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To my wife Zahra



Abstract

We present a method that can increase the quality of a low-light stereo image. While

traditional stereo imaging methods have focused on estimating depth from stereo

images, our method utilizes stereo images to enhance the low-light condition. The

critical challenge for enhancing the low-light condition of stereo images is the disparity

between the left and the right images. We proposed an end-to-end convolutional

neural network to enhance the low-light condition in stereo images without estimating

the disparity. Our proposed network has two sub-networks: the first network learns

how to enhance the low-light condition of stereo images in luminance, and the second

network learns how to reconstruct a normal-light full-color image from enhanced

luminance and chrominance of the input image. Our two-stage joint network enhances

the low-light condition of stereo images significantly more than single-image low-light

enhancement method.
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Notation and abbreviations

CNN Convolutional Neural Network

CPU Central Processing Unit

GPU Graphical Processing Unit

DL Deep Learning

NN Neural Network

DNN Deep Neural Network

GC Gamma Correction

HistEq Histogram Equalization

AE Auto Encoder

GAN Generative Adversarial Network

MSE Mean Squared Error

PSNR Peak Signal-to-Noise Ratio

SSIM Structural Similarity
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Chapter 1

Introduction

Computer vision is an academic field which is concerned with extracting high-level

information from digital images. Digital image processing is another field which deals

with processing such as image enhancement, image compression, etc. Both these

fields have been active for decades and there has been a significant improvement

in each of them. Cell phones and digital cameras use image processing scheme to

generate high-quality images. Many computer vision-based detection algorithms such

as face detection have been proposed, and their accuracy is close or even better

than the human’s performance. We believe there is still room for improvement. In

fact, many of image processing and computer vision tasks can benefit from a deep

learning approach. When Alex Krizhevsky and Geoffrey E. Hinton (Krizhevsky et al.,

2012) proposed AlexNet in ILSVRC competition in 2012 in object recognition task,

computer vision and image processing researchers realized that there is a massive

potential in the deep learning.

Neural network is not a new idea and there have been a large number of papers

about it in the previous century (Kurenkov, 2015). There might be a question about

1
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why deep learning is a hot topic today if it is not a new idea.

There are two reasons to answer this question. First, considerable amount of

data (image, videos, text, wearable sensors, etc.) enabled deep learning to generate

desirable results. These days millions of people are using modern electronic devices

and a lot of data is created every single day. Therefore, the data-hungry deep learning

algorithms are celebrating this data availability.

Another reason why deep learning algorithms work is due to computational power.

Modern multi-core CPUs and GPUs gave high computational powers to researchers

to help them in training their neural networks. Training a neural network with a

larger training set used to take weeks or a months a few years ago. However, these

days it takes only a few hours by running on GPUs.

1.1 Dual Camera Image Processing

Recently, dual cameras, which consist of two image sensors, have become a norm

trend in smartphones due to the benefits they introduced in image enhancement,

detection, and recognition tasks. In this section, we review a few examples of dual

camera systems that have been presented by some leading companies.

1.1.1 Image enhancement

Some Huawei1 smartphones have dual cameras which are used for image enhancement.

The dual camera systems consist of a monochrome and a Bayer sensor which are

utilized to enhance the captured images. A monochrome sensor captures all the light

in the space in creating a digital picture. However, the output image is a gray-scale

1www.huawei.com

2
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Figure 1.1: The Bayer filter mechanism (Losson et al., 2010).

image. The intensities in the monochrome image show all the details and high-

frequency information because the captured light is not being passed through a color

filter array. In contrast, a Bayer sensor captures a gray-scale image (similar to the

monochrome sensor) and creates a full-color image by passing the image through an

image processing pipeline. The captured light passes through a filter called the Bayer

filter located in front of the sensor, and a mosaiced image is produced. The Bayer

filter assigns every pixel of the image sensor to a color component (e.g. R, G, B)

based on a pre-determined pattern which is called Bayer pattern. Figure 1.1 shows

Bayer filter mechanism.

The image processing pipeline of the camera applies a number of cascaded steps

such as denoising, white balance, demosaicing, gamma correction on the mosaiced

image to generate the full-color image. The demosaicing step generates the full-color

image by interpolating the missing values in the main red, green, and blue components

or more sophisticated methods (Li et al., 2008).

The Huawei smartphones have a stereo image (monochrome and Bayer) to enhance

the captured image quality. However, there is no publication or documentation about

3
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Figure 1.2: The Bokeh effect captured by Apple Iphone using a dual camera system
(https://support.apple.com/en-ca/HT208118).

how they perform the enhancement.

1.1.2 Depth Estimation

Apple2 has presented another dual camera system to perform the Bokeh effect and

optical zoom. Bokeh effect in photography is focussing on an interested region in an

image and blurring other parts. Figure 1.2 shows the Bokeh effect produced by an

Apple smartphone. The dual camera estimates the depth information of the scene and

a segmentation algorithm uses the depth information to separate the foreground part

from the background. Compact lenses used in the smartphones cannot distinguish

the background from the foreground accurately due to lack of focal length. However,

the dual camera system helps to simulate an optical lens with large focal length.

2www.apple.com

4



M.A.Sc. Thesis - Hamed Hassanisaadi McMaster - Electrical Engineering

1.2 Problem Statement

In this thesis, we propose a convolutional neural network (CNN) approach for low-

light stereo image enhancement. Therefore, the input to our model is a low-light

stereo image pair (left and right), and the output is an enhanced-light image. Instead

of using fusion or registration methods to align the left and right images, we exploit a

CNN model for enhancing the under-exposed images. To our best knowledge, nobody

has used a stereo image pair to improve the low-light condition using a CNN-based

method. Our results show the efficiency of the proposed method.

1.3 Structure of the thesis

In chapter 2, we explained the fundamentals of the neural network, convolutional neu-

ral network, and applications of CNN in dual camera systems. Chapter 3 discusses

the previous methods on low-light image enhancement using a single camera. In

that chapter, we review state-of-the-art techniques and CNN-based methods. Chap-

ter 4 discussed the proposed method for the low-light stereo image enhancement and

chapter 5 states the conclusion and future work.

5



Chapter 2

Background

In this chapter, we provide the fundamental and essential knowledge of Deep Learning

(DL) and Convolutional Neural Network (CNN) and review a few applications of CNN

on dual camera systems.

2.1 Neural Network

Although biology inspires neural networks, it can be misleading to think that our

brain (as a complex neural network) works exactly like NN models. The human brain

contains approximately 100 billion neurons operating in parallel (Long and Gupta,

2008). However, artificial neural networks are designed by humans, and they are

much simpler than the human brain’s neurons.

A simple artificial neuron is shown in Figure 2.1. It takes an input vector x ∈ <n

and calculates the dot product of input and its weights vector w ∈ <n and add the

result to a scalar bias value b. The output is then fed to an activation function a

which generates the neuron output. Therefore, we can formulate a neuron to a linear

6
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Figure 2.1: An artificial neuron

equation as the following:

y = a(wTx+ b) (2.1)

where y is a scalar value and output of the neuron.

The primary keys in designing neural network are 1) selecting network architecture

and 2) choosing the weight and bias values. The first one depends on the application

and data-set. However, the second one is related to training the network which is a

process to tune the weight values.

2.1.1 Multi-layer networks

Each neural network contains three types of layers: an input layer, some hidden layers,

and an output layer. Figure 2.2 shows a typical fully-connected neural network.

