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Lay Abstract

Serpent Mounds is a prehistoric (Middle Woodland Period, ca. 2000–-1000 BP) burial
mound complex located in Rice Lake, Ontario. Archaeological excavation (1897–1970)
determined the site was occupied by people of the Point Peninsula culture (ca. 2200–
1350 BP) on a seasonal basis, for burial rites and shellfish gathering. Many questions
remain with regard to the date of mounds construction, how long the site was occu-
pied, and how occupation and construction activities impacted the local environment.
The site has been designated as a National Historical Site and excavation is no longer
permitted in the interest of site preservation and cultural value to First Nations.

This study investigated the history of environmental changes associated with pre-
historic indigenous and European land use changes usingminimally-invasivemethods,
including sonar bathymetric mapping, micro-X-ray fluorescence core scanning (𝜇-XRF-
CS) and microfossil analysis of lake sediment cores. Sonar data were employed to map
the lake bottom relief (bathymetry) and to reconstruct past changes in lake levels and
shoreline positions. micro-X-ray fluorescence (𝜇-XRF) methods measures changes in el-
emental abundance in lake core samples to identify human occupation phases and land
disturbance. Microfossils (testate amoebae) track the ecosystem response to environ-
mental changes associated with human occupation. The geochemical and microfossil
data identified an interval of increased sediment delivery to Rice Lake, coinciding with
the arrival of Point Peninsula peoples. The land disturbance is recognized in cores by
an increase in zirconium (Zr), titanium (Ti) and other soil-derived elements. During this
phase, lake levels rose gradually, wetlands expanded and wild rice was abundant re-
source available to indigenous peoples. Following European colonization in the 1820’s,
and the construction of the Hastings Dam (1838 CE), lake levels increased rapidly by
over 2m, causing a shift to a more nutrient-rich (eutrophic) lake environment and a
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decline in wild rice stands. Soil erosion associated with European land clearance is
recorded by in a dramatic increase in the abundance of soil-derived elements.
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Abstract

Serpent Mounds is a prehistoric (Middle Woodland Period, ca. 2000–1000 BP) burial
mound complex located on the north shore of Rice Lake, in southern Ontario, Canada.
The complex includes a 60m long and 10m wide sinuous earthwork ridge interpreted
as a serpent effigy and eight smaller ovalmound structures. Archaeological excavations
determined seasonal site occupation for harvesting wild rice and shellfish and conduct-
ingmortuary rites. The timing ofmound construction and site occupation is poorly con-
strained by limited radiocarbon dates, restricted to burials. The site is of high cultural
importance as the only known effigy mound structure in Canada and is a sacred First
Nations burial ground; thus all investigation must employ non-invasive techniques.

High-resolution 𝜇-XRF-CS and micropaleontologic analysis (testate amoebae) of 12
lake sediment cores was employed to investigate the timing of mound construction,
and assess geochemical records of prehistoric land disturbance. Land disturbance is in-
dicated by increased sediment flux, by rising abundance of minerogenic elements (K,
Ti, Zr, Si, Fe) within a distinctive silt-rich gyttja unit. The event is also recorded in the
thecamoebian assemblage, which is dominated by indicators of a eutrophic, turbid lake
environment. Principal component analysis (PCA) and cluster analysis (CA) of 𝜇-XRF
data identify distinctive chemofacies across several cores. Accelerator mass spectrom-
eter (AMS) 14C dates for the prehistoric land disturbance episode correspond with the
Point Peninsula occupation, indicating a protracted occupation period of ~750 years
(2050–-1300 cal BP)with twomajor peaks in soil erosion at 1900 and 1450 cal BP. The sed-
imentation rate (> 1.5mmyr−1) during theMiddleWoodland phase of enhanced erosion
was comparable to that during the 1838 CE dam construction. The reconstructed Mid-
dle Woodland paleoshoreline and water levels indicate a shallow lake and wetland en-
vironment, with viable habitats for wild rice stands and shellfish resources. The results
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demonstrate that 𝜇-XRF-CS andmicropaleontological methods are important for the in-
vestigation of culturally-sensitive archaeological sites, including sacred burial grounds
where conventional archaeological excavation cannot be undertaken.
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Chapter 1

Introduction

1.1 Background

The Early and Middle Woodland periods (ca. 3000–1000 BP) in the northeastern North
America saw the development of inter-regional trade networks, greater social organi-
zation and many significant technological innovations, including the introduction of
pottery making, horticulture and significantly, the construction of sophisticated earth-
work monuments and burial mounds (Bernardini 2004; Abrams and Freter 2005; Mil-
ner 2005; Henry and Barrier 2016; Mueller 2018). Monumental earthworks and burial
mound complexes were a distinctive feature of the Early-Middle Woodland Adena and
Hopewell cultures of the Ohio River Valley (Kenyon 1986; Burks 2014). It is estimated
that more than 10,000 earthwork structures exist in the Ohio Valley alone, including the
iconic 400m long Great Serpent Mound (Adams County, Ohio) (Herrmann et al. 2014).
The construction of ceremonial earthworks and burial mounds was also practiced by
some Middle Woodland peoples in eastern North America, as a result of the expansion
of Hopewell cultural influences beyond the Ohio Valley (Spence et al. 1979; Kenyon
1986; Spence et al. 1990). The so-called Hopewell interaction sphere (Fig. 1.1) enveloped
a large region of the midcontinent, extending eastward from Ohio into New York State
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and southern Québec, to Rainy River in northern Ontario (the Laurel Complex), and
southward into the US Gulf States (Fig. 1.1).

In southern Ontario, Canada, mound-building was practiced by peoples of the Point
Peninsula Complex (ca. 2400–1300 BP) (Kenyon 1986; Ellis and Ferris 1990; Carr and
Case 2006; Walker 2015). The most impressive and archaeologically important burial
mound complex is Serpent Mounds, located on the north shore of Rice Lake, Ontario
(Fig. 1.2). The mound complex comprises a 60m-long, 8m-wide earthen work ridge
(the Serpent)(Mound E, Fig. 1.2) and eight smaller, elliptical mounds, up to 14m in di-
ameter. The Serpent mound rises 1.5–2m above the surrounding topography and has a
distinctive sinuous crestline in plan (Fig. 1.2) that has been interpreted as a serpent ef-
figy (Boyle 1897; Kenyon 1986). Themounds occupy a 4.4 ha area on the south slope of a
flat-topped drumlin hill (Roach Point) at about 15m above the present level of Rice Lake
(Fig. 1.2B). Serpent mounds was first documented in the late 1800’s (Boyle 1897) and the
first systematic archaeological excavations were conducted between 1950–1955 by the
Royal Ontario Museum (see section 1.4) (Johnston 1957; Johnston 1968; Schwarcz et al.
1985; Ellis and Ferris 1990). The excavations were extensive and resulted in the removal
of a total of 159 skeletons from burials in several locations (Harrison and Katzenberg
2003). Johnston (1968) estimated that the mounds were constructed over a span of ap-
proximately 170 years, from 120 AD until 290 AD.

The oldest date from the mound, however, represents the age of a burial, and may
not indicate the actual onset of the mound construction. Further, the three radiocarbon
dates used in this estimate were uncalibrated, leading to age uncertainties which cannot
be resolved using ceramic seriation (Johnston 1968).

Although many burial mound complexes are known from this time period in On-
tario, SerpentMounds (Fig. 1.2) stands apart as the only prehistoric serpent effigy earth-
work in Canada (Kenyon 1986). The site was designated as a National Historical Site

3
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of Canada in 1985 (ParksCanada 2018). Following decades of operation as a Provincial
park, SerpentMounds has been closed to the public since 2013 and are nowmanaged by
the Hiawatha First Nation (Hiawatha, Ontario). The burial mounds are of significant
spiritual importance to the indigenous community and as caretakers of the mounds,
they have not permitted further excavation of the site. In recent years, analysis of the
mounds has shifted to non-invasivemethods. Most recently, Dillane (2010) performed a
detailed viewshed analysis of Serpent Mounds using remote sensing and GIS methods,
to investigate the function of mounds as territorial markers.

1.2 Objectives

Archaeological excavations conducted at SerpentMounds in the 1950’s and early 1960’s
significantly expanded understanding of the Point Peninsula Complex and Hopewell
cultural influences (Johnston 1968; Kenyon 1986). As outlined in the introduction, there
remain significant knowledge gaps with regard to:

1. The timing of mound construction during the Middle Woodland period,

2. The mound construction methods (whether the mounds were built incrementally
or in a single event) and the duration over which the mounds were built;

3. The environmental impacts of seasonal site occupation and mound construction
activities on the landscape and the lake habitats.

Due to the high cultural value and sacred importance of Serpent Mounds, it is no
longer possible to use conventional archaeological excavations or other invasive meth-
ods (e.g. coring) to address the above questions. In order to preserve the integrity of
the site and to respect the sacred value of the burial ground, future investigations must
employ non-invasive techniques. The aim of this thesis is to investigate the potential
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for non-invasive investigation of prehistoric landscape modification (i.e. burial mound
construction) at SerpentMounds using lake sediment geochemical andmicrofossil (the-
camoebian) records. The specific objectives are:

1. To examine the geochemical record of land disturbance using micro-X-ray fluo-
rescence (𝜇-XRF) elemental analysis.

2. To reconstruct changes in the lake paleoenvironments during the Middle Wood-
land period to the present, including the changes following construction of the
Hastings Dam (1838 CE).

3. To determine changes in the lake water levels, paleobathymetry and shoreline po-
sitions, from the Middle Woodland to present.

4. To evaluate micro-X-ray fluorescence core scanning (𝜇-XRF-CS) as a tool for re-
mote detection of land disturbance events in lake sediment records.

A combination of 𝜇-XRF-CS and micropaleontological data (thecamoebians) is used
to pursue these objectives. This study is the first attempt to detect geochemical signals of
landscapemodification using𝜇-XRF-CSmethods, in pre-agricultural, pre-contactNorth
American archaeology. Multivariate statistics (principal component analysis, cluster
analysis) classify core chemofacies, to assist in identification of high terrigenous in-
put episodes in the basin. 𝜇-XRF-CS is supplemented by new testate amoebae data,
which records ecosystem changes during the previously unevaluated Early Woodland
period to Present (Sonnenburg et al. 2013). New radiocarbon dates permit calculation
of sedimentation rate changes using bayesian age-depth modelling (Blaauw and Chris-
ten 2011), and update the water level reconstructions of Sonnenburg et al. (2012) and Yu
and McAndrews (1994). These techniques provide finer spatial and temporal resolu-
tion of sediment deposited in the Late Holocene, in a manner which is archaeologically
non-destructive.
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The large volume of compiled 𝜇-XRF-CS is typically problematic for analysis. Thus,
a specialized Python code is developed for work-flow automation and data reduction.
PyTrax is a data visualization and multivariate statistical code, written in Python 3.0,
to address this problem. Python offers a flexible, and powerful option for customized
data handling, which is achieved by few proprietary software packages in the environ-
mental sciences. The capabilities of PyTrax exceed that of many third-party Itrax soft-
ware packages geared more towards basic data visualization (Croudace and Rothwell
2015a). It offers a streamlined data preparation process, precisely aligning core imagery,
radiographs, and XRF data, with further options for normalization and element ratios.
It provides easy-to-use principal component analysis (PCA) options, as well as cluster
analysis (CA), designed to be paired with the data reduction.

1.3 Setting and Previous Work

1.3.1 Study Area

Rice Lake is located 20 km south of Peterborough, Ontario, is 26 km in length, 3–4km in
width, and has amaximumwater depth of 10m. The surrounding area is defined by the
PeterboroughDrumlin field (North), and theOakRidgesMoraine (South), with bedrock
composed of Ordovician-aged limestone (Fig. 1.3) (Sharpe et al. 1997; Gravenor 1957).
The current lake levelswere established in 1838CEby construction of theHastingsDam,
raising water levels by over 2m and greatly increasing the lake’s surface area, inundat-
ing much of the original shoreline (Yu and McAndrews 1994). Given the lake’s shallow
average depth (4m), the abrupt rise in water level post-dam would have dramatically
changed the flow regime of the Indian and Otonabee rivers, which feed the lake from
the north through glacial spillways (Gravenor 1957). The Indian River presently drains
little more than 1 km north of the study area, and may likely have flowed much further
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into the present extent of the lake in antiquity (Dillane 2010). This study is enclosed
within a 2 km area, between East Sugar Island, Serpent Mounds, and Harris Island.
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1.3.2 Previous Work

The changes in the Holocene water levels and paleoenvironments of Rice Lake have
been documented in a number of previous studies (McAndrews 1984; Yu and McAn-
drews 1994; Sonnenburg et al. 2011; Sonnenburg et al. 2013). The first pollen records
were published by McAndrews (1984), with a more encompassing assessment of water
level and vegetation history later described by Yu and McAndrews (1994) and Yu et al.
(1996). In the southwest, pollen records estimate Rice Lake, once a tamarack swamp,
transitioned to become a more substantial lake from 10,000–8600 BP. Sonnenburg et al.
(2012) described several phases of water level changes, including two depositional hia-
tuses which coincide with the greater regional trends of crustal post-glacial isostatic
rebound, and the main highstand (Algonquin phase) and lowstand (Admiralty phase)
of LakeOntario (Anderson and Lewis 2012; Sonnenburg et al. 2012). Many other studies
have observed these episodes, and acknowledge their role in determining viability for
human habitation in the region (McAndrews 1984; Yu and McAndrews 1994; Yu et al.
1996; Yu and Eicher 1998; Lewis et al. 2005; Anderson and Lewis 2012; Sonnenburg et al.
2013; Lewis 2016). Figure 1.4 summarizes the complex water level history of Rice Lake
from the Paleoindian occupations until the Hastings Dam construction.

Thismajor transgressive phase in the southeast part of the lake, occurred asynchronously
with the northeast by almost 2000 years (McAndrews 1984; Sonnenburg et al. 2013).
The gradual shift in water levels produced a diverse range of environments: fringing
wetlands and a resource-rich setting for the first inhabitants of Rice Lake in the Pale-
oindian period, evidence of whom is present in a peat deposit (9400 BP) 3 km from the
present study area (Sonnenburg et al. 2011). During this time, the upland pollen as-
semblage transitions from a boreal spruce forest, to a pine forest, where steadily rising
water levels deposit a thick (1–3m) sequence of laminated marl, observed ubiquitously
throughout the basin, although varying in organic inclusions (McAndrews 1984; Yu and
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Figure 1.4: Holocenewater level curve for Rice Lake andMcIntyre lagoon
(Sonnenburg et al. 2013). Water levels were corrected for isostatic effects.

McAndrews 1994; Sonnenburg 2010). The carbonate bedrock in the catchment of Rice
Lake, acidic Mid-Holocene soils from coniferous upland forests, and an aquatic plant
macrofossil assemblage dominant inNajas flexilis, propagatedmarl production (Vreeken
1981; McAndrews 1984). The thecamoebian analysis by Sonnenburg et al. (2013) show
a transition to marl facies in an isolated peat bog 3km east of the present study area
near the McIntyre archaeological site, dated between 9470–8760 cal BP. The marl suc-
cesion, present from ca. 9000–6000 BP (Sonnenburg et al. 2011) consists primarily of C.
constricta, which thrive in oligotrophic conditions. As noted by Wiik et al. (2013), the
ability of marl to buffer eutrophication factors such as phosphorus, via co-precipitation
with crystalline CaCO3, limit its chemical trophic status to nutrient-poor.

A second high-nutrient phase was observed following a basin-wide hiatus in the
sediment record, where from the termination of the marl sequence (commonly and
roughly averaged to 6000 years BP), a gap in the sediment record of 3000–4000 years
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occurs (McAndrews 1984; Yu and McAndrews 1994; Sonnenburg et al. 2013). A discon-
formity separates the older marl, and the overlying gyttja. The hiatus, a result of the
Holocene climatic optimum (Hypsithermal), is now recognized as the marker for a dis-
tinct geological stage: the boundary between the Meghalayan and the Northgrippian
Stages (Cohen et al. 2018). The very warm, dry summers that occurred in the Northern
Hemisphere, generally understood to have been induced by orbital forcing, produced a
period of prolonged drought, with concurrent events observed globally (Clement et al.
2000). A synchronous event has been documented as far west as Elk Lake, Minnesota
(Colman et al. 2013). The loss of sediment archive was exacerbated as Rice Lake entered
an isostatically-driven, hydrologically-closed phase at the time (Sonnenburg et al. 2013).

Water level recovery after erosional hiatus 2 (EH-2) (Sonnenburg et al. 2012) occurred
around 3000 BP in the middle basin and at 4000 BP in the western basin (McAndrews
1984; Yu and McAndrews 1994). Applying an isobase map to the bathymetric profile
of the lake, Sonnenburg et al. (2012) concluded that isostatic rebound was a significant
factor in the pattern of water level recovery. It was hypothesized by McAndrews (1984)
that the warmMid-Holocene climate concurrently accelerated the depletion of ground-
water through evaporative loss, and a regional transition from a coniferous to decid-
uous forest was less conducive to soil leaching of carbonates. As annual precipitation
increased towards the end of the hypsithermal, the main basin and the McIntyre area
were abundant in organic nutrients, no longer buffered by high amounts of ionic car-
bonate.

Following water level recovery, a thick (average 1m) unit of gyttja is deposited on
the erosional contact. The upland pollen assemblage as observed by Yu and McAn-
drews (1994), reflects a diverse deciduous forest abundant in Beech, Elm, Maple, and
Birch, with a wetland pollen assemblage occupied by both emergent and submergent
plants. McAndrews (1984) thoroughly investigated the pollen and plant macrofossil
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assemblages in the vicinity of the present study area. Although his analysis mainly
concerned Archaic Period archaeological occupations and exploitable wetland plants,
the data provided insight towards the growth viability of wild rice, which is a known
cultivar in the archaeological record (Spence et al. 1984). The period in which it flour-
ished is estimated to have lasted from 3000 to 1400 BP (McAndrews 1984). The the-
camoebian biofacies, described by Sonnenburg et al. (2013), show rapid recovery and
re-establishment of the nutrient-poor species A. vulgaris, as the lake reconnects to the
peripheral marsh areas. The lower water levels at this time left substantial marshland
around SerpentMounds and related sites on East Sugar Island andHarris Island, which,
if not traversable on-foot, were certainly easily bridged by watercraft.

In 1838CE, theHastingsDamconstructionprecipitated rapid environmental changes
(Yu and McAndrews 1994; Dillane 2010; Sonnenburg 2010). Water levels were raised
nearly 2m above the bedrock sill in Hastings at the northeast end of the lake, which
until that point, had been the only natural flow regulator. As one of the many conse-
quences of dam construction, remainingwild rice populations in the lake became scarce.
Wild rice is particularly sensitive to large increases in water level, as it requires specific
flow conditions and depth fluctuations (0.5–1m) (Finkelstein and Davis 2006). The rise
in Ambrosia pollen as observed by Yu andMcAndrews (1994), marks the onset of large-
scale land clearance by European settlers, who arrived in 1820 CE, and the short burst
of C. tricuspis identified by Sonnenburg et al. (2013) in the uppermost gyttja is a likely
indicator of dam construction.

1.4 Archaeological Background

The archaeological occupations at Rice Lake extend from the Paleoindian period (11,000
BP) through to the Woodland Period (2750 BP) (Ellis and Ferris 1990; Ellis et al. 2009;
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Sonnenburg et al. 2011). One of the unique features of the Middle Woodland period
was the construction of large earthen burial mound complexes (Johnston 1968). The
construction of the mounds coincides with expansion of Hopewell trade networks and
cultural influences in southern Ontario. The highest density of mound structures in the
middle Trent Valley is on the north shore of Rice Lake (Carr andCase 2006;Walker 2015).
Serpent Mounds is a substantially larger mound complex than those on neighboring
islands. The Serpent burial mound structure is 60m in length 10mwide and rises up to
2m above the surrounding topography. The complex is located at the southern end of
Roach Point (Johnston 1957; Johnston 1979). Several other oval-shaped burial mounds
are also present at the Serpent Mounds site, adding to its complexity (Fig. 1.6).

The bay above which Serpent Mounds sits, is ringed by several contemporaneous
sites: East Sugar Island (BbGm-11), with several burial structures and a coastal shell
midden to the west, and Harris Island (sites BbGm-3 and BbGm-27), with a mound,
midden, and other site components south across the water (Curtis 2002; Curtis 2014).
One additional mound at the Rainy Point site (BbGm-4) is also located on Harris Island,
but facing to the south, across the modern lake (Fig. 1.5) (Richardson 1968).

While the highly visible burialmound structures that dot the landscape of theMiddle-
Trent Valley have been subject to years of looting and have been the primary focus of
many archaeological excavations, shell middens, containing a substantial volume of ce-
ramic and faunalmaterial, have been relatively undisturbed (Johnston 1968; Curtis 2002;
Dillane 2010; Walker 2015). In fact, the site identified at Prison Island (BbGm-34), was
described as an apparent large shell midden by Richardson (1968), but was ultimately
left untouched following test excavation due to water infiltration and poor quality of
artifacts. While overlooked, this site could prove far more significant in the context of
Rice Lake’s shoreline evolution, given that a larger area would have been exposed in
the pre-Hastings landscape. The shell midden at Serpent Mounds is no different in that
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Table 1.1: Middle Woodland period sites at Rice Lake, with Borden iden-
tification and site contents. Index numbers correspond to locations on
the map of Fig. 1.5

Index Borden Number Site Name Contents Sources
1 BaGn-7 West Grape Island Midden Richardson (1968)
2 BbGm-13 Spillsbury Bay Shell midden Richardson (1968)
3 BbGm-14 Foley Point Described as village Richardson (1968)
4 BbGm-34 Prison Island Large shell midden Richardson (1968)
5 BbGm-6 Loucks Point Multi-component Johnston (1968)
6 BbGm-22 Poison Ivy East Sugar Island Complex Johnston (1968)
7 BbGm-23 Island Centre East Sugar Island Complex Johnston (1968)
8 BbGm-20 Corral East Sugar Island Complex Johnston (1968)
9 BbGm-11 East Sugar Island Mounds and Shell Midden Johnston (1968)
10 BbGm-1 Cameron’s Point Mound group Kenyon (1986)
11 BaGn-8 Cow Island Multiple burials Roberts (1978)
12 BbGm-9 East Grape Island Mound group Johnston (1968)
13 BbGm-3 Harris Island (West) Mound and Midden Roberts (1978)
14 BbGm-27 Harris Island Mound Mound MTCS (2017)
15 BaGn-2 Miller Mound Mound group Kenyon (1986)
16 BbGm-4 Rainy Point Mound MTCS (2017)
17 BbGm-2 Serpent Mounds Mound group Johnston (1968)
18 BaGn-3 Jubilee Point Multi-component Curtis (2002)
19 BbGm-12 Godfrey Point Midden MTCS (2017)
20 BbGm-24 Scriver Burials MTCS (2017)

respect (Johnston 1968; Ellis and Ferris 1990). Shell middens are not uncommon at Rice
Lake, with several others at sites on the mouths of the Indian and Otonabee rivers. In-
quiries regarding the function of these sites have been intensively explored: whether for
long-term occupation with relatively few individuals, short term feasting episodes with
many participants, or the product of prolonged ritual activity associated with funerary
traditions at the mounds (Spence et al. 1984; Ellis and Ferris 1990; Wilson 1993; Curtis
2002; Dougherty 2003; Dillane 2010; Curtis 2014).

