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ABSTRACT

Market variation such as changing utility price or demand can lead to non-static

operation of chemical plants, such as in cases where new objectives must be met, or

varying operating conditions can be taken advantage of to increase operational profit.

Integrated design and control (where both the design and operation are considered

simultaneously when the design of the plant is being formulated) can be used to

address the challenges that plants that operate under uncertainty may face. When

considering demand uncertainty for a plant, not only must the different realizations

of demand be considered, but how the plant transitions from one demand to another

is also of interest.

Ideally when transitioning, the plant must quickly and feasibly transition from one

operating point to another. In the first study of this thesis we consider the benefit of

taking into account the demand transitions a plant must undergo; compared to only

considering the final operating states. In this study we examine an air separation unit

(ASU) since in industrial practice ASUs can often be subject to demand uncertainty.

Assessing the impact that an ASU design has on its dynamic response characteristics

motivates us to include plant dynamics in the design formulation. Using a two-stage

stochastic optimization framework, the optimal design parameters are found for a

nitrogen plant operating under uncertain demand. Three design paradigms are ex-

plored and compared - a nominal steady-state design, a flexible design that maintains

steady-state feasibility, and a dynamically operable design that enforces feasibility of

dynamic transitions. The designs obtained are subjected to random demand changes

to evaluate the expected economic return under transitions not directly designed for.

From this study we see that when the dynamically operable design and the flexible

design are both subject to dynamic transitions, the dynamically operable design in

certain cases can provide more economic benefit during transition and at the final

steady state.
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In the second study of this thesis we address an important issue that arises when

uncertainty in the plant operation is captured by utilizing two-stage stochastic op-

timization. If the optimization formulation can see the uncertainty profile in its

entirety, then it can make control moves and design decisions based on the fact that

the optimization problem knows what operating conditions it transitions between.

This may not however be a realistic assumption to operate under, as future uncer-

tainty is unknown. Given lack of foresight into future uncertainties it is logical to

currently operate at the the optimal steady-state. This poses a bilevel problem for

the design and control of a plant because the feasible region is determined by an in-

ner optimization. In this study the Karush-Kuhn-Tucker conditions are incorporated

into a two-stage stochastic optimization formulation for a dynamic model of chemical

plant to generate a design. This design is then compared to a design generated from

an optimization formulation where future knowledge of uncertainty is assumed and

it is seen that the former design can provide greater economic benefit.
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Chapter 1

Introduction

Chemical processes are often subject to uncertainty from several different sources.

This can include parametric uncertainty, disturbances to the process feeds and un-

certainty in the economics of the process such as utility costs and market demand.

Particularly in the case of economic uncertainty it may be necessary or beneficial to

for a process to switch from one operating point to another. A process plant transi-

tioning between operating points poses its own complexities as operating constraints

must be maintained during the transition and ideally the transition should happen

as quickly as possible. To find the designs and operating conditions of a plant that

are conducive to the optimal transition, a dynamic optimization of the differential-

algebraic equations (DAEs) that define the chemical process can be implemented.

In this thesis we examine paradigms and benefits of utilizing dynamic optimization

for chemical processes under uncertainty. The main objectives and contributions of

the studies presented in this thesis are as follows:

1. Demonstrate the benefits of dynamic optimization compared to optimization

formulations that only consider the final steady-states when applied to large

1
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scale industrial processes under uncertainty, with regards to the design and

operation of the process.

2. Identify operating conditions that should be considered when dynamic opti-

mization is used for processes under uncertainty, with regards to the design and

operation of the process.

In presenting the studies done, the thesis is organized in the following manner:

Chapter 2: A literature review giving a general overview of dynamic optimization,

optimization under uncertainty and integrated design and control, which are under-

lying concepts to the studies done in this thesis.

Chapter 3: A study that investigates the integrated design and control of nitrogen

plant subject to demand uncertainty. In this study the design of the nitrogen plant

given by a dynamic optimization (that takes into account transition from one de-

mand to another) is compared and contrasted to designs generated from steady-state

optimizations (which do not consider plant transitions).

Chapter 4: A study that examines how the assumptions for the initial and final

operating conditions of a CSTR in series affect the design and operation of the CSTRs

generated from dynamic optimization.

Chapter 5: A summary of the work done in this thesis and the takeaways and

insights that have been generated from the studies done.



Chapter 2

Literature Review

2.1 Dynamic Optimization

Changing operating conditions are important to consider for chemical plants. Adjust-

ing plant operation depending on demands or other market conditions can be used

to increase operating profit or may be necessary. Thus given a plant at an operating

point, ideally it should be able to transition as close to optimally as possible while

maintaining feasibility. Optimal transition could consist of several metrics such op-

erating profit during the transition or meeting the operating change as quickly as

possible. Operating at an initial point and finding a time dependent control profile

that meets some metric of transition poses an open loop optimal control problem, or

a dynamic optimization [Chachuat, 2007].

3



4

The general form of a dynamic optimization problem as given in Barton et al. [1998]

is:

min
u(t)

∫ tf

0

φ(x(t),y(t),u(t),p)

s.t

f( ˙x(t),x(t),y(t),u(t),p) = 0

h(x(t),y(t),u(t),p) = 0

g(x(t),y(t),u(t),p) ≤ 0

κ(x(ti),y(ti),u(ti),p) ≤ 0 ∀i ∈ {0, ....n}

x(0) = xo

where x, y and u are the differential, algebraic and control variables respectively, and

p are parameters in the optimization. f and h are the differential and algebraic equa-

tions that make up the differential algebraic equations (DAE) that govern the system

being optimized. g and κ are the path constraints and point constraints respectively.

Solving dynamic optimization can be categorized into two methods, variational or

indirect solution methods and direct methods [Chachuat, 2007]. In the variational

method a solution is obtained from the first order necessary conditions for optimal-

ity from Pontryagin’s maximum principle [Cervantes and Biegler, 2009]. The first

order necessary conditions is a DAE that poses a two point boundary value problem

(TPBVP) to solve. Methods such as single, shooting, multiple shooting and collo-

cation on finite elements can be used to solve the TPBVP [Cervantes and Biegler,

2009]. Incorporating inequality constraints poses problems for indirect methods, be-

cause this requires some knowledge of the variable trajectories before hand as well as

causing discontinuities of the trajectories of the adjoint variables [Chachuat, 2007].



5

Thus there are several issues that need to be addressed when dealing with indirect

methods, that can be avoided when using direct methods.

In direct methods, the optimal control problem is either partially or fully discretized

and NLP methods are used to solve a dynamic optimization [Chachuat, 2007].

2.1.1 Partial Discretization

In a direct method utilizing partial discretization, only the control variables are dis-

cretized and the state variables are found by solving the DAE using integrators.

Three techniques that involves partial discretization are iterative dynamic program-

ming (IDP), single shooting and multiple shooting [Biegler, 2007].

From Luus [1993], in IDP the time horizon is split into P intervals (where P is chosen)

of equal length, where the control variable is represented by either a piecewise linear

or piecewise constant function on each interval. An initial profile for each interval

is initially chosen and the DAE for the system is then integrated. A new profile

for the control variables in interval P is then selected to find the optimal trajectory

starting from the state conditions at the end interval P − 1. We then repeat this for

interval P − 1, where we select a new control profile that optimizes the trajectory

over intervals P and P −1. We repeat this for all the intervals in the control horizon,

moving back one control interval at at time (thus we integrate one more interval every

iteration). This entire procedure is repeated for a chosen number of iterates. From

this an optimal profile is determined. A benefit of the IDP method is that sensitivity

equations for the DAE are not needed; however IDP can only be used for smaller

problems, and any constraints must be formulated as penalty terms in the objective

function [Cervantes and Biegler, 2009].

In the single shooting method (which is a sequential method) the control variable is
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discretized using piecewise constant or linear functions or by polynomial functions.

This method is also known as control vector parametrization (CVP) [Feehery and

Barton, 1999]. Given a discretized control profile, the resulting DAE is then inte-

grated to find the state variables of the system. Thus an NLP solver is used to solve

the dynamic optimization (obtaining the control profile that optimizes the objective

function). However for each iteration of the NLP a DAE must be solved and this can

require a lot of computational effort and the solution can be affected by the stability

of the DAE [Biegler, 2007].

In the multiple shooting method we again use CVP but instead of integrating the

DAE over the entire time horizon, the time horizon is split into periods, and the DAE

is only integrated over each period. The initial conditions for the DAE at the start of

each period are decision variables. However continuity constraints are imposed such

that the initial conditions at the start of each period must be equal to the final state

of the system in the previous period. This means that during the iterations to solve

the dynamic optimization the state variable of the system can be discontinuous (only

the optimal solution must be continuous) [Chachuat, 2007].

In the sequential methods, to the NLP solver only the control variables, constraints

and objective functions exist. Gradient information is provided to the solver via sen-

sitivity or adjoint equations [Biegler, 2007]. These equations provide the gradients of

the constraints and objective functions (which are expressed in terms of the state and

control variables) with respect to the control variables to the NLP solver. Sequential

methods are advantageous as only an initial guess for the control profile needs to

be given to the NLP solver. Because sequential methods use an integrator to find

the state profiles, the accuracy of the profiles is high as the error is controlled by

the integrator [Chachuat, 2007]. In the sequential method both state variable bounds

and path constraints are enforced using integral square error terms for the constraints

(that must be approximately zero for the entire integration horizon). Integrators that
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are commonly used in sequential methods are CVODES and IDAS.

2.1.2 Full Discretization

An alternative to the sequential method is the simultaneous method. In this method

the entire dynamic optimization is discretized. Thus both the state and control

variables are discretized. The horizon is divided into several discrete time points and

the values for the state variables at each of these time points represent the profile of

the state variables. The value of the state variable at each time point is considered

a separate optimization variable (as opposed to a time dependent state variable we

see for sequential methods). Derivatives can be estimated using numerical integration

techniques such as Runge-Kutta methods [Chachuat, 2007]. As the entire DAE is now

represented as a system of algebraic variables, the entire optimization is formulated

as a NLP [Cervantes and Biegler, 2009]. The path constraints are turned into point

constraints enforced at each discretized time point in the horizon. While we do not

have to perform integrations to find the state variables, the simultaneous method

does require a large initial guess. Initial guesses must be given for both control and

state variables at every time point and we see that the discretization of a dynamic

optimization can lead to large scale NLPs [Biegler et al., 2002].

A common approach to full discretization of the dynamic optimization is to estimate

the state and control variables profiles using polynomial interpolation in what is know

as the collocation method [Cervantes and Biegler, 2009]. In time collocation, the

time horizon is divided into finite elements and each finite element contains several

collocation points. Polynomial interpolation (using the values of the state and control

variables at the collocation points) is used to generate a profile for the state variables

for each finite element [Biegler, 2007]. It is the variables that represent the value of

the state and control variables at each collocation point that make up the variables
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of the NLP. As the state variables are estimated using polynomials, the derivative

at a given collocation point can be expressed algebraically as the derivative of the

polynomial [Biegler et al., 2002]. In the NLP created, path constraints are enforced

at each collocation point and continuity is enforced for the polynomials that represent

the differential variables (thus the final value of the polynomial at the end of a finite

element must match the initial value of the new polynomial for the next finite element)

[Biegler, 2007].

Common algorithms to solve NLPs include interior point methods and sequential

quadratic programming (SQP). In both methods the Karush -Kuhn-Tucker (KKT)

conditions for the NLP are solved iteratively. In interior points methods the com-

plementarity conditions of the KKT conditions are initially relaxed and the KKT

system is solved [Nocedal and Wright, 2006]. The relaxed complementary conditions

are tightened with each iteration until the original KKT conditions are solved. For the

SQP method the KKT conditions are solved for by solving an equivalent quadratic

program [Nocedal and Wright, 2006]. Both the sequential and simultaneous methods

are used to solve dynamic optimization problem in this thesis, and both interior point

and SQP methods are used to solve the NLPs formulated.

2.2 Optimization under Uncertainty

A design for a chemical process plant must not only be able to transition from one

operating point to another as quickly and feasibly as possible, but it must also be able

to do this for transitions between several different operating points. Thus a design

must accommodate several different operating scenarios, and the optimization must

be able to include uncertain parameters such as product demand or utility costs.

There are several methods that are used to capture uncertainty in an optimization

formulation.
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One of the most common ways to incorporate uncertainty in optimization is to utilize

a two-stage stochastic optimization.