7
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Figure 2.2: A fully-connected multi-layer neural network.

8
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NN models estimate a complex (or simple) functions by using a training data-

set. We can estimate any functions accurately if we have enough data and a well-

designed network with a sufficient number of layers. During the training phase, we

use an optimization algorithm to calculate the network weights by minimizing a loss

function.

2.1.2 Forward Propagation

In general, feeding the network with the input and generating output is called forward

propagation. Each neuron gets its input and passes its output to the next unit. In

the testing phase, only forward propagation is performed. However, in the training

phase, we need back propagation as well to tune the network parameters.

2.1.3 Back Propagation

Back-propagation is a process to calculate the weights in order to generate sound

output. Basically, in this process, the network uses an optimization algorithm to

minimize a cost function. The cost function depends on the application.

Gradient Descent is one of the famous algorithms used in the neural networks. It

is an iterative and in some cases a time-consuming algorithm but works well enough

in practice.

First, all the weights of the network are initialized with random values. Then, the

algorithm takes an input and calculates the output by forward-propagation. Now,

the output is compared to the desired or ground truth output using a loss function.

The difference between the ground truth output and estimated output is called error

value. The optimizer uses this error value to update the weights in a reverse (back)

9
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order. In other words, it uses the error value and back propagates this error through

the network. In this section, we discuss the optimization algorithm and how we can

calculate the weights in more detail.

Similar to all optimization algoritms, we need a cost function J(w) where w is

the network’s parameters. In order to minimize this cost function, we need an opti-

mization algorithm. Usually NN models use different variations of Gradient Descent

algorithm in the training phase. In this section we want to discuss the simple gradient

descent algorithm and then explain the ADAM optimizer which we used and is used

in many NN models these days too.

We assume the our cost function is defined as

J(w) =
N∑
i=1

(yi − ŷi)2 (2.2)

where N is the number of training samples, yi is the ground truth output, and ŷi is

the NN’s output which depends on network’s weights w. Thus, J is a function of

our input and network weights. Since we cannot change our input data, we need to

minimize our cost by changing the weights.

Gradient descent algorithm is a greedy algorithm and on each step, it goes in

opposite direction of the cost function’s gradient. In general, it convereges to a local

minimum after a sufficient number of iterations. We are not going through every

detail here, however, the reader can refer to (Ruder, 2016) for more details.

We need to calculate the gradient of the cost function with respect to every weight

in the network. We start from the last layer (output layer) and calculate the gradient

with respect to the weights of this particular layer. Then using the chain rule we can

calculate the derivative of the cost function with respect to all the other weights and

10
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parameters (Ruder, 2016).

The next step is about updating the weights. The general update rule is as follows

w := w − α∂J
∂w

, (2.3)

where w is the weight vector we want to update, α is called learning rate, and ∂J
∂w

is

the derivate of the cost function with respect to the w.

Learning rate is a parameter that determines the step size of going in negative

gradient direction. It is a hyper-parameter of our model. Large value of learning rate

goes faster toward the local minimum while it might miss the minimum and causes

some unstability in convergence process. In contrast, small values of learning rate

make the convergence slow (Boyd et al., 2004).

Although the gradient descent algorithm works in many problems, these days

many researchers use an upgraded version of gradient descent which leads to a better

result. In the next section, we discuss the ADAM optimizer.

ADAM Optimizer

ADAM Optimizer (Kingma and Ba, 2014) uses momentum technique in optimization

of stochastic objective functions. It is computationally efficient, needs a small amount

of memory, and is very suitable for problems with larget number of data or parameters.

ADAM algorithm uses a history of previous gradients and parameters. Roughly

speaking, it uses a moving average of gradients and parameter values in previous

steps. Figure 2.3 illustrates the ADAM optimizer.

The ADAM algorithm needs a few parameters and authors in (Kingma and Ba,

2014) suggest these values for machine learning algorithms: α = 0.001, β1 = 0.9,

11
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Figure 2.3: ADAM Optimization algorithm (Kingma and Ba, 2014)

β2 = 0.999, ε = 10−8.

As you can see in Figure 2.3, vector mt and vt contain both the current gradient

of cost function and the previous values. Both these values are used in the update

rule of ADAM algorithm.

In summary, ADAM optimizer is used in problems with a significant amount of

data, and high dimensional parameter spaces. It also combines the strength of two

previous optimization algorithms:

• AdaGrad (Duchi et al., 2011): The ability to deal with sparse gradients, and

• RMSProp (Hinton et al., 2014): the ability to deal with non-stationary objec-

tives.

Also, the ADAM uses a small amount of memory. Authors found ADAM algorithm

robust and well-suited to a wide range of non-convex optimization problems in the

field of machine learning (Kingma and Ba, 2014).

12
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2.1.4 Activation Functions

The activation function can have different types. The following is a list of some

activation functions:

• Identity a(s) = s

• Rectified linear units (ReLU) a(s) = max(0, s)

• Sigmoid a(s) = 1
1+e−s

• Hyperbolic tangent a(s) = tanh(s)

These functions are easy to compute the derivative for back-propagation process.

2.2 Convolutional Neural Networks

A neural network can have many hidden layers. In this case, it is often called deep

neural network (DNN). Although multi-layer networks have been introduced since

the 1980s (Goodfellow et al., 2016), many reasons prevented the training of networks

with many hidden layers.

The first problem is the curse of dimensionality (Goodfellow et al., 2016). As the

number of input’s feature grows, the number of weights should increase. It means

we need more data to train the network effectively which in many cases, it is hard to

collect a significant amount of data; and more computational power and time.

To avoid this problem, Convolutional Neural Networks has been introduced. They

are very useful for image processing or computer vision problems because images have

a lot of information and researchers want to use all these information efficiently.

13
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Figure 2.4: Input f , filter mask M , and output h for a blurring filter.

Instead of flattening images to use them in fully-connected neural networks, CNNs

try to use the spatial information by convolving a filter with the input. In this section,

we discuss more details about CNNs and how they work.

2.2.1 Basic Structure

In image processing, images can be filtered using convolution operation to produce

different visible effect. Figure 2.4 shows the input and output to a simple blurring

filter. The equation for the convolution is

h[x, y] = M [x, y] ∗ f [x, y] =
∑
n

∑
m

M [n,m]f [x− n, y −m] (2.4)

where h[x, y] represents the output value for row x and column y, f is the input image,

and M is the filter mask. In fact, convolution looks like moving a sliding window

(mask) on an input image and for each step it calculates the dot product of that

overlap region and generates the output. For further information about convolution

please refer to (Gonzalez and Woods, 2006).

A convolutional layer in a CNN contains a set of convolutional filters. All the

14
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filters are considered as the layer’s parameters and similar to the neurons in fully-

connected layers. Therefore, each convolutional layer takes an input matrix (tensor)

with size h×w× c where h is the height, w is the width, and c is the number of input

channels, and convolves the input with all its filters. The filter parameter for each

convolutional layer is a matrix with size fh × fw × fc where fh and fw are the height

and width of filters and fc is the number of filters which are going to get convolved

with the input and generates the output. The output size depends on two other

parameters: stride and padding. Stride is a parameter which determines the jump

size to the next pixel in the convolution operation, i.e., stride 2 means the convolution

skip every other pixel in both horizontal and vertical directions. Thus the output size

is halved in both directions. Another factor is how the input is padded while treating

the border pixels. For border pixels, we can append some zero rows and columns to

the input image and start the convolution operation from the first actual pixel, or

we can start the convolution from the fh
2
, fw

2
rows and columns of the input image in

which the output image size shrinks. In general, the output size is

o =
w − k + 2p

s
+ 1, (2.5)

where o is the output height/width, w is the input height/width, k is the filter size,

p is the padding, and s is the stride.

