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Lay Abstract 
By 2031, the number of people aged 65 and over is expected to nearly double. This 
population shift is concerning for healthcare providers as limited resources become 
increasingly constrained. Resultantly, older adults, the largest consumers of healthcare, 
face longer wait times and reduced quality of care.  

Remote health monitoring is an emerging field aimed at utilizing technology for monitoring 
older adults within their homes. In this thesis, we report a Smart Home platform and two 
indoor positioning systems (IPSs) for tracking resident mobility, the primary predictor of 
falls among older adults.  

For the Smart Home platform, the design methodology and technological features were 
explained. As for the IPSs’, position accuracy of multiple occupants within multiple rooms 
of a residential apartment was evaluated. Upon reviewing literature system cost, 
implementation ease, and scalability, were identified as key metrics for developing an IPS 
for enabling aging in place. Both IPSs performed well, achieving high localization accuracy 
for multiple occupants. 
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Abstract 
 

Activities of daily living (ADLs) are everyday routine tasks which provide insight into the 
physical and cognitive wellbeing of older adults. ADLs are commonly self-reported to 
clinicians, which can lead to overestimation and underestimation of a patients’ functional 
abilities. Remote health monitoring is an emerging field aimed at utilizing technology for 
monitoring ADLs remotely, improving clinical accuracy and enabling older adults to age 
safely within their homes.  

In this dissertation, we report a Smart Home platform and two indoor positioning systems 
(IPSs) – (i) a hybrid Bluetooth Low Energy (BLE) and radar motion sensor system and (ii) 
a hybrid radio-frequency identification (RFID) and infrared (IR) range-finding system for 
tracking occupant mobility, the primary predictor of falls among older adults.  

For the Smart Home platform, the design methodology and technological features were 
explained. As for the IPSs’, position accuracy of multiple occupants within multiple rooms 
of a residential apartment was evaluated. The systems were also evaluated for cost, 
implementation ease, and scalability, which, upon reviewing literature, were identified as 
key metrics for developing an IPS for enabling aging in place. Both IPSs enforced a 
decentralized localization architecture and performed well, achieving high localization 
accuracy for multiple occupants.   
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Chapter 1 

 

Introduction 
 

As the demographics of the global population shifts, health care providers worldwide are 

facing new challenges. With hospitals increasingly reaching maximum capacity, the 

struggle to maintain high quality of care persists at an alarming rate[1]. As of 2014, global 

healthcare costs are increasing at an annual rate of 5.3%[2] and in North America, 17.4% 

of the Gross Domestic Product (GDP) is spent on healthcare.[2] As illustrated in Figure 

1.1, healthcare costs in Canada begin to increase exponentially with age for adults aged 

65 and above.[3] 

 

Figure 1.1 Government health expenditure per capita, by age group, Canada 2015[3] 
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Between 2010 and 2031, the entire baby boomer population, North America’s largest 

demographic, will reach the age of 65.[4] During this period, the number of Canadians 

aged 65 and above is expected to nearly double, leading to soaring healthcare costs and 

increased strain on governments, health care providers, insurance companies and  

healthcare consumers.[2] These increased social and financial challenges underscore a 

need for stakeholders to leverage technology and innovative solutions to improve quality 

of care while reducing burden on caregivers and cost to the healthcare system. 

As strain increasingly weighs down on traditional healthcare institutions, innovative 

methods of monitoring and diagnosing patient health will continue to arise. Priorities will 

include monitoring patient health outside of hospital and clinic walls, and a shift in will o 

understanding patient health within their place of living. For older adults, community 

dwellings such as assisted living and long-term care residences will continue to serve as 

platforms for monitoring and maintaining health of its residents. 

 

Figure 1.2 Living arrangement and sex for the population aged 65 and over, Canada, 

2011[5] 

As depicted in Figure 1.2, the majority of older adults continue to reside in their homes 

as they age. Older adults seeking to maintain independence and safety within their homes 

Males Females 



MASc. Thesis – A. Ianovski; McMaster University –Biomedical Engineering 

3 

 

as they experience aging will require new models of care, supported by technological 

solutions within the existing living arrangements.  

1.2 Activities of Daily Living 

Performance of activities of daily living (ADLs) and instrumental activities of daily living 

(IADLs) are useful metrics in determining physical well-being, cognitive state, and 

independence.[6] ADLs include functional routine tasks such as mobility, dressing, 

washing, and sleeping.[6] IADLs are less fundamental than ADLs, and evaluate clients’ 

abilities to complete complex tasks, such as financial management, communication, and 

health management.[6] Traditionally, performance of ADLs and IADLs are evaluated by 

clinicians such as OTs through visual observation or interviews.[6], [7] Although 

interviews are fast and low-cost to administer, they can suffer from inaccuracies if clients 

over or underestimate their abilities.[6] Visual observation provides clinicians with greater 

insight, however, can take a long time to administer and may be inaccurate if not conducted 

in the clients’ native setting and at the appropriate time.[6] 

1.3 Remote Health Monitoring 

Many older adults prefer to continue living in their homes as they age, citing high level of 

independence, improved personal social networks, greater performance of personal habits, 

and greater confidence as reasons.[8] Health-monitoring technologies embedded in the 

home and worn by residents can enable older adults to extend their length of stay in the 

home, while providing relief to formal caregivers as well as informal caregivers such as 

family members and friends.  

Likewise, there are number of additional benefits in implementing remote health 

monitoring devices in assisted living communities as well. Although living communities 

for older adults vary in staff and resource availability, it is quite common for these facilities 

to experience staff shortages, making it challenging to provide care for a large number of 

residents.[9] In order to mitigate risk for patients that are prone to falls, physical restraints 

such as a bed rails, vests, and straps may be implemented. Restraints have potentially 

negative consequences such as physical harm, psychological harm, and loss of dignity, 

and are consequently minimized.[10] Alternatively, increasing human observation results 

in improved resident safety, but places greater stress on staff and reduces residents’ 

privacy.[9] In more recent years, bed-side alarms such as pressure-sensitive mattresses and 

floor-mats have been adopted by living communities to alert staff if fall-prone residents 

are ambulating or have fallen from their bed. Despite enhancing resident safety, frequent 

false alarms can be burdensome to staff and result in alarm fatigue and complacency.[9] 

However, highly accurate and specific monitoring systems can benefit residents and staff 

by enhancing clinical knowledge, mitigating resident risk, promoting mobility, and 

improving staff efficiency.[9]  
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Sensor technology worn by occupants and embedded innocuously within their residences 

has been shown to effectively monitor health-related ADLs such as mobility, bathing, 

preparing meals, and filling medication dispensers.[11]–[14]  

1.4 Functional Mobility Tracking 

Functional mobility declines with age and is a predictor of cognitive status, psychosocial 

status, and likelihood of slips and falls among older adults.[15] Step count, elevation, 

distance travelled, stride length, gait analysis, sit-to-stand transfer duration, frequency of 

rooms visited, and use of assistive devices such as canes and walkers, are among the 

metrics used for quantifying mobility. As will be discussed in Chapter 2, IPSs can provide 

insight into many of these metrics. 

1.5 Research Focus 

Smart Home technology, which embeds ubiquitous sensors innocuously throughout the 

home and aims to enable older adults to age independently in their homes while 

maintaining safety, reducing stress on caregivers, predicting injuries, and reducing 

healthcare costs. As will be discussed in Chapter 3, remote health monitoring platforms 

and devices for enabling aging in place are being actively developed and evaluated. 

Among the measured conditions is functional mobility, which can be determined from a 

variety of sensor modalities, as will be discussed in Chapter 2.  

The primary goal of our research was the development and subsequent implementation of 

an IPS for a residential setting. We seek to evaluate the strength of our system by the 

following criteria: 

Location Accuracy. In order to provide valuable health-related information to caregivers 

and clinicians, the IPS must accurately determine and store the location of residents. 

Ease of implementation. In order to develop an IPS that will be adopted for consumer use, 

the system must be easily installed within the home. Plug-and-play solutions that function 

directly out-of-the-box are considered ideal while systems that require a complex 

knowledge of RF distribution and a long configuration time should be avoided. 

Multiple rooms. Fusing residents’ location and temporal information provides insight into 

their activities. Occupancy of adjacent rooms can imply very different activities. For 

instance, an older adult who has resided in the restroom for several hours during the night-

time could indicate an emergency event such as a fall, while the same action within the 

adjacent bedroom would indicate4 normal behaviour. Consequently, the IPS must 

accurately determine the occupants’ location for multiple rooms. 
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Multiple residents. As depicted in Figure 1.2, most older adults do not live alone. 

Therefore, the IPS must accurately maintain a high positioning accuracy for multiple 

residents occupying the home. 

Scalability. The size of residential homes and apartments varies. The ideal system would 

not increase in complexity for large homes or community dwellings. 

Cost. In order to reduce overall healthcare costs, the ideal system would implement low-

cost sensor technology.  

Furthermore, we developed a smart home platform for enabling the development, 

subsequent integration and validation of health monitoring devices within the home. The 

smart home platform and features are detailed in Chapter 3. 

1.6 Overview 

Chapter 2. This chapter provides an overview of the different sensor modalities and 

techniques that have been implemented for indoor positioning, as well as their strengths 

and limitations. 

Chapter 3. Activities of daily living are used by clinicians to gain insight into older adults’ 

physical and cognitive status. In this chapter, an overview of techniques for remotely 

monitoring ADLs is provided. In order to support our own research in developing remote 

monitoring technology, a Smart Home platform was designed and implemented. The 

motivation and novel aspects of the home are discussed.  

Chapter 4. In this chapter, the development and subsequent implementation of an IPS for 

monitoring mobility within the home is described. The system integrates Bluetooth Low 

Energy (BLE), ultrasonic (US) range finders, and radar motion sensors to determine the 

direction and identification of multiple occupants in a residential home.  

Chapter 5. A second IPS was developed and implemented. The system integrates Radio 

Frequency Identification (RFID), US range finders, and infrared (IR) range finders to 

determine the direction and identification of people crossing through doorways. The 

strengths and limitations of the hybrid-RFID and hybrid BLE systems are then 

summarized.  

Chapter 6 provides a reflection of the indoor positioning systems developed in this thesis 

as well the future steps that will be taken. 
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Chapter 2  

 

Indoor Positioning Systems 

 

2.1 Introduction to Indoor Positioning Systems 

Global Positioning Systems (GPS) have become ubiquitous within mobile phones and 

other personal electronic devices, leading to the development of healthcare driven location-

based services such as activity tracking and emergency response systems.[1] 

Unfortunately, GPS services do not function well indoors due to their coarse lateral 

resolution. Indoor positioning systems (IPSs) seek to address this problem. IPSs can be 

designed in numerous ways, implementing a wide range of sensor modalities and 

computational techniques to determine the location and identity of indoor occupants. This 

chapter reviews common indoor positioning techniques that have been developed by 

research and industry groups.  

2.2  Pedestrian Dead Reckoning 

The term dead reckoning originated from ship navigation and refers to the calculation of 

one’s relative position using known terms such as initial location, speed and heading 

information.[2] Inertial navigation automates dead reckoning through the implementation 

of inertial measurement units (IMUs) such as gyroscopes, accelerometers and 

magnetometers.[2] A subset of inertial navigation is pedestrian dead reckoning (PDR), 

which combines IMUs with algorithms for describing human gait patterns to track the 

relative position of a person. In PDR, one or more IMUs are worn by the user. Once an 

initial reference point is set, direction, orientation and acceleration data is used to track 

subsequent positions of the user. Benefits of this technique is that PDR does not require 

additional physical infrastructure within a building, reducing implementation complexity 

and installation costs. Also, due to advancements in Micro-Electro-Mechanical System 

(MEMS) technology, these sensors are low cost, have a low footprint, and are ubiquitous 

within modern mobile phones.  

Harle [3] makes the distinction between two subsets of PDR, called Inertial Navigation 

Systems (INSs), and Step-and-Heading Systems (SHSs). The latter tracks the distance and 

heading of the user by implementing algorithms that are specific to human gait patterns, 

while the former uses IMU data to recreate a full 3D trajectory of the sensors.  
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The primary human gait patterns in question for SHS are stance and swing. When a person 

is in the stance phase, their foot is planted firmly on the ground. When the swing phase 

occurs, the foot lifts off the ground to step in a desired direction.[3] There are also transition 

steps such as push-off and foot-down that occur between stance and swing. IMUs collect 

this gait information while attached to the user’s foot or waist, and can alternatively be 

worn on a helmet, or carried by the user in their hand or pocket.[3]–[5] Accelerometers are 

responsible for determining gait patterns, while magnetometers determine the direction of 

the step.  The gyroscope data can be fused with the magnetometer signal to assist in 

determining direction by reducing unwanted noise from magnetic interference from nearby 

infrastructure.[6] 

Reviews of PDR algorithms can be in literature. [3], [7]–[9] To select the optimal algorithm 

for a PDR solution one must consider the IMU placement on the person’s body, the number 

of sensors available on the IMU, walking speeds and versatility of the user and 

computational availability.[9] Filtering and machine learning techniques are also 

implemented to improve accuracy, reduce drift and remove outliers.[3], [7]  

Kang et al developed a middleware for mobile phones, utilizing the device’s on-board 

IMUs.[6] The authors adopted an approach from Weinberg [10] which estimated that step 

length and vertical impact were proportional to one another, allowing for calculation and 

tracking of dynamic step length. The novel algorithm, SmartPDR, was evaluated against 

magnetometer-based PDR and gyroscope-based PDR. The authors demonstrated that their 

algorithm matched with the reference path with an error of less than two metres, for both 

real-time and reconstructed data, and was superior to the other two algorithms, which 

suffered from errors of 10 metres or more.  

