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Abstract

In this thesis, we study three periodic-review, finite-horizon inventory systems in the

presence of supply and demand uncertainties. In the first part of the thesis, we study

a multi-period single-station problem in which supply uncertainty is modeled by par-

tial supply. Formulating the problem under a robust optimization (RO) framework, we

show that solving the robust counterpart is equivalent to solving a nominal problem

with a modified deterministic demand sequence. In particular, in the stationary case

the optimal robust policy follows the quasi-(s, S) form and the corresponding s and S

levels are theoretically computable. In the second part of the thesis, we extend the RO

framework to a multi-period multi-echelon problem. We show that for a tree structure

network, decomposition applies so that the optimal single-station robust policy remains

valid for each echelon in the tree. Furthermore, if there are no setup costs in the net-

work, then the problem can be decomposed into several uncapacitated single-station

problems with new cost parameters subject to the deterministic demands. In the last

part of the thesis, we consider a periodic-review Assemble-To-Order (ATO) system with

multiple components and multiple products, where the inventory replenishment for each

component follows an independent base-stock policy and product demands are satisfied

according to a First-Come-First-Served (FCFS) rule. We jointly consider the inventory

replenishment and component allocation problems in the ATO system under stochastic

component replenishment lead times and stochastic product demands. The problems

are formulated under the stochastic programming (SP) framework, which are difficult

to solve exactly due to a large number of scenarios. We use the sample average approx-

imation (SAA) algorithms to find near-optimal solutions, which accuracy is verified by

the numerical experiment results.
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Chapter 1

Introduction

1.1 Background and Motivation

Inventory management under uncertainty has been extensively studied in the past. There

is a large body of literature on finding optimal inventory policies for systems under

demand uncertainty while assuming no uncertainty on the supply side. For example,

the base-stock policy (i.e., order-up-to level) has been proven to be optimal for a serial

inventory system subject to uncertain demand with a known distribution (Clark and

Scarf, 1960). The optimality of base-stock policy for more general inventory systems can

be found in Zipkin (2000).

As global supply chains have been growing considerably, supply uncertainty that often

arises from higher variability in overseas suppliers performance can adversely impact

the overall performance of a supply chain, which suggests a need to simultaneously

incorporate supply and demand uncertainties into decision-making. Supply uncertainty

has been modeled in several different forms in the production and inventory management

literature. Yield uncertainty, as one major form of supply uncertainty that occurs in

the production process, typically models the situations where partial supply frequently

happens. The reader is referred to Yano and Lee (1995) for a thorough literature review

on yield uncertainty.
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In contrast, supply disruption and lead time uncertainties are closely related to vari-

abilities in the process of inventory replenishment. Supply disruption refers to partial

(or complete) inoperation of the entities within a supply chain (e.g., road, truck and

facility) due to terrorist attacks or major natural disasters (e.g., earthquake, tornado

and flood). Such uncertainty is highly unpredictable and may significantly influence the

entire supply chain when it occurs, so many stochastic programming models have been

proposed to allow for recourse actions (see e.g., Ozbay and Ozguven, 2007).

Lead time uncertainty is usually concerned with unexpected shipment (or production)

delay. It is noteworthy that analyzing inventory problems under uncertain lead time

could be cumbersome because of a phenomenon called “order crossing”. That is, orders

may arrive in a different sequence than the one in which they were initially placed

(He et al., 1998). To avoid such complexity, most research papers on this issue have

assumed no order cross when there are stochastic lead times. Nevertheless, Srinivasan

et al. (2011) pointed out that in practice the order crossing is inevitable due to widely

employed multi-sourcing and just-in-time (JIT) strategies.

Our goal in this thesis is to provide general modeling frameworks and efficiently com-

pute optimal policies for the periodic-review, finite-horizon inventory systems in the pres-

ence of supply and demand uncertainties. Specifically, we study three periodic-review,

finite-horizon inventory systems subject to uncertain supply and uncertain demand, they

are: (1) single-station system, (2) multi-echelon system, and (3) Assemble-To-Order

(ATO) system.

To tackle uncertainty, robust optimization (RO) and stochastic programming (SP)

approaches are commonly used. RO is usually applied to the situations where limited

distributional information is provided, and focuses on the worst-case scenario, whereas

SP assumes the full distributional knowledge of uncertain parameters and optimizes the

expected performance over the finite possible scenarios. We are interested in RO and SP

not only because they are mathematical programming-based modeling approaches that

2
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contribute to the robustness of solutions against data uncertainty, but also because they

have potential to incorporate multiple sources of uncertainty into model development.

1.2 Contributions and Organization of the Thesis

In this thesis, we formulate single-station and multi-echelon inventory problems subject

to uncertain supply and uncertain demand using the RO formulation, while the ATO

system under stochastic replenishment lead times and stochastic product demands is

formulated under the SP formulation.

In Chapter 2, we review advances in the RO and SP literatures with their applications

in the inventory management. Also, we briefly describe a RO framework for linear

programming (LP) problems with row-wise uncertainty as well as a general form of a

two-stage SP, which will be used in this thesis.

In Chapter 3, we first study multi-period single-station problem subject to uncertain

supply and uncertain demand, where supply uncertainty is modeled by partial supply.

By restricting supply ratio and demand to budget (polyhedral) uncertain sets, we formu-

late the problem under the RO framework of Bertsimas and Sim (2003, 2004). We show

that the computational burden of the robust counterpart is not much higher than the

corresponding nominal problem. We also provide theoretical results regarding the opti-

mal inventory policy of the robust counterparts. Specifically, we show that solving the

robust counterpart amounts to solving a nominal problem with a modified deterministic

demand sequence. In the stationary case, the optimal robust policy is quasi-(s, S), where

s and S levels are theoretically computable. In addition, we consider the capacitated

single-station problems and investigate how the optimal robust policy is affected. The

numerical results show that the proposed robust policy could significantly outperform

the nominal policy and the robust policy of Bertsimas and Thiele (2006) in the average

performance when different cost parameters and demand distributions are considered.

3
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In Chapter 4, we extend the RO framework to a multi-period multi-echelon inven-

tory problem with a tree structure, in which we assume that the supply uncertainty only

affects orders placed by main storage hubs. Although the proposed model is more com-

plicated than that of the single-station problem in terms of the problem size, it still can

be solved within polynomial time to optimality if there are no setup costs. We provide

theoretical insights into the optimal robust policy. We show that the optimal robust

policy is decomposable into those of robust single-station problems. Specifically, the

problem can be decomposed into several interconnected single-station problems with (or

without) time-varying capacity on orders. If there are no setup costs, then the problem

can be decomposed into several uncapacitated single-station problems with the deter-

ministic demands. The numerical results suggest that the significant benefits in terms

of cost savings and performance stability can be realized by incorporating both supply

and demand uncertainties.

In Chapter 5, we consider a multi-product, multi-component, periodic-review ATO

system that simultaneously incorporates stochastic replenishment lead times and stochas-

tic product demands. The system enforces an independent base-stock policy and a

First-Come-First-Served (FCFS) allocation rule. We first consider the circumstance

where the decision maker has full knowledge of the realized lead times and propose a

two-stage stochastic integer program to jointly optimize the base-stock levels and com-

ponent allocation. Subsequently, we advance the methodology by considering a more

general situation where the decision maker only has full distributional knowledge of the

random lead times and propose a multi-stage stochastic integer program for the joint

optimization. To solve the proposed models, we use the sample average approximation

(SAA) algorithms. The effectiveness of the SAA solutions is demonstrated through the

tightness of the gaps between lower and upper bounds yielded by the algorithms. The

benefit of incorporating lead time uncertainty into the base-stock optimization is evalu-

ated by simulation in a comparison with the base-stock levels of Akçay and Xu (2004)

4
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where the deterministic lead times are assumed.

We summarize the major contributions of this thesis, as well as some directions for

the future research in Chapter 6.

5



Chapter 2

Literature Review

This chapter introduces robust optimization (RO) and stochastic programming (SP)

approaches, and discusses their applications in the production and inventory manage-

ment literature. In particular, we present a RO framework specifically tailored for linear

programming (LP) problems subject to row-wise uncertainty and a general form of a

two-stage SP model, as they will be used in this thesis.

2.1 Robust Optimization Literature

There are two major RO modeling methodologies in the literature, i.e., the scenario-

based RO and set-based RO. It is worth noting that these two RO methods are very

distinct in nature. The scenario-based RO was developed in Mulvey et al. (1995), in

which a finite set of scenarios was considered and the probability distribution of the

scenarios was known in advance, and it focuses on the expected performance. The

formulation explicitly allows for the constraint violations under some of the scenarios,

and such violations are penalized in the objective function. Thus, the trade-off between

solution and model robustness can be quantitatively measured. However, this approach

suffers from tractability issues as the size of the problem increases.

6
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As an alternative, the set-based RO provides a framework to address the issue of data

uncertainty when incomplete distributional information is provided. This RO assumes

a bounded, convex uncertainty set for uncertain parameters. The formulation aims to

minimize the maximum cost (or maximize the minimum revenue), where the maximum

cost (or minimum revenue) is computed over the uncertainty set. As opposed to the

scenario-based RO, set-based RO enforces feasibility of the optimal solution for all values

of the uncertain parameters within the uncertainty set.

The set-based RO was pioneered by Soyster (1973), who considered column-wise

convex uncertainty sets for a LP problem and sought a feasible solution for all realizations

in the sets. The author showed that the problem is equivalent to another LP problem

where each uncertain parameter equals its worst-case value within the set. This leads to

an extremely conservative solution, which largely impedes its practical implementation.

To tackle the over-conservative issue, Ben-Tal and Nemirovski (1999) proposed a RO

formulation with row-wise ellipsoidal uncertainty sets. Although the RO with ellipsoidal

uncertainty sets provides less conservative solutions than Soyster (1973), solving the

resulting conic quadratic programs, that is, the robust counterparts of LPs, could be

computationally burdensome.

More recently, Bertsimas and Sim (2003, 2004) developed a RO framework with

row-wise polyhedral uncertainty sets in the context of LP problems, when limited dis-

tributional information is provided (i.e., mean and standard deviation). In the RO, the

uncertain parameters are assumed to belong to the symmetric intervals centered at their

mean (or nominal) values. Realizing that it is unlikely that all uncertainty parameters

will take their worst-case value within the intervals, a pre-determined parameter called

budget-of-uncertainty is imposed to rule out large cumulative deviations. Therefore, this

RO has also been referred to as the RO with budget (polyhedral) uncertainty sets. The

authors further proved the existence of probabilistic bounds against the constraint vio-

lations. A most attractive feature of the RO is that the computational burden of RO is

7
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usually not much higher than the original problem. For example, the robust counterpart

of a LP remains a LP (Bertsimas and Sim, 2003, 2004).

Let’s consider the following LP problem:

min c′x

s.t. A′ix ≤ bi, ∀i, (2.1)

x ≥ 0,

where c, Ai are row vectors of size n, (·)′ is the vector transpose, bi is a constant, and x

is a vector of n non-negative variables. We assume that the entries aij , j = 1, . . . , n, of

the vector Ai are uncertain parameters and may vary in the interval [āij − âij , āij + âij ].

Let zij = (aij − āij)/âij denote the scaled deviation such that aij = āij + âijzij and

zij ∈ [−1, 1] for all i, j. It is assumed that the scaled deviations belong to the following

budget uncertainty set:

Zi = {−1 ≤ zij ≤ 1,
n∑
j=1
|zij | ≤ Γi, ∀j ≤ n}, ∀i (2.2)

where the parameter Γi represents the budget-of-uncertainty for constraint i, which

varies in the interval [0, n]. If Γi = 0, it means all aij take their nominal values, namely

āij ; if Γi = n, it allows all aij to take their worst-case values, namely āij ± âij .

Bertsimas and Sim (2003, 2004) showed that the LP problem (2.1) with the uncer-

tainty set (2.2) is equivalent to another LP problem:

min c′x

s.t.
n∑
j=1

āijxj + piΓi +
n∑
j=1

qij ≤ bi, ∀i,

pi + qij ≥ âij , ∀i, j, (2.3)

pi ≥ 0, qij ≥ 0, ∀i, j,

8
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xj ≥ 0, ∀j,

where pi and qij are dual variables associated with the constraints in the uncertainty

set (2.2). This is the set-based RO that we will use in Chapter 3 and 4. We adopt this

approach because of its computational efficiency and the effectiveness of its solution.

The set-based RO has been used in a wide range of operations management appli-

cations such as scheduling (Bohle et al., 2010), humanitarian logistics (Paul and Wang,

2015), capacity expansion (Ordóñez and Zhao, 2007), portfolio management (Bertsimas

and Pachamanova, 2008), and pricing (Thiele, 2006). Among others, we are particu-

larly interested in the prior works that used the RO with budget uncertainty sets in the

inventory management area.

In Bertsimas and Thiele (2006), the authors first applied the RO of Bertsimas and

Sim (2003, 2004) to classical multi-period inventory problems under demand uncertainty.

Furthermore, they showed that in the case of stationary costs the robust counterparts are

equivalent to the nominal problems with a modified deterministic demand in each time

period. They also concluded that the optimal robust policies follow the (s, S) form. The

quality of the robust policies was highlighted through numerical studies when compared

to those obtained from dynamic programming and a myopic approach when erroneous

distributions were assumed.

The methodology is subsequently applied to the sawmill planning problems with yield

uncertainty in Alvarez and Vera (2014). Aouam and Brahimi (2013) formulated an in-

tegrated production planning with order acceptance problem under the RO framework,

where customer demands are distinguished by marginal revenue and subject to uncer-

tainty. We also note applications of the RO in the inventory management literature that

involve multi-source uncertainty such as Alem and Morabito (2012) (uncertain costs and

demands), Varas et al. (2014) (uncertain raw material supplies and demands), and Wei

et al. (2011) (uncertain returns and demands).

9
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Although the derived robust counterparts in the above papers exhibit computational

tractability, the hidden over-conservative issue of the RO approach has been investigated

in Thiele (2010). To alleviate such the conservativeness, the author suggested to either

examine the efficiency of the budget-of-uncertainty through simulation, or use smaller

polyhedral sets. Bienstock and ÖZbay (2008) addressed this over-conservativeness by

solving a “true” min-max single-station inventory problem of Bertsimas and Thiele

(2006), where the base-stock policy was enforced. The proposed Benders’ decomposition

algorithms perform well under two demand models (risk budget demand and bursty de-

mand). Nevertheless, solving the problem with Benders’ decomposition algorithms may

require extensive computational efforts.

We refer to the RO discussed thus far as the static RO approach since it does not

allow for recourse actions as time evolves. Ben-Tal et al. (2004) developed an adjustable

RO (ARO) approach to account for recourse actions, thus the underlying problems are

solved in a dynamic fashion. The ARO produces less conservative solutions than the

static RO, but it is computationally intractable in general. We notice that many efforts

have been made to derive tractable approximations for the ARO in the inventory man-

agement literature (e.g., Ben-Tal et al., 2005, 2009; See and Sim, 2010; Solyalı et al.,

2015). In addition, researchers have recently investigated the performance of affine poli-

cies in multistage adjustable optimization. In particular, Bertsimas et al. (2010) proved

the optimality of disturbance-affine control policies for one-dimensional, constrained,

multistage robust optimization and Bertsimas et al. (2011) introduced a hierarchy of

near-optimal polynomial control policies for linear dynamical systems subject to uncer-

tainty. For more details on the ARO and its recent advances, the reader is referred

to Gabrel et al. (2014).
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2.2 Stochastic Programming Literature

SP is a scenario-based approach that is well-suited for situations where the probability

distribution for the underlying uncertain parameters is known with certainty. For ex-

ample, the probability for scenario i in which we observe that the realization of demand

di is equal to pi for i = 1, 2, . . . , I, where I represents the number of possible scenarios

in the system. In contrast to the RO, the methodology is established to evaluate the

expected performance and aims to minimize expected cost (or maximize expected rev-

enue) over the finite possible scenarios. Overall, the SP approach produces a safe and

useful solution that guarantees the feasibility for all scenarios.

The two-stage (linear) SP, as first introduced in Dantzig (1955), is the most widely

used and studied method in the literature. It consists of two groups of decision variables,

namely, first-stage variables (also called here-at-now) and second-stage variables (also

called wait-and-see). The decision maker initially decides on the first-stage values, after

which the uncertainty parameters are realized, then the recourse actions are taken (i.e.,

decides on second-stage values) so as to mitigate any negative effects incurred by the

first-stage decision.

Suppose we deal with a two-stage SP problem that has the following form:

max Eξ[Q(x, ξ)]

s.t. A′x ≤ b, (2.4)

x ≥ 0,

where Q(x, ξ(ω)) is the optimal objective value of the second-stage problem

Q(x, ξ(ω)) = max q(ω)′y

s.t. W′y ≤ h(ω)−T(ω)′x, (2.5)

11
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y ≥ 0.

The first-stage decision variables are x, which must be made before the realization

of random vectors ξ. The second-stage decision variables y are made with respect to

the realized second-stage problem parameters ξ(ω) = (q(ω),h(ω),T(ω)). Note that

each realization of the random vector ξ corresponds to a scenario. Since there are

different realizations of the random vector ξ, the objective of (2.4) aims to maximize the

expectation of the second-stage objective function over a set of scenarios (see Birge and

Louveaux, 2011 for details).

We see many applications of the two-stage SP in supply chain design (e.g., MirHassani

et al., 2000, Tsiakis et al., 2001) and transportation planning (e.g., Barbarosoǧlu and

Arda, 2004) problems because the immediate recourse actions are required in response

to highly unpredictable events.

As a natural extension of the two-stage SP, multi-stage SP is usually adopted in

the multi-period environments where the uncertain parameters are revealed sequentially

over discrete time. In such a context, the multi-stage SP yields a superior solution to

the two-stage SP in the sense that it better characterizes the dynamic behavior of the

stochastic process and adds more flexibility into the decision-making. It is worth noting

that the evolution of the stochastic parameters are usually represented by a scenario tree,

in which each node represents a possible realization of a set of stochastic parameters at

a certain stage (or period), and a path from the root node to a leaf node in the tree

corresponds to a scenario (see Huang and Ahmed, 2009 for details of the scenario tree).

On the other hand, the multi-stage SP problems are notorious for their difficulties

to solve, especially when the recourse decisions are required to be integer (Birge and

Louveaux, 2011). The complexity of the multi-stage SP problems were discussed in

Shapiro and Nemirovski (2005). The authors stated that the multi-stage SP models are in

general computational intractable. Some techniques to solve the multi-stage SP models
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include Benders’ decomposition (e.g., Fragniere et al., 2000), augmented Lagrangian

relaxation (e.g., Ruszczynski, 1999), and Monte Carlo sampling-based approximation

(e.g., Dantzig and Glynn, 1990, Kleywegt et al., 2002), among others. The reader is

referred to Birge and Louveaux (2011), Kall and Wallace (1994) for a thorough overview

of the SP and the corresponding solution methods.

The application of the SP approach in the production and inventory management

literature goes back to the late 1960’s when El Agizy (1969) considered a single-item

inventory problem subject to demand uncertainty. The author defined the decision

variables as the function of the possible demand sequences. He further identified that

the resulting LP problem can be reformulated as a network flow problem. In the context

of multi-period problems, most existing works formulated the problems within a two-

stage SP framework (e.g., Bakir and Byrne, 1998, Hood et al., 2003, Dillon et al., 2017).

However, as noted above, the two-stage SP cannot accurately capture the dynamic

stochastic process in such problems.

In Escudero et al. (1993), the authors proposed a multi-stage SP model to address

a multi-period multi-product production planning problem with demand uncertainty.

They computationally showed that the proposed model with a LP structure can be

solved with very modest computational efforts. Huang and Ahmed (2009) presented

a multi-stage SP model for a slightly different problem than that in El Agizy (1969)

and analyzed the dynamic stochastic process using scenario trees. Brandimarte (2006)

considered a capacitated lot-sizing problem subject to uncertain demand, in which the

proposed multi-stage SP model was compared with a deterministic model of the problem

using expected demands. Kazemi Zanjani et al. (2010) proposed a multi-stage SP model

to cope with multi-product capacitated inventory problems with uncertain supply (i.e.,

process yield) and uncertain demand. Moreover, they applied the proposed model to the

sawmill production problem of a realistic scale, and the results indicate that the solution

performance of the multi-stage SP model significantly outperforms the two-stage SP
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model.
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Chapter 3

Robust Optimization for a Single-Station

System

3.1 Introduction

The periodic-review, finite-horizon inventory planning problems under demand uncer-

tainty have been extensively studied in the past, with rich analytical results and appli-

cations. For example, Clark and Scarf (1960) has proved the optimality of base-stock

policy for a serial inventory system subject to stochastic demand.

As global supply chains have been growing considerably, increasing firms take ad-

vantage of global sourcing opportunities to lower their labor and production costs. On

the other hand, supply uncertainty that often arises from higher variability in overseas

suppliers production performance as well as the shipment delay due to the long-distance

transportation, or supply chain disruption, may adversely impact the overall performance

of a supply chain, which suggests a practical need to incorporate supply uncertainty into

decision-making.

Early works on inventory problems subject to supply and demand uncertainties can

be found in Gerchak et al. (1988), Parlar and Berkin (1991), and Ciarallo et al. (1994),

among many others. A majority of the prior works heavily relies on the assumption that
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the distribution for the underlying uncertain parameters is precisely known. Unfortu-

nately, the distributional information in practice might be very difficult to accurately

estimate or acquire.