Since the same filters are used for all parts of the input image, the number of filter

parameters is much smaller than the fully-connected network parameters. Moreover,

CNNs take into account all the spatial information in images.

Cascading several convolutional layers forms a convolutional neural network. Fig-

ure 2.5 shows a CNN. The back-propagation process is used to tune the parameters

15
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Figure 2.5: An example of a CNN (Stenroos, 2017)

like fully-connected NN models. In theory, the first layers of a CNN represent the low-

level features of the input image such as edges, corners, and the last layers represent

more complex features (Fukushima, 1988).

2.3 Overfitting and Regularization

Usually, there is a relation between the model complexity, i.e., number of neurons

or number of layers, and the amount of training data-set and also performance of

the model. We call a model overfitted if the training error is small but the test-

ing/evaluation error is high. It means our model is biased to the training data-set

and cannot generalize well and has a poor performance on test samples.

In this case, regularization can help us. Regularization means using a method to

prevent the model to be overfitted. The simple version of regularization is adding

a term to the cost function to penalize certain types of weights (Goodfellow et al.,

2016). Different applications and algorithms use different regularization terms.

Another technique for regularization is dropout (Srivastava et al., 2014). Dropout

tries to reduce the co-adaptation of neurons (Stenroos, 2017). This is achieved by

randomly dropping out neurons during training. In other words, during training, we

disable a neuron in one mini-batch run randomly and train the model without this

16



M.A.Sc. Thesis - Hamed Hassanisaadi McMaster - Electrical Engineering

neuron. In each iteration, we disable a set of neurons, and in the next iteration,

another set of neurons are disabled. This causes the network to not depend so much

on a particular neuron. In convolutional networks, dropout is used in the last fully-

connected layers (Simonyan and Zisserman, 2014).

2.4 Data Augmentation

Overfitting can be diminished by augmenting the training data-set. In many applica-

tions, acquiring data is expensive or time-consuming. However, using data augmenta-

tion techniques can help in having more training data. Data augmentation attempts

to generate new samples with the current samples of training data. For example,

while dealing with images as training samples, flipping, rotation, affine transforma-

tion, modifying contrast, brightness are some techniques to apply on the images of a

data-set to generate new samples.

2.5 Application of CNN on Dual Camera Systems

In this section, we discuss two applications of CNN on dual camera systems. First,

we review the depth estimation problem using CNN. Then, one of the recent work on

how to perform super-resolution on stereo images is discussed.

2.5.1 Depth Estimation

In order to calculate the depth using a pair of stereo images, we need to compute

the disparity between the two images first. The disparity for each pixel refers to the

difference in horizontal location of an object in the left and right image (Zbontar and
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Figure 2.6: The input pair (left and right camera) images and the output disparity
map. Note that objects closer to the camera have larger disparities than objects
farther away. Larger disparities are shown with warmer colors. (Zbontar and LeCun,
2016)

LeCun, 2016). In other words, for a pixel at (x, y) in the left image, the corresponding

pixel in the eight image is (x− d, y) where d indicates the disparity. In this problem,

the stereo images are aligned vertically, and we assume there is no disparity in the y

dimension. These two images are called rectified.

If we know the disparity for every pixel, we can calculate the depth with the

following equation

z =
fB

d
(2.6)

Where f is the focal length of the camera and B is the distance between the camera

centers (Zbontar and LeCun, 2016). Figure 2.6 illustrates the input and output of a

depth/disparity estimation algorithm.

The described problem of stereo matching is important in many fields such as

autonomous driving, robotics, intermediate view generation, and 3D scene recon-

struction (Zbontar and LeCun, 2016). The author of (Scharstein and Szeliski, 2002)

determined the structure of a stereo matching algorithm. Every stereo matching al-

gorithm has four steps: matching cost computation, cost aggregation, optimization,
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and disparity refinement. The first two steps referred to matching cost that is the

primary focus of this section.

The work done by (Zbontar and LeCun, 2016) is the first work that applied CNNs

to disparity matching (stereo matching) problem. Here we explain this work in more

details.

Matching Cost

A simple method for calculating the matching cost is the sum of absolute differences

at each position p for all disparities d under consideration:

CSAD(p, d) =
∑
q∈Np

|IL(q)− IR(q − d)| (2.7)

where IL(p) and IR(p) are image intensities at position p in the left and right image

and Np is the set of locations withing a fixed rectangular window centered at p.

Equation (2.7) can be considered as measuring the cost corresponding to matching

a patch from the left image, centered at position p, with a patch from the right image,

centered at position p−d. The goal is to minimize this equation for two patches that

are centered around the image of the same 3D point. In contrast, we want to maximize

this cost for two patches that are not associated with the same 3D point.

We can attempt to solve this problem by extracting good (matched) and bad

(not matched) patches from publicly available data-sets (for example KITIT1 and

Middlebury2 data-sets) and training a CNN on these extracted patches. In fact, the

training phase is a two-class classification problem: determining a pair of patch is

1http://www.cvlibs.net/datasets/kitti/
2http://vision.middlebury.edu/stereo/data/
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matched (class 0) or not matched (class 1).

Constructing the Data Set

The authors of (Zbontar and LeCun, 2016) used the Middlebury (Scharstein et al.,

2014) and KITTI (Geiger et al., 2012) data-sets in this experiment. These data-sets

provide the input left and right images and the corresponding disparities for both left

and right images. KITTI data-set used a LIDAR and Middlebury used a structured

light to acquire the ground truth disparities.

To train the CNN, authors in (Zbontar and LeCun, 2016) created binary clas-

sification data-sets: matching patches (class 0) and mis-matching patches (class 1).

At each position where the actual disparity is known, they extract one negative and

one positive training sample. This ensures that two classes have the same number of

samples. A positive sample consists of two image patches from an image pair that

the centers of the two patches correspond to the same 3D point, while a negative

example is a pair of patches where this is not the case.

Let < PL
n×n(p), PR

n×n(q) > denote a pair of patches, where PL
n×n(p) is an n×n patch

from the left image centered at position p = (x, y), PR
n×n(q) is an n × n patch from

the right image centered at position q, and d denoted the true disparity at position

p. A negative example is obtained by setting the center of the right patch to

q = (x− d+ oneg, y), (2.8)

where oneg is chosen from a pre-determined range which makes sure that the two

patches are not matched. A positive example is similar to the negative ones derived
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Figure 2.7: The fast architecture proposed by (Zbontar and LeCun, 2016).

by setting

q = (x− d, y). (2.9)

Network Architecture

Authors in (Zbontar and LeCun, 2016) proposed two network architecture to estimate

the disparity mapping. The first architecture is faster but generates less accurate

results while the next one is slower and generates more accurate results. The fast

architecture uses a fixed similarity measure to compare the two feature maps that

are extracted from the first part of CNN, while the accurate one attempts to learn a

desired similarity measure on the extracted feature maps. Figure 2.7 and 2.8 indicate

the fast and accurate architectures respectively.

