
Advances Towards Practical Implementations of

Isogeny Based Signatures

Submitted by

Robert W.V. Gorrie
B.ASc. Computer Science (McMaster University)

Under the guidance of
Douglas Stebila

Submitted in partial fulfillment of
the requirements for the award of the degree of

Masters of Science
in

Computer Science

Department of Computing and Software
McMaster University
Hamilton, Ontario, Canada

Fall 2018

Abstract

Progress in the field of quantum computing has shown that, should construction of a
sufficiently powerful quantum computer become feasible, much of the cryptography used
on the Internet today will be rendered insecure. In lieu of this, several approaches to
“quantum-safe” cryptography have been proposed, each one becoming a serious field of
study. The youngest of these approaches, isogeny based cryptography, is oriented around
problems in algebraic geometry involving a particular variety of elliptic curves. Supersin-
gular isogeny Diffie-Hellman (SIDH) is this subfield’s main contender for quantum-safe
key-exchange. Yoo et al. have provided an isogeny-based signature scheme built on top
of SIDH. Currently, cryptographic algorithms in this class are hindered by poor perfor-
mance metrics and, in the case of the Yoo et al. signature scheme, large communication
overhead.

In this dissertation we explore two different modifications to the implementation of
this signature scheme; one with the intent of improving temporal performance, and an-
other with the intent of reducing signature sizes. We show that our first modification, a
mechanism for batching together expensive operations, can offer roughly 8% faster signa-
ture signing and verification. Our second modification, an adaptation of the SIDH public
key compression technique outlined in [CJL+17], can reduce Yoo et al. signature sizes
from roughly 688λ bytes to 544λ bytes at the 128-bit security level on a 64-bit operating
system. We also explore the combination of these techniques, and the potential of em-
ploying these techniques in different application settings. Our experiments reveal that
isogeny based cryptosystems still have much potential for improved performance metrics.
While some practitioners may believe isogeny-based cryptosystems impractical, we show
that these systems still have room for improvement, and with continued research can be
made more efficient - and eventually practical. Achieving more efficient implementa-
tions for quantum-safe algorithms will allow us to make them more accessible. With faster
and lower-overhead implementations these primitives can be run on low bandwidth, low
spec devices; ensuring that more and more machines can be made resistant to quantum
cryptanalysis.

Contents

Acknowledgements 1

1 Introduction 2
1.1 Motivation . 2

1.1.1 Post-Quantum and Classical Performance Comparisons 3
1.2 Contributions . 4

1.2.1 Operation Batching . 5
1.2.2 Signature Compression . 5

1.3 Organization . 5
1.3.1 Layout . 5
1.3.2 Notation & Style . 6

2 Technical Background 8
2.1 Cryptographic Primitives . 9

2.1.1 Key Exchange . 10
2.1.2 Interactive Identification Schemes 11
2.1.3 Signature Schemes . 12

2.2 Algebraic Geometry & Isogenies . 13
2.2.1 Fields & Field Extensions . 14
2.2.2 Elliptic Curves . 16
2.2.3 Isogenies & Their Properties . 19

2.3 Supersingular Isogeny Diffie-Hellman . 20
2.3.1 SIDH Key Exchange . 20
2.3.2 Zero-Knowledge Proof of Identity 22

2.4 Fiat-Shamir Construction . 24
2.4.1 Unruh’s Post-Quantum Adaptation 25

2.5 Isogeny-based Signatures . 25
2.5.1 Algorithmic Definitions . 26

2.6 Implementations of Isogeny-based Cryptographic Protocols 29
2.6.1 Parameters & Data Representation 30
2.6.2 SIDHC Design Decisions . 31
2.6.3 Key Exchange & Critical Functions 32
2.6.4 Signature Layer . 33

3 Batching Operations for Isogenies 37
3.1 Partial Batched Inversions . 37

3.1.1 Fp2 Inversions done in Fp . 38
3.1.2 Batching Field Element Inversions 39

i

3.1.3 Partial Batched Inversions . 42
3.2 Implementation Details . 46

3.2.1 Implementation & Design Decisions 46
3.2.2 Embedding Partial Batched Inversions 48

3.3 Results . 52

4 Compressing Signatures 54
4.1 SIDH Key Compression Background . 54

4.1.1 Compressing SIDH Public Keys 55
4.1.2 Improvements to SIDH Key Compression 56

4.2 Implementation Details . 57
4.2.1 ψ(S) Compression . 59
4.2.2 Verifying A Compressed Signature 61

4.3 Results . 62

5 Conclusion 64
5.1 Performance Results . 64
5.2 Discussion & Concluding Remarks . 66

5.2.1 Future Work . 66

Appendices 68

A SIDHC Functions 69
A.1 Fp and Fp2 Functions . 69
A.2 Isogeny and Point-wise Functions . 69

A.2.1 j inv . 69
A.2.2 j inv batch . 69
A.2.3 inv 4 way . 70
A.2.4 inv 4 way batch . 70

A.3 Key Exchange Functions . 70

B Performance Data 72

ii

List of Figures

1.1 List of shorthands and symbols. 7

2.1 Alice and Bob’s execution of Diffie-Hellman key exchange. 11
2.2 A general interactive identification scheme with prover P and verifier V . . 12
2.3 + acting over points P and Q of y2 = x3 − 2x+ 2. 17
2.4 associativity illustrated on y2 = x3−3x (left & center) and P +(−P) = O

illustrated for y2 = x3 + x+ 1 (right). 18
2.5 SIDH key exchange between Alice & Bob 22
2.6 Relationship between ΠSIDH & SIDHC modules 32

3.1 The projected run-time of PartialBatchedInv (red), PartialBatched-
Inv0 (blue), and unbatched inversions (yellow) scaling with the number of
elements in the batch. 45

3.2 C code for the partial-batched inversion function. 47
3.3 pb inv– A C function for performing the partial batched inversion algorithm. 47
3.4 Relationship between SIDH based signatures & the Yoo et al. fork of the

SIDH C library . 49
3.5 The implementations of Sign and Verify, divided into serial segments

isogeny sign and isogeny verify and then parallel segments sign thread

and verify thread. 49
3.6 The execution flow of sign thread and verify thread as originally im-

plemented by Yoo et al. 50
3.7 The execution flow of sign thread and verify thread when run with

inversion batching enabled . 51

4.1 The general execution flow of sign thread with the addition of ψ(S) com-
pression . 60

4.2 The general execution flow of verify thread with the addition of ψ(S)
decompression . 62

B.1 Cycle times for 100 unedited Yoo et al. signature signs and verifies. . . . 73
B.2 Cycle times for 100 signs and verifies with batched inversions. 74
B.3 Cycle times for 100 compressed Yoo et al. signature signs and verifies. . . 75
B.4 Cycle times for 50 compressed Yoo et al. signature signs and verifies with

batched inversions. 76

iii

List of Tables

1.1 Performance of various post-quantum signature schemes (measured in clock
cycles) compared to non-post-quantum schemes. 4

1.2 Signature and key sizes for various post-quantum and classical protocols. 4

2.1 Example fpx.c functions. 33
2.2 Example ec isogeny.c functions. 34
2.3 Example kex.c functions . 34
2.4 Signature functions added to SIDHC . 35

3.1 Expected computational cost of performing 248 field element inversions
using different approaches. 45

3.2 Execution time in seconds for 100 field element inversions using various
techniques and modulus sizes (measured in seconds) 52

3.3 Execution time in seconds for 1000 field element inversions using various
techniques and modulus sizes (measured in seconds) 53

3.4 Performance comparisons of signature subroutines run with and without
batching. 53

4.1 Compressed and uncompressed signature sizes (in bytes) at varying levels
of post-quantum security. 63

5.1 Average performance and standard deviation in clock cycles for all versions
of the Yoo et al. signature scheme. 64

5.2 Performance in clock cycles for our improved isogeny-based signatures in
comparison with other post-quantum and classical alternatives. 65

5.3 Key and signature sizes for our compressed isogeny-based signatures in
comparison with other post-quantum and classical alternatives. 65

iv

Acknowledgments

First and foremost I would like to thank my supervisor Douglas Stebila, whose expertise
and mentorship have motivated and focused me greatly over the past few years. This
research would also not have been possible without the work and guidance of researchers
and developers at Microsoft Research’s NExT Security & Cryptography group as well as
the University of Waterloo’s Institute for Quantum Computing and Center for Applied
Cryptographic Reasearch.

I would also like to deeply thank my fellow peers and colleagues at McMaster Uni-
versity who, through years of genial conversation, have helped to foster my curiosity,
imagination, and passion for science and mathematics.

Robert Gorrie

November 30, 2018
McMaster University

1

Chapter 1

Introduction

The past 30 years have brought with them astonishing developments in the field of quan-
tum computing. With these developments, quantum computers have been shown to
possess computing power beyond that of our classical, binary architectures. Through
the continually developing articulation of quantum algorithms, we have witnessed the
discovery of algorithms capable of efficiently solving problems which had no prior known
subexponential solution [KLM07].

Cryptography, a branch of mathematics separate from that of quantum computing,
is the study of secure communication systems. Cryptographic systems operate under
the presence of an external, unauthorized, and untrusted party (often referred to as the
adversary,) against whom properties of the communication must be safeguarded. Also
critical to the field of cryptography is the practice of proving (or disproving) that a given
system is safe and secure.

These distinct fields overlap in a variety of ways. For example, some of the previously
mentioned problems, which now have newly discovered subexponential solutions, have
historically been used as the backbone for many popular cryptosystems. It was the
assumed difficulty of these problems that the security of certain cryptosystems depended
on1. Thus, the implementation of a sufficiently large quantum computer would be a
catastrophic threat to the majority of modern Internet security [Sho96].

And so, as physicists and engineers race towards error-free and energy efficient im-
plementations of quantum computers, we steadfastly approach a new age for the art
and science of Cryptography. The looming threat of large-scale quantum computing has
driven the field of “post-quantum” cryptography; the aspiration of which is to develop
efficient and secure cryptographic algorithms that are resistant to quantum cryptanalysis.

1.1 Motivation

The following section will discuss or make reference to cryptographic concepts that may
be new to the reader. Section 2.1 provides detailed definitions for some of these concepts,
and may prove helpful in illuminating some of the coming discussion.

1These problems reside in the complexity class known as BQP, or “bounded-error quantum
polynomial-time”; one particular problem in this class is the hidden subgroup problem, a problem with
much historical significance in the design of Cryptographic systems

2

There are several subfields that currently occupy the research space of post-quantum
cryptography. These subfields are each predicated on their own underlying mathematical
problems, and more importantly, assumptions on the difficulty of those problems. The
following make up some of the most popular subfields of post-quantum cryptography:

• Lattice-based Cryptography, based on problems such as “learning with errors” (LWE)
and Ring-LWE,

• Hash-based Cryptography, building signatures from cryptographic hash functions,

• Multivariate Cryptography, systems designed around multivariate polynomials, and

• Code-based Cryptography, based on the difficulty of decoding linear codes.

For this dissertation, however, we will focus on a younger subfield of post-quantum
cryptography, namely, isogeny-based cryptography.

Isogeny-based Cryptography. Over the course of the past decade, elliptic curve cryptog-
raphy (ECC) has proven itself indisposable in the world of applied cryptology. While
isogeny-based cryptography and ECC are both built up from elliptic curve mathematics,
they differ in their fundamental presuppositions.

Also worth noting is that isogeny-based systems are still considerably young. Because
of this, some may be hesitant to trust the security of these systems. Additionally, they are
often outperformed by other post-quantum alternatives (which we will investigate more
closely in a moment). They do, however, appear to have some advantages - in particular
their small cryptographic key sizes.

The aim of this dissertation is to improve the efficiency of a particular isogeny-based
scheme. We hope to showcase that, through intelligent implementation, isogeny-based
protocols still have a lot of improvement potential in terms of run-time and storage
performance.

More specifically, for this dissertation we are primarily focused on the run-time per-
formance and storage overhead of an isogeny-based “proof of knowledge” style signature
scheme, outlined in great detail by Youngho Yoo et al. in [YAJ+17b], which we will
henceforth refer to as the “Yoo et al. signature scheme”. This signature scheme is built
upon the supersingular isogeny Diffie-Hellman protocol (or “SIDH”).

1.1.1 Post-Quantum and Classical Performance Comparisons

We will now provide a rough survey of several post-quantum cryptosystems so as to
compare their performance (both temporally in terms of exeuction time, and spatially in
terms of key and signature sizes) with popular non-quantum-safe systems.

First, another important detail is the manner in which the security of cryptographic
systems is measured. A cryptographic system is said to be n-bit secure if the fastest
attack on that system is performed in 2n operations. These attacks often take the form
of a brute-force search of the n-bit space in an attempt to find the secret value/key.

We gathered runtime measurements of the Yoo et al. signature scheme from [YAJ+17a],
runtimes for other post-quantum schemes from [Ber18] and [SM18], and runtimes of the
classical protocols RSA and ECDSA from the standard OpenSSL distribution. We have
compiled the results into Tables 1.1 and 1.2. In these figures, “SIDH” is used to represent

3

the Yoo et al. signature scheme, which (as we will see in the coming Chapter) is largely
based on the supersingular isogeny Diffie-Hellman (SIDH) system [FJP14][YAJ+17b].

Key Gen Sign Verify
SIDH 84,499,270 4,950,023,141.65 3,466,703,991.09
Sphincs (Hash-based) 17,535,886.94 653,013,784 27,732,049
qTESLA (Ring-LWE) 1,059,388 460,592 66,491
Picnic (Hash-based) 13,272 9,560,749 6,701,701
RSA 12,800,000 1,113,600 32400
ECDSA 1,470,000 128,928 140,869

Table 1.1: Performance of various post-quantum signature schemes (measured in clock
cycles) compared to non-post-quantum schemes.

Public Key Private Key Signature
SIDH 768 48 88,064
Sphincs (Hash-based) 32 64 8,080 - 16,976
Rainbow (Multivariate-based) 152,097 - 192,241 100,209 - 114,308 64 - 104
qTESLA (Ring-LWE) 4,128 2,112 3,104
Picnic (Hash-based) 33 49 34,004 - 53,933
RSA 384 256 384
ECDSA 32 32 32

Table 1.2: Signature and key sizes for various post-quantum and classical protocols.

All of the measurements in these figures reflect implementations which offer 128 bit
post-quantum security, with the exception of classical protocols RSA, and ECDSA, where
numbers are taken at the 2048 and 256-bit (classical) security level, respectively. The
performance measurements of protocols found in 1.1 were either (in the case of Sphincs)
measured ourselves, in the same setting as measurements for the isogeny-based scheme,
or taken as reported in the relevant literature.

1.2 Contributions

We offer two main contributions to the Yoo et al. signature scheme implementation. Both
of these contributions, as previously mentioned, are designed with the intent of improving
the performance of said protocol: the first offers an improvement in the run-time of the
signature scheme and the second offers reduced signature sizes for the scheme. Our work
is built ontop of the SIDH C library written by Microsoft Research, and incorporates
code written by Yoo and his associates [LCE+16][YAJ+17a].

All of these contributions can be found and tested at https://github.com/GorrieXIV/
SIDH2.0-SignatureExtension.

4

https://github.com/GorrieXIV/SIDH2.0-SignatureExtension
https://github.com/GorrieXIV/SIDH2.0-SignatureExtension

1.2.1 Operation Batching

Our first contribution, outlined in Chapter 3, involves the implementation of a procedure
that batches together many occurrences of the same low level operation. This procedure
significantly reduces the total count of a particularly expensive operation. We provide
C code which incorporates this batching procedure into the Yoo et al. signature scheme
code.

In the section detailing this contribution, we offer extensive measurements of the per-
formance increases offered by the inclusion of the batching procedure. We conclude that
the inclusion of our batching technique in the Yoo et al. signature scheme is both secure
and offers noteworthy performance improvements in signature signing and verification
routines.

1.2.2 Signature Compression

The second contribution we offer is another addendum to the SIDH/Yoo signature library,
this time offering a mechanism to compress signature sizes. We embed a particular com-
pression algorithm into the Yoo et al. signature protocol. The compression algorithm we
deploy is originally designed for the compression of SIDH public keys [CJL+17][AJK+16].
We have adopted this method and applied it to specific portions of the Yoo et al. signa-
tures, yielding significantly smaller signatures at the cost of extra computation.

This approach to signature compression is mentioned in [YAJ+17b], but not imple-
mented (nor is there any argument given for its validity). We detail our implementation
in Chapter 4, and analyse both the decrease in signature size and the computational cost
of performing comrpession.

1.3 Organization

With the remaining section of this introductory chapter, we will explain some of the
structuring and notation used in this dissertation.

1.3.1 Layout

Chapter 2 covers all of the relevant mathematical background. Within this chapter we
also cover the portions of the SIDH C library that are utilized and/or modified in our
implementations.

Chapters 3 and 4 are rather similar in structure. Both begin with an introduction
of their contribution’s components - doing so in a general setting. Following this, the
implementation specifics of the chapters contribution are layed out. For these sections,
we attempt to convey the implementation details with a level of granularity we find
easily accessible, while also providing enough information such that if the reader were to
investigate our code they could do so (hopefully) with ease. The final sections of chapters
4 & 5 include the implementation results, benchmarks, and analysis. The main structural
difference between these two chapters is that chapter 4 requires additional background.
We found it more appropriate to include this material here, in the introduction to chapter
4, rather than in chapter 2.

The fifth chapter closes out the dissertation with a summary of our progress and
measurements. We then spend some time discussing possible avenues for future work.

5

Following this chapter is Appendix A, which details C code for some of the SIDH C library
functions which are particularly relevant to our work. Appendix B follows immediately
after, archiving the measured performance data used in our calculations.

1.3.2 Notation & Style

Functions & Procedures. Throughout the dissertation, general functions and procedures
are denoted by the use of a bold font face. This is true for procedures introduced
both formally and informally. Functions that are defined within the SIDH C codebase
(either by us or others), however, are denoted by the use of a monospace font. This
monospace notation is also sometimes used to denote routines or subroutines composed
of by a sequence of functions or a portion of code.

When referring to a function in any general sense, we will write only its name using
the aforementioned convention. By contrast, when we refer to the result of a function ex-
ecuted over input x1, ..., xn, we append on the function identifier the set of parameters en-
closed in parathesis (e.g. GenericFunction(x1, ..., xn) or GenericFunction(x1, ..., xn).

It is also worth noting that we frequently refer to these abstract, bold-identified func-
tions as procedures, whereas we try to reserve use of the term function for C-defined
functions. When giving precise definitions of procedures, we opt for a pseudocode/al-
gorithmic approach. For functions, on the otherhand, we enclose our definitions in an
environment with a light-gray background. Below we illustrate these two different ap-
proaches:

Algorithm 1 – ProcedureExample({a0, a1, ..., ab}, c)
1: if c ≤ b then
2: return ac
3: else
4: return −1

1 void funct ion example (int∗ a , int b , int c) {
2 i f (c <= b) {
3 return a [c] ;
4 } else {
5 return −1;
6 }
7 }

Mathematical Conventions. Cryptographic protocols, as per the usual convention, are
written and defined in terms of tuples of algorithms. In denoting general protocols,
we frequently use a capital Pi (Π) subscripted with some informative title. Following
this format, Πsig.KeyGen might represent the key generation algorithm found in some
signature protocol. If the context is clear, we may refer to an algorithm/procedure such
as this simply by its name (e.g. KeyGen), dropping the leading protocol identifier.

In denoting isogenies (and other functions between elliptic curves) we will opt to use
upper-case greek letters. Elliptic curves discussed in a general setting are refered to, when
possible, as E; if a more unique identifier is necessary, E with a unique subscript is used.
For example, EAlice might refer to a curve created by Alice.

6

Notation Meaning
iff if and only if

#S cardinality of the set S
|b| bit-length of the number b
x | y x divides y
x - y x does not divide y

Figure 1.1: List of shorthands and symbols.

When writting log we assume base 2, unless noted otherwise. When working in a
finite field, however, we may omit log from formulae if the context is obvious.

7

Chapter 2

Technical Background

This chapter will cover the following preliminary topics: cryptographic primitives, iso-
genies and their relevant properties, supersingular isogeny Diffie-Hellman (SIDH), the
Fiat-Shamir construction for digital signatures (and its quantum-safe adaptation), the
current landscape of isogeny-based signature schemes, and finally select C implementa-
tions of the isogeny-based protocols with which we are concerned.

In the first section of this chapter we will take some time to introduce a few ideas from
modern cryptography. We will cover key exchange, identification schemes, and signature
schemes - all at as high of an abstraction level as possible. Readers familiar with these
topics can skip this section without harm.

Our discussion of isogenies will begin with some basic coverage of the underlying
algebra. We will provide the material necessary for the remaining sections as we build up
in the level of abstraction; working our way through groups, finite fields, elliptic curves,
and finally isogenies and their properties.

Once we have presented the necessary algebra, we will illustrate the specifics of the
supersingular isogeny Diffie-Hellman key-exchange protocol. We will spend most of this
time dedicated to a modular deconstruction of the protocol, looking at the high-level pro-
cedures and algorithms which will be necessary for understanding in detail the signature
protocol to come. This subsection will end with a briefing and analysis of the closely
related zero-knowledge proof of identity (ZKPoI) protocol proposed in the original De
Feo et al. paper [FJP14], as it is the foundation for the isogeny-based signature scheme
presented by Yoo et al [YAJ+17b].

In section 2.3 we will discuss the Fiat-Shamir transformation [Kat10]; a technique
which, given a secure interactive identification scheme, creates a secure digital signature
scheme. We will also look at the quantum-safe adaptation published by Unruh [Unr15],
as applying a non-quantum-resistant transform to a quantum-resistant primitive would
be rather frivolous.

Section 2.4 will be dedicated to covering current isogeny-based signature schemes - the
topic about which this dissertation is mainly concerned. We will discuss the signature
scheme of Yoo et al., which is a near direct application of Unruh’s work to the SIDH
zero-knowledge proof of identity.

