equivalent to the

viscosity at a reference temperature, To, with an addition of a shift. This shift is also

valid for the characteristic time scale, τ , of the system. A variant on time-temperature

superposition is the Vogel-Fulcher Law. The Vogel-Fulcher Law is an empirical law

that describes the exponential relationship between viscosity and temperature for any

viscoelastic material

η(T ) = ηo exp

(
TA

T − Tv

)
, (1.5)

where TA is an activation temperature (corresponding to an activation energy to

induce motion), ηo is a reference viscosity and Tv is known as the Vogel temperature,

which represents a shift in temperature. The three values are material dependent and
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found empirically.

The Williams-Landel-Ferry equation (WLF) is an equivalent formulation to the

Vogel-Fulcher Law. The WLF equation compares the known viscosity of a polymer

at a reference temperature to an unknown viscosity at a different temperature. The

WLF equation uses one single reference temperature, To

η(T )

η(To)
= 10−C1(T−To)/(C2+T−To). (1.6)

Although this relationship is true for many amorphous polymers and glass forming

materials, it becomes particularly useful for polymers as C1 and C2 become almost

universal when the reference temperature is the temperature when the polymer tran-

sitions from a solid to a liquid. The specifics of this temperature will be discussed in

section 1.1.2.

1.1.2 Glass transition temperature

Many polymers are glassy solid materials at room temperature, but transition to

the liquid melt state when heated. The temperature that the transition occurs at

is the glass transition temperature. Unlike liquid water to ice, where the transition

occurs at one distinct temperature (this type of transition is known as a first order

phase transition), there is not a distinct glass transition temperature [18]. The glass

transition temperature is often defined with respect to the viscosity of the polymer

melt. As the temperature of the polymer is lowered, approaching the glass transition

temperature, the viscosity increases to the point where relaxation is no longer possible

on the experimental time scale. However, because experiment times vary, there is

no clear definition where the cut-off should occur, as what can appear solid in one
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experiment may still exhibit flow in a longer experiment.

The transition can be seen by examining the Vogel-Fulcher law, where there is a

singularity in the viscosity when T = Tv [17]. At this point, the viscosity is infinite and

any feasible measurement of flow is beyond the experimental scale. As the system

is cooled, the polymer becomes more and more sluggish until the glass transition

temperature is reached and the system is frozen. This means that the polymer is solid.

The two polymers used in this research, polystyrene and poly methyl(methacrylate),

have glass transition temperatures of 100 ◦C and 105 ◦C, respectively [19].

1.1.3 Polymers at interfaces

When two liquids are mixed together, they will either form a homogeneous solution or

they will separate into two different phases. An everyday example of phase separation

is the way oil and water separate, barring any active mixing. The reason that liquids

phase separate into two different regimes is due to entropic and enthalpic contributions

to the free energy of the mixture. It is a competition between the entropic cost, S,

of molecules organizing at the interface, and the energetic cost, U , from interactions

between different molecules. The free energy of a liquid interface made of point-like

molecules, F , can be described as [15]:

F = U − TS = χφAφB︸ ︷︷ ︸
interaction energy

+ kT (φA lnφA + φBlnφB)︸ ︷︷ ︸
entropy of mixing

, (1.7)

where χ is the interaction cost between molecule A and molecule B. φA and φB are

the volume fraction of molecule A and B, respectively, for a system at temperature,

T , and k represents the Boltzmann constant. If the interaction energy is above a
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critical value, the free energy is minimized by creating A rich and B rich domains. If

the interaction energy is below the critical value, entropy dominates and the fluids

are homogenous.

Equation 1.7 must be altered slightly for a polymer, as it only accounts for a

molecule that can be approximated as a spherical particle. For a solution of polymers,

any given site will still be occupied by either an A or B particle, and this depends

on only the volume fraction of the two species. However, the interaction energy is

dependent on polymer length, N . A longer polymer will have more sites to have

interactions with different molecules. As a result, the interaction energy should scale

with N . The free energy for a polymer molecule in a solution containing two species

is [15]

F poly
mol

kT
= φAlnφA + φBlnφB +NχφAφB. (1.8)

It is more usual to consider the free energy of a single monomer unit, instead of

a single polymer molecule. In this case, the free energy is split among the monomer

units:

F poly
site

kT
=
φAlnφA

N
+
φBlnφB

N
+ χφAφB. (1.9)

The above expression is known as the Flory-Huggins equation, where the interaction

energy now accounts for the length of the polymer chain. The critical interaction cost,

χc, which determines whether or not the mixture will phase separate, is 2/N . For

most polymers, N is very large and the critical cost is very small. As a result, long

polymers rarely form a two-phase mixture as the entropic cost is too high. Shorter
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polymers that do phase separate have phases that are essentially pure, but also have

an interface between that is not atomically smooth. Figure 1.2 shows a diagram of a

polymer-polymer interface. Polystyrene and poly methyl(methacrylate) are the two

types of polymers used in this thesis, which have a large enough interaction cost that

they are immiscible.

1.1.4 Polymer interface width

A simple argument can be made to describe the penetration depth of one polymer

phase into the other [15]. Polymer are long, flexible chains in a configuration that

can be thought of as a random walk. If the polymers in a melt were forced to have

an atomically sharp interface with another polymer melt, there would be a significant

and specific rearrangement of the chains at the interface. The rearrangement would

come at a large entropic cost. Therefore, there is an intermediate mixing zone at the

interface. We presume that the interface is instead composed of interlocking loops,

as depicted in Figure 1.2. The width of the interface, w, depends on the length of the

loop, which scales as a random walk with the number of monomers in the loop. [15]

w ∝ a
√
Nloop, (1.10)

where Nloop is the number of monomers in the loop, and a is the length of the monomer

unit. The interface energy is now on the order of the interaction energy of the loop

Uint ∼ χNloopkT. (1.11)
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Figure 1.2: A schematic of two fluids that have phase separated. The interface shows
the interfacial width for two phase separated polymers.

In equilibrium, the interface energy is approximately equal to the thermal energy

or the interface itself would not be favourable or stable. As a result, equation 1.11

simplifies when considering the interfacial energy for one polymer excursion into the

other phase

1 ∼ χNloop. (1.12)

This expression can be combined with equation 1.10 to give an estimate of the width

of the polymer-polymer interface in terms of the interaction cost and the monomer

length

w ∝ a√
χ
. (1.13)

For most polymers, this is typically between 1-3 nm. This simple calculation predicts

the overall behaviour of the interface width of two homopolymers to good approxi-

mation. This is further confirmed through more rigorous measurements from other
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sources [20, 21]

1.1.5 Polymer interfacial energy

The interfacial energy of a phase separated polymer melt can be estimated by count-

ing the number of unfavourable interactions in a unit area. Consider an area at a

polymer-polymer interface, the loop of intertwining polymer will have length w, and

width a. Each unique interaction between different polymer species will cost χkT

per interaction, of which there are Nloop. Therefore, the interfacial energy, γ, can be

calculated as the energy per area

γ =
NloopχkT

wa
. (1.14)

Using the derived values for w and Nloop from the previous section, the interfacial

energy can be written in terms of measurable values

γ =
kT

a2
√
χ, (1.15)

showing that the interfacial energy of a polymer-polymer interface scales with the

square root of the interaction cost.

1.2 Fluid dynamics

Fluid dynamics is a field of science which describes fluid flow over several orders

of magnitude. There are different regimes where different governing equations are

valid. The flow of an incompressible, viscous fluid, may generally be described by the

Navier-Stokes equations [1]:

13
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∇ · u = 0. (1.16)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u + g, (1.17)

where u is the velocity vector, ρ is the density of the fluid, p is the pressure applied

to the fluid parcel, ν is the kinematic viscosity of the fluid, and g is a body force

acting on the fluid. Equation 1.16 states that the divergence of a volume of fluid with

velocity, u, must be equal to zero, where bolded symbols indicate vector quantities.

For any incompressible fluid, the number of fluid particles that enter a defined volume,

an equal number must exit.

The second part of the Navier-Stokes equations, equation 1.17, refers to the con-

tributing factors to the flow of the fluid. The origin of the left side of equation 1.17

comes from conservation of momentum of the fluid parcel as it moves [22]. The term

on the left-hand side of the equation, ∂u
∂t

is the acceleration term of the fluid parcel. It

accounts for the simple linear acceleration that the fluid parcel has in the direction of

motion. The next term, (u ·∇)u, is the inertia term [22]. The inertia term can be re-

written in the form of the two directional components, (u·∇)u = (∇×u)×u+∇(1
2
u2).

The resistance to rotational motion is represented by the first term, and the resistance

to linear motion by the fluid is represented by the second term [1].

The right-hand side of equation 1.17 contains the driving forces that cause liquid

motion. The first term, −1
ρ
∇p is the effect of pressure, p, acting perpendicular to the

direction of fluid flow [22]. The second term accounts for the viscosity of the fluid,

ν∇2u. A liquid with kinematic viscosity, ν, will exert shear and normal stresses from

moving particles of a viscous liquid past each other. The final term of the equation,

14
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g, is the inclusion of any external body forces that may act on the fluid. The Navier-

Stokes equations capture the responses and driving terms of fluid flow. Although the

Navier-Stokes equations are seemingly docile in this form, each vector quantity is three

dimensional, meaning that equations expand into four coupled partial differential

equations [1]. Exact, analytic solutions to these equations are currently only possible

under simplified conditions. The next section considers one example of simplification,

which will be used throughout this work.