At Serpent Mounds, the shellfish content of the midden consists entirely of two
species: Elliptio complanata and Lampsilis radiata ’siliquoidea’, with other faunal remains
limited to the long-bones of deer, and a non-faunal excess of ceramic refuse (Johnston
1968; Dillane 2010). The lack of Anodonta grandis agrees with the descriptions of Rice
Lake’s Woodland Period shoreline, discerned by Sonnenburg et al. (2012). In absence
of this species, the harvested shells reflect a riverine or deltaic or shallow lake habitat
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(Johnston 1968; Clarke 1981). These middens, and the activity of shell harvesting are
essential to the notion of the mounds as territorial markers, as suggested by Dillane
(2010).

As populations expanded during the Middle Woodland period, the abundance of
wild rice stands and the shellfish resources would have provided impetus for asserting
territorial control through visual means; this may explain why the mounds at Rice Lake
are situated atop themany drumlin-islands. Dillane (2010) also remarks on the relation-
ship of population size to the shell middens, postulating only occasional use, for years
when wild rice harvests were insufficient. Otherwise, if annually used, the shell beds
would quickly become depleted, given maturation times and life cycles (Clarke 1981).
While the shell middens may have gradually accumulated, this does not explicitly infer
that the population sizes of these Middle Woodland sites were small, rather, that the
exploitation of shellfish was occasional, with a probable link to burial activity. This link
is evident by the lenses of shells which were reported to line the graves in Mound “C”
at Serpent Mounds (Johnston 1968).

Serpent Mounds was first excavated in the late 19th century (Boyle 1897), until the
mid 20th century, with a large volume of research directed at the high density of burials
within and around the mounds (Schwarcz et al. 1985; Ellis and Ferris 1990; Ellis et al.
2009). However, not all remains exhumed from the site were for academic purposes, as
grave-robbing, looting, and desecration of the site was documented before first inves-
tigations by David Boyle in 1897 (Johnston 1968; Dillane 2010). A more formal investi-
gation during the early 20th century by Henry Montgomery (1909), produced the first,
albeit dubious, estimate of their age at 1000 years before that year, which was derived
from observing the ’state of decay’ in skeletal remains (Dillane 2010).
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The first systematic investigationswere conducted by the RoyalOntarioMuseumbe-
tween 1950–1955 (Johnston 1968). The excavations covered a total area of 460m, and in-
cluded several mounds, as well as the shell midden near the shoreline (Fig. 1.6). Though
unconfirmed, mound construction is suggested to have multiple stages, with additions
appended to an original, smaller structure (Johnston 1968; Ellis and Ferris 1990). The site
consists of nine mounds (A-I), one elongate shell midden, parallel to the southeastern
shore, and a small habitation area to thewest of themounds (Fig. 1.7). Thewestern habi-
tation site, unfortunately, had been partly disturbed by agricultural activity on Roach
Point, but a great many features remained intact, offering sufficient material to identify
it as an Early Woodland camp (Dillane 2010). The shell midden returned a radiocarbon
date from a charcoal fragment much older than the others sampled by Johnston (1968)
(1355–2158 cal BP). This was taken as the oldest date for site occupation, but does not
explicitly inform the age of the mounds themselves. Rather, this suggests there are pos-
sibly older burial episodes in the history of Serpent Mounds, before the oldest burials
recorded from the Johnston (1968) excavations.

The initial examination of the Serpent Mounds skeletal remains, conducted by An-
derson (1968), provides a thorough report of the physical anthropology, however, it
was only in 1985 (Schwarcz et al. 1985), and again in 2003 (Harrison and Katzenberg
2003), that any sophisticated analyses were performed to address diet using stable iso-
topes. In addition, several new radiocarbon dates were produced, which aligned to the
mound chronology of Johnston (1968). Katzenberg (2006) acknowledges maize was, in
some capacity, a dietary component at Serpent Mounds from carbon isotope analysis
of remains within Mound E (the Serpent). Although, the origin of this signal may have
been introduced from trade as opposed to horticulture (Dillane 2010). Unfortunately,
no study has noted shellfish as being substantially consumed. Ultimately, a compar-
ison between the Serpent Mounds burials and remains from a group of adjacent Late
Woodland Iroquoian ossuary pits (Johnston 1979) show a chronological move towards
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A

B C

Figure 1.7: A.Down-slope profile of the shell midden through excavation
transects (Plate 50 in Johnston (1968)). B. Typical shell midden stratigra-
phy (Plate 48 in Johnston (1968)). C. Excavation of SerpentMounds (Plate
5 in Johnston (1968)).
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a maize-dominated diet by 1000 AD. This dietary shift between populations, and dif-
ferent cultures, coincides with the decline of extensive wild rice marshes near theMcIn-
tyre Site (BbGn-2) observed by McAndrews (1984), and the eventual discontinuation of
mound construction at Rice Lake. Dillane (2010) suggests this subsistence change made
the mounds unimportant for territorial control of once-exploited wetland resources.

Despite what is known of Rice Lake’s climate history (Yu and McAndrews 1994; Yu
et al. 1996; Sonnenburg et al. 2013), no study has addressed the environment in a Mid-
dle Woodland archaeological context. Given that terrestrial excavation is no longer an
option at SerpentMounds, it is imperative that remote sensing, and peripheral geophys-
ical and geoarchaeological techniques are implemented ifmore is to be discovered about
this ancient monument. The view-shed analysis performed by Dillane (2010) attempted
to reconstruct visibility parameters of several Rice Lake mounds using limited paleo-
geographic data, and synthesized many previous theories regarding the purpose of the
mounds in the context of territorial markers (Johnston 1968; Spence et al. 1984; Wil-
son 1993; Dougherty 2003). However, one overlooked element of the GIS models, was
the use of an intermediate vegetation parameter, accounting for potential land clear-
ance. Visibility was instead tested under total vegetation, and no-vegetation coverage
instances. Understanding the extent of land clearance in mound construction and site
occupation is needed to discern how these sight-lines could have been augmented.

1.5 Methods

1.5.1 X-ray Fluoresence (XRF) and Core Scanning

Chemical analysis using X-ray fluorescence (XRF) has long been a favoured method of
analysis for its rapid elemental characterization of samples, bridging many fields, both
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commercially and academically (Van Grieken and Markowicz 2001). The principles of
XRF are simple: within an evacuated X-ray tube, electrons are fired from the cathode
towards an anode of a pure metal where they decelerate on interaction with the elec-
tromagnetic field of the encountered atomic nuclei. The deceleration of these charged
particles produces Bremsstrahlung (”braking radiation”), which forms the continuum
spectra of measured X-ray intensity, and is projected towards the sample surface (Beck-
hoff et al. 2007). The Bremsstrahlung X-rays interact with and excite the inner-shell
electrons of the sample. An electron from a higher orbital will descend to fill the void,
causing fluorescence, and the emission of characteristic X-rays, which adhere to the gen-
eral principles of ionization energies. The emission spectra unique to each element, is
represented by K, L and M shells (ionization energy in KeV decreasing respectively),
with the energy intensity of each K, L or M ’line’ represented by the suffix 𝛼, 𝛽, and
𝛾 (greatest to least detectable energy, respectively). An exhaustive description of XRF
physics can be found in Beckhoff et al. (2007).

InXRF spectroscopy, two analysismethods are commonly employed: energy-dispersive
(ED-XRF), and wavelength-dispersive (WD-XRF). In ED-XRF, all spectra are simultane-
ously collected from the sample emissions, such that all peak area energies are stored,
without a significant degree of mechanical filtering, which WD-XRF achieves through
the use of an intermediate crystal and monochrometer. ED-XRF allows a large volume
of spectral data to be expediently collected for most elements, at the expense of signifi-
cant overlap in line intensities (Beckhoff et al. 2007). WD-XRF, conversely, mechanically
orders the emitted X-rays into characteristic wavelengths, negating spectral overlap,
but at a much slower analysis time, and has an elemental range which is limited to the
crystal employed for wavelength analysis. For this reason, WD-XRF, although more
quantitative, is not incorporated in 𝜇-XRF-CS.

The rapid analysis provided by ED-XRF is ideal for many applications in geoscience
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and has enabled the development of XRF scanning technology. The acquisition of thou-
sands of chemical measurements allows the analyst to progress beyond conventional
sediment core interpretation, and offers a sample resolution unattainable throughman-
ual techniques (Croudace andRothwell 2015b). XRF core scanners have been used to ex-
plore paleolimnological records for over a decade, and are invaluable to high-resolution
sediment analysis, but the devices are far from flawless. A multitude of issues persist
regarding processing and quantifying inherently semi-quantitative XRF data through
calibration. First among these is the achievable limit of energy that may be directed at
the sample: theDuane-Hunt limit (Beckhoff et al. 2007). Thermodynamics regarding the
limit of Bremsstrahlung energy, and the detection of elements are described by Jarvis
et al. (2015). The anode tube selected also determines the range of detected elements,
and suffers from shifts in measurement accuracy with tube age, which is investigated
thoroughly by Ohlendorf et al. (2015). In this study, a Cr anode tube was selected for its
good detection of light elements which may coincide with anthropogenically induced
erosion.

Other obstacles to the analyst come in the form of scattering, which are measured
by the Itrax core scanner as inelastic (Compton or incoherent) and elastic (Rayleigh or
coherent) particle interactions. Hoffmann (2006), Boyle et al. (2015), Jarvis et al. (2015)
and Rothwell et al. (2015) provide an encompassing description of the nature of scat-
tering, and how it impacts the acquisition and interpretation of core scanner data. In
addition to scattering, it is also critical to discuss peak artifacts common to XRF: in-
ternal fluorescence, sum, escape, and diffraction peaks. The former of these is less an
issue with modern semiconductors. These scattering parameters are measured by the
Itrax, and must be corrected for in the process of data-fitting and batch analysis. The
Itrax core scanner maintains a constant distance from the target, with consistent mea-
surement width, mitigating many of the issues regarding differences in measurement
values from varying sensor elevation (Croudace and Rothwell 2015b; Cuven et al. 2015).
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Acknowledging the underestimated shortcomings of XRF is an essential preamble
to the core scanning methodology employed in this study. In many cases, calibration of
core scanner data is becoming frequently utilized (Weltje and Tjallingii 2008; Lyle et al.
2012; Weltje et al. 2015), but the nature of this study does not require quantification of
data.

1.5.2 Itrax μ-XRF Core Scanner

Elemental analysis was conducted using an Itrax core scanner (CoxAnalytical Systems).
Its capabilities include 𝜇-XRF, with a minimum 200μm step size (at a 0.2mm × 4mm
surface area), millimeter-scalemagnetic susceptibility, high-resolution 16-bit optical im-
agery (47μmpixel−1), and line-scan X-radiography, producing radiographs at 20μm
resolution. The sample bed can accommodate a split sediment core, up to 1.8m in
length, progressing through the machine via leadscrew to achieve small step sizes with
a minimum number of moving components. All instruments are housed in a central
tower, and remain stationary with the exception of z-axis elevation control for the flat-
beam scanning head. Further information on the scanner configuration can be found
in Figure 2 of Croudace (2006). The sensor used by the Itrax is a 1024-channel silicon
drift detector (SiDD), which has the dual benefit of low mechanical noise, and peltier
cooling, as opposed to liquid nitrogen cooling (Croudace 2006). 16-bit high-resolution
.TIF images were used for image analysis in this study, and processed for improved
visibility. Effectively, at a maximum resolution of 47μmpixel−1, sedimentary features
are resolved at a scale which surpasses that of conventional core logging. Default power
settingswere set for each core scan, based on a singlemeasured pointwithin the gyttja of
each split sediment core, and optimized to limit variability between scans. The energy
response was tuned to the gyttja, avoiding the top area of the core, where pore-water
attenuation of X-rays would be problematic. Settings were fine tuned and measured
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against a background reading to establish an acceptable output count rate (OCR) prior
to scanning .

1.5.3 μ-XRF Key Elements and Matrix Effects

Two suites of elements were selected from the raw spectra of each core: one represent-
ing elements of terrigenous origin, and one for organic productivity, represented by a
combination of biogenic and authigenic mineralizations.

1.5.3.1 Terrigenous Elements

Elements most easily indicative of runoff events, are those associated with minerals
which either have low mobility, or no primary origin within the catchment. Al, Fe, Ti,
K, Si, and Zr are ideal for this reason (Cuven et al. 2010; Kylander et al. 2011; Moreno
et al. 2011; Arnaud et al. 2012; Balascio et al. 2015). Although Al was not recorded with
sufficient signal strength to be viable in this study, Ti provides an equivalent conser-
vative alternative. Ti, commonly derived from titanomagnetite minerals (Marshall et
al. 2011), is largely non-reactive following transport into the lake, making it preferen-
tial for use as a denominator when expressing ratios of elemental abundances (Koinig
et al. 2003; Boës et al. 2011; Löwemark et al. 2011; Shala et al. 2014; Chawchai et al.
2016). This works well for normalization purposes, and in doing so, other elements are
effectively normalized to a primary sediment contributor. Complications may arise,
however, when Ti shows a strong covariance to other elements, which indicate runoff,
where a ratio between the two will be less informative. K is a common indicator of clay
minerals (Cuven et al. 2010; Cuven et al. 2011), found in association with finer-grained
sediments (Chawchai et al. 2016). Fe, although commonly used as a terrigenous input
indicator, may become convoluted due to its essential role in biological systems, and in
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redox activity, commonly associated with Mn (Lyle et al. 2012; Chagué-Goff et al. 2016).
In lakes, Fe is often found in the sulfide mineral pyrite (FeS2), which may be an indi-
cator of organic productivity, and thus warrants caution for use as a terrigenous input
indicator (Chagué-Goff et al. 2016). Before progressing to any advanced statistical anal-
yses, all elements should be represented in some form of correlation matrix, to discern
relationships prior to assigning a linkage to environmental process. Si has also been
used as an accurate representation of grain size, and detrital input (Marshall et al. 2011;
Chawchai et al. 2015; Chagué-Goff et al. 2016). It has also been a useful indicator of
biogenic silica production, tracking organic productivity of lakes (Brigham-Grette et al.
2013). This overlap between proxies is problematic if the intent of using an XRF proxy
relies on the signal having a discrete origin. Chawchai et al. (2016) stress the impor-
tance of independently testing proxies where overlap in source material is concerned
with XRF data.

At their study site in a tropical, organic-rich lake, the Si/Ti ratio was observed to be
mainly driven by sand-sized particles, and less by the percentage of biogenic silica. It
was rationalized that the sand, composed of quartz and plagioclase grains, were sub-
stantially larger than the phytoliths and diatom frustules, and thus have a higher like-
lihood of detection during scanning. Zr, although somewhat low in abundance in the
Rice Lake cores, is a strong indicator of flooding surfaces, and coarser-grained material,
with favourable conservative properties (Boës et al. 2011; Chawchai et al. 2016). Ideally,
Zr will track the transgressive horizon covering the marl/gyttja contact observed ca.
4000–3000 years BP. This is hypothesized, as the transgressive horizon, usually remov-
ing a small amount of material from the sediment, will often produce a fractionation
effect on the grain size of the sediment. Minerals which are heavier, like detrital zircon,
will be left behind as a geochemically identifiable lag deposit, physically observed as
a lens of coarse-grained material (Cuven et al. 2010; Cuven et al. 2011; Marshall et al.
2011).
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1.5.3.2 Organic Productivity Markers

Elements, such as S, Sr, Ca, Ni, and the ratio ofCompton toRayleigh scattering (inc/coh),
are often used to represent biological productivity, and endogenic mineral production
(Koinig et al. 2003; Martín-Puertas et al. 2011; Foerster et al. 2012; Elbert et al. 2013). S
may represent a variety of processes in organic-rich settings like Rice Lake. It may be
an indicator of increasing biological productivity, strongly associated with Fe during
Pyrite formation (Moreno et al. 2007), or it may indicate the precipitation of evaporitic
sulfates (gypsum) (Martín-Puertas et al. 2011). It is critical that S and Fe be tested at the
very least in a correlation matrix, to test for the strongest element associations, whether
to Fe, or Ca and Sr. The generation of Sr and Ca, is dependent on sediment type and
associated environment in the case of Rice Lake. Sr and Ca are likely components of
authigenic minerals in the marl unit (Burn and Palmer 2014), which precipitate as car-
bonate and sulfate minerals during periods of drought. In the gyttja, however, both Ca
and Sr are delivered primarily through runoff. Moreno et al. (2007) and Kylander et al.
(2011) confirm there is a strong change in the correlation coefficient between Ca/Ti and
Sr/Ti, dependent on lithology, related to higher or lower water levels at their respective
study sites. Sr may be present as a co-precipitate in CaCO3 as aragonite, or in events of
high carbonate saturation and lower water levels, as strontianite (SrCO3). In contrast,
heightened water levels, and thus dilution of carbonates, showed a stronger correla-
tion of Sr to allochthonous elements (Kylander et al. 2011). The marl deposits of Rice
Lake contain a substantial number of shelled organisms (ostracodes, gastropods, etc),
which incorporate calcite and aragonite as a structural material, and contribute these el-
ements to the sediment record without the necessity of carbonate-saturated lake water
(Sonnenburg et al. 2013).

Ni was difficult to frame within the context of Rice Lake, as it is usually associated
with mining byproducts and other contaminants (Lintern et al. 2015). In the absence of
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human industry, and a feasible bedrock source, Ni is commonly found as a micronu-
trient in all higher-order plants, essential to many enzymatic processes (Brown et al.
1987; Hänsch and Mendel 2009; Yusuf et al. 2011). Furthermore, an XRF-based study
of metals in aquatic plants from Chuparina and Azovsky (2016) point to higher accu-
mulation of Ni when compared to terrestrial plant reference materials for XRF. In this
study, Ni was observed in abundance during periods of low terrigenous input, but it
is uncertain whether 𝜇-XRF-CS is capable of detecting Ni from plant matter, and has
never been assessed for this purpose. A more likely scenario, and one which adheres to
the observed relationship between Ni and high organic productivity, is the adsorption
of Ni to organic colloids or calcite in the sediment.

Ni interaction with aqueous CaCO3 crystal lattices show Ni-hydrates do not co-
precipitate as other metals (Mn and Co) do, but will remain a hydrated adsorbed com-
pound until they are incorporated in solid solution via calcite re-crystallization. Alter-
natively, heterogeneous precipitation occurswhen aqueousmetal concentrations, main-
tained by surface-exchange reaction, exceed the ion activity product of the Ni adsorbent
(Zachara et al. 1991). This is significant for explaining correlation of Ni and Ca within
marl lithofacies, as Ni abundance should increase proportionately to Ca.

As a proxy for organic matter, the inc/coh (ratio of Compton to Rayleigh scatter)
values from each scan track the change in light elements (specifically, organic carbon)
according to Moseley’s Law. Several studies have positively correlated this proxy to
total organic carbon (TOC) (Burn and Palmer 2014; Chawchai et al. 2016).
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1.5.3.3 Matrix Effects

As XRF data is semi-quantitative, it carries significantly less interpretive weight when
the water content, scattering factors, tube aging, and changes in lithology are not con-
sidered. A thorough review of these issues was conducted by Ohlendorf et al. (2015).
The findings show that tube aging, and sediment heterogeneity (in water content, or-
ganic matter, and grain size) were the greatest contributors to the issue of measurement
inconsistency and signal loss in long sediment core records. These can be corrected for
easily in shorter sequences, under the condition these measurements are normalized to
instrument parameters, or element ratios are used.

Several methods have been popularly implemented to address the issue of sample
inhomogeneity and instrument error, conveniently using parameters provided in the
Itrax data output. Data are often normalized to the coherent scatter (Ladwig et al. 2017;
Poraj-Górska et al. 2017), the incoherent scatter (Marshall et al. 2011), the sum of the
incoherent and coherent scatter (Kylander et al. 2011; Berntsson et al. 2014; Berntsson
et al. 2015), and the counts per second (cps) (Bouchard et al. 2011; Shala et al. 2014;
Chagué-Goff et al. 2016).

As organic-rich sediments comprise the majority of sediment analyzed at Rice Lake,
water content and organic matter must be accounted for. Thus, all data is normalized
to the incoherent scatter prior to visualization. To separate any variations in chemical
trends resulting from lithological contrast between carbonate-rich marl, and gyttja, all
statistical operations are performed on a dataset representing the full core, and the gyt-
tja, following the rationale of Schreiber et al. (2014). The isolated gyttja data contain the
chronological period of interest for this study, and if subtle trends are to be revealed
therein, a comparison between the full core and gyttja data must be made.
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1.5.3.4 Post-processing of Spectra

Before analysis, raw spectra must undergo further processing to ensure accuracy, and
is done so through the Q-Spec software package provided with the Itrax core scanner
(Croudace 2006). Peak fitting using Q-spec is performed through a batched, iterative
procedure, where 𝑛 iterations are made, stopping once the minimum mean squared
error (MSE) has been achieved (Ohlendorf et al. 2015).

In this study, the sum-spectra of all measurements in a core scan were used for peak-
fitting procedures, and the number of iterations was set to 100. The inclusion of con-
trasting lithologies was unavoidable, and the marl-gyttja interface was of interest for
the purposes of paleoclimatic reconstructions. The sum-spectra file was chosen out of
compromise, although the sensitivity defaults of the Itrax were always set within the
gyttja. The objective of the fitting procedure is to reduce the MSE of each measurement.

The process of batch analysis requires a suite of elements be added or removed in
order to place a line of best-fit close to the fluorescence peaks of the desired elements. El-
ements with a total count across all measured samples of 0 to ≤ 1000 were removed, and
elements which were observed to improve the fit of target elements in this study, were
added. Inclusion of tungsten (W) accounted for W fluorescence peaks, which originate
in the filament of the X-ray tube, and intensify with tube age (Ohlendorf et al. 2015). As
a final step, the sum and diffraction peaks were accounted for in the batch analysis pro-
cedure, adjusting until optimal MSE was achieved (arbitrarily < 2). Including spectral
artifacts accounts for unfit peaks which cannot be improved through the adjustment of
Q-Spec parameters (Croudace 2006; Rodríguez-Germade et al. 2015).
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1.5.4 Bathymetry Surveys

Single-beam sonar was previously employed by Sonnenburg et al. (2012) at Rice Lake,
and using the same methodology with finer line spacing, was used to map the study
area. The new digital bathymetric model (DBM), provides a detailed bottom profile
adjacent to Serpent Mounds, revealing submerged features, which may have been ex-
posed during the Early and Middle Woodland period. Interpreting these features is
critical to the strategic selection of core locations. Bathymetry-informed coring ensured
sampling was conducted in areas which likely experienced continuous sedimentation,
even during the Mid-Holocene Hiatus.

Mapping was carried out in calm-water conditions using a Knudsen 320BP single-
beam echosounder with a 200 kHz transducer, which produces an 8° conical beam at a
width of 1 cm. This transducer was mounted on a pontoon craft, with a Trimble Ag132
differential GPS system, synchronized to the ping rate of the transducer for accurate
positioning. sonar data were processed using Geosoft Oasis Montaj, where measure-
ments were corrected for transducer draft, and heightened water levels on Rice Lake at
the time of sampling (Parks Canada Water Management InfoNet, 2018). Processing fol-
lowed the guidelines of Sonnenburg and Boyce (2008), with additional tie-line levelling
to the survey data of Sonnenburg et al. (2013) (Fig. 1.9), for enhanced bottom visibility
for the 2 km2 area adjacent Serpent Mounds. The sonar data was overlapped by a 2m
resolution SCOOPDTM fromMNR (2013), towhich a 3-passHanning filter was applied
for interpolation artifact removal.
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1.5.5 Core extraction, sampling, and analysis

12 cores (1–2.5m length) were extracted using a combination of 10 percussion cores
and two vibrocores. The polycarbonate percussion cores (68mm diameter) were ex-
tracted using an Aquatic Research Instruments universal percussion device, and the
aluminum vibrocores (70mm diameter) were extracted with a gas-driven vibrocorer.
The cores were cut into 1m lengths for transport, with percussion cores extruded into
plastic troughs on-site. Cores were halved in-lab, with percussion cores sampled every
5 cm for 5 cm3 volumes, at 1 cm widths, as one half was unable to be preserved to the
same quality as the archive. SRPM-02 and SRPM-12 were sampled at 2.5 cm intervals
for 1.25 cm3 volumes, at a sample width of 0.25 cm. Vibrocores were split into archive
and working halves and all cores were stored at 5 ∘C to inhibit microbial growth, and
preserve the cores.