Despite accurate readings, PDR algorithms have limitations. The algorithms perform well 

under controlled environments; however, longer temporal experiments with many subtle 

turns increase drift in the position due to cumulative error in the low-cost sensors.[11] 

Furthermore, the algorithms are optimized for sensor hardware, which varies among 

different phone models as well as users’ walking signature. For older adults, this gait 

signature is likely to change over time, which reduces the reliability of the tracking 

algorithm.[7] Another challenge is that PDR systems require the user to wear an IMU at 

all times, which can be undesirable and inconvenient. Lastly, PDR algorithms require an 

initial position, which is not trivial to implement in real applications. 

2.3  Infrared, Ultrasonic, and Motion Sensor Modalities 

Infrared (IR) and Ultrasonic (US) range-finding and motion sensors are a well-documented 

technique for IPS.[12]–[16] Range-finding sensors record time-of-flight (ToF), the time 

that is required for an emitted pulse to reflect off a nearby object and return back to the 

sensor. The distance is then measured as  

 
𝑑 = 𝑐 ∗

𝑇𝑜𝐹

2
 2.1 
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where c is the velocity of the wave.[17] US and RADAR motion sensors use the Doppler 

Effect to detect an observed change in frequency (or wavelength) from a signal reflected 

off of a moving body.[18] For a sound wave emitted at frequency, f0, travelling at velocity, 

c, the Doppler frequency, fd, reflected off a body moving at velocity, v, can be calculated 

as 

 
𝑓𝑑 =

2𝑣𝑓0𝑐𝑜𝑠𝜃

𝑐
 2.2 

where θ is the angle between the moving body and the transit beam.[18]  

Passive infrared (PIR) sensors are another common modality for detecting motion. PIR 

sensors detect the IR radiation emitted from heat-generating bodies. The sensors record a 

profile of the IR spectrum in their field-of-view (FoV), and then emit an electric pulse when 

that profile is disrupted by a sudden change in heat (and IR radiation), as emitted from a 

person or animal in the FoV.[19] 

For motion-tracking based IPSs, sensors are strategically placed within an indoor setting 

and track movement occurring within a pre-determined region. There are a number of 

benefits to these sensors: (i) they do not interfere with communication protocols such as 

Wi-Fi and Bluetooth, (ii) they do not require the users to wear any devices, (iii) they are 

low cost, (iv) compared with camera-based techniques they are able to maintain the privacy 

of the user, and (v) they require less computation power. Not having a wearable device is 

a favourable feature for tracking older adults in their homes since there is no required 

interaction with a device.[20]  

A challenge with these types of systems is that in order to achieve location accuracy with 

high-resolution, a network of distributed motion sensors is required throughout the 

infrastructure. This can accrue high installation and maintenance time and cost. The 

distribution of sensors is also dependent on the layout of the building, so custom planning 

with knowledge of the sensors is required.[12] Another challenge is that motion sensor 

IPSs depend on biometric data, such as height or weight to distinguish between multiple 

occupants within the home.[21], [22] These modalities alone can prove to be unreliable if 

there are multiple residents with similar biometric profiles.[15]  

Hnat et al [15] achieved room-level tracking by monitoring signals from US and PIR 

sensors mounted in doorways. The direction of travel through doorways was inferred from 

extrapolating the change in height, and maximum height was used to identify targets. The 

authors used future observations to weigh and remove ambiguities. The authors detected 

direction with 81% accuracy, and achieved room-level tracking with 90% accuracy.  

Yang et al [23]  divided a mock apartment into a grid-based accessibility map. The floor 

plan was weighted to determine location of occupants. Walls and furniture were applied a 

weight of 0, and all areas in free space were applied a weight of 0.5. Additional weights 

were added to areas where occupants most often frequent, such as the living room couch, 

beds, and a dining room chair. 10 PIR sensors were used to compare two walking 

trajectories of a single person within an apartment using OptiTrack as the ground proof 
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measurements. A heuristic algorithm was used to predict the user’s next step from their 

current position achieving an average distance error of 0.21m.  

2.4  Bluetooth Low Energy 

Bluetooth Low Energy (BLE) is a wireless communication protocol designed for personal 

area networks (PANs) to extend the functionality of modern mobile devices and PCs. 

Unlike its predecessor, Bluetooth, which was designed for high-throughput data transfer 

for applications such as audio streaming, BLE was designed for low duty-cycle 

applications, making it a suitable choice for wearable devices such as activity trackers.[24] 

BLE’s low cost, low energy consumption, and ubiquity in mobile phones and activity 

trackers has made the modality popular for developing research and commercial IPSs.[8], 

[16], [25]–[28]  

A feature of the BLE specification is the received signal strength indicator (RSSI), where 

modules process the power level of a received signal, typically in dBm. The propagation 

loss of radio signals, derived from empirical measurements by Hata [29], has been applied 

to modelling the relationship between distance and received power from BLE 

transceivers.[27], [30] In Equation 2.3, if an initial signal strength, P0, was recorded at a 

distance, d0, away from a reference node, then the received signal strength, P, at distance, 

d, is obtained from 

 
𝑃(𝑑) = 𝑃0 − 10𝑛𝑝 log (

𝑑

𝑑0
) 2.3 

where np, the path loss factor, varies depending on the environment.[11] 

There are a number of different methods for locating position using BLE including 

fingerprinting from received signal strength (RSS), triangulation, and proximity analysis 

through hot-spotting. 

2.4.1. Fingerprinting 

Fingerprinting is a localization technique in which a network of stationary BLE reference 

nodes are dispersed across a building’s infrastructure and an offline radio map is created 

by recording the RSS of mobile BLE nodes at known positions.[8] User position is 

identified in the online phase, where real-time RSS values are collected, converted to 

distances using Equation 2.3, and fit to the reference dataset using algorithms such as 

least-square, k-nearest-neighbour (kNN), support vector machines, and neural 

networks.[8], [31] Jianyong et al. used this technique along with Gaussian filtering in a 

single rectangular room and achieved a spatial localization error of 2.5 m or less with a 

cumulative probability of 1.[27] 

One of the challenges in implementing fingerprinting is the random fluctuations in RSS 

values caused by the orientation of the radios, reflections from obstacles, and interference 

with radio signals.[31] Furthermore, training datasets can become obsolete when the online 

and offline conditions vary significantly, such as when furniture is moved, or many 

occupants are present at once.  
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2.4.2 Trilateration 

Trilateration is a trigonometric technique where signals emitted from three or more 

reference nodes, termed beacons, at known locations intersect to identify the unknown 

location of a mobile node.[32] Figure 2.1 depicts this geometric technique, where 

reference nodes P1, P2, and P3, assumed to be located on the same vertical plane, are located 

at coordinates (x1,y1), (x2,y2), and (x3,y3), respectively, and the target mobile node, A, is 

located at coordinate (xA, yA). The distance between P1, P2, and P3 and the mobile node, A, 

are r1, r2, and r3, respectively.  

 

The radius, ri, between A and reference node, Pi, can be calculated from the RSS values 

and Equation 2.3. It can be shown that the coordinates (xA, yA) can be found from the 

following equation 

 𝑟𝑖
2 = (𝑥𝐴 − 𝑥𝑖)

2 + (𝑦𝐴 − 𝑦𝑖)2  2.4 

 

where the number of reference points, 3 ≤i<n-1. [32]  

  

r1 r2 

r3 

P1 P2 

P3 

A 

Figure 2.1 2-dimensional trilateration technique implemented for indoor localization. 

The relative position of mobile node A is calculated from a minimum of three reference 

nodes, P1, P2, and P3. 
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For three reference nodes, Cotera et al [33] show that if P1 is set as reference coordinate 

(0,0), P2 is set as coordinate (x2,0), and P3 is then coordinate (x3, y3), then the coordinates, 

(xA, yA), of mobile node A can be calculated as 

 
𝑥𝐴 =

𝑟1
2 − 𝑟2

2 + 𝑥2
2

2𝑥2
 2.5 

 
𝑦𝐴 =

𝑟1
2 − 𝑟3

2 + 𝑥3
2 + 𝑦3

2 − 2𝑥3𝑥𝐴

2𝑦3
 2.6 

 

with respect to node P1. When there are more than three mobile nodes present, 

multilateration can be applied through least squares fits.[11] 

To evaluate a trilateration algorithm, Röbesaat et al mounted eight BLE beacons in a single 

corridor.[11] A user carrying a mobile phone walked a predetermined path, collecting RSS 

values from nearby beacons. The path was then reconstructed and a mean accuracy of 0.73 

± 0.22 m was achieved.  

In wide rooms, where users are not in close proximity to walls, there is a challenge in 

ensuring that an entire area is covered by at least three beacons at all times. This would 

require a large quantity of beacons and long installation time to ensure that proper coverage 

requirements are met. For such a system, positions are not calculated in real-time, which 

would be required for identifying potentially health-risk events or fusing with other sensor 

activity.  

In general, despite accurate measurement in single-room environments, upon reviewing 

the literature, a case of multi-room localization could not be found. The reflection, 

attenuation and transmission of the 2.4 GHz radio signal through walls can create false 

position readings.[34] Furthermore, a case of trilateration for multiple people in a single 

space could not be found. 

2.4.3 Proximity 

Proximity systems are the simplest implementation of BLE for indoor positioning. A 

mobile BLE transceiver is worn by the occupant and used to locate nearby BLE beacons. 

Although its resolution is coarse, its ease of implementation and low cost increases its 

adoptability. In [35], Han et al installed two BLE beacons in two adjacent rooms. Threshold 

RSS values were used to distinguish between the locations of two users wearing mobile 

BLE modules. After three days of collecting data, the system achieved a mean room-level 

accuracy of 59 ± 6% for reading correct messages and 96 ± 1% for time spent in accurate 

rooms.  
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2.5 RFID 

In the electromagnetic (EM) spectrum, the radio-frequency (RF) band, extending from 20 

kHZ to 300 GHz, is largely responsible for wireless communication. One subset of this is 

radio-frequency identification (RFID), which uses RF readers to detect the presence of RF 

tags. There are three types of RFID tags: passive, active, and semi-passive. Passive tags 

are one of the most common implementations of RFID since they do not require a power 

source and are inexpensive to manufacture. For passive systems, a RF pulse is emitted by 

the reader. If a tag exists within the scanning radius, then the tag’s ID and data is collected 

and processed by the reader. For active systems, the tags are battery powered and 

periodically emit a signal.[36] Although they are more costly than passive systems, active 

tags have a number of advantages such as increased range, ability to scan multiple tags at 

once, and lower power requirements from the reader.[36] Semi-passive tags behave 

similarly to passive tags, but include a built-in battery to increase range and signal strength.  

The primary frequency bands used for RFID are low-frequency (LF), high-frequency (HF), 

and ultrahigh-frequency (UHF). [36] Each band and their respective frequency range and 

application is shown in Table 2.1 below.[36], [37] 

Table 2.1 Radio frequencies and applications of common RFID transceivers. 

Band  LF  HF  UHF 

Frequency  121-131 kHz  13.56 MHz  300 MHz-3GHz 

Application  
Animal 

tagging 

 Low-range, 

retail 

 Fast data transfer, 

warehouses, races 

 

The most common RFID positioning techniques are based on temporal measurements,[36] 

such as time-of-arrival (ToA), time-difference-of-arrival (TDoA), and angle-of-arrival 

(AoA). 

 

2.5.1 Time-of-Arrival 

ToA algorithms are a form of trilateration. RSSI-trilateration, discussed in Section 2.4.2, 

differs from ToA-trilateration in its method for calculating distance. Rather than 

calculating distance from RSS measurements, the detection radius, shown in Figure 2.1, is 

calculated from the recorded absolute travel time of a message transmitted from a tag to a 

reader, as described in Equation 2.7.  
 

 𝑟𝑖 = 𝑐 ∗ 𝑡𝑡𝑟𝑎𝑣𝑒𝑙𝑖
 2.7 

Because measuring the ToA requires synchronization between the tags and readers, active 

systems are most commonly implemented.[38] This synchronization requirement increases 

the sophistication of the algorithms and the computation complexity. Alternatively, 

roundtrip ToA can be implemented for passive tags, which does not require 

synchronization between tags and readers.[36] Synchronized readers record the time that a 
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RF pulse is emitted and a tag ID is received. Equation 2.8 is then used to measure the 

radius of detection. 
 