Finally, the last section of this chapter will introduce the SIDH C library written and
maintained by Microsoft Research’s Security & Cryptography group. It is on top of this
library that the core contributions of this thesis are implemented. We will also look at
the implementation of the to-be-discussed signature scheme, which is a proof-of-concept
implementation built on top of the SIDH API.

8

2.1 Cryptographic Primitives

Cryptographic primitives can be thought of as the basic building blocks of cryptographi-
cally secure applications and protocols. The idea of which being that if individual prim-
itives are provably (or believeably) secure, we can be more confident in the security of
the application as a whole1.

To quickly recap some basic information security, there are serveral different security
properties a cryptographic primitive may aim to offer:

• Confidentiality : The notion that the information in question is kept private from
unauthorized individuals.

• Integrity : The notion that the information in question has not been altered by
unauthorized individuals.

• Availability : The notion that the information in question is available to authorized
individuals when requested.

• Authenticity : The notion that the source of the information in question is verified.

• Non-repudiation: The notion that the source of the information in question cannot
deny having originally provided the information.

The security of a particular cryptographic primitive is measured by two components.
The first, referred to often as a “security guarantee”, measures what conditions constitute
a successful attack on the primitive. The second, known as the “threat model”, makes
assumptions about the computational powers that the adversary holds. The best practice
in forming security proofs is to aim for security with respect to the most easily broken
security guarantee and the most challenging possible threat model. The combination of
a security guarantee and threat model is known as a security goal.

Each of the primitives to come are designed to offer some security to the communi-
cation between a given pair of entities. We will refer to these entities as Alice and Bob.
The schemes we are concerned with in this dissertation are strictly public key (also known
as asymmetric key) schemes. In public key primitives, each user possesses a public key
(visible to every user in the network) as well as a private key, which only they have access
to.

The first class of primitives we will discuss, key exchange protocols, provide a means
by which Alice and Bob can come to the agreement of some secret value. The goal of a key
exchange protocol is for Alice and Bob, communicating over some open, insecure channel,
to reach mutual agreement of the secret value while also ensuring the confidentiality of
that value. The secret value is referred to as a secret or shared key and is intended for
use in other cryptographic primitives.

Identification schemes are a class of primitives that aim to ensure authenticity of a
given entity. If Alice is communicating with Bob and she wants to verify that Bob is who

1This is not to say that software which implements provably secure primitives is guaranteed to be
secure. In security, it should be expected that the weakest link in the system is the first to be exploited,
and these weak links often lie in careless implementation details.

9

he claims to be, the two can utilize a secure identification scheme. After identification
protocols we will look at signature schemes, which are somewhat of an extension of the
former. Signature schemes aim to provide authenticity on every message sent from Bob
to Alice, as well as non-repudiability and integrity of those messages.

Random Oracle Model. Before continuing with our discussion of primitives, it is worth
covering briefly a framework in cryptography known as the random oracle model. A
“random oracle” is a theoretical black box which, for every unique input, responds with
a truly random output. That is, if a query is made to a random oracle h with input x
(written h(x)) multiple times, h will respond with the same (seemingly random) output
every time.

For certain constructions to be proven secure, it is sometimes necessary or helpful
to assume the existence of random oracles. While this assumption may seem greviously
optimistic, hash functions are a widely diployed family of functions which are believed to
approach the nature of random oracles to some degree. Much of the security of modern
cryptography depends on the security of such hash functions.

2.1.1 Key Exchange

A key exchange protocol, which we will denote as Πkex, can be represented in some con-
texts by a pair of polynomial time algorithms KeyGen and SecAgr: Πkex = (KeyGen,
SecAgr). Alice and Bob will each run both of these procedures. The first they will run
on the same input, 1λ, a bit string of λ 1’s. The second, short for “secret agreement”,
they will run on both their outputs of KeyGen and their peers.

Execution of Πkex between Alice and Bob involves the following:

(i) Alice and Bob run KeyGen(1λ): A probabilistic algorithm with input 1λ and out-
put (sk, pk). Typically pk is the image of f(sk), where f is some one-way function.
We will denote the outputs of KeyGen for Alice and Bob as (skAlice, pkAlice) and
(skBob, pkBob) respectively.

(ii) Alice and Bob exchange (over an insecure channel) their public keys pkAlice and
pkBob.

(iii) Alice runs SecAgr(skAlice, pkBob): A deterministic algorithm with input skAlice and
pkBob and output kAlice ∈ {0, 1}λ. Bob runs SecAgr(skBob, pkAlice) to obtain kBob ∈
{0, 1}λ.

Πkex is said to uphold correctness if kAlice = kBob for all honestly derived keypairs
(skAlice, pkAlice) and (skBob, pkBob). Because we deal only with correct Πkex, we refer
to the output of Πkex as simply k.

Figure 2.1 illustrates an execution of the Diffie-Hellman key exchange protocol which
relies on the difficulty of the discrete logarithm problem for its one-way function f .

The security goal typical of a key exchange protocol is that an adversary with access
to the session transcript (threat) cannot discern the resulting shared secret key from a
randomly generated value (security guarantee).

10

Public parameter:
g, p

Alice

a ∈R {2, . . . , p− 2}

A = ga mod p

k = (B)a = gba

Bob

b ∈R {2, . . . , p− 2}

B = gb mod p

k = (A)b = gab

A

B

Figure 2.1: Alice and Bob’s execution of Diffie-Hellman key exchange.

2.1.2 Interactive Identification Schemes

Imagine Alice wishes to confirm the identity of Bob. The motivation for interactive
identification schemes is to provide Bob with some mechanism for proving to Alice (or
any other party) that he has knowledge of some secret which only Bob could possess.
The goal, of course, being to accomplish this without openly revealing the secret, so that
it can continue to be used as an identifier for Bob.

An identification scheme (or otherwise “proof of identity” protocol) Πid is composed
of by the tuple of polynomial-time algorithms (KeyGen, Commit, Prove, Verify) and
some set ω. Πid is an interactive protocol requiring two parties. The prover (Bob, for
example) executes KeyGen, Commit, and Prove. The verifier (Alice, in our example)
executes Verify following Bob’s actions.

Execution of Πid between Alice and Bob proceeds as follows:

(i) Bob runs KeyGen(1λ): A probabilistic algorithm with input 1λ and outputs Bob’s
keypair (sk, pk). Bob sends his public key pk to Alice.

(ii) Bob runs Commit(): a probabilistic algorithm with output com. com is referred
to as a “commitment”. Bob sends com to Alice.

(iii) Alice sends a randomly generated “challenge” value ch ∈ ω. Alice sends ch to Bob.

(iv) Bob runs Prove(sk, com, ch): A deterministic algorithm with input sk and ch,
and output resp. resp is the “response” to Alice’s challenge.

(v) Alice runs Verify(pk, com, ch, resp): A deterministic algorithm with input pk,
com, ch, and resp, and output b ∈ 0, 1. Bob has successfully proven his identity to
Alice if b = 1.

If Alice accepts Bob’s response, and b = 1, then we refer to the tuple (com, ch, resp) as
an accepting transcript. This general construction for identification protocols is illustrated
in Figure 2.2, where the prover is referred to as P and V denotes the verifier.

In terms of security, it is common to show that an identification scheme is secure
against impersonation under a passive attack. Proving such security implies that an ad-
versary who eavesdrops on arbitrarily many executions of Πid between a verifier V and a

11

P

(sk, pk) = KeyGen(1λ)

com = Commit()

resp = Prove(sk, com, ch)

V

ch←R ω

b = Verify(pk, com, ch, resp)

pk, com

ch

resp

Figure 2.2: A general interactive identification scheme with prover P and verifier V .

prover P cannot successfully impersonate P .

We may at times speak of canonical identification schemes. An identification scheme Π
occuring between a prover P and a verifier V is labelled canonical if it satisfies all of the
following constraints:

• Π consists of an initial message (or “commitment”) com sent by P , a challenge ch
sent by V , and a final response resp sent by P .

• ch is chosen uniformly at random from some set ω.

• com is generated by some probabilistic function R taking P ’s secret key as input.
For any secret key sk and fixed string ¯com, the probability that R(sk) = ¯com is
negligible.

These constraints gurantee that Π will have two important features. First, that any
third party given the transcript and prover’s public key can efficiently determine whether
the verifier will accept. Second, that the probability that com repeats in polynomially
many executions of Π is negligible.

Lastly, it should be mentioned that there exist variations upon this type of primitive
wherein Alice is not required to send Bob a specific challenge value. These are known
as non-interactive identification schemes, or non-interactive proofs of identity (NIPoI).
These non-interactive approaches to solving the problem of identity and authentication
further bridge the gap between identification protocols and signature schemes.

2.1.3 Signature Schemes

We define a signature scheme as the tuple of algorithms Πsig = (KeyGen, Sign, Verify).
Some execution of Πsig between Alice and Bob for a particular message m sent from Bob
to Alice involves the following...

First, before any message is to be signed, the Bob must run the following:

• Bob runs KeyGen(1λ): A probabilistic algorithm with input 1λ and output (sk, pk).

Then, for every message m Bob wishes to authenticate and send to Alice:

12

(i) Bob sends his public key pk to Alice over an authenticated channel if he has not
yet done so.

(ii) Bob runs Sign(sk,m): A probabilistic algorithm with input sk (Bob’s secret key)
and m (the message Bob wishes to authorize) and output σ, known as a signature.

(iii) Bob sends m and σ to Alice.

(iv) Alice runs Verify(pk,m, σ): A deterministic algorithm with input pk (Bob’s public
key), m, and σ and output b ∈ {0, 1}. Alice has confidence in the integrity and
origin authenticity of m if b = 1.

As previously alluded to, it is worth noting that signature protocols and identification
schemes are closely related. In essence, they are rather similar; but with two main
differences. The first is rather comparable to the aforementioned difference between
interactive identification schemes and non-interactive identification schemes. The second
arises as a result of aiming to authenticate Bob on any particular message m, as opposed
to authenticating only his identity. To achieve this, the signature scheme needs to be run
every time Bob wishes to send a message to Alice. The details of this comparison are
intentionally left vague, as it will from a topic of close inspection in Section 2.4.

The strongest security goal for a signature scheme Πsig is expressed as existential
unforgeability under an adaptive chosen-message attack. If this goal is provably satisfied,
an adversary with the ability to sign arbitrary messages will not be able to forge any
conceivable and valid signature.

2.2 Algebraic Geometry & Isogenies

Groups & Varieties. A group is a 2-tuple composed of a set of elements and a corre-
sponding group operation (also referred to as the group law). Given some group defined
by the set G and the operation · (written as (G, ·)) it is typical to refer to the group
simply as G. If · is equivalent to some rational mapping2 fG : G → G, then the group
(G, ·) is said to form an algebraic variety. A group which is also an algebraic variety
is referred to as an algebraic group.

G is said to be an abelian group if, in addition to the four traditional group axioms
(closure, associativity, existence of an identity, existence of an inverse), G satisfies the
condition of commutitiviy. More formally, for some group G with group operation ·, we
say G is an abelian group iff x · y = y · x ∀x, y ∈ G. An algebraic group which is also
abelian is referred to as an abelian variety.

Definition 1 (Abelian Variety). for some algebraic group G with operation ·, we
say G is an abelian variety iff x · y = y · x ∀x, y ∈ G.

For some group (G, ·), some x, y ∈ G, and some rational mapping fG : G → G, let
the following sequence of implications denote the classification of (G, ·):

group
x·y=fG(x,y)
=======⇒ algebraic group

x·y=y·x
====⇒ abelian variety

2A rational map is a mapping between two groups which is defined by a polynomial function with
rational coefficients.

13

Morphisms. Let us again take for example some group (G, ·). Let us also define some set
S(G,·) which contains every tuple (x, y, z) for group elements x, y, z which satisfy x ·y = z.

S(G,·) = {x, y, z ∈ G|x · y = z}

Take also for example a second group (H, ∗) and some map φ : G → H. φ is said to be
structure preserving if the following implication holds:

(x, y, z) ∈ S(G,·) ⇒ (φ(x), φ(y), φ(z)) ∈ S(H,∗)

A morphism is simply the most general notion of a structure preserving map. More
specifically, in the domain of algebraic geometry, we will be dealing with the notion of a
group homomorphism, defined as follows:

Definition 2 (Group Homomorphism). For two groups G and H with respective
group operations · and ∗, a group homomorphism is a structure preserving map
h : G→ H such that ∀u, v ∈ G the following holds:

h(u · v) = h(u) ∗ h(v)

From this simple definition, two more properties of homomorphisms are easily de-
ducible. Namely, for some homomorphism h : G→ H, the following properties hold:

• h maps the identity element of G onto the identity element of H, and

• h(u−1) = h(u)−1,∀u ∈ G

Recall that for some morphism (or function) h : G → H, we refer to G as the domain
and H as the codomain.

Furthermore, an endomorphism is a special type of morphism in which the domain
and the codomain are the same groups. We denote the set of enomorphisms defineable
over some group G as End(G).

The kernel of a particular homomorphism h : G→ H is the set of elements in G that,
when applied to h, map to the identity element of H. We write this set as ker(h), and it
is much analogous to the familiar concept from linear algebra, wherein the kernel denotes
the set of elements mapped to the zero vector by some linear map.

2.2.1 Fields & Field Extensions

A field is a mathematical structure which, while being similar to a group, demands ad-
ditional properties. Fields are defined by some set F and two operations: addition and
multiplication. In order for some tuple (F,+, ·) to constitute a field, it must satisfy an
assortment of axioms:

Addition axioms :

• (closure) If x ∈ F and y ∈ F , then x+ y ∈ F .

• + is commutative.

14

• + is associative.

• F contains an element 0 such that ∀x ∈ F we have 0 + x = x.

• ∀x ∈ F there is a corresponding element −x ∈ F such that x+ (−x) = 0.

Multiplication axioms :

• (closure) If x ∈ F and y ∈ F , then x · y ∈ F .

• · is commutative.

• · is associative.

• F contains an element 1 6= 0 such that ∀x ∈ F we have x · 1 = x.

• ∀x 6= 0 ∈ F there is a corresponding element x−1 ∈ F such that x · (x−1) = 1.

Additionally, a field (F,+, ·) must uphold the distributive law, namely:

x · (y + z) = x · y + x · y holds ∀x, y, z ∈ F

While these axioms are known to be satisfied by the sets Q, R, and C with typically
defined + and ·, our focus will be on a particular class of fields known as finite fields.
Finite fields, as the name suggests, are fields in which the set F contains finitely many
elements - we refer to the number of elements in F as the order of the field.

Let us take some prime number p. We can construct a finite field by taking F as the
set of numbers {0, 1, ...p− 1} and defining + and · as addition and multiplication modulo
p. Finite fields defined in this fashion are denoted as Fp, and have order p.

∀x, y ∈ Fp, x+ y = (x+ b) mod p, and
∀x, y ∈ Fp, x · y = (x · b) mod p

For any given field K there exists a number q such that, for every x ∈ K, adding
x to itself q times results in the additive identity 0. This number is referred to as the
characteristic of K, for which we write char(K). Finite fields are the only type of field
for which char(K) > 0. Furthermore, if the field in question is finite and has prime order,
then the order and the characteristic are equivalent.

A particular field K ′ is called an extension field of some other field K if K ⊆ K ′.
The complex numbers C, for example, are an extension field of R. A given field K is
algebraically closed if there exists a root for every non-constant polynomial defined over
K. If K itself is not algebraically closed, we denote the extension of K that is by K.

An algebraic group Ga is defined over a field K if each element e ∈ Ga is also an
element of the field K, and the corresponding fGa is defined over K. To show that a
particular algebraic group Ga is defined over some field K we will henceforth denote the
group/field pairing as Ga(K). Naturally, in the case where our field is a finite field of
order p, we write Ga(Fp).

These algebraic structures are all important for building up to the concept of an
isogeny. The lowest-level object we will be concerned with when discussing the forthcom-
ing isogeny-based protocols will typically be elements of abelian varieties. The lowest-level
structure in the SIDH C codebase is a finite field element.

15

Montgomery Arithmetic. We will now briefly discuss a technique for efficiently performing
modular arithmetic. This method is widely deployed in cryptosystems centered around
finite fields, and is abundantly used in the SIDHC library that we will shortly be examining.

In 1985, Peter Montgomery introduced a method for efficiently computing the modular
multiplication of two elements a and b. The technique begins with the construction of
some constant R, whose value depends solely on the modulus N and the underlying
computer architecture.3

With the retrieval of R, aR mod N and bR mod N are constructed and referred to
as the Montgomery representation of a and b respectively. Montgomery multiplication
outlines an algorithm for computing abR mod N (the Montgomery product of a and b),
from which ab mod N can be recovered through conversion back to standard representa-
tion. Once in Montgomery representation, other arithmetic can be performed (including
field element inversions) in order to leverage the performance improvement offered by
Montgomery modular multiplication – converting back to regular representation when
necessary.

Applying Montgomery multiplication has the added benefit of decreasing the amount
of field element inversions that need to be computed. Because of this, the technique is
particularly relevant to this dissertation. We continue this discussion in Section 3.2.

2.2.2 Elliptic Curves

An elliptic curve is an algebraic curve defined over some field K, the most general repre-
sentation of which is given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

This representation encapsulates elliptic curves defined over any field. If, however, we
are dicussing curves defined specifically over a field K such that char(K) > 34, then the
more compact form y2 = x3 + ax + b can be applied (see Figure 2.3 for a geometric
visualization). In this dissertation we will default to this second representation, as the
schemes with which we are concerned will always be defined over fields with a large
characteristic.

We can define a group structure over the points of a given elliptic curve (or any other
smooth cubic curve). If we wish to define a group in accordance to a particular curve,
we do so with the following notation:

E : y2 = x3 + ax+ b

Wherein E denotes the group in question, the elements of which are all the points (solu-
tions) of the curve. Throughout much of this section, the words point and element can
be used interchangeably.

The Group Law. The group operation we define for E, denoted +, is better understood
geometrically than algebraically. Consider the following.

Given two elements P and Q of some arbitrary elliptic curve group E, we define +
geometrically as follows: drawing the line L through points P and Q, we follow L to its

3The specifics of how R is constructed are beyond the scope of this dissertation; if they feel so inclined,
the reader should refer to [Mon85].

4See [Sil09].

16

third intersection on the curve (which is guaranteed to exist), which we will denote as
R = (xR, yR). We then set P +Q = −R, where −R is the reflection of R over the x-axis:
(xR,−yR). This descriptive definition of + is suitable for all situations except for when
L is tangent to E or when L is parallel to the y-axis. These cases will be covered in a
short moment. See Figure 2.3 for an illustrated representation of this process.

x

y

P

Q

x

y

P

Q
R

R′ = P +Q

Figure 2.3: + acting over points P and Q of y2 = x3 − 2x+ 2.

The group operation + is referred to as pointwise addition. In order for (E,+) to
properly form a group under pointwise addition, it must satisfy the four group axioms:

• Closure: Because elliptic curves are polynomials of degree of 3, we know any given
line passing through two points P and Q of E will pass through a third point R.
The exceptions here are twofold. First, when P = Q and thus our line is tangent to
E, and second, when Q = −P and our line is parallel with the y-axis. We resolve
the first case nicely by defining P + P by means of taking L to be the line tangent
to E at point P . In the second case, P + (−P), by group axiom, should yield the
identity element of the group. We will define this element and resolve this issue
below.

• Identity : The identity element of elliptic curve groups, denoted as O, is a specially
defined point satisfying P +O = O + P = P , ∀P ∈ E. Because of the inclusion of
this special element, we have that #(E(K)) is equal to 1 + the number geometric
points on E defined over K. This of course is only a noteworthy claim when K is
a finite field (otherwise there are already infinitely many elements in E).

• Associativity : For all points P , Q, and R in E, it must be the case ((P +Q) +R =
P+(Q+R)) holds. It is rather easy to see visually why this is true for geometrically
defined points in E (see Figure 2.4). Additionally, we can trivially show that this
holds when any combination of P , Q, and R are O by applying the axiom of the
identity.

• Inverse: Due to the x-symmetry of elliptic curves, every point P = (xP , yP) of E
has an associated point −P = (xP ,−yP). If we apply + to P and −P , L assumes
the line parrallel to the y-axis at x = xP . As discussed above, in this case there is
no third intersection of L on E. In light of this, O can be thought of as a point

17

residing infinitely far in both the positive and negative directions of the y-axis. O
is equivalently referred to as the point at infinity (see Figure 2.4).5

x

y

P
Q

R

(P +Q) +R
x

y

P
Q

R

P + (Q+R)
x

y

P

−P

Figure 2.4: associativity illustrated on y2 = x3 − 3x (left & center) and P + (−P) = O
illustrated for y2 = x3 + x+ 1 (right).

Of course, there are relatively simple formulas for algebraically defining point-wise ad-
dition and inverse computation. We have opted to describe these operations geometrically
simply for ease of communication.

Additionally, we shorthand

n︷ ︸︸ ︷
P + P + ...+ P as nP , analogous to scalar multiplication.

Consequently, because groups defined over elliptic curves in this fashion are commu-
titive, they also constitute abelian varieties.

When referring to curves as abelian varieties defined over a field, we will write them
as Eα(K), for some curve Eα and some field K. If we are only concerned with the
geometric properties of the curve, or curves themselves as distinct elements of some
group or structure, then it will suffice to write Eα. Moving forward from here, we will
assume all general curves discussed are capable of definition over some finite field Fp.

The r-torsion group of E is the set of all points P ∈ E(Fq) such that rP = O. We
denote the r-torsion group of some curve as E[r].

Supersingular Curves. An elliptic curve can be either ordinary or supersingular. There are
several equivalent ways of defining supersingular curves (and thus the distinction between
them and ordinary curves) in a general setting, but each of these goes well beyond our
scope. In the context of curves defined over finite fields, however, the following succinct
definition holds:

Definition 3 (Supersingular Curve). Let E be an elliptic curve defined over the
finite field Fp. E is said to be supersingular if #(E(Fp)) = p+ 1.a

aReaders are welcomed to investigate [Cos] for further details.