Bertsimas and Sim (2003, 2004) developed a robust optimization (RO) framework

specifically tailored for linear programming (LP) problems using row-wise polyhedral

uncertainty sets. In addition, the level of conservativeness is flexibly adjusted through

changing the value of a pre-determined parameter called budget-of-uncertainty. More

importantly, according to the principle of strong duality, they showed that, despite

the presence of additional variables and constraints, the LP form is preserved in the

robust counterpart. They proved the existence of probabilistic bounds on the constraint

violations, and thus an acceptable level of performance can be expected with their robust

formulation.

Bertsimas and Thiele (2006) first applied the RO to inventory problems under demand

uncertainty. The derived robust counterparts not only attain computational tractabil-

ity, but also show promising results when compared to the classical methods. The

methodology is subsequently applied to the sawmill planning problems in Alvarez and

Vera (2014) (yield uncertainty) and Varas et al. (2014) (raw material supply and de-

mand uncertainties). Aouam and Brahimi (2013) proposed the RO-based, integrated

production planning model with order acceptance, where customer demands are distin-

guished by marginal revenue and subject to uncertainty. We also see many applications

of the RO approach in the production and inventory management literature that involve

multi-source uncertainty in their problem settings (see e.g., Wei et al., 2011, Alem and

Morabito, 2012, Sanei Bajgiran et al., 2017).

Fewer works simultaneously take supply and demand uncertainties into consideration

when the RO is applied. One recent work was Thorsen and Yao (2017), where the authors

considered a single-station inventory problem subject to column-wise uncertain lead

times and row-wise uncertain demands. Motivated by Bienstock and ÖZbay (2008), they
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devised Benders’ decomposition algorithms to compute the optimal inventory policies.

In this chapter, we build on the multi-period single-station inventory planning prob-

lem that was studied in Bertsimas and Thiele (2006) and additionally incorporate supply

uncertainty. Specifically, we consider partial supply. Partial supply includes yield loss

in the production process, and the loss during the transportation between suppliers and

warehouses. Inspired by Gerchak et al. (1988), who used the stochastic proportional

yield, we introduce an uncertain parameter called supply ratio to model partial supply.

Moreover, we generalize the theoretical results found in Bertsimas and Thiele (2006)

regarding the optimal robust policies, and numerically show the effectiveness of the

proposed robust policies.

3.2 Nominal Case

In this section, we consider a single-station inventory problem over a finite discrete plan-

ning horizon of T time periods. At the beginning of time period t ∈ T := {0, 1, . . . , T−1},

after observing current inventory level It, the decision maker decides on the ordering

quantity. The binary variable δt denotes an ordering decision. That is, δt = 1 if and

only if an order is placed and δt = 0, otherwise. Let ct and Kt be the unit variable cost

and setup cost in period t, respectively. The demand dt occurs during the period. After

the demand is realized, the excess stock at the end of period t (i.e., It+1 ≥ 0) is carried

forward to the next time period t+ 1, incurring the holding cost htIt+1, where ht is the

unit holding cost; while the unsatisfied demand is fully backlogged (i.e., It+1 < 0), incur-

ring the shortage cost −btIt+1, where bt is the unit shortage cost. Thus, the inventory

cost can be expressed as max(htIt+1,−btIt+1). We assume that bt > ct so that it remains

a possibility to order until the last period. In representing the supply uncertainty, it is

assumed that a certain fraction of the order xt can be received and we define the supply

ratio αt ∈ [0, 1]. Then we write the received order quantity in a multiplicative form as

αtxt. The initial inventory level is given by I0.
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In the nominal model, both supply ratio and demand in each period are realized in

their nominal values with certainty. Therefore, the inventory level at the end of period

t with nominal supply ratio ᾱi and nominal demand d̄i for all i ≤ t is expressed as

Īt+1 = I0 +
∑t
i=0(ᾱixi− d̄i). The objective aims to minimize the total costs of purchasing

(i.e., setup and variable costs), inventory holding and shortage over the entire planning

horizon. The nominal single-station problem is:

(DS) min
T−1∑
t=0

(ctxt +Ktδt + yt) (3.1)

s.t. yt ≥ ht
(
I0 +

t∑
i=0

(ᾱixi − d̄i)
)
, ∀t ∈ T , (3.2)

yt ≥ −bt
(
I0 +

t∑
i=0

(ᾱixi − d̄i)
)
, ∀t ∈ T , (3.3)

0 ≤ xt ≤Mδt, δt ∈ {0, 1}, ∀t ∈ T , (3.4)

where yt is an intermediate variable and is equal to the inventory cost computed at

the end of time period t at optimality, namely y∗t = max(htĪ∗t+1,−btĪ∗t+1), and M is a

large constant. Constraints (3.2) and (3.3) correspond to the inventory constraints for

holding and shortage costs, respectively. Constraint (3.4) ensures that a nonnegative

order can be placed if and only if the corresponding ordering decision has been made,

namely δt = 1.

It is noteworthy that although there exists a difference between the ordered quantity

and the received quantity because of the partial supply, the purchasing cost is com-

puted based on the ordered quantity. The problem could be easily adapted to the case

where a firm only needs to pay what it actually receives by changing the objective to∑T−1
t=0 (ctᾱtxt+Ktδt+yt). In the following, we apply the RO approach introduced in Bert-

simas and Sim (2004) and Bertsimas and Thiele (2006) to DS formulation (3.1)-(3.4).
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3.3 Robust Case

Suppose that both supply ratio αt and demand dt are subject to data uncertainty. To

model the uncertainty, we assume that the supply ratio αt takes values in the interval

[ᾱt − α̂t, ᾱt] in time period t, which implies that at most the nominal level of ordered

quantities can be received. Then, the scaled deviation of the supply ratio from its

nominal value is defined as zαt := (αt − ᾱt)/α̂t. Thus, we have zαt ∈ [−1, 0] and zαt :=

(zα0 , zα1 , . . . , zαt ). In reality, it is unlikely that all elements in zαt are equal to their worst-

case values (i.e., zαi = −1 for all i ≤ t); a parameter called budget-of-uncertainty Γαt is

imposed to restrict large cumulative deviations in period t as
∑t
i=0 |zαi | ≤ Γαt , where Γαt

satisfies Γαt ∈ [0, t] and Γαt ≤ Γαt+1 for all t.

Approaching demand uncertainty differently from supply ratio uncertainty, we assume

that demand dt takes values in the symmetric interval [d̄t − d̂t, d̄t + d̂t] in time period t.

This is because, while the worst case of supply is always to have less supply than ordered

(we will not receive more items than what we paid for), the worst case of demand can

be either less or more than expected. The scaled deviation of demand is defined as

zdt := (dt − d̄t)/d̂t. Thus, we have zdt ∈ [−1, 1] and zdt := (zd0 , zd1 , . . . , zdt ). Given the

budget-of-uncertainty Γdt , we have
∑t
i=0 |zdi | ≤ Γdt , where Γdt satisfies Γdt ∈ [0, t] and

Γdt ≤ Γdt+1 for all t.

According to the above definitions, we write αt = ᾱt + α̂tz
α
t and dt = d̄t + d̂tz

d
t ,

respectively. In addition, for t ∈ T , the budget uncertainty sets are defined as

Zαt :=
{
zαt | − 1 ≤ zαi ≤ 0,

t∑
i=0
|zαi | ≤ Γαt , ∀i ≤ t

}
, (3.5)

and

Zdt :=
{
zdt | − 1 ≤ zdi ≤ 1,

t∑
i=0
|zdi | ≤ Γdt , ∀i ≤ t

}
. (3.6)
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The values of budget-of-uncertainty are selected by the decision maker to model the

degree of risk aversion. The robust single-station problem can be derived by maximizing

the right-hand side (RHS) of Constraints (3.2) and (3.3) with respect to the budget

uncertainty sets Zαt and Zdt for all t as follows,

(RS) min
T−1∑
t=0

(ctxt +Ktδt + yt)

s.t. yt ≥ ht
(
Īt+1 + max

Zαt ,Zdt

t∑
i=0

(−d̂izdi + α̂iz
α
i xi)

)
, ∀t ∈ T ,

yt ≥ bt
(
− Īt+1 + max

Zαt ,Zdt

t∑
i=0

(d̂izdi − α̂izαi xi)
)
, ∀t ∈ T , (3.7)

0 ≤ xt ≤Mδt, δt ∈ {0, 1}, ∀t ∈ T ,

where Īt+1 = I0 +
∑t
i=0(ᾱixi − d̄i).

Noticeably, for the tth pair of inventory holding and backlogging cost constraints

in the RS formulation (3.7), we need to solve the auxiliary problems with respect to

zαt and zdt . Therefore, this formulation is non-convex due to its min-max form, which

requires a reformulation to a solvable form. We have the following theorem for RS

formulation (3.7).

Theorem 3.1. The RS formulation (3.7) is equivalent to the following robust counter-

part with a mixed integer programming (MIP) structure:

(RSC) min
T−1∑
t=0

(ctxt +Ktδt + yt)

s.t. yt ≥ ht
(
Īt+1 + otΓdt +

t∑
i=0

pit
)
, ∀t ∈ T ,

yt ≥ bt
(
− Īt+1 + otΓdt +

t∑
i=0

pit + qtΓαt +
t∑
i=0

rit
)
, ∀t ∈ T ,

ot + pit ≥ d̂i, ∀t ∈ T , ∀i ≤ t, (3.8)

qt + rit ≥ α̂ixi, ∀t ∈ T , ∀i ≤ t,
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ot ≥ 0, pit ≥ 0, qt ≥ 0, rit ≥ 0, ∀t ∈ T , ∀i ≤ t,

0 ≤ xt ≤Mδt, δt ∈ {0, 1}, ∀t ∈ T ,

where Īt+1 = I0 +
∑t
i=0(ᾱixi − d̄i).

Proof. Consider time period t. The solution of the auxiliary problem maxZαt
∑t
i=0 α̂ixiz

α
i

is trivial because zαi varies between [-1,0] and thus the problem attains optimality when

zαi is set to zero for all i ≤ t. In addition, we next show that the auxiliary prob-

lems maxZdt
∑t
i=0−d̂izdi and maxZdt

∑t
i=0 d̂iz

d
i are essentially equivalent. Because the

problems have opposite objectives with symmetric uncertainty set, the former can be

rewritten as maxZdt
∑t
i=0 d̂iz

new
i where znewi = −zdi for all i ≤ t, while the uncertainty

set remains unchanged with the new variable znewi .

Bertsimas and Thiele (2006) used a reformulation by invoking strong duality to the

robust inventory problems under demand uncertainty with the budget uncertainty sets,

which allows them to transform the min-max problem into a solvable form and retain

original optimal solutions. Specifically, they considered the following auxiliary problem

in period t,

max
t∑
i=0

d̂iz
d
i

s.t. 0 ≤ zdi ≤ 1, ∀i ≤ t, (3.9)
t∑
i=0

zdi ≤ Γdt .

Notice, this problem is exactly the same auxiliary problem with zdt that comes from

the RS formulation (3.7) (because the auxiliary problems with zdi embedded in RS for-

mulation (3.7) are equivalent. In the maximization problem maxZdt
∑t
i=0 d̂iz

d
i , the scaled

deviation zdi will take a positive value at optimality for all i ≤ t. As a result, the budget
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uncertainty set Zdt becomes {0 ≤ zdi ≤ 1,
∑t
i=1 z

d
i ≤ Γdt } for all t). Its dual problem is

min otΓdt +
t∑
i=0

pit

s.t. ot + pit ≥ d̂i, ∀i ≤ t, (3.10)

ot ≥ 0, pit ≥ 0, ∀i ≤ t,

where ot and pit are dual variables corresponding to the constrains in auxiliary prob-

lem (3.9). By strong duality, they further substitute the dual problem (3.10) instead of

auxiliary problem (3.9) into RS formulation (3.7) and obtain the robust counterpart.

Similarly, we consider the following auxiliary problem with zαt that comes from RS

formulation (3.7),

max
t∑
i=0

α̂iz
α
i x
∗
i

s.t. 0 ≤ zαi ≤ 1, ∀i ≤ t, (3.11)
t∑
i=0

zαi ≤ Γαt ,

where x∗i is an optimal solution of RS formulation (3.7) and considered as given. Then,

its dual problem is following,

min qtΓαt +
t∑
i=0

rit

s.t. qt + rit ≥ α̂ix∗i , ∀i ≤ t, (3.12)

qt ≥ 0, rit ≥ 0, ∀i ≤ t,

where qt and rit are the dual variables corresponding to the constrains in auxiliary

problem (3.11).
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After substituting the dual problems (3.10) and (3.12) back into RS formulation (3.7),

we obtain the equivalent robust counterpart as shown in RSC formulation (3.8).

Theorem 3.1 shows that the computational burden of the robust counterpart is not

much higher than the corresponding nominal problem. In other words, the robust coun-

terpart remains a LP problem if the nominal problem is a LP problem and a MIP

problem if the nominal problem is a MIP problem.

In the following section, we present the theoretical results regarding the optimal

robust policy obtained from RSC formulation (3.8).

3.4 Optimal Robust Policy

We now show that RSC formulation (3.8) is equivalent to a (larger) nominal problem

and provide theoretical insights into the optimal robust policy. According to Clark and

Scarf (1960), the optimal policy of a multi-period inventory problem is called (s, S), if

there exists a sequence of parameters (st, St) for all t such that in time period t we have

x∗t = St − It when the inventory level is less than a threshold st and x∗t = 0 otherwise,

with st ≤ St. Analogously, the optimal policy is said to be quasi-(s, S) if in time period

t we have x∗t = (St − It)/βt (where βt > 0) when It < st and x∗t = 0 otherwise. In order

to present the results, we need the following lemma:

Lemma 3.1 (see Bertsimas and Thiele (2006)). In the stationary case of DS formu-

lation (3.1)-(3.4). That is, ct ≡ c,Kt ≡ K,ht ≡ h, b ≡ bt and ᾱt ≡ ᾱ for all t, we

have:

(a) If there is no setup cost, the optimal nominal policy is quasi-(s, S) with st = St =

d̄t for all t. In other words, it is optimal to order (St − It)/ᾱ units if It < St and 0

otherwise in period t.
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(b) If there is a setup cost, the optimal nominal policy is quasi-(s, S) with

Sj =
Uj∑
τ=0

d̄tj+τ , (3.13)

and

s1 = I0 −
t1−1∑
τ=0

d̄τ , sj = −
Lj−1−1∑

τ=Uj−1+1
d̄tj−1+τ , j ≥ 2 (3.14)

where tj (j = 1, . . . , J) denotes the ordering time periods, and Lj = tj+1−tj, Uj = b bLjb+hc

and UJ = b bLj−cb+h c. In other words, it is optimal to order (St− It)/ᾱ units if It < st and

0 otherwise in period t.

Proof. See Bertsimas and Thiele (2006) for the optimality of the quasi-(s, S) policy for

DS formulation (3.1)-(3.4) when ᾱ ≡ 1 for all t. The results still hold if we rewrite the

problem with new variable x′t = ᾱxt and new unit variable cost c′ ≡ c/ᾱ.

We next present the results regarding the optimal robust policy.

Theorem 3.2 (Optimal robust policy). Let o∗t , p∗it, q∗t and r∗it be an optimal solution of

RSC formulation (3.8), then we have:

(a) The optimal policy in RSC can be obtained by solving the nominal problem with

the modified, deterministic demand in period t,

d′t = d̄t + (Υt −Υt−1) + (Ψt −Ψt−1), (3.15)

where Υ−1 = 0 and Υt := ((bt − ht)/(bt + ht))At with At = o∗tΓdt +
∑t
i=0 p

∗
it being

the accumulated deviation of the uncertain demand from its nominal value in period t;

Ψ−1 = 0 and Ψt := (bt/(bt + ht))Bt with Bt = q∗t Γαt +
∑t
i=0 r

∗
it being the accumulated

deviation of the uncertain supply ratio from its nominal value in period t.

(b) In the stationary case, if there is no setup cost, the optimal robust policy is quasi-

(s, S) with st = St = d′t for all t.
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(c) In the stationary case, if there is no setup cost and I0 ≤ d′0, the optimal robust

policy always results in the same holding and shortage costs for all t. Moreover, the

inventory cost at optimality can be expressed as

y∗t = 2bh
b+ h

At + bh

b+ h
Bt. (3.16)

(d) In the stationary case, if there is a setup cost, the optimal robust policy is quasi-

(s, S) with corresponding sj and Sj, where j indexes the ordering periods, defined in

Lemma 3.1, however, applied to the modified demand d′t given in Equation (3.15).

(e) The optimal cost of RSC is equal to the optimal cost of the nominal problem with

the modified demand sequence plus the extra cost
∑T−1
t=0

2btht
bt+htAt +

∑T−1
t=0

btht
bt+htBt.

Proof. We reformulate RSC formulation (3.8) as the nominal problem with the modified

demand. Given an optimal solution (x∗, δ∗,o∗,p∗,q∗, r∗) for RSC, note that x∗ and δ∗

still solve RSC if the remaining variables are fixed to o∗,p∗,q∗ and r∗, which allows us

to focus on the following problem,

min
x≥0

T−1∑
t=0

[
ctxt +Kt1{xt>0} + max

(
ht(Īt+1 +At), bt(−Īt+1 +At +Bt)

)]
, (3.17)

where Īt+1 = I0 +
∑t
i=0(ᾱixi − d̄i), At = o∗tΓdt +

∑t
i=0 p

∗
it, Bt = q∗t Γαt +

∑t
i=0 r

∗
it, and

1{xt>0} function returns 1 if xt > 0 and 0 otherwise.

Next, the modified inventory level I ′t is defined as

I ′t+1 = I ′t + ᾱtxt −
(
d̄t + (Υt −Υt−1) + (Ψt −Ψt−1)

)
︸ ︷︷ ︸

d′t

, (3.18)
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with I ′0 = I0. Obviously, the modified demand d′t is not subject to uncertainty. Then I ′t

can be recursively written as follows:

I ′1 = I ′0︸︷︷︸
=I0

+ᾱ0x0 − d̄0 − (Υ0 −Υ−1)− (Ψ0 −Ψ−1),

I ′2 = I ′1 + ᾱ1x1 − d̄1 − (Υ1 −Υ0)− (Ψ1 −Ψ0)

= I0 +
1∑
i=0

(ᾱixi − d̄i)−Υ1 −Ψ1,

...

I ′t+1 = I0 +
t∑
i=0

(ᾱixi − d̄i)−Υt −Ψt

= Īt+1 −
bt − ht
bt + ht

At −
bt

bt + ht
Bt.

Substituting I ′t+1 in the following equations, we have

htI
′
t+1 + 2btht

bt + ht
At + btht

bt + ht
Bt

= htĪt+1 −
ht(bt − ht)
bt + ht

At −
btht
bt + ht

Bt + 2btht
bt + ht

At + btht
bt + ht

Bt

= htĪt+1 + htAt,

and

− btI ′t+1 + 2btht
bt + ht

At + btht
bt + ht

Bt

= −btĪt+1 + bt(bt − ht)
bt + ht

At + b2
t

bt + ht
Bt + 2btht

bt + ht
At + btht

bt + ht
Bt

= −btĪt+1 + btAt + btBt.

The inventory cost of problem (3.17) in period t can be written as

max{ht(Īt+1 +At), bt(−Īt+1 +At +Bt)}
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= max{htI ′t+1,−btI ′t+1}+ 2btht
bt + ht

At + btht
bt + ht

Bt. (3.19)

We therefore obtain the following nominal problem with the modified demand d′t

given in Equation (3.15) (plus the extra cost 2btht
bt+htAt + btht

bt+htBt) in period t,

min
x≥0

T−1∑
t=0

[
ctxt +Kt1{xt>0} + max{htI

′
t+1,−btI

′
t+1}+ 2btht

bt + ht
At + btht

bt + ht
Bt
]
.

This proves (a) and (e). Invoking Lemma 3.1, we immediately conclude that the

results hold in (b) and (d). According to (b), it is optimal to order

x∗0 = d
′
0 − I0
ᾱ

and x∗t = d
′
t

ᾱ
, t ≥ 1

Hence, for tth pair of inventory holding and shortage cost constraints in RS formula-

tion (3.7), the inventory holding and shortage costs in the stationary case can be written

out as follows,

h(I0 + (d′0 − I0) +
t∑
i=1

d′i −
t∑
i=0

d̄i +At)

= h(
t∑
i=0

d′i −
t∑
i=0

d̄i +At)

= h(
t∑
i=0

d̄i + b− h
b+ h

At + b

b+ h
Bt −

t∑
i=0

d̄i +At)

= 2bh
b+ h

At + bh

b+ h
Bt,

and

b(−I0 − (d′0 − I0)−
t∑
i=1

d′i +
t∑
i=0

d̄i +At +Bt)

= b(−
t∑
i=0

d′i +
t∑
i=0

d̄i +At +Bt)
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= b(−
t∑
i=0

d̄i −
b− h
b+ h

At −
b

b+ h
Bt +

t∑
i=0

d̄i +At +Bt)

= 2bh
b+ h

At + bh

b+ h
Bt.

This completes the proof of (c).

From Equation (3.16), it is shown that the inventory cost at optimality is a function of

both At and Bt, where At and Bt are defined by strong duality using auxiliary problems

(3.9) and (3.11), respectively. It is that clear when the intervals for αt and dt get

wider (i.e., α̂t and d̂t increase), the inventory cost increases accordingly since Bt and At

increase.