A total of 11 radiocarbon samples were sent to A.E. Lalonde accelerator mass spec-
trometer (AMS) lab in Ottawa for dating. Samples were chosen to avoid hardwater and
old-wood effects, and included mostly leaves, and seeds from discrete depths from five
cores. Processing of radiocarbon samples followed the protocols of Crann et al. (2017).

1.6 μ-XRF Data Processing and Analysis: PyTrax

The large data output generated by the Itrax is difficult to manage with conventional
spreadsheet software, and requires a specialized approach to improve efficiency. Very
few software packages tailored to 𝜇-XRF-CS exist, many lacking integration of rigor-
ous statistical analysis (Schlolaut et al. 2012; Croudace and Rothwell 2015a). This is
fortunately beginning to change, with the introduction of combined calibration and sta-
tistical packages like Xelerate (Weltje and Tjallingii 2008; Bloemsma 2015; Weltje et al.
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2015). In the past decade, core scanner studies are put to more rigorous standards for
data processing, and require more than just the display of raw counts to be acceptable
for publication (Weltje and Tjallingii 2008). Incorporation of data normalization, cal-
ibration, and multivariate analyses like PCA and CA are imperatives for robust Itrax
data analysis (Harff et al. 2011; Schreiber et al. 2014; Shala et al. 2014; Weltje et al. 2015;
Chagué-Goff et al. 2016; Chawchai et al. 2016; Ladwig et al. 2017; Poraj-Górska et al.
2017).

At its core, PyTrax offers data visualization with minimal preparation required from
the user. This has evolved to incorporate automated facies identification through the
use of PCA, CA, and image analysis functionalities. Several Python libraries in the
Anaconda distribution (Continuum Analytics) are used, including: Pandas (McKinney
2015), Pillow (Python Imaging Library Fork) (Clark et al. 2010–), Matplotlib (Hunter
2007), SciPy (Jones et al. 2001–), Scikit-Learn (Pedregosa et al. 2011), and Seaborn (Waskom
et al. 2014). While lacking a user interface, the implementation of this code has enabled
a great deal of flexibility in the treatment of Itrax core scanner data. The order of oper-
ations are simple, and are designed to visualize data with minimal user interference.

PyTrax automatically reads the metadata, results, and image files from three respec-
tive folders, and is designed to process and concatenate multiple scans of long sediment
records, without the need for user intervention. The image files, if chosen to be dis-
played, are cropped with to-the-pixel accuracy based on the millimeter equivalent of
the image height (in pixels), aligned to the start and stop of the XRF data, eliminating
the need for manual alignment. Images may be adjusted to user specifications in any
photographic post-processing software, but do not require cropping. The images are
scaled using a Lanczos interpolation, when specific viewing windows are stratigraphi-
cally selected.

Improving upon one of the features of RediCore, the native visualization software
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for the Itrax, a dataframe of RGB pixel data is produced in PyTrax when the final image
is compiled. A narrow window (1000 pixels for high-resolution images) along the mid-
dle of the core is used to eliminate non-sediment areas of the image. The user decides
whether to use the mean, median, or mode of the red, green, and blue channel values,
which are read from each row to provide a single value for each channel. A moving av-
erage is then applied down-core to a desired window and aligned with the Itrax data.
Further image analysis can be obtained through the application of PCA, which through
the first principal component, as demonstrated in Chapter 2, will provide a relative
value of image brightness. These data may then be clustered, which has the potential
to break clusters along lithological boundaries, and is available in the dataframe repre-
sentation of the image.

PyTrax can support any number of displayed elements, and if no elements are spec-
ified, will plot all elements present in the provided result files. A moving average may
also be plotted to a user-specified window, and is displayed over the elemental spectra.
Processing and basic mathematical operations (sum, difference, product and quotient),
with additional automatic calculations of the incoherent/coherent ratio, and sum (inco-
herent + coherent) of scattering parameters can be used for data normalization. Many
other normalization options are readily available, such as normalization to the counts
per second (cps), logarithmic transformation, or normalization to any element desired
by the user on a per-element basis, or for all elements under consideration.

Filtering unwanted data is made easy through the implementation of Boolean ar-
guments, where the user can null measurements from a specific depth, value, or range
thereof. Filtering out measurements deemed invalid by the Itrax is simplified through
this procedure. Data may be clipped, such that all values outside a minimum and max-
imum depth are nullified, which may be useful for preprocessing of data for PCA. A
non-destructive re-scaling of data allows for the user to select aminimumandmaximum
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depth for the plot boundaries, providing discriminate viewing of core image sections
with associated XRF and RGB data.

Multivariate analysis is simplified, and allows for the plotting of one set of PCA re-
sults, with associated cluster visualization, or a second paired analysis which accounts
for only a specific section of the core as a comparative record (Schreiber et al. 2014). Op-
tional plotting of a colour-mapped representation of clusters is provided, with overlap-
ping, or separately-plotted principal component value lines. The steps for multivariate
analysis used in this study are described in Chapter 2.

PyTrax stores all pertinent variables within the environment which it is executed, so
all raw dataframes are made available to the user, and can be optionally stored as .csv
files for inspection. PyTrax is non-destructive, so additional values are only appended
to the input result file, without altering results. If an age model is incorporated using
CLAM (Blaauw 2010) or BACON (Blaauw and Christen 2011), data can be plotted by
age estimates, corresponding to depth. If an age model is present, but retaining the reg-
ular sampling pattern of the Itrax data is preferrable, a secondary y-axis can be plotted,
with major ticks at the sampled depths, andminor ticks, set to a user-defined frequency
(in years), plotted between each major tick. The minor tick spacing changes respective
to the depth-equivalent age, thus visualizing increasing or decreasing sedimentation
rate. As a preliminary option, linear core compaction correction can be automatically
performed, to which any age-model data will be adjusted, accordingly.

A summary of functions is provided in AppendixA1.1. The flexibility of PyTrax
leaves the user free to perform additional processing of their data, as the dataframe
used is available following graphical generation. Using PyTrax, the data of six cores is
statistically processed, and rapidly plotted in a manner standardized to the best suited
protocols for this study.
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1.6.1 Processing Protocols

This study followed consistent protocols for scanning and data preparation. Acceptable
output count rate (OCR) was reached at 30 kV, 30mA, and 20 seconds exposure. Addi-
tional parameters (keV/channel, energy offset, Full Width at Half Maximum (FWHM)
function settings, exposure and tail slopes and offsets) were automatically optimized
during the batch analysis process for each core in Q-Spec. All Cores were batch an-
alyzed with the same elements selected, however, sum and diffraction peaks were fit
on an individual basis during batch analysis, resulting in an MSE which was deemed
acceptable (< 2). Pruning of data was performed automatically by PyTrax, removing er-
ratic measurements at the partitioning site of cores required to be sectioned for multiple
scans, and removing measurements deemed invalid by Q-Spec.

All data was normalized to the incoherent scatter, compensating for X-ray attenua-
tion in the highly organic gyttja section (Marshall et al. 2011). PCA was applied using a
bulk dataset of six of the eight scanned cores. SRPM-03 and SRPM-09 were removed to
improve clustering accuracy in the final data product. SRPM-03 consisted of channel de-
posits and as such, surface roughness, woody inclusions, reworking of sediment, and
substantially less clear incoherent scatter response excluded it from study. SRPM-09
shared a similar lithology to the other cores, but contained an anomalous upper-gyttja,
which did not match the general elemental trend observed in the other cores.

Following removal of aberrant cores, the data was further log transformed to im-
prove comparability between cores (Ladwig et al. 2017). A moving average, equivalent
to 1 cm, was applied to each core for smoothing. The data was then standard-scaled
(z-scores), such that for each element, the mean was subtracted, and the measurement
was divided by its standard deviation. Thus, each element profile will have a mean of
0 and a standard deviation of 1. These individual cores were then concatenated into a
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single hierarchical dataframe for PCA. Individually standardizing each core eliminated
potential extreme variance, which would arise from standardizing all cores in one con-
catenated dataframe. As per the findings of Schreiber et al. (2014), a second PCA, fol-
lowing the same initial processing steps was conducted. In this comparative analysis,
only the gyttja was considered, and each core was truncated to exclude the marl before
the application of the moving average. The comparative PCA, provided as an option
in PyTrax, allows for a closer examination of principal component loadings in a sin-
gle lithological context, where observing the entire core would potentially experience
complications from vastly different element origins in the marl. An agglomerative hier-
archical CA was applied using Ward’s Method and a Euclidean Distance metric, where
clusters were selected arbitrarily to enhance chemofacies groupings to a reasonable ex-
tent. Data was plotted both by depth, and for SRPM-02, by age, to investigate elemental
trends through time, and correlate events across the study area using the individual ra-
diocarbon samples taken strategically based on element profile observations.

1.7 Thecamoebian Analysis

While Itrax data exceeds the resolution of many other paleolimnological techniques, it
cannot be used in exclusion to other ecological proxies. The employment of micropa-
leontological data is a staple of paleolimnological analysis, and pairs well with XRF
datasets to enhance interpretations (Wiik et al. 2015). Testate amoebae are a group of
fresh, brackish water, and sometimes terrestrial protists which build hardened shells
(’tests’) around themselves in an autogeneousmanner, or through agglutination of local
particulates (Scott et al. 2001). Thecamoebians (testate amoebae) are specifically useful,
but under-used in geoarchaeology, which provide highly localized data of subtle en-
vironmental change (Patterson et al. 2002; Gearey and Caseldine 2006; Sonnenburg et
al. 2011; Volik et al. 2016). Archaeologically-focused paleoenvironmental analysis often
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utilize pollen, plant macrofossil, or diatom datasets to visualize a broad image of wet-
land and terrestrial floral assemblages through time, and has been used extensively at
Rice Lake (McAndrews 1984; Yu and McAndrews 1994; Yu et al. 1996). While essen-
tial, pollen and diatoms lack the specificity suited to disentangling the environmental
history of Rice Lake, which had a wide range of peripheral wetland and lacustrine sub-
environments (Sonnenburg et al. 2013).

The conditionswhich favour the success of one thecamoebian population over others
is progressively better understood through the examination of modern environments,
both natural and anthropogenically influenced (Patterson et al. 1985; Reinhardt et al.
1998; Reinhardt et al. 2005; Roe et al. 2010; Watchorn et al. 2013). Previous thecamoebian
analysis at Rice Lake by Sonnenburg et al. (2013) provided a detailed description of the
biofacies within and before the Archaic Period marl, but did not provide as detailed a
record for the gyttja.

This study improves on the resolution of the gyttja, with thecamoebian abundances
calculated at 5 cm intervals (volume and sample widths described in section 1.5.5) for
the same core on which age modelling was performed. Samples were randomly wet–
split into 1/8th fractions, then refrigerated to inhibit microbial growth (Scott et al. 1993).
Samples were sieved through a 43μm mesh to remove clay and fine organic matter.
Specimens were counted using an Olympus SZX–12 trinocular microscope under 80–
116 × magnification, and were identified using type samples from the McMaster Uni-
versity Micropaleontology Lab, and the identification key of Kumar and Dalby (1997).
Statistically significant populations were determined according to Patterson and Fish-
bein (1989). Using a Boolean test, species with a standard deviation greater than frac-
tional abundance in more than 50% of samples were excluded from further statistical
analysis. Species and stratigraphic associations were determined using agglomerative
hierarchical clustering, with Ward’s method and a Euclidean distance metric. Relative
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indication of ecosystem health was explored using the Shannon-Weaver diversity index
(Shannon 1948). All data processing was performed using Python, in an extension of
the PyTrax code.
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Chapter 2

Micro-XRF geochemical and micropaleontological evidence for
prehistoric land disturbance: construction of the Middle
Woodland (ca. 300 BCE–700 CE) Serpent Mounds complex, Rice
Lake (Ontario, Canada)

2.1 Abstract

Serpent Mounds is a prehistoric (Middle Woodland Period, ca. 2000–1000 BP) burial
mound complex located on the north shore of Rice Lake, in southern Ontario, Canada.
The complex includes a 60m long and 10m wide sinuous earthwork ridge and eight
smaller (up to 14m diameter) oval mound structures interpreted as a serpent effigy.
Archaeological excavations conducted in the 1950’s determined the mound complex
was built by peoples of the Point PeninsulaComplexwho occupied the site on a seasonal
basis to harvest wild rice and shellfish and to conduct mortuary rites. The timing of
mound construction and site occupation is poorly constrained by a limited number of
radiocarbon dates on human burials. The site is of high cultural importance as the only
known effigymound structure in Canada and is a sacred First Nations burial ground; no
further excavations are permitted onsite and all future work must employ non-invasive
techniques.
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High-resolution 𝜇-XRF-CS and micropaleontologic analysis (testate amoebae) of 12
lake sediment cores was employed to investigate the timing of mound construction and
to assess sediment geochemical records of prehistoric landdisturbance. The lithostratig-
raphy consists of a 1–2 m thick organic-rich gyttja overlying interbedded peat andmarl.
Land disturbance is indicated by an increase in the abundance of minerogenic elements
(K, Ti, Zr, Si, Fe) within a distinctive silt-rich gyttja unit, signaling an increase in the
influx of detrital sediments to the lake. The event is also recognized by a shift to a
thecamoebian assemblage dominated by D. oblonga, C. tricuspis, D. proteiformis, indi-
cating a more eutrophic, turbid lake environment. PCA and CA of 𝜇-XRF data identi-
fies the event as a distinctive chemofacies across several cores. AMS 14C dates for the
land disturbance event correspond with the Point Peninsula occupation of sites around
Serpent Mounds, indicating a protracted occupation over a period of about 750 years
(2050–-1300 cal BP) with two major peaks in soil erosion at ca. 2200 and 1350 cal BP.
The sediment accumulation rate (> 1.5mmyr−1) during the Middle Woodland phase of
enhanced erosion was comparable to that during the 1838 CE dam construction. The
reconstructed Middle Woodland paleoshoreline and water levels indicate shallow lake
andwetland and environments, which provided suitable habitats for the growth ofwild
rice stands and shellfish resources. The results demonstrate that𝜇-XRF-CS andmicropa-
leontological methods are important tools for the investigation of culturally-sensitive
archaeological sites, including sacred burial grounds where conventional archaeologi-
cal excavation or onsite coring cannot be undertaken.

2.2 Introduction

The construction of monumental earthworks and megaliths was a hallmark of many
Neolithic cultures and coincided with the emergence of agriculture and permanent set-
tlements with greater social organization and communal division of labour (Sherratt
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1990; Bradley 1998; Artursson et al. 2016). In North America, engineered earthworks
were an important innovation of the Early Woodland (ca. 800 BCE–10 CE) Adena and
Middle Woodland (ca. 100–500 CE) Hopewell cultures of the Ohio Valley (Bernardini
2004; Milner 2005; Brown 2014; Henry and Barrier 2016). Adena-Hopewell peoples
built a diverse range of earthworks, including monumental effigy mounds (e.g. Great
SerpentMounds, Adams County), expansive burial mound complexes, and other archi-
tectural features (ditches, earthen embankments, enclosures) constructed as ceremonial
centres and for defensive purposes (Abrams and Freter 2005; PedersonWeinberger 2006;
Mueller 2018). Due to the expansion of Hopewell trade networks and cultural influence
during the Middle Woodland period, Hopewell mound-building methods and mortu-
ary practices were adopted by other cultures in eastern North America (Kenyon 1986).
The so-called Hopewell ’interaction sphere’ enveloped a large area of the midcontinent,
extending northeastward fromOhio into Ontario and Quebec and into the southeastern
United States (Fig. 2.1).

In southern Ontario, Canada, mound-building was adopted as a burial practice by
Middle Woodland peoples of the Point Peninsula Complex (ca. 2400–1300 BP) (Kenyon
1986; Walker 2015). The most impressive and archaeologically important earthwork
from this culture group is SerpentMounds, located on the north shore of Rice Lake, near
Hiawatha, Ontario (Fig. 2.1, 2.2). The mound complex comprises a 60m-long, 8m-wide
earthwork ridge (the Serpent) (Mound E, Fig. 2.2) and eight smaller, roughly elliptical
mounds, up to 14m in diameter. The Serpent mound rises 1.5–2m above the surround-
ing topography and has a sinuous crestline in plan that has been interpreted as a serpent
effigy (Boyle 1897; Kenyon 1986). Archaeological excavations conducted in the 1950’s,
determined that the site was occupied on a seasonal basis by Point Peninsula peoples
for rice and shellfish harvesting beginning in the 1st century CE (Johnston 1968; Dillane
2010). While the excavations were extensive and yielded much information on Point
Peninsula culture and burial practices, the mounds remain enigmatic; the age of the
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mound structures and the duration over which they were constructed, are poorly con-
strained by a limited number of radiocarbon dates from burials at different levels in the
mound fill (Table 2.1). Based on the spread of the radiocarbon ages, Johnston (1968) es-
timated that the mounds were constructed over a period of about 170 years, from 120 to
290 CE , but there is large uncertainty as to the onset ofmound building andwhether the
earthworks were built incrementally or during a single phase of construction (Johnston
1968). Serpent Mounds provides one of the best documented archaeological records
of the Point Peninsula culture in southern Ontario (Johnston 1968; Kenyon 1986) and
was designated as a National Historic site of Canada in 1982 (ParksCanada 2018). The
mounds are also of importance to indigenous communities as a sacred burial ground
and have been protected since 1990 under the stewardship of the Hiawatha First Na-
tion (Hiawatha, Ontario). Due to their cultural value, archaeological excavations are no
longer permitted on the mound site; all future work must employ non-invasive tech-
niques and be conducted in consultation and collaboration with First Nations stake-
holders.

In this study, we evaluated the potential for non-invasive investigation of Serpent
Mounds using sediment geochemical and micropaleontologic proxies from 12 lake sed-
iment cores extracted from the littoral zone adjacent to the site (Fig. 2.2). A primary
objective was to determine whether mound construction and seasonal human activi-
ties (shellfish harvesting, burials) at Serpent Mounds could be recognized in the lake
sediment geochemical and micropaleontological record. Downcore changes in elemen-
tal abundance were measured using μ-X-ray-fluorescence core scanning (𝜇-XRF-CS) in
order to identify land disturbance events and lake paleolimnological conditions deter-
mined by analysis of lacustrine and wetland thecamoebian taxa. 𝜇-XRF data identify a
marked increase in several minerogenic elements (Si, K, Fe, Ti) indicating an increase
in the flux of detrital sediment during the Middle Woodland Point Peninsula occu-
pation. Changes in thecamoebian abundance and diversity also indicate a shift to a
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more eutrophic and turbid lake environment during the occupation phase. We interpret
the increase in detrital sediment flux and attendant changes in lake trophic conditions
as a land disturbance signal, recording the increased erosion of soils from the burial
mound site and increased turbidity of the lake environment due to seasonal shellfish
and rice harvesting. The reconstructed Middle Woodland water levels and paleogeog-
raphy demonstrate that the coastline was dominated by wetlands and shallow (< 1m)
littoral environments that would have favourable for the growth of wild rice.

Several recent studies have documented land use impacts stemming fromprehistoric
indigenous agriculture and deforestation in North America (Burden et al. 1986; Ekdahl
et al. 2004; Munoz et al. 2010; Stinchcomb et al. 2011). This paper is the first to document
pre-agricultural prehistoric land disturbance, resulting from burial mound construction
and seasonal resource gathering. The approach described here has broader applications
for detecting prehistoric landscape disturbance at other archaeological sites where con-
ditions favour the deposition and preservation of anthropogenic sediment in local de-
pocenters such as wetlands and lagoons (e.g. Ekdahl et al. (2004); Sonnenburg et al.
(2011).

2.3 Study Area

2.3.1 Physical Setting

Rice Lake (125 km2) is located 20 km southeast of Peterborough, Ontario and is part of
the 386 km-long Trent-Severn Waterway connecting Georgian Bay with Lake Ontario
(Fig. 2.1). The lake is about 26 km in length, 3-4 km in width, and has a maximumwater
depth of 10m (Sonnenburg et al. 2012). Rice Lake receives inflow along its north shore
from theOtonabee, Indian, andOuse rivers anddrains southeastward into LakeOntario

46



M.Sc. Thesis – Tynan A. Pringle; McMaster University– School of Geography and Earth Science

48
96

00
0

48
97

00
0

48
98

00
0

48
99

00
0

49
00

00
0

49
01

00
0

49
02

00
0 724000 725000 726000 727000 728000 729000

18
7.

00
18

8.
00

19
2.

00
19

6.
00

19
9.

00
20

4.
00

21
1.

00
22

4.
00

18
7.

30
18

7.
50

Terrestrial 
Elevation

(masl)

183.00 185.00184.20 184.50 184.60 184.70 184.80 185.20 185.40

500 0 500 1000

(meters)
WGS 84 / UTM zone 17N

Lakebed 
Elevation 
(masl)

PRE-HASTIN
GS RICE LAKE

INDIAN 

RIVER

Loucks 
Point

ROACH POINT

EAST 
SUGAR 
ISLAND

MoundsShell Midden/
Midden

Non-Mortuary

Sonnenburg et al. 
(2013)

McAndrews (1985) This Study

Middle Woodland Sites
185m

Contour

(Pre-Hastings 
Shoreline)

Core Locations

1 -  Serpent Mounds
2 -  East Sugar Island
3 -  Island Center
4 -  Corral Site
5 -  Poison Ivy Site
6 -  Loucks Point
7 -  Prison Island
8 -  Harris Island Mound
9 -  Harris Island Site
10 -  Rainy Point

HARRIS 
ISLAND

0 500

(meters)
WGS 84 / UTM zone 17N

SRPM12
SRPM03

SRPM02
SRPM01

SRPM08

SRPM09
SRPM10

SRPM11

SRPM07
SRPM04
SRPM05

SRPM06RIL 4
T2

T1

183.00 184.00 185.00184.40 184.50 184.60 184.70 184.80

STUDY AREA

SERPENT 
MOUNDS

1

2

5

4

3

6

7

9

8

10

Figure 2.2: Study area map digital bathymetric map and elevation using
composite data from this study and Sonnenburg et al. (2013), and DTM
from South Central Ontario Orthophotography Project (SCOOP) (MNR
2013), showing the locations of Point Peninsula associated sites within
proximity to the study area, and core locations from this study and others.

47



M.Sc. Thesis – Tynan A. Pringle; McMaster University– School of Geography and Earth Science

via the Trent River (Fig. 2.1). Serpent Mounds lies within the Indian River watershed
(210 km2) and is located about 1 km east of the mouth of the Indian River (Fig. 2.1).