5One might suspect that the inclusion of this (apparently) non-algebraic element O suggests that +
is not a rational-map. The operator + can be shown to be a rational-mapping if we define our elliptic
curve groups in three-dimensional projective space.

18

For the remainder of this paper, unless otherwise noted, all elliptic curves in discus-
sion will be of the supersingular variety.

Projective Space. While elliptic curves are naturally defined in two-dimensional affine
space, there are many benefits to expressing them through three-dimensional projective
coordinates. First and foremost, expressing curves in projective space allows us to reason
geometrically about O. This is done by defining a curve E such that it resides in some
two-dimension subspace of 3-space, the point O then resides at some point in 3-space
outside of the residing plane of E.

Representing a curve in 3-space requires some substitution of x and y coordinates, a
typical forma for achieving this is the following:

x = X/Z y = Y/Z Z = 1

Such a representation of elliptic curve points offers more computationally efficient
arithmetic over points. In particular, projective representations of curve points allow
point arithmetic to be performed without the need for underlying field inversions. This
is conceptually similar to the previously mentioned Montgomery arithmetic regarding
finite field elements. Other substitutions offer different computational advantages, but
the implementations we will discuss make use of this typical approach [CMO98].

2.2.3 Isogenies & Their Properties

Definition 4 (Isogeny). Let G and H be algebraic groups. An isogeny is a mor-
phism h : G→ H possessing a finite kernel.

In the case of the above definition where G and H are abelian varieties (such as elliptic
curves,) the isogeny h is homomorphic between G and H. Because of this, isogenies over
elliptic curves (and other abelian varieties) inherit certain characteristics.
For an isogeny h : E1 → E2 defined over elliptic curves E1 and E2, the following holds:

• h(O) = O, and

• h(u−1) = h(u)−1,∀u ∈ G

If there exists some isogeny φ between curves E1 and E2 then E1 and E2 are said to
be isogenous. All supersingular curves are isogenous only to other supersingular curves.
The equivalent statement holds for ordinary curves. With this in mind, we can concieve a
sort of graph structure connecting all isogenous curves, these graphs pertaining to either
the supersingular or ordinary variety of curves [Cos].

We write End(E) to denote the ring formed by all the isogenies acting over E which
are also endomorphisms. Note that m-repeated pointwise addition of a point with itself
can equivalently be modelled by an endomorphism, we denote the application of such an
endomorphism to a point P as [m]P , such that [m] : E → E and [m]P = mP [Sil09].

An important facet of isogenies is that they can be uniquely identified by their kernel.
If S is the group of points denoting the kernel of some isogeny φ with domain E, we
write φ : E → E/S. Because the subgroup S sufficiently identifies φ, any given generator
of S equivalently identifies φ. Therefore, if R generates the subgroup S we can write
φ : E → E/〈R〉 [Sil09]. Moreover, we will have a specific interest in isogenies with
kernels defined by some torsion subgroup.

19

Lemma 1 (Uniquely identifying isogenies). Let E be an elliptic curve and let Φ be
a finite subgroup of E. There is a unique elliptic curve E ′ and a seperable isogeny
φ : E → E ′ satisfying ker(φ) = Φ.

2.3 Supersingular Isogeny Diffie-Hellman

In this section we briefly explain the isogeny-level & key-exchange-level procedures of
the SIDH protocol - the protocol on top of which the Yoo et al. signature scheme is
developed. Later in this chapter we cover the Microsoft Research SIDH C library, and
offer a guidepost for navigating between the high-level definitions and C implementation.

The original work of De Feo, Jao, and Plut [FJP14] outlines three different isogeny-
based cryptographic primitives: Diffie-Hellman-esque key exchange, public key encryp-
tion, and the aforementioned zero-knowledge proof of identity (ZKPoI). Because all three
of these protocols require the same initialization and public parameters, we will begin by
covering these parameters in detail. Immediately after, we will analyze the key exchange
at a relatively high level. Our goal of this section is to explain in detail the algorithmic
and cryptographic aspects of the ZKPoI scheme, as this forms the conceptual basis for
the signature scheme we will be investigating. We begin with the key exchange protocol
because its sub-routines are integral to the Yoo et al. signature implementation.

For the discussion that follows, we will assume every instance of an SIDH protocol
occurs between two parties, A and B (eg. Alice & Bob,) for which we will colorize infor-
mation particular to A in red and B in blue. This will include private keys & public keys
as well as the variables and constants used in their generation.

Public Parameters. As the name suggests, SIDH protocols are defined to work over
supersingular curves. Let Fq = Fp2 be the finite field over which our curves are defined,
Fp2 denoting the quadratic extension field of Fp.6 p is a prime defined as follows:

p = `eAA `
eB
B · f ± 1

Wherein `A and `B are small primes (typically 2 & 3, respectively) and f is a cofactor
ensuring the primality of p. We then define globally a supersingular curve E0 defined over
Fq with cardinality (`eAA `

eB
B f)2. Consequently, the torsion group E0[`eAA] is Fq-rational and

has `A
eA−1(`A+1) cyclic subgroups of order `eAA , with the analogous statement being true

for E0[`eBB]. Additionally, we include in the public parameters the bases {PA, QA} and
{PB, QB}, generating E[`eAA] and E[`eBB] respectively.

This brings our set of global parameters, G, to the following:

G = {p, E0, `A, `B, eA, eB, {PA, QA}, {PB, QB}}

2.3.1 SIDH Key Exchange

This subsection will illustrate an SIDH key exchange run between party members Alice
and Bob. The general idea of the protocol is summerized in the diagram below. In the
scheme, private keys take the form of isogenies defined with domain E, and public

6Meaning that every element of Fp2 has the form (a, b) such that a, b ∈ Fp

20

keys are the associated codomain curve of said isogenies [FJP14]. For the entirety of
this section we will denote isogenies by their function symbols, but when we come to
Section 2.6 we will show how these keys can be efficiently represented in a computational
environment.

E0 E0/〈A〉

E0/〈B〉 E0/〈A,B〉

φA

φB

φ′A

φ′B

The premise of the protocol is that both parties each generate a random point (A
or B in the diagram,) which, according to Lemma 1, identifies some distinct isogeny
φA : E0 → E/〈A〉 (or equivalent for B). Alice and Bob then exchange codomain curves
and compute

φA(E0/〈B〉)
or

φB(E0/〈A〉).

From these isogenies, Alice and Bob arrive at their shared secret agreement: the
mutual codomain curve of φA(E0/〈B〉) (equivalently φB(E0/〈A〉)), denoted EAB.

It is worth noting that SIDH, like plain Diffie-Hellman key exchange, is still susceptible
to standard man-in-the-middle attacks. These attacks can be circumvented by establish-
ing a trusted third-party, such as a certificate authority, to handle entity authentication.

Below we have outlined the SIDH key exchange protocol ΠSIDH = (KeyGen, SecAgr)
in a descriptive manner. We do not provide algorithmic definitions for all of these pro-
cedures, but algorithmic details for some of these are covered partly in Sections 2.6 and
3.2. C code for functions that are not covered in these sections but are noneless relevant
can be found in Appendix A.

KeyGen(λ): Alice chooses two random numbers mA, nA ∈ Z/`eAA Z such that (`A -
mA) ∨ (`A - nA). Alice then computes the isogeny φA : E0 → EA where EA =
E0/〈[mA]PA, [nA]QA〉 (equivalently, ker(φA) = 〈[mA]PA, [nA]QA〉). Bob does the same
for random elements mB, nB ∈ Z/`eBB Z.

Alice then applies her isogeny to the points which Bob will use in the creation of his
isogeny: (φA(PB), φA(QB)). Bob performs the analogous operation. This leaves us with
the following private and public keys for Alice and Bob:

skA = (mA, nA)
pkA = (EA, φA(PB), φA(QB))

skB = (mB, nB)
pkB = (EB, φB(PA), φB(QA))

PK Exchange: After Alice and Bob successfully complete their key generation, they
perform the following over an insecure channel:

21

• Alice sends Bob (EA, φA(PB), φA(QB))

• Bob sends Alice (EB, φB(PA), φB(QA))

Again, we remind the reader that we will show how curves such as EA and EB can
be represented efficient and compactly in a computing environment when we come to our
section on implementations of isogeny-based systems (2.6).

SecAgr(sk1,pk2): After reception of Bob’s tuple, Alice computes the isogeny φ′A : EB →
EAB and Bob acts analogously. Alice and Bob then arrive at the equivalent image curve:

EAB = φ′A(φB(E0)) = φ′B(φA(E0)) = E0/〈[mA]PA + [nA]QA, [mB]PB + [nB]QB〉

From this they can derive their shared secret k as EAB.

We have included a graphical illustration of the entire SIDH key exchange process in
Figure 2.5, wherein solid lines denote private computations, and dashed lines denote
information sent over an insecure channel [FJP14].

Figure 2.5: SIDH key exchange between Alice & Bob

2.3.2 Zero-Knowledge Proof of Identity

Recall the earlier discussed notion of an identification scheme. A canonical identification
scheme ΠSID = (KeyGen,Prove,Verify) can be derived somewhat analogously to the
SIDH protocol, and is outlined in the original work of De Feo et al.

Say Bob has derived for himself the key pair (skB, pkB) with skB = {mB, nB} and
pkB = EB = E0/〈[mB]PB + [nB]QB〉 in relation to the public parameters E0 and `eBB .
With E0 and EB publicly known, ΠZKPoI revolves around Bob trying to prove to Alice
that he knows the generator for EB without revealing it.

To achieve this, Bob internally mimicks an execution of the key exchange protocol
ΠSIDH with an arbitrary “random” entity Randall.

KeyGen: Key generation is performed exactly as in ΠSIDH, the only difference being
that in ΠZKPoI only the prover (Bob, in our example,) needs to generate a keypair.

22

Commitment : Bob generates a random point R ∈ E0[`eAA] (R = [mR]PA + [nR]QA) along
with the corresponding isogenies necessary to compute the diagram below in full (if Alice
were acting as the prover in ΠZKPoI, then she would choose R ∈ E0[`eBB]). Bob sends his
commitment com as (com1, com2) = (E/〈R〉, E/〈B,R〉) to Alice.

E0 E0/〈B〉

E0/〈R〉 E0/〈B,R〉

φB

ψR

φ′B

ψ′R

Challenge: Alice chooses a bit b at random and sends her challenge ch = b to Bob.

Prove(sk, ch): If Alice’s challenge bit ch = 0 then Bob reveals the isogenies ψR and ψ′R
(to do this, he can simply reveal the generators of the kernels of ψR and ψ′R; R and φB(R)
respectively). This proves he knows the information necessary to form a shared secret
with Randall iff he happens to know the private key B = {[mB]PB + [nB]QB}. If ch = 1,
Bob reveals the isogeny φ′B. This proves that Bob knows the information necessary to
form a shared secret with Randall iff he knows Randall’s secret key R.

In the following two graphs, bold arrows are used to indicate the information revealed
by Bob. The graph on the left corresponds to Bob’s actions when ch = 0, the graph on
the right shows the information revealed when ch = 1.

E0 E0/〈B〉

E0/〈R〉 E0/〈B,R〉

φB

ψR

φ′B

ψ′R

E0 E0/〈B〉

E0/〈R〉 E0/〈B,R〉

φB

ψR

φ′B

ψ′R

Note that Bob cannot at once reveal all of the information necessary to convince Alice
that he knows B. If he reveals R, φB(R), and φ′B all in one go, he incidentally reveals
his secret key B = [mB]PB + [nB]QB. This is because Bob reveals φ′B by revealing the
generator of ker(φ′B), namely:

(B,R) = ([mB]PB + [nB]QB, [mR]PA + [nR]QA)

How ΠZKPoK handles this is by having Bob and Alice run Prove() and Verify() for
λ iterations, with a different (com, ch, resp) transcript generated for every instance. This
way, if Bob is able to provide a resp that satisfies Alice’s ch for every iteration, she can
be sufficiently confident that Bob has knowledge of B.

Verify(pk, com, ch): Like the proving procedure, verification is a conditional function
depending on the value of b:

23

• if ch = 0: return 1 iff R and φB(R) have order `eAA and generate the kernels of
isogenies from E0 → E0/〈R〉 and E0/〈B〉 → E0/〈B,R〉 respectively.

• if ch = 1: return 1 iff ψR(B) has order `eBB and generates the kernel of an isogeny
over E0/〈R〉 → E0/〈B,R〉.

By taking this approach, Alice gains no information about Bob’s secret key. This type
of scheme is known in the literature as a “zero-knowledge” proof of identity.7

2.4 Fiat-Shamir Construction

For the following section, we use the following conventional notation when discussing
identification protocols: P represents the prover of the scheme, and V represents the
verifier.

The Fiat-Shamir construction (also frequently referred to as the Fiat-Shamir trans-
form, or Fiat-Shamir hueristic,) is a high-level technique for transforming a canonical
identification scheme into a secure signature scheme.

The construction is rather simple. The idea is to first transform a given interactive
identification protocol ΠID into a non-interactive identification protocol. To achieve this,
instead of allowing input from the verifier V , we have our prover P generate the challenge
ch by itself. In order for the verifier to be able to check that ch was generated honestly, we
define ch = H(com), where H is some secure hash function. If we model H as a random
oracle, H(com) is assumed truly random; from this it can be shown that it is just as
difficult for an impersonator of P to find an accepting transcript (com,H(com), resp) as
it would be for them to successfully impersonate P in ΠID.

Now that we have paired ΠID with H to achieve a non-interactive identification scheme
ΠNID, we need only to factor in some message m from P to have constructed a signature
scheme Π′ID. This can be achieved by including m in our calculation of the challenge:
ch = H(com,m). Therefore, given Theorem 1, if (com,H(com), resp) is an accepting
transcript of ΠNID, then (com,H(com,m), resp) is a secure signature for the message m.
Of course, because H(com,m) can be constructed by any passively observing party, it
is redundant to include; and so (com, resp) constitutes a valid signature for m. A proof
of theorem 1 can be found in [Kat10]. The security of the Fiat-Shamir construction was
first proven by Pointcheval & Stern [PS96].

Theorem 1 (Fiat-Shamir Security). Let ΠID = (KeyGen,Commit,Prove,
Verify) be a canonical identification scheme that is secure against a passive at-
tack. Then, if H is modeled as a random oracle, the signature scheme Π′ID that
results from applying the Fiat-Shamir transform to ΠID is classically existentially
unforgeable under an adaptive chosen-message attack.

We will write FS(Π) to denote the result of applying the Fiat-Shamir transformation
to some identification protocol Π.

7This iterative approach to a zero-knowledge proof of knowledge is well illustrated by the “Ali Baba
Cave” anecdote: https://en.wikipedia.org/wiki/Zero-knowledge_proof#Abstract_examples.

24

https://en.wikipedia.org/wiki/Zero-knowledge_proof#Abstract_examples

2.4.1 Unruh’s Post-Quantum Adaptation

In 2014, Ambainis et al. showed in [ARU14] that classical security proofs for “proof of
knowledge” protocols are insecure in the quantum setting. This is due to a technique
used in the proof of the Fiat-Shamir transform’s (FST) security whereby the random
oracle is subject to “rewinding”: the proof simulates multiple runs of FST with different
responses from the random oracle [ARU14].

Following this insight, Unruh proposed a construction based off that of Fiat & Shamir
which he proved to be secure in both the classical and quantum random oracle models
[Unr15].

Unruh’s construction demands a small addition to the proof and verification proce-
dures. In Prove, for every possible challenge value ch0, ch1, ..., chn, Unruh’s construction
demands that a hash of the corresponding responses resp0, resp1, ..., respn, along with
the possible challenge values themselves, be included as input to the hash function H
computing the actual challenge. While Unruh originally presented this technique in a
generalized setting with n possible challenge values, we detail a version that assumes
there are only two possible challenge values (see Algorithms 2 and 3). This is done in an
attempt to more closely reflect the zero-knowledge proof of identity scheme presented in
[FJP14].

The construction is given in the form of two procedures: ProveUn and VerifyUn.
Given the proving procedure PΠ of some canonical identification scheme Π, ProveUn can
be constructed and forms the basis for the Sign procedure of a quantum-safe signature
scheme Un(Π). Analagously, given the verification procedure VΠ ∈ Π, VerifyUn details
the outline of signature verification in Un(Π).

Similar to above, we will write Un(Π) to denote the result of applying Unruh’s con-
struction to some identification protocol Π.

Algorithm 2 – ProveUn(PΠ)

1: if User = Alice then
2: Pick a random point S of order `eAA
3: if User = Bob then
4: Pick a random point S of order `eBB
5: Compute the isogeny φ : E → E/〈S〉
6: pk ← (E/〈S〉, φ(PUser), φ(QUser))
7: sk ← S
8: return (sk, pk)

2.5 Isogeny-based Signatures

Since publication of the SIDH suite, there have been several attempts at providing authen-
tication schemes using the same primitives. The post-quantum community had demon-
strated undeniable signatures [JS14], designated verifier signatures [STW12], and unde-
niable blind signatures [SC16] all within the framework of isogeny-based systems. It was
not until the work of Yoo et al. (([YAJ+17b])), however, that an isogeny-based protocol
for general authentication was shown as demonstrably secure. This protocol, particularly
its C implementation, is where we have decided to focus our efforts.

25

Algorithm 3 – VerifyUn(VΠ)

1: if User = Alice then
2: Pick a random point S of order `eAA
3: if User = Bob then
4: Pick a random point S of order `eBB
5: Compute the isogeny φ : E → E/〈S〉
6: pk ← (E/〈S〉, φ(PUser), φ(QUser))
7: sk ← S
8: return (sk, pk)

Now that we have seen the zero-knowledge proof of identity (ZKPoI) from [FJP14] as
well as Unruh’s quantum-safe Fiat-Shamir adaption, we have presented all of the material
necessary for an indepth analysis of the isogeny-based signature scheme presented by Yoo
et al. The signature protocol, which we will denote as Σ′, is an application of Unruh’s
construction to the SIDH ZKPoI. In this section we will refer to the SIDH ZKPoI as Σ
(thus we have Σ′ = Un(Σ)).

Σ′ is defined in the traditional manner, by a tuple of algorithms for key genera-
tion, signing, and verifying: Σ′ = (KeyGen,Sign,Verify). We have Σ′.KeyGen =
Σ.KeyGen, as for signing and verification, Σ′.Sign and Σ′.Verify are defined by apply-
ing Unruh’s transformation to Σ.Prove and Σ.Verify, respectively.

For our discussion of the signature scheme, we will make use of the naming conventions
used in Section 2.3. That is, we will discuss Σ′ as occuring between entities Bob and Alice,
with Bob imitating the role of an arbitrary third party Randall during Sign.

The public parameters used in Σ′ are the same as outlined above for all of the protocols
found in [FJP14]. Namely, we have p = `eAA `

eB
B · f ± 1 where `eAA = 2, `eBB = 3, and f

is a cofactor such that p is prime. We also set as parameter the curve E such that
#(E(Fp2)) = (`eAA `

eB
B)2. And again, we include the sets of points {PA, QA} and {PB, QB}

generating E[`eAA] and E[`eBB] respectively. We have chosen E over the previously used E0

simply for ease of notation.

2.5.1 Algorithmic Definitions

It will be useful for us to outline in more detail the procedures of Σ′, at the very least
to ease the transition into our discussion of the C implementation. In this subsection we
will look at isogeny-level algorithmic definitions for KeyGen, Prove, and Verify, and
then look at how these procedures can be expressed in terms of the procedures of ΠSIDH.

KeyGen: As previously mentioned, key generation in Σ′ is identical to Σ:KeyGen(λ),
which in turn is identical to ΠSIDH:KeyGen(λ). We have included a parameter User
equaling either Alice or Bob – this denotes whether the user running the procedure uses
blue or red constants. We have also obfuscated the lower level details in regards to how
points are generated and how isogenies can be constructed. We write PUser and QUser for
PA & QA or PB & QB, depending on User. The result is detailed in Algorithm 4.

We can transcribe this algorithm so that it is defined in terms of ΠSIDH procedures,
where ΠSIDH denotes the key-exchange protocol outlined in 2.3.1. We arrive (quite triv-
ially) at Algorithm 5.

26

Algorithm 4 – KeyGen(λ, User)

1: if User = Alice then
2: Pick a random point S of order `eAA
3: if User = Bob then
4: Pick a random point S of order `eBB
5: Compute the isogeny φ : E → E/〈S〉
6: pk ← (E/〈S〉, φ(PUser), φ(QUser))
7: sk ← S
8: return (sk, pk)

Algorithm 5 – KeyGen(λ, User) via ΠSIDH

1: (sk, pk) ← ΠSIDH:KeyGen(λ, User)
2: return (sk, pk)

For Sign and Verify we assume Bob to be the signer and Alice to be the verifier, for
the sake of simplifying the coming algorithmic definitions. Consequently, we will write
the signer’s key pair (sk, pk) as (B, φB). Algorithms for which the roles are reversed
can be constructed simply by replacing red constants with their blue correspondants, and
vice-versa.

Sign: The sign procedure, as a consequence of the Unruh construction, makes use of
two random oracle functions H and G. In the sign algorithm below, make note of how
Bob computes both commitments and their corresponding responses for every iteration
i before he computes the challenge values (the bits of J). He then uses the 2λ bits of J
to decide which responses to include in σ.

Algorithm 6 – Sign(sk = B, m)

1: for i = 1..2λ do
2: Pick a random point R of order `eAA
3: Compute the isogeny ψR : E → E/〈R〉
4: Compute the isogeny φ′B : E/〈B〉 → E/〈B,R〉
5: (E1, E2)← (E/〈R〉, E/〈R,B〉)
6: comi ← (E1, E2)
7: chi,0 ←R {0, 1}
8: chi,1 ← 1− chi,0
9: (respi,0, respi,1)← ((R, φB(R)), ψR(B))

10: if chi,0 = 1 then
11: Swap(respi,0,respi,1)

12: hi,j ← G(respi,j)

13: J1 ‖ ... ‖ J2λ ← H(φB, m, (comi)i,(chi,j)i,j,(hi,j)i,j)
14: return σ ← ((comi)i, (chi,j)i,j, (hi,j)i,j, (respi,Ji)i)

If we write out Sign using the ΠSIDH API, we see that the computation-heavy portions of
the procedure are being performed by ΠSIDH.KeyGen and ΠSIDH.SecAgr, and our two

27

random oracles H and G. The rest of the algorithm is merely organizing the information
we have generated into the transcript (com, ch, resp) and then finally into σ.