 𝑟𝑖 = 𝑐 ∗ (𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑖
− 𝑡𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛) 2.8 

 

Lee et al[39] validated a ToA RFID system in a construction site. With the target tag 

mounted to their helmet, a participant completed a predefined path with no obstacles 

between themselves and three RFID antennas, accomplishing an average localization error 

of 86.50 ± 63.62 cm. The test was then repeated in a more complex environment, with a 

greater number of obstacles between the target and the antennas. To overcome errors, an 

assistant tag, a virtual reader of known location and in line-of-sight of the target, was 

implemented. Despite greater obstacle interference, the system’s performance improved, 

accomplishing a localization error of 44.97 cm ± 34.44 cm. 

 

2.5.2 Time-Difference-of-Arrival 

TDoA algorithms employ multiple RFID readers to record the difference in received 

detection times. Detection synchronization is required between readers, but is not required 

between tags and readers. Unlike ToA, the time of travel does not need to be known, 

instead, only the received signal times at the readers are required. Fang et al described how 

to estimate position from an intersection of hyperbolic curves.[40] The hyperbolas, 

achieved from TDoA measurements are described in Equation 2.9 where ti and tj are 

arrival times for reader i and j, respectively, located at positions (xi, yi) and (xj,yj), 

respectively. A diagram of the hyperbolic curves are shown in Figure 2.2.[41]  

 
𝑟𝑖𝑗 = √(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 − √(𝑥𝑗 − 𝑥)

2
+ (𝑦𝑗 − 𝑦)

2
= 𝑐(𝑡𝑖 − 𝑡𝑗) 

2.9 

 

Figure 2.2 Hyperbolic curves employed to estimate position in TDoA localization 

algorithms. 
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2.5.3 Angle-of-Arrival 

The AoA is defined as the angle between the propagation direction of the tag and the 

direction of the reader. The simplest approach to AoA measurements is derived from 

measuring the phase difference of a received signal from two or more reference antennas, 

as described in Equation 2.10, where θ is the AoA, Δϕ is the phase difference of the 

incident wave, λ is the wavelength of the signal, and d is the distance between antennas.[42] 

These antennas may be two or more different readers, or a single reader with an antenna 

array. 

 
𝜃 = arcsin (

Δ𝜙 ∙ 𝜆

−2𝜋𝑑
) 2.10 

 

ToA, TDoA, and AoA measurements are prone to non-line-of-sight (NLOS) error. This 

error occurs because the above equations assume that measurements are captured from the 

shortest distances between the tags and reader. In reality, the signal may reflect off of 

nearby objects and reduce the reliability of distance measurements. 

2.6 Wi-Fi 

 

The techniques used for Wi-Fi IPSs are identical to the techniques used for BLE and RFID 

systems. Residents wear a Wi-Fi module, or more commonly, a mobile phone, and their 

location is determined using one of the aforementioned techniques. One advantage for 

choosing Wi-Fi as a positioning modality is its ubiquity in homes. However, homes 

commonly have only one wireless router, whereas these techniques require two or more. 

Furthermore, knowledge of the RF transmission must be known to determine the location 

of the routers. 

 

2.7 Hybrid Systems 

Despite achieving low localization error, the indoor positioning systems described in this 

chapter have varying limitations. For instance, the deployment complexity of non-inertial 

indoor positioning systems has been summarized by Shi et al[41] and shown in Figure 2.3.  
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Figure 2.3 Deployment complexity and accuracy of non-inertial based IPSs, summarized 

by Shi[41]. 

Wang et al[7] summarize a number of key factors related to the performance and 

adoptability of indoor positioning systems, as summarized in Table 2.2. 

To overcome some of these limitations, researchers have developed hybrid IPSs by 

combining different sensor modalities. For instance, Röbesaat et al[11] developed an IPS 

based on Bluetooth trilateration fused with PDR. The group developed a mobile phone 

application which analyzed IMU data and Bluetooth RSS data from eight nearby beacons. 

Fusing the trilateration and PDR paths with a Kalman filter, the authors achieved a 

measuring accuracy of 0.82 m. The group showed that by fusing PDR with trilateration, 

the sensor drift, inherent in low-cost PDR systems, was reduced. Furthermore, this 

technique no longer required PDR systems to include the user’s initial position. In another 

study, Azghandi et al[43] combined low-cost PIR sensors with costly RFID readers. The 

group investigated cases when two or more people were present in an apartment. Using 

ceiling-mounted PIR sensors, the participants’ trajectories were estimated, and crossed-

paths were disambiguated using RFID proximity. Based on their results, the group 

developed a tree-based architecture for optimizing the position of RFID readers, thus 

reducing the cost of the system.  
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Table 2.2 Comparison of parameters, advantages, and disadvantages of IPSs by 

Wang[7]. 

Technology Measurement 

Methods 

Suitable 

Environment 

Accuracy Extra 

Device 

Power Cost Advantages Disadvantages Examples 

RFID RSS, 

Proximity 

Indoor 1-3 m Tag Low Moderate Moderate 

cost; high 

accuracy 

Positioning 

coverage is 

limited; extra 
devices 

Cricket[44]; 

SpotON[45]; 

RADAR[46] 

UWB TOA; TDOA Indoor 6-10 cm Tag Low High Excellent 

accuracy; 

effectively 
passing 

through 
obstacles 

High cost; short 

range; NLOS 

problems 

Ubisense 

[47] 

Dart[48] 

WiFi RSS Indoor 1-5 m Mobile 

Phone 

High Low Reuse 

existing 

infrastructure
; low cost 

Fingerprinting 

requires 

recalculation 

Nibble[49] 

Wayes[50] 

PDR IMUs Indoor or 

outdoor 

1-5 m Mobile 

Phone 

High Low No 

additional 
hardware 

such as 

beacons 

Sensor drift SensorTile[5

1] 

BLE Proximity; 
RSS 

Indoor and 
Semi-outdoor 

1-5 m Mobile 
Phone 

Low Low Low 
infrastructure 

cost; low 

power 
consumption 

Limitation in 
user mobility; 

low accuracy 

Estimote[28] 

Acoustic ToA; TDOA Indoor 0.03-0.8m No Device Low Moderate No 

requirement 
for LOS; 

does not 

interfere with 
EM waves 

Cannot 

penetrate solid 
walls; loss of 

signal due to 

obstruction; 
false signals 

because  of 

reflections 

Active 

Bat[52] 
Sonitor[53] 

 

2.8 Conclusion 

A literature review of the methods for performing indoor localization was conducted. 

Although not an exhaustive summary, this review provided insight into important 

characteristics of an IPS, including accuracy, cost, complexity, ease of implementations, 

and adoptability. The radio and IMU-based systems discussed demonstrated their strengths 

and limitations. Most recently, development of hybrid IPSs seek to improve location 

accuracy at the cost of increasing system complexity. In order to develop IPSs to enable 

aging in place, the optimal trade-off of these functional and hardware requirements must 

be further investigated.  
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Chapter 3  
 

Smart Home Technology for Enabling Aging in Place 

3.1 Introduction to ADLs and Their Clinical Use 

Activities of daily living (ADLs) are the everyday routine tasks that are instrumental to 

people’s lives. They include fundamental independent activities such as bladder 

management, sleeping, transferring, mobility, self-care activities such as maintaining 

hygiene, washing, cleaning, and getting dressed, as well as other integral human activities 

such as preparing meals, eating, and sexual activity.[1] From Pedretti’s Occupational 

Therapy, a list of ADLs and Instrumental Activities of Daily Living (IADLs) is shown in 

Table 3.1.[1] IADLs are more complex than ADLs and are a good measure of one’s ability 

to execute cognitively challenging tasks in less predictable environments, such as 

communicating with others. 

Table 3.1 List of ADLs and IADLs used by clinicians to identify older adults’ cognitive 

and physical abilities.[1] 

ADLs  IADLs 

Functional mobility  Care of others/pets/child rearing 

Self-Feeding  Communication management 

Eating  Community mobility 

Dressing  Financial management 

Personal hygiene and grooming  Health management and maintenance 

Bathing and showering  Religious observance 

Bowel and bladder management/toilet 

hygiene 

 Safety and emergency management 

Sexual activity  Meal preparation and cleanup 

Sleep   

 

Patients’ performance of ADLs are measured by clinicians, such as occupational therapists 

(OTs), and are used for evaluating physical abilities and independent function. These 

evaluations are used to prescribe interventions such as therapeutic exercises, caregiver 
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assistance, or assistive equipment. Performance of ADLs also indicate a clients’ mental 

well-being and contribute to patients’ sense of independence and self-esteem.[1]  

One method for determining patients’ performance of ADLs is through clinician 

interviews. However, this method is often found to be insufficient since patient bias, 

confusion, self-efficacy, or memory loss may lead to inaccurate reporting.[1] It is therefore 

important for clinicians to additionally observe patients’ ADLs and grade their abilities 

accordingly. This is not trivial since the optimal method for performing an ADL assessment 

is in the patients’ natural setting at the usual time of occurrence.[1] For instance, a patient’s 

morning routine should be observed within their home upon waking up. Simulating these 

tasks in an artificial environment, such as a clinician’s office, many hours later, is sub-

optimal as some patients will not be able to transfer their abilities over.[1] Furthermore, 

ADL evaluations determine patients’ performance at one specific time. For many patients, 

performance may vary over time, depending on the patient’s mood or other health factors. 

Longitudinal observance of ADLs gathers information from many temporal nodes, 

providing a richer understanding of patients’ abilities. 

3.2 Sensor Technology for Detecting ADLs  

Installing sensors within a patient’s residence resolves some of the challenges associated 

with OT evaluations. Sensors embedded in the home or worn by residents provide a 

continuous measure of ADL performance longitudinally. In order to evaluate patients, The 

Canadian Assessment of Daily Living[2] requires physicians to observe patients’ mobility 

and locomotion abilities. In this assessment, patients demonstrate ADLs such as bed 

transfers, toilet transfers, walking indoors, climbing stairs, walking outdoors, and using 

assistive devices. By implementing sensors within the home, these tasks can be conducted 

remotely by patients, allowing for the assessment to occur within the person’s natural 

setting, reducing travel time for clinicians, improving reliability, tracking progression of 

physical rehabilitation or degradation, providing fine-grained data, removing observation 

bias, and understanding long-term behaviour and abilities.  

3.2.1 Mobility 

Walking ability is a very important feature to evaluate, as it has been shown to be the 

primary predictor of falls among older adults.[3] Besides causing painful acute injuries, 

such as fractures, falls can lead to increased life-changing consequences for older adults, 

as their likelihood to repeat a fall increases after their first incidence, significantly reducing 

their independence. Approximately one-third of older adults experience a fall every year, 

and for community-dwellers, 50-60% of these falls will occur within their homes.[4] In 

one study with 1465 respondents, 32.5% of participants fell while undergoing physical 

tasks such as bending, carrying objects, or completing chores.[3]  

In order to detect changes in walking ability, research groups developed and evaluated 

sensors and electronic devices aimed at tracking gait characteristics remotely. [4]–[6] 

Accelerometer measurements have shown to accurately determine walking characteristics 

such as stride frequency, walking speed, stride length, and symmetry, which have been 

strongly correlated with predicting falls of older adults.[4]  
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Increasing the number of inertial measurement sensors worn by residents can increase 

measurement sensitivity for tracking changes in walking ability. One study evaluated a 

body-suit with 17 mounted inertial measurement sensors and collected data from 

participants conducting a 6-minute walking test.[6] Clinically validating the suit with a 

group of cancer patients undergoing chemotherapy, the sensors quantitatively reported 

fatigue from the patients’ postures.  

Similarly, pressure sensors embedded within sneaker insoles have been demonstrated for 

remotely determining walking ability.[5] Clinically validating the technology with stroke 

survivors, the sensor readings were compared with the traditional Rivermead Mobility 

Index (RMI). Linear regression identified the heel duration standard deviation and forefoot 

vs. heel maximum pressure standard deviation as statistically significant features in 

predicting the RMI score. 

3.2.2 Self-Care 

The Rivermead ADL Scale[7], [8] considers independent management of self-care 

activities as the most important indicator of a patient’s recovery. The assessment suggests 

that washing, brushing teeth, dressing/undressing, and lavatory use are among some of the 

top predictors for determining functional ability. Among older adults, self-care and self-

efficacy have been shown to be closely correlated, and are closely linked with overall well-

being.[9] Cognitive impairment has also shown to be closely linked to performance of 

ADLs and IADLs such as showering and completing housework.[10]  

Different sensor modalities have shown to detect self-care activities. For instance, Yin et 

al[11] retrospectively analyzed data from a wireless network of sensors tracking resident 

behaviour in a Smart Home. By analyzing the time series data of temperature and humidity 

readings in the bathroom and kitchen, researchers identified that natural background 

fluctuations correlated to activities such as bathing and cooking, respectively. Fusing 

different sensor data was also found to be useful. For identifying cooking activities, the 

humidity/temperature readings were combined with temporal data and measurements from 

a power meter connected to the stove. 

Motion sensors fused with temporal data estimated activities such as making meals.[12] 

Fortin-Simard et al[13] explored the recognition of ADLs in the kitchen based on the 

Naturalistic Action Test (NAT), a clinical assessment of everyday cognitive activities. 