1.2.1 Thin Film Equations

For many cases, the Navier-Stokes equations may be simplified based on the geometry

of the system. To determine if the flow will be turbulent or laminar, one can consider

the Reynolds number, Re, [1]

Re =
UL

ν
. (1.18)

Where U is the typical flow speed of a viscous fluid, L is the typical length scale and

ν is the kinetic viscosity. The Reynolds number is the ratio between the inertia term

and the viscous term of the Navier-Stokes equation,

inertia term

viscous term
=

(u · ∇)u

ν∇2u
∼ Re. (1.19)

A high Reynolds number, Re >> 1, indicates a fluid with a small viscosity com-

ponent relative to the inertial component. In this regime, the flow often becomes

turbulent when it is subject to small perturbations. Fluids with low Reynolds num-

bers, Re << 1, will tend to non-turbulent flow as the viscous term dominants the

inertial term. In the thin film equation, the fluid is assumed to have a low Reynolds

15



M.Sc. Thesis - Carmen Lee McMaster - Physics & Astronomy

number so that the inertia terms of the Navier Stokes equation can be neglected in

favour of the viscous terms. Furthermore, a thin film is expected to have much higher

flow in the plane of the film than in the out of plane direction. This geometric condi-

tion gives rise to the lubrication approximation, where flow is assumed to be parallel

to the plane of the thin film and non-linear terms of the flow may be neglected.

Thin liquid films with low Reynolds numbers are used in this thesis. Thin liquid

films are geometries that are significantly thinner in one direction than the other

two. Several simplifications of the Navier-Stokes equations are made by considering

the geometric constraints. Furthermore, we assume that there are no external body

forces acting on the film, as gravity effects are negligible - to be discussed later in this

thesis. The liquid in the films is highly viscous and the inertia term may be neglected;

therefore, the Navier-Stokes equations reduce to [1]:

−∇p+ η∇2u = 0, (1.20)

∇ · u = 0, (1.21)

where η is the viscosity of the fluid and is related to the kinematic viscosity as η = νρ.

Further simplification of the Navier Stokes equations are performed when consider-

ing the geometry of the sample. Expanding the previous equations for Cartesian

coordinates

∂p

∂x
= η

[
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

]
, (1.22)

∂p

∂y
= η

[
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

]
, (1.23)
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∂p

∂z
= η

[
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

]
, (1.24)

0 =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
, (1.25)

where u = (u, v, w) and u, v, w are velocities in the x−, y−, and z−directions respec-

tively. For a thin film, it can be assumed that w ∼ 0 in comparison to u, as there

is very little material in the z−direction available to flow. The lubrication approxi-

mation directly stems from the large difference in the x− and z−components of the

velocity. We can also assume that the pressure in the z−direction stays constant in

the thin layer of fluid, and therefore ∂p/∂z = 0.

Here we consider the geometry relevant to the work performed in this thesis: a

step of liquid. For a step of liquid, as shown in Figure 1.3, the symmetry of the step

plays an important role. Symmetry dictates that there will be no driving pressure

along the step (y-coordinate), and therefore v = 0. This means that u is the only

component of the velocity with significant flow.

Since the velocity along the step is zero, the incompressibility condition, equation

1.25 reduces to:

∂u

∂x
+
∂w

∂z
= 0. (1.26)

Note that the ∂w/∂z term is not neglected here, as both the w and z term are con-

sidered small, but dividing one by the other results in a potentially relevant number.

Equation 1.22 is the only relevant term from the continuity equations. It too can

be further reduced, as the step of liquid is symmetric, and there should be no change

in the flow velocity with change in the y-direction. Therefore, the flow along the step

17



M.Sc. Thesis - Carmen Lee McMaster - Physics & Astronomy

z

x
, 

y

Figure 1.3: Schematic of a thin liquid film with the geometric coordinates indicated
and the surface tension, γ, and viscosity, η, as noted. The top profile is stepped
similarly to the geometry of the experiments performed in this thesis.

becomes [23]:

η

(
∂2u

∂x2
+
∂2u

∂z2

)
=
∂p

∂x
. (1.27)

Equations 1.26 and 1.27 and the appropriate boundary conditions can be solved to

describe flow in thin, viscous films [23].

1.2.2 Flow profiles in the boundary layer

To develop a full understanding of the type of flow that occurs in a thin film, we

must understand the boundary conditions that are present. The boundary layer of a

viscous liquid is usually ∼ 100 nm. For thin films, the boundary layer takes up the

entirety of the film. This is in contrast to bulk flow, where the boundary layer is a

small but important portion of the flow.

In this thesis, we consider three types of flow that arise from different boundary

conditions. A schematic example of each of these three flow profiles are shown in
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Figure 1.4. Fig. 1.4a) is where there is a no stress interface at the fluid-air interface,

and a no-slip condition at the fluid-solid interface. This results in Poiseuille flow.

Poiseuille flow follows a parabolic increase in velocity starting with a zero velocity at

the bottom, no-slip interface and with a smooth change to the maximum velocity at

the top, no-stress interface. All flow is parallel to the substrate surface. Fig. 1.4b)

is where there are two no-stress interfaces on either side of the fluid. This boundary

layer flow is known as plug flow, where there is the same velocity along the thickness

of the fluid. This is the same type of flow that occurs during the drainage of soap

films and bubbles [24, 25]. Finally, Couette flow is depicted in Fig. 1.4c). This is

where the top no-slip boundary moves relative to the bottom no-slip boundary. The

velocity increases linearly from the bottom boundary to the top, in order to match

the velocity of the top boundary.

z

v

a) b) c)

Figure 1.4: a) Velocity profile of Poiseuille flow in a thin liquid film with a no-slip
boundary condition at z = 0 and a no-stress boundary condition at z = z. b) Velocity
profile of plug flow in a thin liquid film with no-stress boundary conditions at z =
0, z. c) Velocity profile of Couette flow in a thin liquid film with a no-slip boundary
condition at z = 0, and a no-slip boundary condition between the film at z = z and
the top plate, but with the top plate moving at velocity, v.
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1.3 Capillary-driven levelling

When a liquid surface is perturbed from the equilibrium geometry, generally two forces

will drive it back to equilibrium. Imagine it is early in the morning and the honey,

which has been sitting overnight, is ready to be spread on some toast. As the honey is

moved from the jar onto the toast, the surface of the honey in the jar is perturbed and

it is no longer flat. Slowly the perturbation will flow in order to level the honey back

to the equilibrium configuration. If the perturbation is large, there will be enough

honey displaced out of equilibrium so the gravitational potential energy has been

significantly changed. Gravity will work to establish equilibrium again. However, if

the perturbation is small, the potential energy will not be significantly altered, but

the surface energy has still changed. The honey will still level at this scale, but it is

driven by surface tension. Levelling at this scale is known as capillary levelling [26].

We utilize capillary levelling in the work presented in this thesis.

There are three concepts that must be explained before capillary-driven levelling

can be understood. Two are physical properties of the liquid, the surface tension and

the capillary length. The third depends on the geometry of the liquid surface: the

Laplace pressure.

1.3.1 Surface tension and surface energy

A liquid in equilibrium will have a minimal surface area. A soap bubble, for example,

will form a a perfect sphere. Water in a fish bowl will have a smooth, unwrinkled

surface, provided the fish is not swimming too quickly. Any liquid in equilibrium will

minimize the surface area by creating a ‘taut’ surface as though there were an overall

tension applied to it. A perturbed liquid surface will be driven back to equilibrium
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F F

a) b)

Figure 1.5: a) A body of liquid that has had the surface perturbed away from equilib-
rium. b) A thin fibre of liquid suspended between two flexible supports. The liquid
will pull on the supports with a force proportional to the surface tension.

in a similar way to an elastic surface under tension. It is fairly easy to surmise why

the system will be driven to the minimal surface area. Molecules in a homogenous

liquid have the most favourable energetic interactions when they associate with the

same type of molecules. This is why a liquid is cohesive instead of repulsive. If a

molecule were to be brought to an interface with another liquid or gas, it loses half

of the low energy, cohesive interactions, and more energetically costly interactions

are formed with the other medium. In order to decrease the amount of unfavourable

interactions, the liquid will change shape to minimize the surface area. The energy

cost associated with the unfavourable interactions contributes to the surface energy.

Surface tension is similar to the surface energy of a liquid. Molecules at the

surface have intermolecular forces that are associated with a difference in the number

of cohesive bonds with other molecules. Surface tension may be reported as an energy

per unit area or as a force per unit length. From a mechanical point of view, one can

consider surface tension, γ, as the amount of work, W , that is required to distort a

surface by a unit area, A, γ = ∂W/dA [27]. For example, if a surface is distorted,
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as shown in Figure 1.5 a), work is done on the liquid in order to add enough energy

to the system to create more liquid-air interface. For the materials used in this

thesis, the surface and interfacial tensions are γPS−air = 31.34 dyn/cm, γPMMA−air

= 31.22 dyn/cm, and γPS−PMMA = 1.65 dyn/cm [28]. Another way of considering

surface tension is to have a one-dimensional liquid, a fibre of liquid, that is suspended

between two flexible supports as shown in Figure 1.5b). The liquid fibre will contract

to minimize the surface area and in doing so, will pull the two supports together.

This applies a force to the supports as a function of the distance pulled, F = 2γl.

1.3.2 Laplace Pressure

A consequence of surface tension is that a volume of liquid will be driven to form a

droplet to have the minimal surface area. In doing so, an outward facing pressure

is created within the droplet. The pressure difference between the droplet and the

medium is known as the Laplace pressure [24]. The Laplace pressure in in the droplet

arises due to the surface tension of the liquid and the curvature of the interface. To

prove this claim, consider a spherical drop of water with radius, R, that is in the air.