The extra cost
∑T−1
t=0

2btht
bt+htAt +

∑T−1
t=0

btht
bt+htBt corresponds to the cost that a firm is

willing to pay to guarantee the robustness of the optimal solution against uncertainty. A

similar result was first provided in Bertsimas and Thiele (2006) for the robust inventory

problem under demand uncertainty, where the extra cost is equal to
∑T−1
t=0

2btht
bt+htAt. The

extra cost
∑T−1
t=0

btht
bt+htBt is incurred by incorporating αt into the problem. Using the

same argument above, it gets more expensive to ensure the robustness of the optimal

solution as the intervals for αt and dt get wider.

One might notice that, in Equation (3.16) as well as the expression of the extra cost,

the coefficient for At is always twice as much as the coefficient for Bt. This can be

explained intuitively because we assumed a symmetric interval for dt centered around

its nominal value, while the interval for αt is one-sided.

3.5 Extension to Capacitated Cases

In this section, we consider capacitated RSC and investigate how the optimal robust

policy is affected.

28



Ph.D. Dissertation Jie Chu McMaster - Management Science

3.5.1 Capacitated Order

First, we consider the case where there is a time-varying upper bound Cordt on ordering

quantities xt for all t. The capacitated RSC can be derived by adding the following

constraint to RSC formulation (3.8),

xt ≤ Cordt , ∀t ∈ T (3.20)

Note that the reformulation does not affect Constraint (3.20), so we have the following

theorem.

Theorem 3.3 (Optimal robust policy). The optimal policy in RSC with capacitated

orders can be obtained by solving the nominal problem subject to the modified demand

given in Equation (3.15) with the capacity Cordt on the orders.

Proof. The result immediately follows from adding Constraint (3.20) to RSC formulation

(3.8) and reformulate the problem as the nominal problem in the same way as in the

proof of Theorem 3.2.

3.5.2 Capacitated Inventory

We now consider the case where there is an upper bound Cinv on the storage capacity

at the station, namely

I0 +
t∑
i=0

(αixi − di) ≤ Cinv, ∀t ∈ T (3.21)

where αi = ᾱi + α̂iz
α
i and di = d̄i + d̂iz

d
i with zαt ∈ Zαt and zdt ∈ Zdt . We now write

Constraint (3.21) in the robust framework as

Īt+1 + max
Zαt ,Zdt

(−d̂izdi + α̂iz
α
i xi) ≤ Cinv, ∀t ∈ T (3.22)
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where Īt+1 = I0 +
∑t
i=0(ᾱixi − d̄i). Using the same auxiliary problem (3.9) as before

(the auxiliary problem maxZαt α̂iz
α
i xi is trivially solved), by strong duality, we obtain its

robust counterpart as

Īt+1 + otΓdt +
t∑
i=0

pit ≤ Cinv, ∀t ∈ T (3.23)

The capacitated RSC can be derived by adding Constraint (3.23) to RSC formulation

(3.8). Obviously, the reformulation now affects Constraint (3.23). This becomes more

clear if we rewrite the constraint with the modified inventory level I ′t+1 (definition see

Proof of Theorem 3.2) as

I ′t+1 ≤ Cinv − 2bt
bt + ht

At −
bt

bt + ht
Bt, ∀t ∈ T (3.24)

Thus, the optimal robust policy can be characterized as follows.

Theorem 3.4 (Optimal robust policy). The optimal policy in RSC with capacitated

inventory can be obtained by solving the nominal problem subject to the modified demand

given in Equation (3.15) with inventory capacities Cinv and Ct+1 on inventory level in

periods 0 and t+ 1, t ≥ 0, respectively, where Ct+1 = Cinv− (2bt/(bt+ht))At− (bt/(bt+

ht))Bt.

Proof. The result immediately follows from incorporating Constraint (3.24) into the

reformulation.

3.6 Numerical Studies

In this section, we apply RSC formulation (3.8) to a single-station example. For the

purpose of comparison, we consider three inventory policies: (1) RO0, the nominal policy

when no uncertainty is considered; (2) RO1, the robust policy obtained from Bertsimas
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and Thiele (2006) when only demand uncertainty is considered; (3) RO2, the proposed

robust policy when supply and demand uncertainties are considered.

We estimate the performances by means of simulation with respect to 100 replica-

tions of realized supply ratios and demands. In each replication, note that the realized

supply ratios and demands are identical across three inventory policies. After a policy

is implemented, we obtain the corresponding total cost, denoted by C(ROi), i = 0, 1, 2.

The effectiveness of RO2 compared to RO0 (resp., RO1) is measured by the relative

performance, computed by the ratio R0−2 = 100 · (C(RO0) −C(RO2))/C(RO0) (resp.,

R1−2 = 100 · (C(RO1)−C(RO2))/C(RO1)), in percent. Then the expected relative per-

formance can be computed with respect to those 100 replications, denoted by E(R0−2)

(resp., E(R1−2)), in percent.

Our objective in this study is to find out the added benefit in terms of cost saving

by using RO2. In addition, we investigate the influence of supply variability, demand

variability, and uncertainty budgets on the average performance.

3.6.1 Experiment Setting

We consider the planning horizons of T = 10, 20 and 30 time periods. In a base example,

the cost parameters are assumed to be stationary and selected as ct = 1, ht = 0.1 and

bt = 1.5 for all t. When the setup cost is explicitly considered, we use Kt = 35. There

is zero initial inventory at the station.

In the simulation, the stochastic demand in each period is assumed to be i.i.d. and

generated from different underlying demand distributions. Specifically, the realized de-

mands are generated in accordance with a lognormal, gamma distribution with the same

mean µd = 100 and standard deviation δd = 20, or a uniform distribution from the inter-

val [µd−δd, µd+δd]. Likewise, the stochastic supply ratio in each period is also assumed

to be i.i.d. and generated from a distribution. For simplicity, we consider a lognormal
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distribution with mean µα = 0.9 and standard deviation δα = 0.05. To avoid oversupply,

we set αt = 1 if the realized supply ratio is greater than 1.

In order to capture such variabilities, the following parameters are selected as inputs

for the RSC formulation (3.8): Let ᾱt = 1 and α̂t = (ᾱt − µα + 2δα), that is, the supply

ratio belongs to the interval [0.8, 1] for all t. Let d̄t = µ̄d and d̂t = 2δd, that is, the

demand belongs to the interval [60, 140] for all t. Moreover, the linear budget functions

are considered for supply ratio and demand as given by Γαt = γα+γα·t and Γdt = γd+γd·t,

respectively, where γα and γd are the budget factors and we set γα = γd = 0.2 in the

base example. Given the above parameters, we solve the corresponding inventory models

and obtain the optimal policies ROi, i = 0, 1, 2.

3.6.2 Computational Effectiveness

The computational effectiveness of obtaining the inventory policies for the base example

is reported in Table 3.1. In the table, we report the optimal cost values, the CPU time

spent to solve the single-station models in seconds, the percentage gap obtained by each

model under each combination of T and Kt. In addition, for the models with setup cost,

we also report the number of orders placed in “#Ord.” column. Note that the results

in “Time (s)” and “Gap%” columns are obtained by solving each model 20 times and

taking the average.

The results indicate that the time needed to obtain the robust policy RO2 scales

reasonably well with respect to the length of planning horizon. When the setup cost

applies, the number of orders placed under each policy is also reported in the table. We

observe that the ordering policy is largely influenced by the supply uncertainty, where

in RO2 both ordering quantity and ordering frequency over the entire planning horizon

are increased compared to RO0 and RO1.
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Table 3.1: Computational results for solving the single-station inventory models using sta-
tionary cost parameters ct = 1, ht = 0.1, bt = 1.5 when T = 10, 20 and 30.

Kt = 0 Kt = 35

Policy T Obj. Time (s) Gap% Obj. Time (s) Gap% #Ord.

10 1000.0 0.00 0.00 1220.0 0.11 0.00 4

RO0 20 2000.0 0.00 0.00 2435.0 0.45 0.00 7

30 3000.0 0.01 0.00 3650.0 3.27 0.30 10

10 1152.5 0.00 0.00 1378.1 0.08 0.00 4

RO1 20 2455.0 0.01 0.00 2903.3 0.26 0.62 7

30 3907.5 0.02 0.00 4578.5 2.79 0.07 10

10 1217.1 0.01 0.00 1519.8 0.13 0.00 5

RO2 20 2625.9 0.01 0.00 3276.4 14.21 0.89 10

30 4226.4 0.02 0.00 5265.4 47.06 0.81 20

3.6.3 Comparison of Policies

To evaluate the average performance of using the proposed robust policy RO2, different

demand distributions and cost parameters are considered in this section. Specifically, ct

and bt are fixed to 1 and 1.5, whereas ht can take two values 1/15·bt = 0.1 or 1/3·bt = 0.5;

Kt can also take two values 35 or 70 when it applies. The results of expected relative

performance for T = 10, 20 and 30 are provided in Table 3.2.
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Table 3.2: Expected relative performance, in percent, using stationary cost parameters with
the planning horizons of T = 10, 20 and 30.

Kt = 0 Kt = 35 Kt = 70

Demand Dist. T E(R0−2) E(R1−2) E(R0−2) E(R1−2) E(R0−2) E(R1−2)

ht = 0.1, bt = 1.5

10 22.11 7.42 7.97 -0.40 1.48 -6.56

dt ∼ lognorm 20 39.50 13.92 21.43 5.13 13.66 -2.62

30 51.38 20.67 34.16 7.19 28.77 2.69

10 25.57 9.05 10.89 0.08 1.67 -6.55

dt ∼ uniform 20 42.43 17.27 24.08 5.33 14.77 -2.36

30 50.90 22.39 36.76 8.56 30.82 4.58

10 28.68 9.52 11.37 0.22 1.95 -6.49

dt ∼ gamma 20 46.63 20.28 24.53 5.16 15.40 -1.80

30 56.32 28.01 40.89 10.47 33.76 5.28

ht = 0.5, bt = 1.5

10 16.14 6.74 13.56 5.57 -3.32 -14.52

dt ∼ lognorm 20 32.56 11.73 29.06 10.57 6.73 -13.12

30 36.94 18.82 32.93 16.55 14.23 -5.11

10 24.32 9.98 17.77 7.79 -1.19 -12.99

dt ∼ uniform 20 36.90 20.00 32.77 17.24 9.32 -12.90

30 40.97 23.11 37.15 20.37 18.29 -2.53

10 21.02 9.34 17.64 7.66 -2.89 -13.22

dt ∼ gamma 20 32.97 16.32 29.21 14.06 6.87 -12.97

30 36.40 18.92 33.40 16.68 14.69 -4.24

From this table, we see that the robust policy RO2 outperforms the nominal policy

RO0 in most of the cases. The result also holds true when it compares to the roust

policy RO1 when either no setup cost or the relatively lower setup cost (i.e., Kt = 35) is

assumed. For Kt = 70, we observe that RO2 does not perform well compared to RO1.

In particular, it performs worse with ht = 0.5 than compared to ht = 0.1. Actually, this
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phenomenon is understandable because RO2 accounts for partial supply and demand

uncertainties and thus yields larger overall ordering quantities and a higher ordering

frequency to prevent potential shortage cost since we assume ht < bt. For instance, RO0,

RO1, and RO2 respectively order 10, 10, and 20 times for the problem with Kt = 35

and T = 20 (see Table 3.1). However, when the high unit holding and setup costs are

assumed, RO2 is heavily penalized for the unwanted orders and inventories, and therefore

it performs poorly compared to the others.

It is also observed that RO2 offers improved average performance as T increases

throughout the table. This is because when it comes to a longer planning horizon,

the system involves more cumulative variability, and the unwanted inventories in the

previous periods could be used to satisfy large demands in the later periods. In other

words, RO2 yields less chances for stockout and is more likely to lead to a better long-

term performance, especially for the system with a negligible setup cost and a relatively

lower unit holding cost.

We additionally test the performance of three inventory policies in the non-stationary

cost system with T = 20. In each time period t, the unit variable cost ct is generated

from a uniform distribution from the interval [0.6, 1.4]; the unit holding cost ht is gen-

erated from a uniform distribution from the interval [0.05, 0.15]; the unit shortage cost

is generated from a uniform distribution from the interval [1, 2]. The setup cost Kt

remains stationary when it applies, however, with two possible values of 35 and 70. We

compare their average performance with respect to 100 replications of realized supply

ratios and demands and report the results in Table 3.3. The results show that RO2 offers

consistently better average performance than RO0 and RO1.

3.6.4 Impact of Parameters

In this section, we examine the effect of changing the standard deviations and the budgets

for uncertainty on the average performance using the base example with T = 20. The
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Table 3.3: Expected relative performance, in percent, using non-stationary cost parameters
with T = 20.

Kt = 0 Kt = 35 Kt = 70

Demand Dist. E(R0−2) E(R1−2) E(R0−2) E(R1−2) E(R0−2) E(R1−2)

dt ∼ lognorm 37.40 8.07 24.38 2.26 17.81 0.67

dt ∼ uniform 37.31 7.22 26.84 3.68 18.78 3.17

dt ∼ gamma 37.86 7.47 25.09 2.34 16.91 0.93

costs are ct = 1, ht = 0.1 and bt = 1.5. There is no setup cost (i.e., Kt = 0). From

Table 3.2, it is observed that the demand distribution does not play a significant role

in the average performance, so we experiment with the lognormally distributed supply

ratios and demands in this section.

Figure 3.1 illustrates how the expected relative performance varies as the ratio δα/ᾱt

increases (i.e., as δα increases because we fix ᾱt to 1 for all t). It can be seen in the

figure that both E(R0−2) and E(R1−2) exhibit the similar near-linearly increasing trend

by up to 43.13% and 20.04% respectively, as δα increases from 0 to 0.1. As expected,

when higher supply variability gets involved, the cost benefit of using RO2 tends to be

more visible.

Figure 3.2 shows how the expected relative performance varies as the ratio δd/d̄t

increases (i.e., as δd increases because we fix d̄t to 100 for all t). We see that RO2

outperforms RO0 by as much as 43% in terms of cost saving as δd increases, but the

out-performance starts to get weaker when δd = 35. This can be intuitively explained

by the fact that there is a pressure to increase the order size in RO2 to avoid potential

shortage cost. However, in the simulation such high variability conversely leads to some

lower realized demands, thus RO2 results in excessive inventory and incurs unexpected

inventory holding cost.

In contrast, the out-performance of RO2 compared to RO1 gets weaker very early
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Figure 3.1: Impact of the standard devia-
tion of supply ratio on performance.
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Figure 3.2: Impact of the standard devia-
tion of demand on performance.

as E(R1−2) starts to decrease when δd = 10. This is mainly due to the fact that, as δd

continues to increase, the demand uncertainty starts to dominate the supply uncertainty.

Therefore, we can foresee that E(R1−2) will eventually approach zero, and by that time

RO2 is reduced to RO1 since the supply uncertainty is negligible compared to the demand

uncertainty. The results in Figures 3.1 and 3.2 suggest that an increase in the demand

variability could adversely affect the performance of RO2.

In Figures 3.3 and 3.4, we study the impact of the budget-of-uncertainty on the

average performance through changing the values of γα and γd. Specifically, Figure 3.3

plots how the expected relative performance reacts to the decision maker’s risk-aversion

towards the supply uncertainty, i.e., γα varies, while γd is set to 0.2. From the figure,

we see that RO2 consistently outperforms RO0 and RO1, but the highest E(R0−2) and

E(R1−2) are achieved when γα ≈ 0.45. This is because when γα exceeds this value, the

undesired overly-conservative RO2 is enforced and hence increases the cost of RO2 higher

relative to RO0 and RO1. For instance, the decision maker with γα = 0.8 believes that

the worst-case supply ratio αt=0.8 would be realized almost every two periods. However,

in the simulation we observe that this situation rarely occurs. Thus, it is important for

the decision maker to perform a similar simulation to find out the appropriate budget

values for the system.
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Figure 3.3: Impact of the level of con-
servatism in supply uncertainty on perfor-
mance.
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Figure 3.4: Impact of the level of conser-
vatism in demand uncertainty on perfor-
mance.

Figure 3.4 plots how the relative performance reacts to the decision maker’s risk-

aversion towards the demand uncertainty, i.e., γd varies, while γα is set to 0.2. The

concavity shape of E(R0−2) conforms with the results in Figure 3.3. As for E(R1−2),

we see that RO2 yields a lower average cost by approximately 19% than RO1, as γd

increases from 0 to 0.2. By setting γd greater than 0.2, it means that the decision maker

believes that the demand uncertainty outweighs the supply uncertainty. As γd continues

to increase, RO2 is reduced to RO1 and E(R1−2) gets closer to zero.

3.7 Concluding Remarks

In this chapter, we have applied the RO with budget uncertainty sets to a classical

single-station inventory problem subject to supply and demand uncertainties. We have

shown that the resulting robust counterpart formulation is equivalent to the nominal

problem with the deterministic demand sequence. In the stationary case, we showed

that the optimal robust policy is quasi-(s, S), where s and S levels are theoretically

computable. In addition, we extended the model to the capacitated cases. The numerical

results indicate that the proposed robust policy in general outperforms the nominal

policy and the robust policy of Bertsimas and Thiele (2006) in the average performance.
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In particular, we found that the robust policy performs exceptionally well when the

unit shortage cost is relatively higher than the unit holding cost and no setup cost is

present. Moreover, we investigated how deviations of uncertain parameters and budgets

for uncertainty affect the performance and provided insights.
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Chapter 4

Robust Optimization for a Multi-Echelon

System

4.1 Introduction

Chapter 3 focuses on a single-station (or single-echelon) inventory planning problem.

However, real-world supply chains are more complex than single stations and could

consist of a set of single stations. As a result, the complexities of efficiently and effectively

managing inventory within a multi-echelon configuration could be significantly higher,

especially in uncertain environments.

The multi-echelon inventory planning problems that deal with demand uncertainty

has been studied as early as the 1950’s in Whitin (1957), Arrow et al. (1958), and later

in Clark and Scarf (1960). In Clark and Scarf (1960), the authors considered systems

with a serial structure or a tree structure subject to stochastic demand. In particular,

they showed the optimality of base-stock policy for the serial supply chain. The re-

sult has been extended and refined in Federgruen and Zipkin (1984), Karmarkar (1981,

1987), and Rosling (1989). As mentioned in Chapter 3, it is imperative in contemporary

business environment to incorporate supply uncertainty when designing sound inventory

policies because of supply chain globalization. A large proportion of the literature has
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been conducted under the stochastic framework with a known distribution for the under-

lying uncertain parameters (i.e., supply and demand). For example, Bollapragada et al.

(2004) considered a serial assembly inventory problem subject to stochastic supply and

demand. By restricting to the base-stock policy for both component and end-product

inventories, the authors showed that the optimal component base-stock level is convex

decreasing in the optimal base-stock level of the end-product. However, the distributional

information in practice is very difficult to acquire, and under some special circumstances

the available historical data does not exhibit any known distributional behavior at all.

As an alternative, robust optimization (RO) has emerged as a promising approach

to deal with data uncertainty while it requires very little information on distributions.

With a large number of its applications in the single-station inventory problems (see

Chapter 2 and 3), we notice that fewer works apply the RO in the context of the multi-

echelon systems.

Bertsimas and Thiele (2006) first formulated the Clark and Scarf (1960)’s supply chain

network under RO with budget (polyhedral) uncertainty sets. The echelon-specific cost

structure allows them to conveniently decompose the network into several single-station

problems and thus analyze optimal robust policy by echelons. However, unlike the single-

station case, which has also been discussed in the thesis, the optimal robust policy for

each echelon is no longer theoretically computable. Rikun (2011) further explored the

application of RO framework to network systems with more general topologies and cost

structures. Akbari and Karimi (2015) advanced the approach by allowing production

capacity requirement (e.g., processing time) to belong to two disjoint polyhedral sets to

account for occasional production abnormalities. The authors formulated the problem

from the network design point-of-view since the proposed model also determines the

location and capacity of distribution centers. Some other works on applying the RO

approach to the multi-echelon systems include Ben-Tal et al. (2005, 2009).

In this chapter, we extend the results in Chapter 3 to a multi-echelon supply chain
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with a tree structure. It is important to note that this extension is built based on an

indispensable assumption that the supply uncertainty only affects the orders placed by

main storage hubs (see Section 4.2), while orders placed within the network are not

subject to uncertainty. In fact, this assumption is commonly valid from a practical

perspective, because once the orders have arrived at regional warehouses (i.e., main

storage hubs) from overseas suppliers, they will usually be delivered by third-party lo-

gistics providers to local warehouses and then to stores in a full quantity and in a timely

manner. The numerical results support our intuition that the proposed robust policy

outperforms the nominal policy and the robust policy of Bertsimas and Thiele (2006) in

average performance as well as the performance stability.

4.2 Nominal Case

As discussed in the introduction, we consider a supply chain network with a tree struc-

ture. The network is depicted in Figure 4.1, which contains the set of main storage hubs

(MSHs), denoted by M, the set of local storage hubs (LSHs), denoted by L, and the

set of stores, denoted by S. The MSHs receive their supplies from an external supplier

and then send items throughout the LSHs until they finally arrive at the stores. We

let N be the set of nodes within the network, thus it can be expressed as N = M ∪

L ∪ S. It is noteworthy that the external supplier is excluded from the network and is

numbered as node 0 to distinguish. For notational convenience, we additionally define

the set N 0 := {0} ∪M ∪ L. We consider a finite discrete planning horizon of T time

periods and use the set T = {0, 1, . . . , T − 1}. The initial inventory level at echelon k is

given by Xk(0).

It is important to note that the supply uncertainty only affects the orders placed by

MSHs, while orders placed within the network are not subject to uncertainty. We use

this assumption because we focus on supply uncertainty exogenous to the multi-echelon

system. Once the orders have arrived at the storage hubs, they will be delivered without
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uncertainty. In other words, there is no endogenous uncertainty to the multi-echelon

system.