Implementing RFID antennas throughout the kitchen and tagging objects such as cups and 

plates, the researchers simulated 5 kitchen activities: making coffee, preparing a sandwich, 

making tea, making spaghetti, and preparing a bowl of cereal. Using a Bayesian network, 

the group achieved an activity recognition rate of 92.8%. Similarly, Jérémy Lapalu et al[14] 

implemented a variety of sensors such as RFID tags, pressure mats, localization systems, 

and audio devices. A participant conducted scenarios such as cooking, toileting, reading a 

book, and sleeping in the bedroom. An unsupervised clustering algorithm called the 

Flocking model was used and achieved a cluster purity of 92%.  
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3.2.3 Transfers 

Transfers, the phase in which a person transitions between sitting, standing, or lying 

positions, are ADLs that are performed dozens of times in a single day.[15, p.] Parameters 

associated to transfers are important to track as they can be linked to fall risk, mobility, 

physical decline and other age-related pathologies.[15], [16] These events occur frequently 

every day and are a promising variable to record and track longitudinally.  

A number of different assessments have been evaluated to quantify transfers. Among them 

is the Timed Up and Go (TUG) test which measures the time it takes to stand up from a 

chair, walk 3 metres, turn around, return to the chair, and sit back down. The test was 

designed to assess fall risk but has also been used to monitor the progression of diseases 

including Parkinson’s disease, Alzheimer’s, and multiple sclerosis. Patients are asked to 

complete the test at a comfortable pace, measuring the time taken to complete the entire 

test with a standard stop watch. Research has been conducted on using IMUs to effectively 

monitor the TUG test and capture the duration of all phases, providing more fine-grained 

precision and insight than the traditional method. Research on sensor-based TUG tests have 

shown to identify frailty, correctly classify at-risk fallers, and predict symptoms of 

Parkinson’s disease.[17]–[20]  

The sit-to-stand (SiSt) duration has been identified as “a representative measure of a 

person’s status of physical mobility”.[21] Wearable IMU sensors successfully determined 

the vertical acceleration and power associated with transferring from a sitting to standing 

position.[16] Less intrusive floor-mounted force plate sensors have also been used to 

determine the SiSt duration.[16, p.], [21] Other non-intrusive anonymous sensors such as 

PIR motion sensors and magnetic door contacts have been fused with temporal data to 

measure transfer durations indirectly.[12] 

3.2.4 IADLs 

IADLs are tasks that are less predictable than traditional ADLs and require greater 

cognitive processing. These include the ability to use a telephone, shop, prepare food, 

maintain housekeeping, use transportation, adhere to medication, and handle finances.[22]  

For instance, maintaining household tasks such as cleaning and preparing meals requires 

many different physical and cognitive abilities. As adults age, a reduction in strength, 

memory, and vision increases the difficulty to perform household tasks. The cognitive and 

physical state of older adults has been linked to their ability to maintain the demands of 

their environment[23]–[25]. Poor maintenance of an environment can also place a greater 

risk on older adults, as misplacing objects can lead to a less predictable environment and 

potentially introduce hazards that lead to falls.[26] Further study into older adults’ ability 

to maintain their environment can inform us on how to develop environments that are 

optimized for aging and allow older adults to manage their environment independently.[26]  

The Lawton IADL Scale is a questionnaire that measures the ability to perform IADLs. 

Although the Lawton Scale is simple to administer, it is determined through self-reports. 

Patient bias can skew the results to either under or overestimate ability. Therefore, remotely 

monitoring these tasks can greatly improve the accuracy of determining adults’ 

performance. 
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In one study, IADLs such as telephone usage, food preparation, eating, filling a medication 

dispenser, writing a birthday card, writing a cheque, selecting an outfit and cleaning were 

detected in a smart apartment featuring an array of different sensor technologies.[27] 

Among these were motion sensors, temperature sensors, water usage sensors, stove usage 

sensors, and telephone usage tracking. It was found that an unsupervised method was able 

to correctly match 87.5% of sensor events to their correct clusters.  

Another important IADL is adherence to medication. In the United States, approximately 

87.7% of older adults are prescribed medication.[28] Drug noncompliance among older 

adults reportedly ranges between 40%-75% and can lead to adverse health effects such as 

worsening disease, increased hospitalization and increased therapy dosages leading to 

more severe side effects.[29], [30] Adherence to medication can provide insight into a 

patient’s cognitive ability and development of age-related diseases such as Alzheimers.[31] 

Traditional methods of measuring adherence, such as pill-counting or patient testimonials, 

have shown to be inaccurate.[32] Alternatively, electronic pill management solutions such 

as the Medication Event Monitoring System (MEMS ®) by Aardex Group[33], 

MedTracker[34], and others[27], [30] have shown to be more robust than the current 

clinical gold-standard. Electronic solutions provide fine-grained insight into the date and 

time that pills are administered, specify days when pills are not adhered, and prompt 

patients to improve adherence. Providing a low-adhering patient with feedback about their 

pill usage was shown to improve compliance.[35] One study showed that a context-aware 

pill monitor combined with wearable and home sensors improved adherence from 68.1% 

to 92.3%.[27] 

 

3.3 Smart Homes for Detecting ADLs 

Research groups have recognized that the home is an advantageous setting to measure older 

adults’ cognitive and physical abilities. Smart Home projects aimed at monitoring health 

are summarized in Table 3.2.  
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Table 3.2 Researchers found in literature developing Smart Homes for remotely 

monitoring the health of older adults. 

Project Activities Sensors Method Reference 

LIARA Mobility Passive RFID Trilateration and Bayesian 

Network 

[13] 

Preparing meals, 

reading a book, 
toileting, sleeping in 

the bedroom 

Passive RFID, 

pressure mats, 
audio/video devices 

Trilateration and Bayesian 

Network. 
Flocking model 

[13], [14] 

Smarter Safer 
Homes 

Mobility Motion Binary sensors [36] 
 

Bathing Motion, temperature, 

humidity sensors 

Markov chains, clustering [11],[36] 

 

Device Usage Circuit Monitoring  Markov chains, clustering [36] 
 

Preparing and eating 

meals 

Circuit Monitoring, 

reed switches, 

acoustic sensors 

Markov chains, clustering [36]  

 

Bed transfer and sleep 

quality 

Accelerometer, 

motion 

Markov chains, clustering [36] 

 

Smart Condo Location BLE, motion, RFID Confidence maps [37], [38] 

Tiger Place Mobility Motion, Stove-
monitoring, pressure,  

Activity density map [39], [40] 
 

 Gait Optical fiber Low-pass Filter [41] 

AILISA Mobility, eating, 

washing, grooming, 
sleeping 

Motion sensor, 

magnetic door 
sensors 

Activity sequence [12] 

 

CASAS Smart 

Home 

Filling medication 

dispenser, watching 
DVD, watering plants, 

conversing on phone, 

writing birthday card, 
preparing meal, 

cleaning, and selecting 

outfit 

Motion, temperature, 

water use, stove use, 
phone use, switch 

sensors on doors and 

cabinets, pressure 
sensors on items  

Clustering [27] 

dwellSense Medication adherence  Snap action switches, 
accelerometers 

Temporal visualization of 
sensor events 

[35], [42] 
 

 Coffee making Contact sensors Temporal visualization of 

sensor events 

[35] 

 Phone use Phone decoding 

circuit 

Temporal visualization of 

sensor events 

[35] 

 

Table 3.2 is not an exhaustive list of all smart home research projects, but provides good 

insight into the technologies and platforms that have been used for monitoring many health 

related ADLs.   
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3.4 Our Smart Home Platform 

Our research group constructed a smart home laboratory in a residential house to develop 

and evaluate devices aimed at improving the well-being of older adults, providing relief 

for caregivers and generating valuable information for clinicians. 

The smart home laboratory was developed to facilitate short-term and long-term research. 

As technologies improve and new standards are introduced, it is important that the home 

can be modified with ease to incorporate future innovation and replace obsolete 

technology. Thus, the home platform was designed to be modular, in order to embed 

various devices and technologies, both foreseen and unforeseen.  

The primary objective of this project was to create a collaborative environment for a range 

of research faculties at McMaster University, external researcher, industry partners, 

healthcare professionals, policy makers, and healthcare utilizers, dedicated to improving 

the quality of life for older adults. This objective involves developing innovative 

technology and gaining an understanding of the behaviour of users, caregivers, and 

clinicians utilizing a smart home. 

3.4.1 Smart Home Features 

The smart home platform is represented in Figure 3.1. An electrical raceway was installed 

along the perimeter of the walls in order to mount, power, provide a communication 

channel for sensors through a Cat6 and an AC power line. As IoT devices continue to 

populate the marketplace, this raceway will provide the communication and power required 

for enabling such devices, particularly power-over-Ethernet (PoE) devices. The modularity 

of the raceway allows for implementation of other wireline standards such as fibre optic 

cables. Another foreseen wireline technology is low-voltage DC power and 

communication, which has become increasingly popular in controlling lighting and devices 

in commercial buildings. This also enables DC microgrids which use DC power sources 

such as solar panels or batteries to power DC devices such as LEDs, improving energy 

efficiency. 
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Figure 3.1 A representation of our Smart Home platform for developing and evaluating 

remote sensing technology for enabling aging in place.  

Electrical tracks were installed along the ceilings to provide power for lighting and sensors. 

Ceiling mounted sensors included RFID antennas, Bluetooth transceivers, motion sensors, 

and cameras.  

The washroom is an important area to monitor since ADLs such as washing, grooming and 

toileting occur there. A custom toilet with an accessible drain was implemented in order to 

develop a smart toilet monitoring system. The system is intended for monitoring toileting 

frequency and evaluating remote point-of-care devices for monitoring urinary tract 

infections (UTIs) and kidney function automatically. A force plate at the base of the toilet 

is used to automatically monitor adult’s sit-to-stand time, which has been linked with 

walking ability, and monitor changes in weight. 

A smart thermostat system along with a high velocity HVAC system was used to accurately 

and quickly set precise temperature zones within the house. This is intended to determine 

the effects of temperature and humidity environment on aging, in order to establish the 

optimal setting for aging within the home. 

The indoor positioning systems (IPSs) discussed in Chapters 4 and 5 were installed in 

rooms throughout the home. Although IPSs did not feature the use of invasive sensors such 

as cameras, these would be installed along the ceiling track to determine the accuracy and 

reliability of the IPSs, as they provide accurate ground-truth measurements. To supplement 

the IPSs, a commercial smart-lock was implemented within the home in order to identify 

when residents enter and leave the home, as well as to know if they are receiving caregiver 

assistance.  

An energy monitoring system was installed in the electrical panel of the home. The system, 

along with individual smart outlets, are used to identify ADLs. For instance, stove use and 

laundry machine use can be indicative of cooking and completing housework, respectively.  
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The basement of the house has been retrofitted into an office setting to allow researchers 

to monitor participants simulating various ADLs throughout the day and night, without 

interfering in the studies. 

3.5 Conclusion 

As the population continues to age, many older adults seek to stay in their homes where 

they have a high level of independence, a social network, performance of personal habits, 

and confidence. Health-monitoring technologies embedded in the home and worn by 

residents can enable older adults to extend their length of stay in the home, while providing 

relief to formal caregivers as well as informal caregivers such as family members and 

friends. A “smart home” can monitor residents and collect, store, analyze, and share health-

related information by means of utilizing innocuous cost-efficient sensors while residents 

perform ADLs. A smart home can also provide feedback for the resident through automatic 

control of appliances and living conditions, such as temperature and lighting, to enhance 

quality of life.  

In this chapter, sensors for monitoring health-related ADLs and IADLs were reviewed. The 

Chapter also provided a description and analysis of a smart home laboratory in a residential 

home, which was constructed to develop, validate, and improve devices aimed at 

improving the well-being of older adults, providing relief for caregivers, and generating 

valuable information for clinicians. 

Furthermore, research into understanding the interaction between older adults and their 

environment can inform us on how to develop environments that are optimized for aging 

and allow older adults to manage their environment independently.[26] 
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Chapter 4  
 

Hybrid Bluetooth Low Energy Indoor Positioning 
System 
 

4.1 Introduction 
As the baby-boomer population, North America’s largest demographic, continues to enter 
late adulthood, strain on healthcare systems and governments will continue to increase. As 
discussed in Chapter 1, healthcare costs significantly increase as adults reach older age. 
New models of care are leveraging wearable health monitoring technology to diagnose 
stages of aging outside of traditional healthcare institutions. Places of living serve as 
promising platforms to host technology for monitoring health related activities of daily 
living (ADLs) such as mobility, which provides insight into cognitive and psychosocial 
status, as well as predicts falls, which can significantly reduce quality of life of older adults. 

Mobility can be categorized as community mobility and functional mobility. Community 
mobility, which includes outdoor activities such as walking, bicycling, driving and other 
modes of transportation[1], has been well documented for monitoring with commercial 
GPS-enabled devices such as smart phones and wearable activity trackers.[2] Functional 
mobility describes the motions required to complete ADLs such as standing, bending, 
walking, and climbing movements and is a strong predictor of falls, most of which occur 
within homes.[3], [4] Due to short travelling distances, GPS-enabled devices do not 
provide the required resolution for monitoring functional mobility within the home.  