A schematic is shown in Figure 1.6. In order to change the interface by the amount

dR, work must be done on the droplet to create more interface. The existing pressures

and the capillary force will resist the change, as a result a simple mechanical work

argument can be made

∂W = −pwdVw − padVa + γwadA. (1.28)

The total work on the system depends on the pressure-volume work, −pdV , where the

pressure, p, for the water (denoted with subscript w) and air (denoted with subscript
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R

R+dR

Figure 1.6: Schematic of a droplet of water suspended in air with radius R. An
imagined increase in radius, dR is outlined by the dashed line.

a), and the volumetric change, dV . Additional work is associated with the surface

tension, γwadA. The volume change for the droplet can be related to the change in

radius, dVw = 4πR2dR = −dVa, as can the change in surface area, dA = 8πRdR. For

the system to be in mechanical equilibrium, there is no change in work resulting in

∆p = pw − pa =
2γwa
R

. (1.29)

This means that the Laplace pressure of a droplet with a small radius of curvature

will be larger than a droplet with a larger radius of curvature [24].

This exercise was done for a perfect sphere; however, it can be generalized to any

curved surface. The local curvature, C, is dependent on the two radii of curvature,

R and R′, in orthogonal directions to the surface, C = 1/R + 1/R′. The Laplace

pressure for any point on a curved surface is
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∆p = γC. (1.30)

The local Laplace pressure can be fully predicted by both the surface tension and the

curvature of the interface. Laplace pressure gradients on the same surface (areas of

high and low curvature) will induce flow in order to relieve the pressure differences.

1.3.3 Capillary length

The capillary length, κ−1, of a fluid interface indicates the typical length-scale for a

system where both gravitational and surface tension effects are comparable in mag-

nitude. A very good visual example of the capillary length is the meniscus that is

present around a water glass. Capillary forces pull the surface of the water up around

the edge of the glass, but after a certain length, gravity takes over to push the water

to a flat surface. The distance between the edge of the glass and where the meniscus

fades away is indicative of the capillary length. The gravitational effects are described

by the hydrostatic pressure, which is the pressure associated with a parcel of liquid

submerged at depth, κ−1, in a liquid of density ρ, while in earth’s gravity, g. The

hydrostatic pressure is counteracted by the Laplace pressure due to the surface ten-

sion of the liquid. The Laplace pressure is estimated using equation 1.30, with the

curvature being on the order of the capillary length. A simple calculation can be done

when the two pressures are equal, [24]

γ

κ−1
= ρgκ−1. (1.31)
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A simple rearrangement yields an expression for the capillary length

κ−1 =
√
γ/ρg. (1.32)

For most liquids, the capillary length is on the order of millimeters, which sets the

characteristic length scale of the system. Below this length, any perturbations or

features will be subject to capillary forces. Above this length, gravity will act to level

the surface. The length scale of the experiments performed in this thesis are well

below the capillary length of both polymers and therefore gravitational effects can be

neglected [29].

The driving force that acts on a liquid surface with perturbations below the cap-

illary length stems from the surface tension. The levelling that occurs in this regime

is known as capillary levelling and it is the method used to initiate flow in the exper-

iments in Chapter 3.

1.3.4 Capillary energy and viscous dissipation

As discussed in the section 1.3.1, there is an energetic cost to creating a liquid in-

terface. A liquid system has a minimal surface area, So, that has a minimal surface

energy, Eo, associated with it. As a surface is perturbed away from the equilibrium

configuration, there is additional energy known as the capillary energy. Figure 1.7

shows a surface with topographic roughness and surface area, S, and after some time

the surface levels, reducing the surface area and thus, the capillary energy. The cap-

illary energy is defined as the difference in surface energy from the current state to

the minimal state
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Figure 1.7: Schematic of capillary levelling of a liquid surface to a minimal energy
state.

Ecap = E − Eo = γ(S − So), (1.33)

where E and S are the energy and surface area of the perturbed fluid. A liquid system

will transition from the high energy state to the low energy one. In order to do so, it

dissipates the excess capillary energy to transfer the energy out of the system. In the

case of thin liquid films, capillary energy is decreased through viscous dissipation.

Viscosity is the friction felt between molecules in a fluid as they move past one

another. The higher the coefficient of friction between the molecules, the more viscous

the fluid will be and the longer it will take to respond to an external stress. When a

viscous fluid flows in response to a stress, the internal friction will work to dissipate

some of the excess kinetic energy. In fluid dynamics, the boundary layer is where
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viscous dissipation occurs because of gradients in flow velocity induce relative motion

between the molecules. Consider a parcel of liquid that possesses kinetic energy, U ,

[1]

U =
1

2

∫

V

ρu2i dV, (1.34)

where ui is the speed of each molecule of the liquid in a volume, V , and with density,

ρ. By taking the derivative of the above equation with respect to time, the expression

becomes

∂U

∂t
=

∫

V

ui
Dui
Dt

ρdV, (1.35)

where Dui/Dt indicates a 3-dimensional rate of change of the velocity of the fluid.

Cauchy’s equation of motion is ρ Dui/Dt = ∂Tij/∂xj + ρgi, where T is the stress

tensor and the g is the body force [1]. Inserting Cauchy’s equation of motion into

equation 1.35 yields two separate integrals

∂U

∂t
=

∫

V

ρgiuidV +

∫

V

ui
∂Tij
∂xj

dV. (1.36)

The second integral can be further broken down with integration by parts and the

introduction of the stress tensor vector, tj = Tij ·nj. This splits the change in kinetic

energy into two volume integrals and one surface integral

∂U

∂t
=

∫

V

ρgiuidV +

∫

S

uitjdS −
∫

V

∂ui
∂xj

TijdV. (1.37)

The third term indicates a summation over the indices. For an incompressible Newto-

nian fluid the stress tensor is symmetric and therefore the summation over the stress
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tensor can be split into two

Tij
∂ui
∂xj

=
1

2
Tij

(
∂ui
∂xj

+
∂uj
∂xi

)
. (1.38)

Furthermore, the stress tensor for a simple Newtonian fluid is a function of the shear

rate, Tij = η ∂ui
∂xj
, i 6= j. The indices only account for shear rate and do not include

pressure applied normal to the direction of flow. If we substitute the shear rate

into the right-hand side of equation 1.38 and invoke the incompressibility condition

0 = ∂ui/∂xi + ∂uj/∂xj + ∂uk/∂xk, it reduces to

Tij
∂ui
∂xj

=
1

2
η

(
∂ui
∂xj

+
∂uj
∂xi

)2

= 2ηe2ij, (1.39)

where eij = 1/2
(
∂ui
∂xj

+
∂uj
∂xi

)
and is the strain rate tensor. This equation relates the

stress tensor to the viscous dissipation of energy. One can see that it will only be

zero if the fluid particle does not change shape, meaning that there is no shear being

applied to the parcel. The final expression for the change in energy with time can be

expressed as

dU

dt
=

∫

V

ρ~g · ~udV

︸ ︷︷ ︸
potential energy

+

∫

S

~u · ~tdS
︸ ︷︷ ︸
surface stresses

+ 2ηe2ij︸ ︷︷ ︸
viscous dissipation

. (1.40)

For a thin film, the potential energy and surface stress terms are negligible, leaving

the viscous dissipation term. Based on the same arguments that were made in the

thin film equation section, section 1.2.1, the rate of strain tensor is only significant
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for ejk, as this is the only direction with significant gradients in viscosity,

dU

dt
=

∫
η (∂zv)2 . (1.41)

The capillary energy of a step dissipates by converting the capillary energy to kinetic

energy through flow, which then loses energy via viscous dissipation [30]

dEcap

dt
=

∫
η (∂zv)2 . (1.42)

This equation can now be solved using Stokes and Laplace flow [23]. The full analysis

of energy dissipation for the system studied in this thesis can be found in Appendix

B of the paper that is in Chapter 3.

1.3.5 Capillary levelling and boundary conditions

The ultimate goal of the research performed in this thesis is to examine how a liquid-

liquid boundary condition affects the flow profiles. In the current literature, there is

discussion over the influence of the liquid-liquid boundary [11, 31–35]. We chose to

use capillary levelling of a thin polymer step to probe the flow mechanism. Capillary

levelling has been shown in previous works to indicate the type of flow by solving

the thin film equation for the appropriate boundary conditions [36–38]. The models

and experimental data both have self-similar profiles, where the levelling profiles may

be rescaled with respect to time using an appropriate scaling term. With capillary

levelling of a liquid on a solid substrate, the capillary energy scales as a power law

with respect to time [39]. In this case, the power law is t−1/4 [30, 40, 41] . The thin

film equation solved for the appropriate boundary conditions results in a Poiseuille
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flow profile. For capillary levelling of a free-standing liquid film, the energy scales

with a different power law, t−1/2 [36, 42]. The flow profile is plug flow as outlined in

the fluid dynamics section (no stress boundary conditions at both interfaces). The

boundary conditions strongly affect the viscous flow and therefore the resulting energy

dissipation. In the following chapters of this thesis, we demonstrate capillary levelling

of a viscous polymer step while it is being influenced by a liquid-liquid boundary

condition. Furthermore, we track the energy dissipation in the polymer step and in

the underlying liquid.
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Chapter 2

Experimental Details

This chapter elaborates on the experimental details and procedures discussed in the

manuscript in Chapter 3. The research performed in this thesis was done with the

utmost emphasis on lab cleanliness and all sample preparation was performed in a

laminar flow hood to reduce dust. The following sections are presented in the order

required to carry out the experiment.

2.1 Substrate preparation

Two main substrate types are used in this experiment. The first is silicon with a 5

nm layer of native oxide on the surface. The wafer is gently laid face down onto a

lens tissue, and a diamond scribe is used to score lines parallel to the crystal planes

in a 1 × 1 cm grid. The scribed lines are placed over a thin metal rod and pressure

is applied on either side to encourage the silicon to break along the lines. During

cleaving, newly separated pieces of silicon are moved to clean areas of lens tissue

to prevent silicon dust from contaminating the surfaces. The square substrates are
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sprayed with compressed nitrogen to remove large pieces of silicon dust that may have

come into contact with the clean surface.