0

MSHs LSHs Stores

Figure 4.1: Network structure

Our definition of echelon follows Bertsimas and Thiele (2006). For node k ∈ N , we

define the union of all subsequent nodes, including k itself, that directly or indirectly

receive supplies from k, and the links in-between as echelon k. The problem is described

as follows. At the beginning of time period t ∈ T , the inventory level at echelon k ∈ N ,

Xk(t), can be observed, then an order Dikk(t) to its supplier ik can be placed. The

binary variable δikk(t) denotes ordering decisions. The unit variable cost and setup cost

to its supplier is given by cikk(t) and Kikk(t), respectively. The demand at store s in

period t is denoted by Ws(t). To specify the total demand for echelon k, we denote

S(k) as the set of stores within echelon k. Hence, the total demand within echelon k

in period t can be written as
∑
s∈S(k)Ws(t). Moreover, let N (k) be the set of nodes

directly supplied by node k. At the end of the period after demand is realized, the

echelon-specific inventory cost is incurred and accounted based on the ending inventory

at the echelon as max
(
hk(t)Xk(t + 1),−bk(t)Xk(t + 1)

)
, where hk(t) and bk(t) are the
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unit holding and unit backlogging costs, respectively. We assume that bk(t) > cikk(t) for

all k and t.

As mentioned earlier, we assume that the supply uncertainty (i.e., uncertain partial

supply) only affects orders placed by MSHs to the external supplier. Hence, the orders

made within the network are always received in full. The supply ratio from external

supplier 0 to MSH i in period t is denoted by α0i(t) ∈ [0, 1]. Then, the received order

quantities at MSHs are written as α0i(t) ·D0i(t).

In the nominal model, both supply ratio and demand in each time period are realized

as their nominal values with probability one. The objective aims to minimize the total

purchasing, inventory holding and shortage costs across all echelons in the network over

the entire planning horizon. With the above notations, the nominal network problem is

formulated as follows:

(DN) min
∑
t∈T

∑
k∈N 0

∑
i∈N (k)

(
cki(t)Dki(t) +Kki(t)δki(t) + Yi(t)

)
(4.1)

s.t. Yi(t) ≥ hi(t)Xi(t+ 1), ∀i ∈ N , ∀t ∈ T , (4.2)

Yi(t) ≥ −bi(t)Xi(t+ 1), ∀i ∈ N , ∀t ∈ T , (4.3)∑
i∈N (k)

Dki(t) ≤Xk(t)−
∑

i∈N (k)
Xi(t), ∀k ∈M∪L, ∀t ∈ T , (4.4)

0 ≤ Dki(t) ≤Mδki(t), ∀k ∈ N 0, ∀i ∈ N (k), ∀t ∈ T , (4.5)

δki(t) ∈ {0, 1}, ∀k ∈ N 0, ∀i ∈ N (k), ∀t ∈ T , (4.6)

where Xi(t + 1) = Xi(0) +
∑t
τ=0

(
α0i(τ)D0i(τ) −

∑
s∈S(i)Ws(τ)

)
if i ∈ M; Xi(t + 1) =

Xi(0)+
∑t
τ=0

(
Dki(τ)−

∑
s∈S(i)Ws(τ)

)
if i ∈ L∪S, andM is a large constant. Constraints

(4.2) and (4.3) correspond to the inventory constraints for holding and shortage costs at

echelon i, respectively. Constraint (4.4) corresponds to the coupling constraint, which

guarantees the total orders made to MSHs and LSHs cannot exceed what they have

in stock. Equivalently, backlogging is strictly prohibited at MSHs and LSHs, then we
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note that the derived robust policy could be suboptimal because it may be beneficial

to allow for backloggings at these hubs. Constraints (4.5) and (4.6) correspond to the

ordering decisions. We next formulate this DN formulation (4.1)-(4.6) under the robust

framework.

4.3 Robust Case

In the manner as in Chapter 3, we assume that the supply ratio α0i(t) takes values in the

interval
[
α0i(t)−α̂0i(t),α0i(t)

]
in time period t. The scaled deviation of supply ratio from

its nominal value is defined as Zα0i(t) =
(
α0i(t)−α0i(t)

)
/α̂0i(t). Thus, we have Zα0i(t) ∈

[−1, 0] and Zα0i(t) :=
(
Zα0i(0), Zα0i(1), . . . , Zα0i(t)

)
. Moreover, the budget-of-uncertainty

Γα0i(t) is imposed to eliminate large deviations in period t as
∑t
τ=0 |Zα0i(τ)| ≤ Γα0i(t),

where Γα0i(t) ∈ [0, t] and Γα0i(t) ≤ Γα0i(t+ 1) for all i ∈M and t ∈ T .

For uncertain demand, we assume that demand Ws(t) takes values in the symmet-

ric interval
[
Ws(t) − Ŵs(t),Ws(t) + Ŵs(t)

]
in time period t. The scaled deviation of

demand is defined as ZWs (t) =
(
Ws(t) −Ws(t)

)
/Ŵs(t). Thus, ZWs (t) ∈ [−1, 1] and

ZWs (t) :=
(
ZWs (0), ZWs (1), . . . , ZWs (t)

)
. Given a budget-of-uncertainty ΓWs (t), it follows∑t

τ=0 |ZWs (τ)| ≤ ΓWs (t), where ΓWs (t) ∈ [0, t] and ΓWs (t) ≤ ΓWs (t + 1) for all s ∈ S and

t ∈ T .

According to the above definitions, we have α0i(t) =α0i(t)+ α̂0i(t)Zα0i(t) andWs(t) =

Ws(t) + Ŵs(t)ZWs (t). In addition, for t ∈ T , the budget uncertainty sets are defined as

Zα0i(t) =
{

Zα0i(t)
∣∣− 1 ≤ Zα0i(τ) ≤ 0,

t∑
τ=0
|Zα0i(τ)| ≤ Γα0i(t),∀τ ≤ t

}
, (4.7)

and

ZWs (t) =
{

ZWs (t)
∣∣− 1 ≤ ZWs (τ) ≤ 1,

t∑
τ=0
|ZWs (τ)| ≤ ΓWs (t), ∀τ ≤ t

}
. (4.8)
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The robust network model can be derived by maximizing the right-hand side (RHS)

of Constraints (4.2) and (4.3) with respect to the budget uncertainty sets Zα0i(t) and

ZWs (t) for all t as follows,

(RN) min
∑
t∈T

∑
k∈N 0

∑
i∈N (k)

(
cki(t)Dki(t) +Kki(t)δki(t) + Yi(t)

)

s.t. Yi(t) ≥ hi(t)
{
Xi(t+ 1) +

∑
s∈S(i)

(
max
ZWs (t)

t∑
τ=0
−Ŵs(τ)ZWs (τ)

)

+ max
Zα0i(t)

t∑
τ=0

α̂0i(τ)Zα0i(τ)D0i(τ)
}
, ∀i ∈M, ∀t ∈ T ,

Yi(t) ≥ bi(t)
{
−Xi(t+ 1) +

∑
s∈S(i)

(
max
ZWs (t)

t∑
τ=0

Ŵs(τ)ZWs (τ)
)

+ max
Zα0i(t)

t∑
τ=0
−α̂0i(τ)Zα0i(τ)D0i(τ)

}
, ∀i ∈M, ∀t ∈ T ,

Yi(t) ≥ hi(t)
{
Xi(t+ 1)

+
∑
s∈S(i)

(
max
ZWs (t)

t∑
τ=0
−Ŵs(τ)ZWs (τ)

)}
, ∀i ∈ L ∪ S, ∀t ∈ T , (4.9)

Yi(t) ≥ bi(t)
{
−Xi(t+ 1)

+
∑
s∈S(i)

(
max
ZWs (t)

t∑
τ=0

Ŵs(τ)ZWs (τ)
)}

, ∀i ∈ L ∪ S, ∀t ∈ T ,

∑
i∈N (k)

Dki(t) ≤ Xk(t)−
∑

i∈N (k)

Xi(t), ∀k ∈M∪L, ∀t ∈ T ,

0 ≤ Dki(t) ≤Mδki(t), ∀k ∈ N 0, ∀i ∈ N (k), ∀t ∈ T ,

δki(t) ∈ {0, 1}, ∀k ∈ N 0, ∀i ∈ N (k), ∀t ∈ T ,

whereXi(t+ 1) = Xi(0) +
∑t
τ=0

(
α0i(τ)D0i(τ)−

∑
s∈S(i)Ws(τ)

)
and Xi(t+ 1) = Xi(0) +∑t

τ=0
(
α0i(τ)D0i(τ) −

∑
s∈S(i)Ws(τ)

)
if i ∈ M; Xi(t + 1) = Xi(0) +

∑t
τ=0

(
Dki(τ) −∑

s∈S(i)Ws(τ)
)
and Xi(t+ 1) = Xi(0) +

∑t
τ=0

(
Dki(τ)−

∑
s∈S(i)Ws(τ)

)
if i ∈ L ∪ S.
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Nevertheless, the coupling constraint in (4.9) also contains the scaled deviations.

Indeed, consider the RHS of coupling constraint for k ∈ L, we have

Xk(t)−
∑

i∈N (k)
Xi(t)

=
{
Xk(0) +

t−1∑
τ=0

(
Dikk(τ)−

∑
s∈S(k)

Ws(τ)
)}

−
∑

i∈N (k)

{
Xi(0) +

t−1∑
τ=0

(
Dki(τ)−

∑
s∈S(i)

Ws(τ)
)}

= X̄k(t)−
∑

i∈N (k)
X̄i(t)−

t−1∑
τ=0

∑
s∈S(k)

Ŵs(τ)ZWs (τ) +
t−1∑
τ=0

∑
i∈N (k)

∑
s∈S(i)︸ ︷︷ ︸

=
∑

s∈S(k)

Ŵs(τ)ZWs (τ)

= X̄k(t)−
∑

i∈N (k)
X̄i(t).

The scaled deviations cancel each other out and the corresponding coupling constraint

is written in its nominal form as

∑
i∈N (k)

Dki(t) ≤ X̄k(t)−
∑

i∈N (k)
X̄i(t), ∀ k ∈ L, ∀ t ∈ T (4.10)

However, consider the RHS of coupling constraint in (4.9) for k ∈ M, such result

does not hold because

Xk(t)−
∑

i∈N (k)
Xi(t)

=
{
Xk(0) +

t−1∑
τ=0

(
α0k(τ)D0k(τ)−

∑
s∈S(k)

Ws(τ)
)}

−
∑

i∈N (k)

{
Xi(0) +

t−1∑
τ=0

(
Dki(τ)−

∑
s∈S(i)

Ws(τ)
)}

= X̄k(t)−
∑

i∈N (k)
X̄i(t) +

t−1∑
τ=0

α̂0k(τ)Zα0k(τ)D0k(τ).
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Note that the scaled deviations of Zα0k(τ) cannot be eliminated. Therefore, we rewrite

the coupling constraint in its robust form as

∑
i∈N (k)

Dki(t) ≤Xk(t)−
∑

i∈N (k)
Xi(t)

+ min
Zα0i(t−1)

t−1∑
τ=0

α̂0k(τ)Zα0k(τ)D0k(τ), ∀k ∈M,∀t ∈ T (4.11)

After substituting Constraints (4.10) and (4.11) back into RN formulation (4.9), we

have the following theorem.

Theorem 4.1. The RN formulation (4.9) is equivalent to the following robust counter-

part with a MIP structure:

(RNC) min
∑
t∈T

∑
k∈N 0

∑
i∈N (k)

(
cki(t)Dki(t) +Kki(t)δki(t) + Yi(t)

)

s.t. Yi(t) ≥ hi(t)
{
Xi(t+ 1)

+
∑
s∈S(i)

(
Os(t)ΓWs (t) +

t∑
τ=0

Ps(τ, t)
)}

, ∀i ∈ N , ∀t ∈ T ,

Yi(t) ≥ bi(t)
{
−Xi(t+ 1)

+
∑
s∈S(i)

(
Os(t)ΓWs (t) +

t∑
τ=0

Ps(τ, t)
)}

, ∀i ∈ L ∪ S, ∀t ∈ T ,

Yi(t) ≥ bi(t)
{
−Xi(t+ 1) +

∑
s∈S(i)

(
Os(t)ΓWs (t) +

t∑
τ=0

Ps(τ, t)
)

+Q0i(t)Γα0i(t) +
t∑

τ=0
R0i(τ, t)

}
, ∀i ∈M, ∀t ∈ T ,

∑
i∈N (k)

Dki(t) ≤Xk(t)−
∑

i∈N (k)

Xi(t), ∀k ∈ L, ∀t ∈ T ,

∑
i∈N (k)

Dki(t) ≤Xk(t)−
∑

i∈N (k)

Xi(t) (4.12)

−
(
Q0k(t− 1)Γα0k(t− 1) +

t−1∑
τ=0

R0k(τ, t− 1)
)
, ∀k ∈M, ∀t ∈ T ,

Os(t) + Ps(τ, t) ≥ Ŵs(τ), ∀s ∈ S, ∀t ∈ T , ∀τ ≤ t,
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Q0i(t) +R0i(τ, t) ≥ α̂0i(τ)D0i(τ), ∀i ∈M, ∀t ∈ T , ∀τ ≤ t,

Os(t) ≥ 0, Ps(τ, t) ≥ 0, ∀s ∈ S, ∀t ∈ T , ∀τ ≤ t,

Q0i(t) ≥ 0, R0i(t) ≥ 0, ∀i ∈M, ∀t ∈ T , ∀τ ≤ t,

0 ≤ Dki(t) ≤Mδki(t), ∀k ∈ N 0, ∀i ∈ N (k), ∀t ∈ T ,

δki(t) ∈ {0, 1}, ∀k ∈ N 0, ∀i ∈ N (k), ∀t ∈ T ,

where Xi(t + 1) = Xi(0) +
∑t
τ=0

(
α0i(τ)D0i(τ) −

∑
s∈S(i)Ws(τ)

)
if i ∈ M; Xi(t + 1) =

Xi(0) +
∑t
τ=0

(
Dki(τ)−

∑
s∈S(i)Ws(τ)

)
if i ∈ L ∪ S.

Proof. Consider time period t and i ∈M. The auxiliary problem with Zα0i(t) in the first

constraint of RN formulation (4.9) attains optimality when Zα0i(τ) is set to zero for all

τ ≤ t. The two auxiliary problems with ZWs (t), namely maxZWs (t)
∑t
τ=0−Ŵs(τ)ZWs (τ)

and maxZWs (t)
∑t
τ=0 Ŵs(τ)ZWs (τ), are equivalent due to the opposite objectives and sym-

metry of the uncertainty set. Let us consider the auxiliary problem with ZWs (t) that

comes from RN formulation (4.9),

max
t∑

τ=0
Ŵs(τ)ZWs (τ)

s.t. 0 ≤ ZWs (τ) ≤ 1, ∀τ ≤ t, (4.13)
t∑

τ=0
ZWs (τ) ≤ ΓWs (t).

The dual problem is

min Os(t)ΓWs (t) +
t∑

τ=0
Ps(τ, t)

s.t. Os(t) + Ps(τ, t) ≥ Ŵs(τ), ∀τ ≤ t, (4.14)

Os(t) ≥ 0, Ps(τ, t) ≥ 0, ∀τ ≤ t,

where Os(t) and Ps(τ, t) are the dual variables corresponding to the constraints in aux-

iliary problem (4.13). The same dual problems (4.14) applies to the auxiliary problems
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with ZWs (t) embedded in the tth holding/shortage constraints for i ∈ L ∪ S.

Similarly, we consider the following auxiliary problem with Zα0i(t) that comes from

RN formulation (4.9),

max
t∑

τ=0
α̂0i(τ)Zα0i(τ)D∗0i(τ)

s.t. 0 ≤ Zα0i(τ) ≤ 1, ∀τ ≤ t, (4.15)
t∑

τ=0
Zα0i(τ) ≤ Γα0i(t),

where D∗0i(τ) is an optimal solution of RN formulation (4.9) and considered as given.

The dual problem is the following,

min Q0i(t)Γα0i(t) +
t∑

τ=0
R0i(τ, t)

s.t. Q0i(t) +R0i(τ, t) ≥ α̂0i(τ)D∗0i(τ), ∀ τ ≤ t, (4.16)

Q0i(t) ≥ 0, R0i(τ, t) ≥ 0, ∀ τ ≤ t,

where Q0i(t) and R0i(τ, t) are the dual variables corresponding to the constraints in

auxiliary problem (4.15).

To deal with the auxiliary problem in robust coupling constraint (4.11), we rewrite

the constraint as

∑
i∈N (k)

Dki(t) ≤Xk(t)−
∑

i∈N (k)
Xi(t)

−max
t−1∑
τ=0

α̂0k(τ)Zα0k(τ)D0k(τ), ∀k ∈M, ∀t ∈ T (4.17)

where 0 ≤ Zα0k(τ) ≤ 1 for all τ ≤ t− 1 and
∑t−1
τ=0 Z

α
0k(τ) ≤ Γα0k(t− 1). This allows us to

use the auxiliary problem in (4.15), however, for time period t− 1. Thus, we obtain the
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robust counterpart of Constraint (4.17) as

∑
i∈N (k)

Dki(t) ≤Xk(t)−
∑

i∈N (k)
Xi(t)

−
(
Q0k(t− 1)Γα0k(t− 1) +

t−1∑
τ=0

R0k(τ, t− 1)
)
. (4.18)

We substitute the dual problems (4.14) and (4.16), along with Constraint (4.18),

back into RN formulation (4.9) and obtain the equivalent robust counterpart as shown

in RNC formulation (4.12).

Although this RNC formulation (4.12) is much complicated than RSC formulation

(3.8) proposed in Chapter 3 in terms of problem size, it still maintains the same difficulty

as its nominal problem. When there are no setup costs (i.e., Kki(t) = 0 for all k, i ∈ N (k)

and t), it can be solved within polynomial time to an optimal solution.

Next, it is natural to investigate whether the theoretical results regarding the optimal

robust policy in RSC exist for RNC formulation.

4.4 Optimal Robust Policy

We present the following results regarding the optimal robust policy for RNC formula-

tion (4.12).

Theorem 4.2 (Optimal robust policy). Let O∗s(t), P ∗s (t), Q∗0k(t) and R∗0k(t) be an

optimal solution of RNC formulation (4.12), then we have:

(a) The optimal policy for echelon k ∈ M in RNC can be obtained by solving the

DS problem (3.1)-(3.4) subject to the modified, deterministic demand
∑
s∈S(k)W

′
s,k(t) in

period t,

W ′s,k(t) =Ws(t) +
(

Υs,k(t)−Υs,k(t− 1)
)

+
(

Ψ0k(t)−Ψ0k(t− 1)
)
, ∀k ∈M

(4.19)
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where Υs,k(−1) = 0 and Υs,k(t) :=
(
(bk(t) − hk(t))/(bk(t) + hk(t))

)
As(t) with As(t) =

O∗s(t)ΓWs (t) +
∑t
τ=0 P

∗
s (τ, t) being the accumulated deviation of the uncertain demand

from its nominal value in period t at store s; Ψ0k(−1) = 0 and Ψ0k(t) =
(
bk(t)/(Nk(bk(t)+

hk(t))
)
B0k(t) with B0k(t) = Q∗0k(t)Γα0k(t) +

∑t
τ=0R

∗
0k(τ, t) being the accumulated devi-

ation of the uncertain supply ratio from its nominal value in period t at MSH k, and

where we use Nk to represent the number of stores within echelon k (i.e., Nk = |S(k)|).

(b) The optimal robust policy for echelon k ∈ L∪S in RNC can be obtained by solving

the DS problem (3.1)-(3.4) with time-varying capacity (given in (4.23) and (4.24)) on

the orders, subject to the modified, deterministic demand
∑
s∈S(k)W

′
s,k(t) in period t,

W ′s,k(t) =Ws(t) +
(

Υs,k(t)−Υs,k(t− 1)
)
, ∀k ∈ L ∪ S (4.20)

(c) If there is no setup cost, the optimal robust policy for echelon k also can be obtained

by solving the DS problem (3.1)-(3.4) with new cost coefficients, subject to the modified,

deterministic demand
∑
s∈S(k)W

′
s,k(t) in period t.

(d) The optimal cost of RNC is equal to the total optimal cost of the set of DS

problems (3.1)-(3.4) subject to the modified demand
∑
s∈S(k)W

′
s,k(t) in period t, plus the

following extra cost incurred by the robust policy,

COST =
∑
t∈T

∑
k∈N

2bk(t)hk(t)
bk(t) + hk(t)

∑
s∈S(k)

As(t) +
∑
t∈T

∑
k∈M

bk(t)hk(t)
bk(t) + hk(t)

B0k(t).