The formulation for two-stage stochastic optimization as given in Pistikopoulos and

Ierapetritou [1995] takes the form:

max
z,d,x

E
θ∈R

[
P (x, z,d,θ)

]
s.t

h(x, z,d,θ) = 0

g(x, z,d,θ) ≤ 0

In this formulation , E
θ∈R

[
P (x, z,d,θ)

]
is the expected value of the objective function

over the uncertainty θ in R. d is the first-stage decision variables that are common

to all realizations of θ. x and z are the second-stage decision or recourse variables

which can be adjusted depending on the realization of θ. Finding a design that is

feasible for all realizations of θ poses a feasibility problem for an infinite number of

constraints [Halemane and Grossmann, 1983]. To make the problem more tractable,

a multiperiod or multiscenario approach can be used, where the uncertainty set is

reduced to a number of discrete points, and hence E
θ∈R

[
P (x, z,d,θ)

]
can be expressed

in a discrete form and feasibility only needs to be applied for a finite number of

realizations of uncertainty [Paules IV and Floudas, 1992].

In Halemane and Grossmann [1983] it shown that for a multiperiod approach assum-

ing a convex feasible region, if the discrete uncertainty set chosen contains all the

vertices of the uncertainty domain (R), then the design generated will be feasible

for all θ in R. This concept is applied for dynamic processes in Dimitriadis and

Pistikopoulos [1995] where for a given design and a given range of uncertainty for
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a process, the uncertainty profile that maximizes constraint violations is found in a

formulation called the dynamic feasibility problem. In addition to this, the maximum

deviation in nominal uncertainty (the uncertainty range) that the design can undergo

is known as the dynamic flexibility index. The concept of the dynamic feasibility

problem is applied to a two-stage stochastic optimization for a dynamic problem in

Mohideen et al. [1996] and Bansal et al. [2002]. In these studies, to find a design that

is feasible over an uncertainty range, a design is subject to the dynamic feasibility

problem. If an uncertainty profile is found that can violate the operating constraints,

this uncertainty profile is added to the set of uncertainty profiles that are considered

when the optimal design is found. This process is repeated until a design is found

where no realization of uncertainty causes infeasible operation for the design.

Instead of enforcing feasibility for all uncertainty scenarios (or the entire uncer-

tainty domain), enforcing feasibility up to a certain probability is known as chance-

constrained programming [Sahindis, 2004]. A general form for a linear program using

chance constrained programming from Sahindis [2004] is given below:

max cTx

s.t

P (Ax ≥ b) ≥ p

In this formulation there is uncertainty in both the matrix A and the vector b, where x

is the set of decision variables. P is the probability distribution of the uncertainty and

p is a given probability that is required to be met. An example of chance-constrained

programming used in a process engineering optimization is seen in Zhu, Yu, Laird

[2011] where the optimal operation of an air separation unit (ASU) is examined.

In this study the air separation unit operates under uncertain demand, where the
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demand has a given probability distribution, average and standard deviation. Instead

of being forced to be able to meet all realizations of the demand, the ASU only needs

to make sure the expected value of the amount of product it produces exceeds a given

fraction of the average demand.

2.3 Integrated Design and Control

Given varying market conditions, disturbances and parameter uncertainty, it is impor-

tant for a process plant to be able accommodate for these conditions, often through

the operation and design of the plant. Even for plants operating at steady-state, the

dynamics of the process should be taken into account in order to reject disturbances

and account for parametric uncertainty. Thus the concept of integrated design and

control is applicable to almost any chemical process. Integrated design and control

can improve plants in several different aspects, two important factors being the eco-

nomic operation of the plant (as well as the capital costs) and the ability to quickly

transition between operating points and to reject disturbances (dynamic resilience)

[Morari, 1983]. The above factors are commonly used in multi-objective approaches

for integrated design and control, often when utilizing steady-state optimizations

where the dynamics are not inherent in the objective function. Pareto optimality

is considered when using multi-objective approaches to find the optimal design and

operation of chemical processes. Objectives being traded off can include the capital

and operational cost versus several controllability indicators such as RGA, minimum

singular value and condition number [Luyben and Floudas, 1994] or operational costs

versus the integral square error around a set-point [Lenhoff and Morari, 1982].

When dynamic models are incorporated into processes operating at a steady-state,

the dynamic operation of the process when subject to disturbances can now be ac-

counted for in an economic objective function (as opposed to using a multi-objective
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function). When operating at steady-state, the concept of “back-off” arises where the

steady-state operating point is selected to avoid constraint violations given a distur-

bance. Thus studies look to minimize the “back-off” necessary through design and

control, such as the finding the optimal plant layout [Narraway et al., 1991] or min-

imizing the operational losses due to “back-off” by the optimal pairing of measured

and controlled variables for a flotation circuit (optimal control structure)[Narraway

and Perkins, 1993]. As opposed to just examining how “back-off” affects operational

and capital costs, Figueroa et al. [1996] maximized operational profit, and investi-

gated how various control-schemes affect the “back-off” necessary within a range of

disturbance and uncertainty. This was extended for the same process by considering

optimal design parameters, plant layout and control structure in Bahri et al. [1997].

Applications of MPC to steady-state “back-off” have been investigated using mixed-

integer formulations [Soliman et al., 2008] and interior point methods [Baker and

Swartz, 2008].

While the previous studies mentioned generally considered disturbances to steady-

state processes, we see in current operating paradigms such as deregulated electricity

markets (where the variation of electricity price can be taken advantage of and future

electricity prices are uncertain) uncertainty in operation such as demand, must be

taken into account. Using dynamic optimization to study switches between operating

points is studied in White et al. [1996] where a reduced dynamic model of a distilla-

tion column is used to find the optimal design that allows the column to transition

as quickly as possible from one purity set-point to another. Mohideen et al. [1996]

utilized a dynamic optimization to find the optimal design, control structure and op-

erational profile for chemical process subject to an uncertain process flow profile over

a given time period. The benefit of utilizing a dynamic model under uncertain oper-

ating conditions was observed in Cao et al. [2016b]. In this study various operating

paradigms were explored for an air separation unit (ASU) under varying electricity

price over a given period. It was seen that operational profit can be increased by
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overproducing and under producing product depending on the electricity price. Us-

ing a dynamic model prevents constraint violations when the ASU transitions from

one operating point to another.

Two-stage stochastic formulations are commonly used in integrated design and con-

trol. They can be used to optimize large industrial processes such as in Ierapetritou

and Pistikopoulos [1996] and Zhu et al. [2010]. In Zhu et al. [2010] the optimal de-

sign (1st stage decision variables such as column diameter and heat exchanger surface

area) and operation of a steady-state model of an ASU are found that provides fea-

sible operation over many discrete uncertainty scenarios. The studies in this thesis

will use two-stage stochastic optimization to find the optimal design and operation

of dynamic processes under uncertainty.



Chapter 3

Design of a Dynamically Operable

Air Separation Plant

3.1 Introduction

Cryogenic air separation plants or air separation units (ASUs) produce both liquid

and gaseous high purity nitrogen, oxygen and argon from air that is fed to a distil-

lation column. As ASUs take air from the atmosphere, electricity costs comprise the

majority of the ASU operational cost [Miller et al., 2008b]. Energy markets in the

US are encouraged to reduce electricity consumption during times of high demand or

poor grid reliability [US Department of Energy, 2006]. Price-based demand response

is a practice employed by energy markets to reduce electricity consumption where

the electricity prices for consumers vary during the day [US Department of Energy,

2006]. Demand response of this type can thus be utilized during ASU operation to

reduce electricity cost. The operation of ASUs utilize demand response by allowing

for product storage thus allowing for overproduction relative to demand when elec-

tricity prices are low. Given that there will be changes in production due to electricity

14
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prices, the ASU must transition from one operating point to another and there are

dynamics in the process that are not taken into account using steady-state models of

the ASU.

Dynamics can be estimated in a steady model of an ASU by establishing minimum

time periods that the ASU must be producing or be shut down for [Ierapetritou et al.,

2002]. The transition from one operating point to another in a steady state model is

modelled in Zhu, Yu, Laird [2011] as a linear profile where the slope is determined

by the steady state end points. To more accurately capture the dynamics of an ASU

when operating under varying electricity price and production, dynamic models of

an ASU can be used. Using a data driven low-order dynamic model, it has been

shown that by utilizing a storage tank to allow for overproduction (so product can

be stored), the operational costs of an ASU can be reduced compared to operating

at a constant production rate [Pattison et al., 2016]. Examining several paradigms

involving different storage practices and additional reflux for an ASU under varying

electricity price and demand showed that utilizing a dynamic model of a nitrogen

plant is necessary to observe certain operational limitations and economic benefits

[Cao et al., 2016b].

From the above examples we see the importance of being able to accurately capture

dynamics of an ASU when operating under demand uncertainty. Frequently chang-

ing demand can mean frequently changing operating points for the ASU. Transition

between operating points is integral to the operation of the ASU as operating con-

straints may still need to be met during the transition. Hence it is imperative to

transition between operating points economically and feasibly. Miller et al. [2008a]

investigated improving plant flexibility by introducing additional feed into the col-

umn during start-up. With regards to operating an ASU under varying electricity

price and demand, it has been found that using stored product as additional reflux

as opposed to selling the product can reduce operating costs even further [Cao et al.,
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2016b]. In addition to operational strategies to reduce operational costs for an ASU

under varying demand and electricity, we must also consider design parameters. De-

sign parameters such as the diameter of the column will also have an effect of the

dynamics and optimal operation of the ASU. Considering the design of the ASU is

imperative to recognize that an ASU may not be able to transition from one set point

another under a given design. Thus the design must reflect the variation of demand

that the ASU undergoes.

Incorporating long term uncertainties, capital expenditure decisions (integer deci-

sions), weekly, seasonal, yearly demand and electricity price variation to find the

optimal design and operation of an ASU was studied in Mitra et al. [2014]. However

in this formulation the operation of the ASU is represented through inventory and

operational constraints as opposed to a mathematical model of an ASU. The design of

an ASU subject to uncertainty in argon demand and a given thermodynamic param-

eter was studied in Zhu et al. [2010]. Given a steady state model of an ASU, based on

these uncertainties optimal column diameters, compressor power and heat exchanger

area were found, and it was shown that the more uncertainty scenarios included, the

more conservative the design. However when designing an ASU, the dynamics of the

plant must also be taken into account [Cao et al., 2015]. In this study it was shown

that direct step changes (which would be assumed by a steady state design) in the

column can lead to the column violating operational constraints. Design under uncer-

tainty utilizing dynamic optimization has been studied previously in Mohideen et al.

[1996] using a mixed integer dynamic optimization (MIDO) formulation. However

the uncertainties considered were disturbances in the process. Schenk et al. [2002]

studied finding the optimal design of an ASU (including mixed-integer decisions such

as the number of trays and control schemes) allowing the ASU to provide greater

profit over a wide range of disturbances (uncertainties) compared to a steady-state

design. In these studies by utilizing dynamic optimization, operational feasibility

can be maintained throughout the operation as opposed to just the endpoint (which
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occurs if a steady state designed was used).

Hence in this chapter, two-stage stochastic dynamic optimization for a nitrogen plant

will be conducted using several different demand scenarios. It is expected that the

dynamically operable design produced will be more conservative than the flexible and

nominal designs. However when each design is required to maintain feasibility during

the transition between operating points, we would expect that the dynamically oper-

able design will provide more operational profit in these cases. This would illustrate

that finding a dynamically operable design for a nitrogen plant subject to uncer-

tainty can provide economic benefits that may not be realized using less conservative

formulations.

3.2 Process Description and Mathematical Model

To conduct the investigation set out in this study, we will use a first-principles dynamic

model of an N2 plant based on that utilized in Cao et al. [2016b]. The N2 plant (whose

configuration is shown Figure 3.1) utilizes both full order and collocation modelling for

the units that make up the plant model. The plant takes in air from the atmosphere,

which is removed of impurities in an upstream section that is outside the scope of

the present study, and then passes through a compressor. The stream is then sent

through a counter-current plate and fin primary heat exchanger (PHX), within which

the stream is split into a liquid air feed and vapor air feed, which enter the column

at different tray locations. Before the gaseous air is sent to the column, it is sent

to the turbine for additional cooling. The feed to the column is separated into high

purity nitrogen gas product (leaving at the top of the column) and a crude oxygen

stream. A portion of the gas product (GN2) leaves the plant for sale, while the

remainder enters the integrated reboiler/condenser where it is condensed against the

crude oxygen stream to return to the column as reflux. The GN2 product stream and
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Figure 3.1: Schematic of the N2 plant configuration used in this study

vapor waste from the reboiler that leave the plant pass through the PHX where they

provide cooling to the air feed.