In this chapter, the development and subsequent implementation of an indoor positioning 
system (IPS) for monitoring mobility within the home is described. The system integrates 
Bluetooth Low Energy (BLE), ultrasonic (US) range finders, and radar motion sensors to 
determine the direction and identification of people crossing through doorways.  

4.2 Doorway Monitoring Systems 
Doorway monitoring systems, which are a subset of IPSs, identify two characteristics of a 
person travelling through a doorway – their identification and direction of travel.[5] System 
implementation is limited to the doorway of a home, achieving room-level accuracy and 
providing insight into ADLs such as sleeping patterns, social interactions, grooming, 
toileting, and eating, among others. Doorway systems benefit from deployment ease and 
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short installation time since sensor placement and distribution does not require planning or 
expertise to attain optimal coverage. This can reduce the number of sensors and the overall 
system cost. 

4.3 Materials and Methods 
As discussed in Section 2.3, motion sensor based IPSs depend on biometric data to identify 
residents. This becomes increasingly challenging to track when multiple residents have 
similar biometric characteristics. To address this issue, we implemented a hybrid doorway 
monitoring system consisting of anonymous motion sensors fused with eponymous BLE 
transceivers. Deployment ease is further improved as the doorway system does not 
implement machine learning techniques required by traditional BLE IPS systems. For 
instance, IPS techniques such as trilateration require offline radio maps. Producing radio 
maps requires multiple users to complete trajectories throughout a building. This is a time 
consuming process which must be repeated when objects, such as furniture, are relocated 
or removed. This is not required in our system, enabling it to be quickly installed and setup 
as plug-and-play. Furthermore, the system computes location locally at each doorway 
node. This decentralized approach improves scalability since computation time and 
complexity is independent of the number of sensors deployed and a server application is 
not required to store the relative position of each doorway. The resolution of doorway 
system can be further improved by creating “virtual doorways” to monitor ambulation in 
corridors. 

Motion sensors (radar and PIR) and range-finders (IR and US) were characterized to 
determine the optimal modality for identifying direction of travel through the doorway. 
BLE transceivers were attached to doorframes and worn by volunteers to identify people 
crossing the doorway. The optimal transmission power and thresholds for the BLE 
transmitters were determined to discriminate between multiple people residing in the same 
room. The sensor system was then combined to identify multiple residents within multiple 
rooms in the home. 

4.3.1 Direction Sensor Selection 

A resident’s direction of travel was determined through the implementation of anonymous 
motion sensors. By supplementing numerous costly eponymous radio transceivers with 
inexpensive anonymous motion sensors, the overall system cost is reduced. In order to 
determine the optimal sensor modality for detecting the direction of travel, four different 
sensor modalities were evaluated. Key metrics for the radar, PIR, ultrasonic range-finding, 
and IR range-finding sensors were characterized.  
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4.3.1.1 Ultrasonic Range Finders 

The detection angle of a digital US sensor (DFRobot URM37 V4.0, 40 kHz) was evaluated 
by placing a white box (dim 9.4*10.4*5.2 cm) at varying discrete angles (0-30o, with 15o 
intervals) and distances (5-400 cm, with 5 cm intervals) from the sensor in a laboratory 
environment as shown in Figure 4.1. An Arduino Uno microcontroller was used for data 
acquisition. The experiment was repeated five times at each angle. The actual distance, 
average measured distance, and standard deviation are shown in Table 4.1 and Figure 4.2.  

                         

 

Figure 4.1 Experimental setup for determining the detection angle and range of the US and 
IR rangefinder. 

The results in Table 4.1 and Figure 4.2 illustrate that for the entire 400 cm length, the US 
sensor achieved mostly accurate distance measurements when the object appeared directly 
in front of the sensor, with some significant errors occurring between 290 cm and 395 cm. 
When the object appeared 15o from the centre of the sensor, the measurements remained 
accurate for a range of 155 cm. For a 30o angle, the system was accurate up to 90 cm. These 
results show that the US sensors evaluated are highly predictable and accurate, and have a 
detection angle of 30o within a 90 cm range.  

Table 4.1 Average distances and corresponding standard deviations between measured 
from an ultrasonic range finder.  

Actual 
distance ± 
0.05 (cm) 

 0 deg  15 deg  30 deg  

 

Average 
Distance 

(cm) 

SD 
(cm)  

Average 
Distance 

(cm) 

SD 
(cm)  

Average 
Distance 

(cm) 

SD 
(cm)  

5.0  5 0  5 0  5 0  
10.0  9 0  10 0  10 0  
15.0  14.4 0.5  15 0  15 0  
20.0  19 0  20 0  20 0  
25.0  25 0  25 0  25 0  
30.0  29 0  30 0  30 0  
35.0  35 0  35 0  35 0  
40.0  39 0  40 0  40 0  
45.0  45 0  45 0  45 0  
50.0  49 0  50 0  50 0  
55.0  55 0  55 0  55.4 0.5  
60.0  60 0  60 0  61 0  
65.0  66 0  65 0  67 0  
70.0  70 0  70 0  70 0  
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75.0  75 0  75 0  75 0  
80.0  80 0  80.8 0.4  82 0  
85.0  85 0  86 0  86.6 0.5  
90.0  90 0  90 0  92 0  
95.0  95 0  95 0  N.A. N.A.  

100.0  100 0  100 0  N.A. N.A.  
105.0  106 0  N.A. N.A.  N.A. N.A.  
110.0  111 0  109 0  N.A. N.A.  
115.0  116 0  114 0  N.A. N.A.  
120.0  122 0  119 0  N.A. N.A.  
125.0  127 0  124.6 0.8  N.A. N.A.  
130.0  131 0  128 0  N.A. N.A.  
135.0  134 0  133.8 0.9  N.A. N.A.  
140.0  139.4 0.5  138 0  N.A. N.A.  
145.0  145 0  143 0  N.A. N.A.  
150.0  150 0  152 4  N.A. N.A.  
155.0  155.4 0.5  155 0  N.A. N.A.  
160.0  160 0  N.A. 0  N.A. N.A.  
165.0  165.8 0.4  N.A. N.A.  N.A. N.A.  
170.0  170 0  N.A. N.A.  N.A. N.A.  
175.0  175 0  N.A. N.A.  N.A. N.A.  
180.0  180 0  180 0  N.A. N.A.  
185.0  184.6 0.5  N.A. 0  N.A. N.A.  
190.0  189.4 0.5  N.A. N.A.  N.A. N.A.  
195.0  195.2 0.4  221 1  N.A. N.A.  
200.0  199.8 0.4  N.A. N.A.  N.A. N.A.  
205.0  204 0  N.A. N.A.  N.A. N.A.  
210.0  208.6 0.5  N.A. N.A.  N.A. N.A.  
215.0  214.4 0.5  N.A. N.A.  N.A. N.A.  
220.0  219 0  N.A. N.A.  N.A. N.A.  
225.0  224.4 0.5  N.A. N.A.  N.A. N.A.  
230.0  230 0.6  N.A. N.A.  N.A. N.A.  
235.0  234.8 0.4  N.A. N.A.  N.A. N.A.  
240.0  239.8 0.4  N.A. N.A.  N.A. N.A.  
245.0  245.4 0.5  N.A. N.A.  N.A. N.A.  
250.0  249 1  N.A. N.A.  N.A. N.A.  
255.0  255.2 0.4  N.A. N.A.  N.A. N.A.  
260.0  258.8 0.4  N.A. N.A.  N.A. N.A.  
265.0  264.8 0.4  N.A. N.A.  N.A. N.A.  
270.0  270.8 0.7  N.A. N.A.  N.A. N.A.  
275.0  276.0 0.6  N.A. N.A.  N.A. N.A.  
280.0  283 2  N.A. N.A.  N.A. N.A.  
285.0  286 1  N.A. N.A.  N.A. N.A.  
290.0  4 0  N.A. N.A.  N.A. N.A.  
295.0  295.6 0.8  N.A. N.A.  N.A. N.A.  
300.0  303 2  N.A. N.A.  N.A. N.A.  
305.0  305.6 0.8  N.A. N.A.  N.A. N.A.  
310.0  310.8 0.4  N.A. N.A.  N.A. N.A.  
315.0  316 0  N.A. N.A.  N.A. N.A.  
320.0  320 0  N.A. N.A.  N.A. N.A.  
325.0  325.8 0.4  N.A. N.A.  N.A. N.A.  
330.0  330.6 0.5  N.A. N.A.  N.A. N.A.  
335.0  224 156  N.A. N.A.  N.A. N.A.  
340.0  273 135  N.A. N.A.  N.A. N.A.  
345.0  347 1  N.A. N.A.  N.A. N.A.  
350.0  350.6 0.5  N.A. N.A.  N.A. N.A.  
355.0  355.8 0.4  N.A. N.A.  N.A. N.A.  
360.0  361.2 0.7  N.A. N.A.  N.A. N.A.  
365.0  365.4 0.5  N.A. N.A.  N.A. N.A.  
370.0  77 148  N.A. N.A.  N.A. N.A.  
375.0  4 0  N.A. N.A.  N.A. N.A.  
380.0  4 0  N.A. N.A.  N.A. N.A.  
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385.0  4 0  N.A. N.A.  N.A. N.A.  
390.0  392 0  N.A. N.A.  N.A. N.A.  
395.0  4 0  N.A. N.A.  N.A. N.A.  
400.0  399.0 0.6  N.A. N.A.  N.A. N.A.  

 

 

Figure 4.2 Average measurements of objects from US range finder at discrete angles of 
0o, 15o and 30o. Distances between the object and sensor ranged from 0-400 cm, with 5 cm 
intervals. Distance measurements were repeated 3 times. 

4.3.1.2 Infrared Range Finders 

The infrared (IR) range finding sensors (SHARP GP2Y0A21YK0F) output an analog 
signal that is related to the distance (shown in Figure 4.3 (A)). The distance and angle 
measurements depicted in Figure 4.1 were repeated for a white surface and a black surface 
to determine how light absorption affected the distance measurements. The measurements 
were conducted at discrete angles (0-30o) and distances (0-150 cm). The measurements 
were repeated five times, with the results shown in Table 4.2, Figure 4.3 (B) and Figure 
4.4. 

The results show that measuring the white surface at 0o closely matched the expected 
results in Figure 4.3 (A) for the entire length measured. The measurements of the black 
surface matched closely with the white surface between 0-35 cm but then diverged and 
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plateaued at 1.4 V. Because of this plateau, the measuring distance of the sensor was limited 
to 15-45 cm, with ambiguity due to colour dependence. The angled measurements were 
significantly more volatile than the measurements directly in front of the sensor and were 
deemed inappropriate for determining distance. 

Table 4.2 Results from discretely varying angle and distance of measured object from IR 
Range Finder. 

  0 Deg White  15 Deg White  30 Deg White  0 Deg Black  15 Deg Black  30 Deg Black 

Distance 
(cm)  

Average 
Distance 

(cm) 

SD 
(cm)  

Average 
Distance 

(cm) 

SD 
(cm)  

Average 
Distance 

(cm) 

SD 
(cm)  

Average 
Distance 

(cm) 

SD 
(cm)  

Average 
Distance 

(cm) 

SD 
(cm)  

Average 
Distance 

(cm) 

SD 
(cm) 

5  1.7949 0.003  1.8389 0.061  2.073 0.010  2.035 0.072  1.690 0.061  1.418 0.020 
10  2.6094 0.020  2.7324 0.003  1.149 0.003  2.613 0.002  2.683 0.004  1.242 0.007 
15  2.7783 0.009  0.96582 0.013  1.381 0.009  2.792 0.013  2.074 0.013  1.235 0.009 
20  2.5986 0.066  0.90625 0.007  1.407 0.082  2.008 0.002  1.376 0.083  1.252 0.043 
25  2.1992 0.003  1.123 0.017  1.353 0.020  2.235 0.004  1.201 0.003  1.210 0.008 
30  1.9551 0.003  1.1855 0.070  1.381 0.086  2.003 0.009  1.194 0.008  1.255 0.076 
35  1.6895 0.012  1.1875 0.082     1.754 0.002  1.248 0.081    
40  1.5264 0.003  1.1348 0.023     1.645 0.045  1.185 0.015    
45  1.3516 0.002  1.1758 0.072     1.472 0.003  1.201 0.084    
50  1.249 0.027        1.399 0.011       
55  1.1641 0.003        1.353 0.000       
60  1.0811 0.006        1.315 0.002       
65  1.0107 0.027        1.319 0.011       
70  1.0049 0.002        1.317 0.009       
75  0.95508 0.016        1.331 0.003       
80  0.9502 0.003        1.346 0.010       
85  0.93262 0.008        1.370 0.003       
90  0.9834 0.122        1.421 0.013       
95  0.9248 0.034        1.460 0.009       

100  0.72852 0.002        1.282 0.067       
105  0.74805 0.036        1.240 0.050       
110  0.71191 0.002        1.233 0.012       
115  0.69336 0.000        1.269 0.014       
120  0.66602 0.009        1.285 0.020       
125  1.0674 0.046        1.376 0.061       
130  0.69629 0.007        1.391 0.014       
135  0.69238 0.002        1.451 0.009       
140  0.70117 0.011        1.507 0.089       
145  0.74609 0.074        1.483 0.078       
150  0.70313 0.045        1.525 0.075       



MASc. Thesis – A. Ianovski; McMaster University –Biomedical Engineering 

40 
 

 

Figure 4.3 (A) Expected voltage measurements from IR range-finding sensors for white 
and gray surfaces at distances between 0 cm and 150 cm away. Figure reproduced from 
datasheet. (B) Actual voltage measurements from IR range-finding sensor for white and 
black surface objects at distances between 0 cm and 150 cm away. 
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Figure 4.4 Voltage measurements from IR range-finding sensor for white and black objects 
at discrete angles, ranging between 0o and 30o, and distances, ranging between 0o and 150o. 