The other substrate is mica. Mica is a crystal structure that forms sheet-like

planes with perfect cleavage between the atomic planes. These planes allow the mica

to be easily cleaved to create a atomically flat surfaces. For this research, 1 × 1

inch squares of mica were cleaved by wedging a scalpel blade between two planes at

one of the corners of the square. The separated corner is simply pulled apart with

tweezers resulting in two atomically smooth mica surfaces. The dual substrates are

dusted with compressed nitrogen to remove any mica particles that may have come

into contact with the surfaces.

2.2 Spin coating

Spin coating is a fast and reliable method to create thin uniform polymer films. The

process begins by dissolving the polymer into a solvent. In this thesis, polystyrene

(PS) and poly-methyl(methacrylate) (PMMA) were dissolved in toluene. The con-

centration of the solutions ranged from 1.5% to 5% by mass. The PMMA molecular

weight, Mw= 56 kg/mol, was not varied during the experiment (Polymer Source,

Inc., polydispersity index ≤ 1.08). The molecular weights of the PS were 53.3, 106,

183, and 758.9 kg/mol (Polymer Source, Inc. and Scientific Polymer Products, Inc.,

polydispersity index ≤ 1.06). Solution is deposited onto a substrate and the substrate

is rotated at speeds ranging from 1000 - 5000 rpm. The rotation causes the liquid to

spread to coat the substrate, with excess material rolling off of the substrate, until a

thin layer has formed. The layer continues to thin due to evaporation of the solvent

until the film vitrifies [43]. Films are spun onto either mica or silicon. To drive off
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the trapped solvent and to relax the polymers in the films, samples are annealed on

a heating stage (Linkam) at 150 ◦C, which is above the glass transition temperature

(100 ◦C for PS and 105 ◦C for PMMA) for 10 minutes. Film thicknesses were con-

firmed with ellipsometry and atomic force microscopy, which are described in sections

2.5 and 2.6.

2.3 Floating films

For the geometry used in this thesis, a film of PS was layered under two films of

PMMA, with the top film of PMMA been fractured to create the step. Figure 2.1

shows a schematic of the desired geometry, with the thicknesses of the three layers

indicated as hPMMA-u, hPMMA-l, and hPS to indicate the upper PMMA, lower PMMA

and PS film thicknesses, respectively. This system requires multiple thin films to be

layered on each other. To do this, we employ a technique that involves floating the

films on a clean water bath. A water bath is prepared with ultra-pure water (18.6

MΩ cm).

A thin film that has been spin-coated onto a mica substrate can be removed from

the substrate and ‘floated’ onto the surface of the water bath. This is done by scoring

the film with a scalpel blade, roughly 1 mm from the edge, and carefully lowering the

film and substrate into the water at a shallow angle. Mica is hydrophilic and as the

film is submerged, water will move between the hydrophobic polymer and the mica.

This will detach the polymer film and leave it floating on the surface of the water.

The film is now free for another polymer film that is supported on a silicon substrate

(the films adhere more strongly to silicon and will not float off as they do for mica)

to carefully lift it up out of the water. The two can be annealed at 70 ◦C (below

33



M.Sc. Thesis - Carmen Lee McMaster - Physics & Astronomy

hPS

hPMMA-l

hPMMA-u
PMMA

PS

a)

Figure 2.1: A schematic of the as-prepared sample, where the three layers are indi-
cated with the given material. hPMMA-u indicates the thickness of the upper portion
of the step, hPMMA-l indicates the thickness of the lower portion of the step, and hPS
indicates the thickness of the underlying liquid film.

the glass transition temperature of both polymers) to drive off excess water trapped

between the two films.

The floating process can be repeated for a second film of polymer, but this time

with the intention of creating a step-edge. If the polymer composing the film is

sufficiently close to the entanglement molecular weight, the film will fracture cleanly

into half when the film is agitated. The resulting halves can be lifted again out of the

water to create a step with the lower film. The initial profile of the step was taken

using atomic force microscopy (AFM).

2.4 Annealing and washing films

The samples were annealed well above the glass transition temperature, Tg, of both

polymers. Above Tg, the layers flow as simple Newtonian fluids in response to the

excess capillary energy stored by the step. In this thesis, the samples were annealed
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on a heating stage (Linkam) at either 150, 165, or 180 ◦C. The samples were annealed

for a period of time, and quenched back to room temperature so the polymers return

to the solid-glassy state. AFM profiles were then taken to examine the topography of

the PMMA and air interface. For some samples, the PMMA was washed off using a

selective solvent (∼ 66% acetic acid and ∼ 33% ultrapure water) by submerging it in

the solvent and then rinsed with ultrapure water. The PS layer remained and AFM

profiles were taken at the same location as before to examine how the two interfaces

develop in tandem.

2.5 Atomic force microscopy

The atomic force microscope (AFM) is a powerful imaging tool that is used to examine

topographical data on the nano- and microscale. Figure 2.2 shows a schematic of the

components of the AFM. AFM works on the same principle as a record player, just

on a much smaller scale. A finely pointed tip, with a tip’s width as narrow as 10 nm,

is supported by a flexible cantilever. A piezoelectric controller precisely positions the

sample stage. A laser targets the back of the tip and is reflected back to a spatially

resolved photodetector. As the tip is brought closer to the sample, it approaches a

energy minima dictated by the Lennard-Jones potential. Figure 2.3 is a schematic of

the potential, where there is a long range attractive van der Waals force (r−6) and a

short range repulsive force due to the Pauli exclusion principle (r−12). In the most

common form of AFM operation, the tip moves along the sample and it will remain

the same distance away from the sample, regardless of topography, in order to stay

at the energy minima. The tip accurately tracks the height of the sample as it is

moved relative to the surface. When the tip is moved up and down, it causes the
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Figure 2.2: Components of the atomic force microscope

cantilever to bend and flex, which in turn causes the laser to reflect to a different

location on the photodetector. The change in position on the photodetector provides

the topological data along the sampled line. The AFM can raster back and forth to

create a 3-dimensional map of the surface of the sample.

V

rr

r
-12

r
-6

Figure 2.3: Schematic of a Lennard-Jones or 6-12 potential to model interatomic
attractions and repulsions.
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2.6 Ellipsometry

Ellipsometry is a non-invasive method of measuring the thickness of thin films. El-

lipsometry, at its essence, is a technique that uses the in properties of light that is

reflected off a thin film sample to determine the sample’s thickness and refractive

index. The ellipsometer used in this project (EP3, Accurion) employs a technique

known as nulling ellipsometry. Specifically, a beam of elliptically polarized light with

known polarization is incident on a thin film. Elliptically polarized light is where a

linearly polarized beam of light is combined orthogonally with anywhere from 0◦ < θ,

90◦ phase shift relative to one another. When the elliptical light is reflected off of the

film, the p- and s- components (in plane and perpendicular to the plane of reflection)

of the light are altered as it interacts with the film. For any thin film, a certain

elliptical polarization will reflect as a linearly polarized light. An orthogonally ori-

ented linear polarizer can completely extinguish the incident light. The ellipsometer

changes the polarization of the incident light and the angle of the linear polarizer to

find a minimum in light intensity. A model can be developed based on the polar-

ization state of the incident and reflected light with fitting parameters to obtain the

thickness and refractive index of the thin film.
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Chapter 3

Capillary Levelling of a Liquid

Stepped Film Supported on an

Immiscible Liquid Film

3.1 Paper summary

In this chapter, I present a manuscript in preparation to be published in a peer

reviewed journal. This paper addresses the effect of a liquid-liquid boundary condition

on fluid flow in thin films. We prepare samples with a stepped polymer film layered

on top of a thin film composed of a different polymer. We then follow the evolution

of the top polymer-air interface and the bottom polymer-polymer interface as the

samples are annealed above the glass transition temperature of both polymers. In

this case, the top film was more viscous than the bottom film. From the profiles,

we calculate the capillary energy, which is proportional to the area of the interface,

of each interface and examine how they change with time. Furthermore, we varied
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the viscosity ratio between the two films to study the different ways the energy is

dissipated. We developed a viscous dissipation model to explain the decrease in

capillary energy over time, and experimental results agree well with the model.

This project was motivated by previous work done on different stepped film ge-

ometries and the useful probe into boundary layer flow that they provide [37, 44, 45].

In collaboration with my supervisor, I designed and performed the experiment, as

detailed in the manuscript. I also wrote the data analysis programs in Python. I

performed preliminary development of the theoretical model. Vincent Bertin fur-

ther refined and perfected the model and aided in some of the experiments. The

manuscript was a collaboration between the authors. I prepared the experimental

section and the figures, while V. Bertin wrote the theoretical section and appendices.

We collaborated together on the remaining sections. As the work depends heavily

on both the theoretical and experimental contributions, V. Bertin and I share ‘first

authorship’ on this paper.
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Flow in thin films is highly dependent on the boundary conditions. Here, we study the effect of
a sharp liquid/liquid interface when flow is induced by capillary forces in a bilayer film. A stepped
film is placed on another immiscible and less viscous film. The Laplace pressure gradient resulting
from the curvature of the stepped film induces flow, and in doing so dissipates the capillary energy
of the step. The effect of different viscosity ratios between the stepped film and the underlying film
is investigated. A model is developed which describes the energy dissipation of viscous flow that
occurs in each layer. The experimental and theoretical model are in good agreement. We find that
the flow is initially dominated by plug flow in the top film before crossing over to Couette-like flow
in the bottom film. The crossover time depends on the viscosity ratio between the two liquids.