The fast architecture is a siamese network. Siamese network is a two shared-weight

sub-networks joined at the head proposed by Bromley et al. (1994). The sub-networks
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Figure 2.8: The accurate architecture proposed by (Zbontar and LeCun, 2016).

include some convolutional layers following ReLU layer. Both sub-networks produce

a feature map for the two input patches. The two feature maps are compared using

a dot product, and a similarity score is generated.

The loss function used in the fast network is a hinge loss:

J = max(0,m+ s− − s+) (2.10)

where s+ is the output for a positive example, s− is the network output for a negative

example, and m is a constant margin parameter which is set to 0.2. The loss is

zero when the similarity of positive example is greater than the similarity of negative

example by at least the margin m.
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The accurate architecture is similar to the fast architecture replacing the dot prod-

uct with another sub-network. The input for this sub-network is the concatenation of

the feature maps of the left and right sub-networks. Basically, this new sub-network

learns the similarity score between input patches.

Authors used the binary cross-entropy loss for training:

J = tlog(s) + (1− t)log(1− s) (2.11)

where t is the true label for the input patch pair (1 for positive and 0 for negative

examples) and s is the output of the network.

Computing the Matching Cost

They used the output of CNN (fast or accurate) network as an initialization for the

matching cost:

CCNN(p, d) = −s(< PL(p), PR(p− d) >), (2.12)

where s(< PL(p), PR(p − d) >) is the output of the network when run on input

patches PL(p) and PR(p − d) for a set of possible d values. The minus sign is for

converting the similarity score to the matching cost.

To calculate the matching cost for a pair of images, the authors suggest to run

the sub-networks once for each image and run the fully-connected layers (accurate

architecture) d times, where d is the maximum disparity under consideration. For

the fast architecture, the dot product operation is run d times likewise.

Authors in (Zbontar and LeCun, 2016) proposed a few post-processing steps to

create the final disparity map which we skip here due to being irrelevant to our
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Table 2.1: The top ten methods on the Middlebury data-set as of October 2015. The
”Error” column is the weighted average error after upsampling to full resolution and
”Runtime” is the time, in seconds, required to process one pair of images (Zbontar
and LeCun, 2016).
Rank Method Resolution Error Runtime

1 MC-CNN-acrt Accurate architecture Half 8.29 150
2 MeshStereo Zhang et al. (2015) Half 13.4 65.3
3 LCU Unpublished work Quarter 17.0 6567
4 TMAP Psota et al. (2015) Half 17.1 2435
5 IDR Kowalczuk et al. (2013) Half 18.4 0.49
6 SGM Hirschmuller (2008) Half 18.7 9.90
7 LPS Sinha et al. (2014) Half 19.4 9.52
8 LPS Sinha et al. (2014) Full 20.3 25.8
9 SGM Hirschmuller (2008) Quarter 21.2 1.48
10 SNCC Einecke and Eggert (2010) Half 22.2 1.38

Figure 2.9: A scene example from Middlebury data-set (Zbontar and LeCun, 2016).

application.

Table 2.1 indicates the performance of the proposed method by (Zbontar and

LeCun, 2016) on Middlebury data-set. We did not cite other methods on this table

as this is just the review of a CNN application on stereo images. However, readers

can find more details in this paper (Zbontar and LeCun, 2016). Figure 2.9 shows the

input and ground truth disparity map for an image scene of Middlebury data-set and

Figure 2.10 shows the output of the CNN for both fast and accurate architecture.
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Figure 2.10: The fast and accurate CNN output for an example of Middlebury data-
set (Zbontar and LeCun, 2016).
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2.5.2 Super Resolution

Another application of CNN on image enhancement is super-resolution. In general,

super-resolution is improving the quality of an image regarding resolution. This

section discusses a proposed algorithm by (Jeon et al., 2018) for super-resolution of

stereo images using convolutional neural networks.

The disparity between two stereo images is much larger than one pixel due to

having two images in a stereo pair. While the disparity in stereo images enables

researchers to calculate the depth, using the disparity to register the two images

pixel-wise is not sufficient due to the low-resolution of disparity estimation. Therefore,

authors in (Jeon et al., 2018) proposed a method that learns a subpixel parallax prior

to enhance the spatial resolution of stereo images.

Super-resolution algorithms have been studied over decades (Park et al., 2003).

Here we briefly review some of the previous super-resolution algorithms.

Multi-Frame Super-Resolution: The traditional super-resolution algorithms

used to enhance the resolution of an image using multiple images from the same

camera with a little jitter between the input images (Park et al., 2003). However,

since all the images are taken with one camera, these methods are restricted to only

static scenes.

Single-Image Super-Resolution: These methods attempt to improve the spa-

tial resolution by using a single input image. They are divided into two categories:

1) example-based methods, 2) deep learning-based methods.

Example-based methods use similarities of different small patches in a single image

or learn a dictionary from a different high-resolution low-resolution related image

database. For instance, (Yang et al., 2010) proposed a sparse representation-based
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method that learns a joint dictionary from pairs of low- and high-resolution training

data-sets.

Recently, example-based methods have been replaced by deep learning-based

methods. For instance, (Dong et al., 2016) proposed a convolutional neural net-

work for super-resolution (SRCNN). There have been a few other works too which

we refer the reader to (Jeon et al., 2018).

Stereo Image Enhancement: The most challenge part of stereo image enhance-

ment is the disparity between the two images. (Bhavsar and Rajagopalan, 2010) and

(Park et al., 2012) exploit stereo block matching to search pixel correspondences

which are used to register two stereo input images.

Authors in (Jeon et al., 2018) proposed a direct end-to-end mapping from a stereo

image of low-resolution to a high-resolution image. The main idea behind their al-

gorithm is the disparity between the two stereo images provides a sub-pixel parallax

which enables them to have a sub-pixel resolution (Figure 2.11). This deep network

approach enhances image resolution by using this knowledge to generate a high-

resolution image without estimating disparity.

Network Architecture

Authors in (Jeon et al., 2018) proposed a super-resolution neural network architecture

to learn the parallax between the two left and right images. They divide the images

into two luminance and chrominance parts with converting the RGB image into a

Y CrCb image. Thus, we have a luminance (Y ) and a chrominance (CrCb) network to

process each component. Figure 2.12 shows the two network architectures.

The luminance network takes the Y component of the left patch and Y component
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Figure 2.11: Registering stereo images with parallax (Jeon et al., 2018).

Figure 2.12: Proposed network architecture by (Jeon et al., 2018)
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of 64 shifted right patches as inputs. Then, it generates a high-resolution of the

luminance component. The chrominance network then uses this estimated high-

resolution patch and concatenates it to the low-resolution chrominance part of the

left patch and generates the high-resolution full-color image.

As it can be seen in the Figure 2.12, both the luminance and chrominance networks

are using a residual network (Kim et al., 2016). A residual luminance of an image is

rL = yL − x1,L ∈ <2, where yL is a high resolution luminance image and x1,L is the

luminance of left low-resolution stereo image.

The first network learns the residuals riL between a high-resolution luminance yiL

and a low-resolution luminance stereo image xi1,L over training data-sets. Therefore,

the input to the luminance network is:

X̃ i
L,j(x, y) = xi2,L(x− φ(j), y) for j ∈ {1 · · ·M},

X̃ i
L,j(x, y) = xi1,L(x, y) for j = M + 1

where φ(x) is a shifted offset of the j-th channel, and M is the number of shifts.

The loss function used fo the luminance network is the mean squared errors of

{1
2
||riL − f(X̃ i

L)||2} where f is the output of the luminance network.