Rice Lake occupies a flooded glacial valley within the Peterborough Drumlin field, a
70 km wide belt of glacial terrain that extends from the Precambrian Shield southward
to Lake Ontario (Fig. 2.1) (Gravenor 1957; Boyce and Eyles 1991; Maclachlan and Eyles
2013). The southern shore is defined by high relief kame topography of the west-east
trending Oak Ridges interlobate moraine (Fig. 2.1) (Duckworth 1979; Gorrell and Bren-
nand 1997; Shaw et al. 2010). Serpent Mounds complex occupies a 4.4 ha area on the
south slope of a flat-topped drumlin hill (Roachs Point) at about 15m above the present
level of Rice Lake (Fig. 2.2). Many of the islands in Rice Lake are ’drowned’ drumlin
features that have been inundated by rising post-glacial water levels and dam flooding
(Fig. 2.2) (Gravenor 1957; Yu and McAndrews 1994).

The bedrock below the lake is composed of Ordovician limestone and shales of the
Trenton Group (Gravenor 1957; Carson 1980). The Paleozoic rocks overlie Late Protero-
zoic igneous and metasedimentary rocks of the Canadian Shield, which are exposed at
surface about 40 km to the north of the study site (Gravenor 1957). The local soils consist
of a silty to sandy loam derived from the Late Wisconsin-age Newmarket Till, which is
the predominant surficial sediment type across the study area (Gorrell and Brennand
1997). The till has a silty carbonate-rich matrix with abundant granule to cobble-sized
clasts that are a mixture of local bedrock (dominantly limestone and shale) and far-
transported Precambrian granitic and gneissic lithologies. Locally, the till is draped by
thin lacustrine clay and sand deposited in high-level glacial Lake Iroquois (Gorrell and
Brennand 1997; Sonnenburg et al. 2013).
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2.3.2 Water Levels and Paleoenvironments

The Holocene water level history and paleoenvironment of Rice Lake have been doc-
umented in several previous studies (McAndrews 1984; Yu and McAndrews 1994; Yu
et al. 1997; Sonnenburg et al. 2011; Sonnenburg et al. 2012; Sonnenburg et al. 2013). The
lake basin was formed during deglaciation (ca. 12.5 Ka BP) as rising water levels in
glacial Lake Iroquois flooded river valleys and embayments to the south of Peterbor-
ough (Fig. 2.1) (Gravenor 1957; Muller and Prest 1985). Following the drainage of Lake
Iroquois (ca. 11.7 Ka BP), water levels fell to a maximum lowstand (~10m bpl) and had
begun to recover by 9.5 Ka BP due to isostatic uplift of the eastern lake outlet at Hastings
and a shift to a cooler, wetter climate (Yu et al. 1997; Sonnenburg et al. 2012). By 8 Ka BP
water levels were close to the modern, pre-dam level (~185m asl) and laminated marl
was deposited basin-wide in an oligotrophic lake environment with an aquatic plant
macrofossil assemblage dominanted by Najas flexilis (Vreeken 1981; McAndrews 1984;
Yu and McAndrews 1994).

During the mid-Holocene (ca. 6–4 Ka BP) water levels fell to a second lowstand
phase as recorded by a basin-wide erosional hiatus (unconformity surface) between the
marl sequence and overlying detrital mud and gyttja (Sonnenburg et al. 2013). The
lowstand coincided with a period of warmer and drier climate in central and eastern
North America (Dean et al. 1996; Yu et al. 1997). The lake basin was likely hydrologi-
cally closed during this phase as water levels were below the Hastings outlet bedrock
sill (~185m asl) (Sonnenburg et al. 2013). After 4 Ka BP, water levels in Rice Lake rose
gradually, owing to a wetter, cooler Neoglacial climate (McAndrews 1984; Sonnenburg
et al. 2013). Pollen records indicate a diverse deciduous forest abundant in Beech, Elm,
Maple, and Birch and a wetland pollen assemblage indicating both emergent and sub-
mergent plants (McAndrews 1984). By 3 Ka BP water levels had begun to stabilize,
resulting in the expansion of wetlands and establishment of abundant wild rice stands
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in Rice Lake (McAndrews 1984). Wild rice was an important resource for Woodland
peoples but was diminished significantly in abundance following the construction of
the Hastings Dam (Sonnenburg et al. 2012).

The Hastings Dam, was constructed in 1838 at Rice Lake’s outlet as part of the Trent-
Severn waterway canal and lock system. It was engineered to provide alternative ship-
ping routes betweenLakeOntario andLakeHuron, bypassing theWellandCanal (Fig. 2.1).
Subsequently, the dam raised the water levels by 1.8–2 m, inundating large tracts of
coastal wetlands (Yu and McAndrews 1994; Dillane 2010; Sonnenburg 2010). The dam
construction phase is recorded by an increasing sedimentation rate and a rise in the
abundance of C. tricuspis in the uppermost gyttja unit, indicating a more nutrient-rich
environment (Sonnenburg et al. 2013). Due to the shallow average water depth (~4m),
the abrupt post-dam rise in water levels dramatically altered shoreline positions and
drowned the mouths of major river systems feeding Rice Lake (Sonnenburg et al. 2013).
At the beginning of the Middle Woodland phase water levels the lake shoreline and the
mouth of the Indian river would have been further lakeward of their present position;
reconstructing the position of the lake shoreline and water depths during the Middle
Woodland period was an objective of the present study.

2.3.3 Site Archaeology

The human settlement of Rice Lake began in the Paleoindian period (ca. 11,000 BP) with
the arrival of small bands of hunter-gathers and populations increased significantly dur-
ing the Archaic and subsequent Woodland periods (Ellis and Ferris 1990; Sonnenburg
et al. 2011). The region around the lake contains a high density of prehistoric archae-
ological sites (Fig. 1.5) and there is high potential for submerged sites due to flooding
of wetlands and coastline following the construction of the Hastings Dam (Sonnenburg
et al. 2011; Sonnenburg et al. 2013). The SerpentMounds complexwas first documented
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at the end of the 19th century (Boyle 1897; Montgomery 1910) and the first systematic
archaeological studies were conducted between 1955 and 1960 by the Royal Ontario
Museum (Johnston 1957; Johnston 1968; Schwarcz et al. 1985; Ellis and Ferris 1990). The
excavations conducted by Johnston (1968) were extensive and a provided a wealth of
information on Point Peninsula culture and burial practices but were also extremely in-
vasive; the Serpent moundwas excavated to its base along one-half of its length and 159
human skeletonswere exhumed for study (Harrison andKatzenberg 2003). The excava-
tions yielded abundant Point Peninsula pottery and lithics, and also far-transportedma-
rine shells andmetal beads that are indicative of a far-reachingHopewell trade network
(Johnston 1968; Walker 2015). The mounds are associated with an extensive, 30 cm-
thick shell midden that extends 90m along the southeastern shoreline of Roach Point
(Fig. 2.2). The midden contained large quantities of freshwater mussel shells (Elliptio
complanata, Lampsillis silliquoidea), interbedded with ash layers and minor animal bone
and pottery refuse (Johnston 1968). A radiocarbon date obtained on charcoal from the
base of the midden yielded an age of 1820–2153 cal BP, which is a few hundred years
older than the date obtained for the base Serpent Mound E (Fig. 2.2)(Table 2.1), indicat-
ing that mussel harvesting had taken place possibly before mound construction.

Archaeological evidence indicates that the Serpent Mounds was occupied on a sea-
sonal basis, beginning in the 1st century CE, for shellfish harvesting and feasting, and
to conduct burial rites (Johnston 1968; Dillane 2010). The onset of mound-building
and the duration over which the mounds were constructed, however, is not well con-
strained. Using ceramic seriation and radiocarbon dates obtained on three burials, John-
ston (1968) estimated that the mound complex was constructed over a span of about
170 years, from ca. 120 CE to 290 CE. Johnston (1968) interpreted shell debris layers
between adjacent burials as evidence for multiple stages of mound construction, with
additions appended to an original, smaller structure, possibly related to feasting events
(Johnston 1968; Ellis and Ferris 1990). The burials sampled for radiocarbon dating were
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intrusive in the mound and post-date its construction. The age estimate was based on
uncalibrated beta-scintillation radiocarbon dates, which adds additional chronological
uncertainty as to the timing of burials and relation to mound building (Johnston 1968).

Serpent Mounds is the largest burial mound complex in Rice Lake, covering about
4 ha, but several other burial mound sites are in close proximity. East Sugar Island (site
BbGm-11), located 1 km east of Serpent Mounds (Fig. 2.2), contains two large (> 9m
diameter) oval mounds and a shell midden (Fig. 2.2) (Curtis 2002). Several other known
archaeological sites are also present on the island (Sonnenburg et al. 2012)(Fig. 2.2). A
radiocarbon date taken by Stothers (1974) from the base of the East Sugar Island ”Prince
Mound” yielded an age of 1890 ± 60 BP (see Table 2.1). On nearby Harris Island, two
additionalmounds and an extensivemidden deposit are situated at the north, and south
end of the island (Fig. 2.2). The high density of burial mounds and shell middens in the
vicinity of the SerpentMound complex indicate the north shore of Rice Lakewas amajor
locus for human activity during the Middle Woodland period.

As noted by Johnston (1968), the lower portion of the SerpentMounds sitewas partly
submerged by the Hastings Dam flooding in 1838 CE (Fig. 2.2). The flooding rapidly in-
undated large areas of low-lying coastal wetlands around Rice Lake, preserving a sub-
merged landscape that has a high archaeological potential for discovery of underwater
prehistoric sites (Sonnenburg et al. 2011; Sonnenburg et al. 2012). The flooding also pro-
vided favorable conditions for preservation of wetland and lake sediment archives that
can be used to reconstruct water levels and environmental changes in the period prior
to dam construction (Yu and McAndrews 1994; Sonnenburg et al. 2013).
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2.4 Methods

2.4.1 Bathymetric mapping

Detailed bathymetric mapping was conducted over a 2 km inshore area around Serpent
Mounds to aid in selection of coring locations and to allow reconstruction of water lev-
els and paleoshoreline positions (Fig. 2.2). Water depth was recorded using a 200 kHz
single-beam echosounder (Knudsen 320BP) operated from a small boat with a differ-
ential GPS navigation system. A total of 52-line-km of bathymetric data were collected
alongnorth-south lineswith a nominal line spacing of 25–50mandorthogonal tie lines at
100m intervals. Depth soundingswere corrected for seasonalwater level variations and
transducer draft, and processed using the scheme outlined by Sonnenburg and Boyce
(2008). The new survey data were compiled with the pre-existing bathymetric data for
Rice Lake (Sonnenburg et al. 2013) and grid interpolated to 10m grid cells using a krig-
ing algorithm. The bathymetric grid was overlaid on available 2m resolution digital
terrain model (Central Ontario Orthophotography Project; SCOOP) to produce a com-
bined digital bathymetric elevation model (DBEM) for the study site. A high-resolution
slope shaded digital terrainmodel (DTM)was also produced for SerpentMounds using
1m resolution light detection and ranging (LiDAR) data (MNR 2018) (Fig. 2.2).

TheDBEMwasused to construct a series of paleobathymetricmaps showing changes
in water depth and shoreline positions between 4500 BP to present. A water level curve
was constructed using AMS 14C dates and their compaction-corrected depths obtained
on the transgressive shoreline deposits that truncate the marl sequence in Rice Lake.
AMS radiocarbon dates within the gyttja units above the marl-gyttja boundary pro-
vided constraints on minimum lake levels during the Middle Woodland period, as no
direct water level indicators (e.g. shoreline deposits, wetland sediments) are available
for this time period. Paleobathymetry maps were constructed for three time intervals
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by subtracting (back-stripping) the isopach thickness of sediment accumulated in the
period following each time step from the modern bathymetric surface (see Sonnenburg
et al. (2012)). The isopach thicknesses maps were obtained by interpolation of sedi-
ment thickness from the 12 cores and assuming zero sediment thickness at the modern
shoreline. Correctionswere not applied for post-depositional sediment autocompaction
(Allen 2000; Bird et al. 2004) as bulk density data were not available for samples; only
coring compaction was factored into sediment thickness calculations. In a final step,
the paleoshoreline positionswere estimated by intersecting themodelledminimumand
maximumwater plane elevation for each time with the back-stripped paleobathymetry
map.

2.4.2 Coring and sediment chronology

A total of 12 cores (1–2.5m length) were extracted from the shallow littoral zone south
of Roach Point using a percussion corer (68mm diameter polycarbonate tubes) or a gas-
driven vibrocorer (70mmdiameter aluminum tubes) (Fig. 2.2). Vibrocores were cut into
1m lengths for transport and percussion cores were extruded on-site and preserved in
plastic troughs. Cores were split in the lab and the sediment texture, composition and
lithofacies were logged in detail (Fig. 2.4). Cores were refrigerated at 5 ∘C to limit oxi-
dation and microbial growth prior to core scanning and micropaleontological analysis.
A linear compaction correction was applied to all cores using the ratio of the recovered
core length to the core tube penetration depth. Sediment compaction values ranged
from 2% to 55% of the recovered core length.

Core chronologywas obtained byAMS radiocarbon dating of 11 organicmatter sam-
ples (seeds, plant fragments) selected where changes in sediment texture, composition
and element profiles indicated the presence of lithofacies and chemofacies boundaries.
Sampleswere pre-treated using the protocols of Crann et al. (2017) andAMS 14Cdated at
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the A.E. Lalonde AMS Laboratory, Ottawa. The new dates and several existing 14C ages
available frompreviouswork (Johnston 1968; Stothers 1974; Schwarcz et al. 1985; Yu and
McAndrews 1994; Harrison and Katzenberg 2003; Sonnenburg et al. 2013) were cali-
brated to 2𝜎 using IntCal13 (Reimer et al. 2013) (Table 2.1). A Bayesian age-depth model
and sediment accumulation curve were constructed for a single core (SRPM-02; Fig. 2.4)
using the R age-modelling package BACON (Blaauw and Christen 2011)(Fig. 2.5).

Table 2.1: Radiocarbon dates from this study and others.
Lab ID Sample/Core Depth (cm) Source Material 14C yr BP cal BP (2𝜎)

UOC-5729 SRPM02-RC1 (97) This Study twig 1720 ±27 1561 – 1700 (95.4%)
UOC-5730 SRPM02-RC2 (57) This Study twig 1157 ±27 1045 – 1175 (68.3%)

983 – 1035 (27.1%)
UOC-5731 SRPM02-RC3 (173) This Study wood 3783 ±27 4085 – 4243 (95.4%)
UOC-5732 SRPM02-RC4 (126) This Study seeds 2689 ±27 2755 – 2846 (95.4%)
UOC-5733 SRPM11-RC5 (72.5) This Study seeds 2477 ±28 2432 – 2720 (95.1%)
UOC-5734 SRPM12-RC6 (73) This Study bark 3934 ±28 4287 – 4440 (90.4%)
UOC-5735 SRPM10-RC7 (64) This Study twig 1743 ±27 1569 – 1713 (95.4%)
UOC-5736 SRPM09-RC9 (124.5) This Study woody organics 3151 ±27 3337 – 3447 (90.2%)
UOC-5737* SRPM12-RC11 (31) This Study charcoal 4291 ±27 4826 – 4880 (93.2%)
UOC-5738 SRPM12-RC12 (53.5) This Study wood 1159 ±27 1047 – 1176 (72.1%)

985 – 1033 (23.3%)
UOC-5739 SRPM02-RC15 (221) This Study leaves 5820 ±34 6529 – 6729 (94.3%)
Beta274140a RIL2C (213.5-215.5) Sonnenburg et al. 2013 peat 7640 ±50 8378 – 8540 (95.0%)
Beta274141a RIL2D (381.5-383.5) Sonnenburg et al. 2014 plant 9020 ±50 10 133 – 10 254 (85.1%)

9940 – 9990 (6.1%)
I-7222b E (140-150) McAndrews, 1984 bulk (gyttja) 3890 ±130 3973 – 4645 (92.2%)
I-7223b E (183-200) McAndrews, 1984 bulk (marl) 6555 ±115 7262 – 7619 (95.0%)
M-850c Mound ”E” East Johnston, 1968 carbonized log 1830 ±200 1355 – 2158 (93.4%)
M-1104c Shell Midden Base Johnston, 1968 charcoal 2020 ±75 1820 – 2153 (94.1%)
M-1105c Mound ”E” South Johnston, 1968 charcoal 1660 ±75 1388 – 1726 (95.0%)

UGA-2487d Serpent Pits OP1 Johnston, 1979 bone 905 ±60 726 – 929 (93.2%)
UGA-2489d Serpent Pits OP3 Johnston, 1979 bone 660 ±60 543 – 687 (95.0%)
DIC-56e Prince Mound Sub-floor Stothers, 1974 charcoal 1890 ±60 1701 – 1951 (93.5%)

** Rib Fragment (TO-8708) Harrison and Katzenberg, 2003 bone ** 1410 – 1635 (95.5%)
** Mound G&I Schwarcz et al. 1985 bone 1550 ±100 1292 – 1626 (93.3%)

** Not provided in source

2.4.3 μ-XRF core scanning

Eight cores were selected along two transects for 𝜇-XRF-CS (Fig. 2.2). Split cores were
scanned on an Itrax 𝜇-XRF core scanner (CoxAnalytical Systems) using a 3 kWCr target
(Croudace 2006) with constant exposure time of 20 seconds and 30 kV, 30mApower set-
tings. Cores were scanned at a 500μm sample interval, with the exception of SRPM-02,
which was scanned at 1mm intervals. High-resolution RGB optical scans of each core
were acquired with 0.047mmpixel−1 resolution. RGB scans detected subtle changes
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in the gyttja appearance, due to composition and texture, which were often not dis-
cernible by visual inspection of the split cores. XRF spectra were batch analyzed using
the Q-Spec software package, after correcting for sum, escape, and diffraction peaks,
in addition to optimizing element selection (Rodríguez-Germade et al. 2015; Bloemsma
et al. 2018). Only elements that were appreciably free of noise were plotted and any
measurements deemed invalid by the Itrax were removed from further analysis. The
suite of selected elements included Fe, Ti, K, Si, Zr, S, Ca, Sr, and Ni.

The incoherent to coherent scattering ratio (inc/coh) was plotted to assess downcore
changes in organic matter content (Guyard et al. 2007; Burnett et al. 2011). Element peak
areas were normalized using the incoherent (Compton) scatter in order to minimize
matrix effects produced by downcore changes in sediment porosity, density, organic
matter and moisture content (Nielson 1977; Thomson et al. 2006; Marshall et al. 2011;
Fortin et al. 2013; Ohlendorf et al. 2015).

2.4.3.1 Statistical analysis

PYTRAXACQUISITION 
AND PREPARATION

Cores scanned with consistent defaults
Peak fitting (100 iterations) in Q-Spec

Threshold MSE acceptance (<2.0)
Removals

1. invalid measurements

2. core cutting margins

Data Transformation
1. Normalize to Compton scattering

2. Log-Transformation to remove skew

3. Moving average (1cm)

4. Standard Scaling (Z-Score)
(Mean = 0    σ = 1) 

For Each Core

STATISTICAL ANALYSIS

Selections
1. Concatenate desirable core data to 

single data structure
2. Select elements from transformed data

Operations
1. Principal Component Analysis for 

dimensionality reduction
2. Cluster first three Principal Components

(Ward‘s method, Euclidean distance metric)

Figure 2.3: A flowchart showing steps in processing and statistical anal-
ysis of μ–XRF data
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Multivariate statistical methods (e.g. PCA, CA) are employed increasingly in the
analysis of 𝜇-XRF-CS data as tools for data exploration and quantitative evaluation of
chemofacies (Metcalfe et al. 2010; Schreiber et al. 2014; Lintern et al. 2015; Ladwig et
al. 2017; Pérez et al. Article In Press; Poraj-Górska et al. 2017). In this study, PCA and
CA was performed on six cores using the processing flow shown in Figure 2.3. Cores
SRPM-03 and SRPM-09 were excluded from the analysis as they showed evidence of
sediment reworking or anomalous element profiles. Plotting of element profiles and
statistical analysis was performed using the Python package PyTrax (Pringle, 2018), im-
plementing tools from several libraries, including, Sci-Py (Jones et al. 2001–), Matplotlib
(Hunter 2007), Pillow (Python Image Library Fork) (Clark et al. 2010–), Scikit-Learn (Pe-
dregosa et al. 2011), Seaborn (Waskom et al. 2014), and Pandas (McKinney 2015). Prior
to statistical analysis, the normalized element profiles were log transformed to mitigate
skew and improve inter-core comparisons (Ladwig et al. 2017). Element profiles were
smoothed using a 1 cm moving average and standardized as z-scores by subtraction of
the sample mean (𝑥̄) and division by the standard deviation (𝜎):

𝑥 − 𝑥̄
𝜎 ⇒ 𝑥̄𝑎 = 0; 𝜎𝑎 = 1 (2.1)

where the resultant dataset will have a new mean of 0 (𝑥̄𝑎) and a standard deviation
of 1 (𝜎𝑎) (2.1). To determine the relationships of these elements to one another, a stan-
dardized heatmap of pairwise correlations was generated using Pearson’s correlation
coefficient. In addition, an R-Mode dendrogram (Ward’s method, Euclidean distance
metric) was appended, using the smoothed and standardized, normalized element pro-
files (Fig. 2.7).

Two separate PCAs were run for each core: one on the whole core (including both
the marl and gyttja units) and a second analysis on the upper gyttja portion, following
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the approach of Schreiber et al. (2014). This was required as the marl and gyttja litho-
facies had highly contrasting composition and geochemistry and the inclusion of marl
elemental data in the PCA limited the discrimination of distinct clusters in the gyttja
unit, which was of primary interest in this study.

The loadings of the first three principal components in each analysiswere plotted and
hierarchically clustered using Ward’s method (Euclidean distance metric) (Fig. 2.6) and
plotted as colour-representative intervals. PCAwas also applied to the RGB core scans,
to assist in the discrimination and correlation of lithologic units. Core images were
cropped to exclude non-sediment pixels and the median RGB value of each pixel row in
the image was calculated. A 215-sample moving average (~1 cm) was performed down
the length of themedianRGBvalues, then standardized according to (2.1), and PCAwas
performed in PyTrax. The PCA determined that 98% of the variance in colour values
was explained by PC1, with loadings displaying an equal, positive contribution from all
three channels (A2.1). PC1 can be interpreted as being the ’brightness’ of the image, and
was overlaid on a lithology-colour-coded representation of aWard’s EuclideanDistance
agglomerative cluster.