I. INTRODUCTION

In the field of fluid dynamics, boundary condition effects are an active area of study. This is especially true in the
context of thin liquid films, where the thickness of the film approaches the size of the boundary layer [1]. A question
of particular interest is how boundary conditions affect the overall dynamics of a thin liquid film. Seminal work by de
Gennes and Brochard-Wyart examined the interface between two polymer melts and predicted a discontinuity in the
velocity across the interface. This is known as slip which can occur if the width of the interface is smaller than the
entanglement length of both polymers [2–4]. Molecular dynamics simulations have confirmed the presence of slip at
a sharp interface, as well as the resulting velocity profiles, and have been extended to simple immiscible liquids [5–7].
The effect of liquid/liquid boundary conditions is relevant for applications like the stability of thin polymer films for
coatings [8], as well as in industrial processes like coextrusion of two liquids [9].

Capillary driven levelling occurs when there is excess interface which can be relaxed by smoothing any perturbations
at the interface e.g. a thin film with some surface feature: a bump, a valley, etc. This levelling is a useful tool for
studying fluid flow in nanometric thin films and is dependent on the boundary conditions and the material properties
of the liquid [10]. Here we investigate a liquid/liquid boundary by studying the capillary driven levelling of a thin
liquid bilayer film. The levelling is driven by the surface tension, γ, of the liquid. Curvature at the surface of a
liquid results in a Laplace pressure and induces flow in order to reduce the excess surface area, thereby reducing the
surface energy associated with the system. The flow is mediated by the viscosity of the liquid, η. With well-known
initial conditions, capillary driven levelling can be used to study the glass transition temperature of polymers [11, 12],
confinement effects [13] and nanorheology of polymeric films [14] to name just a few.

Previous work in nanorheology of thin films has shown that boundary conditions dictate the resulting flow of liquid
films [15–17]. A variety of geometries have been previously studied [18–20], but here we employ the stepped film
geometry: the initial surface perturbation can be described as a Heaviside step function where the height profile
varies along the x direction from one thickness to an other and is invariant in the orthogonal in-plane direction. The
height profile can then be described as a function of the horizontal position and time, h = h(x, t). In the simplest case
a thin liquid film on a solid substrate has a no-slip boundary condition at the solid-liquid interface and a no-stress
boundary condition at the liquid/air interface. Using the lubrication approximation and Stokes flow, the interface
profile follows the standard thin film equation [1] and the governing flow is a parabolic Poiseuille flow. The thin film
equation admits a self-similar solution with the rescaling variable, x/t1/4 [21, 22]. As a result, the levelling of any film
with the same boundary conditions will approach the same self-similar attractor regardless of the initial geometry of
the perturbation [23, 24]. A modification of the no-slip boundary condition of a liquid film supported on a substrate
arises in the case of a freestanding film. Such a liquid film has no-stress boundary conditions at both interfaces
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and does not support shear. In that case the excess surface energy is dissipated through elongational flow, as found
in soap films [25]. Using a long-wave approximation, the flow profile is consistent with plug flow. The governing
equation for the interface profile, h(x, t), follows a system of coupled partial differential equations [26] which admits
a self-similar solution with the rescaling variable, x/t1/2 [27]. Lastly, we note that freestanding film models follow
the same equation as that of a supported film in the case of a infinite slip length (no shear stress is supported at the
supported interface) [16].

For a liquid thin film on a liquid substrate, the flow profile is less clear and depends on the viscosity ratio between
the two substrates, as well as the relative surface and interfacial tensions. One can speculate that the levelling of a
film on a more viscous liquid will tend to that of a film on a solid substrate. The opposite case of the levelling of a
film on a lower viscosity fluid is not trivial and it is the primary focus of this paper. In addition, the presence of slip
at the liquid/liquid interface may affect the levelling dynamics. Here, we employ experiments with thin immiscible
bilayer films and theory to investigate the hydrodynamic flow in such a geometry. We demonstrate that there is a
power law crossover between the Poiseuille and plug flow regimes discussed above that are tuneable with the relative
viscosity ratio.

II. METHODS

A. Experimental

The sample preparation follows closely a modified version of that described in [28] Thin polymer films were prepared
by spin coating either polystyrene (PS) or poly(methyl methacrylate) (PMMA) from solution in toluene (Fisher
Chemical, Optima). PS and PMMA were chosen for their immiscibility with each other. The PS and PMMA films
were spincoated onto 1 × 1 cm silicon wafers (University Wafer) and freshly cleaved mica sheets (Ted Pella, Inc.)
respectively. The PMMA molecular weight was Mw = 56 kg/mol (Polymer Source, Inc., polydispersity index ≤1.08).
The molecular weights of the PS were 53.3, 106, 183, and 758.9 kg/mol (Polymer Source, Inc. and Scientific Polymer
Products, Inc., polydispersity index ≤1.06). After spincoating, all films were annealed at 150◦C for 10 minutes to
remove any remaining solvent and to relax the polymer chains. The films of PMMA were floated from the mica surface
onto a bath of ultra-pure water (18.6 MΩ cm). A full section of the PMMA was lifted off the water surface onto
the PS coated silicon to create a bilayer film supported on the Si substrate: PMMA/PS/Si. The molecular weight
of the PMMA is low enough so that the polymer chains are not highly entangled, such a film easily fractures upon
perturbation on the surface of water and results in clean straight edges [18]. A second film of PMMA was fractured
and transferred onto the sample, where the sharp fracture edge create a PMMA step. Figure 1(a) shows a schematic
of the sample, with a stepped film of PMMA sitting atop a PS film. For all of the experiments, the three layers, hPS,
hPMMA-u and hPMMA-l, were of nominally the same thickness and confirmed to be within 10% of each other using
ellipsometry (Accurion, EP3).

hPS

hPMMA-l

hPMMA-u
PMMA

PS

a)

FIG. 1. (a) A schematic of the as-prepared sample, where the three layers are indicated with the given material. hPMMA-u

indicates the thickness of the upper portion of the step, hPMMA-l indicates the thickness of the lower portion of the step, and
hPS indicates the thickness of the underlying liquid film. (b) Atomic force microscopy profiles for the liquid/air interface and
the liquid/liquid interface. The two scans are artificially shifted in the vertical direction to simulate the actual geometry of the
sample.



3

To examine the progression of the step with time, the samples were heated above the glass transition temperature of
both polymers (∼ 100◦C) with a temperature controlled stage (Linkam). The samples were heated for a period of time
to enable flow before being quenched back into the glassy state at room temperature. Surface profiles of the liquid/air
interface were taken using atomic force microscopy (AFM, Bruker). For some experiments, the liquid/liquid interface
was exposed by dissolving the top PMMA layer with a selective solvent (∼ 66% acetic acid and ∼ 33% ultra-pure
water). Figure 1(b) shows an example of an AFM scan of the liquid/air and liquid/liquid interface taken at the same
location on the sample. The geometry of the sample is visualized here by vertically shifting the AFM scans by the
original layer thickness.

B. Theory

We have a system with two liquid films atop of a rigid substrate as pictured in Fig. 1(a). A Cartesian coordinate
system (x, y, z) is used, the vertical coordinate is denoted by z and the out of plane direction is denoted by y. We
assume that the system is infinite in the x- and y- direction and that both liquids are Newtonian incompressible
fluids. With symmetry arguments the out-of-plane direction, y is invariant with time. The typical length scale of the
experiment (film thickness on the order of 100 nm) is well below the capillary length, thus gravitational effects can
be neglected in comparison to capillary forces. The flows correspond to low Reynolds numbers so that inertial effects
can be neglected. Lastly, the film thicknesses are chosen large enough such that van der Waals interactions result in
a pressure that is weak in comparison to the Laplace pressure [21].

The velocity fields, pressure fields, and viscosity of the two fluids are denoted ~ui = (ui, 0, wi), pi and ηi with
i ∈ [1, 2] being the layer number. Layer 1 is the PS film, and layer 2 is the PMMA step. The surface tension of the
top liquid is defined as γ2 and the liquid/liquid interfacial tension is denoted γ1. Two dimensionless numbers arise
from these definitions: the surface tension and viscosity ratios γ = γ1/γ2 and η = η1/η2. The molecular weight of
the bottom layer is varied in the different experiments which results in a massive change in the viscosity ratio (3
orders of magnitude η = 0.0005 to 1). The liquid/liquid interfacial tension does not vary with the molecular weight
of the polymers and will taken to be γ = 0.053 [29]. Within the lubrication approximation there is continuity of the
tangential stress across the liquid/liquid interface, thus η1

∂u1

∂z = η2
∂u2

∂z [17]. For a system with two liquids and where

η � 1, this relationship should be ∂u2

∂z = 0 to leading order. Together with a no-stress boundary condition at the
liquid/air interface, this boundary condition is consistent with plug flow in the top layer. There is a correction due
to the tangential stress of the bottom layer at the next leading order, this rescales the viscosity ratio [30].