Algorithm 7 – Sign(sk = B, m) via ΠSIDH

1: for i = 1..2λ do
2: (R,ψR)← ΠSIDH:KeyGen(λ, Alice)
3: φ′B : E/〈B〉 → E/〈B,R〉 ← ΠSIDH:SecAgr(B, ψR)
4: (E1, E2)← (E/〈R〉, E/〈B,R〉)
5: comi ← (E1, E2)
6: chi,0 ←R {0, 1}
7: chi,1 ← 1− chi,0
8: (respi,0, respi,1)← ((R, φB(R)), ψR(B))
9: if chi,0 = 1 then

10: Swap(respi,0,respi,1)

11: hi,j ← G(respi,j)

12: J1 ‖ ... ‖ J2λ ← H(φB, m, (comi)i,(chi,j)i,j,(hi,j)i,j)
13: return σ ← ((comi)i, (chi,j)i,j, (hi,j)i,j, (respi,Ji)i)

Verify(pk, m, σ): Alice begins her execution of Verify() where Bob ended his execution
of Sign(), with the computation of J . Alice then knows at each iteration what check to
perform on Bob’s response, based on a conditional branch. You will notice that Bob’s
secret key B occurs in the negative path of this branch; this is not a security concern
because it is actually the point ψR(B) that is communicated in σ, from which B cannot
be recovered. See Algorithm 8.

Algorithm 8 – Verify(pk = φB, m, σ)

1: Parse ((comi)i, (chi,j)i,j, (hi,j)i,j, (respi)i)← σ
2: J1 ‖ ... ‖ J2λ ← H(φB, m, (comi)i,(chi,j)i,j,(hi,j)i,j)
3: for i = 0..2λ do
4: check hi,Ji = G(respi)
5: if chi,Ji = 0 then
6: Parse (R, φB(R))← respi
7: check (R, φB(R)) have order `eAA
8: check R generates the kernel of the isogeny E → E1

9: check φB(R) generates the kernel of the isogeny E/〈B〉 → E2

10: else
11: Parse ψR(B)← respi
12: check ψR(B) has order `eBB
13: check ψR(B) generates the kernel of the isogeny E1 → E2

14: if all checks succeed then
15: return 1
16: else
17: return 0

What we are checking for in the verification process is whether or not Bob and Randall
performed an honest and valid key exchange. And so, if the challenge bit is 0, we can use

28

SIDH key generation to determine that R and ψR are a valid key pair and then run SIDH
secret agreement with R and Bob’s public key φB to confirm that it properly executes
outputting an isogeny with kernel generated by φB(R). If the challenge bit is 1, we can
run an instance of SIDH secret agreement to verify that ψR(B) generates the kernel of an
isogeny with domain E1 and codomain E2 (refer again to the diagrams outlining Prove
in Section 2.3.2).

These observations are formalized in Algorithm 9, where we rewrite Σ′:Verify in terms
of ΠSIDH procedure calls. Note, in line 10 of Algorithm 6, the call to ΠSIDH:SecAgr. It
should be noted that ψR(B) is not the proper secret key input used by Bob in Sign(),
but we will see in the section to follow how we can use ψR(B) in the C implementation
of SecAgr to perform our verification (without compromising Bob’s secret key B).

Algorithm 9 – Verify(pk = φB, m, σ) via ΠSIDH

1: Parse ((comi)i, (chi,j)i,j, (hi,j)i,j, (respi)i)← σ
2: J1 ‖ ... ‖ J2λ ← H(φB, m, (comi)i,(chi,j)i,j,(hi,j)i,j)
3: for i = 0..2λ do
4: check hi,Ji = G(respi,Ji)
5: if chi,Ji = 0 then
6: Parse (R, φB(R))← respi,Ji
7: check (R,ψR) is a valid output of ΠSIDH:KeyGen(λ, Alice)
8: check that ΠSIDH:SecAgr(R, φB) successfully outputs an isogeny with

codomain E2

9: else
10: Parse ψR(B)← respi,Ji
11: check that ΠSIDH:SecAgr(ψR(B), ψR) successfully outputs an isogeny with

codomain E2

12: if all checks succeed then
13: return 1
14: else
15: return 0

2.6 Implementations of Isogeny-based Cryptographic

Protocols

Having now introduced all of the background material necessary for understanding SIDH
and the isogeny-based signature scheme in detail, we will investigate the portions of the
SIDH C library which are relevent to our contributions.

The SIDH C library, written by the NExT Security & Cryptogrphy group at Mi-
crosoft Research, was released in 2016 alongside an article titled Efficient Algorithms for
Supersingular Isogeny Diffie-Hellman (see [CLN16]). The article in question details sev-
eral adjustments to the algorithms and data-representations outlined in [FJP14], leading
to improved performance and key-sizes. Their library (which we will henceforth refer
to as SIDHC) consists of C and assembly implementations of the algorithms outlined in
[CLN16]. Much of these functions are tailored to a specific set of parameters allowing
for increased performance. The library presents 128-bit quantum security and 192-bit
classical security key exchange up to 2.9 times faster than any previous isogeny-based

29

key-exchange system. We will look at some of the details of SIDHC below.

2.6.1 Parameters & Data Representation

Parameters. SIDHC operates over the underlying basefield Fp where p = `eAA · `
eB
B − 1, with

`A = 2, `B = 3, eA = 372, and eB = 239, giving p a bitlength of 751. Now, recall the
Montgomery representation of a curve:

By2 = Cx3 + Ax2 + Cx

SIDHC uses the public parameter curve E defined in Montgomery form with A = 0,
B = 1, and C = 1. The point pairs (PA, QA) and (PB, QB), generating E[`eAA] and
E[`eBB] respectively, are hard-coded as an array of bytes. These parameters (including
related data such as the bitlength of certain constants) are stored in the struct type
CurveIsogenyStaticData under the variable name SIDHp751. This struct, along with
many other SIDHC data types and representations, will be outlined in the coming subsec-
tion.

One priority of the parameter choices found in SIDHp751 was to approach `eAA ≈ `eBB .
This attempt at balancing `eAA and `eBB helps to ensure two things: first, that no side of
the key exchange is any easier to attack than the other, and second, that the cost of
computation is split evenly between parties. This constraint had to meet compromise
with the primary security concern: that p must have a bit-length providing sufficient
classical and quantum security.

Data Structures. There are several custom-defined data structures that are integral to
SIDHC. Below, we will briefly cover the ones which are likely to arise in our discussion:

Field elements

• felm t – buffer of bytes representing elements of Fp.

• f2elm t – pair of felm t representing elements of Fp2 .

Elliptic curve points

• point affine – an f2elm t x and an f2elm t y representing a point in affine space.

• point proj – an f2elm t X and an f2elm t Z representing a point as projective XZ
Montgomery coordinates.

• point full proj – f2elm t elements X, Y, and Z representing a point in projective
space.

• point basefield affine – an felm t x and an felm t y representing a point in
affine space over the base field.

• point basefield proj – an felm t X and an felm t Z representing a point as
projective XZ Montgomery coordinates over the base field.

Cryptographic structures

30

• publickey t – three f2elm ts representing a public key.
publickey t[0] = user’s private isogeny applied to the other party’s generator Px
publickey t[1] = user’s private isogeny applied to the other party’s generator Qx

publickey t[2] = user’s private isogeny applied to Px −Qx

Meta structures

• CurveIsogenyStruct – Structure containing all necessary public parameter data.

• CurveIsogenyStaticData – The same as CurveIsogenyStruct, but with buffer
sizes fixed for SIDHp751.

The reader may note that publickey t does not contain any information defining
the user’s codomain curve E/〈S〉 (with S as the users secret key). It just so happens
that in ΠSIDH key exchange, the curves E/〈A〉 and E/〈B〉 are simply intermediary steps
(useful for conceptualizing the protocol) and not necessary for computing the shared
secret j(EAB) (as we will see, however, this is not the case for isogeny-based signatures,
where S must be tracked as part of the public key).

Also worth noting is the lack of a specific data structure for representing curves. As
it turns out, curves within ΠSIDH can be distinctly represented by their A value alone. As
we are working with curves defined over Fp2 , we have A ∈ Fp2 and thus we can succinctly
represent any curve with a single f2elm t [LCE+16].

2.6.2 SIDHC Design Decisions

The following are, at a high-level, the algorithmic improvements upon ΠSIDH as outlined
in [CLN16]. Costello et al. do make additional contributions in their paper, however we
will discuss only those contributions which pertain to the performance of SIDH.

Projective Space Arithmetic. As is common in ECC, a vast majority of the procedures
of SIDHC operate over elliptic curve points which are defined over projective space (recall
Section 2.2.2). This widely-deployed technique is used to avoid the substantial cost
of field element inversions (computing x−1 for some element x ∈ Fp2). This means the
majority of our calculations are performed over point proj structures using Montgomery
arithmetic (Section 2.2.1) and converted to point affine when necessary. This general
design strategy is highly related to our first contribution, which will be elaborated upon
in Section 3.

In addition to traditional point-wise projective arithmetic, Costello et al. showed
that isogeny arithmetic can also be carried out in this space. By performing isogeny
arithmetic in the projective space, the number of Fp2 inversions in ΠSIDH:KeyGen and
ΠSIDH:SecAgr can be reduced to 1 and 2, respectively.

Key Representation. Recall the origin of an ΠSIDH private key (m,n): the goal is to
randomly select a generator of the torsion group E[`eAA] (or E[`eBB] for Bob). It is noted
in [FJP14] that any generator of the required torsion group is sufficient. It is also noted
that m, unless equal to the order of the torsion group, is invertible. Because of this,
Alice, for example, can simple compute R = PA + [m−1n]QA, thus enabling secret keys
to be stored as a single Fp2 element (which is referred to as m). This technicality has
been implemented in SIDHC, which both saves on storage as well as offers a means for

31

generating secret keys that is more efficient than the trivial scalar multiplication and
point-wise addition approach to computing [m]P + [n]Q [CLN16].

For the remainder of this dissertation we assume this form for private keys.

Tailor-made Montgomery Multiplication. The parameters of a default SIDHC execution,
stored in SIDHp752, support efficient arithmetic and grant access to a variety of modular
arithmetic optimizations. Moreover, Costello et al. supply a modified version of the
Montgomery multiplication algorithm which, when performing over the class of curves
outlined by their set of parameters, yields faster modular arithmetic.

2.6.3 Key Exchange & Critical Functions

There are 3 central modules (C files) in SIDHC, all dealing with different levels of abstrac-
tion in the ΠSIDH protocol. Figure 2.6 illustrates the relationship between these modules
and the abstraction levels of isogeny-based key exchange.

Operating at the lowest abstraction level is the module fpx.c, wherein functions
for manipulating Fp and Fp2 elements are defined. One level up from fpx.c we have
ec isogeny.c, containing functions pertaining to elliptic curves and point arithmetic
(such as j inv(...) for computing the j-invariant of a curve and secret pt(...)

for computing a users secret point S given their private key m). The final, highest
abstraction-level module we will discuss is kex.c. kex.c contains the protocol-level func-
tions for performing ΠSIDH, namely KeyGeneration A(...) and KeyGeneration B(...)

for generating Alice and Bob’s private and public keys, as well as SecretAgreement A(...)

and SecretAgreement B(...) for completing the secret agreement from both sides of
the key exchange.

Figure 2.6: Relationship between ΠSIDH & SIDHC modules

For functions defined in fpx.c the notational practice is to prepend function names
with either fp or fp2, signifying whether the function is defined for elements of Fp or
Fp2 . Additionally, it is common to append mont to the name of functions which utilize
Montgomery arithmetic, and thus expect elements in Montgomery representation. Func-
tions in fpx.c are largely defined by byte and memory arithmetic, with the exception
of slightly higher-level functions (such as field element inversion, fpinv751 mont(...))
which are defined in terms of other fpx.c functions. Furthermore, for efficiency, functions
of fpx.c are defined as inline when applicable.

In addition to the fpx.c functions we have outlined in Table 2.1 there are of course

32

Function Input Output
to fp2mont f2elm t a f2elm t ma

Converts an Fp2 element
to Montgomery representation

from fp2mont f2elm t ma f2elm t a

Converts an Fp2 element
from Montgomery representation

to regular form
fp2inv751 mont bingcd f2elm t a f2elm t a−1

performs non-constant
time inversion of

a Fp2 element
fp2inv751 mont f2elm t a f2elm t a−1

performs constant
time inversion of

a Fp2 element

Table 2.1: Example fpx.c functions.

definitions for addition, copying elements, retrieving the zero element, Montgomery mul-
tiplication, squaring, and so on and so forth.

ec isogeny.c functions are defined almost exclusively in terms of fpx.c functions,
with a few occurances of internal function calling. Functions in this module that are
significant to our our work are briefly summerized in Table 2.2. The implementation
specifics of most other ec isogeny.c functions are not critical to our work, and so have
been excluded. The design and efficiency of these algorithms do, however, have a rich
background and can be further read about in [FJP14] and [CLN16].

The key exchange procedures found in kex.c are composed entirely of calls to fpx.c

and ec isogeny.c functions, modulo some basic branching logic. All of the functions
from this module are relevant to our work - we provide quick debriefings of these functions
in Table 2.3.

The reader may note that, in Table 2.3, privateKeyA (in KeyGeneration A) and
kerngen (in both secret agreements) appear as both inputs and outputs. This is not a
mistake. In KeyGeneration A, if generateRandom = false is passed as an input, then
privateKeyA is expected to be set, and the corresponding public key is computed. In
secret agreement, if kerngen is set to null then the algorithm proceeds normally. If it is
set to a valid point, however, it can be used in place of a secret key input (which in such
a case is expected to be null). Both of these details are critical to the design of signature
functions as they are described below.

2.6.4 Signature Layer

Yoo et al. provided, along with their publication of [YAJ+17b], an implementation of
their signature scheme as a fork to SIDHC. All of their functions are written specifically
for an instance of Σ′ where the signer is assuming the B role (meaning that Randall
assumes the A role), but their algorithms could be trivially modified to provide versions
supporting a signer in the A role. Their contributions to the SIDHC codebase come in the

33

Function Input Output
j inv f2elm t A f2elm t jinv

computes the j-invariant f2elm t C

of a curve with represented
in Montgomery form with A and C

secret pt point basefield P point proj R

generates the secret digit t m

point R from SIDHp751

secret key m int AliceOrBob

inv 3 way f2elm t z1 f2elm t z1−1

performs simultaneous inversion f2elm t z2 f2elm t z2−1

of three elements f2elm t z3 f2elm t z3−1

inv 4 way f2elm t z1 f2elm t z1−1

performs simultaneous inversion f2elm t z2 f2elm t z2−1

of 4 elements f2elm t z3 f2elm t z3−1

f2elm t z4 f2elm t z4−1

generate 2 torsion basis f2elm t A point full proj R1

constructs a basis ({R1, R2}) SIDHp751 point full proj R2

generating E[`eAA]
generate 3 torsion basis f2elm t A point full proj R1

constructs a basis ({R1, R2}) SIDHp751 point full proj R2

generating E[`eBB]

Table 2.2: Example ec isogeny.c functions.

Function Input Output
KeyGeneration A unsigned char* privateKeyA unsigned char* privateKeyA

performs key generation bool generateRandom unsigned char* publicKeyA

for Alice
KeyGeneration B unsigned char* privateKeyB

performs key generation unsigned char* publicKeyB

for Bob
SecretAgreement A unsigned char* privateKeyA unsigned char* sharedSecretA

computes the shared secret unsigned char* publicKeyB point proj kerngen

from Alice’s perspective point proj kerngen

SecretAgreement B unsigned char* privateKeyB unsigned char* sharedSecretB

computes the shared secret unsigned char* publicKeyA point proj kerngen

from Bob’s perspective point proj kerngen

Table 2.3: Example kex.c functions

34

Function Input Output
isogeny keygen unsigned char* privateKeyB

generates the signers unsigned char* publicKeyB

key pair
isogeny sign privateKey Signature sig

produces a signature publicKey

for a message message m
sign thread Signature sig sig[r] where

performs a single iteration r is the current
of the for-loop in Sign thread ID

isogeny verify Signature sig true or false
checks the validity

of a signature
verify thread Signature sig true or false

performs a single iteration
of the for-loop in Verify

Table 2.4: Signature functions added to SIDHC

form of the functions listed below.
There are five functions of interest contributed by Yoo et al.: isogeny keygen,

isogeny sign, sign thread, isogeny verify, verify thread. The high-level details
of these functions are outlined in Table 2.4.

isogeny keygen simply generates the signer’s keypair, and has a trivial definition:
KeyGeneration B is called and populates the signer’s public and private keys. The func-
tion then returns the success status of KeyGeneration B.

As for the signing procedure, isogeny sign is invoked, initializes the necessary struc-
tures, and then spawns 2λ threads running sign thread. Each instance of sign thread

then performs the work of one iteration of the main loop in Algorithm 7. The ver-
ification procedure works analogously to this, running functions isogeny verify and
verify thread.

In their original fork of SIDHC, Yoo et al. included these functions in kex tests.c.
This file was originally intended for testing the functions of kex.c, and so our fork of the li-
brary has placed the signature functions in a new file SIDH signature.c. We have also in-
cluded a file sig tests.c for testing the contents and performance of SIDH signature.c

functions [YAJ+17a].
If we transcribe the procedures Σ′:Sign and Σ′:Verify (as described in Section 2.5.1)

to the language of the SIDHC API, we have in essence the procedures SignC and VerifyC

given by Algorithms 10 and 11 respectively.

35

Algorithm 10 – Sign(skB, m)C

1: for i = 1..2λ do
2: (skR = R, pkR)← KeyGeneration A(NULL, true)

3: (E/〈B,R〉, ψR(B))← SecretAgreement B(skB, pkR, NULL)
4: (E1, E2)← (E/〈R〉, E/〈B,R〉)
5: (com[i]0, com[i]1)← (E1, E2)
6: (resp[i]0, resp[i]1)← (R,ψR(B))
7: h[i]← keccak(resp[i]0)|keccak(resp[i]1)

8: J1 ‖ ... ‖ J2λ ← keccak(com, m, h)
9: return σ ← ((comi)i, (chi,j)i,j, (hi)i, ((resp)[Ji])

Algorithm 11 – Verify(pk = φB, m, σ)C

1: J1 ‖ ... ‖ J2λ ← keccak(com, m, h)
2: for i = 0..2λ do
3: check h[i] = keccak(resp[i]0)|keccak(resp[i]1)
4: if Ji = 0 then
5: R← resp[i]0
6: pkR ← KeyGeneration A(R, false)

7: check pkR = com[i]0
8: ERB ← SecretAgreement A(R, φB, NULL)

9: check ERB = com[i]1
10: else
11: ψR(B)← resp[i]1
12: pkR ← com[i]0
13: EBR ← SecretAgreement B(NULL, pkR, ψR(B))
14: check EBR = com[i]1

15: if all checks succeed then
16: return 1
17: else
18: return 0

Outside of simply replacing Π′SIDH procedure calls with SIDHC functions, the reader
may notice additional differences between Sign and Verify and their Σ′ counterparts.
Namely, Yoo et al. have chosen to exclude the challenge bit ch in the SIDHC implementa-
tions of these functions, consequently excluding the conditional and Swap statement of
lines 8 and 9 in Algorithm 4.

36

Chapter 3

Batching Operations for Isogenies

Our first contribution to the SIDHC codebase is the implementation and integration of
a procedure for batching together many Fp2 element inversions. This contribution is
discussed in detail in the following Chapter. The chapter is split into three sections: a
high-level discussion of the procedure itself, the low-level details of its integration into
SIDHC, and finally, the resulting affects of this procedure on the performance of SIDHC.

In the first Section of this Chapter we will detail the specifics of the partial batched
inversion procedure. We will show how the procedure can be constructed by combin-
ing two techniques: a well known method for reducing an Fp2 inversion to several Fp
operations, and an inversion batching technique outlined in [SB01].

As we then venture into the lower-level implementation details, we will explore how
the procedure can be leveraged efficiently in the codebase. We will take a closer look
at several of the aforementioned SIDHC functions as we illustrate some of the perfor-
mance bottlenecks in the system. At this time, we will also discuss the design decisions
made while implementing the partial batched inversion procedure as well as some of the
function’s lower-level minutiae.

We will end this Chapter by taking a detailed look at the performance gains offered
by the inclusion of partial batched inversions in SIDHC. More precisely, we will be ex-
amining the effects of the procedure on the Yoo et al. signature layer. We will contrast
the measured performance of our implementation with an analytical calculation of the
expected improvement, and discuss the possible origins of divergent behaviour.

3.1 Partial Batched Inversions

We will now outline the procedure that is central to our first contribution. The “partial
batched inversion” procedure reduces arbitrarily many unrelated1 Fp2 inversions to a
sequence of Fp operations. The fact that the elements being inverted need not hold
any relation will be significant to the applicability of this procedure. For the sake of
brevity, we will henceforth refer to this procedure as pb inv in the SIDHC context, and
PartialBatchedInversion in the more general mathematical context.

As mentioned above, pb inv is constructed by combining two distinct techniques.
Both of these techniques improve the efficiency of computing field element inversions:

1To clarify; the elements subject to these inversion must all be over the same field, but can otherwise
be unrelated.

37

the first is specific to extension fields (in our case, Fp2 elements,) but the second is a
technique applicable to field element inversions in a more general setting.