Proof. The proof follows the same way as in the proof of Theorem 3.2 by reformulat-

ing the problem for each echelon as the nominal with the modified demand. We first

reformulate the problem for echelon k ∈ M. We assume that O∗s(t), P ∗s (t), Q∗0k(t) and

R∗0k(t) are given, then we need to solve following DS problem,

min
D≥0

∑
t∈T

{
c0k(t)D0k(t) +K0k(t)1{D0k(t)>0}
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+ max
(
hk(t)(Xk(t+ 1) +

∑
s∈S(k)

As(t)), bk(t)(−Xk(t+ 1) +
∑

s∈S(k)
As(t) +B0k(t))

)}
,

(4.21)

whereXk(t+1) = Xk(0)+
∑t
τ=0

(
α0k(τ)D0k(τ)−

∑
s∈S(k)Ws(τ)

)
, As(t) = O∗s(t)ΓWs (t)+∑t

τ=0 P
∗
s (τ, t) and B0k(t) = Q∗0k(t)Γα0k(t) +

∑t
τ=0R

∗
0k(τ, t). Let us define the modified

inventory level variable X ′k(t+ 1) as

X ′k(t+ 1) = X ′k(t) +α0k(t)D0k(t)

−
∑

s∈S(k)

{
Ws(t) +

(
Υs,k(t)−Υs,k(t− 1)

)
+
(

Ψ0k(t)−Ψ0k(t− 1)
)}

︸ ︷︷ ︸
W ′
s,k

(t)

, (4.22)

with X ′i(0) = Xi(0). Then X ′k(t) can be recursively written as follows:

X ′k(1) = X ′k(0) + ᾱ0k(0)D0k(0)

−
∑

s∈S(k)

{
W̄s(0) +

(
Υs,k(0)−Υs,k(−1)

)
+
(
Ψ0k(0)−Ψ0k(−1)

)}
,

X ′k(2) = X ′k(1) + ᾱ0k(1)D0i(1)

−
∑

s∈S(k)

{
W̄s(1) +

(
Υs,k(1)−Υs,k(0)

)
+
(
Ψ0k(1)−Ψ0k(0)

)}

= X ′k(0) +
1∑

τ=0

(
ᾱ0k(τ)D0k(τ)−

∑
s∈S(k)

W̄s(τ)
)
−

∑
s∈S(k)

(
Υs,k(1) + Ψ0k(1)

)
,

...

X ′k(t+ 1) = X ′k(0) +
t∑

τ=0

(
ᾱ0k(τ)D0k(τ)−

∑
s∈S(k)

W̄s(τ)
)
−

∑
s∈S(k)

(
Υs,k(t) + Ψ0k(t)

)

= X̄k(t+ 1)−
∑

s∈S(k)

bk(t)− hk(t)
bk(t) + hk(t)

As(t)−
bk(t)

bk(t) + hk(t)
B0k(t).
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Substituting X ′k(t+ 1) in the following equations, we have

hk(t)X ′k(t+ 1) + 2bk(t)hk(t)
bk(t) + hk(t)

∑
s∈S(k)

As(t) + bk(t)hk(t)
bk(t) + hk(t)

B0k(t)

= hk(t)X̄k(t+ 1)− (hk(t)(bk(t)− hk(t))
bk(t) + hk(t)

− 2bk(t)hk(t)
bk(t) + hk(t)

)
∑

s∈S(k)
As(t)

− ( bk(t)hk(t)
bk(t) + hk(t)

− bk(t)hk(t)
bk(t) + hk(t)

)B0k(t)

= hk(t)X̄k(t+ 1) + hk(t)
∑

s∈S(k)
As(t),

and

−bk(t)X ′k(t+ 1) + 2bk(t)hi(t)
bk(t) + hk(t)

∑
s∈S(k)

As(t) + bk(t)hk(t)
bk(t) + hk(t)

B0k(t)

= −bk(t)X̄k(t+ 1) + (bk(t)(bk(t)− hk(t))
bk(t) + hk(t)

+ 2bk(t)hk(t)
bk(t) + hk(t)

)
∑

s∈S(k)
As(t)

+ ( b2
k(t)

bk(t) + hk(t)
+ bk(t)hk(t)
bk(t) + hk(t)

)B0k(t)

= −bk(t)X̄k(t+ 1) + bk(t)
∑

s∈S(k)
As(t) + bk(t)B0k(t).

The inventory cost of Problem (4.21) in period t can be written as

max
(
hk(t)(Xk(t+ 1) +

∑
s∈S(k)

As(t)), bk(t)(−Xk(t+ 1) +
∑

s∈S(k)
As(t) +B0k(t))

)

= max
(
hk(t)X ′k(t+ 1),−bk(t)X ′k(t+ 1)

)
+ 2bk(t)hk(t)
bk(t) + hk(t)

∑
s∈S(k)

As(t) + bk(t)hk(t)
bk(t) + hk(t)

B0k(t),

therefore, we obtain the following DS problem subject to the modified demand
∑
s∈S(k)W

′
s,k(t)

(plus the fixed cost 2bk(t)hk(t)
bk(t)+hk(t)

∑
s∈S(k)As(t) + bk(t)hk(t)

bk(t)+hk(t)B0k(t) ) in period t,

min
D≥0

∑
t∈T

{
c0k(t)D0k(t) +K0k(t)1{D0k(t)>0}
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+ max
(
hk(t)X ′k(t+ 1),−bk(t)X ′k(t+ 1)

)
+ 2bk(t)hk(t)
bk(t) + hk(t)

∑
s∈S(k)

As(t) + bk(t)hk(t)
bk(t) + hk(t)

B0k(t)
}
.

This proves (a). Using the same reformulation tactic, we have the following equivalent

DS problem for echelon k ∈ L ∪ S,

min
D≥0

∑
t∈T

{
cikk(t)Dikk(t) +Kikk(t)1{Dikk(t)>0}

+ max
(
hk(t)X ′k(t+ 1),−bk(t)X ′k(t+ 1)

)
+ 2bk(t)hk(t)
bk(t) + hk(t)

∑
s∈S(k)

As(t)
}
.

Hence, the result in (d) follows from combining the extra costs incurred at all the eche-

lons.

It is noteworthy that for echelon k ∈ L ∪ S and ik ∈ M, the orders placed in period

t have to satisfy

Dikk(t) ≤Xik(t)−
∑

i∈N (ik)
Xi(t)−

∑
j∈N (ik),j 6=k

Dikj(t)−B0ik(t− 1), (4.23)

while the orders placed by echelon k ∈ L ∪ S and ik ∈ L have to satisfy

Dikk(t) ≤Xik(t)−
∑

i∈N (ik)
Xi(t)−

∑
j∈N (ik),j 6=k

Dikj(t). (4.24)

The result in (b) immediately follows from setting the RHS of Constraints (4.23)

and (4.24) to optimality.

To prove (c), since there is no setup cost, we can effectively decouple the echelons

by dualizing the coupling constraints in RNC formulation (4.12) according to the La-

grangian multiplier method. This transforms RNC into a LP problem where the feasible

set is separable in the echelons and the resulting objective contains the Lagrangian mul-

tipliers. After combining the terms in the objective, we obtain a new objective which is

the sum of several uncapacitated single-station problems. The result in (c) follows from
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invoking the strong duality for the Lagrange dual objective and applying the reformula-

tion tactic.

Similar to that in RSC formulation (3.8), when intervals for α0k(t) and Ws(t) get

wider (i.e., α̂0k(t) and Ŵs(t) increase), it gets more expensive to protect the robustness

of the optimal solution against uncertainty since the extra cost increases accordingly.

Note that the optimal robust policies are distinguished by echelons. That is, the

equivalent problem for echelon k is the uncapacitated DS problem with the modified

demand involving both As(t) and B0k(t) if k ∈ M; otherwise, it is the capacitated

DS problem with the modified demand only involving As(t). The difference in the

expressions of the modified demand is caused by the fact that the supply uncertainty

only influences the orders placed by MSHs. Note that the optimal robust policy for

echelon k ∈ L∪S is tightly connected to the single-station problem with a time-varying

capacity Cordt on the maximal order (see Section 3.5.1) in the way that we can view

Cordt =Xik(t)−
∑
i∈N (ik)Xi(t)−

∑
j∈N (ik),j 6=kDikj(t)−B0ik(t− 1) for echelon k ∈ L∪S

and ik ∈M; Cordt =Xik(t)−
∑
i∈N (ik)Xi(t)−

∑
j∈N (ik),j 6=kDikj(t) for echelon k ∈ L∪S

and ik ∈ L.

The reason why the expression of Ψ0k(t) contains Nk can be interpreted in the way

that the effect of incorporating the supply uncertainty into an echelon has been evenly

divided in terms of the modified demand to the stores within the echelon.

4.5 Numerical Studies

In this section, we compare the performance of three inventory policies: RO0 (nominal

policy), RO1(robust policy of Bertsimas and Thiele, 2006) and RO2 (proposed robust

policy) in an network example through simulations. We focus on the average perfor-

mance as well as the performance stability of using RO2. To achieve that, we measure

the average performance by ratio E(Ri−2), i = 0, 1 (definition see Section 3.6), that is

computed with respect to 100 replications of realized supply ratios and demands, while
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the performance stability is estimated by observing standard deviation in the sample

distribution of Ri−2, i = 0, 1. We study how the setup costs and the length of planning

horizon affect the performance stability.

4.5.1 Experiment Setting

The network is depicted in Figure 4.2 and described as follows. There are one central

warehouse (i.e., node 1) and two stores (i.e., nodes 2 and 3) in the network. The

warehouse receives supplies from an external supplier (i.e., node 0) and ships the items

directly to the stores. Recall the definition of echelon given in Section 4.2, the network

therefore consists of totally three echelons, where: Echelon 1 consists of nodes 1, 2 and

3, and the links in-between; Echelons 2 and 3 only consist of nodes 2 and 3, respectively.

0

W2(t)

W3(t)

D01(t)

D12(t)

D13(t)

α01(t)
1

2

3

Figure 4.2: A three-echelon network

We consider the network with the planning horizons of T = 10, 20 and 30. The

cost parameters are assumed to be stationary and selected as follows. Let c01(t) =

c12(t) = c13(t) = 1, h1(t) = 0.1, b1(t) = 4, h2(t) = h3(t) = 0.2 and b2(t) = b3(t) = 5

for all t. When the setup costs are explicitly considered, we use K01(t) = 35 and
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K12(t) = K13(t) = 10. The initial inventories at Echelon 1, 2 and 3 are given by 80, 20

and 10, respectively.

In the simulation, demands W2(t) and W3(t) are assumed to be i.i.d. and generated

from two lognormal, gamma distributions with the same mean µW = 100 and standard

deviation δW = 20, or two uniform distributions from the same interval [µW − δW , µW +

δW ]; the supply ratio α01(t) is also assumed to be i.i.d. and generated from a lognormal

distribution with mean µα = 0.9 and standard deviation δα = 0.05. If the generated αt

is greater than 1, we set it to 1 to avoid oversupply.

To obtain the inventory policies, we let α01(t) take values from the interval [µα −

2δα, 1], i.e., α01(t) = 1 and α̂01(t) = α01(t) − µα + 2δα = 0.2. We let both W2(t) and

W3(t) take values from the interval [µW −2δW , µW +2δW ], i.e.,Wi = µW and Ŵi = 2δW ,

i = 2, 3. In addition, the linear budget functions are given by ΓW2 (t) = γW2 + γW2 · t,

ΓW3 (t) = γW3 +γW3 ·t, and Γα01(t) = γα01+γα01 ·t forW2(t),W3(t) and α01(t), respectively. In

the experiment, we set γW2 = γW3 = γα01 = 0.2. With the above parameters, the policies

RO0, RO1 and RO2 can be obtained by solving the corresponding network models.

The computational effectiveness of the network models are reported in Table 4.1. In

the table, we report the optimal costs of the network, the time spent to solve the network

models in seconds, the percentage gap obtained by each model under each combination

of the planning horizon and the setup costs. In addition, for the models with setup costs,

we also report the number of orders placed by the echelons in the sequence of Echelons

1, 2 and 3 in the last column. Again, the results in “Time (s)” and “Gap%” columns are

the average values. The results indicate that the computational time of the proposed

robust model scales reasonably well with respect to the length of the planning periods.

It takes 0.26 seconds, 23.07 seconds, and 83.23 seconds on average to obtain the robust

policy RO2 for the problem with T = 10, 20 and 30, respectively.

We find that the proposed robust network model shows its potential for practical im-

plementation. It typically takes less than 90 seconds with the average of 83.23 seconds

58



Ph.D. Dissertation Jie Chu McMaster - Management Science

to obtain RO2 for the network with T = 30 when the setup costs are present. Note

that we also report the number of orders placed by each echelon for the setup cost case.

An interesting observation is that incorporating supply uncertainty heavily affects the

ordering frequency at Echelon 1, whereas the ordering frequencies at Echelons 2 and 3

are not affected at all, as they remain the same across three policies. Intuitively, this

makes sense because the deviation of uncertain partial supply is not very high in the

model when α̂t = 0.2. The effect of deviation is further divided at Echelons 2 and 3

and thus does not cause too much impact on the ordering policy at Echelons 2 and

3. However, the nominal policy RO0 at Echelons 2 and 3 can be easily distinguished

from the robust policies RO1 and RO2 in terms of the order size because of the demand

uncertainty considered in the robust models.

Table 4.1: Computational results for solving the network models using stationary cost pa-
rameters c01(t) = c12(t) = c13(t) = 1, h1(t) = 0.1, h2(t) = h3(t) = 0.2, b1(t) = 4, b2(t) =
b3(t) = 5 when T = 10, 20 and 30.

K01(t) = K12(t) = K13(t) = 0 K01(t) = 35, K12(t) = K13(t) = 10

Policy T Obj. Time (s) Gap% Obj. Time (s) Gap% #Ord.1/Ord.2/Ord.3

10 4670.0 0.01 0.00 5115.0 0.15 0.61 5 / 9 /10

RO0 20 8870.0 0.01 0.00 9790.0 0.44 0.88 10 / 20 / 19

30 13070.0 0.02 0.00 14465.0 2.97 0.31 15 / 30 / 29

10 5565.2 0.02 0.00 6017.0 0.14 0.46 5 / 9 / 10

RO1 20 11511.0 0.02 0.00 12455.2 0.54 0.52 10 / 20 / 19

30 18380.0 0.03 0.00 19797.0 3.55 0.78 15 / 30 / 29

10 5730.4 0.02 0.00 6243.6 0.26 0.88 9 / 9 / 10

RO2 20 11902.1 0.02 0.00 12972.7 23.07 0.67 19 / 20 / 19

30 19086.3 0.05 0.00 20707.8 83.23 0.87 29 / 30 / 29
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4.5.2 Comparison of Policies

The expected relative performances are summarized in Table 4.2. It also provides the

lowest relative performances for R0−2 (resp., R1−2) among 100 replications in R0−2
low.

(resp., R1−2
low.) columns. From this table, it can be seen that RO2 performs exception-

ally well compared to RO0 with all the lowest R0−2 staying positive (at least 1.85%

higher in terms of cost saving), which suggests the importance of incorporating uncer-

tainty into decision-making. While the lowest R1−2 has negative values in the table,

RO2 consistently outperforms RO1 in the average performance. Moreover, we see that

RO2 provides improved performance as T increases, which coincides with our conclusion

in Section 3.6.3 that RO2 is well-suited for the system in which the decision maker is

more concerned with the long-term performance. It is also important to note that the

expected relative performance is negatively affected by the setup costs.

Table 4.2: Expected relative performance, in percent, using stationary cost parameters with
the planning horizons of T = 10, 20 and 30.

K01(t) = K12(t) = K13(t) = 0 K01(t) = 35, K12(t) = K13(t) = 10

Demand Dist. T E(R0−2) E(R1−2) R0−2
low. R1−2

low. E(R0−2) E(R1−2) R0−2
low. R1−2

low.

W2(t)∼lognorm
10 41.23 6.52 14.12 1.39 35.96 5.16 10.72 -2.29

W3(t)∼lognorm
20 61.52 22.90 42.63 3.73 55.81 11.82 32.12 -0.99

30 65.90 29.33 43.82 14.77 60.71 17.39 41.48 4.12

W2(t)∼uniform
10 33.64 5.40 5.05 -3.89 22.99 3.14 1.85 -7.32

W3(t)∼uniform
20 50.32 10.05 21.41 -1.09 41.09 8.64 10.15 -6.54

30 56.35 15.09 28.87 3.46 47.66 11.27 18.05 -3.88

W2(t)∼gamma
10 44.47 8.33 13.64 -1.32 36.39 6.07 4.85 -3.71

W3(t)∼gamma
20 63.72 27.76 30.46 2.63 55.20 13.32 19.67 -1.56

30 66.94 31.44 33.40 12.46 59.27 18.80 20.17 2.02

While we have simulated the system with different demand distributions, the demand
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distribution does not seem to have a significant impact on the performance except the

degree of out-performance. In particular, we find that the out-performance of RO2 is

stronger under the gamma distribution of demand.

To supplement the analysis, we show the performance stability between two robust

policies RO1 and RO2 through the view of sample distribution. In the following, we

show the results of the lognormally distributed supply ratios and demands only, because

similar results are observed for other demand distributions.

The variability of R1−2 with (resp., without) setup costs is visualized in Figure 4.3

(resp., Figure 4.4). We see that RO2 offers the better average performance relative to

RO1 as T increases, however, at the expense of the slightly higher standard deviation

of the sample distribution, i.e., it ranges from 3.35% (resp., 3.80%) as T = 10 to 5.39%

(resp., 6.34%) as T = 30 in the case of zero (resp., non-zero) setup costs. The re-

sults also reveal that although the presence of setup costs negatively affects the average

performance, it does not much hurt the performance stability of the robust policy RO2.

R1-2, in percent

0 5 10 15 20 25 30 35 40 45

H
is

to
gr

am
 (

pr
ob

ab
ili

tie
s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
 T = 10

 T = 20

 T = 30

Figure 4.3: Sample distribution of the rela-
tive performances without setup costs when
T=10, 20 and 30.
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Figure 4.4: Sample distribution of the rel-
ative performances with setup costs when
T=10, 20 and 30.

Figures 4.5 to 4.10 show the sample distributions of the costs with the lognormal

demands at both stores. The figures clearly demonstrate that RO2 performs better as

T increases, since it yields lower average costs and standard deviation than RO0 and
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RO1. On the other hand, when T is small, we observe in Figures 4.5 and 4.6 that the

difference between two robust policies RO1 and RO2 is limited. Overall, we conclude

that RO2 outperforms RO0 and RO1, in terms of both average cost saving and stability,

when applied to the network example, especially in the situations of the long planning

horizon.
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Figure 4.5: Sample distribution of costs
with setup costs when T = 10.
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Figure 4.6: Sample distribution of costs
without setup costs when T = 10.
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Figure 4.7: Sample distribution of the costs
with setup costs when T = 20.
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Figure 4.8: Sample distribution of costs
without setup costs when T = 20.
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Figure 4.9: Sample distribution of the costs
with setup costs when T = 30.
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Figure 4.10: Sample distribution of costs
without setup costs when T = 30.

We also test the performance of the inventory policies in the non-stationary cost sys-

tem with T = 20 and report the results in Table 4.3. In each time period t, the unit

variable costs c01(t), c12(t) and c13(t) are generated from a uniform distributions from

the interval [0.6, 1.4]; the unit holding cost h1(t) is generated from a uniform distribution

from the interval [0.05, 0.15], while the unit holding costs h2(t) and h3(t) are generated

from a uniform distributions from the interval [0.15, 0.25]; the unit shortage cost b1(t)

is generated from a uniform distribution from the interval [3, 5], while the unit shortage

costs b2(t) and b3(t) are generated from a uniform distribution from the interval [4, 6].

The setup costs remain stationary when they apply, however, with two possible combi-

nations of K01(t) = 35,K12(t) = K13(t) = 10 and K01(t) = 70,K12(t) = K13(t) = 15.

With the exception of the case with relatively higher setup costs and uniform demands,

the proposed robust policy RO2 performs well compared to the nominal policy RO0 and

the robust policy RO1, which further demonstrates the high potential of the proposed

robust network model for use in more realistic supply chain settings.
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Table 4.3: Expected relative performance, in percent, using non-stationary cost parameters
with T = 20.

K01(t) = 0

K12(t) = K13(t) = 0

K01(t) = 35

K12(t) = K13(t) = 10

K01(t) = 70

K12(t) = K13(t) = 15

Demand Dist. E(R0−2) E(R1−2) E(R0−2) E(R1−2) E(R0−2) E(R1−2)

W2(t) ∼ lognorm
48.16 13.58 26.80 5.71 20.18 2.61

W3(t) ∼ lognorm

W2(t) ∼ uniform
27.24 6.12 23.78 2.73 16.99 -3.64

W3(t) ∼ uniform

W2(t) ∼ gamma
33.41 8.28 25.84 3.42 17.54 1.76

W3(t) ∼ gamma

4.6 Concluding Remarks

In this chapter, we have presented a RO-based model for a tree-structured supply chain

subject to supply and demand uncertainties. The proposed RNC formulation (4.12)

maintain computational tractability and thus hold potential for use in practice. More-

over, the echelon-specific cost structure allows us to analyze optimal robust policy by

echelons. Therefore, we have shown that the robust network counterpart formulation is

made up of several interconnected (capacitated and uncapacitated) single-station prob-

lems subject to the deterministic demands. Furthermore, if there are no setup costs in

the network, then the problem can be decomposed into several uncapacitated single-

station problems with new cost parameters subject to the same deterministic demands.

The numerical results indicate that the proposed robust policy could yield significantly

better performance than the nominal policy and the robust policy of Bertsimas and

Thiele (2006) while achieving good performance stability.
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Chapter 5

Stochastic Programming for a Periodic-

Review Assemble-To-Order System

5.1 Introduction

Increasing high-tech manufacturing firms (e.g., IBM and Dell Computer) are adopt-

ing Assemble-To-Order (ATO) systems for their production and inventory control since

they enable the firms to provide responsive service to a variety of customer orders and

effectively eliminate the inventory of final products (i.e., inventory consists only of com-

ponents).