Dimensionless variables are denoted with a hat as they are introduced here, and the hat will be dropped for the
remainder of this paper and dimensionless variables are assumed

ui = U ûi, wi = Wŵi = Uεŵi, x = L x̂, z = H ẑ, pi = P p̂i, t =
L

U
t̂, hi = H ĥi, ε =

H

L
, (1)

where: ε is the ratio between the typical vertical scale H (fixed by the thickness of the layers) and the horizontal

length scale L, P = γ2H
L2 is the typical pressure scale set by the Laplace pressure, U = γ2H

η2L
is the characteristic velocity

which is chosen such that the leading order equation for the top layer is compatible with plug flow. The pressures
are the Laplace pressures associated with each interface, where p2 = γ2(∂2h2/∂x

2) and p1 = p2 − γ1(∂2h1/∂x
2) . As

indicated above, we rescale the viscosity ratio as η = ε2η̂. The resulting profiles follow a set of non-linear partial
differential equations, and the calculation details may be found in Appendix A. The governing equations are

∂t(h2 − h1) = − [(h2 − h1)u2]
′
, (2a)

∂th1 = −
[
(γ2h

′′′
2 + γ1h

′′′
1 )

h3
1

12η1
+
h1u2

2

]′
= −

(
−p′1

h3
1

12η1
+
h1u2

2

)′
, (2b)

γ2h
′′′
2 (h2 − h1) + (γ2h

′′′
2 + γ1h

′′′
1 )
h1

2
+ 4η2 [u′2(h2 − h1)]

′ − η1
u2

h1
= 0, (2c)

where the prime indicates a derivative with respect to x. Notably, equation 2c has the same form as the tangential
stress balance for a single liquid film on a solid with large slip length [16]. The apparent slip length that comes from
this model is in terms of the geometry of the system, bslip = h1η2/η1 [30], which can be large as the viscosity of two
polymer melts can vary greatly.
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The height of the two interfaces can be expressed as perturbations from the mean thickness of the fluid later,
h1(x, t) = h̄1 + δh1(x, t) and h2 = h̄1 + h̄2 + δh2(x, t), where h̄i denotes the mean thickness of the fluid layer at
rest. For clarity, the mean thicknesses can be defined in terms of the experimental thicknesses: h̄1 = hPS and
h̄2 = hPMMA-l + 1

2hPMMA-udefined. In order to proceed analytically, only the linear terms are considered since

δhi � h̄i. This assumption is not valid with respect to the experiment because the step height is of the same order
of magnitude as the thickness of the fluid. Nevertheless, the essential physics is contained in the linear solution and
captures the experimental results. The Fourier transform f̃ of a function f(x) is f̃(k) = 1√

2π

∫
dxf(x) exp(ikx), and

we find that the Fourier transform of the interface profile can be written as

∂ ˜δhi
∂t

= si,j(k) ˜δhj , (3)

with si,j representing the growth rate associated with the mode, k. The growth rate is defined in Appendix A. The
general solution of this set of equations is

˜δh1 = α expλ1t+ β expλ2t , (4a)

˜δh2 = αK1 expλ1t+ βK2 expλ2t . (4b)

The eigenvalues and eigenvectors of the matrix ¯̄s are (λ1, λ2) and (1,K1), (1,K2), respectively. The two coefficients α
and β can be found using the initial conditions: δh1(x, t = 0) = 0, and δh2(x, t = 0) = 1

2 hPMMA[Θ(x)− 1/2], where
Θ denotes the Heaviside function (i.e. Θ(x > 0) = 1, Θ(x < 0) = 0).

To consider the validity of the model explained above, a second model was developed that does not assume flow
profiles in the respective layers and takes into account all the terms of the Stokes equation. This Stokes model is
detailed in Appendix C, but it is important to note that it assumes the step height is a perturbation in relation to the
thickness of the film. This model exhibits a similar governing equation to Eq. (3), with the exception of the growth
rates sS

i,j, which are much more complicated functions of k. Excellent agreement between the solutions of both models
is found on the experimental time scale, which in turn confirms the pertinence of the model developed in this section
(see Fig. 5).

III. RESULTS AND DISCUSSION

Figure 2(a) shows the liquid/air interface and the liquid/liquid interface at different stages of evolution.

a) b)

FIG. 2. a) Experimental profiles of the liquid/air and liquid/liquid interfaces of a PMMA step on PS (Mw = 53.3 kg/mol)
during levelling at T = 150 ◦C. The samples were fabricated to have hPS = hPMMA-l = hPS-u = 180 nm. The top liquid was
removed with a selective solvent to expose the liquid/liquid interface. b) Theoretical profiles calculated from the asymptotic
model. The times, physical properties and geometry of the calculated step have been inputted to match the experimental
conditions in frame a).

In these profiles, the PS has a Mw = 53 kg/mol and the samples were annealed at 150◦C. The liquid/air interface
develops a “bump” on the upper side of the step with positive curvature and a “dip” on the lower side with negative
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a) b)

FIG. 3. (a) Height of three PMMA steps as a function of horizontal position and time (0 < t < 1280 min). The steps are
sitting on thin PS films of varying molecular weights, as indicated, and annealed at 165 ◦C. (b) Heights of the three PMMA

steps as shown in (a), but with the horizontal axis rescaled with an annealing time power law, t1/4. For both sections, the 53.3
and 758.9 kg/mol data has been shifted horizontally and vertically for clarity.

curvature. With increased annealing time, the bump and dip spread apart across the substrate as the step levels. As
discussed in previous works [22], the bump and dip develop to alleviate the large gradients in Laplace pressure which
originates due to the highly curved corners of the original step geometry. At early annealing times, t < 8 min, there
is a non-smooth feature near the center of the step that is a remnant of the initial corner of the step.

The liquid/liquid interface deforms significantly in response to the Laplace pressure from the step above. Remark-
ably, the feature initially grows before decreasing in height – this implies that while the energy associated with the
liquid/air interface decreases, it does so at the cost of an increasing surface energy at the liquid/liquid interface. On ei-
ther side of the deformation are shapes that mimic the bump and dip of the liquid/air interface. The large deformation
of the liquid/liquid interface, relative to the layer thickness, can be explained by considering two physical properties
of the system: the viscosity ratio between the PMMA and the PS, and the ratio between the surface tension of the
liquid/air interface and the interfacial tension of the liquid/liquid interface. The interfacial tension plays a crucial
role in the magnitude of the energy required to deform a surface, for this system the PMMA-air interfacial tension,
γPMMA−air = 31.22 dyn/cm, is much larger than that of the PS-PMMA interface, γPS−PMMA = 1.65 dyn/cm [29].
Since the interfacial tension ratio γ = γPMMA−air/γPS−PMMA is large, the lower interface is less energetically costly
to deform than the liquid/air interface. The liquid/liquid interface then follows the shape of the liquid/air interface
with relatively little energetic cost, and thus the deformation of the liquid/liquid interface can be inferred from the
shape of the liquid/air interface. Figure 2 shows a comparison of the levelling profiles, where Fig 2(a) shows the
profiles that were obtained experimentally and Fig 2(b) contains the profiles generated with the theoretical model
with matching physical parameters to the experimental data. The model clearly captures the essential features that
are observed in the experiment.

The effect of the viscosity ratio between the top and bottom polymers was examined by varying the molecular
weight of the PS layer. Figure 3(a) shows the profiles of PMMA steps on top of films of three different PS molecular
weights, 53.3, 183, and 758.9 kg/mol. The viscosity ratios between PS and PMMA were measured independently
using the same capillary levelling technique outlined in previous works [28] i.e. stepped films were prepared from a
single polymer (PS or PMMA) and the capillary velocity was determined at the same temperature at which all bilayer
experiments were carried out. The viscosity ratios, η = ηPS/ηPMMA, in order of increasing PS molecular weight, are
6×10−5, 1 ×10−2, and 1. For the profiles in Fig. 2(a) and Fig. 3(a), the viscosity of the top film is always larger or
equal to the viscosity of the bottom film. The flow of the system is driven by gradients in Laplace pressure along the
step. The pressure is continuous through the PMMA layer and is transferred to the PS layer below, thereby inducing
flow in the PS layer. The deformation of the bottom layer is the result of flow in the less viscous medium in response
to the step, which occurs more quickly than the more viscous top layer. It is immediately clear from Fig. 3(a) that for
samples having identical annealing times and geometry, the lower the viscosity of the underlying PS film, the faster
the levelling progresses.

The profiles can be rescaled by a temporal power law to determine if the profiles are self-similar [21, 22, 28]. As
discussed above, for Poiseuille flow, the surface profiles change with a power law of t1/4, while for plug flow t1/2

evolution of the profiles is found. Figure 3(b) shows the same profiles as in Fig. 3(a) with the horizontal axis rescaled
as expected for a Poiseuille based flow. For the smallest viscosity ratio (PS Mw = 758.9 kg/mol), the profiles collapse
well with t1/4. However, for the two larger viscosity ratios, there is no simple collapse, which suggests that there is
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a)

a)

b)b)

FIG. 4. (a) Excess capillary energy of the liquid/air interface (filled) and liquid/liquid interface (unfilled) for a PMMA (Mw

= 56 kg/mol) step on a thin film of PS (Mw = 53.3 kg/mol) annealed at 150 ◦C. The t1/4 line is present to guide the reader
for late time behaviour. The energy has been normalized by the initial capillary energy of the system. (b) Excess capillary
energy of the liquid/air interface for a PMMA (Mw = 56 kg/mol, height = 180 nm) step on thin films of PS (Mw = 53.3, 183,
and 758.9 kg/mol) annealed above Tg. Samples were annealed at 150 ◦C (◦), 165 ◦C (?) and 180 ◦C (4) and shifted relative
to the 150 ◦C data using time-temperature superposition. The energy has been normalized by the initial capillary energy of
the system. Inset a) is a schematic of flow profiles pertaining to a bilayer system with a small viscosity ratio. Inset b) is a
schematic of flow profiles pertaining to a bilayer system with a viscosity ratio of 1.

no self-similar solution scaling with t1/4 for the experimental time scale studied. In order to investigate the temporal
evolution in more detail, we follow the approach by McGraw et al. [21] and consider the evolution of the surface
energy of the system as this is a global observable linked to the step evolution.

The surface energy or capillary energy, E, of a fluid surface is proportional to the surface/interfacial tension γi
of the interface, i. Furthermore, the capillary energy is proportional to the excess area of the surface, S, compared
to a flat surface, So: E = γi

∫
(dS − dSo). Due to the large interfacial tension ratio, γ, the energetic contribution

of the liquid/liquid interface is negligible in comparison to the liquid/air. Since the liquid/liquid interface has an
energetic cost that is so much less than that of the liquid/air interface, we can approximate the change in energy as
a function of time simply by the change in surface area of the liquid/air interface multiplied by the surface tension
of PMMA. Figure 4(a) shows the capillary energy of the liquid/air and liquid/liquid interfaces for PS (Mw = 53.3
kg/mol) annealed at 150◦C obtained by integrating the experimentally obtained surface profile. For these samples,
the layer thickness, hPMMA, was 100, 180 or 240 nm. To account for the different initial excess surface areas resulting
from the different step heights, the energy is normalized by the initial excess surface energy, Einit = γPMMA/airhPMMA.
As expected, the energy contribution of the liquid/liquid interface is measured to be about an order of magnitude
less than that of the liquid/air interface. For this reason, in what is to follow we approximate the total energy of the
system by following only the liquid/air surface. We note that the reason for doing so is that in order to track the
liquid/liquid interface, each measured profile requires rinsing away the top surface thus many equivalent samples are
needed in order to generate the data shown in Fig. 4(a). In contrast, having validated that the liquid/liquid interface
does not significantly contribute to the overall energy, one can prepare a single sample and follow its liquid/air profile
evolution.