The distillation column is represented by material and energy balances for each tray

that take the following form,

dmn,i

dt
= xn+1,iLn+1 + yn−1,iVn−1 − xn,iLn − yn,iVn

dEn
dt

= hLiqMix
n+1 Ln+1 + hV apMix

n−1 Vn−1 − hLiqMix
n Ln − hV apMix

n Vn −QLeakage(3.1)

where mn,i is the molar holdup of component i on tray n, x and y are the liquid

and vapor mole fractions, and L and V are the liquid and vapor flow rates from each

tray. In the energy balance, E is the energy holdup for a given tray and h is the

molar enthalpy for the associated vapor and liquid streams. While these equations

are for a full-order model, they are identical when a collocation based model is im-

plemented, where n then represents a collocation point and n+ 1 and n− 1 represent

“one tray above” and “one tray below” the collocation point, respectively [Cao et al.,

2016a][Swartz and Stewart, 1986] (the collocation point can be a non-integer value,
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unlike the the tray number). Reduced order modelling utilizing collocation is used

to model a section of the distillation column and the entirety of the primary heat

exchanger (PHX). In the column, low-order Lagrange polynomials are used to inter-

polate the material and energy flows between collocation points. In a full-order model,

the PHX was divided into cells to develop temperature and pressure profiles, where

dynamic energy balances were performed around each cell [Cao et al., 2015]. In a

collocation approach, the balances are confined to collocation pints that are spatially

distributed along the length of the PHX [Cao et al., 2016a]. Fewer collocation points

are used than the number of cells or trays, thus reducing the size of the model. The

collocation methods used in this model are explained in greater detail in Cao et al.

[2016a].

The plant model is also governed by several other principles. The thermodynamics

of the distillation column utilize modified Raoult’s Law, Margules equations, the

Antoine equation and the Peng-Robinson equation of state. The characteristics of

the distillation trays are captured through the Francis Weir equation and Murphree

tray efficiencies. In previous versions of this nitrogen plant model, the pressure drop

was assumed to be constant throughout the column [Cao et al., 2015], leading to an

index-2 DAE that required the application of index reduction techniques. However in

the present model, the pressure drop is a function of flow rates and vapor and liquid

densities in the column, which results in an index-1 DAE system that can be handled

directly by standard DAE solvers.

The turbine and compressor in this plant model are systems of algebraic equations

that use polytropic relations and regressions from compressor mappings to determine

the operating states and operating constraints (such as surge) of each unit. Equations

estimating valve dynamics are used to capture how the control variables change within

the plant. The overall plant model comprises 148 differential equations and 1903

algebraic equations. A summary of the model structure of each unit in the plant is
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Table 3.1: A summary of units that comprise the N2 plant model

Unit Model Structure
Compressor System of Algebraic Equations
Turbine System of Algebraic Equations
Primary Heat Exchanger DAE utilizing spatial collocation
Distillation Column DAE utilizing first principles and collocation
Integrated Reboiler and Condenser DAE utilizing first principles

given in Table 3.1. Further detail regarding the model of the N2 plant may be found

in Cao et al. [2016a] and Appendix A.

3.3 Optimization Formulation

The goal is to determine a design that accounts for the dynamics of plant transi-

tions in response to uncertain demand changes. The design problem is consequently

formulated as a stochastic dynamic optimization problem. A two-stage stochastic

optimization approach is followed, in which the uncertain parameter set is discretized

into Ns trajectories, {θi(t)} ∈ Γ, each of which generates an uncertain scenario. The

design optimization problem takes the form,

mind,ui(t) Eθi(t)∈Γ{φ(xi(tf ), zi(tf ),ui(tf ),d, θi(t), tf )}

st: ẋi(t)− fd(xi(t), zi(t),ui(t),d, θi(t), t) = 0

fa(xi(t), zi(t),ui(t),d, θi(t), t) = 0

g(xi(t), zi(t),ui(t),d, θi(t), t) ≤ 0

t ∈ T = [t0, tf ], ẋi(t) = 0

θi(t) ∈ Γ, i = 1, . . . , Ns

(3.2)

where xi(t) ∈ <nx , are differential states, zi(t) ∈ <nz are algebraic states, ui(t) ∈ <nu
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are inputs, and d ∈ <nd are design variables. φ represents the objective function

whose expected value is to be minimized, fd and fa are the differential and algebraic

functions, respectively, of the DAE model in semi-explicit form, and g represents a

set of path constraints. E represents the expectation operator.

In two-stage stochastic programming, the variables are partitioned into two sets: first-

stage decisions (here and now) that are made prior to uncertainty realizations being

revealed, and second-stage, or recourse, decisions (wait and see) that are dependent

on the uncertainty realizations. A detailed description of stochastic optimization is

given in Birge and Louveaux [1997]. In the present formulation, the design variables,

d, constitute the first-stage decisions, and are common to all uncertainty scenarios,

whereas the input and state variables comprise the second-stage decisions associated

with the uncertainty scenarios, i.

Our study will also consider two steady-state design formulations, namely, a nominal

design and a flexible design. These may be derived from problem (3.2) be setting

ẋi(t) to zero, and for the nominal design, considering only a single scenario with the

parameter θi(t) set at a prescribed nominal value.

The following subsections will describe the various components of the formulation

in more detail as they relate to the ASU design problem under consideration. All

optimizations are performed in gPROMS 4.2 which utilizes the sequential method

and the SQP algorithm to solve the NLP. Steady-state optimization is used for the

nominal and flexible designs, and dynamic optimization is used for the dynamically

operable formulation. All optimization studies were executed on a Dell Optiplex 7020

with 16GB of RAM.
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3.3.1 Objective Function

The objective function is an annualized profit expressed as

E
θi

[φ] = Annualized profit =
Ns∑
1

wi(Ri − Cop
i )− Ccap/T (3.3)

where Ri and Cop
i represent the revenue and operating cost, respectively, for demand

scenario i, wi represents the probability of occurrence of scenario i. Ccap represents

the total capital cost and T represents the amortization period. For the ASU system

under consideration, the revenue, Ri, comprises the gaseous nitrogen product flow

multiplied by the associated price and the operating cost, Cop
i , is taken as the cost

of the compressor power utilized. The equipment costing formulae utilized are given

below; an amortization period of 6 years is used.

The capital cost formulation of the distillation column is taken from Douglas [1988]:

Column Shell Capital Cost = (
CEPCI

113.6
) · 101.9D1.066

col H0.802
col (2.18 + Fc1)

Column Trays Capital Cost = (
CEPCI

113.6
) · 4.7D1.55

col HcolFc2

(3.4)

where Dcol is the diameter of the column and Hcol is the height of the column (cal-

culated from the number of trays and tray spacing). Fc1 is a correction factor based

on pressure rating and column shell material and Fc2 is a correction factor based on

tray material, tray type and tray spacing. The CEPCI index is used to account for

inflation in costs from 1988 to 2015. The sum of the shell and tray costs gives the

total capital cost of the distillation column.
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The capital cost formulation of the compressor is taken from Turton [1998]:

log10(Compressor Capital Cost) = log10(2.5 · (CEPCI

360
))

+(K1 +K2 log10(Wmax) +K3(log10(Wmax))
2)

log10(Compressor Drive Capital Cost) = log10(1.5 · (CEPCI

360
))

+(K4 +K2 log10(Wmax) +K6(log10(Wmax))
2)

(3.5)

where Wmax is the maximum power of the compressor. K1−6 are correlation coeffi-

cients depending on the type of compressor and compressor drive used . The CEPCI

index is used to account for inflation in costs from 1998 to 2015. The sum of the

compressor and compressor drive costs gives the total capital cost of the compressor.

The capital cost of the plate and fin heat exchanger given by Najafi et al. [2011] is

used.

Cost of PHX = CsSA (3.6)

where Cs is the cost per m2 of heat exchange area and SA is the surface area of the

heat exchanger.

3.3.2 Decision Variables and Constraints

The optimization decision variables considered are listed in Table 3.2. To perform the

dynamic optimization, the inputs are parametrized as piecewise constant trajectories.

For each demand change, the input horizon is partitioned into five control intervals,

one control interval for each of the initial and final steady states, and three 5 minute

control intervals during transition. An example of the control vector parametrization

used is given in Figure 3.2 (in the actual 12 hr horizon, the periods of steady-state are

longer, but the transition is still effected through three 5 minutes control intervals).

Each demand scenario involves three demand changes over a 12 hr period, which
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Table 3.2: A summary of decision variables used in the optimization

First-stage decision variables Second-stage decision variables
(design variables) (operational variables)

Column Diameter GN2 produced for sale
Primary Heat Exchanger Length Air feed to N2 plant
Maximum Compressor Power Liquid air fed to column
PHX air withdrawal point

Figure 3.2: The control interval structure for the dynamic optimization

using the above input partitioning, requires 13 control intervals.

The path constraints imposed are described in Table 3.3. Given a constraint variable

vc and maximum value of the variable vm, which vc cannot exceed over an optimization

horizon, the path constraint can formulated as follows, where ε is a sufficiently small

tolerance: ∫ tf

to

{max[ 0 , ( vc − vm) ]}2 dt ≤ ε (3.7)

An endpoint constraint is also present when dx(t)
dt

= 0 to ensure a final steady state.
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Table 3.3: The path constraints that are used in the optimization formulation

Path Constraints Condition to satisfy constraints
Compressor Surge Air flow to column must not drop below a certain

flow rate
Column Flooding Vapor velocity in column must not exceed flooding

velocity
Reboiler Level Liquid in reboiler must vary between certain levels

Sump Level Liquid in sump must vary between certain levels
Product Purity Parts per million oxygen (PPMO) must not exceed

5 PPMO at steady state and must not exceed 10
PPMO during transition

Turbine Dewpoint The pressure of the vapour air entering and exit-
ing the turbine must be lower than the dew point
pressure

PHX Bubble point The pressure of the liquid in the PHX must be
higher than the bubble point pressure

Maximum Compressor Power The power output of the compressor must be less
than maximum design power (a decision variable)

3.3.3 Demand Scenarios

In this study, the plant must be able to meet the demand required and cannot buy

additional product to meet unmet demand. Given this, the electricity price is fixed

throughout the horizon and is the same for all the uncertainty scenarios (the variation

in electricity price paradigm allows the plant to not meet demand by utilizing already

stored product). Thus the uncertainty set consists of six 12-hr horizons with varying

demand where the demand changes every four hours. This uncertainty set can be

seen in Figure 3.3. When the demand changes, the plant operating point must also

move to meet this demand. The demand profiles are based on data provided by

our industrial partner. Thus the second-stage decision variables will be the control

variables for the plant. The variables that are common to each uncertainty scenario

are selected design parameters, which will act as our first-stage decision variables.
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Figure 3.3: The six scenarios that comprise the uncertainty set used in this study

3.4 Design Comparison Studies

In this case study, we will compare three different design paradigms - nominal, flexible

and dynamically operable designs. For the nominal design, the steady-state analog

of Eq. 3.2 is solved for a single, constant nominal demand scenario. The flexible

design maintains steady-state feasibility under uncertainty, without consideration of

transition dynamics, whereas the dynamically operable design maintains feasibility of

the dynamic response trajectories of the system. The flexible design utilizes a steady-

state version of Eq. 3.2 in which the constant portions of the six demand scenarios

described in the previous subsection are considered as individual static scenarios. The

length of time the plant spends at each static demand scenario (required for the profit

and operating cost evaluation) is taken from the dynamic demand profiles; thus the

flexible and dynamically operable designs can be compared on a consistent basis.

The difference between the flexible and dynamically operable design paradigms is

illustrated in Figure 3.4. We see that the dynamically operable design includes the

transitions between steady states which is not captured in the flexible design formu-

lation. In addition, the flexible design does not consider the permutation of the plant

transitions. Given this, we expect the dynamically operable design to be more conser-

vative than the flexible design. This would translate to the flexible design appearing

to be a more attractive decision; however plant operation using the dynamically op-
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erable design may be more profitable over the long run. The dynamically operable

design may provide better operational profit as a plant based on the flexible design

would typically still have to undergo transitions from one operating point to another.

Because the flexible design used does not take into account transition between oper-

ating points, when it finally does have to transition, it may not be as quick compared

to the dynamic design leading to lost revenue over the transition period (since when

demand is not met, revenue is lost or the plant is forced to acquire product from an

outside source).

Figure 3.4: The difference in operational profile between a dynamically operable and
flexible design

In order to compare the design of the N2 plant generated by different formulations,

random demand scenarios are created to test each design (moving from a lower de-

mand to a higher demand or vice versa). A demand scenario is constructed from

an initial demand point (Dinitial) and a demand change (∆D), which determines the

final demand (Dfinal). The initial demand level and magnitude of the change are

generated based on the average demand and the average change in demand in the

uncertainty set. The range of the change in demand and initial demand point used
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to construct the random demand scenario is given below.