The input for the chrominance network is:

x̃ic = ŷiL for c = 1

x̃ic = xi1,c for c ∈ {2, 3},

where ŷiL is the output of luminance network, and xi1,c are the two chrominance com-

ponents of left patch from the training data-sets. Similar to the luminance network,
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Table 2.2: Quantitative evaluation of proposed method by (Jeon et al., 2018) on
Middlebury data-set.

Dataset Scale
Bicubic SRCNN (Jeon et al., 2018)

PSNR SSIM PSNR SSIM PSNR SSIM

Middleburry
x2 29.64 0.9228 31.48 0.9505 33.05 0.9545
x3 27.20 0.8737 28.76 0.9136 29.59 0.8974
x4 25.79 0.8344 27.11 0.8814 26.80 0.8495

the chrominance network uses the residual learning, and the loss function for this

network is {1
2
||ri− g(x̃i)||2} where function g is the residual of chrominance network.

Authors evaluate the results of their method with quantitative and qualitative

comparisons. For comparison, they choose state-of-the-art single-image superresolu-

tion methods: super-resolution convolutional neural network (SRCNN) (Dong et al.,

2016). To quantitatively evaluate results, they first created test datasets by downsam-

pling them by 2, 3 and 4. Then they upscale them by the magnification ratios of 2, 3

and 4. Figure 2.13 shows super-resolution results of the magnification ratio of 2 on the

Middlebury test dataset. The proposed method by (Jeon et al., 2018) outperforms

other state-of-the-art single-image methods. Table 2.5.2 provides the average PSNRs

and SSIMs on each benchmark dataset. This method achieves the highest PSNR and

SSIM values in most cases when compared with the state-of-the-art methods. For

more results, refer to the original paper (Jeon et al., 2018).
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Figure 2.13: Results of super-resolution with the x2 factor (Jeon et al., 2018).
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Chapter 3

Low-Light Image Enhancement

3.1 Introduction

This chapter explains how to use deep learning in enhancing the low-light condition

in images. A few works have been done on low-light condition enhancement and as far

as we know, there is no paper or research on using stereo images on low-light image

enhancement. In the next chapter we will explain our proposed method on how we

can generate a normal light image using a stereo image pair which suffers from the

low-light condition.

In this chapter, we discuss the state of the art methods for Gamma correction and

image histogram equalization and explore their drawbacks first. Then, a recent work

on low-light enhancement using single camera will be discussed.
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Figure 3.1: Gamma transformation function with different number of γ.

3.2 Gamma Correction

Gamma correction is a simple method and expands an image histogram to produce

a brighter image. In other words, the gamma correction method enhances the low-

contrast images by increasing the small values and compressing the large values to

generate a higher contrast image.

The gamma correction uses the following simple equation:

Iout = Iγin (3.1)

where Iout and Iin represent pixel values of output and input images respectively and

γ is a parameter that controls the image contrast.

Let’s assume that the pixel values of an input image are in [0, 1] range. If γ is

less than one, the values close to zero increase more than the values close to one.

Figure 3.1 shows the gamma function for different values of γ. Therefore, to have a

bright input image, we select γ less than one.

Figure 3.2 shows the input and output of the gamma transformation for γ = 0.5.
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(a) Input Image (b) Output Image

Figure 3.2: Input and output of gamma transformation for γ = 0.5

The gamma correction method is simple and does not consider the relation be-

tween color channels and neighbor pixels in the calculation of the output. In other

words, it enhances the input image globally, which produces noise in the output image

and also choosing the best gamma can be challenging.

3.3 Image Histogram Equalization

3.3.1 Histogram

A histogram for a digital image with gray levels in the range [0, L] is a discrete function

h(rk) = nk, where rk is the kth gray level and nk is the number of pixels in the image

having gray level rk. In addition, a normalized histogram is given by p(rk) = nk/n,

for k = 0, 1, · · · , L− 1. Roughly, p(rk) gives us an estimate of probability distribution

function (PDF) of the image (Gonzalez and Woods, 2006).

Histograms are the basis for many image enhancement techniques, as well as image

histogram equalization. Histogram of an image is simple to calculate in software and

hardware. Therefore, it is a popular tool for real-time image processing (Gonzalez
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and Woods, 2006).

Basically, a histogram shows the contrast in an image. If the histogram for an

image is distributed over all values in the range [0, L− 1], it means generally that all

the pixels have a wide range value; thus the contrast in the image is high. However,

all pixel values in a low contrast image belong to a narrow range of numbers.

3.3.2 Histogram Equalization

Let the variable r represent the gray levels of an image to be enhanced. It is assumed

that r ∈ [0, 1] where r = 0 and r = 1 represent black and white respectively.

Histogram equalization transform can be defined as the following

s = T (r) (3.2)

where 0 ≤ r ≤ 1. This transform produces a level s for every pixel in the original

image.

T (r) must have a few conditions to enhance an image. First, it should be a single-

valued function to guarantee that the inverse transformation will exist. It is also

needed to be a monotonic function because we should preserve the increasing order

from black to white in the output image. The last condition on T (r) specifies that

0 ≤ T (r) ≤ 1 where 0 ≤ r ≤ 1.

Let pr(r) and ps(s) denote the PDF of random variable r and s respectively. It

can be shown that if pr(r) and T (r) are known and T−1(s) satisfies the mentioned

conditions on T (r), then the PDF of ps(s) can be obtained as the following:

ps(s) = pr(r)|
dr

ds
|. (3.3)
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Letting s = T (r) =
∫ r
0
pr(w)dw indicates the transformation for histogram equal-

ization. Therefore,

ds

dr
=

dT (r)

dr

=
d

dr
[

∫ r

0

pr(w)dw]

= pr(r).

Now, if we substitute the above equation into (3.3), and note that all probability

values are positive, we have

ps(s) = pr(r)|
dr

ds
|

= pr(r)|
1

pr(r)
|

= 1, 0 ≤ s ≤ 1

Thus the PDF for variable s (output image) is 1 for every s ∈ [0, 1] which is a uniform

PDF.

Since the images are digital and their pixels have discrete values, the PDF of a

discrete random variable is defined as the following:

pr(rk) =
nk
n
, k = 0, 1, 2, · · · , L− 1. (3.4)
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Therefore, the transformation would be:

sk = T (rk) =
k∑
j=0

pr(rj)

=
k∑
j=0

nj
n

k = 0, 1, · · · , L− 1

Unlike the continuous transformation, it cannot be proved in general that the dis-

crete transformation will generate the discrete equivalent of a uniform PDF. However,

it tends to create a highly distributed PDF (histogram).

Figure 3.3 shows the results for histogram equalization implemented for a sample

image of McMaster University campus. As illustrated in Figure 3.3(c), the histogram

concentrates on dark values. However, the histogram of the enhanced image in Fig-

ure 3.3(d) distributed in all the range of values. The red, green, and blue curves in

these figures show the three main color component of the image.

According to the Figure 3.3(b), image histogram equalization algorithm produces

noise to the output image which affects the output image quality. Moreover, this

algorithm enhances the input image (low-light condition) globally and does not take

into account the spatial locality. This method also does not consider the relation

between the color components. However, this method is a straightforward algorithm

which is a baseline for other enhancement algorithms.
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(a) Original Image (b) Enhanced Image
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(d) Histogram of the enhanced image

Figure 3.3: Histogram equalization results implemented by MATLAB.
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3.4 Low-Light Image Enhancement Using Deep Con-

volutional Network

In this section, a method proposed by (Shen et al., 2017) is discussed. Authors

introduced a CNN based end-to-end model to enhance the image quality in low-light

conditions.