Figure 4(b) shows the liquid/air interface evolution for the three different viscosity ratios. The experimental data
is overlaid with the energy obtained from the theoretical model to show that qualitative agreement is found between
the theory and experiment. To understand why the different viscosity ratios demonstrate different time dependencies,
we must consider the mechanism by which the energy is dissipated. As these films are thin and body forces may be
neglected, we can consider only viscous dissipation. The viscous energy dissipation depends on the flow profile of the
liquid. Using conservation of energy, the capillary energy must be relieved through viscous dissipation. Taking the
model developed in the previous section, we write the conservation of energy as

∂tE = −
∫

dx 4η2 (h2 − h1)u′22
︸ ︷︷ ︸

Plug

−
∫

dx
p′21 h

3
1

12η1︸ ︷︷ ︸
Poiseuille-like

−
∫

dx η1
u2

2

h1︸ ︷︷ ︸
Couette-like

. (5)

Here the first term has a velocity profile that is invariant in z corresponding to plug flow, the second term has a
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parabolic velocity profile or Poiseuille-like flow, whereas the last term corresponds to a linear variation in the velocity
profile as seen in a simple shear geometry or Couette-like flow.

According to the model outlined in the theoretical section, a small viscosity ratio will result in plug flow of the top
film, with Couette-like flow in the bottom film. A schematic of this configuration is shown in inset (a) of Fig. 4(b).
Conversely, for viscosity ratio ∼ 1, there is no regime where plug flow is present. The system rapidly converges on the
asymptotic solution of Poiseuille on Poiseuille flow, a schematic of this is shown in inset (b) of Fig. 4(b). Therefore,
the energy directly follows t1/4 scaling. This explains the perfect collapse of the profiles in Fig. 3(b) for PS Mw =
758.9 kg/mol with t−1/4 rescaling.

As the viscosity ratio increases in magnitude, the influence of the top layer plug flow decreases. At early times, this
mechanism for viscous dissipation reduces the energy the most rapidly. Plug-like flow is sustained until the driving
force has diminished sufficiently and Couette-like flow dominates. One can think of this as an analogy to a stepped
film on a substrate with slip, where the bottom film acts as a lubrication layer for the top film. Then the slip length
is given as b = h1η2/η1. To continue the analogy, Couette flow can then be simplified as a frictional component while
the top film is slipping along the ‘substrate’ (the bottom film). For small viscosity ratios the majority of the flow
is dissipated through Poiseuille and plug flow, before changing to Couette flow (or what can be thought of as the
top film slipping along a surface). The change from Poiseuille and plug flow to Couette flow occurs earlier for larger
viscosity ratios, as the frictional Couette term increases with increasing bottom film viscosity.

IV. CONCLUSION

In this paper, we examined the effect of a liquid boundary on the flow of a nanoscale film. We prepared a stepped
thin polymer film that was layered onto a second immiscible polymer film supported on a solid substrate. The films
were observed to flow towards an equilibrium flat film, however, the liquid/liquid interface was found to substantially
deform in the process. In the prepared samples, the viscosity of the bottom liquid was lower than the liquid step.
We have shown that the viscosity ratio between the two liquids has a major impact on the resulting viscous flow.
Unlike viscous flow of thin films on solid substrates or freestanding films, the surface profiles do not exhibit self-
similar leveling profiles as previously onserved [27, 28]. Rather, we see a rich crossover as energy is dissipated by
a combination of three different flow mechanisms: parabolic Poiseuille flow, linear Couette flow, and invariant plug
flow. We have constructed a model to consider the energy dissipation of the capillary energy associated with the
step, which is motivated by previous works [17, 21, 30]. The dominant viscous dissipation mechanism was found to
cross-over from plug and Poiseuille flow in the top film to Couette flow in the bottom film at late times. The time
of cross-over depends on the viscosity ratio between the top and the bottom liquids. The experimentally measured
energy dissipation is in qualitative agreement with that obtained in the model. Lastly, we have presented the data in
the context of a hydrodynamic model using a linearized set of Stokes equations that confirms the asymptotic model.

ACKNOWLEDGMENTS

Appendix A: Asymptotic flow

1. Model

This appendix expands upon the calculation of the asymptotic model discussed in the theoretical section. The
governing equations for the model are the Stokes equations for both liquid films

0 = −ε2 ∂xp2 + ε2∂2
xu2 + ∂2

zu2, (A1a)

0 = − ∂zp2 + ε2∂2
xw2 + ∂2

zw2, (A1b)

∂xu2 + ∂zw2 = 0, (A1c)

0 = − ∂xp1 + η[ε2∂2
xu2 + ∂2

zu1], (A1d)

0 = − ∂zp1 + η[ε4∂2
xw1 + ε2∂2

zw1], (A1e)
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∂xu1 + ∂zw1 = 0. (A1f)

At the free interface, the boundary conditions are due to the stress balance and the kinematic condition

p2 +
∂2
xh2

(1 + ε2(∂xh2)2)3/2
= 2

(
∂zw2[1− ε2(∂xh2)2]− (∂zu2 + ε2∂xw2)∂xh2

)

1 + ε2(∂xh2)2
, z = h2, (A2a)

(∂zu2 + ε2∂xw2)(1− ε2(∂xh2)2) = 4ε2∂xu2∂xh2, z = h2, (A2b)

∂th2 = w2 − u2∂xh2, z = h2. (A2c)

The boundary conditions at the liquid/liquid interface are the stress balance and the kinematic condition. Further-
more, we assume that there is no-slip at the interface due to the interpenetrability of the two polymers,

p1−p2+γ
∂2
xh1

(1 + ε2(∂xh1)2)3/2
= 2

(
∂z[ηε

2w1 − w2][1− ε2(∂xh1)2]− (∂z[ηε
2u1 − u2] + ε2∂x[ηε2w1 − w2])∂xh1

)

1 + ε2(∂xh1)2
, z = h1

(A3a)

(
∂z[ηε

2u1 − u2] + ε2∂x[ηε2w1 − w2]
)

(1− ε2(∂xh2)2) = 4ε2∂x[ηε2u1 − u2]∂xh1, z = h1 (A3b)

∂th1 = w1 − ∂xh1, z = h1 (A3c)

w2 − w1 = [u2 − u1]∂xh1, z = h1 (A3d)

u2 − u1 + ε2[w2 − w1]∂xh1 = vslip = 0, z = h1. (A3e)

At the solid interface, we assume a no-slip boundary condition,

u1 = w1 = 0, z = 0. (A4)

We consider the flow in the top film as a perturbation from a first order system

(u2, w2, p2) =
(
u

(0)
2 , w

(0)
2 , p

(0)
2

)
+ ε2

(
u

(1)
2 , w

(1)
2 , p

(1)
2

)
. (A5)

After some algebra, the leading order flow of the system can be described as

∂zu
(0)
2 (x, z, t) = 0 → u

(0)
2 (x, z, t) = u2(x, t), (A6a)

w
(0)
2 (x, z, t) = −(z − h1)∂xu2 + w1(z = h1), (A6b)

p
(0)
2 (x, z, t) = −2∂xu2 − ∂2

xh2, (A6c)

∂zp1(x, z, t) = 0, (A6d)

u1(x, z, t) = − 1

2η
∂xp1

(
z2 − zh1

)
+ u2(x, t)

z

h1
. (A6e)

The in-plane component of the flow is described by set of coupled non-linear equations. To consider the time dependent
flow as a function of height instead, we impose the kinematic condition. This results in the first governing equation
discussed in the main text of this paper, Eq. (2a),
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∂t(h2 − h1) = − ([h2 − h1]u2)
′
, (A7)

where a prime denotes the derivative with respect to x. The volume conservation of the bottom liquid gives the second
governing equation, Eq. (2b),

∂th1 = −
(
−p′1

h3
1

12η1
+
h1u2

2

)′
= −

(
(γ2h

′′′
2 + γ1h

′′′
1 )

h3
1

12η1
+
h1u2

2

)′
. (A8)

The final equation that relates u2 to the other variables can be found by integrating the horizontal component of the
Stokes equation with respect to z at the next leading order

∂2
zu

(1)
2 + ∂2

xu
(0)
2 = ∂xp

(0)
2 → ∂zu

(1)
2 (z = h2)− ∂zu(1)

2 (z = h1) =
(
∂xp

(0)
2 − ∂2

xu2

)
(h2 − h1). (A9)

We find the last governing equation, Eq. (2c), by inserting the two tangential stress balances, Eq. (A2b) and Eq.
(A3b), at leading order into the previous equation,

h′′′2 (h2 − h1) + (h′′′2 + γh′′′1 )h1/2 + 4(u′2(h2 − h1))′ − ηu2

h1
= 0 (A10)

2. Growth rates

The rate of change for the profiles are found by substituting a form of solution and expanding at the leading order
in δhi.

s1,1(k) = −γ1k
4

(
h̄3

1

12η1
+

h̄3
1

4(η1 + 4η2k2h̄1h̄2)

)
, (A11a)

s1,2(k) = −γ2k
4

(
h̄3

1

12η1
+

h̄2
1h̄2(1 + h̄1

2h̄2
)