We will begin with a dissection of these two techniques, starting first with the “partial”
inversion technique and then looking at batched inversions. The definitions we will give
for these techniques below are given at the level of field arithmetic. When we proceed to
sketch pb inv, we will offer two definitions: one in this section given at the abstraction-
level of field arithmetic, and one in the proceeding section given in terms of SIDHC syntax.

In the subsections to come, when we are working at the level of field arithmetic we
will denote the first and second portions of an arbitrary x ∈ Fp2 as xa and xb respectively,
where x = xa+xb · i. Additionally, we may write x as (xa, xb), as this more closely reflects
the structure of Fp2 elements in SIDHC. Recall from Section 2.2.1 that both xa and xb are
valid Fp elements.

We will express the time-complexity of the coming procedures in terms of the number
of underlying field operations within them. We denote the computation time for base
field arithmetic with bold letters (such as a for Fp addition), and we use bold letters
accented with a “closure” bar for extension field arithmetic (ā for Fp2 addition). For
example, the time-complexity of some procedure P , which we might write as CP , may
look like the following:

CP = 2ā + x̄i + ym + s

Which denotes that P is a procedure composed of 2 Fp2 additions, x-many Fp2 inversions,
y-many Fp multiplications, and a single Fp squaring. We reserve uppercase bold letters
for arithmetic over elliptic curve points (such as A to denote the point-wise addition
operation).

3.1.1 Fp2 Inversions done in Fp

There is a simple way in which we can perform one Fp2 inversion by means of doing
several Fp operations. We will begin by considering multiplicative inverses of complex
numbers. Fields of the form Fq2 for some prime q are, after all, quadratic extension
fields; because of this Fp2 arithmetic is treated, for the most part, analogously to complex
number arithmetic.

Consider the complex number C = a+bi. We have that C−1 = 1/(a+bi), from which
we can rationalize the denominator like so:

C−1 =
1

(a+ bi)
· (a− bi)

(a− bi)

C−1 =
a− bi

(a+ bi)(a− bi)
Here we note that (a+ bi)(a− bi) is equivalently (a2 + b2) and so we can rewrite C−1 as
the following:

C−1 =
a− bi

(a)2 − (bi)2

C−1 =
a− bi
a2 + b2

.

Elements in the quadratic extension of a finite field are treated similarly, such that if
we take some element x = (xa, xb) ∈ Fp2 for some prime p, we can equivalently represent

38

x as xa+xbi and treat arithmetic on x exactly as we would for a complex number (modulo
p, of course). From this we can see that x−1 can be defined as:

x−1 = (
xa

x2
a + x2

b

,
−xb

x2
a + x2

b

)

Now it is clear that we can compute the multiplicative inverse of x by computing the
inverse of x2

a + x2
b (an inversion in Fp) and −xb (a relatively inexpensive operation, also

in the base field). We formulate this technique in Algorithm 14, which we refer to as
PartialInv.

Algorithm 12 – PartialInv(x ∈ Fp2)
1: den← x2

a + x2
b

2: deninv ← den−1 (mod p)
3: a← xa · deninv (mod p)
4: b← −(xb) · deninv (mod p)
5: inv ← {a, b}
6: return inv

Effectively, this procedure reduces one Fp2 inversion to the following operations:

• 2 Fp squarings – line 1 of algorithm 14

• 1 Fp addition – line 1 of algorithm 14

• 1 Fp inversion – line 2 of algorithm 14

• 3 Fp multiplications – lines 3 & 4 of algorithm 14

Let CPartialInv represent the time complexity of PartialInv, in the format outlined
above. We have

CPartialInv = 2s + a + i + 3m

In some contexts, computing squares can be done more efficiently than the multipli-
cation of two arbitrary elements. A noteworthy example of this can be found in binary
fields (F2k) where squaring a number is equivalent to simply performing a bit-shift. How-
ever, because we are working in the quadratic extension of some prime field Fp for a large
prime p, we can assume that computing the square of some arbitrary element x is no
more or less efficient than simply computing x · x. With this in mind, we can further
simplify CPartialInv.

CPartialInv = 5m + a + i

3.1.2 Batching Field Element Inversions

The second technique used in the composition of pb inv reduces arbitrarily many (gen-
eral) field element inversions to one inversion and a linearly scaling amount of multiplca-
tions in the same field.

This technique was outlined by Shacham and Boneh in [SB01]. Shacham and Boneh
provided several techniques for improving the performance of SSL handshakes, most of

39

which built on the earlier efforts of Fiat in batching multiple RSA decryptions [Fia96].
While somewhat related, Fiat’s work admittedly is only applicable to the RSA cryptosys-
tem, and requires additional constraints on the elements being batched.

One improvement offered by Shacham and Boneh, however, is their proposed notion
of batching together divisions from across multiple unrelated SSL instances.

Suppose we want to compute the inverses of three elements x, y, z ∈ F where F is
some arbitrary field. The batched division technique allows us to reduce these three
inversions to one. The technique can be organized into three phases. In the first phase,
all the elements of the batch are multiplied together into one product, yielding a = xyz.
We refer to this first phase as “upward-percolation”. Next, we compute the inverse of a:
a−1 = (xyz)−1, which we refer to as the inversion phase. In the final phase, “downward-
percolation”, we can compute each individual element’s multiplicative inverse as follows:

x−1 = a−1 · (yz)

y−1 = a−1 · (xz)

z−1 = a−1 · (xy)

Let us analyse these phases a little more closely while we generalize to n-many ele-
ments. In the upward-percolation phase, constructing a requires n − 1 multiplications;
and so has a complexity of O(n). The inversion phase requires one field element inversion,
and so has complexity of O(1).

If we implement the downward-percolation phase directly as outlined in the three-
element example above, computing every output requires n products each composed of
(n − 1) multiplications. These n products are each also multiplied by a−1. This multi-
plication by a−1 can be added to our n− 1 inversion count resulting in n-many products
composed of nmultiplications; bringing the complixity of the downward-percolation phase
to O(n2).

We will refer to this roughly-sketched procedure as BatchedInv0. Let CBatchedInv0

denote the performance of BatchedInv0 in the format outlined above. We have, then,
that

CBatchedInv0 = n2m̄ + (n− 1)m̄ + ī.

This batching proceedure can be thought of as analogous to traditional time-memory
tradeoff algorithms. In a general time-memory tradeoff algorithm you can continue to
make some linear or polynomial (or otherwise) sacrifice of memory in order to gain some
increase in performance. In the batching procedure described above we are in some sense
sacrificing some marginal amount of memory to gain an increase in performance, but it
is not a tradeoff that we can adjust to our liking.

There is a way, much akin to this time-memory tradeoff strategy, that we can further
reduce the execution time of BatchedInv0. In the upward-percolation phase, we cur-
rently store in a the product of elements x0 · x1 · ... · xn−1. Suppose instead that we store
in a an array (size n) of elements, defined in the following way:

ai =

{
x0 i = 0

ai−1 · xi otherwise

Equivalently, the elements of this array are

a0 = x0, a1 = x0 · x1, a2 = x0 · x1 · x2, ...

40

and so on and so forth up to n−1. In the inversion phase we will compute inv = a−1
n−1; we

are still inverting the product of all the elements, but because we have stored the value of
the product at every step of the way, we can save on a significant number of operations
in the downward-percolation phase.

Going into the final stage of the procedure now, we can compute x−1
n−1 simply by com-

puting inv ·an−2. Moving forward (or backwards, technically), we peel the previously used
x−1
n−1 off of inv by computing inv := inv · xn−1 and, with our updated inv, we compute
x−1
n−2 = inv · an−3. We proceed in this fashion until we reach x−1

0 , which (if we have been
updating inv every step of the way) is simply equal to inv.

We formalize this improvement in the form of a new procedure, BatchedInv, which
we provide a concrete definition for in Algorithm 13. In this procedure lines 1–3 implement
the upward-percolation phase. Line 4 carries out the second phase: the inversion of an−1.
The third and final stage, downward-percolation, occurs from lines 5 to 7.

Algorithm 13 – BatchedInv({x0, x1, ..., xn − 1} ∈ Fnp2)
1: a0 ← x0

2: for i = 1..(n-1) do
3: ai ← ai−1 · xi
4: inv ← a−1

n−1

5: for i = (n-1)..1 do
6: x−1

i ← ai−1 · inv
7: inv ← inv · xi
8: x−1

0 = inv
9: return {x−1

0 , x−1
1 , ..., x−1

n−1}

BatchedInv can be used to reduce n-many Fp2 inversions to the following operations:

• n− 1 Fp2 multiplications – line 2-3 of algorithm 13

• 1 Fp2 inversion – line 4 of algorithm 13

• 2(n− 1) Fp2 multiplications – line 5-7 of algorithm 13

Let CBatchedInv denote the performance of BatchedInv.

CBatchedInv = 2(n− 1)m̄ + (n− 1)m̄ + ī

= 3(n− 1)m̄ + ī

In comparing the performances of BatchedInv and BatchedInv0, we see that
CBatchedInv < CBatchedInv0 holds when the following holds:

2(n− 1)m̄ + (n− 1)m̄ + ī < n2m̄ + (n− 1)m̄ + ī

2(n− 1)m̄ < n2m̄

2(n− 1) < n2

And so, because n2 is always larger than 2(n − 1) for all n ∈ R, BatchedInv out-
performs BatchedInv0 for every possible batch size. This can be checked by setting
n2 = 2(n−1), simplifying to n2−2n+2 = 0, and noting that the discriminant (22−4 ·2)
is negative.

41

3.1.3 Partial Batched Inversions

We have now outlined the following: PartialInv as a technique for computing Fp2 inver-
sions by means of Fp arithmetic, and BatchedInv as a technique for batching together
arbitrarily many inversion operations. We will now combine these procedures to achieve
the partial batched inversion algorithm.

At first glance, an attempt to meld these two techniques together might be made in
the same fashion as Algorithm 14. We denote this approach PartialBatchedInv0.

Algorithm 14 – PartialBatchedInv0({x0, x1, ..., xn−1})
1: a← upward-percolation of elements {x0, x1, ..., xn−1}
2: a−1 ← PartialInv(a)
3: {x−1

0 , x−1
1 , ..., x−1

n−1} ← downward-percolation of a−1

4: return {x−1
0 , x−1

1 , ..., x−1
n−1}

If we sum the operations in PartialBatchedInv0, we have the following:

• n Fp2 multiplications – upward-percolation phase

• 2 Fp squarings, 1 Fp addition, 1 Fp inversion, and 3 Fp multiplications – call to
PartialInv(a)

• 2n Fp2 multiplications – downward-percolation phase

To measure the complixity in terms of field operations, denoted C0, we can surmize the
the total operation count as:

C0 = (nm̄) + (2s + a + i + 3m) + (2nm̄)

C0 = 3nm̄ + 2s + a + i + 3m

Below we provide an alternative approach to building PartialBatchedInv that re-
lies on only Fp operations. Afterward, we show by simple analysis why this approach
yields the better performance. This procedure is formalized in a mathematical setting in
Algorithm 15. We give a precise C function definition in Section 3.2.

In Algorithm 15, a is a simple auxillary set we use to hold the inverted Fp elements.
After these are all computed via the for-loop on line 8, we can reconstruct Fp.

More specifically, the procedure takes us from n Fp2 inversions to:

• 2n Fp squarings

• n Fp additions

• 1 Fp inversion

• 3(n-1) Fp multiplications

• 2n Fp multiplications

42

Algorithm 15 – PartialBatchedInversion(Fp2 {x0, x1, ..., xn − 1})
1: for i = 0..(n-1) do
2: deni ← (xi)

2
a + (xi)

2
b (mod p)

3: a0 ← den0

4: for i = 1..(n-1) do
5: ai ← ai−1 · deni (mod p)

6: inv ← a−1
n−1 (mod p)

7: for i = n-1..1 do
8: ai ← inv · desti−1 (mod p)
9: inv ← inv · deni (mod p)

10: a0 ← ainv
11: for i = 0..(n-1) do
12: (xinvi)a ← ai · (xi)a (mod p)
13: (xinvi)b ← ai · −(xi)b (mod p)
14: x−1

i ← {(xinvi)a, (xinvi)b}
15: return {x−1

0 , x−1
1 , ..., x−1

n−1}

And so, with C measuring the performance of PartialBatchedInversion, we have

C = 2ns + na + i + 3(n− 1)m + 2nm

We can further simplify C if we presume that the execution time of squaring is roughly
the same as multiplication. Additionally, we can simplify 3(n − 1) to 3n in the spirit of
complexity theory. With these simplifications we arrive at

C ≈ 7nm + na + i

Applying the same simplifying assumptions to C0, we arrive at

C0 ≈ 3nm̄ + 5m + a + i

We note here that an Fp2 multiplication (m̄) is performed simply by means of 4 Fp
multiplications (again, recall the multiplcation of complex numbers). So we have m̄ =
4m, and can further simplify C0:

C0 ≈ (12n+ 5)m + a + i

Finally we have simplified C and C0 to forms that are more easily compared. Lets us
turn our attention to the proposition that C runs in fewer operations than C0:

C < C0

7nm + na + i < (12n+ 5)m + a + i

Simplifying slightly, we need now to resolve

7nm + na < (12n+ 5)m + a

na− a < (12n+ 5)m− 7nm

43

na− a < 5nm + 5m

(n− 1)a < (5n+ 1)m

It appears now that in order for PartialBatchedInv0 to be computationally favourable
over PartialBatchedInv, the execution time for one Fp addition would need to be larger
than at least 5 times that of one Fp multiplication.

Though it seems trivially true, we can verify this by measuring and comparing the
execution times of the SIDHC addition and multiplcation functions we will be using for
our implementation.

When doing so (using the arithmetic test cases included in arith tests.c by Mi-
crosoft Research) we arrive at the measurements outlined in the table below.

Operation SIDHC function performance in clock cycles

Fp addition fpadd751 206
Fp multiplication fpmult751 mont 1,009

If we query for the performance of other operations (including Fp2 arithmetic) we can
estimate to what degree roughly PartialBatchedInv outperforms PartialBatched-
Inv0. We can also measure to what degree we can expect that it will outperform an
unbatched implementation of n-many inversions.

Operation SIDHC function performance in clock cycles

Fp inversion fpinv751 mont 826,228
Fp2 addition fp2add751 172
Fp2 multiplication fp2mult751 mont 2,793
Fp2 inversion fp2inv751 mont 829,786

All of these results are computed as the average over 100 distinct applications. Fur-
thermore, because they are measured in clock cycles, they are independent of any CPU
clock rate. Because of this they are indicative of the complexity of each operation (or
rather, the complexity of these implementations,) opposed to the performance of these
operations on any one particular machine.

We conclude this section by using these results, along with the operation counts of
each procedure, to compare the expected performances of PartialBatchedInv, Partial-
BatchedInv0, and unbatched inversion. These results are shown in Table 3.1. For these
estimations we have set the number of elements (n) equal to 248. This closely reflects the
setting in which PartialBatchedInv will be implemented in SIDHC, as will be discussed
in the following section.

PartialBatchedInv0:
If we substitute the performance variables in C0 with the corresponding results from

the tables above, we have:
C0 ≈ (12n+ 5)m + a + i

C0 ≈ (12n+ 5)1, 009 + 206 + 826, 228

44

C0 ≈ 12, 108n+ 831, 479

unbatched Fp2 inversions:
The performance of n-many unbatched Fp2 inversions can be modelled plainly by n̄i.

The cost of n unbatched inversions is therefore 829, 786n.

PartialBatchedInv:
C ≈ 7nm + na + i

C ≈ 7, 269n+ 826, 228

Procedure operation count expected cost in clock cycles

PartialBatchedInv 7nm + na + i 2,628,940
PartialBatchedInv0 (12n+ 5)m + a + i 3,834,263
248 unbatched Fp2 inversions 248̄i 205,786,928

Table 3.1: Expected computational cost of performing 248 field element inversions using
different approaches.

The following graphs also indicate quite clearly the relationships between these three
approaches to performing multiple field element inversions. The steep orange line found
in the left-hand plot indicates the cost of performing unbatched field element inver-
sions, scaling as the number of elements increases. The other two lines (found again in
the right-hand plot) indicate the scaling performance of PartialBatchedInv (red) and
PartialBatchedInv0 (blue).

2 4 6 8 10

1

2

3
·106

batch size

m
il
li
on

s
of

cl
o
ck

cy
cl

es

50 100 150 200 250

1

2

3
·106

batch size

Figure 3.1: The projected run-time of PartialBatchedInv (red), PartialBatchedInv0

(blue), and unbatched inversions (yellow) scaling with the number of elements in the
batch.

45

3.2 Implementation Details

We will now take the work of the previous subsection and explain in detail how it can be
applied to the Yoo et al. signature layer of SIDHC. We will begin with an examination
of the lower-level details of our procedures implementation. In this first subsection, we
transcribe PartialBatchedInversion to its C variant, pb inv, which is defined almost
entirely by means of fpx.c functions. We will discuss some design specifics of pb inv,
and look breifly at the security of the function with respect to the signature scheme.

After outlining the specifics of our C implementation, we will move onto a high-level
overview of the signature layer architecture. This mapping will allow efficient highlighting
of execution paths in the codebase where batching inversions could offer a performance
increase. Additionally, we will discuss properties of the signature scheme that can be
leveraged to optimize the performance increases offered by pb inv.

3.2.1 Implementation & Design Decisions

With Figure 3.2 we provide an explicit C definition for the function pb inv. For descrip-
tions of the functions called in this procedure, the reader can refer to section 2.6.3. For
explicit definitions of some of these functions, the reader can refer to Appendix A.

pb inv. The pb inv function can be divided into six sections: local variable declara-
tion, conversion to the base field, the upward-percolation phase, the inversion phase, the
downward-percolation phase, and finally conversion back to the extension field.

In converting to the base field (beginning at line 9) we are peforming line 1 of Algo-
rithm 14 (as outlined in Subsection 3.1.1) for all elements in the batch. This constructs
the “denominator” for each element xi as if we were going to compute each inverse indi-
vidually by means of x−1

i = { (xi)a
(xi)2a+(xi)2b

, −(xi)b
(xi)2a+(xi)2b

}. The memory cost for this portion of

the function is 2n felm t’s. We save memory by using den temporarily to store (xi)b
2,

then summing both powers into memory at den.
The succeeding sections of the function require the use of the temporary buffer a,

adding an additional n felm t’s to local memory usage.

Security Considerations. Recall the notion of a general side-channel attack: A side-
channel attack is performed when an unauthorized individual is able to acquire informa-
tion by measuring properties of the physical implementation of the system at hand. This
can be done by analyzing the power consumption, timing properties, or electromagnetic
leaks of a CPU while it operates on (or generates) confidential information.

In the context of information security, algorithms for performing operations over math-
ematical objects can be said to fall under one of two categories: constant time and non-
constant time algorithms. Constant time algorithms are designed to protect confidential
information from side-channel attacks, but come at the cost of computational efficiency.

In the SIDHC library, there are two distinct functions for computing field element inver-
sions: fp2inv751 mont and fp2inv751 mont bingcd. fp2inv751 mont bingcd performs
inversion by means of the binary GCD (greatest common denominator) algorithm, and
is a non-constant time implementation. fp2inv751 mont is a constant time implemen-
tation, and as such runs slower than fp2inv751 mont bingcd in nearly all cases, but
protects against timing based side-channel attacks. They perform comparatively as such:

46

Figure 3.2: C code for the partial-batched inversion function.

1 void pb inv (const f 2 e lm t ∗ vec , f 2 e lm t ∗ dest , const int n) {
2 f e l m t t0 [n] ; //a p o r t i o n o f vec e lements
3 f e l m t t1 [n] ; // b p o r t i o n o f vec e lements
4 f e l m t den [n] ; // denominator o f vec e lements
5 f e l m t a [n] ;
6
7 // convers ion to base f i e l d −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
8
9 for (int i = 0 ; i < n ; i++) {

10 fpsqr751 mont ((vec [i]) [0] , t0 [i]) ;
11 fpsqr751 mont ((vec [i]) [1] , t1 [i]) ;
12 fpadd751 (t0 [i] , t1 [i] , den [i]) ;
13 }
14
15 // upward−p e r c o l a t i o n phase −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
16
17 fpcopy751 (den [0] , a [0]) ;
18 for (int i = 1 ; i < n ; i++) {
19 fpmul751 mont (a [i −1] , den [i] , a [i]) ;
20 }
21
22 // i n v e r s i o n phase −−−//
23
24 f e l m t a inv ;
25 fpcopy751 (a [n−1] , a inv) ;
26 fp inv751 mont bingcd (a inv) ;
27
28 // downward−p e r c o l a t i o n phase −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
29
30 for (int i = n−1; i >= 1 ; i−−) {
31 fpmul751 mont (a [i −1] , a inv , a [i]) ;
32 fpmul751 mont (a inv , den [i] , a inv) ;
33 }
34
35 // convers ion back to e x t e n s i o n f i e l d −−−−−−−−−−−−−−−−−−−−−−−−//
36
37 fpcopy751 (a inv , a [0]) ;
38
39 for (int i = 0 ; i < n ; i++) {
40 fpmul751 mont (a [i] , vec [i] [0] , des t [i] [0]) ;
41 fpneg751 ((vec [i]) [1]) ;
42 fpmul751 mont (a [i] , vec [i] [1] , des t [i] [1]) ;
43 }
44 }

Figure 3.3: pb inv– A C function for performing the partial batched inversion algorithm.

Procedure Performance in clock cycles

fp2inv751 mont 68,881,331
fp2inv751 mont bingcd 15,744,477,032

Take for example some private data c being manipulated or operated on by some
algorithm A. In order to be entirely certain that c in A(c) is not vulnerable to any

47

imagineable side-channel attack it must be the case that the structure of A does not in
anyway depend on the information stored in c.

As will be illuminated in the following subsection, there are two settings in our imple-
mentation where pb inv is called. In the first case, the elements passed to pb inv are the
constituents of Randall’s public key as derived in KeyGeneration A. Because Randall’s
public key values appear as public information in the signature (as commitment E0) they
need not be considered for protection from side-channel analysis.