µchange − 2σchange ≤ ∆D ≤ µchange + 2σchange

µdemand − 2σdemand ≤ Dinitial ≤ µDemand + 2σdemand

Dfinal = Dinitial ± ∆D

(3.8)

The demand change and initial demand are assumed to be uniformly distributed

within their ranges, and thus to construct a random demand scenario, a random point

is selected between these ranges for both the demand change and initial demand. The

direction of the change is also randomly selected.

The nominal, flexible, and dynamically operable designs are evaluated by applying the

random demand scenarios to the N2 plant, where the design parameters have been

fixed at the nominal, flexible, and dynamically operable designs respectively. An

optimization is performed to find the operational profile that maximizes the profit

given the random demand scenario. The scenario is a 4 hr horizon formulated such

that the initial demand spans a 1 hr horizon and then steps to the final demand for

the remaining 3 hrs. The initial operating point for a given random demand scenario

is a fixed point and not determined by the optimization. Instead this initial fixed

point is determined by a steady-state optimization for the N2 plant at the initial

demand, where the demand parameters are fixed at the design being used for the

random demand scenario. The reason this is done is because in practice the plant is

operating at a steady-state point with no knowledge of future demand.

To compare the economic benefits of each design, given the average operational profit

from the 10 random scenarios we can calculate the annualized profit as in Eq. 3.3,

using the average operational profit of the 10 random scenarios.
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3.5 Results and Discussion

The design parameters and optimal objective function values found from the three

optimization formulations are given in Table 3.4. The nominal design is generated

by finding the average demand over all six demand scenarios, which is then used in a

single scenario steady-state optimization. The results have been scaled relative to the

nominal design for confidentiality reasons.

Table 3.4: Optimization results for the six scenario two-stage stochastic
optimization. Values are scaled relative to the nominal design as a baseline (100)

Design Parameters Nominal Design Flexible Formulation Dynamically
Operable

Formulation
Column Diameter 100 105.2 103.2

PHX Length 100 106.7 108.6
Compressor Power 100 117.0 117.1

Objective Function 100 98.9 98.6

The dynamically operable design also yields input trajectories (second stage decisions)

corresponding to each uncertain demand scenario; one such set of profiles is shown in

Figure 3.5.
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(a) GN2 Demand (b) GN2 production control moves

(c) Air flow to compressor control moves (d) Liquid air to column control moves

Figure 3.5: Demand profile (a) and optimal input trajectories (b)-(d) for a scenario
in the two-stage stochastic dynamic optimization

From Table 3.4, we see that the flexible design provides the higher objective function,

suggesting that adopting a flexible design may lead to higher profits. Examining the

design parameters, it seems counter intuitive that the flexible design has a larger

column diameter. This is due to fact there is an economic and operational trade-off

between the column diameter and maximum compressor power. When the column

diameter is increased this reduces the pressure drop along the column, and the com-

pressor can use less power. This reduces the operational costs (lower compressor

power uses less electricity) as well as the capital cost (lower maximum compressor

power). Thus there is a trade-off between increasing the capital cost of the compres-

sor or the column. The dynamics of the column are such that given the objective
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function Eq. 3.3, it is more profitable in the dynamic optimization to have a lower

column diameter compared to the flexible design. The reason the dynamically oper-

able design requires a higher maximum compressor power can be explained with the

aid of Figure 3.6, which shows a segment of one of the demand scenarios and profiles

related to the compressor operation. For this demand scenario, there is a period of

time for which the transient profiles of the compressor air flow and power exceed the

final steady-state values. This phenomenon is not captured in the flexible design, and

is why the dynamically operable design has a more conservative compressor design

and lower objective function.

(a) GN2 Demand (b) Air flow to compressor

(c) Compressor power needed during
operation

Figure 3.6: Profiles illustrating the need for incorporating dynamics into the design.
These profiles are a 4 hr interval taken from a given 12 hr demand scenario

To further examine this effect, the trade-off between column diameter and compressor
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Table 3.5: The single scenario optimization where the compressor power is fixed and
not a design variable.

Design Parameters Flexible Formulation Dynamically Operable
Formulation

Column Diameter 100 100.5
PHX Length 100 107.4

Objective Function 100 99.49

power is removed by fixing the compressor power. Flexible and dynamically operable

designs are determined using the single demand profile shown in Figure 3.7. The

results are shown in Table 3.5, where the dynamically operable design is now more

conservative in all design parameters.

Figure 3.7: Demand change used to examine the trade-off between column diameter
and maximum compressor power

3.5.1 Evaluation of Designs for Random Demand Scenarios

As discussed in the previous section, the nominal, flexible and dynamically operable

designs will be subjected to ten random demand change scenarios generated using

the approach described earlier. For each scenario, the plant design parameters were
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fixed at either the nominal, flexible or dynamically operable design. The optimal op-

erational profit and the annualized profit were then calculated for dynamic transition

between the two demands. Unlike the optimization where the design is found, when

testing the design we allow for unmet demand to occur. The results are presented in

the Table 3.6.

Table 3.6: The average operating profit for 10 random scenarios when the plant
design is fixed at the nominal, flexible and dynamically operable designs, generated

from the six scenario two-stage stochastic optimization

Design Nominal Design Flexible Formulation Dynamically
Operable

Formulation
Average Operational Profit 100 105.9 106.5

Annualized Profit 100 102.2 102.8

From Table 3.6 we can see that the dynamically operable design on average provides

greater operational profit. However, the difference in operational profit is rather

slight. This is because for most of the random scenarios the operational profit is

very similar. But for scenarios where the demand change is relatively large (≥ 30)

the dynamically operable design generates an operating profit that can be up to 5

percent greater than flexible design. In these cases we find that the dynamically

operable design is able to meet the final demand while the flexible design does not.

Thus in certain cases it is fairly evident that utilizing the dynamic design allows the

plant to generate higher profits. The difference in average operational profit is small

as most of the 10 random scenarios do not have a very large demand change, and both

the dynamic and flexible design are able to transition from the change equally well.

The nominal design performs significantly worse compared both other designs. This

is because the nominal design takes into account only one demand and it is not able to

exceed this when subjected to the random scenarios. Hence profit is lost, since in many

cases the nominal design is not able to meet the demand. Factoring the capital cost

of each design into the economic performance is done by the annualized profit. Here
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we can see that even though the nominal design is much less conservative (the capital

cost is about 13 percent less than the flexible and dynamically operable designs), its

annualized profit is lower than the other two designs, as it performs poorly in the 10

random scenarios. The capital costs of the flexible and dynamically operable design

are very close with the dynamically operable design only being about 0.6 percent

greater in capital cost. The difference in performance between the two designs is

more due to how the capital cost is distributed (with the flexible design utilizing a

more expensive column design and the dynamically operable design utilizing a more

expensive compressor and PHX design) as opposed to the difference in capital cost.

Figure 3.8 illustrates some differences in the dynamic performance between the flexible

and dynamically operable designs, where comparisons of the GN2 flow for two demand

changes are shown. There are cases in the random 10 scenarios where the flexible

design is not able to meet the endpoint demand. Such a case is shown in Figure 3.8(c),

in contrast to Figure 3.8(d) where the same endpoint demand can be met by the

dynamically operable design. In other cases, the flexible design is able to meet the

demand, but is not able to track the demand change during the transition as well as

the dynamically operable design. This is shown in Figures 3.8(a) and (b). .

From Figure 3.9 we see that when we relax the lower bound of the reboiler liquid

level, the flexible design is able to meet the demand both at the endpoint and during

transitions. This suggests that the reason the flexible design cannot meet demand is

because it cannot meet the demand within the purity (PPMO) specifications both

during endpoint and transition. When the lower reboiler level lower bound is relaxed,

this allows for more reflux to enter the column and increase the nitrogen purity of the

product. The same effect is seen when the endpoint purity is lowered (a higher PPMO

is allowed), which allows the flexible design to meet the demand without violating

the original reboiler level constraint.

Even though the flexible and dynamically operable designs from the six scenario
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(a) A scenario where the endpoint
demand is met by the flexible design,

but during transition demand is not met

(b) Demand is met by the dynamically
operable design compared)

(c) A scenario where the flexible design
cannot meet the demand

(d) The dynamically operable design in
able to meet demand unlike the flexible

design

Figure 3.8: Selected random scenarios showing the advantages of the dynamically
operable design over the flexible design

optimization are somewhat similar, we have seen that this difference is still enough

see differences in operational performance. In our experience with this study we have

seen that the average demand change of the demand profiles affects the difference we

see in the flexible and dynamically operable design. The larger the average change

in demand, the more different the designs. To illustrate this, we did three single

scenario optimizations, where the demand change was varied. The three scenarios

were 85-125, 90-110 and 90-100. The results are seen in Tables 3.7, 3.8 and 3.9.

From Tables 3.7, 3.8 and 3.9 we can see that as the demand change decreases the
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(a) The flexible design is very close
to meeting demand completely
during the transition when the
reboiler constraint is relaxed

(b) The flexible design is able to
meet endpoint demand, when the
reboiler constraint is relaxed

Figure 3.9: The effect of constraint relaxation on the ability of the flexible design to
meet demand

difference between the flexible and dynamically operable design also decreases. In

addition to this, we see as the demand change decreases the difference in objective

function value between the flexible and dynamically operable design also decreases.

For 90-100 demand change we see that the dynamically operable and flexible design

are almost identical. This shows that the flexible and dynamically operable design are

highly dependent on the demand scenarios, and that the difference in the dynamically

operable and flexible design may increase by choosing demand profiles that have

greater demand changes on average.
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Table 3.7: The results of single scenario optimization where demand changed from
85 to 125

Design Parameters Flexible Formulation DO Formulation
Column Diameter 100 98.0

PHX Length 100 99.8
Compressor Power 100 100.3

Objective Function 100 99.2

Table 3.8: The results of single scenario optimization where demand changed from
90 to 110

Design Parameters Flexible Formulation DO Formulation
Column Diameter 100 99

PHX Length 100 98.4
Compressor Power 100 100.2

Objective Function 100 99.5

Table 3.9: The results of single scenario optimization where demand changed from
90 to 100

Design Parameters Flexible Formulation DO Formulation
Column Diameter 100 99.4

PHX Length 100 100.04
Compressor Power 100 100.05

Objective Function 100 99.8
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3.6 Conclusions and Future Work

This study considered the design of an air separation unit in which uncertain demand

changes are taken into account. Three optimization-based design paradigms were

explored. These comprised a steady-state design under a nominal static demand, a

flexible design in which the expected economics are optimized subject to steady-state

feasibility with respect to static demand levels in a specified uncertainty set, and

a dynamically operable design in which feasibility of dynamic transitions between

steady-states is additionally imposed. The latter two designs were formulated as

two-stage stochastic programming problems.

Given the same uncertainty set, the flexible design provided a better annualized cost

and lower operational costs over the uncertainty set than the dynamically operable

design. However, when both designs were subjected to random demand scenarios and

had to transition dynamically between the initial and final demand, the dynamically

operable design provided superior operational profit on average. There were demand

scenarios for which the nominal and flexible designs, under transient operation, were

either unable to meet the final demand for the allowed number of input changes,

and/or were unable to meet the demand during transition as well as the dynamically

operable design. Thus when conducting design under uncertainty, the dynamics of

the process should be taken into account.

An interesting trade-off between column diameter and maximum compressor power

was observed. Focusing solely on the objective function as a metric for comparison

can mask the differences between the designs. In this application, there is a shift in

the distribution of costs between the flexible and dynamically operable designs. The

difference between the flexible and dynamically operable designs was also shown to

be impacted by the magnitude of the demand changes. It is therefore important that

expected demand changes be carefully considered in the design problem formulation.
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A useful configuration for ASU demand response operation is the inclusion of product

storage in order to adjust production levels in response to electricity price changes,

with demand in excess of production being met by stored product [Cao et al., 2016b].

Design for this configuration under varying electricity prices would be a useful avenue

for further study. The uncertainty in our case study was also limited to variation in

demand. A useful extension would be consideration of additional sources of uncer-

tainty, including short-term fluctuations (disturbances).