2.4.4 Micropaleontology

Micropaleontological analysis examined changes in thecamoebian (Arcellacea) abun-
dance and diversity in core SRPM-02 (Fig. 2.4). Thecamoebians are testate protists with
both agglutinated and autogenous shells, are abundant in lacustrine and wetland envi-
ronments and are useful indicators of a wide range of environmental conditions includ-
ing lake trophic status, water depth, pH, oxygenation, eutrophication, and pollutant
levels (Patterson et al. 1996; Reinhardt et al. 1998; Patterson and Kumar 2000; Patter-
son et al. 2002; Roe et al. 2010; McCarthy and McAndrews 2012). Several studies have
employed thecamoebians to identify land disturbance events (e.g. deforestation, dam
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construction) associatedwith European settlement (Patterson et al. 2002; Reinhardt et al.
2005; Sonnenburg 2010). For microfossil analysis, 1.25 cm3 sediment samples were col-
lected at 5 cm intervals from the gyttja units in core SRPM-02 (0–180cm; Fig. 2.4). The
underlying marl facies were not analyzed as they are of mid-Holocene age and pre-
date the Middle Woodland period (Sonnenburg et al. 2013). The samples were rinsed
through a 43μm mesh to retain thecamobian tests, and remove clay and fine organic
particles. Samples were divided into 1/8 fractions using a wet splitter and refrigerated
to prevent microbial growth (Scott et al. 1993). Thecamoebians were counted using an
Olympus trinocular microscope under 80–116×magnification and species were identi-
fied using type samples and the identification key of Kumar andDalby (1997). A total of
33 thecamoebian species and strains were identified and 15 statistically-significant taxa
were used for the analysis. Raw counts were converted to specimens per cc and the
relative fractional abundance 𝐹𝑖 of each taxonomic unit for each sample was calculated:

𝐹𝑖 =
𝐶𝑖
𝑁𝑖

(2.2)

where 𝐶𝑖 is the number of species and 𝑁𝑖 is the total of all species counted in that
sample. The standard error 𝑆𝑥𝑖 for each taxon was calculated to 2𝜎 following Patterson
and Fishbein (1989):

𝑆𝑥𝑖 = 𝑡 ⋅
√

𝑋𝑖(1 − 𝑋)𝑖
𝑁𝑖

(2.3)

Specieswere considered statistically insignificant and removed from further analysis
if 𝑋𝑖 < 𝑁𝑖 in more than 50 percent of samples. The Shannon-Weaver Diversity Index
(SDI) was calculated for each sample as an indicator of faunal diversity and ecosystem
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health (Shannon 1948; Peet 1974; Patterson et al. 2002; Sonnenburg et al. 2013):

𝑆𝐷𝐼 = −
𝑆
􏾜
𝑖=1

􏿶
𝑋𝑖
𝑁𝑖

􏿹 ⋅ 𝑙𝑛 􏿶
𝑋𝑖
𝑁𝑖

􏿹 (2.4)

where 𝑆 is the species richness of the sample. SDI values of 2.5–3.5 indicate a stable
environment, 1.5–2.5 are transitional, and values between 0.1 and 1.5 indicate stressed
environments (Magurran 1988; Patterson and Kumar 2000). Micropaleontological anal-
ysis was conducted on a single core (SRPM-02) as it contained the most complete sedi-
ment record, with only 2% sediment compaction.

Statistical analysis of thecamoebian data employed Q-mode clustering to group sta-
tistically similar populations (Ward’s minimum variance method) and R-mode cluster-
ing to determine closely-related species and species assemblages (Fishbein and Patter-
son 1993). The Q- and R-mode cluster analysis was performed on 15 statistically signif-
icant thecamoebian taxa. A colour-mapped representation of the sample clusters was
plotted against core depth and compared with the PCA cluster analysis for core SRPM-
02.

2.5 Results

2.5.1 Core lithofacies

Seven distinctive lithofacies were identified based on sediment texture, composition,
andbrightness changes detected byRGB image analysis (Fig. 2.4). ABayesian agemodel
incorporating five AMS 14C dates from core SRPM-02 is shown in Figure 2.5. The lithos-
tratigraphy consists of an uppermost package of organic-rich muds (gyttja) (Units 1-4)
up to 2m in thickness, overlying interbedded marl and peat units (Unit 6, 7; Fig. 2.4).
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Figure 2.4: Core lithostratigraphy and AMS 14C chronology: A. north-
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lithologic log for comparison. RGB PC1 has the largest magnitudes in
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The lowermost lithofacies Unit 7 consists of a calcareous silty marl with thin peat in-
terbeds and abundant gastropod shells (Fig. 2.4). The shells were mainly whole and
intact and more numerous in the marl inter-beds. Unit 7 is sharply truncated above
by a silty gyttja (Unit 6) with abundant plant matter and organic fragments. Unit 6
is observed only in in SRPM-02 and SRPM-08. A single radiocarbon date from Unit 6
(SRPM-02-RC15; 221 cm depth) yielded an age of 5820 ± 34 BP (6630 cal BP).

Unit 5 consists of inter-laminated marl and gyttja, with increasing organic matter
up-core. This unit was observed in all cores but was absent in SRPM-09 and SRPM-10,
where it was non-deposited or removed by erosion. Unit 5 is overlain by a silt-rich gyttja
(Unit 4) with coarse organic matter.

The contact between Units 4 and 5 was sharp and marked a disconformity that has
been identified in previous studies as a basin-wide erosional hiatus formed by shore-
line transgression following the mid-Holocene lowstand phase (Sonnenburg et al. 2012;
Sonnenburg et al. 2013). Radiocarbon dates from Unit 4 yielded an age range of 3151 ±
27 BP (3393 cal BP), similar to a date obtained at the marl/gyttja boundary by McAn-
drews (1984) (see Table 2.1). Unit 4 transitions above to a fine laminated, silty gyttja
(Unit 3) with grass plant fragments. A single radiocarbon date (SRPM-02-RC3; 173 cm)
at the base of Unit 3 returned a date of 3783 ± 27 BP (4163 cal BP). Unit 2 is massive,
gyttja with a silty to muddy matrix and abundant seeds. Unit 2 coincides with the
estimated age range of the Serpent Mounds occupation (2158–1292 cal BP), using the
2𝜎 confidence limits for the re-calibrated dates from Johnston (1968) and Harrison and
Katzenberg (2003) to bracket the interval (Table 2.1). The top-most Unit 1 is composed
of a peaty gyttja with shell fragments and abundant rootlets of modern aquatic plants
in the upper 5–10 cm. The upper portion of Unit 1 represents gyttja that was deposited
after the construction of Hastings Dam (1838 CE).
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2.5.2 Itrax element profiles

Element profiles for core SRPM-02 are shown in Figure 2.6 and correlation matrices
and R-mode cluster dendrogram in Figure 2.7. The R-mode cluster analysis yielded
two main element groupings for both the full-core model (FCM) and gyttja-only model
(GOM) (Fig. 2.7). The first group consists of the minerogenic elements K, Si, Fe, Ti, Zr,
which are derived chiefly from terrigenous weathering of aluminosilicate minerals and
the second group, including Ca, Sr, S, are elements produced by biogenic (production
of aragonite and calcite) and authigenic processes. Sr shows stronger covariance with
terrigenous elements in the GOM, and clusters distinctly with Zr (𝑟 = 0.49). The co-
variance between Zr and Sr in the FCM was weaker (𝑟 = 0.35), as Sr in the marl likely
originates from biogenic (mollusc, gastropod shells), rather than detrital sources (Mur-
phy and Wilkinson 1980).

K, Si, Zr and Ti are commonly used as indicators of terrestrial weathering and soil
erosion (Cuven et al. 2010; Balascio et al. 2011; Kylander et al. 2011; Moreno et al. 2011).
At Rice Lake these elements are most likely derived from erosion of surficial sediments,
which consist mainly of glacial deposits (till, glaciofluvial sediments) and lacustrine
sediments (sand, silt, clay). Ti and K show strong covariance (FCM: 𝑟 = 0.96, GOM:
𝑟 = 0.98) (Fig. 2.7). The former is a stable element of terrigenous origin, and the latter
abundant in clay minerals (Moreno et al. 2011). The primary source of Ti and K is likely
the weathering of igneous and metamorphic clasts present in the till deposits, and soil-
derived clayminerals. Zr, is often used as a proxy for relative grain size, as it is abundant
in the coarse silt fractions of lake sediment (Oldfield et al. 2003; Turner et al. 2015). Zr,
and Si are most abundant within Unit 4, where high counts of both are a geochemical
marker for the basin-wide transgressive episode at the end of the Mid-Holocene (EH-2)
(Sonnenburg et al. 2013), and have been recognized elsewhere in rapid water level rise
and flooding events (Cuven et al. 2010; Marshall et al. 2011). Although the presence
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Figure 2.7: Correlation matrices for elemental abundances in full-core A.
and gyttjaB. for six cores selected for analysis. Pearson’s r values are plot-
ted as a colour map and elements grouped using R-mode cluster analy-
sis (Ward’s Method with Euclidean distance metric). R-mode clustering
yielded two major element groupings associated with minerogenic (de-
trital) sources (Si, Fe, Ti, K , Sr) and biogenic sources (Ni, Sr, Ca, S).
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of diatoms in the gyttja was noted by Sonnenburg et al. (2013), biogenic silica likely
contributes little to the XRF record. Chawchai et al. (2015) emphasize that the size of
diatoms, irrespective of abundance, would not be favoured for XRF detection, in the
presence of much larger sand and silt-sized siliciclastics.

The second group of elements in Figure 2.7 A and 2.7 B are a product of biogenic and
authigenic processes. The moderately strong covariance of S with Fe (FCM: 𝑟 = 0.41,
GOM: 𝑟 = 0.47) suggests the authigenic production of iron sulphide minerals (pyrite,
greigite), as observed by Moreno et al. (2007). The FCM shows a strong relationship
between Sr and Ca (𝑟 = 0.67) but is considerably weaker in the gyttja (𝑟 = 0.43). The
FCM Sr-Ca correlation indicates the presence of biogenic calcite and aragonite within
the marl, including shell fragments. Within the GOM, it is likely that Sr signal is pro-
duced by autochthonous, eroded shell materials originating from the underlying marl,
within the Unit 4 transgressive deposit. The ratio of Compton to Rayleigh scattering
(inc/coh) can be used as a qualitative indicator of organic matter, as X-rays are attenu-
ated proportionate to the water content and by association, the colloidal organic matter,
within the core (Burnett et al. 2011; Löwemark et al. 2011).

In the FCM, S has a moderate correlation with Ni (𝑟 = 0.32), Sr (𝑟 = 0.38) and Ca (r =
0.68). These associations are a result of high S count values observed in marl lithofacies
(Fig. 2.6). In theGOM, S has negligible associationswith Sr (𝑟 = 0.0017) andNi (𝑟 = 0.11),
but a more significant positive correlation with Ca (𝑟 = 0.41). In both models, Ni has
no significant correlation to Zr (FCM: 𝑟 = 0.079; GOM: 𝑟 = 0.037) and shares almost no
relationship with Ti (FCM: 𝑟 = −0.15; GOM: 𝑟 = 0.036) and K (FCM: 𝑟 = −0.095; GOM:
𝑟 = 0.0052). In amodern context, Ni is often associatedwith anthropogenic contaminant
inputs to lakes, as it is not readily introduced to lake systems in nature. The association
with S in the FCM, suggests that at Rice Lake it is likely derived from the weathering
and leaching of nickel-bearing sulphide minerals (eg. pentlandite, millerite) present
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in igneous and metamorphic rock fragments in the surficial till deposits (Lintern et al.
2015).

Though six cores were chosen for chemostratigraphic analysis, SRPM-02 provides
the most continuous and complete sediment record and was selected for detailed AMS
radiocarbon chronology and thecamoebian analysis (Fig. 2.6). The trends observedwithin
other cores of this study are also in agreement with the chemostratigraphic behavior of
SRPM-02. Within Unit 7, Sr, S, Ca, and Ni are most dominant, diminishing sharply up-
ward with a corresponding increase in Ti, K, and Fe within Unit 6, around 6600 cal BP.
Unit 5 is characterized by a resurgence of marl minerogenic indicators (Ca, Sr, S), a low
sedimentation rate (average 0.49mmyr−1), with evidence of waning carbonate produc-
tion approaching the Unit 5–Unit 4 boundary (EH-2). Terrigenous elements increase, as
the organic inter-beds thicken up-core, reaching peak intensities at EH-2. Marl facies
(high Ca values) are replaced with progressively more organic sediment at 4600 cal BP,
and terminates by 4400 cal BP. This is likely a result of diminishing forest litter acidity,
observed by the slight decrease in pine pollen, and the rise in oak pollen from the nearby
core ’E’ of McAndrews (1984).

The Unit 4 transgressive shoreline deposit has the highest relative abundance of ter-
rigenous elements, particularly Zr and Sr, consistent with the silt-rich gyttja observed in
both the core brightness and lithofacies analysis. Sedimentation rate across this bound-
ary increases to an average 0.58mmyr−1.

Unit 4 occupies roughly 300 years of the sediment record containing significant changes
to elemental sources, best discussed using the gyttja correlation model (Fig. 2.7B). Ca
becomes more strongly associated with terrigenous elements (𝑟 = 0.32 to 𝑟 = 0.58),
positively correlating with Si, Ti, and K, which were negatively correlated in the FCM
(Fig. 2.7A). It is most likely allochthonous, and present in runoff from the limestone-
bearing glacial till. S is more positively correlated to Ti (𝑟 = 0.23) and K (𝑟 = 0.22), but
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still most likely complexingwith Fe to formpyrite during times of greater nutrient input
via erosion.

Sedimentation rates are heightened in Unit 3, averaging 0.76mmyr−1, and show os-
cillatory behavior in the terrigenous element profiles at centennial scales (Fig. 2.6). Near-
ing 3000 cal BP (1.36m in SRPM02), there is a decrease in terrigenous input intensity,
and an increase in the inc/coh ratio and Ni values, and the highest Ca peak within the
gyttja, accompanied by an increase in coarse organic matter and no ephemeral lami-
nations observed lower in Unit 3. Around this time, water levels at Rice Lake were
approaching their pre-Dam levels, and the lower terrigenous input with slightly lower
than average sedimentation rates (~0.6mmyr−1) could indicate a plateau in the water
level trajectory of the lake (Sonnenburg et al. 2013).

The gradational Unit 2–Unit 3 contact is sharply punctuated geochemically by an
increase in detrital elements, but with no proportionate increase in S to Fe. The inc/coh
ratio sharply declines, with an increase in core brightness, within a muddy, massive
gyttja. Average sedimentation rate exceeds 1mmyr−1 (1.13mmyr−1), greater than im-
mediately post-EH-2 sedimentation rates. The lower section of Unit 2 coincides with
the Serpent Mounds occupation (2200–1300 BP), with two distinct peaks in terrigenous
input: a smaller one at the beginning (2200 cal BP; 1.14m) and larger at the end (1350
cal BP; 0.78m). This potentially reflects landscape modification for burial mound con-
struction, with intensity which increases proportionate to duration of site usage. After
this interval, sedimentation declined to approximately 1mmyr−1, with a corresponding
drop in terrigenous element values.

Unit 1 closely reflects the Serpent Mounds event in Unit 2, in magnitude but not du-
ration. The construction of the Hastings Dam in 1838 CE is marked by a spike in S, and
the highest terrigenous element values since the Middle Woodland. This occurs at ap-
proximately the same depth as the Ambrosia horizon observed by Yu and McAndrews
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(1994). Euro-Canadian land modification is distinctly rapid, and as the dam construc-
tion flooded Rice Lake, sedimentation rates increase to an average of 1.51mmyr−1. The
high Ca values within the top 5 cm of SRPM-02 are due to modern shell fragments.

2.5.3 Chemofacies
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Figure 2.8: Results of principal component analysis (PCA) of elemen-
tal data for core SRPM02. A. Biplot plot of PC1 and PC2 for full-core
model. B. Biplot of PC1 and PC2 for full-core for gyttja only. C. PCA
eigenvalues of the first three PCs ranked and plotted in descending order
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ratio. **The sign of loadings for PC1 are inverse between the full-core and gyttja models
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The PCA and CA performed on six cores for both full-core and gyttja partitions,
found most of the variance to be contributed within the first three PCs: 78%, and 76%,
respectively (Fig. 2.8). Component selection was made arbitrarily, excluding variance
contributions under 10%. Biplots of the two most contributing PCs (PC1 and PC2) are
presented for visualization of cluster divisions (Fig. 2.8A and B). Figure 2.8C displays
the eigenvalues of each element within the three respective principal components, in
descending order of the FCM, with comparative GOM loadings superimposed. The
loadings plots explain the largest contributing elements, and what influence they have
on the values (positive or negative) of principal components with values given in stan-
dard deviations. Figure 2.8D shows the scree plot of the ten components. Substan-
tially greater explanatory weight is placed on PC1 (50.3%) of the GOM, and less on PC2
(14.4%). Within the FCM, PC2 explains almost twice as much variance (28%).

PC1 is interpreted as terrigenous (minerogenic) element input, and shows significant
negative loadings from terrigenous elements in the FCM, with minimal influence from
Ni, S, and Sr, and negative loadings from the inc/coh ratio. The sign of the loadings
are inverse for the GOM, and Ca and Sr contribute significantly more to the terrigenous
fraction (Fig. 2.8C).

PC2 reflects the change in elements associatedwith biogenic and authigenicminerals
and organic matter, with significant positive loadings contributed by Ca, S, Sr, and Ni,
andweak negative loadings from terrigenous elements. TheGOMshows similar trends,
with the exception of Sr, which is weakly negative, and shares a loadings magnitude
with the terrigenous indicators.

PC3 is interpreted as the flux between weathered and eroded aluminosilicate min-
erals in soil, and organic productivity. The former is represented as strong positive
loadings of Zr (0.6), Ni (0.28), and Sr (0.5), and the latter by strong negative loadings
of Fe (-0.34), S (-0.45), and the inc/coh ratio (-0.28). Ni shows much stronger positive
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loadings in the GOM (0.51). Fe and S in PC3 represent pyrite production, which will
increase with greater values of Compton scattering representing core organic matter.

These PCs were used to determine 7 distinct clusters within the FCM, and 6 within
the GOM. Clusters were grouped into broader classifications related to environmental
processes. Clustering principal components eliminates covariance issues, and provides
a dimensionally reduced dataset, restricted to only themost important explanatory vari-
ables of the data (Fig. 2.9). Figure 2.10 displays the standardized elemental data used in
the PCA, grouped by chemofacies.

2.5.3.1 FCM Chemofacies

2.5.3.2 Detrital Input

Chemofacies D1 and D2 indicate increasing intensity of detrital input, primarily deter-
mined through the magnitude of negative loadings in PC1 (𝑥̄= -1.55𝜎 and -3.60𝜎 respec-
tively). The element profiles of D1 show large positive values for terrigenous elements
(𝑥̄= 0.5 – 0.8𝜎), and low values for biogenic elements (𝑥̄= -0.29𝜎 – -0.49𝜎). Chemofacies
D1 coincides with estimated age range of the Serpent Mounds occupation (Fig. 2.11).
D1 differs from D2 primarily in the abundance of Zr (𝑥̄D1 = 0.35𝜎; 𝑥̄D2 = 1.12𝜎) and
Sr (𝑥̄D1 = -0.1𝜎; 𝑥̄D2 = 1.11𝜎), which is of higher count values in D2. All terrigenous
element values for D2 are substantial (𝑥̄ 1.12𝜎 – 1.69𝜎) (Fig. 9A), and as such, D2 is
mostly representative of Unit 4 lithofacies, with some presence in the Point Peninsula
zone (Fig. 2.11A).
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2.5.3.3 Organic Productivity (Org)

These chemofacies reflect periods of low sediment input, and increasing organic matter
(inc/coh 𝑥̄= 0.83𝜎). As such, this cluster was discerned for consistently positive PC1
values (𝑥̄= 1.96𝜎), and includes all sediment where the inc/coh ratio was distinctly high
(Fig. 2.9A). The carbonate content of this facies however is deemed to be low, as PC2
values 𝑥̄ -1.04𝜎, and sparse Ca (𝑥̄= -0.5𝜎) and Sr (𝑥̄= -0.7𝜎) (Fig. 9A). The Organic facies
is most common in the uppermost Unit 2 and Unit 1, following the Point Peninsula
occupations.

2.5.3.4 Carbonate Facies (C1, C2, C3)

These facies divide the marl lithologies, and are almost exclusive to Unit 7 and Unit 5,
with some exceptions for shell fragments captured within the top gyttja (Fig. 2.11A). C1
has values of PC1 (𝑥̄= 0.11𝜎) near the sample mean, and PC3 (𝑥̄= -0.8𝜎) values which
suggest greater organic productivity. PC2, however, is very high, with an average of
2.35𝜎. C2 has slightly lower 𝑥̄PC2 values (1.94𝜎) but is indicative of higher organic con-
tent, and detrital input within the marl, with an 𝑥̄PC1 of 1.02𝜎 and 𝑥̄PC3 of 1.55𝜎. The
positive average values for all three principal components indicate C2 may be linked
to wetter periods, with larger volumes of runoff bringing both organic matter, and alu-
minosilicate minerals rich in Zr (0.43𝜎) and Ni (1.56𝜎). C3 is the most carbonate and
organic-rich of the three, with a much larger average PC1 (3.18𝜎), and PC2 (4.59𝜎), but
the closest 𝑥̄PC3 value to 0 at 0.79𝜎, indicating little flux between organic productivity
and weathered detrital elements. The average Ca and Sr values of C3 are the highest of
the three, at 2.38𝜎 and 2.28𝜎, respectively. C2 was not present in SRPM-07, and C3 was
not present in SRPM-11 and SRPM12 (Fig. 2.11).
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2.5.3.5 Geochemical Stasis (Eq)

All core segments with no marked increase in either organic productivity, or terrige-
nous input were allocated to the ’Eq’ facies, representative of intervals which experi-
ence roughly equal magnitude and sign from all three principal components. These
facies hold average values which are weakly negative (𝑥̄PC1 = -0.12𝜎; 𝑥̄PC2 = -0.82𝜎;
𝑥̄PC3 = -0.44𝜎), but in most profiles as seen in Figure 2.11A, PC values remain around
𝑥̄𝑎 (0). Intervals characterized by this chemofacies are prominent in Unit 3, appearing
above the Unit 4 transgressive deposit in all cores except SRPM-01 and SRPM-12.

2.5.3.6 GOM Chemofacies

2.5.3.7 Detrital Input

Eliminating marl lithologies from the analysis allowed for better cluster discrimination
within the gyttja, specifically between facies of increasing sediment input. D1G shares
many of the same attributes to its full-core counterpart, but contains less of a sediment
excursion, with an 𝑥̄PC1 of 0.90𝜎. Average values for all elements of D1G in Figure 2.10B
remain within 1𝜎 of the mean. D2G contains substantially higher average values of PC1
(1.87𝜎), but is distinct for its high average S (1.02𝜎) and Fe (0.98𝜎) content and low 𝑥̄PC3
(-0.67𝜎) suggesting Fe from pyrite production plays a significant role in this chemofa-
cies. D3G, much like D2 is found in few places other than the bottom gyttja in Unit 4
(Fig. 2.11B). Average values for PC1 in D3G are the highest of the three detrital facies at
4.70𝜎, but there is negligible contribution from PC2 (𝑥̄= -0.15𝜎). A moderate contribu-
tion from PC3 (𝑥̄= 0.78𝜎), is a consequence of heightened Zr (𝑥̄= 1.31𝜎), Sr (𝑥̄= 1.99𝜎)
and Ni (𝑥̄= 0.66𝜎) within the transgressive deposit, but also appears strongly within
SRPM-10 and SRPM-11 within the Middle Woodland aged deposits.

77



M.Sc. Thesis – Tynan A. Pringle; McMaster University– School of Geography and Earth Science

2.5.3.8 Organic Productivity

Two organic-rich chemofacies were discerned in the GOM. Org1G is found in the up-
permost 10–15 cm of Unit 1 (Fig. 2.11B), and is distinguished by lower average inc/coh
values than Org2G (-1.08𝜎 versus 0.87𝜎), high average Sr (0.46𝜎), Ca (1.24𝜎), and Ni
(1.84𝜎) (Fig. 2.10B). The location of Org1G in the upper section of Unit 1 geochemically
relates it to C1 and C2 of the FCM, but without marl lithologies to obscure chemofacies
relationships, the sources of these high elemental values may be discerned. The Ca and
Sr is likely from shell fragments observed in Unit 1 which post-date the Hastings Dam
construction. Chronologically, this means that the high Ni values may be related to the
presence of Euro-Canadian settlers in the late 19th century. Org2G is similar to Org in the
FCM, such that it encompasses all intervals of high inc/coh ratio (𝑥̄= 0.87𝜎). Likewise,
it also has very low input from terrigenous elements (𝑥̄PC1 = -2.7𝜎). In Figure 2.11B, it is
observed in roughly the same lithological positions as occupied by Org in Figure 2.11A.