In the second case, the inputs to pb inv are the j-invariant representations of Bob
and Randall’s shared secret, as derived in SecretAgreement A and SecretAgreement B.
When one of these secret agreement functions are used in the context of SIDH key ex-
change, the same j-invariant is used as the shared secret between party members A and
B, and so would need to be protected against side-channel attacks. This is not the case
in the context of signatures, however, because every signature includes the commitments
E1 which are precisely the shared secrets between the signer and Randall. And so this
second case is also free from concerns of side-channel analysis.

Because our deployments of pb inv are only concerned with public data, we are able
to opt for fp2inv751 mont in the definition of our function and significantly save on exe-
cution cost. While there are no occurances of pb inv in our implementation that require
protection from side-channel analysis, there are scenarios in isogeny-based cryptography
where pb inv could be deployed over confidential information. In these cases, changes
to the definition of pb inv would need to made. Such scenarios are explored in Section
5.2.1.

3.2.2 Embedding Partial Batched Inversions

Recall Figure 2.6 which details the abstraction levels of the SIDH protocols as they relate
to the modules of SIDHC. We can further expand on this figure to illustrate how the
Yoo et al. signature layer interoperates with the original SIDHC codebase. See Figure
3.4 - “SIDH signature.c” signifies the C module added by Yoo et al., which implements
Σ′.KeyGen, Σ′.Sign, and Σ′.Verify as they are outlined in Section 2.5. For the re-
mainder of this section we will refer to these higher-level procedures as simply KeyGen,
Sign, and Verify.
Parallelizing Signatures. Recall now the construction of Sign and Verify from Section
2.5. The sign procedure requires running 2λ distinct instances of the underlying key
exchange protocol, after which these instances are reproduced in Verify to check for
their validity. It is clear that, because every 2λ iteration of Sign and Verify are en-
tirely independent of each other, these procedures present themselves as embarrassingly
parallel.2

This parallelization approach was exactly the one taken by Yoo et al. in their
C implementation. Refer again to the SIDH signature.c functions outlined in Table
2.4: isogey sign acts as the entry point for Sign and spawns a POSIX thread for
every instance of the procedure’s for-loop. So now, in parallel, every thread spawned
by isogeny sign makes a call to sign thread, which in turn performs Bob’s interac-
tion with Randall. This is illustrated in Figure 3.5. Verification proceeds analogously;
isogeny verify is executed and spawns POSIX threads executing verify thread until

2in the field of high performance computing, a problem that is trivially parallizable is often referred
to as embarrassingly parallizable.

48

Figure 3.4: Relationship between SIDH based signatures & the Yoo et al. fork of the
SIDH C library

sign thread1

sign thread2

sign thread248

isogeny sign

verify thread1

verify thread2

verify thread248

isogeny verify

Figure 3.5: The implementations of Sign and Verify, divided into serial segments
isogeny sign and isogeny verify and then parallel segments sign thread and
verify thread.

all 2λ iterations are complete. λ here denotes the security level in bits (128 by default in
SIDH), and so 248 threads are spawned in both sign thread and verify thread.

And so, there are two settings in which the same sequence of operations will be carried
out 248 times in parallel. This means that we need only one occurance of an Fp2 inversion
in either sign thread or verify thread to be able to fill a element batch of size 248,
suitable for partial batched inversion.

Costello et al. have concisely outlined many of the SIDHC isogeny and point-wise
functions in Table 1 of [CLN16]. Examinig this figure, we note that there are only three
candidate functions containing element inversion calls: j inv, inv 4 way, and get A. The
fact that so few functions require inversions is, again, thanks to the design decisions out-
lined in Section 2.6.2.

j inv is a function returning the j-invariant of a curve which is used in the derivation
of the shared secret. If we refer back to our definitions of Sign and Verify (Algorithms
9 and 10, respectively) we note that Sign contains a call to SecretAgreement B in ev-
ery iteration of its for-loop. Similarly, Verify contains a call to SercretAgreement A

in roughly half of the iterations of its for-loop, and a call to SecretAgreement B in the

49

remaining iterations. This totals to 248 secret agreement computations in both signature
signing and verifying procedures. This means that somewhere in the exeuction flow of
isogney sign and isogeny verify there are calls to these secret agreement functions,
illustrating the presence of 1 j inv function call (and by extension, 1 field inversion,) in
every signing and verification thread.

inv 4 way is a function which takes 4 Fp2 elements and returns each elements inversion
by means of calculating only one inversion (via the same method outlined by Batched-
Inversion). This function is used in the key generation process to invert the Z-values
of the public key curve elements; φ(P), φ(Q), and φ(P − Q)), so that they can be con-
verted from projective to affine representation. Because every sign thread execution
represents Bob’s key exchange with a distinct and random Randall, KeyGeneration A

must be called in each thread to generate Randall’s public and private keys. This results
in another candidate batch of size 248 for batched partial inversion.

get A, while containing an extension field inversion, does not arise in the execution flow
of the signature scheme.

In Figure 3.6 we illustrate a heavily simplified call-graph for the sign thread and
verify thread, demonstrating where in the execution pipeline j inv and inv 4 way

occur. The reader may suspect that, in sign thread for example, the inversions in
SecretAgreement B and KeyGeneration A could be batched together to form a batch
of 512 elements and to reduce the total number of inversions in isogeny sign to one.
This is not possible, however, because the valid execution of SecretAgreement B re-
lies on information returned by KeyGeneration A, and so these inversions must occur
sequentially.

sign thread verify thread

KeyGeneration A

SecretAgreement B

KeyGeneration A

SecretAgreement A

SecretAgreement B

j inv

inv 4 way

j inv

inv 4 way

j inv

248x ∼ 124x ∼ 124x

248x ∼ 124x ∼ 124x

Figure 3.6: The execution flow of sign thread and verify thread as originally imple-
mented by Yoo et al.

To enable batching across execution instances of j inv and inv 4 way, we have sup-
plied new functions j inv batch and inv 4 way batch. These functions, upon reaching
what were originally Fp2 inversions (calls to fp2inv751 mont), add their elements that
are awaiting inversion to a buffer. Once the buffer of elements has reached its predefined
capacity, the final thread to add its element executes pb inv on the buffer. Each thread
thereafter, having kept track of where in the buffer they entered their element, retrieves
their now inverted element from the buffer returned by pb inv.

50

sign thread verify thread

KeyGeneration A

SecretAgreement B

KeyGeneration A

SecretAgreement A

SecretAgreement B

j inv batch

inv 4 way batch

j inv batch

inv 4 way batch

j inv batch

248x ∼ 124x ∼ 124x

248x ∼ 124x ∼ 124x

Figure 3.7: The execution flow of sign thread and verify thread when run with in-
version batching enabled

To properly implement pb inv in these functions, we modify every function along the
call stack leading up to j inv and inv 4 way: SecretAgreement A, SecretAgreement B,
and KeyGeneration A. Our modifications allow these functions to optionally pass a C
struct we have defined which holds all of the information necessary for a successfull exe-
cution of pb inv. We refer to this structure as batch struct, and it holds the following:
an integer batchSize denoting the number of elements in the batch, an integer cntr

which tracks how many elements are currently in the batch (and is invariably less than or
equal to batchSize), an f2elm t buffer invArray for storing the elements to be inverted,
and an f2elm t buffer invDest for storing the inversion results.

Once one of the aforementioned kex.c functions reaches its call to either j inv or
inv 4 way, the function checks whether the batch struct it has been passed is NULL. If
the batch struct is defined, the call to j inv or inv 4 way is replaced with a call to
j inv batch or inv 4 way batch, respectively.

A mutex lock can also be found in the batch struct, allowing j inv and inv 4 way to
increment the size of the batch safely across threads. Each thread performs the following
as it approaches the inversion call:

1. acquire the mutex lock

2. add element to be inverted to invArray

3. store the current value of cntr locally

4. increment cntr

5. release the lock

A semaphore has also been included in batch struct, the function of which is to
ensure that each thread knows to wait until the batch has been filled (248 elements in
the signing case, 128 in the verification cases) before it attempts to access its inverted
element. If the locally stored cntr is less than batchSize, the current thread waits on
the semaphore. If the locally stored cntr is equal to batchSize, this implies the current
thread is the last to add its element - this thread then carries out execution of pb inv

and upon completion posts the sempahore. After the semaphore has been posted, all
other threads are able to resume execution and retrieve their now inverted elements.

51

sign thread

j inv batch

inv 4 way batch1

sign thread

j inv batch

inv 4 way batch248

isogeny sign

pb inv

pb inv

C code for all of these functions (with comparable differences highlighted) can be
found in Appendix A.

3.3 Results

Our results come in several forms. First, there are the execution-time results of pb inv,
compared with plain batching and unbatched inversions. Measurements of this first type
are gathered in a general Fp2 environment constructed using the NTL C++ library. This
allows us to meaure how the performance of pb inv compares with other approaches
for arbitrarily sized moduli. These numbers can be found in Tables 3.2 and 3.3, and
are measured in seconds. The benchmarks were taken on a single-core 1.3GHz AMD
processor.

Modulus Size Regular Batch pb inv Unbatched

32 0.351996 0.13946 0.159744
64 0.335376 0.132932 0.167551
128 0.356995 0.150744 0.299575
256 0.748303 0.207973 0.486726
512 0.655977 0.34409 0.886866
1024 1.49688 0.762736 1.83442
2048 3.44086 2.07405 4.39554

Table 3.2: Execution time in seconds for 100 field element inversions using various tech-
niques and modulus sizes (measured in seconds)

The reader will note that the scale factor on performance as modulus size increases is
significantly lower for pb inv than it is for other approaches. This is important because,
as the computational power of adversaries increases, modulus sizes increase in order to
ensure that compromising secret keys via a brute-force attack remains adequately difficult.

Also worth noting is how the non-partial batching algorithm performs poorly when
the modulus is small. This could be an indication that for small modulus N, multipli-
cations quickly approach the computational cost of inversions for extension field elements.

We also measure the improvement in the performance of signature signing and verifying
procedures offered by the inclusion of the batched partial inversion mechanism. Figure

52

Modulus Size Regular Batch pb inv Unbatched

32 3.45507 1.35421 1.51127
64 3.4481 1.32611 1.61707
128 3.64458 1.54956 2.95078
256 7.00599 2.18369 4.80218
512 6.563 3.39861 8.87935
1024 14.8953 7.90045 18.3234
2048 36.216 22.2085 42.616

Table 3.3: Execution time in seconds for 1000 field element inversions using various
techniques and modulus sizes (measured in seconds)

Procedure Without Batching With Batching

KeyGen 84,499,270 84,499,270
Signature Sign 4,950,023,141.65 4,552,062,482.520
Signature Verify 3,466,703,991.09 3,173,340,239.461

Table 3.4: Performance comparisons of signature subroutines run with and without batch-
ing.

3.4 provides benchmarks for KeyGen, Sign, and Verify procedures with both batched par-
tial inversion implemented (in the previously mentioned locations) and not implemented.
All benchmarks are averages computed from 100 randomized sample runs. These results
are measured in clock cycles and run on a quad-core Intel i5-8250U 1.6GHz processor.

With inversion batching turned on we notice a ∼8% performance increase for both
signature signing and verification.

53

Chapter 4

Compressing Signatures

Our second contribution to the SIDHC signature library is a mechanism for compressing
signatures. This chapter will cover the compression technique used. This chapter, much
like the last, will be split into three sections: a brief coverage of the employed compression
technique, the details of our implementation and integration of this technique into SIDHC,
and finally an analysis of the results of this contribution.

In the first section of this chapter, we discuss the SIDH public key compression tech-
nique resulting from combined efforts of Azerderakhsh et al. [AJK+16] and Costello et
al. [CJL+17]. We attempt to provide a sufficient overview of the technique while only
covering in detail the components that are of significant relevance to our implementation.
Those who seek to better understand the ins and outs of this technique should direct
themselves to the original papers.

The second section covers in detail how we apply this public key compression to Yoo
et al. signatures. We make use of the functions offered by Costello et al. which implement
the previously mentioned technique. This code was first made available in the second
installment of Microsoft’s SIDH library [LCE+16].

Finally, we round off the Chapter with an analysis of the bandwidth improvement
offered by this technique. We contrast this spatial improvement with the computational
cost of compressing points, and discuss the practicality of employing this technique.

4.1 SIDH Key Compression Background

In this section we will briefly cover the literature surrounding the compression technique
that we employ. This technique was first outlined by Azerderakhsh et al. [AJK+16] and
later improved upon by Costello et al. [CJL+17]. Here we investigate the details of these
works that are relevant to our implementation.

First, recall from Section 2.3.1 the structure of an SIDH public key, denoted pk;

pk = (E,P,Q)

Where E is a supersingular elliptic curve and P and Q are elliptic curve points such that
P,Q ∈ E. Recall that E can be sufficiently represented by one Fp element which denotes
A from the following definition of E:

E : y2 = x3 + Ax+B.

54

A sufficiently represents E in this context because in SIDHC we are concerned only
with curves where B = 0.

P and Q, on the other hand, can each be represented by their x-coordinate (two Fp
elements) and a single bit determining the correct y-coordinate. Therefore, without more
sophisticated compression, an SIDHC public key can be represented with 6 log p bits.

4.1.1 Compressing SIDH Public Keys

Recall the discrete logarithm problem in the context of elliptic curves: given an elliptic
curve group E(K) and points P,Q ∈ E(K), find n such that P = nQ. The two-
dimensional discrete log problem is then the following: given an elliptic curve group
E(K), two points {R1, R2} generating a subgroup H of E(K), and an element PH ∈ H,
compute α and β such that:

PH = αR1 + βR2

The Pohlig-Hellman algorithm can be applied to solve the discrete logarithm problem in
groups whose order is a smooth integer [PH78], and there is a variation of this algorithm
which solves this two-dimensional discrete log problem with time complexity O(q

√
[log p]),

where q is the largest prime dividing |H| [Tes99].

Azerderakhsh et al. show that an SIDH public key can be compressed in the follow-
ing way. Taking Alice’s SIDH key pair, for example, we have her public key pkA =
(EA, φA(PB), φA(QB)) and her private key skA = mA such that ker(φA) = 〈PA+[mA]QA〉.
Because {PB, QB} generates the torsion subgroup EA[`eBB], we have that φA(PB) ∈ E[`eBB]
and φA(QB) ∈ E[`eBB]. Thus, the Pohlig-Hellman algorithm can be used to resolve
φA(PB) = [αP]R1 + [βP]R2 and φA(QB) = αQR1 + βQR2 where {R1, R2} is a basis
for EA[`eBB] [AJK+16].

Then, instead of sending Bob (EA, φA(PB), φA(QB)), Alice can send (EA, αP , βP , αQ,
βQ).1 And so, as long as Alice and Bob can seperately generate the same {R1, R2}, they
can both sufficiently represent one anothers public keys with only 4 log p bits.

Constructing the Basis. Constructing R1 and R2 can be done with a relatively simple yet
time consuming process. We will continue to use the compression of Alice’s public key,
pkA, as our example.

1. Choose a random point P ←$ E(Fp2).

2. Multiply P by `eBB · f to obtain P ′, the order of which will divide `eBB .

3. Check the order of P ′ by multiplying it by powers of `A until the identity is given.

4. If the order is `eBB , set R1 = P ′, otherwise return to step one.

5. Repeat the same process for a new random point Q until Q′ of order `eBB is found.

6. Check that Q′ is independent of R1 by computing their Weil pairing: e(R1, Q
′).

1The approach outlined by Azerderakhsh et al. involves sending the j-invariant of E, which can be
represented with the same amount of space as one Fp2 element. Because we are working in SIDHC where
we can already represent curves with one Fp2 element, we omit this detail.

55

7. If the pairing results in anything other than 1, set R2 = Q′, otherwise return to
step 5.

The same (R1, R2) pair will be derived by both Alice and Bob if they use a psue-
dorandom number generator for generating P and Q AND they run their PRNGs with
identical seeds [AJK+16].

The literature, to our knowledge, has thus far neglected the details of generating and
transmitting this common seed necessary for basis generation. We note that the seed can
be generated by the signer (using any PRF of their liking) and transmitted with their
public key (which needs only to be sent once).

Decompressing Public Keys. Decompression for this technique varies depending on the
setting, but for our purpose we are concerned only with how decompression is done for
SIDH key exchange. Bob computes the basis {R1, R2} by seeding his PRNG with the
same value as Alice. Bob then uses αP , βP , αQ and βQ to recompute φA(PB) and φA(QB).
Then Bob computes the isogeny φ′B : EA → EAB with ker(φ′B) = [AJK+16].

Alice then acts identically on Bob’s now compressed public key, pkB, and the two
arrive at the same shared secret, the j-invariant of EAB, just as in the original SIDH key
exchange.2

4.1.2 Improvements to SIDH Key Compression

The work of Costello et al. further developed this approach to achieve public key sizes
of 7

2
log p [CJL+17]. In addition to this, Costello et al. also outline several algorithmic

improvements which decrease the runtime of this compression mechanism.
Many of the algorithms offered by Costello et al. can be treated as black-boxes in

our setting, and so finer grained details of their work on efficient compression are omitted.

Improved Compression. Take Alice’s public key pkA, compressed via the Azerderakhsh
et al. technique, to be (EA, αP , βP , αQ, βQ). Therefore we have

P = αPR1 + βPR2,

Q = αQR1 + βQR2;

Where {R1, R2} forms a basis of EA[`eBB], and P and Q are exactly the elliptic curve point
components of Alice’s original, uncompressed public key.

From here, Costello et al. note the following: The end goal of the key exchange (in
our running example) is for Bob to compute 〈P + mBQ〉, where mB is Bob’s secretly
generated value. Given that P has order n = `eBB , we have that either αP ∈ Z∗n or
βP ∈ Z∗n, and so it follows that

〈P +mBQ〉 =

{
〈α−1

P P + α−1mBQ〉 if αP ∈ Z∗n
〈β−1

P P + β−1mBQ〉 if βP ∈ Z∗n
And so, computing 〈P+mBQ〉 to arrive at the shared secret does not require recomputing
P and Q. Instead, the scalar factors of P and Q with respect to the generated basis can
be normalized to yield

(α−1
P P, α−1

P Q) = (R1 + α−1
P βPR2, α

−1
P αQR1 + α−1

P βQR2)

2We have omitted details from this method of compression that are concerned with potential twists of
Alice and Bob’s curves when compressing public keys, as this does not play a role in our implementation.

56

when αP ∈ Z∗n, or

(β−1
P P, β−1

P Q) = (R1 + β−1
P αPR2, β

−1
P αQR1 + β−1

P βQR2

if βP ∈ Z∗n.

And, thus, Alice has reduced the information she needs to send over the wire from
(EA, φA(PB), φA(QB)) to the following:

pkA =

{
(EA, 0, α

−1
P βP , α

−1
P αQ, α

−1
P βQ) if αP ∈ Z∗n

(EA, 1, β
−1
P αP , β

−1
P αQ, β

−1
P βQ) if βP ∈ Z∗n

Or, alternatively we write

pkA =

{
(EA, 0, ζP , α

′
Q, β

′
Q) if αP ∈ Z∗n

(EA, 1, ζ
′
P , α

′
Q, β

′
Q) if βP ∈ Z∗n

for readability. This reduction from 4 Z∗n elements to 3 takes Alice’s compressed public
key from 4 log p bits to 7

2
log p bits.

Alternative Decompression. Due to the loss of information in either αP or βP , an alterna-
tive route to secret agreement is required. For a compressed public key (E, b, ζP , αQ, βQ)
there exists a γ ∈ Z∗n such that

(γ−1P, γ−1Q) =

{
(R1 + ζPR2, αQR1 + βQR2) if b = 0

(ζPR1 +R2, αQR1 + βQR2) if b = 1

The verifier could reconstruct {R1, R2} to produce 〈P + mQ〉 by computing P and Q
from ζP , αQ, βQ with R1 and R2, and then multiplying Q by their private key m. This
would require a 1-dimensional and a 2-dimensional scalar multiplication of points on the
curve E. Costello et al. note instead that

〈P +mQ〉 =

{
〈(1 +mαQ)R1 + (ζP +mβQ)R2〉 if b = 0

〈(ζP +mαQ)R1 + (1 +mβQ)R2〉 if b = 1

And since n = le we have (1 +mαQ), (1 +mβQ) ∈ Z∗n, giving

〈P +mQ〉 =

{
〈R1 + (1 +mαQ)(ζP +mβQ)R2〉 if b = 0

〈(1 +mβQ)(ζP +mαQ)R1 +R2〉 if b = 1

reducing decompression to a single 1-dimensional scalar multiplication of a point on E
along with a handful of Fp2 operations.

4.2 Implementation Details

In this section we demonstrate how the previously detailed public key compression tech-
nique can be used to compress a Yoo signature. Again, we will turn to the SIDHC library
and reference portions of C code (some contributed by Patrick Longa [LCE+16], some by

57

Yoo and his associates [YAJ+17a], and some by us) to investigate details of our imple-
mentations performance.

Recall from Section 2.5 the structure of a Yoo et al. signature, σ:

σ = (com, ch, h, resp)

where

• com is a list of 2λ pairs of supersingular elliptic curves: {(E1,1, E2,1), (E1,2, E2,2), ...,
(E1,2λ, E2,2λ)},

• ch is a list of 2λ randomly chosen bits,

• resp is a list of size 2λ where each element is either a single elliptic curve point
ψR(S), where ψR is Randall’s isogeny and S is the signers secretly generated point,
or the pair of points (R, φ(R)), where R is Randall’s secretly generated point, and
φ is the signers isogeny.

• h is a list of 2λ queries to a random oracle G, such that hi = G(respi)

Recall also from Subsection 2.6.1 the following definitions:

• an felm t denotes a Fp element, e.g. a 751-bit integer,

• an f2elm t denotes an Fp2 element, represented as two felm ts,

• a point affine denotes an elliptic curve point represented in affine space (two
f2elm ts), and

• a point proj denotes an elliptic curve point represented in projective space (two
f2elm ts).