Historically, the low-light image enhancement methods can be divided into two

categories: histogram-based and Retinex-based methods. In the previous section, we

explained a histogram-based method, while in this section an enhancement method

based on CNN and Retinex theory (Land, 1977) is proposed.

3.4.1 Algorithm and Network Architecture

The proposed algorithm by (Shen et al., 2017) has three components: Multi-scale Log-

arithmic Transformation, Difference-of-convolution and Color Restoration Function.

The following paragraphs explain these three parts in details.

Formally, let X denote the input low-light image and denote the corresponding

bright image as Y . Suppose f1, f2, f3 represent the three mentioned components.

Thus, the proposed network is the composition of three functions:

f(X) = f3(f2(f1(X))) (3.5)

Multi-scale Logarithmic Transformation: f1(X) takes the input low-light

image X and computes the same size output. First, the input image is brightened by
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several logarithmic transformations:

Mj = logvj+1(1 + vj.X), j = 1, 2, · · · , n, (3.6)

where Mj denotes the output of jth scale with the logarithmic base vj + 1, and

n is the number of logarithmic transformation function. Next, these 3D tensors

(height× width× 3channels) are concatenated together.

M = [M1,M2, · · · ,Mn]. (3.7)

Now, this larger 3D tensor is fed to two consecutive convolutional layers:

f1(X) = max(0,M ∗W−1 + b−1) ∗W0 + b0 (3.8)

The first convolutional layer shrinks the input channel 3n to 3 and uses a ReLU

activation function. The second convolutional layer has no activation function.

This part is mainly designed to get a better image via weighted sums of mul-

tiple logarithmic transformations, which accelerates the convergence of the neural

network (Shen et al., 2017).

Difference-of-convolution: function f2 takes the output of function f1 as input

and computes the same size output. First, the input goes through a few convolutional

layers.

H0 = f1(X) (3.9)

Hm = max(0, Hm−1 ∗Wm + bm),m = 1, 2, · · · , K (3.10)
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Where K is a hyper-parameter in this algorithm and denotes the number of convo-

lutional layers in this part. All these Hm outputs are concatenated together, and the

larger tensor goes through another convolutional layer without activation function:

H = [H1, H2, · · · , HK ] (3.11)

HK+1 = H ∗WK+1 + bK+1. (3.12)

The last layer is equivalent to weighted averaging of these K images. The final

output is:

f2(f1(X)) = f1(X)−HK+1. (3.13)

Color Restoration Function: This step uses a convolutional layer to enhance

the color components:

f3(f2(f1(X))) = f2(f1(X)) ∗WK+2 + bK+2 (3.14)

Figure 3.4 shows a low-light image and the results of f1, f2, and f3. Figure 3.5

illustrates the proposed network by (Shen et al., 2017).

Authors in this work used the regularized Frobenius norm as the loss function:

L =
1

N

N∑
i=1

||f(Xi)− Yi||2F + λ

K+2∑
i=−1

||Wi||2F (3.15)

where N is the number of training samples, and λ denotes the regularization param-

eter.
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Figure 3.4: A low-light image and the results of f1, f2, f3 (Shen et al., 2017).

Figure 3.5: The architecture of MSR-net (Shen et al., 2017).
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Figure 3.6: ground truth, input, and output of the method proposed by (Shen et al.,
2017).

3.4.2 Traning Dataset and Results

To generate a training data-set, authors selected more than 10,000 images from the

UCID data-set (Schaefer and Stich, 2003), BSD data-set (Arbelaez et al., 2011), and

Google image search. For each image, the brightness and contrast are reduced man-

ually to create low-light images. Finally, about one million 64× 64 high-quality/low-

quality patch pair extracted.

To train the network ADAM optimization algorithm is used for 300K iterations.

The number of logarithmic transformation function n = 4 and v = 1, 10, 100, 300

have been chosen.

Figure 3.6 shows the visual comparison of three synthesized low light images. The

output is highly natural and has no artificial artifacts.
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Chapter 4

Dual Camera Low-Light Image

Enhancement

This chapter presents the technical developments of this thesis. First, we define the

problem precisely, and then propose our solution and analyze our results.

4.1 Problem Definition and Motivation

Our objective is to enhance the low-light images using convolutional neural networks

in dual camera setup. CNNs have been exploited in recent years for many image

restoration applications such as super-resolution, denoising, and low-light enhance-

ment (Sindagi and Patel, 2018) due to the availability of large amounts of images and

high computational power.

In chapter 3, we reviewed previous works done on the enhancement of low-light

images in single camera setup. However, to the best of our knowledge, this thesis is

the first work of using CNNs on the low-light enhancement of stereo images in dual
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Figure 4.1: Input and output of the proposed model.

camera setup.

The reason to use a stereo image pair instead of one single image for the low-light

enhancement is to exploit the high correlation between the two images in a stereo

image pair. In dual camera setup, we have two different views of the same object

in a scene, which are highly correlated. In our proposed method, we use this prior

to enhance the low-light stereo images. Our results demonstrate that using a dual

camera system in low-light enhancement leads to better results than using only a

single camera system.

We design an end-to-end deep convolutional neural network system for enhancing

the low-light stereo images. Therefore, the input to our system is a stereo image pair

(left and right image), and the output is a left normal-light image. Figure 4.1 shows

the input and output of the proposed system.

As we discussed in section 2.5.1, in a dual camera system, every point in 3D

space is represented by two pixels, one in the left image and the other in the right
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Figure 4.2: A superimposed photo of a stereo image pair. This image shows the
disparity between the two left and right images.

image. The coordinates of these two pixels are different due to the distance between

the two cameras. The disparity is the difference between these two corresponding

coordinates. Figure 4.2 demonstrates the disparity between the left and right images

by superimposing the two images.

One way to enhance the stereo images in a dual camera system is to align or

register the two images first and then using an enhancement method to produce the

enhanced normal-light output image. However, estimating the disparity is still an

active research topic and finding an accurate disparity is a difficult task. Instead,

we propose an end-to-end CNN-based method to avoid estimating the disparity in a

stereo image pair.
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Figure 4.3: The process of how we extract patches to train the CNN.

In order to design a convolutional neural network that learns a mapping from a

low-light image pair to a normal light image, we extract a patch from the left image

and n patches from the right image with different shift offsets with respect to the

corresponding left patch. Shifted patches are used specifically for accommodating

the imprecise disparity between the left and right patch pairs. These patches are

concatenated together to create a 3D tensor with size h × w × (n + 1) which is the

input to the network. h and w are the height and width of the tensor respectively. In

this development, we choose n = 64 because it is more than enough to accommodate

the disparity between the two left and right patches. Figure 4.3 shows the process of

extracting input patches to train the CNN. For a particular patch in the left image

with center position (x, y), the shifted patches are extracted with (x − j, y) center

positions from the right image where j varies from 1 to n. Note that the two images

are assumed rectified and have no disparity in the y direction.
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Figure 4.4: The proposed network architecture for low-light enhancement using stereo
images. All the convolution layers has the same number of filters (64) with filter size
3 × 3, stride=1, and padding. The network has two parts: the luminance and color
networks.