In an ATO system (see Figure 5.1), the components are ordered from outside suppliers

and stocked in advance. Once a customer order for a final product has arrived, the needed

components are obtained from inventory and assembled into the product in response to

the demand. In this way, the firms benefit from the ATO system if the replenishment

lead times of the components are substantial compared with the assembly times of the

final products. In the context of multi-component, multi-product ATO systems, different

final products may share common components. Through the postponement strategy, the

ATO systems exploit component commonality and provide product variety at low cost

(Song and Zhao, 2009). In case that one or more needed components are out of stock,
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the demand will be backlogged until the components are replenished.

1 1

2

n

...

Supplier 2

Component inventories Products

2

m

...

Product demands

Supplier m

Supplier 1

Figure 5.1: ATO system

While ATO systems are popular in practice, in general they are very difficult to ana-

lyze and solve to optimality. One difficulty comes from joint optimization, which involves

inventory replenishment and component allocation problems. These two problems need

to be addressed simultaneously due to their strong correlations. For example, consider

a simple system consisting of only one final product that requires multiple components.

Apparently, allocation decisions for a particular component cannot be determined in-

dependently because it depends on inventory availability of not only itself but other

components. If a Fist-Come-First-Served (FCFS) allocation rule is applied (i.e., the

product demand of a product in an earlier periods must be satisfied before the demand

of that product in later periods), those available inventories remain unused due to lack

of other components, called remnant stock (Huang and de Kok, 2015)

The optimization of ATO literature can be broadly classified according to three as-

pects, namely review periods, types of objective of the optimization problem, and the
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decisions involved in the optimization problems concerning either inventory replenish-

ment optimization or joint optimization. Regarding the review periods, the ATO models

can be further classified into single-period models (e.g., Baker et al., 1986, Hsu et al.,

2006), periodic-review models (e.g., Zhang, 1997, Agrawal and Cohen, 2001, Akçay and

Xu, 2004, Huang and de Kok, 2015) and continuous-review models (e.g., Song et al.,

1999, Song and Yao, 2002, Song and Zhao, 2009). In terms of the objectives of the

optimization problems, the ATO models are commonly concerned with minimizing the

inventory cost (or level) (e.g., Zhang, 1997, Hsu et al., 2006, Huang and de Kok, 2015),

or maximizing the service level (e.g., Hausman et al., 1998, Akçay and Xu, 2004). In

particular, Huang and de Kok (2015) explicitly investigated the impact of the rem-

nant stock holding cost in a periodic-review model. Depending on the decisions, several

works focus on the inventory replenishment optimization (e.g., Zhang, 1997, Agrawal

and Cohen, 2001, Lu and Song, 2005). However, Akçay and Xu (2004) have numerically

demonstrated that the inventory replenishment and component allocation decisions have

a similar impact on the aggregated service performance (i.e., fill rate), which suggests

the importance of the joint optimization. Other joint optimization models have been

proposed in Hsu et al. (2006), Huang and de Kok (2015), van Jaarsveld and Scheller-Wolf

(2015). To alleviate the complexity of the joint optimization, some simple component

allocation heuristics have been proposed in the literature; for example, the product-

based priority rule (Zhang, 1997), fair-share rule (Agrawal and Cohen, 2001), and the

order-based component allocation heuristic (Akçay and Xu, 2004).

With a few exceptions, the above ATO literature assumes the uncertain product

demands, while the component replenishment lead times are assumed to be deterministic

but possibly differentiated by components. In contrast, Kumar (1989) considered a

single-period assembly system with deterministic demands and stochastic procurement

lead times. They characterized the expected holding time for each component until it

is finally assembled, and showed that the optimal ordering policies under a linear cost
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structure are independent of the lead time variability. Similarly, Fujiwara and Sedarage

(1997) studied an EOQ-based ATO system under (Q, r) inventory control policy, where

known demands but stochastic procurement lead times were assumed. Relevant works in

the ATO context with deterministic demands and random lead times can also be found

in Yano (1987), Chu et al. (1993), Mauroy and Wardi (1995), Shore (1995), and Proth

et al. (1997).

Efforts have also been made to simultaneously consider lead time and demand un-

certainties in ATO environments. Song and Yao (2002) analyzed a single-product ATO

system under the assumptions of stochastic lead times and Poisson demands. They

modeled the component supply process as a set of M/G/∞ queues. Later, Lu et al.

(2003) extended the model of Song and Yao (2002) to the multi-product setting. Gallien

and Wein (2001) derived an approximate-optimal procurement policy for the same ATO

system as in Song and Yao (2002). In Zhao and Simchi-Levi (2006), the authors studied

a base-stock ATO system with stochastic, sequential (i.e., no order crossing) lead times

and stochastic customer demands, and provided exact analysis for the system properties.

Besides, Song et al. (2000) proposed a single-period ATO model to determine the op-

timal component procurement policy, where stochastic lead times and a single demand

with stochastic demand timing and quantity were assumed. Moreover, they presented

some structural results regarding the optimal policies. However, none of these papers

specifically address the joint optimization of inventory replenishment and component

allocation problems in the context of periodic-review ATO systems.

It is worth noting that the optimal policies of the inventory replenishment for the

general ATO systems are unknown. In the literature, most of the ATO research focuses

on the base-stock policy (i.e., order-up-to level) due to its simplicity and effectiveness

(e.g., Akçay and Xu, 2004, Lu and Song, 2005, Zhao and Simchi-Levi, 2006, Huang

and de Kok, 2015). That is, there is a target inventory level for each component, once

the inventory position of a component drops below the corresponding target level, a
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replenishment order will be placed to raise the inventory position to the target level

again. In addition, we acknowledge that certain component allocation rules are assumed

to ensure the analysis in a tractable manner. In particular, the FCFS allocation rule

is widely used, which, however, is not in general the optimal allocation rule. Huang

(2014) considered two classes of non-FCFS allocation rules, and showed that these rules

may significantly outperform the FCFS rule in terms of the fill-rate in a periodic-review

ATO system with differentiated demands. In addition, Doğru et al. (2010) proposed a

two-stage stochastic program for a continuous-review ATO system with identical lead

times. They demonstrated that the superior performance can be achieved in violation of

the FCFS rule. Nevertheless, the FCFS rule is still commonly used in practice because

of its ease of implementation (e.g., Amazon, see Xu et al., 2009).

In this chapter, we study a periodic-review, multi-component and multi-product ATO

system in the presence of stochastic component replenishment lead times and stochastic

product demands. We jointly consider the inventory replenishment and component allo-

cation problems in the system, and formulate the problems as two-stage or multi-stage

stochastic programs, depending on the assumptions on the lead times. The sample aver-

age approximation (SAA) algorithms are used to solve the proposed stochastic models.

We test the long-term performance of the derived base-stock levels by simulation.

5.2 Model Development

We consider a periodic-review ATO system involvingm components and n products. We

define M = {1, · · · ,m} and N = {1, · · · , n} as the sets of components and products,

respectively. The replenishment of each component follows an independent base-stock

policy, where the base-stock level for component i is denoted by Si for all i ∈ M. We

determine the base-stock levels with a budget constraint for the inventory investment

among the different components. That is, a budget of B is used to constrain the total

investment for the base-stock levels, where the value of the budget can be interpreted
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as the maximum dollars invested or storage space for the total inventory. We use ci to

denote the unit inventory investment for component i, and it must satisfy
∑m
i=1 ciSi ≤ B.

Let the matrix (ai,j) be the Bill of Materials (BOM) where the element ai,j represents

the number of component i used in each unit of product j for all i ∈ M and j ∈ N .

The customer demand for product j in period t is denoted by Pj,t, which is assumed to

be an integer-valued, stochastically distributed random variable and independent across

periods. When demand Pj,t arrives, if one or more needed components have insufficient

availability, then it will be fully backlogged until the components are replenished. Note

that the assembly time is assumed to be negligible. The system enforces the FCFS

rule for product demand fulfillment. It is noteworthy that we allow partial fulfillment

of demands over subsequent periods, while they must be satisfied on the FCFS basis.

The total demand for component i in period t is driven by the product demands in that

period. With the BOM, Di,t can be expressed as Di,t =
∑n
j=1 ai,jPj,t. Let wj denote the

response time window of product j, and we assume that a reward rj,k is collected if one

unit of product demand Pj,t is satisfied in period t+ k where k ≤ wj .

The same system was studied in Akçay and Xu (2004); Huang and de Kok (2015). In

this thesis, we add an important assumption on this system, namely, the replenishment

orders of the components have stochastic lead times. Specifically, we assume that lead

time lti of the replenishment order for component i placed in period t is a discrete random

variable with finite support {Li, · · · , Li} whose probabilities are given by {pLi , · · · , pLi}.

The notations of the system are further summarized in Table 5.1.

The sequence of events within each time period is described as follows: At the be-

ginning of each period, the present inventory position of each component is reviewed

and replenishment orders are placed according to the corresponding base-stock levels.

The lead times of the replenishment orders are immediately realized. Then the earlier

replenishment orders arrive and the inventory positions are updated. After the product

demands arrive, the available components are allocated and assembled into the products
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Table 5.1: ATO system notation

t: index of periods; period t is defined as the interval [t, t+ 1),

i: index of components, where i ∈M = {1, · · · ,m},

j: index of products, where j ∈ N = {1, · · · , n},

Si: base-stock level of component i,

wj : response time window of product j,

rj,k: reward of assembling one unit product j in period t+ k to satisfy demand in period t

ai,j : the number of component i used in each unit of product j,

ci: the investment of each unit of base-stock of component i,

B: the total budget given for overall base-stock investment; i.e.,
∑m
i=1 ciSi ≤ B,

lti: lead time of the replenishment order of component i placed in period t,

Pj,t: demand for product j in period t,

Di,t: demand for component i in period t; that is, Di,t =
∑n
j=1 ai,jPj,t,

Li: minimum lead time of component i, where Li ≥ 0,

Li: maximum lead time of component i, where Li ≥ Li,

L: maximum lead time among all components; that is, maxi∈M Li; L := {0, · · · , L}.

in response to these demands. The rewards are collected at the end of the period if the

product demands are fulfilled within the desired response time windows.

For the purpose of analysis, we assume that there are no order crossings for one type

of component; however, the orders of different types of components may cross. Therefore,

we assume,

Condition 5.1. The realized lead times for each component must satisfy

t+ lti ≤ t+ 1 + lt+1
i , ∀i ∈M, ∀t

The above condition implies that the lead times of a component are correlated across

different periods. That is, the possible lead time values of each component in the present
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period is conditioned on the realized lead times of that component in the earlier periods.

For example, suppose that component i initially has a lead time support {0, 1, 2} with

probabilities {0.2, 0.3, 0.5}. Let t be the present period, then the lead time support

of lti becomes {1, 2} if lt−1
i = 2, and the corresponding probabilities are updated as

{ 0.3
0.3+0.5 ,

0.5
0.3+0.5} = {0.375, 0.625}.

Consider product demand Pj,t for product j arriving in period t, it is important to

specify the maximum waiting time until this demand can be fully satisfied. Since each

product might be assembled from multiple components, we need to specify when the

associated component demands can be satisfied. For our ATO system, we have the

following theorem regarding the maximum waiting time until the product demand Pj,t

has been fully satisfied.

Theorem 5.1. Under Condition 5.1, the component demand Di,t can be fully satisfied

before or in period t+Li + 1 for all i ∈M and t. The product demand Pj,t can be fully

satisfied before or in period t+ L+ 1 for all j ∈ N and t, where L = maxi∈M Li.

Proof. Under the base-stock policy, the replenishment order for component i placed in

period t + 1 is always triggered by the component demand in period t (i.e., Di,t) and

exactly equals it. In other words, the size of the replenishment order for component i

that will be placed in period t+ 1 is known at the end of period t. When the FCFS rule

is applied, the worst-case scenario is that the component demand Di,t will be satisfied by

the order triggered by itself and this order will arrive by period t+Li+1 since lt+1
i ≤ Li.

On the other hand, it is still possible that the product demand Pj,t won’t be satisfied in

period t+ Li + 1 due to lack of other components. In the worst-case scenario, we know

that all the component demands associated with the product demand Pj,t will be fully

satisfied by period t + L + 1. Therefore, product demand Pj,t will be fully satisfied by

period t+ L+ 1.

A similar result can be found in Huang and de Kok (2015); however, the authors

assumed deterministic lead times for all replenishment orders (i.e., lti ≡ Li for all i ∈M
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and t, where Li corresponds to the expected lead time of component i and Li ≤ Li ≤

Li). The difference between t + Li + 1 and t + L + 1 in the theorem is caused by

multiple components contained in one product, a phenomenon called “multi-matching"

also illustrated in Huang and de Kok (2015).

With Theorem 5.1, it allows us to formulate the ATO system as a two-stage or

multi-stage stochastic integer program with recourse, depending on the knowledge of

the random lead times.

5.2.1 Knowledge of the Realized Lead Times

In this section, we assume that in period t, all the lead times of replenishment orders

corresponding to demands prior to period t+2 are known. In other words, these random

lead times are realized. As noted above, the demand Di,t arriving in period t will trigger

a replenishment order of the same size in period t+ 1. So the assumption requires that

lt+1
i is known when the component allocation decisions for Di,t are made in period t.

This assumption is reasonable if an ATO manufacturer engages in close relationships

with its suppliers, and therefore it has complete information of the suppliers, including

the random lead times that will be realized in the next period. In such a circumstance,

although the lead times are stochastic, the ATO manufacturer can make component

allocation decisions with the realized lead times.

Consider component i. In period t, note that the earliest order that has not arrived

in period t yet could only be triggered by the demand in period t − Li. Define A0
i as

the set of all orders triggered by demands within [t − Li, t − 1] that arrive before or in

period t. That is,

A0
i =

{
t′ ∈ [t− Li, t− 1] : t′ + 1 + lt

′+1
i ≤ t

}
. (5.1)
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Similarly, in period t + u, define Aui as the set of all orders triggered by demands

within [t− Li, t] that arrive exactly in period t+ u. That is,

Aui =
{
t′ ∈ [t− Li, t] : t′ + 1 + lt

′+1
i = t+ u

}
, (5.2)

where 1 ≤ u ≤ Li + 1. Clearly, if 0 ≤ k, u ≤ Li + 1 and k 6= u, then Aki ∩ Aui = ∅. On

the other hand, we have ∪Li+1
k=0 Aki = {t− Li, · · · , t}.

With the Aui notation, we can define, by period t + k, the total available on-hand

inventory that will be used to satisfy the demand Di,t for component i in period t as

follows:

Õki = min
{
(Si −DLi

i +
∑

l∈∪ku=0A
u
i

Di,l)+, Di,t
}
, (5.3)

where 0 ≤ k ≤ Li + 1, and DLi
i =

∑t−1
l=t−Li

Di,l. Note that ÕLi+1
i ≡ Di,t. Clearly, Õki is

a piece-wise linear, non-convex function of Si.

Component demandDi,t can be satisfied in multiple periods, namely t+0, t+1, . . . , t+

Li+1, while product demand Pj,t can be satisfied in t+0, t+1, . . . , t+L+1 (see Theorem

5.1). We denote the decision variable xj,k as the amount of product j assembled in

period t + k for all j ∈ N , 0 ≤ k ≤ L + 1 and t. Thus, by period t + k, the total

amount
∑k
u=0

∑n
j=1 ai,jxj,u of component i is obtained from the on-hand inventories and

assembled (with other components) into different products.

According to our assumption on the lead times, when the base-stock levels are given,

the available on-hand inventories Õki are deterministic, so we have the following compo-

nent allocation problem,

Q(S, ξ(ω)) = max
n∑
j=1

wj∑
k=0

rj,kxj,k (5.4)

s.t.
L+1∑
k=0

xj,k = Pj,t, ∀j ∈ N , (5.5)
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k∑
u=0

n∑
j=1

ai,jxj,u ≤ Õki , ∀i ∈M,∀k ∈ L, (5.6)

xj,k ∈ Z+, ∀j ∈ N , ∀k ∈ L, (5.7)

where the vector S = (Si)i∈M denotes the base-stock levels, and the vector ξ(ω) de-

notes the (realized) random demands (Pj,k)j∈N ,k∈[t−Li,t] and (realized) random lead

times (lki )i∈M,k∈[t−Li+1,t+1]. The objective (5.4) aims to maximize the total reward

from satisfying the product demands (Pj,t)j∈N within the given response time windows.

Constraint (5.5) guarantees that the demands (Pj,t)j∈N will be satisfied no later than

period t+L+1. Constraint (5.6) is the component availability constraint, which requires

that the allocation of component i in each period could only take place when there are

enough inventories of component i for all i ∈ M and 0 ≤ k ≤ L + 1. Constraint (5.7)

requires that the allocation decisions can only take nonnegative integer values.

With a given base-stock vector S and realized random vector ξ(ω), we can optimally

solve the formulation (5.4)-(5.7). To determine the optimal base-stock levels with a

budget of B allocated to the total inventory investment, we need to solve the following

stochastic program,

max Eξ[Q(S, ξ)] (5.8)

s.t.
m∑
i=1

ciSi ≤ B, (5.9)

Si ∈ Z+, ∀i ∈M. (5.10)

The objective function (5.8) is to maximize the expected value of Q(S, ξ), where Q(S, ξ)

is the recourse function and it equals the optimal objective value of formulation (5.4)-

(5.7). Constraint (5.9) ensures that the total investment for the base-stock levels cannot

exceed the budget B. Constraint (5.10) requires that the base-stock levels can only take
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nonnegative integer values. Therefore, formulation (5.8)-(5.10) is a two-stage stochas-

tic integer program. The decisions in the first-stage are the optimal base-stock levels,

namely S = (Si)i∈M. In the second-stage, the component allocation decisions are made

repeatedly over time under the optimal base-stock levels.

As mentioned earlier, the same joint optimization of base-stock levels and component

allocation, however, with the expected (deterministic) lead time for each component (i.e.,

lti ≡ Li for all i ∈M) has been addressed in Akçay and Xu (2004). In fact, it is readily to

show that the formulation (5.8)-(5.10) is equivalent to the two-stage stochastic program

proposed in Akçay and Xu (2004) when the lower and upper bounds of the lead time

for each component are set to the corresponding expected lead time (i.e., Li = Li = Li

for all i ∈M).

5.2.2 Knowledge of the Random Lead Time Distributions

In this section, we assume that when facing the component allocation decisions, the

decision maker of the ATO system does not have the full knowledge of the realized

lead times. Instead, the decision maker only has the knowledge of random lead time

distributions in time period t + 1 when he makes component allocation decisions in

period t.

In this circumstance, the decision maker of the ATO system can only construct a

scenario tree from all previous samples and use this scenario tree for component alloca-

tion optimization. Let T be the scenario tree. For each node g of the scenario tree, let

P(g) be the path from node g to the root node; pg be the probability of node g; t(g)

be the period of node g. Note that t(g) = t if g is the root node. The set Lf denotes

the leaf nodes. If g is a leaf node (i.e., g ∈ Lf ), then P(g) corresponds to a scenario.

There are L+ 2 layers in the scenario tree, corresponding to periods t, · · · , t+L+ 1. An

illustration of the scenario tree is provided in Figure 5.2.
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Figure 5.2: The scenario tree T

In order to make an optimal component allocation decision for product demands

arriving in period t, we need to know the realized Pj,t for all j ∈ N and lui for all i ∈M

and u ≤ t+ 1. The root node in layer t of the tree corresponds to the realized demands

(Pj,t)j∈N and realized lead times (lki )i∈M,k∈[t−Li,t]. According to the sequence of events,

this information is known when we solve the component allocation problem in period t,

so the probability of the root node is equal to 1. In layer t+ 1, there is a finite number

of nodes since the lead time lt+1
i for all i ∈ M has a finite discrete support. Note

that the nodes in this layer are distinguishable since each node corresponds to a specific

realization of the random lead times for all the components in period t+ 1. Hence, the

probability of each node is the joint probability associated with the corresponding lead

time realization at that node. For instance, if the lead time for component i, ∀i ∈ M,

has a realization L̃i in period t+ 1 with the probability p
L̃i
, then a node g in layer t+ 1

that corresponds to the realization (L̃i)i∈M has the probability pg = Πi∈M p
L̃i
.

It is important to note that the number of nodes in layer t+ 1 is determined by the

realized lead times in earlier periods t − Li, · · · , t for all i ∈ M due to the correlated

lead times under Condition 5.1. Although there are L+ 2 layers in the scenario tree, it

essentially consists of two stages since the nodes in the layers after t+ 1 reveals no new
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information in terms of the realization of stochastic variables. This explains why the

scenarios no longer branch after layer t+ 1. Hence, the probability of a node after layer

t + 1 in a scenario is equal to the probability of its ancestor node in layer t + 1 of that

scenario. For more details of scenario tree notations, refer to Huang and Ahmed (2009).

With the scenario tree notations, the component allocation problem can be modeled

as a two-stage stochastic integer program, where in the first-stage the component allo-

cation decisions corresponding to the root node in layer t of the scenario tree are made;

then based on the realization of the lead times in period t+ 1, the component allocation

decisions corresponding to the nodes from layers t + 1 to t + L + 1 are made in the

second-stage problem. The component allocation problem is formulated as follows,

Q(S, ξ(ω)) = max
∑
j∈N

∑
g∈T ,t(g)≤wj

pgrj,t(g)xj,g (5.11)

s.t.
∑

g∈P(q)
xj,g = Pj,t, ∀j ∈ N ,∀q ∈ Lf , (5.12)

∑
g∈P(q)

∑
j∈N

ai,jxj,g ≤ Õqi , ∀i ∈M, ∀q ∈ T , (5.13)

xj,g ∈ Z+, ∀j ∈ N ,∀g ∈ T , (5.14)

where Õqi is the available on-hand inventory at node q of the scenario tree. Note that

the nonanticipativity constraints are satisfied in the scenario tree notations (Birge and

Louveaux, 2011). The objective (5.11) is to maximize the expected total reward over

the entire scenario tree. Constraint (5.12) guarantees that the demands (Pj,t)j∈N will

be satisfied before or in period t + L + 1 for each scenario. Constraint (5.13) ensures

that for each node in the scenario tree, the component allocation will only happen when

sufficient number of component inventories are available. Constraint (5.14) requires that

the allocation decisions for each node of the scenario tree be nonnegative integer values.