 

4.3.1.3 Doppler Radar Motion Sensors 

The motion sensor (DF Robot SEN0192 10.525 GHz) is a binary sensor that transmits a 
microwave signal and uses the Doppler Effect to detect a shift in frequency caused by 
relative movement. Since the sensor detects binary movement and not absolute distance, 
the previous experimental setup was deemed inapplicable and a different experimental 
procedure was used. For the following experiments, a person stood in front of the sensors 
at discrete angles and distances, and moved slightly side-to-side, triggering the motion 
sensor. 

A potentiometer on the sensor was used for adjusting the maximum detection distance, 
which was documented to range between 2-16 m.[6] All of the measurements were 
conducted with the potentiometer tuned to its lowest value, as a decreased specificity was 
observed at higher sensitivities.  
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Figure 4.5 Experimental setup for determining the detection angle and range of radar 
motion sensors. A person swayed from side-to-side while remaining in the same position 
at discrete distances and angles. The experimental setup was repeated for PIR motion 
sensors in Section 5.6.1.4. 
The results depicted in Figure 4.6 agreed with the specification in the datasheet, as the 
sensor consistently measured movement in the range of 0 – 200 cm when the person stood 
directly in front. Movement was inconsistently detected between 220 – 300 cm. Beyond 
310 cm, no movement was detected. The sensor documentation specifies a 3 dB beam 
width of 72o. In our experiment, consistent motion tracking reduced to 0 – 40 cm at a 15o 
orientation, but did not reduce significantly further at greater angles. At a 60o angle, the 
sensor consistently detected motion in a range of 0 – 30 cm, and inconsistently measured 
motion between 40 and 90 cm.  
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Figure 4.6 Radar motion sensor results for detecting movement at discrete angles (0-60o) 
and distances (0-350 cm). The experiments identified whether a person was Visible (V), 
Sometimes Visible (S.V.) or Not Visible (N.V.) to the sensor. 

4.3.1.4 PIR Motion Sensors 

PIR motion sensors detect movement when the IR radiation in the detection area, emitted 
from warm-bodies like humans, differs from ambient IR radiation. The wide angle PIR 
sensor (Phi Robotics PIR motion sensor) is a binary sensor with a maximum detection 
distance of 7 m and a maximum detection angle of 110o. Two potentiometers on the sensor 
module modify the sensitivity and delay time. Since increased sensitivity can lead to 
reduced specificity for the sensor, the potentiometer was reduced to the lowest sensitivity 
and delay time for the evaluation. The experimental setup depicted in Figure 4.5 was 
reused, and the radar motion sensor was swapped for a PIR motion sensor. The results for 
evaluating the sensor’s detection range at discrete angles and distances are shown in Figure 
4.7. 
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Figure 4.7 PIR motion sensor results for detecting movement at discrete angles (0-60o) and 
distances (0-350 cm). The experiments identified whether a person was Visible (V), 
Sometimes Visible (S.V.) or Not Visible (N.V.) to the sensor. 

The sensor exceeded its documented expectations for low angle measurements which 
specified a maximum detection range of 300 cm. In our measurements, the sensor 
accurately detected motion at 350 cm for low angle tests. At 45o, the sensor accurately 
observed motion within 300 cm. The sensor’s sensitivity reduced at 60o for measurements 
beyond 100 cm. 

4.3.2 Summary of Sensor Evaluations 

Low-cost motion and range-finding sensors were evaluated to identify the optimal modality 
for detecting direction of travel through the doorway. The experiments are summarized in 
Table 4.3. Due to the dynamic nature of home environments where objects, such as 
furniture or people, do not always remain in a static location, Doppler and pyroelectric 
sensors (or radar and PIR, respectively) were identified as the most suitable candidates, 
since they detect changes in motion, not distance alone. These sensors also demonstrated 
the widest detection angles. As such, the PIR and radar sensors were identified as the most 
promising sensors. 
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In Table 4.3, the time delay for resetting motion sensors is shown. For PIR sensors, a 0.5 
s delay is necessary for calibrating background infrared radiation. It is inherent in most 
low-cost commercial PIR sensors and cannot be reduced. This delay limits the detection 
rate of the doorway monitoring system and omits people walking through the doorway. 
Consequently, the PIR sensors were abandoned and the radar sensors, which had a 
significantly shorter delay period, were chosen for further evaluation. 

Table 4.3 Summary of low-cost motion and range finding sensors evaluated for detecting 
the direction of a person crossing through a doorway. 

Modality  Trigger  Detection 
angle  

Max 
Detection 
range (m) 

 Delay  Description Output 

Radar[6]  
Change in 
microwave 
frequency 

 60o  2-16  5us  
DF ROBOT 

SEN1092 10.525 
GHz 

Binary 

Ultrasonic[7]  Sound wave 
ToF  15o  2-4  100 

ms  DF ROBOT 
URM37 V4.0 Distance 

IR[8]  EM wave 
ToF  < 15o  0.45  40 ms  SHARP 

GP2Y0A21YK0F 
Analog 
Voltage 

PIR[9]  Change in  IR 
radiation  60o-110o  3-7  0.5 – 

18.2 s   Phi Robotics PIR 
motion sensor Binary 

 

4.3.3 Detecting Direction of Travel through Doorway 

An outward facing motion sensor was installed on each side of the doorway. A Raspberry 
Pi 3 Model B (RPi) acquired the sensor signal, computed the direction, and stored the result 
in a local SQL database. A flowchart for the algorithm used to determine direction is shown 
in Figure 4.8 below.  

To evaluate direction accuracy, a person crossed through a doorway 30 times. This 
experiment was repeated 3 times. The results of this experiment are shown in Table 4.4 
below. 

Table 4.4 Detected direction of a single person crossing through a doorway using radar 
Doppler sensors. A person crossed through the doorway 30 times, and the experiment was 
repeated 3 times. 

Trial  Correct Direction Detected  Incorrect Direction Detected  Total Detections 
1  29  1  30 
2  29  1  30 
3  28  2  30 
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The system observed successful direction identification with an accuracy of 96% and 
probability of correct detection of 85% with 85% confidence. 

4.3.4 Selecting Bluetooth Technology 

As discussed in Chapter 2, Bluetooth Low Energy (BLE) is a wireless communication 
protocol. The protocol was originally designed for personal area networks (PANs) to 
extend the functionality of phones and PCs, but has also shown to be a promising 
technology for indoor positioning. The benefits of implementing BLE for indoor 
positioning are its low cost, low energy consumption, ubiquity in mobile phones and 
activity trackers, and low foot-print. 

 

Figure 4.8 Flowchart of algorithm for detecting the direction of a person crossing through 
a doorway using a motion sensor on each side of the door. 

4.4 Single Person Monitoring 
In Section 4.3.3 it was suspected that the falsely identified crossing events were caused by 
movement occurring simultaneously on opposite sides of the doorway. This occurred 
because the system could not accurately differentiate between a person passing through the 
doorway, and movement occurring on opposite sides, with no crossing event. To reconcile 
this error, an ultrasonic range finder directed across the doorway path was integrated into 
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the system. Additionally, a BLE receiver (Bluegiga BLE 113), connected to the RPi UART 
through an Arduino Uno microcontroller, was implemented to identify the person crossing 
through the doorway. A BLE transmitter was worn on a bracelet by the user to transmit a 
unique identification number to the receiver. 

The hybrid doorway monitoring system is depicted in Figure 4.9. The system diagram and 
algorithm for the updated doorway monitor are shown in Figure 4.10 and Figure 4.11, 
respectively. In order to scale the system for multiple doorways, the data was sent over 
TCP/IP to a remote RPi server on the local area network (LAN). The organization of the 
data packet was: <room id, person id, RSSI, direction, date&time>. 

                

 

Figure 4.9 (A) Doorway indoor positioning system utilizing radar motion sensors, 
ultrasonic range finder, and Bluetooth Low Energy transceiver. (B) Radar motion sensors 
with adjustable angle stages connected to a Raspberry Pi SoC via a protoboard shield. 
Ultrasonic sensor is connected to the shield for detecting crossing events through the 
doorway. (C) Wrist-worn 3D-printed case containing BLE module and 3.7V LiPo battery. 
(D) Bluegiga BLE 113 module connected to an Arduino Uno microcontroller through a 
protoboard shield. Messages from the BLE module are serially transmitted to the nearby 
Raspberry Pi SoC over USB. 

(A) (B) (C) 

(D) 
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Figure 4.10 System diagram of the hybrid BLE doorway monitor for determining the 
direction and identity of occupants crossing through a single doorway. The system 
implements two radar motion sensors, an ultrasonic range finder, and a BLE transceiver. 

Repeating the direction experiment from Section 4.3.3 with the updated hardware yielded 
the following results, summarized in Table 4.5. 

Table 4.5 Detected direction of a single person crossing through a doorway using radar 
Doppler sensors, BLE transceiver, and ultrasonic rangefinder. A person crossed through 
the doorway 30 times, and the experiment was repeated 3 times.  

Trial  Correct Detections  Incorrect Detections  Total Detections 
1  30  0  30 
2  28  2  30 
3  30  0  30 

Subsequently, this improved system achieved a 95% probability of correctly determining 
the direction, with 95% confidence. 
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Figure 4.11 Flowchart of algorithm for hybrid BLE doorway monitor. System identifies a 
crossing event, computes direction and identifies person for a single doorway. 
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The architecture described in Figure 4.10 and Figure 4.11 was expanded to multiple 
doorways, as depicted in Figure 4.12. The doorway system was installed in three doorways 
in a residential apartment. Each doorway client transmitted a data packet to the RPi server’s 
SQL database. The effectiveness for tracking a single resident in an apartment with 
multiple rooms was evaluated. The layout of the apartment and trajectory followed is 
shown in Figure 4.13.  

 
Figure 4.12 System diagram of the hybrid BLE doorway monitor for determining the 
direction and identity of occupants crossing through multiple doorways. The system 
implements two radar motion sensors, an ultrasonic range finder, and a BLE transceiver 
for each doorway. 
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Figure 4.13 The trajectory of a single participant walking through a residential apartment 
equipped with three hybrid BLE doorway monitoring systems. The trajectory was used to 
evaluate the IPS’s accuracy for monitoring the position of the occupant within multiple 
rooms. 

A participant completed the trajectory three times and the results are summarized in Table 
4.6.  

Table 4.6 Recorded path of single occupant completing the trajectory depicted in Figure 
4.13 three times. The hybrid-BLE positioning system stored the room number, direction 
and RSSI for each detected crossing event. 

Step  Expected Path  Actual Path 
  Trial 1  Trial 2  Trial 3 
 Room  Dir  Room RSSI Dir  Room RSSI Dir  Room RSSI Dir 

1  2  IN  2 48 IN  2 55 IN  2 53 IN 
2  4  IN  4 63 IN  4 52 IN  4 64 IN 
3  4  OUT  4 63 OUT  4 60 OUT  4 66 OUT 
4  3  IN  3 66 IN  3 58 IN  3 66 IN 
5  3  OUT  3 65 OUT  3 60 OUT  3 65 OUT 
6  4  IN  4 65 IN  4 64 IN  4 65 IN 
7  4  OUT  4 65 OUT  4 64 OUT  4 66 OUT 
8  2  OUT  2 52 OUT  2 63 OUT  2 51 OUT 
9  2  IN  2 63 IN  2 66 IN  2 62 IN 

10  3  IN  3 63 IN  3 62 IN  3 64 IN 
11  3  OUT  3 66 OUT  3 61 OUT  3 66 OUT 
12  2  OUT  2 66 OUT  2 62 OUT  2 64 OUT 

As depicted above, the system identified the direction of travel with an accuracy of 100% 
and a specificity and sensitivity of 100%. An 'N-1' Chi squared of 71 was achieved with a 
P-value < 0.0001. 
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4.5 Multiple Person Monitoring 
IPSs for single users have been addressed by many different research groups, however, 
indoor positioning for multi-person tracking remains a relatively undeveloped field in 
literature.[10] Multi-person tracking is particularly important for older adults, as systems 
can provide insight into social interaction, assistance from caregivers, or individual 
tracking of older adults living in a community dwelling.  

Indoors, BLE radios have a transmission radius of 10 m. This creates a challenge when 
multiple people are present in a room, as the system is responsible for correctly identifying 
the person crossing through the doorway and not misclassify them as a person already 
present within the room. As discussed in Section 2.4, BLE RSS can be directly linked to 
distance. A RSS threshold value was implemented to classify a person crossing through 
the doorway and a person within the room. 