The representation of σ in SIDHC (as implemented by Yoo et al.) has a few noteworthy
differences. Signatures in this setting are defined via a C struct in the following way:

1 struct Signature {
2 f 2 e lm t ∗Commitments1 [NUM ROUNDS] ;
3 f 2 e lm t ∗Commitments2 [NUM ROUNDS] ;
4 unsigned char ∗HashResp ;
5 f e l m t ∗Randoms [NUM ROUNDS] ;
6 p o i n t p r o j ∗ ps iS [NUM ROUNDS] ;
7 } ;

with NUM ROUNDS equal to 2λ. The bit-level security of a given signature, then, can
be computed as NUM ROUNDS/2.

Commitments1 is an array containing the first entry from every pair in resp, e.g.
{E1,1, E1,2, ..., E1,2λ}, and Commitments2 holds the second entry from each pair.

HashResp contains the elements of h. In practice the Keccak function3 is used in
place of the random oracle G. 32-byte hash digests are computed using Keccak such that

3Keccak is a cryptographic hash function from which the newly standardized SHA-3 is based [Dwo15].

58

HashResp[i] = Randoms[i/2] if the challenge bit ch is 0, and HashResp[i] = psiS[i/2]

if ch is 1.
Randoms is an array of λ felm t’s. The element at index i of Randoms holds mRi, and

represents Randall’s secretly generated Fp value for iteration i of the signing algorithm.
These values sufficiently represent the elements of resp which take the form (R, φ(R)) for
two reasons:

1. R can be reconstructed using the torsion subgroup generating points that corre-
spond to Randall (R = PA + mRiQA if Bob is signing, and R = PB + mRiQB if
Alice is signing)

2. Because isogenies are (structure preserving) morphisms, it holds that R = P +
[mR]Q⇒ φ(R) = φ(P) + [mR]φ(Q). Thus, because φ(P) and φ(Q) are members of
the signers public key, mR is sufficient for reconstructing φ(R).

Lastly, psiS denotes the elements of resp which take the form of ψR(S). These points
cannot be represented by a single felm t (as in Randoms) because doing so would leak
the signers private information.

4.2.1 ψ(S) Compression

For the following two subsections we will assume the signer to be Bob (e.g. using B
values) and the verifier to be Alice (e.g. using A vaues). This is done only for simplicities
sake - to reverse the roles one need only to swap all blue variables with their red coun-
terparts, and vice-versa. Additionally, function names ending in B would then need to
be replaced with their A alternatives, and vice-versa.

Our contribution offers an implementation to carry out the idea of compressing every
element of psiS (as proposed by Yoo et al.) by using the compression technique covered
in the previous section. Consider the following.

Each element of psiS has the form ψR(S) = ψR(PB) + [mB]ψR(QB). (PB, QB) gener-
ates the torsion subgroup E[`eBB] so we know that S has order `eBB (e.g. [`eBB]S = O) and,
because isogenies preserve the identity we know [`eBB]ψR(S) = O and ψR(S) ∈ ER[`eBB].
Therefore, we can be certain that the compression technique of the previous subsection
can be applied to all elements of psiS if we chose our basis {R1, R2} such that it generates
ER[`eBB].

Recall that Bob has private key skB = mB from which we can generate S = PB +
[mB]QB and φB : E → E/〈S〉, and public key pkB = (EB, φB(PA), φB(QA)). Recall
also from previous sections that the general procedure for signature signing begins with
Bob calling the isogeny sign function, which in turn spawns 2λ threads, each executing
sign thread. Each of these threads has an identifier r, and performs the following via
sign thread:

1. Makes a call to KeyGeneration A to generate Randall’s keypair (pkR, skR)

• skR = mR

• pkR = (ER, ψR(PB), ψR(QB)) where ψR : E → ER

2. Sets Randoms[r] ← skR

59

3. Sets Commitments1[r] ← ER

4. Performs SecretAgreement B with skB and pkR to generate (EBR, ψR(S)).

5. Sets Commitments2[r] ← EBR

6. Sets psiS[r] ← ψR(S)

And so, if we wish to apply point compression to the elements of psiS, we must
invoke our compression function within every sign thread instance, after the execu-
tion of SecretAgreement B. We provide a function CompressPsiS, based on the original
point compression function of Costello et al. [CJL+17]. This modified program path for
sign thread is outlined in Figure 4.1.

sign thread

KeyGeneration A

SecretAgreement B

CompressPsiS

2λ times

2λ times

2λ times

Figure 4.1: The general execution flow of sign thread with the addition of ψ(S) com-
pression

The CompressPsiS Function. On round r of signature signing, our compression function
takes the following as parameters:

• the point proj psiS[r],

• an f2elm t A, denoting ER (equivalently Commitments1[r]), and

• the set of curve parameters CurveIsogeny, which we set equal to SIDHp751.

And the output of CompressPsiS includes:

• a number CompressedPsiS ∈ ER[`eBB], and

• the bit compBit.

Our compression algorithm then follows closely the technique of Azerderakhsh et al.,
making use of the efficient algorithms provided by Costello et al. An abstracted and
generalized version of this function can be seen in Figure 16 as CompressPsiS. For our
concrete C definition see Appendix A.

60

Algorithm 16 – CompressPsiS(ψR(S)r, ER, User)

1: if User = Alice then
2: le ← `eAA
3: if User = Bob then
4: le ← `eBB
5: Check that ψR(Sr) has order le

6: Generate(R1, R2) as the basis for ER[le]
7: Compute α, β such that ψR(S)r = αR1 + βR2

8: if α mod l 6= 0 then
9: b← 0

10: γ ← α−1β
11: else
12: b← 1
13: γ ← β−1α

14: return (γ, b)

CompressPsiS returns an element of ER[`eBB] (denoted by γ in Figure 16) which be-
comes compPsiS[r]. This element can be represented with fewer bytes than an element of
Fp2 because |ER[`eBB]| = `eBB . The Signature structure used to construct σ is necessarily
modified as follows:

1 struct Signature {
2 f 2 e lm t ∗Commitments1 [NUM ROUNDS] ;
3 f 2 e lm t ∗Commitments2 [NUM ROUNDS] ;
4 unsigned char ∗HashResp ;
5 f e l m t ∗Randoms [NUM ROUNDS] ;
6 p o i n t p r o j ∗ ps iS [NUM ROUNDS] ;
7 d i g i t t compPsiS [NUM ROUNDS] [NWORDSORDER] ;
8 int compBit [NUM ROUNDS] ;
9 int compressed ;

10 } ;

Note the additional bit value compressed in the Signature struct. It is important
that this bit is packaged as part of the final signature so that the verifier knows whether
or not they need to perform decompression. We have also included an array of bits, 2λ
in size, such that compPsiS[r] = α−1β if compBit[r] = 0 and compPsiS[r] = β−1α
otherwise (b in Figure 16).

4.2.2 Verifying A Compressed Signature

Decompression can be embedded into verify thread rather simply. On the code path
where ch = 1, the verifier (Alice in our case) simply needs to run decompression on
compPsiS[r] and compBit[r] before she runs SecretAgreement B. Figure 4.2 reflects
this modified code path at a high level.

However, if we look back to the SIDH public key decompression mechanism described
in Subsection 4.1.2, we note again that the aim is not to reconstruct the originally com-
pressed values. Instead, an instance of compressed SIDH key exchange is able to arrive
at the shared secret j(EAB) between Alice and Bob without reconstructing the original
points, by absorbing the constants into the shared secret value.

61

verify thread

KeyGeneration A

SecretAgreement A

DecompressPsiS

SecretAgreement B

n ≈ λ times 2λ− n times

2λ− n timesn times

Figure 4.2: The general execution flow of verify thread with the addition of ψ(S)
decompression

This means that in transmitting compPsiS[r] in its normalized form we lose the
ability to reconstruct ψR(S) exactly. We are only able to construct the point S0 =
R1 + compPsiS[r]R2, or S0 = compPsiS[r]R1 +R2 depending on compBit[r]. Looking
back to the definition of the Verify procedure (Figure 8), we note that the verification
path where ch = 1 requires that Alice checks 1) that ψR(S) has order `eBB , and 2) that
ψR(S) generates the kernel of the isogeny ψR

′ : ER → EBR. Thus, we needn’t return to
the original ψR(S) value to successfully verify because

1. if R1 and R2 have order `eBB (which by definition they do) and compPsiS[r] is a
multiple of `B, then S0 is guaranteed to have order `eBB , and

2. S0 and ψR(S) having equivalent order implies that they generate the same kernel.

And so, DecompressPsiS can be defined to generate the same basis {R1, R2} as in
CompressPsiS and then compute S0 = R1 + [compPsiS[r]]R2 if compBit = 0 and S0 =
[compPsiS[r]]R1 +R2 otherwise. The resulting S0 is then passed to SecretAgreement B

just as in uncompressed verification and the verification will run successfully. Algorithm
17 outlines the general functioning of DecompressPsiS at a high level, for our specific C
implementation see Appendix A.

4.3 Results

Let σ denote an umcompressed Yoo et al. isogeny-based signature. The size of σ can be
computed as the sum of the sizes of its constituent parts. To reiterate, σ is composed of:

• 4λ Fp2 elements (the commitments), totaling 384λ bytes,

• 2λ Keccak hash-function digests, totaling 64λ bytes,

• ∼λ elements of Z/`eAA Z (Randall’s secret key value), totaling ∼48λ bytes, and

• ∼λ elliptic curve points (ψR(S) points), totaling ∼92λ bytes

Therefore, in the case where the challenge bits are equally divided between 1 and 0,
|σ| = 688λ bytes.

62

Algorithm 17 – DecompressPsiS(γ, b, ER, User)

1: if User = Alice then
2: le ← `eBB
3: if User = Bob then
4: le ← `eAA
5: Check that ψR(Sr) has order le

6: Generate(R1, R2) as the basis for ER[le]
7: if b = 0 then
8: b← 0
9: S0 ← R1 + [γ]R2

10: else
11: b← 1
12: S0 ← [γ]R1 +R2

13: return S0

Let σcompressed denote a compressed Yoo et al. signature using the techniques outlined
by Azerderakhs et al. and Costello et al. σcompressed swaps the buffer of ∼λ elliptic curve
points for one of ∼λ Z/`eBB Z elements. This subtracts ∼192λ bytes from the size of the
signature and adds ∼48λ bytes - reducing the signature size by ∼144λ bytes for a final
size of 544λ bytes. In the case of SIDHC, this takes us from 88,064 byte signatures to
68,632 byte signatures. These improvements are presented again in Table 4.1.

Security Level Original Signature Size Compressed Signature
128 88,064 69,632
256 176,128 139,264
1028 707,264 559,232

Table 4.1: Compressed and uncompressed signature sizes (in bytes) at varying levels of
post-quantum security.

We provide performance measurements for our compressed implementation of the Yoo et
al. signature scheme in the following and final chapter.

63

Chapter 5

Conclusion

In this chapter we provide our final set of metrics for the performance of the original
isogeny-based signature scheme, our batched inversion implementation of the protocol,
and our implementation feauturing ψ(S) compression. We also offer measurements for
how the compressed version of the protocol performs when combined with batched inver-
sion.

Following the debriefing of our results, we offer one final section wherein we discuss
the implications of our work in a general context. In this section we also discuss some
possible future work to further progress the practicality of isogeny-based cryptography.

5.1 Performance Results

In this section we compile performance metrics for the original Yoo et al. signature
scheme, our batched-inversion signature scheme, our compressed signature scheme, and
also our combined compression with batched inversions implementation. For each of
these implementations we show the average cycle time for Sign and Verify as well as
the standard deviation. These measurements are outlined in 5.1 (where “C+B” denotes
the combined compression with batching scheme). These averages are derived from 100
subsequent runs of each implementation.

We include graphical representations of our captured data, these can be found in B.1,
B.2, B.3, and B.4 of Appendix B.

Average Cycles Standard Deviation
Original Sign 4,950,023,141.654 300,643,097.882
Original Verify 3,466,703,991.096 263,674,018.528
Batched Sign 4,552,062,482.520 18,113,276.904
Batched Verify 3,173,340,239.461 68,672,478.339
Compressed Sign 10,224,610,996.644 465,349,640.468
Compressed Verify 4,472,444,449.556 182,317,386.709
C+B Sign 10,016,427,839.915 656,310,878.608
C+B Verify 4,326,294,567.596 175,349,338.690

Table 5.1: Average performance and standard deviation in clock cycles for all versions of
the Yoo et al. signature scheme.

64

The reader might note that the the performance metrics of this protocol all yield a
considerably high standard deviation. This can be attributed to a few factors. The first
and perhaps most influential factor is the size of the randomly generated values such as
the private key m. As these generated values fluctuate as does the time to compute field
and point-wise arithmetic on them. This variance can only be attributed to non-constant
time arithmetic, of course - which we have opted for in many cases due to the fact that
we are mostly operating on public data.

On that same point, the reader will also note increased variance in the compressed
implemetations. Part of this variance can be attributed to the fact that basis generation
is a probabilistic process running in non-constant time - if favourable starting points are
chosen, this process is completed significantly faster.

We also return again to the comparison charts first employed in Section 1.1.1 to
compare the temporal and spatial performance of these isogeny-based signatures to other
post-quantum and classical alternatives. This time, we use the metrics resulting from
our modified implementations as the point of comparison. These comparisons can be
found in Table 5.2 (comparing subroutine performances) and Table 5.3 (compairing key
and signature sizes). These metrics are all taken, yet again, at the 128-bit post quantum
securty level (or 2048-bit and 256-bit classical security level, in the case of RSA and
ECDSA).

Key Gen Sign Verify
SIDH 84,499,270 4,950,023,142 3,466,703,991
SIDH Batched 84,499,270 4,552,062,483 3,173,340,239
SIDH Compressed 84,499,270 10,224,610,997 4,472,444,450
SIDH C+B 84,499,270 10,016,427,840 4,326,294,568
Sphincs 17,535,886.94 653,013,784 27,732,049
qTESLA 1,059,388 460,592 66,491
Picnic 13,272 9,560,749 6,701,701
RSA 12,800,000 1,113,600 32400
ECDSA 1,470,000 128,928 140,869

Table 5.2: Performance in clock cycles for our improved isogeny-based signatures in
comparison with other post-quantum and classical alternatives.

Public Key Private Key Signature
SIDH 768 48 88,064
SIDH Compressed 768 48 69,632
Sphincs 32 64 8,080 - 16,976
Rainbow 152,097 - 192,241 100,209 - 114,308 64 - 104
qTESLA 4,128 2,112 3,104
Picnic 33 49 34,004 - 53,933
RSA 384 256 384
ECDSA 32 32 32

Table 5.3: Key and signature sizes for our compressed isogeny-based signatures in com-
parison with other post-quantum and classical alternatives.

65

We report, as previously mentioned, roughly 8% faster Yoo et al. signature signing
and verifying when batching is implemented (and of course, this number can be increased
if batching is implemented for the remaining inversion operations). We also note roughly
2% faster signing for compressed signatures when batching is implemented, and 3% faster
verification.

Additionally, when we apply compression to Yoo et al. signatures we introduce an-
other cross-thread inversion. This offers yet another avenue for implementing the partial
batched inversion algorithm. We take advantage of this opportunity in our implementa-
tion, and our “C+B” measurements reflect the results accordingly. Though compression
offers another opportunity for batching inversions, the time spent on inversions (and thus
the total time saved) becomes a much smaller percentage total execution time of the sign
and verify algorithms (due to the intense computational overhead required to perform
compression). This is why batching appears to offer less radical improvements to our
compressed signature scheme.

And so, we see from these comparisons that isogeny-based protocols can be improved
upon through intelligent implementation. Our contributions have improved the size of
Yoo et al. signatures by roughly 5%, bringing them much closer to some implementations
of the hash-based signature scheme Picnic.

5.2 Discussion & Concluding Remarks

In this final section, we finish off the dissertation with some concluding remarks on the
applicability of SIDH and isogeny-based cryptography, the importance of post-quantum
cryptography, and the possible avenues for future work in this specific area.

5.2.1 Future Work

The next stage for this line of work is to finish applying inversion batching to the re-
maining cross-thread Fp2 inversions made throughout the signature scheme. There is 1
inversion call in both Sign and Verify that has yet to be processed for batching, and
from which further (comparable) performance improvements can be made.

There are several other areas of the code-base where relatively simple changes could
be made to gain marginal performance improvements. Take for example functions which
previously ran on private information but have now been adopted to run on public in-
formation, such as the key-exchange functions used in the verification process. These
functions are designed to employ constant time algorithms for performing arithmetic
(such as the Montgomery ladder) but could now be modified to support non-constant
time implementations. Changes here could save time at several points of the verification
process.

Following further efforts to improve performance, the code-base should be heavily
tested in terms of correctness and application security, and after continued scrutiny (and
improvements to code design,) a pull request can be made to the Microsoft SIDH repos-
itory [LCE+16] to merge both the Yoo et al. signature scheme and our improved imple-
mentations into their code-base.

In addition to all of this, there is one other obvious setting in which the inversion
batching technique of Chapter 3 could be leveraged for performance improvements. Con-
sider some web domain servicing many end-users in parallel over HTTPS (or any secure

66

communication protocol in which isogeny-based cryptography could be deployed). Said
web server could, with high enough traffic, batch together inversion calculations from
separate SIDH or Yoo et al. signature scheme implementations with many different users
so as to decrease the amount of time spent on field element inversions.

Parallel to this line of work, there are of course the continued efforts of mathematically-
inclined researchers to produce alternative designs for isogeny-based signature schemes,
and alternative isogeny-based schemes that offer solutions to other information security
goals. With advancements in algorithm and cryptosystem design happening in parallel
with research on intelligent design, isogeny-based schemes (and post-quantum cryptog-
raphy at large) will continue to approach practical and deployable systems.

To conclude, implementations of cryptographic primitives do have a lot to gain from
intelligent design and implementation when it comes to performance metrics. Classical
cryptographic algorithms have been targetted by research of this sort for many decades
- post-quantum systems on the other hand have younger and perhaps less optimized im-
plementations. We believe that as the underlying foundations of post-quantum protocols
gain traction and wide-spread confidence, more developers will begin to experiment with
these protocols and the number of alternative implementation mechanisms and techniques
will flourish, offering variety in terms of time-space tradeoffs and efficient, system-specific
implementations.

As mathematical and developmental research both continue to provide more efficient
and secure implementations of post-quantum protocols, we can continue to approach a
cryptographically secure world in the face of a rapidly developing cryptanalytic threats.

67

Appendices

68

Appendix A

SIDHC Functions

A.1 Fp and Fp2 Functions

A.2 Isogeny and Point-wise Functions

A.2.1 j inv

1 void j i n v (const f 2 e lm t A, const f 2 e lm t C, f 2 e lm t j i nv) {
2 f2e lm t t0 , t1 ;
3 fp2sqr751 mont (A, j i nv) ; // j i n v = Aˆ2
4 fp2sqr751 mont (C, t1) ; // t1 = Cˆ2
5 fp2add751 (t1 , t1 , t0) ; // t0 = t1+t1
6 fp2sub751 (j inv , t0 , t0) ; // t0 = j inv−t 0
7 fp2sub751 (t0 , t1 , t0) ; // t0 = t0−t 1
8 fp2sub751 (t0 , t1 , j i n v) ; // j i n v = t0−t 1
9 fp2sqr751 mont (t1 , t1) ; // t1 = t1 ˆ2

10 fp2mul751 mont (j inv , t1 , j i nv) ; // j i n v = j i n v ∗ t 1
11 fp2add751 (t0 , t0 , t0) ; // t0 = t0+t0
12 fp2add751 (t0 , t0 , t0) ; // t0 = t0+t0
13 fp2sqr751 mont (t0 , t1) ; // t1 = t0 ˆ2
14 fp2mul751 mont (t0 , t1 , t0) ; // t0 = t0 ∗ t 1
15 fp2add751 (t0 , t0 , t0) ; // t0 = t0+t0
16 fp2add751 (t0 , t0 , t0) ; // t0 = t0+t0
17 fp2inv751 mont (j i nv) ; // j i n v = 1/ j i n v
18 fp2mul751 mont (j inv , t0 , j i nv) ; // j i n v = t0 ∗ j i n v
19 }

A.2.2 j inv batch

1 void j i n v ba t ch (f 2 e lm t A, f 2 e lm t C, f 2 e lm t j inv , invBatch∗ batch) {
2 f2e lm t t0 , t1 ;

3 int tempCnt ;

4 fp2sqr751 mont (A, j i nv) ; // j i n v = Aˆ2
5 fp2sqr751 mont (C, t1) ; // t1 = Cˆ2
6 fp2add751 (t1 , t1 , t0) ; // t0 = t1+t1
7 fp2sub751 (j inv , t0 , t0) ; // t0 = j inv−t 0
8 fp2sub751 (t0 , t1 , t0) ; // t0 = t0−t 1
9 fp2sub751 (t0 , t1 , j i n v) ; // j i n v = t0−t 1

10 fp2sqr751 mont (t1 , t1) ; // t1 = t1 ˆ2
11 fp2mul751 mont (j inv , t1 , j i nv) ; // j i n v = j i n v ∗ t 1
12 fp2add751 (t0 , t0 , t0) ; // t0 = t0+t0
13 fp2add751 (t0 , t0 , t0) ; // t0 = t0+t0
14 fp2sqr751 mont (t0 , t1) ; // t1 = t0 ˆ2
15 fp2mul751 mont (t0 , t1 , t0) ; // t0 = t0 ∗ t 1
16 fp2add751 (t0 , t0 , t0) ; // t0 = t0+t0
17 fp2add751 (t0 , t0 , t0) ; // t0 = t0+t0