2.5.3.9 Geochemical Stasis

The GOM also contains areas of geochemical equilibrium, where the values of all three
PCs are close to 𝑥̄𝑎, indicating little change in either detrital input or organic productivity
(Fig. 2.9B). Again, a slight negative trend in average PC values is observed (PC1 = -0.49𝜎;
PC2 = -0.13𝜎; PC3 = -0.51𝜎). Divergence from the FCMare observed in the lower average
values of Ti (-0.06𝜎) and K (-0.07𝜎), but higher average S (0.13𝜎) (Fig. 2.10B).
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2.5.4 Thecamoebian biofacies

The results of R- and Q-mode cluster analysis are shown as a heat map in Figure 2.13.
In this plot, the colour scale indicates the fractional abundance. The R-mode cluster-
ing divided the taxa into two major groups, one containing 7 taxa which are in low
abundance (< 8%), and a second containing 8 abundant taxa that account for 10–50%
(Fig. 2.13). The groupof rare and less abundant taxa showed a very close relationship be-
tween all species, with the exception of P. compressa, which clustered seperately. Within
the abundant taxa, three distinct sub-clusters were formed. The first sub-cluster con-
tains three Centropyxids (C. constricta ’aerophila’, C. aculeata ’aculeata’ and C. constricta
’spinosa’), often associated with stressed conditions, and the most abundant species in
the Unit 4 transgressive shoreline deposit (Fig. 2.12) (Dallimore et al. 2000; Sonnenburg
et al. 2013).

The second sub-cluster contains D. oblonga, C. aculeata ’discoides’, and C. tricuspis, all
of which are indicators of eutrophic conditions (Reinhardt et al. 2005; Roe et al. 2010).

The remaining two taxa in the dominant cluster, comprising the third sub-cluster, are
A. vulgaris andD. proteiformis ’amphoralis’. The latter is relatively ubiquitous throughout
the core, except in Unit 4, but of greatest abundance in clusters B4 and B5 (Fig. 2.13). A.
vulgaris has two prominent spikes in abundance (20–50%) which correspond to major
transitions identified in the elemental PCA clustering: one ca. 2713 cal BP, and one
coinciding with the construction of the Hastings Dam. A. vulgaris is most dominant in
B1 andB2, whereD. proteiformis ’amphoralis’ is diminished. Q-mode clustering identified
five distinct thecamoebian biofacies which include: transgressive shoreline (B1), turbid
shallow lake (B2), post-dam eutrophic lake (B3), marginal wetland (B4) and pre-contact
eutrophic lake biofacies (B5) (Fig. 2.13).
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Figure 2.13: Thecamoebian biofacies clusters identified by Q- and R-
mode cluster analysis (Ward’s Method with Euclidean distance metric).
Fractional (%) abundances are shown as heatmap.
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Table 2.2: Summary of average fractional abundance and their standard
deviations for each of the biofacies.

Biofacies B1 B2 B3 B4 B5
mean ±2𝜎 mean ±2𝜎 mean ±2𝜎 mean ±2𝜎 mean ±2𝜎

Counts per cc 276 38 959 295 1091 273 485 93 645 133
Diversity (SDI) 1.88 0.08 1.99 0.27 2.26 0.11 2.25 0.13 2.31 0.06
A. vulgaris 18.61 3.48 32.69 12.06 6.95 0.77 9.32 3.15 9.82 4.09
C. aculeata ”aculeata” 11.59 2.78 9.63 2.08 12.95 2.49 8.88 1.85 7.86 2.10
C. aculeata ”discoides” 5.04 0.14 5.69 1.72 3.12 1.44 7.27 2.27 7.01 2.05
C. constricta ”aerophila” 22.33 3.35 3.89 2.47 3.73 0.64 10.75 2.80 6.13 2.25
C. constricta ”constricta” 0.21 0.30 1.49 0.87 1.70 1.37 1.71 0.93 2.90 1.45
C. constricta ”spinosa” 19.65 2.07 9.34 3.16 7.02 2.66 16.46 2.77 9.98 2.78
C. tricuspis 4.53 1.42 4.43 3.11 24.04 5.64 7.92 1.74 10.77 3.14
D. corona – – 1.12 1.02 1.80 0.92 1.70 1.03 2.99 0.91
D. oblonga – – 5.33 3.11 10.05 1.72 3.80 1.38 9.02 3.31
D. proteiformis ”acuminata” 0.42 0.60 0.80 0.57 2.74 0.48 0.81 0.48 2.23 1.53
D. proteiformis ”amphoralis” 15.85 5.74 14.01 4.35 10.45 3.19 22.79 2.49 19.01 4.70
D. proteiformis ”claviformis” 0.50 0.37 0.39 0.49 1.13 0.46 0.83 0.47 1.28 0.75
D. urens – – 2.09 0.71 2.77 0.95 1.78 1.36 1.53 1.19
L. vas – – 1.70 1.08 0.32 0.23 0.61 0.50 1.59 1.00
P. compressa 1.25 0.47 2.02 1.50 5.27 2.06 3.53 1.51 1.84 1.12

2.5.4.1 Transgressive Shoreline (B1)

Biofacies B1 is dominated by C. constricta ’aerophila’ (22.3%) and A. vulgaris (18.6%). C.
tricuspis (4.5%) and D. oblonga is absent, indicating a low nutrients conditions in the en-
vironment (Reinhardt et al. 2005). The total number of specimens in B1 was the lowest
of the five assemblages identified (𝑥̄= 276 per cc) and had the lowest diversity (average
Shannon diversity index (𝑥̄SDI) = 1.88), indicating a low nutrient environment with a
moderate degree of ecosystem stress (Patterson and Kumar 2000). Biofacies B1 occurs
within Unit 4, identified as a transgressive shoreline deposit that records the rise in wa-
ter levels following themid-Holocene lowstand (Yu andMcAndrews 1994; Sonnenburg
et al. 2012).
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2.5.4.2 Turbid shallow lake (B2)

B2 is composed of large numbers of A. vulgaris (32.9%), followed by D. proteiformis ’am-
phoralis’ (14%), and C. aculeata ’aculeata’ (9.6%) and C. constricta ’spinosa’ (9.3%). Taxa
within the minor R-mode cluster, are in very low abundances with the exception of
D. urens, reaching a maximum of 2% (Table 2.2). D. urens has been found in great abun-
dance in the surface sediments of shallow (1.5–3.5m)MidwayLake (Nova Scotia), where
sedimentation rates were noted to be substantial by Patterson et al. (1985). The mean
sedimentation rate during the B2 intervals is 0.97mmyr−1, which is considerably high
(Fig. 2.12).

Biofacies B2 is associated with turbid conditions, and appears to coincide with litho-
logical unit divisions in SRPM-02. B2 marks the boundaries of Unit 2–Unit 3 (1295 cal
BP), and Unit 1–Unit 2 (~1838 CE). Additional occurrences coincide with the end of the
Point Peninsula occupation (75 cm) with an additional spike along a seed-rich interval
at 40–42.5 cm in Unit 2 of SRPM-02. These zones are characterized by a drop in 𝑥̄SDI
(1.99), and a rise in total specimens per cc (959) (Table 2.2). The drop in D. proteiformis
’amphoralis’ is key, as this species forms the ’background’ species of the assemblage, and
preferably inhabits muddy substrates with an abundance of pennate diatoms, which is
typical of Rice Lake gyttja (Patterson and Kumar 2000). The B2 intervals, which punc-
tuate SRPM-02, coincide with periods of increasing PC3 (Fig. 2.12) which infer a textu-
ral change toward coarser silts may be present, which is not conducive to ’amphoralis’
growth. Another indication of shoaling conditions is the decreased abundance ofD. pro-
teiformis ’claviformis’ (0.39%)which is noted to inhabit deeper waters inmodern contexts
(Reinhardt et al. 1998).
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2.5.5 Post-Dam eutrophic lake (B3)

Biofacies B3 contains the highest average abundance of C. tricuspis (24%) in the assem-
blage (Table 2.2). B3 also contains the highest average abundance of P. compressa (5.27%)
(Table 2.2), a forest soil-dwelling species, further indicative of Euro-Canadian land clear-
ance activity (Hawkes et al. 2005; Sonnenburg and Boyce 2008). C. aculeata ’aculeata’
(12.95%) and D. oblonga (10%) also play a dominant role in this biofacies. B3 has the
highest counts per cc (1091) and 𝑥̄SDI (2.26) (Table 2.2).

B3 is found at the top 15 cm of SRPM02, follow the flooding of Rice Lake, and the
inundation of much of the past shoreline. Typical of lakes eutrophied by European set-
tlement, C. tricuspis reaches peak abundance only slightly after the Ambrosia horizon
found in Core E (see Fig. 5 in McAndrews (1984)), nearby (Fig. 2.2) (Yu and McAn-
drews 1994; Reinhardt et al. 2005). Land clearance, forestry, and agriculture in the area
compounded the environmental stress from flooding, increasing sedimentation rates
substantially (1.82mmyr−1 in upper Unit 1).

2.5.5.1 Marginal Wetland (B4)

Biofacies B4 comprises a diverse assemblage dominated by D. proteiformis ’amphoralis’
(22.8%), C. constricta ’spinosa’ (16.5%), and C. constricta ’aerophila’ (10.8%). B4 contains
the next lowest average counts per cc after B1, at 485, but with the second highest 𝑥̄SDI
of 2.25 (Table 2.2).

B4 occurs twice within SRPM-02: immediately following the transgressive horizon
above EH-2, and after the Point Peninsula occupation. Minor taxa make their first ap-
pearance, and several nutrient-loving species, formerly scarce in Unit 4, gain a foothold.
The presence of B4 does not appear restricted by chemofacies, as it occupies D2G, Org1G
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and EqG. The rapid establishment of D. proteiformis ’amphoralis’ during this time aligns
with textural changes transitioning from the silt-rich Unit 4, to muddier Unit 3.

2.5.5.2 Pre-colonial Eutrophic Lake (B5)

B5 is distinguished by abundant D. oblonga (9%), a rise in C. tricuspis (10.7%) which
is second highest to abundances observed in B3, and the most dominant species is D.
proteiformis ’amphoralis’ (19%). The mean specimens per cc is slightly higher than B4, at
645 per cc, but with a lower 𝑥̄SDI of 2.31 (Table 2.2).

B5 coincides with the prolonged interval of chemofacies D1G and D2G which mark
the onset and end of the Serpent Mounds occupation (Fig. 2.13). The increase in C. tri-
cuspis and D. oblonga during this time indicate an increase in nutrient input, shifting to-
wards eutrophic conditions at a time before European settlement. Sedimentation rates
concurrently increase to an average 1.3mmyr−1, which if attributed to nutrient loading
from soil erosion, would explain the elevated abundance of eutrophic-tolerant species.
B5 also appears around the time of European arrival at Rice Lake, and is synchronous
with the ragweed pollen zone identified by McAndrews (1984) (Fig. 2.12).

2.6 Discussion

2.6.1 Late Holocene Water Levels and Paleogeography

The reconstructedwater level curve and paleogeographicmaps showing the lake paleo-
bathymetry and shoreline positions for three selected time periods are shown in Figure
2.14. The maps show the estimated maximum and minimum elevations of the pale-
oshorelines relative to the modern lake level (~187m asl) for each interval. The maps
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also show the areas with optimal water depths for the growth of wild rice (0.5–1m)
(Finkelstein andDavis 2006), whichweuse to estimatewild rice food resources available
during each period. The water levels and paleoenvironmental changes during these in-
tervals are summarized in the following sections.

2.6.2 Mid-Holocene Shoreline Transgression (4500 –- 3300 cal BP)

During the mid-Holocene lowstand water levels were more than 5m bpl (ca. 5800 BP)
and the lakewas hydrologically closed, as a result of a dryHypsithermal climate (Fig. 2.14A)
(Sonnenburg et al. 2012). After 4500 BP, water levels had begun to rise and the shore-
line was transgressing as a result of a shift to a cooler, wetter Neoglacial climate (Yu and
McAndrews 1994; Sonnenburg et al. 2013). The end of the Hypsithermal is signalled by
the end of marl production, as indicated a sharp decrease in Ca at 1.8m in core SRPM-
02 (ca. 4450 cal BP) (Fig. 2.6). Lake levels recovered rapidly in the late Archaic period
(Fig. 2.14A), but our reconstruction places levels at about 1 metre lower at 3800 BP than
the estimates of Sonnenburg et al. (2012), which were based in part on core data from
McAndrews (1984). We suspect this difference is due to uncorrected core compaction
in the earlier study, which we determined in our cores to be as much as 55%, and which
can result in a significant underestimation of the AMS sample depth and water plane
elevation if not corrected. The paleobathymetric map for this interval indicate water
levels were about 4m bpl (183m asl) at 4500 BP and the area to the east and west of
Serpent Mounds was low lying marsh habitat.

Following EH-2 water levels began to rebound, but remained below the Hastings
outlet sill (185m asl) at just over 183m asl. At the time, thecamoebian biofacies B1 was
dominant, with only highly resilient species A. vulgaris and various Centropyxids in
abundance. The geochemical record for most cores is within D2G or D3G (Fig. 2.11),
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drews (1994)) for comparison. Water levels based on 14C dates in trans-
gressive shoreline deposit (Unit 4) and dates from upper gyttja sequence
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B. Mid-Holocene shoreline transgression following lowstand phase ca.
4500–3300 cal BP, C. Middle Woodland Point Peninsula occupation ca.
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coupledwith higher sedimentation rates (0.73mmyr−1), but with some iron sulfide pro-
duction typical of shallow wetlands (evidenced by D2G) (Haaijer et al. 2007).

Zr, Sr, Si, Ti, and K are most abundant at the base of Unit 4 (RC3; 4163 cal BP), but
subside upon transitioning to EqG facies in all core but SRPM-01, which enters D2G
facies attributed to high S content throughout Unit 3. Simultaneously, Biofacies B4 be-
comes dominant, increasing species diversity, and indicating a less silty substrate with
the suddenly high abundance of D. proteiformis ’amphoralis’. The geochemical profile of
SRPM-02 (Fig. 2.15) shows centennial-scale oscillations in heavier detrital input aswater
levels continued to recover through the Early Woodland.

The climate at this time was in a cooling trend, and gradually became more moist,
aiding in water level recovery at Rice Lake (Marlon et al. 2017). The upland pine forest
was in decline and was being replaced by deciduous vegetation (oak, beech, birch and
maple), while the shallowareas of the lake becamedominated by grasses (Yu andMcAn-
drews 1994). According to McAndrews (1984), the establishment of wild rice was near
synchronouswith the recovery ofwater levels post-EH-2 elsewhere, but the paleobathy-
metric reconstruction of Figure 2.14B shows approximately 850 ha of viable growth area
within the study site, long before water levels had recovered at McIntyre (Sonnenburg
et al. 2013).

2.6.3 Middle Woodland Point Peninsula Occupation (2200 – 1300 cal BP)

The oscillatory trend observed in the last phase continues until a brief interval of increas-
ing organic productivity (Org1G) (Fig. 2.15). A sudden shift toD1G andD2G chemofacies
occurs in all cores, roughly around the same time as the onset of Point Peninsula culture
expansion at Rice Lake (Fig. 2.11B). All terrigenous elements in SRPM-02 intensify in the
first of two distinct sedimentation episodes during the estimated occupation window
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of Serpent Mounds, but this episode is detected in all cores within the study area, but
diminishing in a radial pattern from Roach Point. In SRPM-02, the initial sedimentation
episode is accompanied by D2G, which indicates elevated S counts with the simultane-
ous increase in terrigenous input, and high counts of C. constricta ’aerophila’ and ’spinosa’
(~15% each), indicative of sudden ecosystem stress. In other cores, this interval is punc-
tuated by D3G, which indicates peak detrital input on the same order of magnitude as
the transgressive horizon (Fig. 2.11B).

At around 1630 cal BP, themiddle of the SerpentMounds occupation, a rapid change
in sedimentation rate occurs (𝑥̄ 0.57mmyr−1–1.46mmyr−1). After briefly subsiding in
SRPM-02, a second, larger excursion in terrigenous elements continues until just after
1300 cal BP, when SerpentMounds is thought to have been unoccupied (Johnston 1968).
The abundance of C. tricuspis and D. oblonga increase to ~15% and ~10%, respectively,
proportionate to the intensifying of detrital input, suggesting an increase in soil nutri-
ent loading in the lake. Declining fractional abundance of marsh dwelling species C.
constricta ’spinosa’, and similar behavior of C. constricta ’aerophila’ populations was ob-
served through the second excursion. Populations drop to 3% and 10% respectively
therein, from 13% and 18% within the first (Fig. 2.12). Reinhardt et al. (2005) note C.
constricta ’aerophila’ to be significant within marsh strata at Frenchman’s Bay (Ontario).
Intensifying human activity at Serpent Mounds from shellfish gathering and amplified
erosion caused some marsh habitat reduction toward 1300 cal BP, reflected in the C.
constricta ’aerophila’ decline.

Figure 2.14C depicts the relative shoreline position during the occupation period
of many sites in the area. Much of the area between East Sugar Island and Roach
Point would have been traversable on foot, connecting the mounds on both. The viable
growth area for wild rice expanded greatly to encompass a total 1860 ha. Immediately
after 1300 cal BP, there is a sharp decline in the magnitude of PC1 across all cores, and
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specifically, in SRPM-02, the inc/coh ratio values sharply increase, signalling a less silty
lithology.

2.6.4 European Settlement Phase (ca. 1820 CE)

Rice Lake’s first European inhabitants arrived ca. 1820 CE, and by 1838 CE, large tracts
of forest had been cleared for agriculture, and a dam was built at the lake outlet in
Hastings (Hastings Dam; Fig. 2.1). Prior to dam construction water levels were about
1.8–2mbelowpresent and about 2000 ha of viablewild rice habitat was available around
Serpent Mounds. The accounts of European settlers testify to the abundance of wild
rice. Following dam construction in 1838, water levels rose rapidly and the wild rice
stocks declined significantly in the lake (Sonnenburg 2010). This dam construction is
reflected in the geochemical record by a brief, but intense episode of sedimentation,
roughly recorded at the Unit 2–Unit 1 boundary (Fig. 2.11B). Afterward, eutrophic facies
are established, with substantially less detrital input. The pre-dam sedimentation rate is
estimated to range between 0.9–1 mmyr−1, but increases to between 1.65–1.89 mmyr−1

following construction.

The thecamoebian assemblage changes accordingly to B3, to an assemblage with
the highest abundance of C. tricuspis observed through all biofacies (24%) (Fig. 2.12).
The flooding was preferential to the health of Centropyxis, D. oblonga and D. corona
moreso than D. proteiformis ’amphoralis’, which reaches its lowest average abundance
in B3 (10.45%), where its dominance was ubiquitous in all other non-transgression (B1)
assemblages (Table 2.2). The magnitude of the Hastings geochemical signal is equal to
that of the Middle Woodland excursion, but of lesser duration.
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2.6.5 Archaeological implications

2.6.5.1 Prehistoric land disturbance

Prehistoric land disturbance in the Northeastern United States and Ontario has been
previously recognized for the Late Woodland period, for which Iroquoian village sites,
such as Crawford Lake (Ontario) are exemplary (Ekdahl et al. 2004; Turton and McAn-
drews 2006; McAndrews and Turton 2010). Agriculture and landscape modification
for semi-permanent villages was not a prominent feature of Middle Woodland period
sites in Ontario, and despite robust evidence for mound construction in the geological
record of other Hopewell-influenced sites (see Bernardini (2004), O’Neal et al. (2005),
Stinchcomb et al. (2011), O’Neal (2012), Herrmann et al. (2014), Hugenholtz et al. (2014),
Munoz et al. (2014), and Magnani and Schroder (2015)), no such evidence has yet been
recovered in a lacustrine sediment core from pre-agricultural Ontario.

The Middle Woodland sediment excursion, lasting 2250–1300 cal BP, closely aligns
to estimates of site usage from Johnston (1968) (Fig. 2.15). The first excursion peak (2200
cal BP), and transition to B5 biofacies suggests rapid change within the ecosystem, in-
volving higher terrigenous input, and available nutrients in the lake, reminiscent of the
geochemical record at the time of Hastings. Detrital input slowed only slightly from
1900–1700 cal BP, before a second, larger excursion with sedimentation rates compa-
rable to the post-dam lake (1.46mmyr−1). This second excursuion, and increase in
nutrient-loving thecamoebians could reflect intensification of site usage approaching
the middle to end of the Point Peninsula occupations, whereas the first may only have
been a response to seasonal occupation and procurement of shellfish resources.
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The shell midden at Serpent Mounds was dated 2020 ± 150 BP (1987 cal BP) by John-
ston (1968), which he acknowledged may predate mound construction, estimated be-
tween 1756–1557 cal BP using recalibrated dates from Mound E. If there was an offset
between shellfish harvesting and the construction of the mounds, then the second ex-
cursion (ca. 1700–1300 cal BP) may be produced by the construction of Serpent Mounds
(Fig. 2.15). Although difficult to discern construction episodes from this signal, as were
hypothesized by Johnston (1968), the duration of the signal suggests multiple episodes
of construction.

This signal was not isolated to SRPM-02, and is detected in the GOM PCA across
all cores (Fig. 2.11B) with radiocarbon dates from SRPM-10 and SRPM-11 confirming
the signal to be of Point-Peninsula age. The strength of this signal is generally weaker
moving away from Serpent Mounds, and is only detected as a small interval of D3G in
SRPM-07, hundreds of metres from the mounds. The paleogeographic reconstruction
of Figure 2.14C shows terrestrial connectivity between Serpent Mounds and the other
mound sites on East Sugar Island and Harris Island, and the reported shell midden on
Prison Island (Richardson 1968). With abundant wild rice and shellfish resources, it is
plausible that the paleogeography of the area would be conducive to gatherings at mul-
tiple sites, for seasonal resource exploitation or ritual purposes. Population estimates
from Middle Woodland Rice Lake are unclear, and biased toward excavations at one
site (Dillane 2010). Smaller estimates from Wilson (1993) suggest small bands between
25–50 individuals, while Spence et al. (1984) suggest much larger groups between 100–
200. These regional estimates originate from two different qualitative interpretations of
a single mound (Mound ”C”) at the Cameron’s Point Site (14C dated to 1891–1697 cal
BP), at the mouth of the Otonabee River (Fig. 1.5) (Dillane 2010). The supposition that a
single burial sequence is adequately representative for regional population estimates in
either model are reasonably suspicious. These estimates did not consider large regional
gatherings, unrelated to mound construction and burials, which may have produced
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intense episodes of terrestrial erosion, and substrate turbation from shellfish gathering.

Using large datasets to demonstrate the presence of prehistoric anthropogenic land-
scape change has been performed in Ontario and elsewhere with pollen data (Munoz et
al. 2010; Munoz andGajewski 2010). Itwas discovered that large scale landmodification
for agriculture relied on swidden farming techniques. An investigation by Stinchcomb
et al. (2011) revealed substantial changes to the sediment record within the Delaware
River Valley, related to deforestation and farming which took place between 1100–1600
CE (850–350 BP). Their findings demonstrate relatively small numbers of individuals
can have disproportionately large impacts on hydrological systems. Munoz et al. (2014)
also demonstrate anthropogenic influence within the pollen record of a lake sediment
core near the Cahokia mounds site (Illinois, USA) starting at 1500 BP. Dates as early
as ca. 3000 BP have been suggested for the domestication of non-maize seedstock in
the midwest Hopewell region, which may likely have been traded as high-value items
elsewhere (Mueller 2018). Despite an evident trade link with the south, large-scale agri-
culture was apparently not adopted by the Point Peninsula culture, at least, not as far
as the Trent Valley excavations have shown (Ellis and Ferris 1990). Yet, stable isotope
evidence obtained from skeletons at Serpent Mounds suggest some dietary component
to be from maize (Katzenberg 2006). It is unclear or if it is the product of domestic
growth, possibly at a much smaller scale than observed in the Late Woodland (Munoz
and Gajewski 2010).