The transmission power of the BLE transceivers could be set between 1 and 14 (arbitrary 
units). In order to determine the optimal transmission power, a signal was transmitted from 
a wearable BLE bracelet to a BLE receiver installed within the doorway at various power 
levels and distances from the doorway. A 2-minute scanning window was used to collect 
RSS signals and the experiment was conducted three times. The resulting RSS values for 
each power level and distance are displayed in Figure 4.13. Fitting a linear regression 
model to each power level identified level 14 as having the largest slope, thus allowing for 
the best possible discrimination between distances. Non-line-of-sight effects were 
observed for all transmissions at 0 Ft from the doorway, resulting in RSS values that did 
not fit within a linear model.  

 

Figure 4.14 Strength of signal transmitted from a wrist-worn BLE module to a BLE 
transceiver mounted on a doorway frame. Signal scan was repeated for 2-minutes. Discrete 
distances (0-6 ft) and transmission powers (1-14 AU) were evaluated. The dark horizontal 
line depicts the identified optimal threshold value to discriminate between a person 
crossing through a doorway and a second person standing 6 ft away. 

A threshold of -74 dBm, depicted as a black horizontal line in Figure 4.14, was chosen to 
distinguish between two people present within the same room. To validate the effectiveness 
of the threshold, one person remained standing 6 Ft away from the doorway, while a second 
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person walked through the doorway, 30 times. The system recorded the identification of 
the first available BLE ID when a crossing event occurred and the experiment was repeated 
3 times. Figure 4.15 summarizes the results and demonstrates the effectiveness of the 
threshold. Consequently, a threshold value of -74 dBm improved the identification 
accuracy from 42% to 72%, when compared with no threshold. The experiment was then 
repeated with a threshold of -69 dBm which improved the identification accuracy to 90%.  

 

Figure 4.15 The identification accuracy of the hybrid BLE doorway monitoring system 
when two people are present within a single room for different thresholds of BLE 
transmission power. Error calculated from the standard deviation of three trials. 30 crossing 
events occurred for each trial. 

To validate the system further, the multiple room test was modified for two participants. 
The trajectory of the two participants within the apartment is described in Figure 4.16.  
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(A) 

 
(B) 

 

Figure 4.16 (A) The trajectory of two participants walking through a residential apartment 
equipped with three hybrid BLE doorway monitoring systems. The trajectory was used to 
evaluate the IPS’s accuracy for monitoring the position of multiple occupants within 
multiple rooms. (B) The order in which each participant crossed through a doorway. 

To improve classification between multiple residents even further, an array of the last 5 
RSS readings following a crossing event was recorded. When multiple user IDs were 
recorded within the array, the ID with the largest mean RSS was identified as the correct 
person crossing through the doorway. The trajectory was repeated 5 times and the results 
are summarized in Table 4.7. The system performed well in correctly identifying the user 
crossing through the doorway, achieving an identification accuracy of 90.6%. The largest 
error appeared from missed crossing events, but performed well regardless, with an 
identification sensitivity of 88.3%. The source of this error was likely caused by an 
improper algorithm reset caused from movement occurring on both sides of the motion 
sensors. Likewise, this was also the reason for a slight decrease in direction accuracy, to 
96.2%. No false positive events were recorded. False positive events were defined by the 
system falsely recording crossing events, when no events occurred in reality. As a result, 
the specificity of the system was 100%. An 'N-1' Chi squared of 94.13 was achieved with 
a P-value < 0.0001 
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Table 4.7 Recorded path of two occupants completing the trajectory depicted in Figure 
4.16. An array of 5 RSS values is recorded after each crossing event. The greatest mean 
RSS is used to classify the person crossing through the doorway.  

Step 
Expected Path 

Actual Path 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

Room ID Dir  Room ID RSSI Dir Room ID RSSI Dir Room ID RSSI Dir Room ID RSSI Dir Room ID RSSI Dir 
1 2 1 IN 2 1 65 IN 2 1 65 IN 2 1 64 IN 2 1 62 IN 2 1 72 IN 
2 4 1 IN 4 1 67 IN 4 1 62 IN 4 1 63 IN 4 1 66 IN 4 1 77 IN 
3 2 2 IN - - - - 2 2 70 IN - - - - 2 2 68 IN 2 2 76 IN 
4 3 2 IN 3 2 60 IN 3 2 62 IN 3 2 62 IN 3 2 70 IN 3 2 65 IN 
5 3 2 OUT 3 2 61 OUT 3 2 64 OUT 3 2 62 OUT 3 2 64 OUT 3 2 66 OUT 
6 4 2 IN 4 2 69 IN 4 2 75 IN 4 1 71 IN 4 2 64 IN - - - - 
7 4 1 OUT 4 1 64 OUT 4 1 65 OUT 4 1 65 OUT 4 2 72 OUT 4 1 65 OUT 
8 3 1 IN 3 2 83 OUT 3 1 71 IN 3 1 72 IN - - - - 3 2 67 IN 
9 4 2 OUT 4 2 72 OUT 4 2 61 OUT 4 1 67 OUT 4 1 66 IN - - - - 
10 2 2 OUT 2 2 67 OUT 2 2 57 OUT 2 2 68 OUT 2 2 66 OUT 2 2 65 OUT 
11 3 1 OUT - - - - 3 1 73 OUT 3 1 74 OUT 3 2 75 OUT 3 1 76 OUT 
12 2 1 OUT 2 1 61 OUT 2 1 67 OUT - - - - 2 1 71 OUT 2 1 74 OUT 

 

4.6 Effects of Closed Doorway 
The single person experiment in Section 4.4 was repeated to determine the effect that 
closed doors had on the system. A person repeated the trajectory depicted in Figure 4.13. 
The door was closed upon arrival at each doorway and was again closed after crossing. The 
most significant feature to be affected by the closed door was the direction accuracy, which 
reduced by 22% to 78%. When the resident walked through the door, they would be 
required to reach again through the doorway to close the door. Reaching through the 
doorway was most likely the reason for the increase in false-positive results – crossings 
that were identified but did not actually occur. Consequently, specificity was reduced to 
89%. The number of missed events also increased, reducing the sensitivity by 8% to 92%. 
This could have been caused from more time being spent at each doorway, leading the 
algorithm to reset before a crossing event occurred. Nevertheless, an 'N-1' Chi squared of 
46.11 as achieved with a P-value < 0.0001. 
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Table 4.8 Recorded path of single occupant completing the trajectory depicted in Figure 
4.13 when the doorways were closed. 

Step 
 

 
Expected Path 

 Actual Path 
  Trial 1  Trial 2  Trial 3 
 Room Dir  Room RSSI Dir  Room RSSI Dir  Room RSSI Dir 

1  2 IN  2 82 OUT  2 81 IN  2 86 IN 
2  4 IN  4 76 IN  4 70 IN  - - - 
3  4 OUT  4 75 OUT  4 71 OUT  - - - 
4  3 IN  4 76 OUT  4 67 OUT  3 74 IN 
5  3 OUT  3 77 IN  3 76 IN  3 79 IN 
6  4 IN  3 73 IN  3 76 OUT  4 66 IN 
7  4 OUT  4 81 IN  4 78 IN  4 72 OUT 
8  2 OUT  4 73 IN  4 71 OUT  2 81 OUT 
9  2 IN  4 73 OUT  4 76 OUT  2 82 IN 

10  3 IN  2 73 OUT  2 82 IN  3 74 IN 
11  3 OUT  2 76 IN  2 71 OUT  3 74 IN 
12  2 OUT  3 79 IN  3 76 IN  2 84 IN 

     - - -  3 72 OUT     
     2 81 OUT  2 81 IN     

 

4.10 Visualization 
4.10.1 Real-time visualization 

A web application was developed to visualize the residents’ position in real-time. The 
application displays the identity and location of residents over a floor map of the home. 
The intended application of the visual interface is to assist in validating undefined 
trajectories for many occupants within the home and monitor the location of residents in 
real-time.  

 
Figure 4.17 Web application created for visualizing the identity and location of occupants 
in the home in real-time. 
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4.10.2 Descriptive Dashboard 

One of the motivations for location monitoring is to understand long-term resident 
behaviour and track habitual change. As discussed in Chapter 3, room utilization fused 
with temporal context can provide information on health-related ADLs such as sleeping 
patterns, toileting, and eating. Descriptive information on ADLs has shown to be clinically 
useful, and can provide additional support for caregivers, family, as well as the residents 
themselves.13 These changes can be linked to residents’ physical, cognitive, and mental 
health state.  Although the current tracking method identifies the present location of 
residents in real-time, it does not provide insightful trends. A descriptive dashboard, show 
in Figure 4.18 was developed. Moving forward, this dashboard will utilize stored location 
history to describe resident behaviour and provide useful information to family members, 
caregivers, and healthcare professionals.  

 

Figure 4.18 Descriptive interface for visualizing room utilization trends of occupants 
within the home. The interface displays the visit frequency and time spent in each room for 
various occupants, times, and date ranges.  
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4.11 Conclusion 
A hybrid BLE doorway monitoring IPS was developed in order to track the identification 
and position of residents within the rooms of a home. The system was evaluated for single 
and multiple residents. The monitoring system demonstrated promising results in 
monitoring two people within an apartment, achieving an identification accuracy of 90.6% 
and a crossing sensitivity and specificity of 88.3% and 100%, respectively. Closing doors 
after entering a room reduced direction accuracy, identification sensitivity, and 
identification specificity. In order to validate the system’s accuracy in real-home 
environments with unspecified trajectories and multiple occupants, invasive monitoring 
sensors, such as cameras, will need to be deployed. Future work includes utilizing a 
descriptive dashboard for visualizing residents’ mobility and ADLs, and creating virtual 
doorways to monitor the position of residents with greater resolution. 
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Chapter 5  

 

Hybrid RFID Indoor Positioning System 
 

5.1 Introduction 
In Chapter 4, an indoor positioning system utilizing BLE transceivers was described. As 
discussed in Chapter 2, RFID technology has also been utilized for indoor positioning. 
Since RFID and BLE share many of the same methods and algorithms for localization, the 
IPS described in Chapter 4 was modified, replacing the BLE transceivers with RFID 
readers and tags. The strengths and limitations of each system were then evaluated.  
 
5.2 Materials and Methods 
 
5.2.1 RFID Reader and Tags 
RFID has shown to be a promising modality for indoor positioning. RFID tags can be 
developed in many flexible forms, such as key fobs, flexible paper tags, pins, bracelets, or 
surgical implants. This flexibility allows for tags to be integrated in different forms, such 
as embedded into the occupant’s clothing, which does not require interaction between the 
user and the system.  
 
One major challenge in utilizing UHF band RFID for indoor localization of humans is that 
the radio waves are strongly attenuated by water. In order to ensure that the system would 
effectively identify people at short ranges, an RFID reader with a transmission power of 27 
dBm was selected (OBID ISC.MRMU102-A 860-960 MHz). Although linearly polarized 
antennas have a longer read range than circularly polarized antennas, a circularly polarized 
antenna (RFMAX S9028PCR/S8658PCR RHCP) was implemented as it would allow for 
unpredictable tag orientations. 
 
Battery assisted semi-passive RFID tags were discussed in Chapter 2. These tags are an 
ideal choice for monitoring people indoors since they provide sufficient power, are low-
cost and have a battery life of 2 years. GAO RFID Battery Assisted UHF Gen 2 RFID Tags 
were used.  
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Figure 5.1 RFID reader implemented in hybrid RFID doorway IPS.[1] 

5.2.2 Direction Sensor Selection 
Upon initial evaluation of the RFID system, it was observed that the RFID reader emitted 
unintended second harmonic frequencies. These signals interfered with the radar motion 
sensors that were responsible for determining the direction of the occupants, as described 
in Chapter 4. This interference was confirmed with a spectrum analyzer (Keysight 
N9917A Fieldfox) and resulted in false direction measurements when the RFID reader 
triggered a pulse. To avoid false direction measurements, the microwave sensors were 
replaced with IR distance measuring sensors (SHARP GP2Y0D02YK0F), which did not 
interfere RFID reader. These binary sensors output an electric signal when an object 
appeared within a range of 80 cm.  
 

          

  

Figure 5.2 (A) Doorway indoor positioning system utilizing IR distance sensors, 
ultrasonic range finder, and RFID. (A) Direction detecting unit. IR distance sensors with 
adjustable angle stages connected to a Raspberry Pi SoC via a protoboard shield. 
Ultrasonic sensor is also connected to the shield for detecting crossing events. (B) RFID 
antenna attached to tripod to detect identification of resident crossing through doorway. 

(A) (B) (C) 
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5.3 Single Person Monitoring 

The RFID reader depicted in Figure 5.1 incorporated and internal multiplexer for reading 
from three onboard antenna connections. One of the reasons for choosing this reader was 
to reduce capital cost, avoiding the purchase of three separate readers. This, however, 
required a change in architecture from the BLE system in Chapter 4, as depicted in Figure 
5.3.  

 

Figure 5.3 System diagram of single doorway monitoring system utilizing RFID, IR 
distance, and ultrasonic range finder. 