Chapter 4

A Bilevel Formulation for

Integrated Design and Control

under Uncertainty

4.1 Introduction

Motivated by the non-static operation ASUs may face from demand uncertainty,

Chapter 3 used a two-stage stochastic optimization to find the optimal design and

operation (to find the annualized profit) for a nitrogen plant operating under discrete

demand uncertainty (several different demand scenarios). This study used a dynamic

model of an ASU, as the dynamics of the plant should be taken into account given

the plant is transitioning from one operating point to another. A characteristic of the

formulation in Chapter 3, is that the optimization problem is allowed to choose the

initial steady-state operating point. Thus the optimization could “back-off” from the

optimal steady-state operating point (in terms of operational profit) to potentially

reduce operational and capital costs over a future horizon that includes transitions.

40
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This is a common paradigm in design and control studies where a nominal operating

point is calculated such that feasibility can be maintained in the presence of distur-

bances. This however may be an unrealistic operation condition, as in an industrial

setting you may not know future demand patterns and thus may choose to operate

at the optimal steady-state instead. In this study we investigate optimal design and

control of a chemical process, subject to demand uncertainty where several optimal

steady-state points must be calculated with the plant subject to dynamic transitions

between them.

Finding the optimal objective function (in this study annualized profit) while also

ensuring that the initial and final operating points are at the steady-state optimum

poses a bilevel problem. This is because the feasible region of the optimization is

partly defined by maximizing the operating profit for the initial and final operating

points. Bilevel problems are a common occurrence when finding an optimal design

under uncertainty, where the uncertainty is a domain as compared to discrete val-

ues. This is seen in Mohideen et al. [1996] and Bahri et al. [1997] where optimization

algorithms are used where an outer loop finds the optimal design, with a given dis-

turbance or uncertainty set, and an inner loop is used to update the disturbance or

uncertainty set (where the inner loop attempts to find a disturbance or uncertainty

that maximizes the constraint violation for a given design). A common method used

to transform a bilevel optimization into a single-level optimization, is to represent the

inner most optimization in terms of its Karush-Kuhn-Tucker (KKT) conditions. This

is applied in Pistikopoulos and Ierapetritou [1995] where determining the feasible re-

gion of an optimal design under uncertainty is posed as an optimization problem. The

outer optimization finds the expected profit over an uncertainty set and the inner op-

timization determines the uncertainty set for a given design. The inner optimization

problem is represented by its KKT conditions to transform the overall problem into

a single level optimization. This method is also used in studies such as Baker and

Swartz [2008] and Soliman et al. [2008] considering applications of MPC, where the



42

inner QP subproblem posed in MPC optimizations is replaced by its KKT conditions

to again transform a bilevel optimization problem into a single level. Representing

the inner optimization problem by its KKT conditions is the method used in this

study to deal with the bilevel optimization investigated. This method will also be

compared to a brute-force method applied to the bilevel problem. In the brute-force

method, the optimal design is found by fixing the design and letting the optimization

choose only the 2nd-stage decision variables. This is done for a range of designs to

find which design provides the optimal overall objective value.

In this study using two-stochastic optimization we will find the optimal design and

operation of chemical plant when the initial and final operating points must be at the

steady-state optimum. We will compare this to the design where the optimization can

choose the final and initial points. We will also look at various optimization formu-

lations (that represent changes in operating conditions) that affect the designs. The

expected difference in performance when subjected to certain operating conditions

may elucidate why it is good design practice to incorporate optimal final and starting

operating points for a chemical process.

4.2 Model Description

The model used in this study is based on the CSTRs in series utilized in Loeblein and

Perkins [1998]. A diagram of the system is shown in Figure 4.1. In this model a the

first order reaction A → B takes place in each CSTR. An additional side reaction B

→ C also takes place in each reactor. Fresh feed of pure A is fed to the first CSTR,

and the exiting stream is sent to a mixer. The exiting stream from the first CSTR is

mixed with additional feed of pure A and this is the feed sent to the second reactor.

Each reactor is surrounded by a cooling jacket to remove excess heat. In Loeblein and

Perkins [1998] the objective was to maximize the operating profit of the system (the
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Figure 4.1: A schematic of the model used in this study

profit by selling product B) and this is also considered in this study. The model used

in Loeblein and Perkins [1998] is a steady state model, but the model in this study is

based on the dynamic model of the CSTR system used in Li and Swartz [2018]. The

equations defining the model are as follows:
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dcA1

dt
= QF1cA,F1 −Q1cA1 − cA1Vdk0,Ie

(− EI
RT1

)
(4.1)

dcB1

dt
= QF1cB,F1 −Q1cB1 + cA1Vdk0,Ie

(− EI
RT1

) − cB1Vdk0,IIe
−EII

RT1 (4.2)

dcC1

dt
= QF1cC,F1 −Q1cC1 + cB1Vdk0,IIe

(−EII
RT1

)
(4.3)

dT1

dt
= QF1TF1 −Q1T1 −

∆HR,I

ρcp
cA1Vdk0,Ie

(− EI
RT1

) − ∆HR,II

ρcp
cB1Vdk0,IIe

(−EII
RT1

) − qcool,1

(4.4)

dcA2

dt
= QF2cA,F2 −Q2cA2 − cA2Vdk0,Ie

(− EI
RT2

)
(4.5)

dcB2

dt
= QF2cB,F2 −Q2cB2 + cA2Vdk0,Ie

(− EI
RT2

) − cB2Vdk0,IIe
−EII

RT2 (4.6)

dcC2

dt
= QF2cC,F2 −Q2cC2 + cB2Vdk0,IIe

(−EII
RT2

)
(4.7)

dT2

dt
= QF2TF2 −Q2T2 −

∆HR,I

ρcp
cA2Vdk0,Ie

(− EI
RT2

) − ∆HR,II

ρcp
cB2Vdk0,IIe

(−EII
RT2

) − qcool,2

(4.8)

with the following algebraic equations:

qcool,i = Ua,i∆Tln,i i = 1, 2 (4.9)

∆Tln,i =
Tci,out − Tci,in

ln(Ti − Tci,in)/(Ti − Tci,out)
i = 1, 2 (4.10)

qcool,i = Qc,i(Tci,out − Tci,in) i = 1, 2 (4.11)

QF2 = Q1 +QM (4.12)

QF2ci,F2 = Q1ci,1 +QMci,M i = A,B,C (4.13)

QF2TF2 = Q1T1 +QMTM (4.14)
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Table 4.1: The variables present in the two CSTR system

Variable Description
QFi Feed to Reactor i
Qi Flow from Reactor i
QM Feed to Mixer
cAi, cBi, cCi Concentration of species A,B and

C for reactor i respectively
cAF2, cBF2, cCF2 Concentration of species A,B and

C in the feed entering reactor 2
respectively

Ti Temperature of reactor i
Tci,out Temperature of stream exiting

cooling jacket of reactor i
∆Tln,i Log-mean temperature difference

for reactor i and its cooling jacket
qcool,i Heat transfer between reactor i

and its cooling jacket
Vd Design volume for Reactor 1 and

Reactor 2

The following constraints are also imposed:

T1 ≤ 350 K, T2 ≤ 350 K (4.15)

QF1 +QM ≤ 0.8 m3/s (4.16)

Tc1,out ≤ 330 K, Tc2,out ≤ 300 K (4.17)

QF1 ≥ 0.05 m3/s, QM ≥ 0.05 m3/s (4.18)

cA2 ≤ 0.3 kmol/m3 (4.19)

The state, control and design variables are defined in Table 4.1:

The parameters used in this model are provided in Appendix B.
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4.3 Bilevel Formulation

As previously mentioned, when future operational points are uncertain due to factors

such as uncertain demand or electricity price, it is logical for the current operating

point to be at the steady-state optimum (the operational profit is optimal for a given

design). Furthermore when transition does occur from one point to another, the final

operating point can be considered the new operating point until further notice and

thus should also be at the steady-state optimum. Thus a general integrated design

and control problem where the initial and final point are optimal can be expressed in

Equation 4.20.

max
d,u(t)

[φ(d,x(t),y(t),u(t))− f(d)]

s.t z(d, ẋ(t),x(t),y(t),u(t)) = 0

h(d,x(t),y(t),u(t)) = 0

g(d,x(t),y(t),u(t)) ≤ 0

max
x(0),y(0),u(0)

φss(d,x(0),y(0),u(0))

max
x(tf ),y(tf ),u(tf )

φss(d,x(tf ),y(tf ),u(tf ))

ẋ(0) = 0

ẋ(tf ) = 0

to ≤ t ≤ tf

(4.20)

Where φ(d,x(t),y(t),u(t)) is the operational profit, d, x(t), y(t) and u(t) are the

design, differential, algebraic and control variables and f(d) is the capital cost. z and

h are the differential algebraic equations (DAEs) that define the system and g are

the constraints for the optimization. ẋ(0) = 0 is our initial condition for the system,
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where the system is initially at steady-state. ẋ(tf ) = 0 ensures that our system is

at steady-state at the final time point. φss is the equation for operational profit at a

given time point (since for a dynamic optimization, objective functions are integrated

over time). We see from the formulation that the initial and final operating points

must be steady-state optimal for the operational profit at that point. Thus we have

a bilevel formulation. In this section we deal with the bilevel formulation in two

ways, using a brute-force method and replacing the inner optimizations with their

KKT conditions. To compare these two methods we consider a dynamic optimization

problem where a single demand change takes place. The objective used here is to

minimize unmet demand in addition to minimizing the operational and capital costs.

This is expressed in Equation 4.21:

min
QF1,QM ,Vd

∫ tf

0

[100(Q2cB2−Demand Setpoint)2+0.01qcool,1+qcool,2+0.1QF1+0.1QM ]+10Vd

(4.21)

In Equation 4.21, Q2cb is the molar flow of species B from Reactor 2, and the fresh feed

to Reactor 1 and the fresh feed to the Mixer are the control variables (QF1 and QM).

The fresh feed to Reactor 1 and to the the Mixer, as well as the cooling required

for both tanks are our operational costs. The volume of both CSTRs (which are

the same value, Vd) is our design variable. This is a rudimentary objective function

used to examine the methods used to solve the bilevel problem. More rigorous profit

based objective functions will be used later when a more formal design problem is

considered. The demand step change used is shown in Figure 4.2.

In the dynamic optimization study used to compare the brute force method to the

KKT methods, the operation horizon is 16 seconds, with there being 10 control inter-

vals. The first control interval is 2 s (the initial steady state), the following 8 control

intervals are 0.5 s in length and the final control interval is 10 s long. Thus our dy-
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Figure 4.2: The demand scenario used in the dynamic optimization to compare
bilevel solution methods

namic optimization is defined by the DAE in Equations 4.1 to 4.14, the constraints in

Equations 4.15 to 4.19, the formulation in Equation 4.20 and the objective function

in Equation 4.21. To integrate the DAE we use the Backward Euler discretization

method and use the simultaneous method to solve the dynamic optimization. See

Appendix B for further detail on the Backward Euler method.

The steps for the brute force method to find a bilevel solution are given below:

1. Choose a set design of variables (in this example, a specific value for volume

Vd) for the system within a selected range of designs

2. At the chosen design, find the steady-state optimal operating point for the initial

and final points

3. In a dynamic optimization, fix the final and initial points at the optimal oper-

ating points found in Step 2 (in this example, QF1 and QM at t = 0 and t = tf

are fixed) and set the design variables to the design chosen in Step 1

4. Find the optimal operating trajectories via dynamic optimization

5. Repeat Steps 1-4 for all other design variables within the selected range
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Thus for the brute force method we simply just pick a range of designs and enumerate

through all of them to find the optimal solution. By removing the design as a decision

variable we reduce the problem to a single level optimization. This is because we can

find the optimal steady-states for the initial and final points beforehand, as opposed

to in the bilevel formulation.

4.3.1 KKT Conditions

As shown in Soliman et al. [2008], a bilevel optimization can be reduced to a single

level optimization where the inner optimization is replaced by its KKT conditions.