The above formulation is a two-stage stochastic integer program with a finite number of

different scenarios, and the number of the scenarios equals the number of nodes in layer
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t+ 1 of the corresponding scenario tree.

To determine the optimal base-stock levels, we need to solve the formulation (5.8)-

(5.10) whereQ(S, ξ) is defined as the optimal objective value of formulation (5.11)-(5.14).

Importantly, the formulation (5.8)-(5.10) now has become a multi-stage stochastic inte-

ger program (the number of stages is three).

5.3 Sample Average Approximation Algorithms

Solving the proposed stochastic programs exactly is computationally prohibitive due to

the uncountable number of possible scenarios for the random vector ξ. In this section,

we use a Monte Carlo simulation-based approach, the SAA algorithm, to obtain the

near-optimal base-stock levels for the proposed stochastic programs.

The main idea of the SAA algorithm is to estimate the objective function Q(S, ξ)

by sampling a set of scenarios of the random vector ξ. Specifically, M samples are

generated independently, with N realizations of the random vector ξ in each sample.

The different optimal second-stage decisions xj,k for all j ∈ N and 0 ≤ k ≤ L + 1 are

made for each realization, while the optimal first-stage decisions Si for all i ∈ M are

made over all the realizations in a sample. The SAA algorithm yields M sets of base-

stock levels. Next, the performance of the M candidate solutions is tested with a new

sample of N ′ realizations of the random vector ξ, where N ′ � N . At last, the one out

of the M candidate solutions that yields the largest expected reward is considered as

the optimal base-stock levels for our proposed stochastic programs. It has been shown

that the probability of the SAA algorithm producing an exact optimal solution for a

two-stage stochastic program with integer recourse approaches one exponentially fast in

the sample size M (Ahmed et al., 2002, Kleywegt et al., 2002).

The SAA algorithm has been studied in the literature to find the near-optimal solu-

tions (e.g., Verweij et al., 2003, Schütz et al., 2009). In particular, it has been success-

fully used to solve the joint optimization problem in the context of ATO systems (see
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e.g., Akçay and Xu, 2004, Huang and de Kok, 2015). In the following, we describe the

SAA algorithms for the proposed two-stage and multi-stage models, respectively.

5.3.1 The Two-Stage Model

Let ξ(ω1
l ), · · · , ξ(ωNl ) be the l-th sample, l = 1, · · · ,M , where ξ(ωhl ) denotes the realized

lead times (lki (ωhl ))i∈M,k∈[t−Li+1,t+1] and realized demands (Pj,k(ωhl ))j∈N ,k∈[t−Li,t] of the

h-th realization, h = 1, · · · , N , for the sample. For each sample, we solve the following

approximation of the proposed two-stage model, which is referred to as the SAA problem.

Q̂N (Ŝl) = max 1
N

N∑
h=1

n∑
j=1

wj∑
k=0

rj,kx
ωhl
j,k

s.t.
L+1∑
k=0

x
ωhl
j,k = Pj,t(ωhl ), ∀j ∈ N , h = 1, . . . , N,

k∑
u=0

n∑
j=1

ai,jx
ωhl
j,u ≤ Õ

k
i (ωhl ), ∀i ∈M,∀k ∈ L, h = 1, . . . , N,

m∑
i=1

ciS
l
i ≤ B, (5.15)

Sli ∈ Z+, ∀i ∈M,

x
ωhl
j,k ∈ Z+, ∀j ∈ N , ∀k ∈ L, h = 1, . . . , N,

where Q̂N (Ŝl) denotes the optimal objective value of the formulation (5.15) and Ŝl =

(Sli)i∈M corresponds to the vector of optimal base-stock levels for the l-th sample. Note

that we add the superscript ωhl for the allocation decisions xj,k since they depend on

ξ(ωhl ). The right-hand side Õki (ωhl ) = min{(Si−DLi
i (ωhl )+

∑
l∈∪ku=0A

u
i
Di,l(ωhl ))+, Di,t(ωhl )}

is a piece-wise, non-convex function of Si, so we rewrite the second constraint of the for-

mulation (5.15) as

k∑
u=0

n∑
j=1

aijx
ωhl
j,u ≤ Di,t(ωhl ), (5.16)
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k∑
u=0

n∑
j=1

aijx
ωhl
j,u ≤ (Si −DLi

i (ωhl ) +
∑

l∈∪ku=0A
u
i

Di,l(ωhl ))+. (5.17)

Then, we use the “Big-M” method to linearize Constraint (5.17) by

k∑
u=0

n∑
j=1

aijx
ωhl
j,u ≤Mz

ωhl
i,k , (5.18)

k∑
u=0

n∑
j=1

aijx
ωhl
j,u ≤ (Si −DLi

i (ωhl ) +
∑

l∈∪ku=0A
u
i

Di,l(ωhl )) +M(1− zω
h
l

i,k ), (5.19)

Si −DLi
i (ωhl ) +

∑
l∈∪ku=0A

u
i

Di,l(ωhl ) ≤Mz
ωhl
i,k , (5.20)

z
ωhl
i,k ∈ {0, 1}, (5.21)

where M is a large constant.

In Akçay and Xu (2004), the plus sign “+” in the right-hand side of the component

availability constraint is dropped to facilitate the computation of their SAA algorithm.

However, Deza et al. (2018) analyzed the impact of such the relaxation and pointed out

that it may cause the infeasibility issue at the low budget levels.

Although the SAA problem (5.15) above is still not easy to solve, the number of sce-

narios involved is considerably decreased than the original two-stage model. In addition,

it can be used to derive the bounds on the optimal objective value of the original model.

Let Q∗(S∗) be the optimal objective value of the original two-stage model, and S∗ be

the corresponding optimal base-stock level vector. Moreover, we denote the average of

these M optimal objective values of the SAA problem by QMN = 1
M

∑M
l=1 Q̂N (Ŝl). It is

well-known that

Q∗(S∗) ≤ E(QMN ),

hence, QMN provides the estimated upper bound of Q∗(S∗).

Clearly, Eξ[Q(Ŝl, ξ)] is a lower bound of Q∗(S∗) because Ŝl is a feasible solution of the
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original two-stage model. To obtain an unbiased estimator of Eξ[Q(Ŝl, ξ)], an extra sam-

ple of N ′ realizations is independently generated. Let ξ(ω1
0), . . . , ξ(ωN ′0 ) be the sample

of N ′ realizations, where ξ(ωh0 ) denotes the realized lead times (lki (ωh0 ))i∈M,k∈[t−Li+1,t+1]

and realized demands (Pj,k(ωh0 ))j∈N ,k∈[t−Li,t] of the h-th realization, h = 1, . . . , N ′.

Therefore, the lower bound Eξ[Q(Ŝl, ξ)] can be estimated by the following for l =

1, . . . ,M ,

QN ′(Ŝl) = max 1
N ′

N ′∑
h=1

n∑
j=1

wj∑
k=0

rj,kx
ωh0
j,k

s.t.
L+1∑
k=0

x
ωh0
j,k = Pj,t(ωh0 ), ∀j ∈ N , h = 1, . . . , N ′,

k∑
u=0

n∑
j=1

ai,jx
ωh0
j,u ≤ Õ

k
i (ωh0 ), ∀i ∈M,∀k ∈ L, h = 1, . . . , N ′, (5.22)

x
ωh0
j,k ∈ Z+, ∀j ∈ N ,∀k ∈ L, h = 1, . . . , N ′.

Note that given Ŝl and ξ(ω1
0), . . . , ξ(ωN ′0 ) for the formulation (5.22), the right-hand side

of the component availability constraint (i.e., Õki (ωh0 )) can be computed in advance and

thus is completely deterministic. Besides, the formulation is decomposable with respect

to the N ′ realizations. Therefore, we can solve the component allocation problem for

each ξ(ωh0 ), h = 1, . . . , N ′, and compute the optimal objective value QN ′(Ŝl) by taking

the average over the N ′ realizations.

After solving formulation (5.22) repeatedly with M candidate solutions, it is natural

to take the base-stock levels that yield the largest QN ′(·), i.e., Ŝ∗ ∈ argmax{QN ′(Ŝl) :

l = 1, . . . ,M}, as the optimal base-stock levels. Clearly, QN ′(Ŝ∗) serves as a lower bound

estimation of Q∗(S∗). That is,

QN ′(Ŝ∗) ≤ Q∗(S∗).

The SAA algorithm for the two-stage model is further summarized in Algorithm 1.
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Algorithm 1 The SAA algorithm for the two-stage model
1: Initialize: Select values for M , N , and N ′;
2: for l = 1, . . . ,M do
3: Generate an independent sample ξ(ω1

l ), . . . , ξ(ωNl );
4: Solve the SAA problem (5.15), and record Ŝl and Q̂N (Ŝl);
5: end for
6: Calculate the estimated upper bound of Q∗(S∗) using QMN = 1

M

∑M
l=1 Q̂N (Ŝl);

7: Generate an independent sample ξ(ω1
0), . . . , ξ(ωN ′0 );

8: for l = 1, . . . ,M do
9: Solve the optimization problem (5.22) using Ŝl, and record QN ′(Ŝl);

10: end for
11: Select Ŝ∗ ∈ argmax{QN ′(Ŝl) : l = 1, . . . ,M}, and a lower bound of Q∗(S∗) is given

by QN ′(Ŝ∗).

5.3.2 The Multi-Stage Model

In this section, we modify the SAA algorithm described in Section 5.3.1 to solve the

proposed multi-stage model. In the same manner, we generate M independent samples,

with N realizations of random vector in each sample. However, it is important to

note that in the multi-stage setting, when we make component allocation decisions for

demands arriving in period t, the random lead times (lt+1
i )i∈M are not yet known and

thus must be excluded from the realizations of the SAA algorithm. Instead, we must

take into account all possible realizations of the lead times (lt+1
i )i∈M for component

allocation optimization.

To distinguish from the SAA algorithm for the two-stage model, we use ξ′(ω1
l ), . . . , ξ′(ωNl )

to denote the l-th sample, l = 1, . . . ,M , where ξ′(ωhl ) denotes the realized lead times

(lki (ωhl ))i∈M,k∈[t−Li+1,t] and realized demands (Pj,k(ωhl ))j∈N ,k∈[t−Li,t] of the h-th realiza-

tion, h = 1, . . . , N , for the sample. For each ξ′(ωhl ), we specify the possible realizations of

the lead times (lt+1
i )i∈M under Condition 5.1 and construct the corresponding scenario
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tree, denoted by Tξ′(ωh
l

). For each sample, the proposed multi-stage model is approxi-

mated by the following SAA problem.

Q̂N (Ŝl) = max 1
N

N∑
h=1

(∑
j∈N

∑
g∈T

ξ′(ωh
l

),t(g)≤wj

pgrj,t(g)x
ωhl
j,g

)

s.t.
∑

g∈P(q)

x
ωhl
j,g = Pj,t(ωhl ), ∀j ∈ N ,∀q ∈ Lf ⊂ Tξ′(ωh

l
), h = 1, . . . , N,

∑
g∈P(q)

∑
j∈N

ai,jx
ωhl
j,g ≤ Õ

q
i (ω

h
l ), ∀i ∈M,∀q ∈ Tξ′(ωh

l
), h = 1, . . . , N,

∑
i∈M

ciS
l
i ≤ B, (5.23)

Sli ∈ Z+, ∀i ∈M,

x
ωhl
j,g ∈ Z+, ∀j ∈ N ,∀g ∈ Tξ′(ωh

l
), h = 1, . . . , N.

It is worthing noting that the SAA problem (5.23) involves solving multiple number

of formulation (5.15) simultaneously, which may require extensive computational effort

depending on the size of the corresponding scenario tree Tξ′(ωh
l

).

Once the SAA problem has been solved repeatedly with different samples, we obtain

M candidate solutions of the base-stock levels. The estimated upper bound of Q∗(S∗)

is again computed by QMN = 1
M

∑M
l=1 Q̂N (Ŝl), where Q∗(S∗) corresponds to the optimal

objective value of the proposed multi-stage model. Then, we generate an independent

sample of N ′ realizations ξ′(ω1
0), . . . , ξ′(ωN ′0 ) and solve the following deterministic prob-

lem with the base-stock vector Ŝl for l = 1, . . . ,M ,

QN ′(Ŝl) = max 1
N ′

N ′∑
h=1

(∑
j∈N

∑
g∈T

ξ′(ωh
l

),t(g)≤wj

pgrj,t(g)x
ωhl
j,g

)

s.t.
∑

g∈P(q)

x
ωhl
j,g = Pj,t(ωhl ), ∀j ∈ N ,∀q ∈ Lf ⊂ Tξ′(ωh

l
), h = 1, . . . , N ′,

∑
g∈P(q)

∑
j∈N

ai,jx
ωhl
j,g ≤ Õ

q
i (ω

h
l ), ∀i ∈M,∀q ∈ Tξ′(ωh

l
), h = 1, . . . , N ′, (5.24)

x
ωhl
j,g ∈ Z+, ∀j ∈ N ,∀g ∈ Tξ′(ωh

l
), h = 1, . . . , N ′.
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Finally, the base-stock level vector Ŝ∗ that yields the largest QN ′(·) is selected as the

optimal base-stock levels for the multi-stage model and the estimated lower bound of

Q∗(S∗) is provided by QN ′(Ŝ∗).

We summarize the SAA algorithm for the multi-stage model in Algorithm 2.

Algorithm 2 The SAA algorithm for the multi-stage model
1: Initialize: Select values for M , N , and N ′;
2: for l = 1, . . . ,M do
3: Generate an independent sample ξ′(ω1

l ), . . . , ξ′(ωNl );
4: Construct the scenario three Tξ′(ω1

l
), . . . , Tξ′(ωN

l
);

5: Solve the SAA problem (5.23), and record Ŝl and Q̂N (Ŝl);
6: end for
7: Calculate the estimated upper bound of Q∗(S∗) using QMN = 1

M

∑M
l=1 Q̂N (Ŝl);

8: Generate an independent sample ξ′(ω1
0), . . . , ξ′(ωN ′0 );

9: Construct the scenario three Tξ′(ω1
0), . . . , Tξ′(ωN′0 );

10: for l = 1, . . . ,M do
11: Solve the optimization problem (5.24) using Ŝl, and record QN ′(Ŝl);
12: end for
13: Select Ŝ∗ ∈ argmax{QN ′(Ŝl) : l = 1, . . . ,M}, and a lower bound of Q∗(S∗) is given

by QN ′(Ŝ∗).

5.3.3 SAA Performance

The optimality gap (i.e., QMN −QN ′(Ŝ∗)) is primarily used to evaluate the quality of the

SAA solutions. Kleywegt et al. (2002) showed that the tighter optimality gap tends to

be achieved by using larger values of N and N ′. On the other hand, the computational

complexity for solving the optimization problems in the SAA algorithms increases sig-

nificantly. In our case, we select a relatively smaller N while selecting a larger N ′ since

formulations (5.22) and (5.24) are decomposable by realizations.

The variance of the optimality gap is also commonly used to evaluate the solution

quality. However, we only report the optimality gap in the following numerical experi-

ments. For completeness, we provide the way based on Ahmed et al. (2002) to compute
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the estimated variance of the optimality gap yielded by Algorithms 1 and 2.

The variances of QMN and QN ′(Ŝ∗) can be estimated by

σ
Q
M
N

= 1
M(M − 1)

M∑
l=1

[
Q̂N (Ŝl)−Q

M
N

]2
,

and

σ
QN′ (Ŝ∗)

= 1
N ′(N ′ − 1)

N ′∑
h=1

[
Q(Ŝ∗, ξ(ωh0 ))−QN ′(Ŝ∗)

]2
,

respectively. The variance of the optimality gap is estimated by

σ2
Q
M
N −QN′ (Ŝ∗)

= σ2
Q
M
N

+ σ2
QN′ (Ŝ∗)

. (5.25)

In the case that the values of the optimality gap and (or) the variance are too large,

one might consider to increase the values of N and N ′, and re-perform the SAA al-

gorithms. The detailed SAA statistics have been discussed in Ahmed et al. (2002);

Kleywegt et al. (2002).

5.4 Numerical Studies

In this section, we report numerical experiment results for two data sets from the ATO

literature (Zhang, 1997, Agrawal and Cohen, 2001). Our purposes of this experiment

are twofold. Firstly, we test the effectiveness of the SAA algorithms. Secondly, we carry

out simulations to evaluate the long-term performance of the derived base-stock levels

with respect to randomly generated lead times and demands. We focus on the average

performance as well as the performance stability.

For each data set, we first determine the base-stock levels for the proposed stochastic

programs using their corresponding SAA algorithms under different budget levels. We
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denote by SAA-TS and SAA-MS the SAA results of the proposed two-stage and multi-

stage models yielded by Algorithm 1 and Algorithm 2, respectively. For the purpose of

comparison, we additionally consider the SAA results of Akçay and Xu (2004), which is

denoted by SAA-AX. The SAA results reported include the optimal base-stock levels,

the lower bound (LB), the upper bound (UB), and the optimality gap (Gap = UB−LB).

Since rewards are identical across all products in the two data sets under consideration,

we present the results of LB, UB, and Gap in the form of the aggregated type-II service

level (in percent), i.e., 100%×
∑n
j=1

∑wj
k=0 xj,k/

∑n
j=1 E[Pj,t], where E[Pj,t] represents the

mean of random demand Pj,t.

In the simulation, given the base-stock levels, we repeatedly solve the component

allocation problem for each period using the optimal component allocation (OA) policy

under the FCFS rule. Then, the long-term performance is estimated with respect to 1000

periods of realized lead time and demand. The simulated results are also represented by

the type-II service level (in percent).

5.4.1 Agrawal and Cohen System

The ATO system of Agrawal and Cohen (2001) involves four products (j = 1, . . . , 4)

and two components (i = 1, 2), as described in Table 5.2. Specifically, it is assumed

that in each period the demand for product j is normally distributed with the mean µj

and standard deviation σj , while the lead time of component i in each period follows a

discrete uniform distribution between Li and Li denoted by Uniform[Li, Li]. We assume

that component 1 suffers a higher lead time variability and thus let lt1 ∈ Uniform[4, 6],

whereas the lead time of component 2 has two possible values with lt2 ∈ Uniform[6, 7].

Note that the orders of component 1 may cross with the given distribution. To avoid

that, when the realized lead time of component 1 in any period is 6, the lead time

distribution in the following period becomes Uniform[5, 6] in the experiment. To obtain

SAA-AX, we consider the deterministic lead times of 4 and 6 for components 1 and 2,
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respectively. The reward of 1 is collected to each product assembled within its response

time window and the response time windows for all products are set to 0. Therefore,

the service performance corresponds to the off-shelf type-II service level (in percent) in

this section.

Table 5.2: Problem setting of Agrawal and Cohen (2001) system

Products

j 1 2 3 4

µj 15 18 18 15

σj 3 3 3 3

rj,t 1 1 1 1

Components wj 0 0 0 0

i ci Uniform[Li, Li] BOM (ai,j)

1 10 [4, 6] 1 3 3 1

2 10 [6, 7] 2 1 1 2

We obtain SAA-AX, SAA-TS, and SAA-MS using parametersM = 500, N = 30, and

N ′ = 500 under different budget levels. The results are reported in Table 5.3. The CPU-

time for running Algorithm 1 varies between 24 min and 28 min. For Algorithm 2, the

CPU-time required is significantly increased. This is not surprising as each SAA problem

(formulation (5.23)) involves a multiple number of scenarios, which is not decomposable.

The CPU-time for running Algorithm 2 varies between 106 min and 114 min.

In Table 5.3, we note that the gaps between the LBs and UBs range from 0.04% to

0.63% throughout the table, which indicates that the SAA algorithms produce provably

high quality solutions. We also note that the base-stock levels under the three SAA

solutions are monotonely increasing as the budget level increases. However, it is observed

that the increment of base-stock levels under SAA-AX slows down when the budget level

exceeds 15,000. This is because the corresponding type-II service level almost achieves
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100% with a budget of 15,000, the inventory budget constraint will no longer be active

in the optimal base-stock levels with a larger budget level. In other words, it means

that a budget of 15, 000 would be sufficient if only demand uncertainty is present in the

system.