4.2 Network Architecture

We devise a deep CNN network architecture to improve the image quality in low-

lighting condition of stereo images inspired by (Jeon et al., 2018). The network

processes the luminance and chrominance components of the input image in a cascade

architecture. The first part of this network learns the luminance mapping of a low-

light stereo image pair to a normal-light image, while the second part learns a color

transformation mapping from both the enhanced luminance and the chrominance

of the low-light left image to a normal-image. The input tensor for the luminance

network has n + 1 channels and the input tensor for the color network has only two

chrominance channels from the left image and one estimated luminance channel of

the left image. See figure 4.4 for an overview.
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Figure 4.5: Residual block used in the proposed network. Both convolutional layers
have 64 filters with filter size 3× 3, stride=1, and padding.

In Figure 4.4, there are 32 Residual Blocks in each of the luminance and color

parts. We use the the residual blocks in a similar way as (Kim et al., 2016). The

residual learning makes networks deeper without suffering from the gradient vanishing

problem. Figure 4.5 shows the architecture of each residual block shown in Figure 4.4.

4.2.1 Network Construction

Instead of using device-oriented color representation of red, green, blue, we convert

three color channels into Y CbCr coefficients of luminance Y and chrominance CbCr

as a 3D tensor of size H × W × C ∈ <3, where H is the height, W is the width,

and C is the number of channels in an input image. We design the first part of the

network that learns a luminance mapping between a normal-light patch and a stack

of the left patch and shifted right patches. Suppose a training data-set {X i, Y i}Ni=1

is given from N number of training images where X i represents a stereo image pair
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and Y i ∈ H ×W × 3 denotes the Y CbCr representation of ground truth normal-light

image for ith image. X = {Xl, Xr} contains the Y CbCr representation of the two

left Xl ∈ H ×W × 3 and right Xr ∈ H ×W × 3 low-light stereo images. The main

objective of our network is to learn a model F that can predict a normal-light image

Ŷ = F (X) from given stereo input X. As entitled at the beginning of this section,

our model consists of two parts: a luminance part and a color part. Note that we

jointly train both parts as one to learn an end-to-end mapping. In this section, we

denote images with a capital letter (X) and patches with small letters, i.e., x.

Luminance Part: The luminance part detects similar patches in the input stereo

tensor with shifted patches using deep convolutional networks, rather than using

traditional block matching that determines the discrete disparity. It means that our

luminance network detects patch similarities in stereo channels that contain patches

with different shift offsets. Finding similar patches is a more effective way to enhance

patch low-light condition regardless of patch correspondences for the disparity. Note

that no disparity map is required for our enhancement of low-light condition.

In the training phase, the first network learns the mapping between a normal-

light luminance patch ly ∈ h × w × 1 and a low-light luminance stereo patch stack

lx ∈ h× w × (n + 1) over training data-set where h and w are the height and width

of patches. The input tensor to the luminance network can be defined as follows:

lx,k(i, j) = lx,r(i− k, j) for k ∈ {1, · · · , n}

lx,k(i, j) = lx,l(i, j) for k = n+ 1

where lx,l(i, j) ∈ h × w × 1 and lx,r(i, j) ∈ h × w × 1 are the luminance channel of

the two left and right patches with the (i, j) center position coordinates. The output
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of the luminance network l̂y is the enhanced normal-light luminance patch with size

h× w × 1.

Color Part The input of the color network cx is the concatenation of recon-

structed normal-light luminance patch l̂y and the low-light chrominance channels

from Cb and Cr channels in the low-light left patch bl ∈ h×w× 1 and rl ∈ h×w× 1.

The main objective of the color network is to reconstruct a final normal-light color

image. The output of the color network ŷ is the enhanced normal-light full color patch

with size h× w × 3.

All the images in the training data-set are normalized to [−1, 1] range by:

y =
x

127.5
− 1 (4.1)

where y is the normalized value, x is the integer pixel value which is in range [0, 255].

The last layer in both networks uses a tanh activation function which outputs

data in the range [−1, 1]. We denormalized the output values to the range [0, 255] for

showing and storing the results.

4.3 Loss Function

In the training phase, we use the following loss function to train both the luminance

and color parts simultaneously:

J =
1

N

N∑
i=1

||liy − Flum(lix)||22 + λ
1

N

N∑
i=1

||yi − Fcolor(cix)||22 (4.2)
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where i represents the ith training sample, N is the number of training samples, ly

represents the luminance component of the ground-truth left patch, y denotes the

ground-truth Y CbCr coefficients of the left patch, and lx, cx represent the input

for the luminance and color network, respectively, while Flum() and Fcolor() are the

output of the luminance and color networks. λ is a weight parameter which controls

the importance of the color network compare to the luminance network.

4.4 Training Data-set

In this development, we use the publicly available Middlebury data-set (Scharstein

et al., 2014). Originally, this data-set has been introduced for the depth estimation

topic. However, we use this data-set for our stereo enhancement problem because it

contains over-exposed (bright), under-exposed (dark), and normal light stereo images.

Thus, we can construct a training data-set to train our CNN network as discussed in

section 4.2.1.

Middlebury data-set has 33 different indoor scenes, where for every scene, four

different ambient lights are available. For every ambient light, there are eight stereo

image pairs (left and right) with different exposure time from too bright to too dark.

Moreover, a ground truth disparity mapping is also available for all these scenes.

Figure 4.6 shows different scenes available in this data-set. Figure 4.7 illustrates

different ambient lights and exposure times for one of the Middlebury data-set scenes.

The disparity between the two images is also shown in Figure 4.8.

To create a training data-set for our low-light image enhancement method, we

need an under-exposed image pair and the corresponding normal-light stereo image

pairs. For every ambient light, we choose the best normal image among all the
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Figure 4.6: Different scenes of Middlebury data-set used in training our CNN network.

different exposure time image pairs. For instance, in Figure 4.7, we select the fourth

row as the normal-light ground truth stereo image pair. We also removed all the first

three rows because we aim to enhance only low-light stereo images. Then, in this

example, we have four ground truth image pairs and 4 low-light image pairs to create

the training data-set. The same procedure is done for all other scenes in this data-set.

In total, we have 78 normal-light (ground truth) and 230 low-light stereo images.

We extracted 517, 586 patches with size 33 × 33 with stride 24 from these images.

Table 4.1 shows all the parameters used in creating the training data-set.
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Figure 4.7: Different ambient lights (every column) and exposure times (every row)
for one of the Middlebury images.

Table 4.1: Parameters used in creating the training data-set. Stride is the jump value
for going to the next patch in both horizontal and vertical axes.

Parameter Value
Patch size 33× 33
stride 24
Number of shifted patches in the right image 64
Total number of patches 517, 586
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Figure 4.8: The disparity mapping for image pair shown in Figure 4.7. Bright in-
tensities are corresponding to the close objects to the dual camera setup while dark
intensities represent the far objects.

4.5 Evaluation Criteria

Commonly used criteria for image quality assessment are Mean Squared Error (MSE),

Peak Signal-to-Noise Ratio (PSNR) and Structural similarity (SSIM) (Wang et al.,

2004). All these criteria compare a reference image Iref with a target image Itar. Here

we explain these three evaluation metrics.

MSE: MSE is basically a weighted function of deviations in images, or square

difference between compared images (Huynh-Thu and Ghanbari, 2008). The MSE

for two images Iref and Itar with size M ×N is calculated as follows:

MSE =
1

MN

M∑
i=1

N∑
j=1

(Iref (i, j)− Itar(i, j))2. (4.3)

PSNR: Another measure, which is strongly related to MSE is PSNR, defined by
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equation (4.4). It indicates the level of losses or signals integrity (Wang et al., 2004).