If the inner optimization problem is convex, as in the case in Soliman et al. [2008],

then the KKT conditions are necessary and sufficient for optimality. For the prob-

lem considered in this work, the KKT conditions are in general necessary but not

sufficient for optimality, but numerical experiments indicate that the replacement of

the inner optimizations with their KKT conditions does indeed yield a solution of

the bilevel problem. The inner optimization is a steady-state optimization that can

be formulated in Equation 4.22. In this formulation we have a steady state model of

the dynamic optimization problem presented in Equation 4.20. Equation 4.22 shows

the equations governing the steady-state optimal operating point with respect to the

initial time point t = 0; however Equation 4.22 can also be applied to the final op-

erating point by letting t = tf . Equation zss are the set of differential equations z,

where the derivatives have been set to 0 and applied to only a single point in time.

hss and gss are the set of algebraic equations h and constraints g that are applied

to a single point in time (gss has no path constraints). From Equation 4.22 we can
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derive the KKT conditions and Equation 4.20 can be reformulated as Equation 4.23.

max
x(0),y(0),u(0)

[φss(d,x(0),y(0),u(0))]

s.t zss(x(0),y(0),u(0)) = 0

hss(x(0),y(0),u(0)) = 0

gss(x(0),y(0),u(0)) ≤ 0

(4.22)

max
d,u(t)

[φ(d,x(t),y(t),u(t))− f(d)]

s.t z(d, ẋ(t),x(t),y(t),u(t)) = 0

h(d,x(t),y(t),u(t)) = 0

g(d,x(t),y(t),u(t)) ≤ 0

∇[x(0),y(0),u(0)]L(d,x(0),y(0),u(0),ν0,λ0) = 0

∇[x(tf ),y(tf )u(tf )]L(d,x(tf ),y(tf ),u(tf ),νf ,λf ) = 0

λ0
Tgss(d,x(0),y(0),u(0)) = 0

λf
Tgss(d,x(tf ),y(tf ),u(tf )) = 0

ẋ(0) = 0

ẋ(tf ) = 0

λ0 ≥ 0

λf ≥ 0

to ≤ t ≤ tf

(4.23)

ν0 and νf are the Lagrange multipliers for the equality constraints of the steady-

state optimization at the initial and final time points respectively. λ0 and λf are the
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Lagrange multipliers for the inequality constraints of the steady-state optimization

at the initial and final time points respectively. L is the Lagrangian function that is

defined in Equation 4.24. ∇[x(0),y(0),u(0)]L(d,x(0),y(0),u(0),ν0,λ0) = 0 and

∇[x(tf ),y(tf )u(tf )]L(d,x(tf ),y(tf ),u(tf ),νf ,λf ) = 0 are the stationarity constraints for

the KKT conditions at the initial and final time points respectively.

λ0
Tgss(d,x(0),y(0),u(0)) = 0 and λf

Tgss(d,x(tf ),y(tf ),u(tf )) = 0 are the com-

plementarity constraints of the KKT conditions at the initial and final time points

respectively. hss and gss that are part of the KKT conditions are implicit, since they

are included in the constraints h and g. The complementarity constraints as they

are formulated currently can pose numerically difficulties for standard NLP solvers.

Techniques for dealing with these constraints are seen in Soliman et al. [2008] where

the complimentary conditions are posed as mixed-integer constraints. In this study

we use the technique implemented in Jamaludin and Swartz [2017] where the comple-

mentarity constraints are formulated as penalty functions in the objective function.

With Equation 4.25 being the new objective function, Equation 4.23 can then be

reformulated as Equation 4.26 where ρ0 and ρf are the weights for the penalty func-

tions.

L(d,x(t),y(t),u(t),ν,λ) =φss(d,x(t),y(t),u(t))− νThss(d,x(t),y(t),u(t))

− λTgss(d,x(t),y(t),u(t))
(4.24)

φkkt(d,x(t),y(t),u(t),λ0,λf ) = φ(d,x(t),y(t),u(t))− f(d)

− ρ0[λ0
Tgss(d,x(0),y(0),u(0))]− ρf [λfTgss(d,x(tf ),y(tf ),u(tf ))]

(4.25)
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max
d,u(t),λ0,λf

φkkt(d,x(t),y(t),u(t),λ0,λf )

s.t z(d, ẋ(t),x(t),y(t),u(t)) = 0

h(d,x(t),y(t),u(t)) = 0

g(d,x(t),y(t),u(t)) ≤ 0

∇[x(0),y(0)u(0)]L(d,x(0),y(0),u(0),ν0,λ0) = 0

∇[x(tf ),y(tf )u(tf )]L(d,x(tf ),y(tf ),u(tf ),νf ,λf ) = 0

ẋ(0) = 0

ẋ(tf ) = 0

λ0 ≥ 0

λf ≥ 0

to ≤ t ≤ tf

(4.26)

Thus now with the KKT conditions formulated to solve the bilevel problem as a single

level optimization problem we can compare the KKT and brute force methods. It

should be noted that in this formulation for the 2 CSTR model, the final steady-

state is almost identical to the optimal steady-state regardless whether optimality for

the final steady-state is enforced. Thus for the sake of simplicity in our comparison

we only enforce steady-state optimality for the initial point (in later formulations,

where integrated design and control is the focus, we do enforce the KKT conditions

at the initial and final time points). The brute force method was implemented for a

tank volume (where both CSTR tanks have the same tank volume, Vd) between 3.8

m3 and 8 m3. The initial volume selected was 3.8 m3 and the steps for the brute

force method were carried out. The volume was then incremented by 0.1 m3 and the

steps were carried out again. This was repeated until the volume selected reached 8

m3. Thus the brute force method tried 43 different designs between between 3.8 m3
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Figure 4.3: The brute force method implemented for volumes between 3.8 m3 and
8m3 using the objective function in Equation 4.21

and 8 m3. The results of the brute force method are presented in Figure 4.3. From

Figure 4.3 we see that the minimum objective function value occurs at a volume of

5.8 m3 with a value of 321.869. The next two lowest objective function values occur

at 5.7 m3 and 5.9 m3. Thus the optimal solution is between 5.7 m3 and 5.8 m3 or

5.8 m3 and 5.9 m3. When the KKT conditions are used to solve the bilevel problem

using the formulation in Equation 4.26 (but with the KKT conditions only applied

to the initial point as previously mentioned) the optimal volume is 5.81 m3 with an

objective function of 321.857. Thus we can see the optimal solution found by the

brute-force method is almost identical to the optimal solution found by the KKT

conditions, furthermore the KKT conditions provides a better solution as we would

expect, as the brute-force method can only choose from a discrete set of volumes.

These experimental results demonstrate that we can use the KKT conditions (despite

being only necessary conditions for the inner optimization problem) to represent the

inner optimizations posed in the bilevel formulation and thus solve the problem posed

in Equation 4.20
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4.3.2 KKT Design vs. Relaxed Design

The bilevel formulation was suggested as a more realistic design formulation for sys-

tems that have to transition between steady-states. What we would like to show are

the benefits of operating using this formulation. The formulation we would compare

the bilevel design to, is when the optimization problem is allowed to pick any initial

and final operating point. Thus this formulation is very similar to Equation 4.20, but

no inner optimization is present, thus giving the formulation in Equation 4.27. The

design resulting from this formulation will be referred to as the Relaxed design. As

previously stated the KKT design is 5.81 m3 and from the formulation in Equation

4.27 the design generated (the Relaxed Design) is 4.17 m3 with an objective function

value of 308.641. Thus we can see the relaxed design is significantly smaller and pro-

vides a better objective function. Both designs are able to meet the demand change

almost immediately as seen from Figure 4.4. However there are several operating

differences, the most significant difference being the temperature at which Reactor 1

initially operates at as seen in Figure 4.5. We see that since the Relaxed design is

able to choose the initial operating conditions, it is able to operate at a much lower

initial temperature. Furthermore because the volume of the tank in the KKT design

is larger, it can operate at lower concentrations as seen in Figure 4.6.

max
d,u(t)

[φ(d,x(t),y(t),u(t))− f(d)]

s.t z(d, ẋ(t),x(t),y(t),u(t)) = 0

h(d,x(t),y(t),u(t)) = 0

g(d,x(t),y(t),u(t)) ≤ 0

ẋ(0) = 0

to ≤ t ≤ tf

(4.27)
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Figure 4.4: The molar flow rate of B produced by Reactor 2 in the KKT and
relaxed designs
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Figure 4.5: The temperature profiles for Reactor 1 in the KKT and Relaxed designs

When we apply the KKT formulation with the volume fixed to that determined by

the Relaxed design (thus the Relaxed design is forced to operate initially at the

steady-state optimum) its performance is far worse as it is not able to meet demand

immediately (as can be seen from Figure 4.7(a)). The new objective function value is

634.857. This is consistent with Figure 4.3, as the objective function value is between

the objective function value for a volume between 4.1 and 4.2 m3. This again shows

that the KKT formulation is consistent with the brute-force method. The reason

the relaxed design cannot initially meet the demand when operating at the initial

optimum is because it cannot initially increase the volumetric flow rate exiting from

Reactor 2 need to meet the demand. This can be seen in Figure 4.7(b), where the

volumetric flow rate profile has a very similar behavior to the molar flow rate of B.
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Figure 4.6: The concentration profiles of A for Reactor 1 in the KKT and Relaxed
designs
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Figure 4.7: Production profiles for the Relaxed design initially operating at the
steady-state optimum

The reason the Relaxed design cannot meet the demand in this case is seen in com-

paring the control profiles between the KKT design and the Relaxed design initially

at the steady-state optimum. From Figure 4.8 we see the primary difference is the

Relaxed design is not able to add as much fresh feed of pure A to the Mixer as the

KKT design. This is because the Relaxed design has a smaller volume, hence the

concentration of A in Reactor 1 is higher than in the KKT design. In the Mixer the

exiting stream of Reactor 1 is mixed with fresh feed. Thus in the Relaxed design,

because of the high concentration of A in the exiting feed from Reactor 1, does not

add as much feed of pure A to prevent the concentration of A in Reactor 2 from

exceeding 0.3 mol
m3 , which is an operating constraint. This is seen in Figures 4.9 and
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4.10 which show the concentration of A in the first and second reactors respectively

for the KKT and Relaxed design initially at the steady-state optimum. From Figure

4.9 we see that the concentration in Reactor 1 for the Relaxed design at the steady-

state optimum is about 30 percent higher, and consequently as seen in Figure 4.10,

the Relaxed design operates at the maximum concentration in Reactor 2 for much

longer.

The addition of fresh feed is necessary to meet the required volumetric flow rate to

meet the demand because as seen in Figure 4.11, the concentration of B in Reactor 2

stays roughly the same throughout operation and this is why the increase in flow rate

is needed to meet demand as we can’t just increase the concentration of B instead.

The KKT design due to it’s larger volume has a lower concentration of A from Reactor

1 entering the Mixer, and thus more fresh feed can be added. The flow rate also can’t

be increased by adding more feed to Reactor 1 in the Relaxed design. This is because

when the Relaxed design is forced to operate at the steady-state optimum, its initial

operating temperature is much closer to 350 K (around 348 K) compared to when it

could operate at any initial steady-state (as seen from Figure 4.5(b) where it operates

at around 317 K). Thus any additional feed to Reactor 1 will cause the temperature

in Reactor 1 to exceed 350 K, which is a constraint violation. A comparison of

temperature profiles for Reactor 1 for the Relaxed design and the Relaxed design at

the steady-state optimum can be seen in Figure 4.12.
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Figure 4.8: The control profiles for selected designs
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Figure 4.9: The concentration profile of A in Reactor 1 for the KKT design and the
Relaxed design at the steady-state optimum
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Figure 4.10: The concentration profile of A in Reactor 2 for the KKT design and
the Relaxed design at the steady-state optimum
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Figure 4.11: The concentration profile of B in Reactor 2 for the KKT design and
the Relaxed design at the steady-state optimum

When the Relaxed design is allowed to choose the initial operating point (that’s

not steady-state optimal) it chooses a point where the temperature of Reactor 1 is

far below 350 K. Operating at a temperature much lower than 350 K, allows the

feed to Reactor 1 to be increased far more than in other designs. This is seen in

Figure 4.13 where to meet the demand change, the feed to Reactor 1 is increased to

levels far greater than the KKT design or when the Relaxed design has to be at the

operate steady optimum (0.45 m3

s
compared to around 0.33 m3

s
). This demonstrates

that depending on the operating conditions, additional demand increases can be met

either by increasing feed to the Mixer or increasing feed to Reactor 1.
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Figure 4.12: The temperature profiles for Reactor 1 for the Relaxed design and the
Relaxed design being forced to operate initally at the steady-state optimum
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Figure 4.13: The control profiles for the Relaxed design that can choose the initial
operating point

4.4 Design under Uncertainty

Now that we have established that utilizing the KKT conditions can generate a bilevel

solution, and its advantages compared to a relaxed formulation, we would like to

develop a more formal design problem. Uncertainty in an optimization formulation

is often captured using a two-stage stochastic optimization, and this is the method

that will be used in this study. In this study, six different demand scenarios will used

to define the uncertainty space.

The problem formulation used in the previous section has a horizon of 16 seconds

which is not very realistic for an operating scenario. In our new formulation each
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scenario will be one hour long and flow rates and parameters are now in terms of

minutes instead of seconds. If the dynamics are too fast, then utilizing a dynamic

optimization formulation is not very important, hence we have reduced the reaction

constants k0,I and k0,II to slow down the dynamics of the process. The most signif-

icant change is the objective function where instead of using set-point tracking, the

objective function is now daily profit. In this formulation no additional revenue is

generated for production greater than demand, thus its contribution to the objective

function can be expressed in terms of the minimum function seen in Equation 4.28.