19 pthread mutex lock(&batch−>arrayLock) ;
20 fp2copy751 (j inv , batch−>invArray [batch−>cntr]) ;
21 tempCnt = batch−>cntr ;
22 batch−>cntr++;
23 pthread mutex unlock(&batch−>arrayLock) ;
24
25 int i ;
26 i f (tempCnt+1 == batch−>batchSize) {
27 pa r t i a l b a t ch ed i nv (batch−>invArray , batch−>invDest , batch−>batchSize) ;
28 for (i = 0 ; i < batch−>batchSize − 1 ; i++) {
29 sem post(&batch−>s ign sem) ;
30 }
31 } else {
32 sem wait(&batch−>s ign sem) ;
33 }
34 fp2copy751 (batch−>invDest [tempCnt] , j i n v) ;
35 batch−>cntr = 0 ;

69

36 fp2mul751 mont (j inv , t0 , j i nv) ; // j i n v = t0 ∗ j i n v
37 }

A.2.3 inv 4 way

1 void inv 4 way (f 2 e lm t z1 , f 2 e lm t z2 , f 2 e lm t z3 , f 2 e lm t z4) {
2 f2e lm t t0 , t1 , t2 ;
3 int tempCnt ;
4
5 fp2mul751 mont (z1 , z2 , t0) ; // t0 = z1∗ z2
6 fp2mul751 mont (z3 , z4 , t1) ; // t1 = z3∗ z4
7 fp2mul751 mont (t0 , t1 , t2) ; // t2 = z1∗ z2∗ z3∗ z4
8 fp2inv751 mont (t2) ; // t2 = 1/(z1∗ z2∗ z3∗ z4)
9 fp2mul751 mont (t0 , t2 , t0) ; // t0 = 1/(z3∗ z4)

10 fp2mul751 mont (t1 , t2 , t1) ; // t1 = 1/(z1∗ z2)
11 fp2mul751 mont (t0 , z3 , t2) ; // t2 = 1/ z4
12 fp2mul751 mont (t0 , z4 , z3) ; // z3 = 1/ z3
13 fp2copy751 (t2 , z4) ; // z4 = 1/ z4
14 fp2mul751 mont (z1 , t1 , t2) ; // t2 = 1/ z2
15 fp2mul751 mont (z2 , t1 , z1) ; // z1 = 1/ z1
16 fp2copy751 (t2 , z2) ; // z2 = 1/ z2
17 }

A.2.4 inv 4 way batch

1 void inv 4 way batch (f 2 e lm t z1 , f 2 e lm t z2 , f 2 e lm t z3 , f 2 e lm t z4 , invBatch∗ batch) {
2 f2e lm t t0 , t1 , t2 ;
3 int tempCnt ;
4
5 fp2mul751 mont (z1 , z2 , t0) ; // t0 = z1∗ z2
6 fp2mul751 mont (z3 , z4 , t1) ; // t1 = z3∗ z4
7 fp2mul751 mont (t0 , t1 , t2) ; // t2 = z1∗ z2∗ z3∗ z4
8 pthread mutex lock(&batch−>arrayLock) ;
9 fp2copy751 (t2 , batch−>invArray [batch−>cntr]) ;

10 tempCnt = batch−>cntr ;
11 batch−>cntr++;
12 pthread mutex unlock(&batch−>arrayLock) ;
13 int i ;
14 i f (tempCnt+1 == batch−>batchSize) {
15 pa r t i a l b a t ch ed i nv (batch−>invArray , batch−>invDest , batch−>batchSize) ;
16 for (i = 0 ; i < batch−>batchSize ; i++) {
17 sem post(&batch−>s ign sem) ;
18 }
19 } else {
20 sem wait(&batch−>s ign sem) ;
21 }
22 fp2copy751 (batch−>invDest [tempCnt] , t2) ;
23 batch−>cntr = 0 ;
24 fp2mul751 mont (t0 , t2 , t0) ; // t0 = 1/(z3∗ z4)
25 fp2mul751 mont (t1 , t2 , t1) ; // t1 = 1/(z1∗ z2)
26 fp2mul751 mont (t0 , z3 , t2) ; // t2 = 1/ z4
27 fp2mul751 mont (t0 , z4 , z3) ; // z3 = 1/ z3
28 fp2copy751 (t2 , z4) ; // z4 = 1/ z4
29 fp2mul751 mont (z1 , t1 , t2) ; // t2 = 1/ z2
30 fp2mul751 mont (z2 , t1 , z1) ; // z1 = 1/ z1
31 fp2copy751 (t2 , z2) ; // z2 = 1/ z2
32 }

A.3 Key Exchange Functions

1 CRYPTO STATUS KeyGeneration A (unsigned char∗ pPrivateKeyA ,
2 unsigned char∗ pPublicKeyA ,
3 PCurveIsogenyStruct CurveIsogeny ,
4 bool GenerateRandom , ba t ch s t ruc t ∗ batch) {
5 unsigned int owords = NBITS TO NWORDS(CurveIsogeny−>owordbits) ;
6 unsigned int pwords = NBITS TO NWORDS(CurveIsogeny−>pwordbits) ;
7 p o i n t b a s e f i e l d t P;
8 p o i n t p r o j t R, phiP = {0} , phiQ = {0} , phiD = {0} ;
9 p o i n t p r o j t pts [MAX INT POINTS ALICE] ;

10 pub l i c k ey t ∗ PublicKeyA = (pub l i c k ey t ∗) pPublicKeyA ;
11 unsigned int i , row , m, index = 0 , npts = 0 ;
12 unsigned int pt s index [MAX INT POINTS ALICE] ;
13 f 2 e lm t c o e f f [5] , A = {0} , C = {0} , Aout , Cout ;
14 CRYPTO STATUS Status = CRYPTOERRORUNKNOWN;
15
16 i f (pPrivateKeyA == NULL | |
17 pPublicKeyA == NULL | |
18 i s Cu rv e I s og enyS t ru c t nu l l (CurveIsogeny)) {
19 return CRYPTO ERROR INVALID PARAMETER;
20 }
21
22 i f (GenerateRandom) {
23 Status = random mod order ((d i g i t t ∗) pPrivateKeyA , ALICE, CurveIsogeny) ;
24 i f (Status != CRYPTO SUCCESS) {
25 c l ea r words ((void∗) pPrivateKeyA , owords) ;
26 return Status ;
27 }
28 }
29
30 to mont ((d i g i t t ∗) CurveIsogeny−>PA, (d i g i t t ∗)P) ;

70

31 to mont (((d i g i t t ∗) CurveIsogeny−>PA)+NWORDS FIELD, ((d i g i t t ∗)P)+NWORDS FIELD) ;
32
33 Status = s e c r e t p t (P, (d i g i t t ∗) pPrivateKeyA , ALICE, R, CurveIsogeny) ;
34 i f (Status != CRYPTO SUCCESS) {
35 c l ea r words ((void∗) pPrivateKeyA , owords) ;
36 return Status ;
37 }
38
39 copy words ((d i g i t t ∗) CurveIsogeny−>PB, (d i g i t t ∗) phiP , pwords) ;
40 fpcopy751 ((d i g i t t ∗) CurveIsogeny−>Montgomery one , (d i g i t t ∗) phiP−>Z) ;
41 to mont ((d i g i t t ∗) phiP , (d i g i t t ∗) phiP) ;
42 copy words ((d i g i t t ∗) phiP , (d i g i t t ∗)phiQ , pwords) ;
43 fpneg751 (phiQ−>X[0]) ;
44 fpcopy751 ((d i g i t t ∗) CurveIsogeny−>Montgomery one , (d i g i t t ∗)phiQ−>Z) ;
45 d i s t o r t a n d d i f f (phiP−>X[0] , phiD , CurveIsogeny) ;
46
47 fpcopy751 (CurveIsogeny−>A, A [0]) ;
48 fpcopy751 (CurveIsogeny−>C, C [0]) ;
49 to mont (A[0] , A [0]) ;
50 to mont (C[0] , C [0]) ;
51
52 f i r s t 4 i s o g (phiP , A, Aout , Cout , CurveIsogeny) ;
53 f i r s t 4 i s o g (phiQ , A, Aout , Cout , CurveIsogeny) ;
54 f i r s t 4 i s o g (phiD , A, Aout , Cout , CurveIsogeny) ;
55 f i r s t 4 i s o g (R, A, A, C, CurveIsogeny) ;
56
57 index = 0 ;
58 for (row = 1 ; row < MAX Alice ; row++) {
59 while (index < MAX Alice−row) {
60 fp2copy751 (R−>X, pts [npts]−>X) ;
61 fp2copy751 (R−>Z , pts [npts]−>Z) ;
62 pt s index [npts] = index ;
63 npts += 1 ;
64 m = s p l i t s A l i c e [MAX Alice−index−row] ;
65 xDBLe(R, R, A, C, (int)(2∗m)) ;
66 index += m;
67 }
68 g e t 4 i s o g (R, A, C, c o e f f) ;
69
70 for (i = 0 ; i < npts ; i++) {
71 e v a l 4 i s o g (pts [i] , c o e f f) ;
72 }
73 e v a l 4 i s o g (phiP , c o e f f) ;
74 e v a l 4 i s o g (phiQ , c o e f f) ;
75 e v a l 4 i s o g (phiD , c o e f f) ;
76
77 fp2copy751 (pts [npts−1]−>X, R−>X) ;
78 fp2copy751 (pts [npts−1]−>Z , R−>Z) ;
79 index = pts index [npts −1] ;
80 npts −= 1;
81 }
82
83 g e t 4 i s o g (R, A, C, c o e f f) ;
84 e v a l 4 i s o g (phiP , c o e f f) ;
85 e v a l 4 i s o g (phiQ , c o e f f) ;
86 e v a l 4 i s o g (phiD , c o e f f) ;
87
88 i f (batch != NULL) {
89 inv 4 way batch (C, phiP−>Z , phiQ−>Z , phiD−>Z , batch) ;
90 } else {
91 inv 4 way (C, phiP−>Z , phiQ−>Z , phiD−>Z) ;
92 }
93
94 fp2mul751 mont (A, C, A) ;
95 fp2mul751 mont (phiP−>X, phiP−>Z , phiP−>X) ;
96 fp2mul751 mont (phiQ−>X, phiQ−>Z , phiQ−>X) ;
97 fp2mul751 mont (phiD−>X, phiD−>Z , phiD−>X) ;
98
99 from fp2mont (A, ((f 2 e lm t ∗) PublicKeyA) [0]) ;

100 from fp2mont (phiP−>X, ((f 2 e lm t ∗) PublicKeyA) [1]) ;
101 from fp2mont (phiQ−>X, ((f 2 e lm t ∗) PublicKeyA) [2]) ;
102 from fp2mont (phiD−>X, ((f 2 e lm t ∗) PublicKeyA) [3]) ;
103
104 c l ea r words ((void∗)R, 2∗2∗pwords) ;
105 c l ea r words ((void∗) phiP , 2∗2∗pwords) ;
106 c l ea r words ((void∗)phiQ , 2∗2∗pwords) ;
107 c l ea r words ((void∗)phiD , 2∗2∗pwords) ;
108 c l ea r words ((void∗) pts , MAX INT POINTS ALICE∗2∗2∗pwords) ;
109 c l ea r words ((void∗)A, 2∗pwords) ;
110 c l ea r words ((void∗)C, 2∗pwords) ;
111 c l ea r words ((void∗) c o e f f , 5∗2∗pwords) ;
112
113 return Status ;
114 }

71

Appendix B

Performance Data

72

0 20 40 60 80 100
Iteration #

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Cy
cle

s

1e9 Performance Measurements - Unmodified Scheme
Sign Cycles
Verify Cycles

Figure B.1: Cycle times for 100 unedited Yoo et al. signature signs and verifies.

73

0 20 40 60 80 100
Iteration #

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Cy
cle

s

1e9 Performance Measurements - With Batching
Sign Cycles
Verify Cycles

Figure B.2: Cycle times for 100 signs and verifies with batched inversions.

74

0 20 40 60 80 100
Iteration #

0.4

0.6

0.8

1.0

Cy
cle

s

1e10Performance Measurements - Compressed Signatures
Sign Cycles
Verify Cycles

Figure B.3: Cycle times for 100 compressed Yoo et al. signature signs and verifies.

75

0 10 20 30 40
Iteration #

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cy
cle

s

1e10Performance Measurements - Compressed Signatures with Batching
Sign Cycles
Verify Cycles

Figure B.4: Cycle times for 50 compressed Yoo et al. signature signs and verifies with
batched inversions.

76

References

[AJK+16] Reza Azerderakhsh, David Jao, Kassem Kalach, Brian Koziel, and Christo-
pher Leonardi. Key compression for isogeny-based cryptosystems. In Proceed-
ings of the 3rd ACM International Workshop on ASIA Public-Key Cryptog-
raphy, AsiaPKC ’16, pages 1–10. ACM, 2016. URL: http://doi.acm.org/
10.1145/2898420.2898421, doi:10.1145/2898420.2898421.

[ARU14] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks
on classical proof systems (the hardness of quantum rewinding). In Annual
IEEE Symposium on Foundations of Computer Science, pages 474–483. IEEE,
2014. doi:10.1109/FOCS.2014.57.

[Ber18] Daniel J. Bernstein. libpqcrypto.org, 2018. Available online at https://

libpqcrypto.org.

[CJL+17] Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes, and
David Urbanik. Efficient compression of SIDH public keys. In EUROCRYPT
2017, volume 10210 of Lecture Notes in Computer Science. Springer, Cham,
2017. doi:10.1007/978-3-319-56620-7_24.

[CLN16] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for
supersingular isogeny Diffie-Hellman. In IACR-CRYPTO-2016, volume 9814
of Lecture Notes in Computer Science, pages 527–601, 2016. doi:10.1007/

978-3-662-53018-4_21.

[CMO98] Henri Cohen, Atsuko Miyaji, and Takatoshi Ono. Efficient elliptic curve
exponentiation. In AsiaCrypt, volume 1514 of Lecture Notes in Computer
Science, pages 51–65, 1998. doi:10.1007/BFb0028484.

[Cos] Craig Costello. Pairings for beginners. http://craigcostello.com.au/

pairings/PairingsForBeginners.pdf.

[Dwo15] Morris J. Dworkin. SHA-3 standard: Premnutation-based hash and
extendable-output functions. 2015. doi:10.6028/NIST.FIPS.202.

[Fia96] Amos Fiat. Batch RSA. Journal of Cryptology, 10:75–88, 1996. doi:10.

1007/s001459900021.

[FJP14] Luca De Feo, David Jao, and Jerome Plut. Towards quantum-resistant cryp-
tosystems from supersingular elliptic curve isogenies. Journal of Mathematical
Cryptology, 8:209–247, 2014. doi:10.1007/978-3-642-25405-5_2.

77

http://doi.acm.org/10.1145/2898420.2898421
http://doi.acm.org/10.1145/2898420.2898421
http://dx.doi.org/10.1145/2898420.2898421
http://dx.doi.org/10.1109/FOCS.2014.57
https://libpqcrypto.org
https://libpqcrypto.org
http://dx.doi.org/10.1007/978-3-319-56620-7_24
http://dx.doi.org/10.1007/978-3-662-53018-4_21
http://dx.doi.org/10.1007/978-3-662-53018-4_21
http://dx.doi.org/10.1007/BFb0028484
http://craigcostello.com.au/pairings/PairingsForBeginners.pdf
http://craigcostello.com.au/pairings/PairingsForBeginners.pdf
http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.1007/s001459900021
http://dx.doi.org/10.1007/s001459900021
http://dx.doi.org/10.1007/978-3-642-25405-5_2

[JS14] David Jao and Vladimir Soukharev. Isogeny-based quantum resistant unde-
niable signatures. In PQCrypto 2014, volume 8772 of Lecture Notes in Com-
puter Science, pages 160–179, 2014. doi:10.1007/978-3-319-11659-4_10.

[Kat10] Jonathan Katz. Digital Signatures. Springer, 1st edition, 2010. doi:10.

1007/978-0-387-27712-7.

[KLM07] Phillip Kaye, Raymond Laflamme, and Michele Mosca. An Introduction to
Quantum Computing. Oxford University Press USA, 2007.

[LCE+16] Brian LaMacchia, Craig Costello, Karen Easterbrook, Michael Naehrig, and
Patrick Longa. SIDH library, 2016. Available online at https://www.

microsoft.com/en-us/research/project/sidh-library/.

[Mon85] Peter L. Montgomery. Modular multiplication without trial divi-
sion. Mathematics of Computation, 44:519–521, 1985. doi:10.1090/

S0025-5718-1985-0777282-X.

[PH78] Stephen Pohlig and Martin Hellman. An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance. IEEE Transactions
on Information Theory, 24:106–110, 1978. doi:10.1109/TIT.1978.1055817.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes.
EUROCRYPT 1996, 1070:387–398, 1996. doi:10.1007/3-540-68339-9_33.

[SB01] Hovav Shacham and Dan Boneh. Improving SSL handshake performance via
batching. In Proceedings of the 2001 Conference on Topics in Cryptology: The
Cryptographer’s Track at RSA, CT-RSA 2001, pages 28–43. Springer-Verlag,
2001. URL: http://dl.acm.org/citation.cfm?id=646139.680778, doi:

10.1007/3-540-45353-9_3.

[SC16] Srinath M. S. and V. Chandrasekaran. Isogeny-based quantum-resistant
undeniable blind signature scheme. Cryptology ePrint Archive, Report
2016/148, 2016. https://eprint.iacr.org/2016/148.

[Sho96] Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Review, 41, 1996.
doi:10.1137/S0036144598347011.

[Sil09] Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Grad-
uate Texts in Mathematics. Springer-Verlag New York, 2nd edition, 2009.
doi:10.1007/978-0-387-09494-6.

[SM18] Douglas Stebila and Michele Mosca. Open quantum safe, 2018. Available
online at https://openquantumsafe.org/.

[STW12] Xi Sun, Haibo Tian, and Yumin Wang. Toward quantum-resistant strong
designated verifier signature from isogenies. In International Conference on
Intelligent Networking and Collaborative Systems. IEEE, 2012. doi:10.1109/
iNCoS.2012.70.

78

http://dx.doi.org/10.1007/978-3-319-11659-4_10
http://dx.doi.org/10.1007/978-0-387-27712-7
http://dx.doi.org/10.1007/978-0-387-27712-7
https://www.microsoft.com/en-us/research/project/sidh-library/
https://www.microsoft.com/en-us/research/project/sidh-library/
http://dx.doi.org/10.1090/S0025-5718-1985-0777282-X
http://dx.doi.org/10.1090/S0025-5718-1985-0777282-X
http://dx.doi.org/10.1109/TIT.1978.1055817
http://dx.doi.org/10.1007/3-540-68339-9_33
http://dl.acm.org/citation.cfm?id=646139.680778
http://dx.doi.org/10.1007/3-540-45353-9_3
http://dx.doi.org/10.1007/3-540-45353-9_3
https://eprint.iacr.org/2016/148
http://dx.doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1007/978-0-387-09494-6
https://openquantumsafe.org/
http://dx.doi.org/10.1109/iNCoS.2012.70
http://dx.doi.org/10.1109/iNCoS.2012.70

[Tes99] Edlyn Teske. The Pohlig-Hellman method generalized for group structure
computation. Journal of Symbolic Computation, 27:521–534, 1999. doi:

10.1006/jsco.1999.0279.

[Unr15] Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum
random oracle model. In EUROCRYPT 2015, volume 9057 of Lecture Notes
in Computer Science, pages 755–784. Springer, Berlin, Heidelberg, 2015. doi:
10.1007/978-3-662-46803-6_25.

[YAJ+17a] Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao, and Vladimir
Soukharev. Isogeny based signatures from SIDH library, 2017. Available
online at https://github.com/yhyoo93/isogenysignature.

[YAJ+17b] Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao, and Vladimir
Soukharev. A post-quantum digital signature scheme based on supersingular
isogenies. In Financial Cryptography and Data Security, volume 10322 of
Lecture Notes in Computer Science, pages 163–181. Springer, 2017. doi:

10.1007/978-3-319-70972-7_9.

79

http://dx.doi.org/10.1006/jsco.1999.0279
http://dx.doi.org/10.1006/jsco.1999.0279
http://dx.doi.org/10.1007/978-3-662-46803-6_25
http://dx.doi.org/10.1007/978-3-662-46803-6_25
https://github.com/yhyoo93/isogenysignature
http://dx.doi.org/10.1007/978-3-319-70972-7_9
http://dx.doi.org/10.1007/978-3-319-70972-7_9

	Acknowledgements
	Introduction
	Motivation
	Post-Quantum and Classical Performance Comparisons

	Contributions
	Operation Batching
	Signature Compression

	Organization
	Layout
	Notation & Style

	Technical Background
	Cryptographic Primitives
	Key Exchange
	Interactive Identification Schemes
	Signature Schemes

	Algebraic Geometry & Isogenies
	Fields & Field Extensions
	Elliptic Curves
	Isogenies & Their Properties

	Supersingular Isogeny Diffie-Hellman
	SIDH Key Exchange
	Zero-Knowledge Proof of Identity

	Fiat-Shamir Construction
	Unruh's Post-Quantum Adaptation

	Isogeny-based Signatures
	Algorithmic Definitions

	Implementations of Isogeny-based Cryptographic Protocols
	Parameters & Data Representation
	SIDHC Design Decisions
	Key Exchange & Critical Functions
	Signature Layer

	Batching Operations for Isogenies
	Partial Batched Inversions
	Fp2 Inversions done in Fp
	Batching Field Element Inversions
	Partial Batched Inversions

	Implementation Details
	Implementation & Design Decisions
	Embedding Partial Batched Inversions

	Results

	Compressing Signatures
	SIDH Key Compression Background
	Compressing SIDH Public Keys
	Improvements to SIDH Key Compression

	Implementation Details
	(S) Compression
	Verifying A Compressed Signature

	Results

	Conclusion
	Performance Results
	Discussion & Concluding Remarks
	Future Work

	Appendices
	SIDHC Functions
	Fp and Fp2 Functions
	Isogeny and Point-wise Functions
	j_inv
	j_inv_batch
	inv_4_way
	inv_4_way_batch

	Key Exchange Functions

	Performance Data