PSNR = 10log(
max(I)2

MSE
), (4.4)

where max(I) is the maximum value for all pixels in the two images. For instance,

this value for 8-bit images is 255.

SSIM is more closely related to the human visual system as it extracts useful

information as luminance (l), contrast (c), and structure (s). It can be applied to

evaluate structure preservation and noise removal (Wang et al., 2004). The SSIM

index is calculated on various windows of the two images. The measure between two

windows x and y of common size N ×N is:

l(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1

c(x, y) =
2σxσy + c2
σ2
x + σ2

y + c2

s(x, y) =
σxy + c2

2

σxσy + c2
2

where c1 = (k1L)2, c2 = (k2L)2 are two variables to stabilize the division with weak

denominator; L is the dynamic range of the pixel values and typically it is L =

2#bitsperpixel − 1 and K1 = 0.01, k2 = 0.03.

SSIM is then a weighted combination of those comparative measures:

SSIM(x, y) = [l(x, y)α.c(x, y)β.s(x, y)γ] (4.5)

The resultant SSIM index is a decimal value between -1 and 1, and value 1 is only
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reachable in the case of two identical images. Typically it is calculated on window sizes

of 8× 8. The window can be displaced pixel-by-pixel on the images, but the authors

propose to use only a subgroup of the possible windows to reduce the complexity of

the calculation.

4.6 Results

We employed the TensorFlow deep-learning framework (Abadi et al., 2015) to im-

plement our proposed solution to low-light stereo image enhancement. All our im-

plementation code can be found on GitHub1. For computing and applying gradients

to weights, we choose the ADAM optimizer (Kingma and Ba, 2014) with an initial

learning rate of 0.001. We set the exponential decay rate for the first momentum as

β1 = 0.9 and the second momentum as β2 = 0.999 and divide the learning rate by 10

after every three epochs. In each epoch, the optimization algorithm iterates through

all the training samples.

The training of the two luminance and color networks takes about 12 hours on a

machine with a 4.00 GHz Intel i7-6700L CPU and NVIDIA Titan XP GPU card with

a batch size of 64 for 10 epochs. Table 4.2 shows all the parameters used to train the

proposed network. We found that learning more than ten epochs does not improve

the results significantly.

Figure 4.9 and 4.10 show the loss function plot for all the iterations in the training

phase for both the luminance and color networks. The total loss is the weighted

summation of these two losses with λ = 0.5.

To show that using a dual camera system leads to better results rather than using

1https://github.com/hassanisaadi/dark_enh_rgb
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Table 4.2: All the parameters used to train the proposed network.
Parameter Value
Number of Epochs 10
Batch size 64
Initial learning rate 0.001
Number of neighbor patches in the right image 64
λ used in the loss function 0.5
Number of Residual Blocks in each network 32
Feature map size for every convolutional layer 64

Figure 4.9: Luminance loss function for the proposed network.

Figure 4.10: Color loss function for the proposed network.
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Figure 4.11: Results for different methods compared to our method. Gamma correc-
tion (GC) with λ = 0.5, Histogram equalization (HistEq), Single left image (Single),
Ours.

a single camera setup, we train another network which is exactly the same as the

proposed network with a difference in the input layer of the luminance network. This

single camera network takes only the luminance part of the left patch and maps the

low-light left image to the normal-light left image.

For a better comparison, we also evaluate our method with the two basic methods

discussed in the previous chapter: Gamma Correction and Histogram Equalization.

We evaluate our low-light enhancement method on 8 test images from the Middlebury

data-set. Figures 4.11 and 4.12 show the results for four different low-light enhance-

ment methods: 1) Gamma correction, 2) Histogram equalization, 3) Single camera,

4) Our method. Table 4.3 also shows the PSNR and SSIM values for the images in

the previous figures.

The images reconstructed by both gamma correction and histogram equalization
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Figure 4.12: Results for different methods compare to our method. Gamma correction
(GC) with λ = 0.5, Histogram equalization (HistEq), Single left image (Single), Ours.

Table 4.3: PSNR values for different methods compare to our method. Gamma
correction (GC) with λ = 0.5, Histogram equalization (HistEq), Single left image
(Single), Ours.
Test Image GC HistEq Single Ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
1 11.33 0.7515 15.95 0.3449 28.34 0.9183 35.88 0.9233
2 11.91 0.7403 19.43 0.5482 28.88 0.8369 35.13 0.8517
3 10.85 0.7618 15.59 0.5862 28.04 0.8258 34.61 0.8526
4 9.87 0.7784 10.73 0.5154 27.45 0.7692 34.21 0.8326
5 11.78 0.6770 17.18 0.7460 26.31 0.8296 29.51 0.8480
6 11.44 0.7043 22.35 0.6346 26.34 0.8291 30.56 0.8417
7 11.47 0.7082 21.62 0.6732 26.43 0.8284 30.79 0.8481
8 13.16 0.6822 24.04 0.4561 27.51 0.8859 31.56 0.8814

Average 11.48 0.7255 18.36 0.5631 27.41 0.8404 32.78 0.8599
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methods suffer from a global noise, resulting in low PSNR. Comparing to the single

camera method, our method outperforms the single camera regarding PSNR and

SSIM which shows the effectiveness of the proposed method empirically.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

We have proposed a method that can enhance the low-light condition of stereo im-

ages, which comprises two convolutional neural networks for the luminance and color,

respectively. Even though our method does not calculate the disparity directly, it uti-

lizes a shifted neighbor patches in stereo to reconstruct a normal-light image. Our

method can outperform the state-of-the-art methods such as gamma correction and

histogram equalization. We also show that the proposed dual camera system performs

better than the single camera setup enhancement empirically.

5.2 Future Work

In our development, we use a public data-set (Middlebury) which has a limited number

of images to train our model. All the images in this data-set are captured in an

indoor space. To create a larger and more general training data-set, we could use
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smartphones that have a dual camera system. Capturing thousands of indoor and

outdoor images using these smartphones provide a larger training data-set. Moreover,

since the two sensors in smartphones have a smaller distance compared to the dual

camera used in the Middlebury data-set, the disparity between the two images would

be much smaller. The lower disparity leads us to extract fewer neighbor patches and

probably higher quality in the output.

Using more complicated models such as Auto-Encoders (AE), Generative Adver-

sarial Networks (GAN) could help us in increasing the evaluation criteria in the low-

light enhancement. In addition, we can also use pre-trained networks to improve our

model performance. Pre-trained networks such as VGG (Simonyan and Zisserman,

2014) and ImageNet (Krizhevsky et al., 2012) have been trained on a large number of

images to perform the object detection task. Many researchers apply these networks

on different tasks such as image enhancement which is called transfer learning. In

other words, transfer learning helps models to benefit pre-trained networks in pro-

viding more useful feature maps rather than image pixel values. We can also use the

pre-trained networks in our model to improve the performance.

In chapter 1, dual camera smartphones with a Bayer and Monochrome sensor are

discussed. Another possibility to improve the performance of the proposed model

could be using a Bayer and monochrome image stereo pair. Since the monochrome

image captures all the existing light in the space, it contains more details, especially in

the low-light conditions. Moreover, a raw mosaiced image without demosaicing step

in the image processing pipeline does not include demosaicing artifacts. Therefore,

using a Bayer and monochrome stereo image pair can lead us to a better enhanced

image.
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