However a minimum function can pose numerical difficulties so we will estimate this

using a function consisting of hyperbolic tangent functions. In Equation 4.29 we

present a hyperbolic tangent function that is used the calculate the revenues of the

plant, where Q2cB2 is the molar flow rate of B from Reactor 2 and β is a parameter

that adjusts the steepness of the hyperbolic tangent function (the larger β the more

Equation 4.29 behaves like a step function). For our daily profit we let the profit

represent the average profit made in a day. Thus for a single 1hr scenario we must

multiply the profit by 24 to get the daily profit and the capital cost of the tank rep-

resents the capital cost amortized to a day. The daily profit is expressed in Equation

4.30

φ(x,Demand) = min[x,Demand] =

x x ≤ Demand

Demand Demand ≤ x

(4.28)

φrev =
1

2
Q2cB2·

[
1+tanh[β(Demand−Q2cB2)])]

]
+

1

2
Demand·

[
1−tanh[β(Demand−Q2cB2)]

]
(4.29)

φ = 24

∫ tf

0

[10φrev − 0.01qcool,1 − qcool,2 − 0.1QF1 − 0.1QM ]dt+ 240Vd (4.30)
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4.4.1 Two-stage stochastic optimization

To capture the uncertainty in the demand we use six 1hr scenarios where starting

from an initial demand at steady-state, either a step up or step down in demand is

made. In the demand profile, the initial demand is held for 20 minutes and then

steps up or down to the final demand for the next 40 minutes. To generate the six

scenarios, we use three demands, a low, medium and high demand. In this study we

have chosen the demand to be 6, 8 and 10 moles of B produced per minute. The six

demand profiles are generated from all possible permutations of selecting two of the

demands for the demand profile. Thus in our 6 scenarios with have three demand

increases and three demand decreases. The scenarios used can be seen in Figure 4.14.

Each scenario will correspond to a model that uses the DAE defined by Equations 4.1

to 4.14 and the operating constraints from Equations 4.15 -4.19 (thus the the same

model used in Section 4.3 with the reaction constants changed).

For the formulation of the two stage optimization, we have a common design (volume)

for each scenario, which is our first stage decision variable. The objective function

of two-stage stochastic optimization is the expected value of the objective function

over the six scenarios. However since the capital cost will be the same for all six

scenarios we can move it to outside the expected value function. Thus the overall

objective function can be expressed as the expected value of the operational profit of

the six scenarios plus a capital cost function. Thus defining φop in Equation 4.31 we

can then formulate the two-stage stochastic optimization in 4.32. θ(t) represents the

uncertainty profile domain and θi(t) is a single realization of the uncertainty. The

uncertainty domain in this study is discrete, consisting of six demand scenarios. xi(t),

yi(t) and and ui(t) are the differential, algebraic and control variables for uncertainty
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scenario θi(t).

φop = 24

∫ tf

0

[10φrev − 0.01qcool,1 − qcool,2 − 0.1QF1 − 0.1QM ]dt (4.31)

Figure 4.14: The six demand scenarios used in the two-stage stochastic optimization
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max
d,u1(t)....un(t)

E
θ(t)

[φop(d,x(t),y(t),u(t), θ(t)]− f(d)

s.t z(d, ẋi(t),xi(t),yi(t),ui(t), θi(t)) = 0

h(d,xi(t),yi(t),ui(t), θi(t)) = 0

g(d,xi(t),yi(t),ui(t), θi(t)) ≤ 0

ẋi(0) = 0

∀ i

i ∈ {1.....n}

to ≤ t ≤ tf

(4.32)

As the uncertainty set is discrete and we assume the probability of each scenario

occurring is the same, the expected value of the uncertainty can be expressed in

Equation 4.33. From this equation we can also see why f(d) = 240Vd, as when the

capital cost is in the expected value function it is both multiplied and divided by n,

and thus remains the same.

E
θ(t)

[φop(d,x(t),y(t),u(t), θ(t)] =
1

n

n∑
i=1

φop(d,xi(t),yi(t),ui(t), θi(t)) (4.33)

The formulation is Equation 4.32 is for generating the Relaxed design. For the KKT

design, φop must include the complementarity penalty function as is seen in 4.34.

Thus the two-stage stochastic formulation to generate the KKT design is seen in

Equation 4.35. In Equation 4.35 λ0i, λf i, ν0i and νf i are the vectors of Lagrange
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multipliers for scenario i

φkkt = φop−ρ0[λ0
Tgss(d,x(0),y(0),u(0))]−ρf [λfTgss(d,x(tf ),y(tf ),u(tf ))] (4.34)

max
d,u1(t)....un(t)
λ01....λ0n
λf 1....λfn

E
θ(t)

[φkkt(d,x(t),y(t),u(t),λ0,λf )]− f(d)

s.t z(d, ẋi(t),xi(t),yi(t),ui(t), θi(t)) = 0

h(d,xi(t),yi(t),ui(t), θi(t)) = 0

g(d,xi(t),yi(t),ui(t), θi(t)) ≤ 0

∇[x(0),y(0)u(0)]L(d,xi(0),yi(0),u0(t),ν0i,λ0i, θi(t)) = 0

∇[x(tf ),y(tf )u(tf )]L(d,xi(tf ),yi(tf ),ui(tf ),νf i,λf i, θi(t)) = 0

ẋi(0) = 0

ẋi(tf ) = 0

λ0i ≥ 0

λf i ≥ 0

∀ i

i ∈ {1.....n}

to ≤ t ≤ tf

(4.35)

In the two-stage stochastic formulation, the control variables (the feed to Reactor 1

and the feed to the Mixer) are the same as the formulation in Section 4.3 and are

our second-stage decision variables. The optimization horizon for each scenario is 1hr

long and there are only 5 control intervals. The first control interval is 20 minutes
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long and is the duration of the system operating at the initial steady-state. The

next three control intervals are 1.25 minutes long each and span the duration of the

transition. The final control interval is over the remaining time in the horizon. In

the production constraints of this formulation, the system must have a production

rate of B greater than or equal to the demand for the duration of the first and final

control interval. However during transition the production rate of B can be less than

the specified demand (thus demand can be unmet during transition).

All optimizations were done using IPOPT using the CasADi module in Python 3.6

on a Dell Optiplex 7020 with an Intel core i7 processor and 16GB of RAM.

4.4.2 Results

For this section the KKT design and the Relaxed design refer to the designs generated

by the two-stage stochastic optimization and not the design generated in Section 4.3

(unless mentioned explicitly). Using the two-stage stochastic optimization, both a

Relaxed and KKT design were generated and the results can be seen in Table 4.2.

Design KKT Relaxed
Volume (m3) 15.0683 13.7957
Daily profit 89958 90200

Table 4.2: The daily profits for designs using KKT and Relaxed formulations for a
two-stage stochastic optimization using 6 different demand scenarios

The results from Table 4.2 are consistent with the results from section 4.3.2 where

the KKT design requires a larger volume than the Relaxed design. The two demand

scenarios where the designs differ in operation are the demand step from 6 to 10 and

8 to 10 (for no other scenario is there any unmet demand over the entire horizon

for either design, i.e the demand change is met immediately). In these two scenarios

demand was unmet during transition for both designs, and the operation for each
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design is different.

We can see from Figures 4.15 and 4.16 that the productions profiles are different

depending on the design. For the demand step of 6-10 the KKT design initially

produces at a demand of 6 mol
hr

(as would be expected, as the KKT design is derived

from the bilevel formulation, where the initial and final operating points are at the

steady state optimum) but the Relaxed design operates initially at a higher production

rate of 6.84 mol
hr

and is able to operate at a higher production rate during transition.
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(b) Relaxed Design

Figure 4.15: The production of B from reactor for a demand temp of 6 to 10
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Figure 4.16: The production of B from reactor for a demand step of 8 to 10

To understand the trade-offs that occur in the two-stage stochastic optimization, we

look at the demand step of 6-10 as this is where we see the most difference between

the KKT and Relaxed designs (other than the 6-10 step and 8-10 step, the difference

in operation between the KKT and Relaxed design is minimal) and this determines
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the difference in volume between the KKT and Relaxed design. Based on the designs

generated and the objective function 4.31 both the Relaxed and KKT optimization

formulations prioritize meeting the final demand of 10 mol
hr

over reducing capital costs.

This makes sense as a difference in production rate of just 0.5 mol
hr

for the last 40

minutes is 200 dollars of revenue lost. We compare this to increasing the volume by 1

m3 (roughly the difference between the KKT and Relaxed design) and this results in

a capital cost increase of 240 dollars. Thus we see that based on the economics of the

objective function, meeting the final demand is what is prioritized in the optimization

problem.

Given the above information, the trade-off we see is not between the final produc-

tion (which the optimization will always try and meet) and capital cost, but the

initial production and production during transition and capital cost. In a two-stage

stochastic optimization there could be a trade-off between optimal operation in the

most extreme scenario (the 6-10 step) and the design (as the optimal transition for

the most extreme demand step could lead to over design and may lower the daily

profit). We see this trade-off in the Relaxed design.

The Relaxed design chooses to overproduce for the 6-10 step (as seen in Figure 4.15) as

when Reactor 2 overproduces it operates at a higher temperature. A limitation of the

Relaxed design in Section 4.3.2 was that it could not add as much fresh feed of pure A

to the Mixer during the transition without violating the maximum concentration of

species A in Reactor 2. However if Reactor 2 is already operating a higher temperature

the concentration of A in the feed can be higher as it is consumed at a faster rate

and thus more fresh feed to the Mixer can be added to meet the final demand of 10

(which as has been stated, is of greatest benefit to daily profit). In the two-stage

stochastic formulation for the Relaxed design, the increase in the operational costs

due to overproducing B in the 6-10 step is offset by the reduction in capital costs as

we can operate at smaller volume and still add enough feed to the Mixer to meet the
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final demand. It seems overproducing allows for a smaller design while also letting

the Relaxed design to meet the final demand for the 6-10 demand step.

In additional optimizations where Relaxed formulation for the two-stage stochastic

optimization is forced to operate initially at a demand of 6 mol
hr

(although it does not

have to be steady-state optimal, i.e KKT conditions are not enforced) for the 6-10

step, the daily profit is less than the original Relaxed formulation (where overproduc-

tion occurs) as the volume of the tanks must be increased to meet the final demand

of 10 (we see that even though the operational costs are lower because we don’t over-

produce, it is offset by higher capital costs and has an overall lower daily profit). This

demonstrates how the optimization balances the operating profit, capital costs, and

ability to meet final demand. The trade-off we see is dependent on the economics of

the objective function. In the Relaxed two-stage stochastic optimization, overproduc-

ing in only one scenario is offset by the reduction is capital cost for all the scenarios.

However when we perform a single scenario optimization with the 6-10 demand step,

we don’t see overproduction, as the increased operational costs has a higher weight

in the formulation (however if we increased the weight of the capital cost or lowered

the weight of the operational cost we can again see the overproduction trade-off).

The trade-off between suboptimal operation during the initial and transitional periods

and the capital cost illustrates why the Relaxed design is smaller than the KKT

design and provides a higher daily profit. As the initial and final operating point at

the KKT design have to be at the steady-state optimum, this provides less flexibility

for the KKT design to trade-off operational profit and capital cost compared to the

Relaxed design (which can choose the initial point and final point). Thus the Relaxed

formulation is able to find operating and design paradigms that can increase the

daily profit that may be infeasible for the KKT formulation. The KKT design must

initially operate at the steady-state optimum (where it operates at a demand of 6

mol
hr

). Because the KKT design does not overproduce, the initial concentration of A
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in Reactor 2 is lower than that of the Relaxed Design, as seen in Figure 4.18. While

we would expect the concentration to be lower as the KKT design volume is larger,

we see that the initial concentration of A in Reactor 2 for the Relaxed design is over

50 percent higher than in the KKT design (the KKT design volume is only 7 percent

higher than the Relaxed design). The size of this difference is due to the Relaxed

design adding more feed to the Mixer so that it can overproduce (this increases the

concentration of A in the reactor, and from the energy balance in Equation 4.8, we

see this will increase the temperature at steady-state). As the KKT design initially

operates at a lower concentration of A in Reactor 2, the KKT design operates at a

lower temperature than the Relaxed design (this can be seen in Figure 4.17). In order

to meet the final demand of 10, the volume for the KKT design has to be large enough

so that the concentration of A in Reactor 2 is low enough so that enough feed can

be added to the Mixer (to increase the overall flow rate) without the concentration

constraint in Reactor 2 being violated. As also seen in 4.3.2, the initial steady-state

optimum operates too close to maximum temperature in Reactor 1 to add additional

feed to Reactor 1 to make up the flow rate needed. In the demand step of 8-10 we see

both designs initially operated at the specified demand but the KKT design is able

to to meet the final demand quicker and again has the higher operational profit.