2.6.5.2 Climate and geomorphic factors?

We interpret the increase in detrital sediment flux to Rice Lake during the Point Penin-
sula occupation to be a land disturbance episode of anthropogenic origin, after consid-
eration of other possible factors, including changes in climate and autogenic geomor-
phic processes (e.g. Foreman and Straub (2017)). In previous studies paleoclimatic shifts
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have been identified based on pollen records and plant macrofossil data (Yu andMcAn-
drews 1994; Yu et al. 1996), the climate experienced by Rice Lake was cool and moist,
with additional data from nearby McIntyre Lagoon suggesting the lake was shallow,
with abundant stands of wild rice (McAndrews 1984).

Available paleoclimate reconstructions for southern Ontario indicate that precipi-
tation levels during the Point Peninsula phase were near present mean annual values
(Edwards and Fritz 1986; Edwards and Fritz 1988; Edwards and McAndrews 1989; Ed-
wards et al. 1996; McCarthy and McAndrews 2012; Lewis 2016). However, Ontario’s
climate for the past 4000 years remains difficult to interpret, owing to the distribution
of study sites, and in some cases insufficient data, forcing large interpolations (Edwards
and Fritz 1986; Edwards and McAndrews 1989). Figure 1 in Edwards et al. (1996) uses
a composite dataset of inferred relative humidity and 𝛿18O values from several other
studies (Edwards and Fritz 1986; Edwards and Fritz 1988; Edwards and McAndrews
1989; Duthie et al. 1996), but lacks the resolution to comment on Middle Woodland cli-
mate, as a 500-year moving average was applied.

Although comprehensive for the mid-Holocene hiatus, many of these studies, lack
the fine age control required for comparison to the 𝜇-XRF data of this study. Edwards
and Fritz (1988) and Duthie et al. (1996) provide some measurements through this pe-
riod at Little Lake, and in Hamilton Harbour (Ontario), respectively. The results show
a general depletion in 18O, indicating slightly more precipitation, but do not record any
anomalies in precipitationwhich could explain the increased detrital sediment flux dur-
ing the Point Peninsula occupation. The synthesis of precipitation values from Figure 12
in Lewis (2016), uses both themean stable isotope record fromEdwards et al. (1996), and
transfer function-derived precipitation values from McCarthy and McAndrews (2012).
The latter study compiled several transfer function results, finding no anomalous pre-
cipitation spikes during theMiddleWoodland, and reportingmean annual precipitation
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values lower than present for most sampled lakes.

Recent paleoclimate investigations in the northeastern United States, although not
perfectly analagous to southern Ontario, provide a more complete record of change in
recent millenia. A comprehensive climate investigation by Marlon et al. (2017) pro-
vides a complete multi-proxy overview of the past 3000 years (see Figure 7 in Marlon
et al. (2017)). A key finding of this synthesis was a prolonged drought from 1650–1150
years BP, intensifying from 1400–1200 cal BP. If this drought phase extended to Ser-
pent Mounds, precipitation-driven erosion may not have been a factor in the sediment
signal. Further investigation of paleoclimate during the Middle Woodland is required,
with greater regional specificity to Rice Lake, before a definitive conclusion can bemade
regarding the origin of the Middle Woodland signal.

Autogenic processes operating within the basin on the order of days to millenia can
produce spurious sediment signals, which may overprint human activity at equivalent
timescales to the Serpent Mounds occupation. These signals are largely stochastic, and
are only overcome when a signal of interest is of longer duration, or greater amplitude
(Foreman and Straub 2017). In some cases, even genuine event signals may be distorted
through overprinting, or reworking (Romans et al. 2016). At Rice Lake, discharge from
the Indian River, change in slope at Roach Point, and shoreline processes are exam-
ples of autogenic influences. Shoreline processes, such as wave action, operate on daily
timescales, but also include annual events from ice raftingwhen the lake surface freezes,
making shoreline processes amixed signalwith varying seasonal intensity from twopri-
mary forces. The timescales for hillslope denudation can naturally occur on the order
of >5mmyr−1 in steep topographies (Hovius et al. 1997), but surface movement down-
slope can be between 6–30mmyr−1 in low to moderate-relief tills (Saunders and Young
1983). The latter values were documented in polar climates, however, and do not ac-
count for impedence from vegetation, or, in the case of Serpent Mounds, any alterations
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which arise from human activity (O’Neal et al. 2005). The closest fluvial system, with a
marshy delta lobe (Fig. 2.2) is the Indian river, which may produce a cyclic signal at a
similar frequency to its episodes of flooding, and greater detrital loading (Bryant et al.
1995; Enfield et al. 2001; Macklin and Lewin 2003). However, after careful inspection
of the sonar data of this study and of Sonnenburg et al. (2013), clear evidence of thal-
wegs tracking into the study area from the Indian river were not located. Several sonar
lines showed evidence of spurious depressions in the lakebed, but only one example
of a possible inundated outlet channel adjacent Harris Island (Fig. 2.2). Any anomalies
in the sonar profile which resemble fluvial features would be difficult to distinguish in
a temporal domain. The sediment profile of Rice Lake exhibits numerous examples of
old bathymetric features (EH-1 and EH-2; Sonnenburg et al. (2013)) in-filled by younger
sediments. Ancient channel features may retain some semblance of a sinuous form on
the lakebed, though no channels may be active at the time younger sediments are de-
posited.

Figure 2.15 demonstrates some form of cyclic terrigenous element signal in Unit 3 of
SRPM-02, likely propagated by allogenic or autogenic processes, or a combination of
the two. Clear deviation from this signal is observed both during the Serpent Mounds
phase, and the Hastings dam construction, at a high amplitude and much lower fre-
quency, that exceeds the Unit 4 transgressive deposit in terms of ecosystem perturba-
tion.

2.6.5.3 Non-invasive archaeology

Non-invasive geophysical and remote sensing techniques are being employed increas-
ingly in archaeology as tools for locating sites, for pre-excavation planning and to in-
vestigate sites of high cultural value where disturbance must be minimized (Kvamme
2003; Bates et al. 2008; Forte and Pipan 2008; Hesse 2010; Burks 2014; Herrmann et
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al. 2014). Recent studies of Adena and Hopewell mounds in the midwestern US have
employed LiDAR and photogrammetric methods to construct high-resolution digital
terrain models (DTM), which enable enhanced morphometric analysis of mound struc-
tures (Magnani and Schroder 2015). Geophysical methods (e.g. ground-penetrating
radar, resistivity surveys) have also provided new details of the internal structure of
burial mounds, yielding important insights into mound construction (Burks 2014).

Micropaleontological analysis, including thecamoebians, desmids, dinoflagellates,
diatoms, pollen, and even cultivar pathogens have been used in LateWoodland contexts
to detect the influence of large indigenous populations in Ontario (Burden et al. 1986;
Scharf 2010; McCarthy and Krueger 2013; Volik et al. 2016). However, these are less use-
ful for investigation of earlier archaeological periods, when widespread horticulture
was not present in Ontario, and elsewhere. In these cases, the use of high-resolution
𝜇-XRF core scan data can provide the highest available spatial and chronological reso-
lution for paleolimnological datasets, and is able to discern potential land disturbance
episodes in the absence of agriculture.

In this paper, we have demonstrated the application of 𝜇-XRF elemental analysis
for detecting prehistoric land disturbance in lake sediment. This approach has poten-
tial broader applications for detecting a range of environmental signals stemming from
prehistoric land disturbance episodes (e.g. onset of agriculture, land clearance, village
settlement, midden accumulation). The success of using 𝜇-XRF core scanning depends
on the availability of a continuous sediment archive (e.g. lake basin, wetland) proximal
to the archaeological site. Serpent Mounds was an ideal candidate for this study, as the
high-relief drumlinized topography at the site likely enhanced overland transport and
delivery of sediments to the lake margin. Any site able to influence the local sediment
record can be detected using the methodology of this study, but with varying levels of
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clarity dependent on the length and frequency of occupation. Serpent Mounds is be-
lieved to have been occupied from spring to autumn, annually, with large gatherings
involving the interment of the dead, which, after many centuries, is more liable to leave
a geochemical imprint (Johnston 1968; Dillane 2010).

2.7 Conclusions

This study has resolved a prehistoric land disturbance episode at Serpent Mounds dis-
cerned by 𝜇-XRF-CS as an increase in terrigenous elements for a period coinciding with
the start (ca. 2200 BP) and end (ca. 1300 BP) of the Serpent Mounds occupation. The
magnitude of terrigenous input from the event is comparable to that of the Hastings
dam construction, but with greater duration. This signal coincides with a shift in the-
camoebian biofacies to a eutrophic assemblage, responding to the sudden increase in
eroded soil nutrients. The paleogeographic reconstructions indicate substantial wild
rice habitat adjacent to Serpent Mounds and other sites, in what was a shallow lake en-
vironment with abundant peripheral wetlands. The resource availability, and terrestrial
connectivity between sites owing to lower water levels (~183m asl) would have been
favourable for the establishment of large encampments, and the coordination of burial
mound construction. Factors for land disturbance go beyond mound construction, as
the dense cluster of Point Peninsula sites in the study area were used for procurement
of shellfish and wild rice gathering.

The findings of this study demonstrate the utility of 𝜇-XRF-CS and micropaleontol-
ogy for investigating sensitive archaeological sites. The paleogeographic reconstruction
adds further clarity to the 𝜇-XRF and thecamoebian results, and provides an areal esti-
mate of available wild rice stands, which may have given the impetus for monumental
earthwork construction (Dillane 2010). This is the first study of a burial mound inNorth
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America to recover a geochemical signal of pre-agricultural land clearance using 𝜇-XRF-
CS, and do so in a non-destructive manner; which is essential for the continued study
of sensitive sites like Serpent Mounds.
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Chapter 3

Summary

3.1 Conclusions

This thesis has demonstrated the application of 𝜇-XRF-CS and micropaleontological
analysis for non-invasive investigation of a sensitive archaeological site. The 𝜇-XRF
analysis has identified a terrigenous element excursion, that is synchronous with the
Point Peninsula occupation of the Serpent Mounds site, as estimated by previous ra-
diocarbon dating from the site (Johnston 1968) (Table 2.1). This objective was achieved
through the multivariate analysis of a large volume of 𝜇-XRF-CS data, corroborated by
thecamoebian analysis, providing geochemical and micropaleontological evidence of
environmental shifts at Serpent Mounds since 6600 BP. A detailed bathymetric survey
was employed to construct the site paleogeography and assistedwith selection of coring
sites, and made possible the recovery of a nearly continuous Late Holocene sediment
record. Sediment back-stripping and paleobathymetric maps allowed reconstruction
of the Middle Woodland shoreline and lake water levels, providing estimates of viable
wild rice growth habitat at the SerpentMounds site. Furthermore, the water level curve
of Sonnenburg et al. (2013) was revised and improved with a suite of new AMS radio-
carbon dates, which demonstrate water levels were about 1m lower than previous es-
timates during mid-Holocene (EH-2) shoreline transgression. The increased influx of
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clastic sediment indicated by an excursions in minerogenic elements (principally Ti, Fe,
K, Si, Zr) at ca. 2200–1300 cal BP is interpreted as evidence of mound building and site
occupation by prehistoric indigenous peoples, owing to several lines of evidence:

1. The radiocarbon chronology of SRPM-02 indicates twopulses in clastic sedimenta-
tion over an interval of about 750 years, which coincideswith the established dates
for Middle Woodland occupation of Serpent Mounds, and other mound sites in
the immediate area. The excursion begins at the arrival time of Point Peninsula
peoples at Rice Lake (ca. 1820–2153 cal BP) and ends with the termination of ac-
tivity at Serpent Mounds (ca. 1290 cal BP).

2. The thecamoebian biofacies indicate a rapid shift toward a more nutrient-rich, la-
custrine environment, dominated by D. oblonga and C. tricuspis, with declining
marsh species. The decline in marsh species may indicate continued rise in water
levels and perhaps human environmental disturbance as utilization of wetland
resources and shellfish harvesting intensified. High abundance ofD. urens, which
have been observed elsewhere to tolerate turbid environments and high sedimen-
tation rates (Patterson et al. 2002), occurs during the second sediment excursion,
which correlates with radiocarbon ages from within Mound E (East: 1756 cal BP,
South: 1557 cal BP). The abundance of eutrophication-indicative thecamoebian
taxa is second only to the post-dam phase, at a time before large-scale land clear-
ance and agriculture.

3. The large increase in sedimentation rates (from 0.57 to approximately 1.5mmyr−1)
at the time of Serpent Mounds construction indicates heightened erosion, and is
comparable to increases in sedimentation rate stemming from indigineous agri-
culture elsewhere (Stinchcomb et al. 2011). Sedimentation rates return to lower
values (0.9mmyr−1) a few hundred years afterwards ( ca.1000 cal BP).
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4. The application of multivariate analysis to 𝜇-XRF-CS data demonstrates that the
event can be recognized as a distinctive chemofacies across multiple cores, with
a sediment signal strength inversely-proportional to distance from Roach Point.
Additional radiocarbon dates from SRPM-10 and SRPM-11 yielded similar ages
for the sedimentation event observed in those cores.

5. The magnitude of the land disturbance event is comparable to the increase in sed-
imentation rate produced by construction of the Hastings Dam (1838 CE). The
longer duration of the Middle Woodland signal (ca. 750 years) can be attributed
not only to mound construction, but to the numerous other activities (shellfish
bed usage, wild rice harvesting, shoreline habitation) that formed the fabric of
everyday life for the Point Peninsula people.

The long sediment record obtained in core SRPM02 also provided new insights into
the environmental changes associated with the Hypsithermal dry climate phase at Rice
Lake. The continuous record from 6541 cal BP in Unit 6 provides a geochemical record
of lake conditions during the terminal Hypsithermal. The silty Unit 6 gyttja was de-
posited when very nearby areas of Rice Lake, like neighboring McIntyre Lagoon, were
depositing marl (Fig. 2B – RIL10 in Sonnenburg et al. (2013)). A steady and equal rise
is observed in Si, Ti, K, and Fe profiles within Unit 5 of SRPM02 (Fig. 2.6), with concur-
rent marl production, which shows organic inclusion frequency increasing up-core in
the optical image. These trends are observed during a slight increase in sedimentation
rate (0.47 to 0.51mmyr−1) between 5050 and 4350 cal BP, after which point, a sharp de-
crease in Ca marks the end of marl depositon. The geochemical record during this time
agree with the hypotheses of several authors, and records a gradual rise in water level,
thought to be from increasing precipitation, linked to a broader deciduous shift in the
upland forest assemblage of Rice Lake (McAndrews 1984; Yu and McAndrews 1994).

This thesis provides the most complete, and detailed environmental reconstruction
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of Rice Lake during the Middle Woodland Period. The paleoenvironmental data (e.g.
water levels, shore line position) are key to understanding the archaeological context
and relationship between mound sites and also provide some insights as to the extent
of potential wild rice resources that were a staple for prehistoric indigenous peoples.
Although the population during the Middle Woodland is not known, it has been es-
timated hundreds of people gathered seasonally at the mounds of Rice Lake and, the
major river drainages (Dillane 2010). The population size and its concentration with
the lake environs aroundMacGregor Bay may explain in part why the land disturbance
signal is comparable to later land-clearance associated with European colonization.

3.2 Future Work and Archaeological Implications

The results of this study leave two areas of critical importance to be explored in future
investigations at Rice Lake. The first concerns Middle Woodland period climate vari-
ability, particularly changes in precipitation effecting runoff. Multiple previous stud-
ies at Rice Lake and in the Lake Ontario basin have identified several climatic shifts
(Sonnenburg et al. 2013), but most paleolimnological research has emphasized recon-
struction of water levels and vegetation since deglaciation (Yu and McAndrews 1994;
Anderson and Lewis 2012; Lewis 2016). Numerous studies have documented climate
conditions during theHoloceneHypsithermal (Edwards and Fritz 1986; Fritz et al. 1987;
Edwards and Fritz 1988; Edwards et al. 1996; McCarthy andMcAndrews 2012) but there
is a relative dearth on the subsequent Neoglacial, which is generally accepted to have
been awetter, cooler phase. Therefore it is difficult to disentangle theMiddleWoodland
detrital sediment excursion recorded at Rice Lake, from enhanced soil erosion resulting
from a wetter Neoglacial climate.

While Neoglacial paleoclimate data for southern Ontario is scarce, several recent
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studies in the northeastern USA have employed pollen and other proxies to reconstruct
Neoglacial climate change. Recently, Marlon et al. (2017) compiled regional proxy cli-
mate data for the past 3000 years in the northeastern United States, noting a period of
drought between 1400–1200 cal BP, and an even longer dry period spanning 1650–1150
cal BP. The implications are significant to this project, as a dry climate with reduced
rainfall suggests the sediment signal is entirely anthropogenic in origin. A paleoclimate
assessment of the late Holocene at Rice Lake should be undertaken to assess the validity
of the interpreted land disturbance as archaeological in origin.

The second area of future work is the incorporation of 𝜇-XRF-CS within the frame-
work of studies investigating the impact of humans on the landscape of pre-colonial
North America. Several studies have provided strong evidence for significant changes
in the forests of southern Ontario after the wide adoption of maize agriculture around
1000 CE (Smith 1997; Ekdahl et al. 2004; Turton andMcAndrews 2006; McAndrews and
Turton 2010; Munoz et al. 2010; Munoz and Gajewski 2010). The methods employed
in this thesis could significantly improve the chronology and environmental history
of landscape impacts, owing to the high maximum resolution (200μm) of 𝜇-XRF-CS.
Studies investigating the Late Woodland period (~1000–-1600 CE) often resort to using
pollen datasets, which lack both the spatial and chronological resolution provided by
𝜇-XRF-CS.

The methods used here can also compliment the large body of work conducted on
earthwork structures at Hopewell sites in Ohio and Illinois. Several geoarchaeological
investigations have employed non-destructive techniques such as LiDAR (O’Neal et al.
2005; Romain and Burks 2008; O’Neal 2012), photogrammetry (Magnani and Schroder
2015), ground penetrating radar (Herrmann et al. 2014), magnetic survey (Burks 2014)
and core surveys (Stinchcomb et al. 2011; Munoz et al. 2014) to model the landscape

105



M.Sc. Thesis – Tynan A. Pringle; McMaster University– School of Geography and Earth Science

impact ofmound construction, degradation, and broader landscape changes in theMid-
westernUnited States. O’Neal et al. (2005)modelled the rates of erosion onHopewellian-
aged earthworks in Ohio (U.S.A.), suggesting the mounds rapidly degrade if not con-
stantly maintained through the addition of built layers. Their models suggest an 1800-
year window for degradation of mounds, from structural apex to present form, in a
similar climate to that of Ontario. Topographic diffusivity in their model was found to
be 5.0 × 10−4m2 yr−1. O’Neal et al. (2005) cite a common problem with understanding
the timing of earthwork construction, lies in the usual process of investigation through
excavation, which rarely accounts for eroded material, which emphasizes the impor-
tance of understanding erosion in all aspects, from the mound to catchment. Combin-
ing 𝜇-XRF-CS methods with conventional archaeological methods could provide more
complete estimates of runoff contribution from mound construction in lakes, and more
importantly, how long a moundwill be detectable in the sediment record following dis-
use of a site. Detection of land use at Ohio and Illinois mound sites is somewhat easier,
owing to the earlier adoption of agriculture there and greater scale of land clearance and
disturbance when compared to southern Ontario (Stinchcomb et al. 2011).

At pre-agricultural mound-building sites such as Serpent Mounds, the detection of
prehistoric land use changes can be a challenge, as the geochemical changes in lake sed-
iment are likely to be subtle. The use of environmental proxies, like thecamoebians,
further helps to detect changes in lake trophic state associated with land disturbance
events, but 𝜇-XRF-CS is a far more useful tool for resolving relatively short occupations
with unparalleled chronostratigraphic sampling resolution. The multivariate analysis
methods outlined in Chapter 2 clearly highlights the utility and flexibility of 𝜇-XRF-CS
data for discerning land disturbance episodes. This thesis is significant, as it is the first
to provide evidence of pre-agricultural, pre-colonial land disturbance related to earth-
work construction and site occupation in North America. This objective was further-
more achieved non-destructively, respecting the sacred importance of Serpent Mounds
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to First Nations.
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Table A1.1: Summary of basic and advanced functions included in Py-
Trax

Pytrax Basic Functions
Automatic alignment and plotting of multiple core sections
Plotting cores to custom depth datum, automatic recalculation of data from desired
start depth
Automatic image alignment, preserving aspect ratio through Lanczos interpolation
when restricting plot area to one area of the core
Boolean operation used to remove erroneous data or unwanted data sections
Any number of element profiles (or other Itrax parameters) may be plotted
Data may be decimated to a desired interval during plotting
Moving averagemay be superimposed over respective element, to desiredwindow
Depth interval may be selected by desired minimum and maximum depth of core
PyTrax Data Operations
Normalize data to: standard deviation, incoherent or coherent scatter, sum of scat-
tering values
Additional options for log transformation and z-score scaling
Multiple levels of normalization and transformation (eg. normalizing to a scatter
value, then log transform)
Custom profiles of elements based on sum, difference, product, or quotient, can be
combined with normalization features
PCA of desired elements, with plotting available for individual principal compo-
nents
Second comparative PCAmay be performed and plotted for specific sections of the
core
Cluster analysis of principal components for visualization of chemofacies based on
reduced data
RGB spectra from image data can be calculated and plotted
PCA of RGB data may be performed for improved noise reduction
Additional Visualization Tools
Plotting with secondary y-axis to display radiocarbon ages in a linear format, re-
specting the changes in sedimentation rate with the plotting interval of minor ticks
Plotting data by age (can accept age models of any variety from CLAM (Blaauw
2010) or BACON (Blaauw and Christen 2011))
Selective log-scaling of data for improved visualization of elemental profiles with
large magnitude variance
Clipping of data according to desired buffer buffer value around the moving aver-
age of element profiles
Insertion of user-defined number of subplots if additional plotting of data outside
the scope of PyTrax is desired
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Table A2.1: Table of PCA values and variance ratio for optical images of
all cores (excluding SRPM03)

Principal
Component Red Green Blue Variance

Ratio Red Green Blue Variance
Ratio

SRPM01 SRPM08
PC1 0.58 0.58 0.58 9.89 × 10−1 0.58 0.58 0.58 9.88 × 10−1
PC2 -0.70 -0.02 0.72 1.07 × 10−2 -0.69 -0.03 0.72 1.19 × 10−2
PC3 0.42 -0.81 0.40 3.07 × 10−4 0.44 -0.81 0.38 1.54 × 10−4

SRPM02 SRPM09
PC1 0.58 0.58 0.58 9.86 × 10−1 0.57 0.58 0.57 9.80 × 10−1
PC2 -0.66 -0.08 0.75 1.42 × 10−2 -0.71 −1.00 × 10−3 0.71 2.04 × 10−2
PC3 0.48 -0.81 0.34 1.66 × 10−4 0.41 -0.81 0.41 4.46 × 10−5

SRPM05 SRPM10
PC1 0.58 0.58 0.58 9.89 × 10−1 0.58 0.58 0.58 9.91 × 10−1
PC2 -0.79 0.21 0.57 1.09 × 10−2 -0.72 0.02 0.69 9.15 × 10−3
PC3 0.21 -0.79 0.58 1.34 × 10−4 0.39 -0.81 0.43 3.27 × 10−5