The RFID reader was controlled by the RPi server in the right side of the figure, rather than 
by the RPi client on the left, as previously demonstrated by the hybrid BLE system in 
Figure 4.9. This updated architecture required synchronized communication between the 
RPi client controlling the sensors and the RPi server controlling the RFID. As such, the 
algorithm was written as a finite-state-machine (FSM) to ensure that the two systems 
remained synchronized throughout all primary and edge cases. The system was then scaled 
up to three RPi clients, as shown in Figure 5.4. 

 

Figure 5.4 System architecture of RFID indoor positioning system for three doorways. 

The participant’s trajectory, depicted in Figure 5.5 was repeated three times and the results 
are summarized in Table 5.1. 
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Figure 5.5 The trajectory of a single participant walking through a residential apartment 
equipped with three hybrid RFID doorway monitoring systems. The trajectory was used to 
evaluate the IPS’s accuracy for monitoring the position of the occupant within multiple 
rooms. 

Table 5.1 Results from single person completing the trajectory depicted in Figure 5.12. 
Table cells shaded in red do not match the expected path. 

Step 
 Expected 

Path 
 Actual Path 

  Trial 1  Trial 2  Trial 3 
 Room Dir  Room Dir  Room Dir  Room Dir 

1  2 IN  2 IN  2 IN  2 IN 
2  4 IN  4 IN  4 IN  4 IN 
3  4 OUT  4 OUT  4 OUT  4 OUT 
4  3 IN  3 IN  3 IN  3 IN 
5  3 OUT  3 OUT  3 OUT  3 OUT 
6  4 IN  4 IN  4 IN  4 IN 
7  4 OUT  4 OUT  4 OUT  4 OUT 
8  2 OUT  2 OUT  2 OUT  2 OUT 
9  2 IN  2 IN  2 IN  2 IN 
10  3 IN  3 IN  3 IN  4 IN 
11  3 OUT  3 OUT  3 OUT  - - 
12  2 OUT  2 OUT  2 OUT  2 OUT 

 

As depicted above, the system was able to identify the direction of travel with an accuracy, 
sensitivity, and specificity of 94%, 97%, and 100%, respectively. An 'N-1' Chi squared of 
67.16 was achieved with a P-value < 0.0001. 
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5.4 Multiple Person Monitoring 
In order to validate the system for multiple occupants in an apartment, the trajectory in 
Figure 5.6 was repeated 5 times, with the results shown in Table 5.2. 

 

 

Figure 5.6 (A) The trajectory of two participants walking through a residential apartment 
equipped with three hybrid RFID doorway monitoring systems. The trajectory was used to 
evaluate the IPS’s accuracy for monitoring the position of multiple occupants within 
multiple rooms. (B) The order in which each participant crossed through a doorway. 

Table 5.2 Recorded path of two people completing trajectory depicted in Figure 5.6. 

Step 
Expected Path 

Actual Path 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

Room ID Dir Room ID Dir Room ID Dir Room ID Dir Room ID Dir Room ID Dir 

1 2 1 IN 2 1 IN 2 1 IN 2 1 IN 2 1 IN 2 1 IN 
2 4 1 IN 4 1 IN 4 1 IN 4 1 IN 4 1 IN 4 1 IN 
3 2 2 IN 2 2 OUT 2 2 IN 2 2 IN 2 2 IN 2 2 IN 
4 3 2 IN 3 2 IN 3 2 IN 3 2 IN 3 2 IN 3 2 IN 
5 3 2 OUT 3 2 OUT 3 2 OUT 3 2 OUT 3 2 OUT - - - 
6 4 2 IN 4 2 IN 4 2 IN 4 2 IN 4 2 IN 4 2 IN 
7 4 1 OUT 4 1 OUT 4 1 OUT 4 1 OUT 4 1 OUT 4 1 OUT 
8 3 1 IN 3 1 OUT 3 1 IN 3 1 OUT 3 1 IN 3 2 IN 
9 4 2 OUT 4 2 OUT 4 2 OUT 4 2 OUT 4 2 OUT 4 2 OUT 

10 2 2 OUT 2 2 OUT 2 2 OUT 2 2 OUT 2 2 OUT 2 2 OUT 
11 3 1 OUT 3 1 OUT 3 1 OUT 3 1 OUT 3 1 OUT 3 1 OUT 
12 2 1 OUT 2 1 OUT 2 1 OUT 2 1 OUT 2 1 OUT 2 1 OUT 

(A) 

(B) 
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The system correctly identified the user crossing through the doorway, achieving a 
direction accuracy of 98%, an identification accuracy of 97%, identification sensitivity of 
98%, and identification specificity of 100%. A 'N-1' Chi squared of 115.1 with a P-value < 
0.0001 was achieved.  

5.5 Comparison of Hybrid RFID and BLE Systems 
5.5.1 Indoor Monitoring Performance 

The hybrid RFID IPS in this chapter and the hybrid BLE IPS in Chapter 4 demonstrated 
strong performance for monitoring the location and identification of single and multiple 
occupants in a residential apartment. The BLE system performed slightly better than the 
RFID system for the single-person test, improving identification sensitivity of the system 
by 3%.  The RFID system performed significantly better than the BLE system for the two-
person test, improving identification sensitivity by 10%.  

5.5.2 Battery Performance 

The battery performance of the wrist-worn BLE transmitter was evaluated. The active tag 
repeatedly transmitted its unique identification number at a set frequency. The battery life 
for a BLE transmitter with an output power of 14 AU is shown in Figure 5.5.  

 

Figure 5.7 Recorded battery performance of the Bluegiga BLE113 transmitter after 36 
hours. The recorded data was fit to a linear regression model to predict when the battery 
would discharge to 2V, the BLE module’s minimum input voltage. 

In the above figure, the voltage of a battery powering a wrist-worn BLE transmitter was 
recorded for 36 hours with 2 hour intervals. Assuming a linear regression model, the battery 
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charge will reduce to 2 V, the module’s minimum input voltage, within 270 hours, or 
approximately 11 days. However, all of the experiments in Chapter 4 were conducted with 
a battery voltage of approximately 3.7 V, so it cannot be guaranteed that performance of 
the system will not be affected at a lower voltage. This should be further investigated. The 
power consumption of the BLE transmitters is considerably lower than the semi-passive 
RFID tags, which claim to consume a battery every two years.  

Similar commercial BLE transmitters claim to require battery replacements every two 
years.[2] A number of strategies could be implemented to improve battery performance. 
Although reducing transmission power of the BLE transmitter can help, it can reduce 
performance as discussed in Section 4.8 and shown in Figure 4.13. Other strategies include 
reducing the transmission frequency and using batteries with a larger electric charge. For 
instance, the battery used to power the BLE transmitter in Chapter 4 had an electric charge 
of only 300 mAh. The architecture of the system could also be modified to improve battery 
life. In previous tests, the wrist-worn BLE transceivers were responsible for transmitting 
their identification, while the wall-mounted BLE transmitters were responsible receiving 
messages. To preserve the battery life of the wrist-worn transceivers, architecture can be 
modified so that the wall mounted BLE modules transmit their ID while the wrist-worn 
BLE modules receive nearby messages. The location algorithm would then determine the 
location of nearby beacons. 

5.5.3 Costs 

The overall costs of the hybrid IPSs for a single doorway and single user are shown below 
in Table 5.3. Although RFID readers are relatively expensive, the tags, which are 
commonly found in identification cards, running bibs, and asset management, are low-cost. 
Therefore, although a large initial investment is required for deploying an RFID IPS, 
maintenance costs are low for residents that are prone to losing their identification tags. 
 
The hybrid BLE IPS costs approximately 20% of the price of the hybrid RFID system. This 
cost can be further reduced if occupants prefer to carry BLE-enabled devices such as mobile 
phones, smart watches, or activity trackers.  
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Table 5.3 Overall costs of monitoring system for single doorway and single user. 

Sensor  Bluetooth  RFID 
Receiver  $15  $300 
Tag  $15  $18 
Antenna  N.A  $135 
Motion sensors  $18  $30 
Ultrasonic rangefinder  $14  $14 
RPi Client  $45  $45 
Total  $107  $542 

 

 

5.5.4 Footprint 

One of the challenges in developing remote monitoring devices is to design systems that 
blend in naturally with the home environment. A small footprint is desirable for improving 
installation ease and developing an innocuous system. The RFID system requires a large 
antenna (25.9 x 25.9 cm) to be attached to each doorway, as seen in Figure 5.2 (B). The 
BLE footprint is significantly smaller (3.3 cm x 2.0 cm), which can increase adoptability. 
The wrist-worn BLE transceiver is the same size as the wall-mounted transceiver, but may 
reduce adoptability because it requires rechargeable batteries. The RFID system may be 
more convenient because it does not require any external batteries or charging. 

5.6 Conclusion 
A hybrid RFID IPS was developed to monitor the location and identity of occupants in a 
home. The system was evaluated for monitoring single and multiple occupants within a 
residential apartment. The monitoring system demonstrated promising results in 
monitoring two people within an apartment, achieving an identification accuracy of 97% 
and a crossing sensitivity and specificity of 98% and 100%, respectively. System strengths 
and limitations, such as performance, cost, and adoptability were compared with the hybrid 
BLE system discussed in Chapter 4. The hybrid RFID system performed better at 
monitoring the location of multiple residents, however, it is significantly more expensive 
and has a greater footprint than the hybrid BLE IPS.   
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Chapter 6  
 
Conclusions and Future Work 

6.1 Summary 

Performance of ADLs is an important indicator for determining the cognitive and physical 
health of older adults.[1] Research into the development of IPSs and wireless sensor 
networks demonstrated that sensor networks can identify aging-related ADLs.[2]–[5] In 
this dissertation, we developed and evaluated two IPSs – (i) a hybrid BLE and radar motion 
sensor system and (ii) a hybrid RFID and IR range-finding system for tracking the location 
of occupants in an apartment.  

We first reviewed the literature describing various sensor modalities and localization 
techniques for performing indoor positioning. The purpose of this review was to highlight 
the strengths and limitations of the systems, including factors such as accuracy, cost, 
system complexity, and scalability. Literature showed that further research into the system 
requirements and technological performance must be conducted in order to identify the 
optimal IPS for enabling aging in place. Sensor technologies developed for remotely 
tracking age-related ADLs were also reviewed. Motivated by the diverse sensor 
technologies and health-related metrics that could be measured remotely, we developed a 
Smart Home platform for enabling and validating remote health sensing technologies for 
monitoring aging-related ADLs and biometrics. In order to promote short-term and 
longitudinal research studies on aging in place, the Smart Home platform was designed to 
be modular, enabling modern technological standards as well as unforeseen technologies. 
The first technology designed for the Smart Home was a decentralized hybrid BLE IPS. 
Experimental validation of the system determined its accuracy for tracking multiple 
occupants within multiple rooms of a residential apartment. Maintaining approximately the 
same architecture, a hybrid RFID system was also devised and implemented. The 
performance of the two IPSs was compared. Although the hybrid RFID system 
demonstrated better localization performance for multiple occupants, the BLE system 
demonstrated lower cost, greater implementation ease, and lower system complexity. 
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6.2 Discussion and Future Work 

Opposed to distributing a traditional positioning sensor network within each room, as 
discussed in Section 2.4, the IPSs described in this dissertation were installed in doorways. 
The rationale behind this design was to (i) minimize system cost by reducing the number 
of required eponymous sensors, (ii) increase implementation ease by creating a plug-and-
play system, and (iii) optimize scalability by implementing a decentralized localization 
technique. As a result, the location accuracy of the system is limited to room-level 
localization. Room-level localization answers important health-related questions such as 
“How often is the occupant ambulating?”, “Are they regularly performing ADLs such as 
bathroom use and cooking?”, “What time do they wake up and go to sleep?”. However, in 
order to broaden the system’s functional scope outside of residential homes and into 
community dwellings, such as long-term care, further development is required to support 
more precise intra-room localization so that occupants could be accurately located within 
rooms or in corridors. This improved location accuracy as a result of these virtual doorways 
would, however, result in increased system complexity and cost. 

As for the experimental validation of the IPSs in this dissertation, the systems were 
evaluated in a controlled environment with pre-defined trajectories. It remains unknown 
whether the systems would perform equally well in real home environments with multiple 
residents and undefined paths. To validate the effectiveness of the system, long-term in-
situ monitoring within real homes of older adults must be conducted. Although the current 
system does not implement invasive monitoring devices, such as cameras, these obtrusive 
devices are very precise in determining ground-truth locations. In another doorway 
monitoring study, Griffiths et al[6] installed cameras within doorways to record the ground-
truth identity and direction of occupants crossing through a motion-sensor based IPS. 
Adopting this method would accurately validate our system’s accuracy for long-term in-
situ monitoring.  

6.3 Conclusion 

In conclusion, this thesis provides a Smart Home platform and two hybrid indoor 
positioning systems for enabling multi-room and multi-occupant localization. Long-term 
in-situ monitoring should be further conducted to determine the system’s performance for 
multiple residents and undefined walking paths. Furthermore, implementing virtual 
doorways would increase location precision, enabling intra-room localization for 
monitoring location in corridors. 
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