Table 5.3: Computational results for solving Agrawal and Cohen (2001) system using the
SAA algorithms

SAA-AX SAA-TS SAA-MS

B S∗1 S∗2 LB% UB% Gap% S∗1 S∗2 LB% UB% Gap% S∗1 S∗2 LB% UB% Gap%

13,000 647 653 70.61 70.92 0.31 662 638 11.68 11.89 0.21 684 616 10.80 10.97 0.17

14,000 708 692 94.86 95.03 0.17 725 675 29.23 29.48 0.25 741 659 28.06 28.56 0.50

15,000 757 743 99.14 99.20 0.06 768 732 57.26 57.80 0.54 780 720 54.83 55.32 0.49

16,000 798 762 99.79 99.89 0.10 820 780 78.45 78.53 0.08 842 758 79.42 79.89 0.47

17,000 822 780 100.83 100.87 0.04 900 800 94.00 94.56 0.56 920 780 94.06 94.67 0.61

18,000 834 792 100.71 100.78 0.07 968 832 99.56 100.02 0.46 982 818 98.55 99.18 0.63

In addition, we notice that the base-stock levels for the two components are com-

paratively closer to each other under SAA-AX in contrast to that they become more

unequal under SAA-TS (also SAA-MS) at each budget level. It appears that the devi-

ations of the base-stock levels get larger under SAA-TS (also SAA-MS) as the budget

level increases. Under SAA-TS and SAA-MS, we observe that the base-stock level of

component 1 is always larger than that of component 2, which is very likely due to the

higher lead time variability of component 1. As a result, a higher base-stock level for

component 1 is required to ensure a more reliable performance. Moreover, it can be seen

that the LB and UB under SAA-AX are significantly higher than those under SAA-TS

and SAA-MS for a budget between 13,000 and 16,000, which indicates that the lead

time uncertainty could significantly degrade the service performance, especially with the

restrictive inventory budget.
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Next, we simulate the derived base-stock levels with 1000 periods of realized lead

time and demand. Note that the lead times and demands are generated using the same

distributions and parameters in Table 5.2. Given the base-stock levels, we optimally

make component allocation decisions (i.e., OA policy) for each period. The average

service performance is estimated based on these 1000 periods. Table 5.4 compares the

average type-II service level (Avg. OA), the maximum service level (Max OA), and the

standard deviation of the service level (SD) under the three sets of base-stock levels.

Table 5.4: Comparison of simulated results (in percent) based on 1000 simulation runs for
Agrawal and Cohen (2001) system under different SAA base-stock levels

SAA-AX SAA-TS SAA-MS

B Avg. OA Max OA SD Avg. OA Max OA SD Avg. OA Max OA SD

13,000 5.61 52.58 26.15 8.23 55.52 22.17 10.83 56.97 20.18

14,000 24.29 63.67 24.21 26.53 69.64 21.64 28.71 71.11 19.02

15,000 51.83 89.79 21.38 53.00 94.73 20.54 54.88 97.21 18.21

16,000 66.50 93.18 19.70 77.75 99.79 18.51 79.10 99.73 17.73

17,000 71.74 94.73 19.49 93.33 105.24 16.50 94.64 107.79 15.21

18,000 72.31 94.21 19.34 99.04 113.79 12.06 99.14 110.27 10.45

From the table above, it is clearly that the performance measures under SAA-TS

and SAA-MS is consistently better than SAA-AX. For tight budget levels, it is worth

pointing out that the simulated average service level under SAA-AX is significantly lower

than the corresponding SAA results. For example, we see that at a budget of 13, 000,

the LB and UB under SAA-AX are 70.61% and 70.92%, respectively, in Table 5.4, while

the simulated result is merely 5.61%. This observation highlights that the lead time

uncertainty could severely impact the system performance.

We also note that the performance measures improve as the budget level increases,

while the improvement under SAA-AX is rather insignificant once the budget level ex-

ceeds 15,000. Under SAA-AX, we see that the average service level is only increased by
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5.81% when the budget level is increased from 16,000 to 18,000. In contrast, the aver-

age service level is increased by 42.21% when the budget level is increased from 14,000

to 16,000. This is because, as noted earlier, the base-stock levels under SAA-AX only

marginally increase when the budget gets larger than 15,000 (see Table 5.3). The result

with regard to the average service level is further illustrated in Figure 5.3.
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Figure 5.3: Average service levels of Agrawal and Cohen (2001) system using different SAA
base-stock levels

The figure clearly shows the average service performance under SAA-TS compares

well to SAA-MS at all budget levels under consideration. The percentage difference

between SAA-TS and SAA-MS becomes almost negligible as the budget increases. The

implication is that one can potentially use the proposed two-stage model instead of the

multi-stage model for the base-stock optimization for large ATO systems, especially when

a sufficient budget is allocated. After all, solving the SAA algorithm of the two-stage

model requires less computational effort.
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5.4.2 Zhang System

In this section, we consider an ATO system studied in Zhang (1997) that consists of

four products (j = 1, . . . , 4) and five components (i = 1, . . . , 5) as summarized in Table

5.5. The product demands in each period are assumed to be normally distributed with

the mean µj and standard deviation σj . The components are ordered from external

suppliers with uncertain lead times. For the sake of simplicity, we assume that the lead

times for some components are discretely distributed while the others are deterministic.

Table 5.5: Problem setting of Zhang (1997) system

Products

j 1 2 3 4

µj 100 150 50 30

σj 25 30 15 11

rj,t 1 1 1 1

Components wj 1 1 1 1

i ci {Li, . . . , Li} BOM (ai,j)

1 2 {3} 1 1 – –

2 3 {2, 3} 2 1 1 –

3 6 {2, 3} 1 1 1 –

4 4 {4, 5} – – 1 1

5 1 {4} – – – 1

Specifically, the lead times of components 2, 3 and 4 have lead time uncertainty with

lt2 ∈ [2, 3], lt3 ∈ [2, 3] and lt4 ∈ [4, 5]. For these components, note that the lower bound

lead time values (i.e., 2, 2, and 4) are used to obtain SAA-AX. To demonstrate the lead

time variability on the system performance, we consider two lead time distributions,

they are: Uniform[Li, Li] and Two-point[Li, Li] (where Pr(lti = Li) = 0.75 and Pr(lti =

Li) = 0.25). The response time window of 1 is set for all the products, and the reward

of 1 is collected as long as the products are satisfied within their response time windows.
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Thus, the type-II service level (in percent) reported in this section corresponds to the

fraction of demands satisfied within one period of their arrival.

We select the parameters ofM = 500, N = 25 and N ′ = 500 for the SAA algorithms.

Tables 5.6, 5.7, and 5.8 show the SAA results when the lead times are deterministic, two-

point distributed, and uniformly distributed, respectively. The CPU-time for running

Algorithm 1 varies between 1 hour and 1.25 hours. For the Algorithm 2, it typically

takes around 2.5 hours to obtain the solution.

Table 5.6 presents the SAA results under the deterministic lead times. The results

indicate that it would be better off to allocate a majority of the inventory budget to the

base-stock levels for components 1, 2, and 3 to satisfy demands of products 1 and 2. In

particular, at a budget of 8,000, we observe that the base-stock levels of components 4

and 5 are set to zero. This is intuitive since the lead times of components 1, 2, and 3 are

Table 5.6: Computational results for solving Zhang (1997) system using the SAA algorithms
where lead times are deterministic

SAA-AX

B S∗1 S∗2 S∗3 S∗4 S∗5 LB% UB% Gap%

8,000 874 838 623 0 0 74.53 75.27 0.56

10,000 867 873 664 373 171 97.56 98.17 0.61

12,000 930 1156 796 430 174 99.74 100.15 0.41

14,000 954 1183 801 449 235 99.77 100.05 0.29

lower than components 4 and 5. In fact, a similar trend is observed for the base-stock

levels under SAA-TS and SAA-MS; however, there is a lag until the base-stock levels of

components 4 and 5 become non-zeros (see Tables 5.7 and 5.8), which is definitely caused

by the lead time uncertainty. Moreover, we observe that the increment of the base-stock

levels under SAA-AX slows down once the budget reaches 12,000, which implies that

such the budget level would handle demand uncertainty well. This is verified through the
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fact that the type-II service level almost achieves 100% with a budget level B = 12, 000

in the table.

In Tables 5.7 and 5.8, we see that the quality of the derived base-stock levels under

SAA-TS and SAA-MS is guaranteed by the tightness of the gaps between the LBs and

UBs, which range from 0.02% to 0.78% across the tables. For a low budget level, we note

that the values of LB and UB are largely decreased compared to those in Table 5.6. This

coincides with the results for Agrawal and Cohen (2001) that the lead time uncertainty

significantly degenerates the system performance, especially under a restrictive inventory

budget.

Different from the results in Table 5.4, we find that not all the base-stock levels

monotonely increase in this system. Indeed, when the budget level is increased from

10, 000 to 12, 000 in Tables 5.7 and 5.8, the base-stock level of component 1 under

SAA-TS and SAA-MS decreases. Meanwhile, the base-stock levels of components 4 and

5 become non-zeros. One reason for this may be that product 1 requires 2 units of

component 2 while product 3 requires only 1 unit of the component, the system benefits

from the component commonality through satisfying less demand for product 1, and

shifting a part of the inventory budget for the base-stock levels of components 4 and 5

so as to satisfy demands of products 3 and 4.

Compare Tables 5.7 and 5.8, another interesting observation is that the lead time

distribution seemingly has more impact on the base-stock levels when a tight budget

is assumed. For example, we can see that at a budget between 8, 000 and 10, 000, a

noticeable difference is that the base-stock level of component 2 under the uniform lead

times is higher than that under the two-point lead times. The main reason is that the

uniform distribution has the higher probability of producing larger lead times for the

component than the two-point distribution; since component 2 is required for assembling

of several products, it would be more beneficial to have a relatively higher base-stock

level for component 2 against its lead time uncertainty under the uniform distribution.

94



Ph.D. Dissertation Jie Chu McMaster - Management Science

Table 5.7: Computational results for solving Zhang (1997) system using the SAA algorithms
where lead times follow two-point distributions

SAA-TS

B Ŝ∗1 Ŝ∗2 Ŝ∗3 Ŝ∗4 Ŝ∗5 LB UB Gap

8,000 799 848 643 0 0 38.71 39.33 0.62

10,000 839 1096 839 0 0 68.27 68.91 0.64

12,000 760 1108 879 430 162 91.31 91.97 0.66

14,000 883 1400 1015 446 160 98.73 99.08 0.35

SAA-MS

B Ŝ∗1 Ŝ∗2 Ŝ∗3 Ŝ∗4 Ŝ∗5 LB UB Gap

8,000 661 874 676 0 0 40.55 41.33 0.78

10,000 794 1106 849 0 0 70.07 70.77 0.70

12,000 763 1122 869 432 166 93.19 93.68 0.49

14,000 878 1313 1054 453 167 99.63 100.15 0.52

Table 5.8: Computational results for solving Zhang (1997) system using the SAA algorithms
where lead times follow uniform distributions

SAA-TS

B Ŝ∗1 Ŝ∗2 Ŝ∗3 Ŝ∗4 Ŝ∗5 LB UB Gap

8,000 754 1054 555 0 0 35.09 35.76 0.66

10,000 815 1114 838 0 0 68.14 68.25 0.10

12,000 769 1126 879 415 150 88.01 88.79 0.78

14,000 925 1360 1010 460 170 97.48 97.92 0.44

SAA-MS

B Ŝ∗1 Ŝ∗2 Ŝ∗3 Ŝ∗4 Ŝ∗5 LB UB Gap

8,000 769 1068 543 0 0 36.81 37.19 0.38

10,000 821 1140 823 0 0 69.04 69.53 0.49

12,000 778 1153 857 422 154 88.15 88.47 0.32

14,000 914 1362 1018 454 162 99.80 99.82 0.02
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In the simulation, for each set of the base-stock levels, we optimally solve the compo-

nent allocation problem for 1000 periods of realized lead time and demand. The results

including the average type-II service level (Avg. OA), the maximum service level (Max

OA), and the standard deviation of the service level (SD) are reported in Tables 5.9 and

5.10 when the two-point distributed and uniformly distributed lead times are assumed,

respectively.

Table 5.9: Comparison of simulated results (in percent) based on 1000 simulation runs for
Zhang (1997) system under different base-stock levels where lead times follow two-point
distributions

SAA-AX SAA-TS SAA-MS

B Avg OA Max OA SD Avg OA Max OA SD Avg OA Max OA SD

8,000 30.32 76.36 29.48 34.34 81.55 27.05 38.87 84.21 24.68

10,000 45.10 88.61 30.58 69.09 93.03 15.04 71.88 98.70 14.74

12,000 76.47 99.18 19.30 92.88 105.55 12.56 93.82 107.36 12.68

14,000 82.35 103.91 18.35 99.73 112.45 11.83 99.85 113.91 11.19

Table 5.10: Comparison of simulated results (in percent) based on 1000 simulation runs
for Zhang (1997) system under different base-stock levels where lead times follow uniform
distributions

SAA-AX SAA-TS SAA-MS

B Avg OA Max OA SD Avg OA Max OA SD Avg OA Max OA SD

8,000 28.88 72.02 30.23 36.53 78.88 28.42 36.72 79.33 28.80

10,000 42.66 86.91 30.77 68.06 91.03 19.06 68.62 93.67 15.98

12,000 74.40 96.03 20.60 91.18 107.64 14.86 91.27 103.64 13.48

14,000 80.44 103.85 15.78 97.14 111.09 12.04 97.17 110.73 11.62

From the tables, although all three sets of the base-stock levels offer improved perfor-

mance measures as the budget level increases, the benefit of incorporating lead time un-

certainty is clearly demonstrated. We observe that the base-stock levels under SAA-TS
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(respectively, SAA-MS) outperform SAA-AX with at least 4.02% (respectively, 7.65%)

higher average service level, and 1.18% (respectively, 1.43%) lower standard deviation.

When it comes to compare the system performance between SAA-TS and SAA-MS,

we notice that the base-stock levels under SAA-TS performs similarly to SAA-MS, es-

pecially with the uniformly distributed lead times. This finding is well illustrated in

Figures 5.4 and 5.5.
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Figure 5.4: Average service levels of Zhang (1997) system using different SAA base-stock
levels where lead times follow two-point distributions
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Figure 5.5: Average service levels of Zhang (1997) system using different SAA base-stock
levels where lead times follow uniform distributions

In the figures, it is also interesting to observe that the improvement of the average
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service level under SAA-AX is very insignificant relative to SAA-TS and SAA-MS, when

the budget level is increased from 80,000 to 90,000. At a budget of 9, 000, we find that

the base-stock levels under SAA-AX are (S∗1 , S∗2 , S∗3 , S∗4 , S∗5) = (769, 780, 597, 348, 148),

in which the values for components 1, 2, and 3 are essentially decreased compared to

the optimal base-stock levels at a budget of 8, 000 (see Table 5.6). Implementing such

base-stock levels will certainly enhance the service levels of products 3 and 4, while the

service improvement needs to compensate for the service reduction of products 1 and

2. That explains why the aggregated service level only insignificantly increases in the

figures.

5.5 Concluding Remarks

In this chapter, we have proposed stochastic integer programs for a periodic-review

ATO system with component base-stock policy and FCFS allocation rule. The proposed

stochastic models jointly determine the optimal base-stock levels and the optimal com-

ponent allocation decisions in the presence of stochastic lead times and demands. The

proposed multi-stage model can handle realistic situations where the decision maker only

knows the distributions of lead times, however, at the cost of higher degree of computa-

tional complexity. We used the SAA algorithms to obtain the near-optimal base-stock

levels, as well as estimated upper and lower bounds, for the proposed stochastic mod-

els. The effectiveness of the SAA algorithms has been tested with two examples from

the ATO literature. In addition, we carried out the simulation studies with the derived

base-stock levels as well as the base-stock levels of Akçay and Xu (2004). The simulated

results show that better system performance can be achieved with the base-stock policies

that incorporate the lead time uncertainty. Moreover, we found that the two-stage model

compares well to the multi-stage model in terms of the base-stock level optimization be-

cause the similar performance measures have been observed in our simulated results,
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especially when the lead times follow uniform distributions and the higher inventory

budget is allocated.
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Chapter 6

Conclusions and Future Research Direc-

tions

In this chapter, the major contributions of this thesis are summarized. In addition, we

suggest some future research directions.

6.1 Conclusions

This thesis presented mathematical models based on robust optimization (RO) and

stochastic programming (SP) to address the inventory management decisions for three

periodic-review, finite-horizon inventory systems in the presence of supply and demand

uncertainties.

First, we considered a multi-period single-station inventory problem, where we mod-

eled the uncertain partial supply and uncertain demand with budget polyhedral un-

certainty sets. We formulated the problem under the RO framework and showed that

the derived robust counterpart is equivalent to a nominal problem with a modified de-

terministic demand sequence. Furthermore, we theoretically characterized the optimal

robust policy for the stationary case of the problem. We showed that the optimal ro-

bust policy is of quasi-(s, S) form, where s and S levels are theoretical computable.

The simulation-based numerical studies suggest that the proposed robust policy could
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significantly outperform the nominal policy as well as the robust policy of Bertsimas

and Thiele (2006) in terms of average performance when the relatively low (or ideally

no) setup cost is present and the unit holding cost is much smaller than the unit short-

age cost, and it offers improved average performance as the length of planning horizon

increases. We also examined how the supply variability, demand variability, and the

budgets for uncertainty affect the average performance.

Next, we extended the RO framework to a multi-echelon supply chain with a tree

structure. By assuming that the partial supply only affects the orders placed by the

main storage hubs, we showed that the robust counterpart of the supply chain problem

is decomposable by echelons; however, the optimal robust policies for the echelons are

not necessarily identical. Specifically, we have shown that the optimal robust policy for

echelons of the main storage hubs can be obtained by solving a single-station problem

with modified deterministic demands, whereas the optimal robust policy for echelons of

the local storage hubs or stores can be obtained by solving a capacitated single-station

problem with modified deterministic demands. The extensive numerical studies indicate

that the proposed robust policy performs well compared to the nominal policy and

the robust policy of Bertsimas and Thiele (2006) in terms of the average performance

and the performance stability. In addition, we found that an increase in the length of

planning horizon yields the better performance stability while the presence of setup costs

seemingly does not much affect the performance stability.

In the context of a periodic-review Assemble-To-Order (ATO) system, we addressed

the joint optimization of inventory replenishment and component allocation decisions

in the face of stochastic component replenishment lead times and stochastic product

demands. We analyzed the problems with independent base-stock policy for inventory

replenishment and First-Come-First-Served (FCFS) rule for component allocation. In

the case that the decision maker has full knowledge of the realized lead times, we formu-

lated the problems under a two-stage SP framework where in the first-stage we decide
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on the base-stock levels with an inventory budget constraint, and the second-stage de-

cisions are concerned with the component allocation. Subsequently, we assumed that

the decision maker only has knowledge of random lead time distributions, which leads

to a scenario tree for optimization. In this case, we formulated the problems under a

multi-stage SP framework. We determined the base-stock levels using the sample av-

erage approximation (SAA) algorithms, and tested the longer-term performance of the

derived base-stock levels by simulation. The simulated results indicate that our pro-

posed base-stock levels provide better and more stable system performance compared

to the base-stock levels of Akçay and Xu (2004), which highlights the importance of

incorporating the lead time uncertainty into decision-making. Moreover, we found that

the performance measures of the two-stage SP compare well with the multi-stage SP,

which demonstrates that the two-stage SP could be potentially used as an approxima-

tion for the multi-stage SP for the base-stock level optimization. This is particularly

appealing in the application of the proposed SP models for large ATO systems since

solving the two-stage SP model requires significantly less computational effort than that

of the multi-stage SP model.

6.2 Future Research Directions

The studies in this thesis can be extended into several directions. Firstly, for the static

RO approach used in Chapters 3 and 4, it is well-known that this RO formulation usu-

ally results in a overly conservative solution. To avoid over-conservativeness, future work

includes developing a Benders’ algorithm based on Bienstock and ÖZbay (2008) to solve

the “true” min-max version of the proposed robust models. Alternatively, adjustable

RO (ARO) approach proposed by Ben-Tal et al. (2004) can produce less conservative

solutions since it allows the decision maker to dynamically incorporate the information

of the recent realized uncertain parameters and make a set of recourse actions accord-

ingly. Therefore, it would be highly interesting to formulate the inventory problems
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under the ARO framework and compare the derived adjustable policies with our pro-

posed quasi-(s, S) policy. Secondly, it would be useful and interesting to integrate a

decomposition-based algorithm into the SAA algorithm for the multi-stage SP model

proposed in Chapter 5 so as to facilitate the computation. Also, it is of practical interest

to extend the existing component allocation heuristics to our multi-stage problem setting

for large-scale ATO systems.

103



Bibliography

Agrawal, N. and Cohen, M. A. (2001). Optimal material control in an assembly system

with component commonality. Naval Research Logistics, 48(5):409–429.

Ahmed, S., Shapiro, A., and Shapiro, E. (2002). The sample average approximation

method for stochastic programs with integer recourse. SIAM Journal of Optimization,

24:479–502.

Akbari, A. A. and Karimi, B. (2015). A new robust optimization approach for integrated

multi-echelon, multi-product, multi-period supply chain network design under process

uncertainty. The International Journal of Advanced Manufacturing Technology, 79(1-

4):229–244.

Akçay, Y. and Xu, S. H. (2004). Joint inventory replenishment and component allocation

optimization in an assemble-to-order system. Management Science, 50(1):99–116.

Alem, D. J. and Morabito, R. (2012). Production planning in furniture settings via

robust optimization. Computers and Operations Research, 39(2):139–150.

Alvarez, P. P. and Vera, J. R. (2014). Application of robust optimization to the sawmill

planning problem. Annals of Operations Research, 219(1):457–475.

Aouam, T. and Brahimi, N. (2013). Integrated production planning and order acceptance

under uncertainty: A robust optimization approach. European Journal of Operational

Research, 228(3):504–515.

104



BIBLIOGRAPHY BIBLIOGRAPHY

Arrow, K. J., Karlin, S., Scarf, H. E., et al. (1958). Studies in the mathematical theory

of inventory and production. Stanford University Press, CA.

Baker, K. R., Magazine, M. J., and Nuttle, H. L. (1986). The effect of commonality on

safety stock in a simple inventory model. Management Science, 32(8):982–988.

Bakir, M. A. and Byrne, M. D. (1998). Stochastic linear optimisation of an MPMP

production planning model. International Journal of Production Economics, 55(1):87–

96.
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