SRPM06 SRPM11
PC1 -0.58 -0.58 -0.57 9.80 × 10−1 0.58 0.58 0.58 9.88 × 10−1
PC2 0.65 0.10 -0.75 2.04 × 10−2 -0.75 0.08 0.66 1.14 × 10−2
PC3 0.41 -0.81 0.41 4.46 × 10−5 0.34 -0.81 0.48 1.55 × 10−4

SRPM07 SRPM12
PC1 0.58 0.58 0.58 9.94 × 10−1 0.58 0.58 0.58 9.94 × 10−1
PC2 -0.74 0.06 0.68 6.50 × 10−3 -0.68 -0.05 0.73 5.72 × 10−3
PC3 -0.36 0.81 -0.46 4.79 × 10−5 -0.45 0.81 -0.37 2.03 × 10−4
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Figure A2.6: RGB core scan for SRPM-05. RGB image brightness (PC1)
plotted in standard deviations. Lithofacies interpretation also included.
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Figure A2.7: RGB core scan for SRPM-06. RGB image brightness (PC1)
plotted in standard deviations. Lithofacies interpretation also included.
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Figure A2.10: RGB core scan for SRPM-06. RGB image brightness (PC1)
plotted in standard deviations. Lithofacies interpretation also included.
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Table A2.2: Microfossil count statistics for SRPM02 gyttja.
Interval (cm) 0.25 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180
Volume Counted (cm3) 0.156 0.156 0.313 0.469 0.469 0.156 0.469 0.469 0.313 0.313 0.313 0.469 0.781 0.625 0.625 0.313 0.469 0.469 0.469 0.313 0.469 0.469 0.469 0.781 0.469 0.313 0.313 0.469 0.469 0.625 0.625 0.625 0.469 0.625 0.625 0.313 0.469
SDI 2.38 2.12 2.29 2.19 2.36 2.03 2.32 2.08 2.30 2.31 2.33 2.24 2.21 2.11 2.18 2.07 2.39 2.37 2.30 2.35 2.26 2.29 2.24 2.27 2.63 2.16 1.55 2.29 2.25 2.30 2.25 2.33 2.12 2.11 1.99 1.82 1.85
Biofacies B3 B5 B2 B4 B2 B4 B5 B4 B2 B5 B4 B5 B4 B2 B4 B5 B4 B1
A. vulgaris 15 15 13 64 41 78 23 49 52 10 14 15 21 28 10 67 30 16 29 32 29 33 16 20 35 66 109 22 16 17 18 18 32 24 22 20 26
fractional abundance (%) 7.69 7.28 5.88 18.34 11.08 34.36 8.49 15.81 18.44 5.99 6.17 6.17 8.24 11.07 4.81 26.80 11.15 4.43 12.61 13.28 9.12 12.18 7.44 6.45 12.03 22.22 51.17 9.48 7.80 6.30 8.00 5.61 14.75 9.56 14.01 19.42 22.41
standard error (±) 1.48 1.40 1.73 2.78 2.19 2.44 2.27 2.78 2.53 2.01 1.75 2.07 2.98 3.06 2.30 3.07 2.58 1.45 2.94 2.39 2.17 2.67 2.40 2.42 2.56 2.64 3.75 2.58 2.51 2.29 2.80 1.99 3.23 2.88 4.29 4.27 5.20
Bullinularia spp 0 0 0 0 11 6 0 0 2 1 0 0 2 0 0 8 1 0 0 1 4 0 1 0 0 28 7 1 0 0 0 0 0 0 0 0 0
fractional abundance (%) 0.00 0.00 0.00 0.00 2.97 2.64 0.00 0.00 0.71 0.60 0.00 0.00 0.78 0.00 0.00 3.20 0.37 0.00 0.00 0.41 1.26 0.00 0.47 0.00 0.00 9.43 3.29 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
standard error (±) 0.00 0.00 0.00 0.00 1.18 0.82 0.00 0.00 0.55 0.65 0.00 0.00 0.96 0.00 0.00 1.22 0.50 0.00 0.00 0.45 0.84 0.00 0.62 0.00 0.00 1.86 1.34 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C. aculeata ”aculeata” 32 22 26 33 31 20 21 35 24 11 9 26 21 25 20 33 23 25 15 15 28 19 15 38 30 13 17 14 16 27 26 24 15 27 15 10 18
fractional abundance (%) 16.41 10.68 11.76 9.46 8.38 8.81 7.75 11.29 8.51 6.59 3.96 10.70 8.24 9.88 9.62 13.20 8.55 6.93 6.52 6.22 8.81 7.01 6.98 12.26 10.31 4.38 7.98 6.03 7.80 10.00 11.56 7.48 6.91 10.76 9.55 9.71 15.52
standard error (±) 2.05 1.67 2.37 2.10 1.93 1.46 2.18 2.41 1.82 2.10 1.42 2.66 2.98 2.91 3.17 2.35 2.29 1.79 2.18 1.71 2.13 2.08 2.33 3.23 2.39 1.30 2.03 2.10 2.51 2.83 3.30 2.27 2.31 3.03 3.64 3.20 4.51
C. aculeata ”discoides” 10 5 4 14 21 15 25 12 22 16 26 25 24 10 18 8 14 32 19 13 23 15 11 23 15 20 11 25 16 19 19 21 19 12 8 5 6
fractional abundance (%) 5.13 2.43 1.81 4.01 5.68 6.61 9.23 3.87 7.80 9.58 11.45 10.29 9.41 3.95 8.65 3.20 5.20 8.86 8.26 5.39 7.23 5.54 5.12 7.42 5.15 6.73 5.16 10.78 7.80 7.04 8.44 6.54 8.76 4.78 5.10 4.85 5.17
standard error (±) 1.22 0.83 0.98 1.41 1.61 1.28 2.36 1.47 1.75 2.50 2.32 2.62 3.17 1.90 3.02 1.22 1.82 2.01 2.44 1.59 1.95 1.86 2.02 2.58 1.74 1.59 1.66 2.73 2.51 2.41 2.87 2.14 2.57 2.09 2.72 2.32 2.76
C. constricta ”aerophila” 9 7 7 29 19 6 19 23 23 11 12 16 15 24 19 6 9 18 11 14 17 31 27 20 43 18 5 24 25 34 33 38 29 33 28 24 30
fractional abundance (%) 4.62 3.40 3.17 8.31 5.14 2.64 7.01 7.42 8.16 6.59 5.29 6.58 5.88 9.49 9.13 2.40 3.35 4.99 4.78 5.81 5.35 11.44 12.56 6.45 14.78 6.06 2.35 10.34 12.20 12.59 14.67 11.84 13.36 13.15 17.83 23.30 25.86
standard error (±) 1.16 0.98 1.29 1.98 1.54 0.82 2.08 2.00 1.79 2.10 1.63 2.13 2.55 2.85 3.10 1.06 1.47 1.54 1.89 1.65 1.69 2.59 3.03 2.42 2.79 1.52 1.14 2.68 3.07 3.13 3.65 2.79 3.10 3.30 4.73 4.56 5.46
C. constricta ”constricta” 1 2 8 0 14 5 5 1 7 3 13 5 6 2 3 2 5 10 6 6 14 9 2 9 6 1 1 4 8 2 5 8 2 4 1 0 0
fractional abundance (%) 0.51 0.97 3.62 0.00 3.78 2.20 1.85 0.32 2.48 1.80 5.73 2.06 2.35 0.79 1.44 0.80 1.86 2.77 2.61 2.49 4.40 3.32 0.93 2.90 2.06 0.34 0.47 1.72 3.90 0.74 2.22 2.49 0.92 1.59 0.64 0.00 0.00
standard error (±) 0.40 0.53 1.38 0.00 1.33 0.75 1.10 0.43 1.02 1.13 1.69 1.22 1.64 0.86 1.28 0.62 1.11 1.16 1.41 1.10 1.54 1.46 0.88 1.65 1.12 0.37 0.51 1.15 1.81 0.81 1.52 1.35 0.87 1.22 0.98 0.00 0.00
C. constricta ”spinosa” 21 10 12 23 21 19 35 60 41 29 26 44 51 52 45 15 26 23 22 31 36 34 39 38 41 38 18 38 27 42 40 45 29 40 35 20 20
fractional abundance (%) 10.77 4.85 5.43 6.59 5.68 8.37 12.92 19.35 14.54 17.37 11.45 18.11 20.00 20.55 21.63 6.00 9.67 6.37 9.57 12.86 11.32 12.55 18.14 12.26 14.09 12.79 8.45 16.38 13.17 15.56 17.78 14.02 13.36 15.94 22.29 19.42 17.24
standard error (±) 1.72 1.16 1.67 1.78 1.61 1.42 2.73 3.01 2.30 3.21 2.32 3.31 4.34 3.94 4.42 1.65 2.42 1.72 2.60 2.36 2.38 2.70 3.53 3.23 2.74 2.12 2.09 3.26 3.17 3.42 3.95 3.00 3.10 3.58 5.15 4.27 4.71
Corythion spp 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
fractional abundance (%) 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
standard error (±) 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C. tricuspis 35 65 50 46 50 2 23 21 23 15 14 14 21 13 13 17 37 38 34 29 16 26 16 28 19 8 4 24 16 22 17 31 26 20 10 3 5
fractional abundance (%) 17.95 31.55 22.62 13.18 13.51 0.88 8.49 6.77 8.16 8.98 6.17 5.76 8.24 5.14 6.25 6.80 13.75 10.53 14.78 12.03 5.03 9.59 7.44 9.03 6.53 2.69 1.88 10.34 7.80 8.15 7.56 9.66 11.98 7.97 6.37 2.91 4.31
standard error (±) 2.13 2.51 3.08 2.43 2.38 0.48 2.27 1.92 1.79 2.42 1.75 2.01 2.98 2.15 2.60 1.74 2.82 2.17 3.14 2.30 1.64 2.40 2.40 2.82 1.94 1.03 1.02 2.68 2.51 2.58 2.73 2.55 2.96 2.65 3.02 1.82 2.53
Cyclopyxis spp 0 2 1 19 3 0 1 1 2 1 1 0 1 2 1 0 1 1 0 1 0 1 0 0 1 9 2 2 1 3 1 0 2 1 0 0 0
fractional abundance (%) 0.00 0.97 0.45 5.44 0.81 0.00 0.37 0.32 0.71 0.60 0.44 0.00 0.39 0.79 0.48 0.00 0.37 0.28 0.00 0.41 0.00 0.37 0.00 0.00 0.34 3.03 0.94 0.86 0.49 1.11 0.44 0.00 0.92 0.40 0.00 0.00 0.00
standard error (±) 0.00 0.53 0.49 1.63 0.63 0.00 0.49 0.43 0.55 0.65 0.48 0.00 0.68 0.86 0.74 0.00 0.50 0.37 0.00 0.45 0.00 0.49 0.00 0.00 0.46 1.09 0.72 0.81 0.65 0.99 0.69 0.00 0.87 0.62 0.00 0.00 0.00
D. bidens 2 3 3 0 2 0 1 0 1 0 2 1 5 0 1 0 0 8 2 2 0 2 0 2 1 0 1 0 2 3 2 3 1 1 0 0 0
fractional abundance (%) 1.03 1.46 1.36 0.00 0.54 0.00 0.37 0.00 0.35 0.00 0.88 0.41 1.96 0.00 0.48 0.00 0.00 2.22 0.87 0.83 0.00 0.74 0.00 0.65 0.34 0.00 0.47 0.00 0.98 1.11 0.89 0.93 0.46 0.40 0.00 0.00 0.00
standard error (±) 0.56 0.65 0.85 0.00 0.51 0.00 0.49 0.00 0.39 0.00 0.68 0.55 1.50 0.00 0.74 0.00 0.00 1.04 0.82 0.64 0.00 0.70 0.00 0.79 0.46 0.00 0.51 0.00 0.92 0.99 0.97 0.83 0.62 0.62 0.00 0.00 0.00
D. corona 6 2 3 9 17 6 9 6 4 2 9 3 2 4 1 1 9 13 3 7 10 5 9 7 7 4 0 3 5 5 1 7 2 1 0 0 0
fractional abundance (%) 3.08 0.97 1.36 2.58 4.59 2.64 3.32 1.94 1.42 1.20 3.96 1.23 0.78 1.58 0.48 0.40 3.35 3.60 1.30 2.90 3.14 1.85 4.19 2.26 2.41 1.35 0.00 1.29 2.44 1.85 0.44 2.18 0.92 0.40 0.00 0.00 0.00
standard error (±) 0.96 0.53 0.85 1.14 1.46 0.82 1.46 1.05 0.77 0.92 1.42 0.95 0.96 1.22 0.74 0.44 1.47 1.32 1.00 1.19 1.31 1.10 1.83 1.46 1.21 0.73 0.00 1.00 1.45 1.27 0.69 1.26 0.87 0.62 0.00 0.00 0.00
D. fragosa 0 1 0 1 0 1 1 0 0 0 2 0 0 1 0 0 0 0 0 0 1 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0
fractional abundance (%) 0.00 0.49 0.00 0.29 0.00 0.44 0.37 0.00 0.00 0.00 0.88 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.00 0.34 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
standard error (±) 0.00 0.38 0.00 0.38 0.00 0.34 0.49 0.00 0.00 0.00 0.68 0.00 0.00 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.42 0.00 0.00 0.00 0.46 0.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D. globulus 0 1 0 5 7 0 1 0 0 0 2 1 1 1 1 2 1 1 0 2 1 0 0 0 0 2 1 1 0 0 0 1 1 0 0 0 0
fractional abundance (%) 0.00 0.49 0.00 1.43 1.89 0.00 0.37 0.00 0.00 0.00 0.88 0.41 0.39 0.40 0.48 0.80 0.37 0.28 0.00 0.83 0.31 0.00 0.00 0.00 0.00 0.67 0.47 0.43 0.00 0.00 0.00 0.31 0.46 0.00 0.00 0.00 0.00
standard error (±) 0.00 0.38 0.00 0.85 0.95 0.00 0.49 0.00 0.00 0.00 0.68 0.55 0.68 0.61 0.74 0.62 0.50 0.37 0.00 0.64 0.42 0.00 0.00 0.00 0.00 0.52 0.51 0.58 0.00 0.00 0.00 0.48 0.62 0.00 0.00 0.00 0.00
D. oblonga 15 22 26 16 36 23 17 15 8 7 31 15 20 9 11 15 9 42 21 14 31 8 7 41 11 30 5 6 8 10 7 30 2 6 0 0 0
fractional abundance (%) 7.69 10.68 11.76 4.58 9.73 10.13 6.27 4.84 2.84 4.19 13.66 6.17 7.84 3.56 5.29 6.00 3.35 11.63 9.13 5.81 9.75 2.95 3.26 13.23 3.78 10.10 2.35 2.59 3.90 3.70 3.11 9.35 0.92 2.39 0.00 0.00 0.00
standard error (±) 1.48 1.67 2.37 1.50 2.07 1.55 1.98 1.64 1.08 1.70 2.50 2.07 2.92 1.80 2.40 1.65 1.47 2.26 2.55 1.65 2.23 1.38 1.62 3.33 1.50 1.92 1.14 1.40 1.81 1.78 1.79 2.52 0.87 1.49 0.00 0.00 0.00
D. proteiformis ”acuminata” 5 7 5 10 9 2 4 2 2 2 2 4 1 0 3 4 16 6 7 7 3 0 2 3 3 3 0 2 1 2 1 2 1 2 2 0 0
fractional abundance (%) 2.56 3.40 2.26 2.87 2.43 0.88 1.48 0.65 0.71 1.20 0.88 1.65 0.39 0.00 1.44 1.60 5.95 1.66 3.04 2.90 0.94 0.00 0.93 0.97 1.03 1.01 0.00 0.86 0.49 0.74 0.44 0.62 0.46 0.80 1.27 0.00 0.00
standard error (±) 0.88 0.98 1.10 1.20 1.07 0.48 0.98 0.61 0.55 0.92 0.68 1.10 0.68 0.00 1.28 0.87 1.94 0.90 1.52 1.19 0.73 0.00 0.88 0.96 0.79 0.64 0.00 0.81 0.65 0.81 0.69 0.68 0.62 0.87 1.39 0.00 0.00
D. proteiformis ”amphoralis” 13 21 32 29 48 22 64 74 44 36 43 59 48 62 49 51 58 83 44 47 81 62 53 65 60 26 22 44 53 54 40 65 49 68 32 20 9
fractional abundance (%) 6.67 10.19 14.48 8.31 12.97 9.69 23.62 23.87 15.60 21.56 18.94 24.28 18.82 24.51 23.56 20.40 21.56 22.99 19.13 19.50 25.47 22.88 24.65 20.97 20.62 8.75 10.33 18.97 25.85 20.00 17.78 20.25 22.58 27.09 20.38 19.42 7.76
standard error (±) 1.38 1.63 2.59 1.98 2.34 1.52 3.46 3.25 2.37 3.49 2.85 3.69 4.24 4.19 4.56 2.79 3.36 2.97 3.48 2.80 3.28 3.42 3.94 4.01 3.18 1.80 2.28 3.45 4.10 3.77 3.95 3.48 3.81 4.35 4.98 4.27 3.33
D. proteiformis ”claviformis” 3 1 3 1 4 0 3 1 1 2 4 4 2 1 1 3 7 7 2 2 7 3 3 1 2 2 0 1 0 3 1 3 3 2 1 0 1
fractional abundance (%) 1.54 0.49 1.36 0.29 1.08 0.00 1.11 0.32 0.35 1.20 1.76 1.65 0.78 0.40 0.48 1.20 2.60 1.94 0.87 0.83 2.20 1.11 1.40 0.32 0.69 0.67 0.00 0.43 0.00 1.11 0.44 0.93 1.38 0.80 0.64 0.00 0.86
standard error (±) 0.68 0.38 0.85 0.38 0.72 0.00 0.85 0.43 0.39 0.92 0.96 1.10 0.96 0.61 0.74 0.75 1.30 0.97 0.82 0.64 1.10 0.85 1.07 0.56 0.65 0.52 0.00 0.58 0.00 0.99 0.69 0.83 1.06 0.87 0.98 0.00 1.15
D. urceolata 3 6 3 3 7 1 0 1 2 0 3 0 6 0 0 1 1 4 2 0 1 0 0 0 2 2 1 0 0 0 0 2 0 0 0 0 0
fractional abundance (%) 1.54 2.91 1.36 0.86 1.89 0.44 0.00 0.32 0.71 0.00 1.32 0.00 2.35 0.00 0.00 0.40 0.37 1.11 0.87 0.00 0.31 0.00 0.00 0.00 0.69 0.67 0.47 0.00 0.00 0.00 0.00 0.62 0.00 0.00 0.00 0.00 0.00
standard error (±) 0.68 0.91 0.85 0.66 0.95 0.34 0.00 0.43 0.55 0.00 0.83 0.00 1.64 0.00 0.00 0.44 0.50 0.74 0.82 0.00 0.42 0.00 0.00 0.00 0.65 0.52 0.51 0.00 0.00 0.00 0.00 0.68 0.00 0.00 0.00 0.00 0.00
D. urens 8 4 5 0 2 5 2 1 8 5 1 1 1 4 5 6 9 10 5 4 1 10 3 3 3 9 2 8 3 11 7 10 0 0 0 0 0
fractional abundance (%) 4.10 1.94 2.26 0.00 0.54 2.20 0.74 0.32 2.84 2.99 0.44 0.41 0.39 1.58 2.40 2.40 3.35 2.77 2.17 1.66 0.31 3.69 1.40 0.97 1.03 3.03 0.94 3.45 1.46 4.07 3.11 3.12 0.00 0.00 0.00 0.00 0.00
standard error (±) 1.10 0.74 1.10 0.00 0.51 0.75 0.70 0.43 1.08 1.44 0.48 0.55 0.68 1.22 1.65 1.06 1.47 1.16 1.29 0.90 0.42 1.54 1.07 0.96 0.79 1.09 0.72 1.61 1.13 1.86 1.79 1.50 0.00 0.00 0.00 0.00 0.00
Heleopera spp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
fractional abundance (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
standard error (±) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
L. vas 1 0 1 0 4 8 2 2 3 1 4 1 2 0 1 2 2 5 6 4 12 2 2 6 2 1 3 3 0 5 0 3 0 2 0 0 0
fractional abundance (%) 0.51 0.00 0.45 0.00 1.08 3.52 0.74 0.65 1.06 0.60 1.76 0.41 0.78 0.00 0.48 0.80 0.74 1.39 2.61 1.66 3.77 0.74 0.93 1.94 0.69 0.34 1.41 1.29 0.00 1.85 0.00 0.93 0.00 0.80 0.00 0.00 0.00
standard error (±) 0.40 0.00 0.49 0.00 0.72 0.95 0.70 0.61 0.67 0.65 0.96 0.55 0.96 0.00 0.74 0.62 0.70 0.83 1.41 0.90 1.43 0.70 0.88 1.36 0.65 0.37 0.88 1.00 0.00 1.27 0.00 0.83 0.00 0.87 0.00 0.00 0.00
L. spiralis 2 0 0 0 1 1 0 0 0 1 1 0 0 2 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
fractional abundance (%) 1.03 0.00 0.00 0.00 0.27 0.44 0.00 0.00 0.00 0.60 0.44 0.00 0.00 0.79 0.00 0.00 0.00 0.55 0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00
standard error (±) 0.56 0.00 0.00 0.00 0.36 0.34 0.00 0.00 0.00 0.65 0.48 0.00 0.00 0.86 0.00 0.00 0.00 0.52 0.00 0.00 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.00
N. collaris 2 5 3 12 14 4 2 3 0 1 3 1 0 6 2 5 2 5 1 3 0 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0
fractional abundance (%) 1.03 2.43 1.36 3.44 3.78 1.76 0.74 0.97 0.00 0.60 1.32 0.41 0.00 2.37 0.96 2.00 0.74 1.39 0.43 1.24 0.00 0.37 0.00 0.32 0.00 0.34 0.47 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00
standard error (±) 0.56 0.83 0.85 1.31 1.33 0.68 0.70 0.75 0.00 0.65 0.83 0.55 0.00 1.48 1.05 0.97 0.70 0.83 0.58 0.78 0.00 0.49 0.00 0.56 0.00 0.37 0.51 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.00
Plagiopyxis spp 0 0 0 31 6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 9 1 0 0 0 0 0 0 0 0 0 0
fractional abundance (%) 0.00 0.00 0.00 8.88 1.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.03 0.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
standard error (±) 0.00 0.00 0.00 2.04 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.09 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P. compressa 12 5 16 4 1 3 13 3 13 13 5 8 5 7 4 3 9 12 1 7 2 10 9 5 9 1 2 10 8 11 7 8 4 8 3 1 1
fractional abundance (%) 6.15 2.43 7.24 1.15 0.27 1.32 4.80 0.97 4.61 7.78 2.20 3.29 1.96 2.77 1.92 1.20 3.35 3.32 0.43 2.90 0.63 3.69 4.19 1.61 3.09 0.34 0.94 4.31 3.90 4.07 3.11 2.49 1.84 3.19 1.91 0.97 0.86
standard error (±) 1.33 0.83 1.91 0.76 0.36 0.59 1.74 0.75 1.37 2.27 1.07 1.54 1.50 1.60 1.48 0.75 1.47 1.27 0.58 1.19 0.59 1.54 1.83 1.24 1.36 0.37 0.72 1.79 1.81 1.86 1.79 1.35 1.23 1.72 1.69 1.06 1.15
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