2(η1 + 4η2k2h̄1h̄2)

)
, (A11b)

s2,1(k) = −γ1k
4

(
h̄3

1

12η1
+

h̄2
1h̄2(1 + h̄1

2h̄2
)

2(η1 + 4η2k2h̄1h̄2)

)
, (A11c)

s2,2(k) = −γ2k
4

(
h̄3

1

12η1
+

h̄1h̄
2
2(1 + h̄1

2h̄2
)2

(η1 + 4η2k2h̄1h̄2)

)
. (A11d)

Appendix B: Energy balance

In this section, we derive the energy balance in Eq. (5). In the limit of small slope, the capillary energy of the two
interfaces (per unit of out of plane length)

E2 =
γ2

2

∫
dxh′2(x)2, (B1a)

E1 =
γ1

2

∫
dxh′1(x)2. (B1b)

We can derive these quantities with respect to time

∂tE2 = γ2

∫
dxh′2∂th

′
2 = −γ2

∫
dxh′′2∂th2, (B2a)
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∂tE1 = γ1

∫
dxh′1∂th

′
1 = −γ1

∫
dxh′′1∂th1. (B2b)

The second equality is obtained using integration by parts. We can then use the relations Eq.(2a) and Eq.(2b)

∂tE2 = −γ2

∫
dxh′′2 (∂th1 − [(h2 − h1)u2]′) = −γ2

∫
dxh′′2

(
−
[
−p′1

h3
1

12η1
+
h1u2

2

]′
− [(h2 − h1)u2]′

)
, (B3a)

∂tE1 = γ1

∫
dxh′′1

(
−p′1

h3
1

12η1
+
h1u2

2

)′
. (B3b)

We then use integration by parts again

∂tE2 = γ2

∫
dxh′′′2

(
−
[
−p′1

h3
1

12η1
+
h1u2

2

]
− [(h2 − h1)u2]

)
, (B4a)

∂tE1 = −γ1

∫
dxh′′′1

(
−p′1

h3
1

12η1
+
h1u2

2

)
. (B4b)

To consider the total energy of the system, we can sum the two capillary energies, E = E1 +E2, associated with the
two interfaces

∂tE = −
∫

dx [γ2h
′′′
2 (h2 − h1)]u2 +

∫
dx p′1

(
−p′1

h3
1

12η1
+
h1u2

2

)
. (B5)

We can then use Eq.(2c) to replace the term in square brackets

∂tE = −
∫

dx

[
−p′1h1/2− 4η2(u′2(h2 − h1)′ + η1

u2

h1

]
u2 +

∫
dx p′1

(
−p′1

h3
1

12η1
+
h1u2

2

)
. (B6)

This can be further simplified and after another integration by parts using u′2(h2 − h1)′, it yields to

∂tE = −
∫

dx 4η2 (h2 − h1)u′22 −
∫

dx η1
u2

2

h1
−
∫

dx
p′21 h

3
1

12η1
. (B7)

The capillary energy lost per unit time can be written as the sum of three different methods of viscous dissipation. The
first term corresponds to the dissipation that occurs through elongational viscosity in the top fluid. This is consistent
with plug flow. The two other terms are shear terms in the bottom film associated with Couette and Poiseuille flow.

Appendix C: Stokes model

To remove any assumptions associated with flow type and the resulting scaling of the energy, we derive a model
from the Stokes equations [31, 32]. The stream function of the hydrodynamic flow, ψi, (i = 1, 2 is the layer number
as described in Appendix A)

ui = −∂zψi, (C1a)

wi = ∂xψi. (C1b)

The velocity field verifies the Stokes equations. This in turn implies that the stream functions are solutions of the
biharmonic equation.

(∂4
x + 2∂2

x∂
2
z + ∂4

z )ψi = 0. (C2)

We take the Fourier transform of the biharmonic equation (denoted as ψ̃) with respect to the x-coordinate (defined
in the main text) with results in a fourth order ordinary differential equation

(
d

dz

)4

ψ̃i −
(
d

dz

)2

k2ψ̃i + k4ψ̃i = 0. (C3)
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The general solution verifies the fourth order ordinary differential equation

ψ̃i(k, z) = Ai(k) cosh(kz) +Bi(k) sinh(kz) + Ci(k)z cosh(kz) +Di(k)z sinh(kz). (C4)

The eight coefficients Ai, Bi, Ci, Di can be found using the boundary conditions: no-slip at the interface between the
bottom film and the substrate, continuity of the velocity (no-slip) and stress across the liquid/liquid interface, and
no shear at the liquid/air interface. The non-linear terms of the curvature of the Laplace pressure are neglected, as
well as the non-linear terms of the normal and tangential vectors of the interfaces. This means that this model would
be valid in the limit of small slopes. The boundary condition implications and their resulting effect are listed below:

w1 = 0 → ψ̃1 = 0, z = 0. (C5a)

u1 = 0 →
(
d

dz

)
ψ̃1 = 0, z = 0. (C5b)

w2 = w1 → −ikψ̃2 = −ikψ̃1, z = h1. (C5c)

u2 = u1 → −
(
d

dz

)
ψ̃1 = −

(
d

dz

)
ψ̃2, z = h1. (C5d)

η2(∂zu2 + ∂xw2) = η1(∂zu1 + ∂xw1) → η1

((
d

dz

)2

ψ1 + k2ψ1

)
= η2

((
d

dz

)2

ψ2 + k2ψ2

)
, z = h1. (C5e)

−(p1 − p2) + 2∂z(η1w1 − η2w2) = −γ1∂
2
xh1 →

η1

(
3k2

(
d
dz

)
ψ̃1 −

(
d
dz

)3
ψ̃1

)
− η2

(
3k2

(
d
dz

)
ψ̃2 −

(
d
dz

)3
ψ̃2

)
= ik3γ1h̃1, z = h1.

(C5f)

η2(∂zu2 + ∂xw2) = 0 →
(
d

dz

)2

ψ2 + k2ψ2 = 0, z = h2. (C5g)

−p2 + 2η2∂zw2 = −γ2∂
2
xh2 → η2

(
3k2

(
d

dz

)
ψ̃2 −

(
d

dz

)3

ψ̃2

)
= ik3γ2h̃2, z = h2. (C5h)

The Stokes equation with respect to the x-direction has been used to replace p̃i.

∂xp=ηi(∂
2
xui + ∂2

zui) → −ikp̃i = ηi(k
2ψ̃i
′ − ψ̃i

′′′
). (C6)

The governing equation for the temporal evolution of the thickness profiles can be found using the kinematic condition

∂thi + ui∂xhi = wi, (C7)

where ui and wi are evaluated at z = hi. This solution is highly non-linear and very complex. However, to stay
consistent with the approach of keeping only the linear terms of the governing equation we linearize the interface
profile. This allows for a analytical solution. The linearization of the kinematic conditions yields to

∂t ˜δh1 = w̃1(z = h̄1) = sS
11

˜δh1 + sS
12

˜δh2 , (C8a)

∂t ˜δh2 = w̃2(z = h̄1 + h̄2) = sS
21

˜δh1 + sS
22

˜δh2 , (C8b)
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and thus share the same general solution as the asymptotic model developed in the theoretical section. The growth
rates Si,j are not written here but can be found using a formal calculation software.

10 1000 105 107

0.1

0.01

0.001

10−4

1/15500

1/100

1

t−1/2

t−1/4

FIG. 5. A comparison of the energy dissipation as calculated by the Asymptotic model (solid) and Stokes model (dashed).
Each model has been calculated over the experimental time scale and for the three viscosity ratios that were studied in this
paper.

Figure 5 displays the capillary energy of the liquid/air interface for the asymptotic model (solid lines) and the
Stokes model (dashed lines) at the three viscosity ratios reported in the main text. These two models are in excellent
agreement in the full range of the experiment. We can notice that a small discrepancy is observed at a moderate
viscosity ratio, η = 1, at large times, and another one at early times for low viscosity ratio. For the first one, we
argue that the rescaling of the viscosity ratio is no longer valid, this would lead to neglecting terms in the asymptotic
expansion that would otherwise affect the energy. The overall scaling is not affected by this assumption, but the exact
prefactor is. The second discrepancy comes from the Stokes model: the growth rates sS

i,j are positive (instability) for
large wave number which is nonphysical and would disappear in a model without the small slope approximation.

This Stokes model is a powerful tool to treat linear hydrodynamic model without any scaling assumption.
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Conclusions

Fluid dynamics is the study of fluid flow. It is a complex but powerful field of study,

that describes fluid motion from nanoscale flow in thin films to galaxies merging

together. However, flow along a boundary of a fluid body still has many fundamental

questions remaining, particularly in the context of the type of boundary conditions

present. In this thesis, I have presented a project that examines the boundary layer

flow when thin polymer films are subject to a liquid-liquid boundary condition.

In Chapter 3, the effect of a liquid-liquid boundary condition on thin film poly-

mer flow was studied in the context of capillary levelling. We tracked the energy

dissipation in the system by examining the change in capillary energy of a stepped

polymer film stacked on another immiscible polymer film. The capillary energy is

proportional to the surface area of the interface, and by measuring the interface with

atomic force microscopy, we can accurately calculate the capillary energy of the sys-

tem. Furthermore, the hidden liquid-liquid interface was also measured by removing

the top layer of polymer step with a selective solvent to simultaneously track how the

two interfaces evolve. Through the power law associated with energy dissipation, we

have elucidated the flow mechanisms for the two thin films. We have also examined

the effect of the viscosity ratio between the top film and the bottom film on energy

dissipation. This chapter was limited to one combination of polymers, and therefore
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the effect of surface tension and interfacial tension ratios was not explored. Addition-

ally, freestanding bilayer liquid films instead of supported films may yield interesting

results.
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