We also see, as one would expect, that the control profiles are different, usually the

KKT design initially uses less feed to the Mixer as this lowers the operational costs,

which contributes to operating at the optimal steady-state conditions. These profiles

are seen in Figures 4.19 and 4.20. We see from Figure 4.19 that the operational

profiles of the KKT and Relaxed design are quite similar in transition where we see

increase in fresh feed to the Mixer to meet the demand change. For all other scenarios

the operation is very similar both in terms of production and control variable values

for both designs. There is no overproduction in these scenarios (only the 6-10 demand

step for the Relaxed design has overproduction).
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Figure 4.17: The temperature of Reactor 2 for the KKT and Relaxed Design
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Figure 4.18: The concentration of A in Reactor 2 for the KKT and Relaxed Design

Looking at the daily profit it seems that the Relaxed design should be utilized based

on the economics. However, like in Section 4.3.2, the prevailing idea in this study is

that realistic operation under uncertainty involves operating at the optimal steady-

state. Thus we should compare both designs under these conditions. We will take the

6 scenarios used in the two stage stochastic optimization and find the operating profit

for each scenario when the volume is fixed at the KKT and Relaxed designs. However,

both designs will be forced to initially operate at the optimal steady-state, thus the

KKT conditions will be enforced for the initial point. We do not enforce the KKT

conditions at the final point as this could lead to infeasible operation for the Relaxed

design for the given time horizon and control interval structure. Furthermore, while

in the two-stage stochastic optimization, demand had to be met before and after

transition, we will not enforce this constraint for these optimizations. From the
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Figure 4.19: The control profiles for a demand step of 6 to 10
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Figure 4.20: The control profiles for a demand step of 8 to 10

initial point, the optimization can operate under conditions where it does not meet

demand. This is again due to the fact that the operation for the Relaxed design

may be infeasible if we force it to meet demand. Once we have the operational profit

for each scenario under each design, we will calculate a new daily profit using the

equation for the objective function in Equation 4.32.

The results of this new calculation are seen in Table 4.3. As expected, the new daily

profit for the KKT design is slightly improved as this formulation is a relaxation (as

the KKT conditions at the endpoint are not enforced). We see that the Relaxed

design under this formulation is worse. This main reason for this is because for the

6-10 demand step, the Relaxed design cannot actually meet the final demand as seen

in Figure 4.21. We also see that while the Relaxed design is able to meet the the

final demand in the step from 8 to 10, it transitions sub-optimally both compared to
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the KKT design and the Relaxed design when it is not forced to initially operate at

the steady state optimum. This is seen when we compare Figure 4.22 to Figure 4.16.

We see the Relaxed design initially operating at the steady-state optimum has more

unmet demand during transition compared to when the Relaxed design can choose

any initial point.

Design KKT Relaxed
Daily profit 89974 89043

Table 4.3: The daily profits for designs using KKT and Relaxed formulation for a
two-stage stochastic optimization using 6 different demand scenarios where the

initial operation for each scenario is at the steady-state optimum
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Figure 4.21: The production of B from Reactor 2 for a demand step of 6 to 10 when
the design must initially operate at the steady-state optimum
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Figure 4.22: The moles of B produced for the Relaxed design for a demand change
of 8 to 10 when the design must initially operate at the SS optimum
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Figure 4.23: The control profiles for a demand step of 6 to 10 when the design must
initially operate at the steady-state optimum

The Relaxed design cannot meet the final demand because, as in Section 4.3.2 not

enough feed of pure A can enter the Mixer without violating the concentration limit

of A in Reactor 2 thus limiting the volumetric flow rate exiting Reactor 2. This can

be seen in Figure 4.23 where we can see the KKT design can add additional feed

to the Mixer. Thus when the final control move is made, the concentration of A in

Reactor 2 is still too high and the temperature of Reactor 2 is not high enough (as

the Relaxed design operating at the steady-state optimum must initially produce at 6

mol
hr

as opposed to overproducing and thus operates at a lower temperature) to allow

for the necessary feed to the Mixer to meet the needed flow rate. A comparison of

the concentrations in Reactor 2 for the Relaxed and KKT design are seen in Figure

4.24. A comparison of the temperature in Reactor 2 for the Relaxed design, when

any initial operating point can be chosen versus when it is operating at the steady

state optimum can be seen in Figure 4.25.

The KKT design is able to meet the demand because due to the larger volume, the

concentration leaving Reactor 1 is lower hence more feed can be added to the Mixer

without violating the concentration constraint in Reactor 2. The reason the Relaxed

design could add additional feed to the Mixer when not initially operating at the

steady-state optimum was because Reactor 2 operates as a higher temperature. This

because the Relaxed design, when not being forced to initially operate at the steady-
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state optimum, chooses to initially over produce (6.84 mol
hr

) which allows Reactor

2 to operate at a higher temperature. We also see that not only is the Relaxed

design operating at the steady-state optimum not able to meet the final demand, but

compared to the KKT design its overall transition is worse as it has more unmet

demand during the transition period.
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Figure 4.24: The concentration of A in Reactor 2 for a demand step of 6 to 10 when
the design must initially operate at the steady-state optimum
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Figure 4.25: The temperature of Reactor 2 in for the Relaxed design for different
initial operating conditions

The Relaxed design can meet the final demand when the maximum concentration in

Reactor 2 is increased (allowing more feed to the Mixer) or the maximum temperature

in Reactor 1 is increased (allowing more feed to Reactor 1) which allows for the

necessary amount of volumetric flow needed to meet the final demand. These results

can be seen in Figures 4.26 and 4.27. From Figure 4.26 (b) we can see that more flow is
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added to Reactor 1 and in Figure 4.26 (a) the reactor temperature is allowed to exceed

350 K (and is operating at a higher concentration). In 4.27 (a) the concentration of

A in Reactor 2 is allowed to be greater than 0.3 and thus more feed can be fed to the

Mixer to meet the volumetric flow rate necessary.
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Figure 4.26: Profiles of selected variables for the Relaxed design when the maximum
temperature of Reactor 1 is increased from 350 K to 355 K

For the Relaxed design operating initially at the steady-state optimum, if the transi-

tion is allowed to be longer, this also allows it to meet the final demand. This is as if

the final control move is made when the temperature of Reactor 2 is high enough, it

can add more feed of pure A to the Mixer and species A is consumed fast enough to

prevent a violation of the concentration constraint. Hence if we increase the number

of control intervals or make the control intervals longer the Relaxed design is able to

meet the demand. This may suggest that the control intervals can be adjusted so that

the Relaxed design can approach the performance of the KKT design; however the
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(c) Moles of B produced from
Reactor 2

Figure 4.27: Profiles of selected variables for the Relaxed design when the maximum
concentration of A Reactor 2 is increased from 0.3 mol

m3 to 0.4 mol
m3

operational performance of the KKT design is still better using the original control

intervals. This is seen in Figure 4.28 and Table 4.4. In 4.28 (a) the number of control

intervals was increased from 5 to 7 (2 more control intervals for transitions) and in

4.28 (b) the three control intervals during transition are increased each from 1.25

minutes to 2.5 minutes. These are both for the Relaxed design operating initially

at the steady-state optimum. Figure 4.28 (c) is the original transition for the KKT

design which can also be seen in Figure 4.21 (a). The operational profit for each

scenario is shown in Table 4.4. From Table 4.4 and Figure 4.28 we can see that while

the Relaxed design can meet the final demand in these scenarios, the transition is

still worse compared to the KKT design.
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(a) 7 control intervals used for
Relaxed design
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(b) 5 control intervals with
increased length for Relaxed design
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(c) 5 control intervals at original
length (original formulation) for

KKT design
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(d) 5 control intervals at original
length (original formulation) for

Relaxed design

Figure 4.28: The molar production of B for various designs and control intervals for
the the demand scenario 6-10

Examining the impact of the number and length of control interval suggests that the

Relaxed design could be made made better by creating an optimization formulation

with more control intervals. As it seems that the performance during the scenario of a

demand step from 6-10 was the main difference between the KKT and Relaxed design,

we did a single scenario optimization with that scenario being the 6-10 demand step.

We use the same objective function as in Equation 4.30, thus this demand scenario is

weighted 6 times more than in the original two-stage stochastic optimization. Using

this formulation, a new KKT design and Relaxed design were generated. Both design

volumes are higher than the designs generated from the original two-stage stochastic

optimization (as expected, as now the design only has to be optimal for a single
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Control interval structure Design Operational Profit
7 control intervals Relaxed 4194.55

Long control intervals Relaxed 4162.36
Original control intervals Relaxed 3914.98
Original control intervals KKT 4220.41

Table 4.4: A comparison of the operational profit for demand scenario 6-10 for
various designs and control interval structures

scenario). However, more importantly, it was found that increasing the number of

control intervals starting with 5 control intervals (the original formulation) did not

change the design. This makes sense as both designs are able to meet the final

demand using only three control intervals for transition. This also suggests that using

5 control intervals in total and three for transitions in our formulation does not favor

one design over the other. As well this also shows that the difference in performance

due to transition (and in some the case the final production rate) between the KKT

and Relaxed design cannot be accounted for in the optimization formulation simply

by the structure of the control intervals (the Relaxed design does not become more

similar to the KKT design simply by adding more control intervals). This shows that

considering the initial and final operating state by including the KKT conditions can

be an important factor in integrated design and control.

4.4.3 Frequency Studies

As we have seen in previous sections, the design (volume) of the CSTR system has a

large impact on how the plant transitions from one point to another. In the formu-

lation previously used in this study, each scenario is 1hr long and the daily profit is

for a 24 hr horizon, thus 24 transitions occur over the optimization horizon. As the

number of transitions increases, we would expect that the optimization is incentivized

further to meet the demand as quickly as possible during transition to avoid loss in
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operational profit. To study this, much like the study for control intervals, as it seems

that the design is primary determined by the most extreme scenario (in this study

the 6-10 demand step) we will do an optimization with only one scenario (the 6-10

demand step). We do not include a scenario where the demand steps down as from

the two-stage stochastic optimization done in the previous sections, we found that

these kinds of scenarios did not influence the design.

The frequency will be changed by changing the horizon over which the demand change

takes place as can be seen in Figure 4.29 and Equations 4.36 and 4.37. Equation

4.36 corresponds to Figure 4.29 (a), and is the original formulation. To double the

frequency we use the scenario in Figure 4.29 (b) whose horizon is half the horizon in

Figure 4.29 (a). Equation 4.37 corresponds to Figure 4.29 (b), and we can see since the

horizon is only 30 minutes, to get daily profit we multiply the integral calculating the

operational profit by 48, thus the profit from the transition period is doubled, and this

represents doubling the frequency. The ratio of the time spent at each demand is still

the same regardless of the frequency, since in order to compare design at different

frequencies we do not want to change the potential operational profit that can be

made. This formulation was done using both the KKT and Relaxed formulation. For

the KKT design, we only enforce the KKT conditions at the initial point, as with

high frequencies the intervals can be quite short and steady state may simply not be

achievable. We use 5 control intervals (three for transition), where the lengths of the

transition intervals are 1.25 minutes (the original formulation) for all frequencies.

φ = 24

∫ 60

0

[10φrev − 0.01qcool,1 − qcool,2 − 0.1QF1 − 0.1QM ]dt+ 240Vd (4.36)

φ = 48

∫ 30

0

[10φrev − 0.01qcool,1 − qcool,2 − 0.1QF1 − 0.1QM ]dt+ 240Vd (4.37)
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Figure 4.29: The demand profiles for when the frequency of the original formulation
is changed

The results of this section are seen in Figures 4.30 and 4.31. For the KKT design we

considered frequency changes of 1, 2, 4 and 8. For the Relaxed design we considered

frequency changes of 1 and 2. In Figure 4.30 each subfigure gives the frequency of the

formulation and the resulting optimal volume (Vopt) for a KKT design formulation.

We see that as the frequency is increased, Vopt increases and demand is met more

quickly. This is consistent with what we would expect, since the more frequent the

transitions, the more important it is for demand to be met during the transitions.

Thus a larger volume and capital cost can be incurred as the benefit of increasing

operating profit during transition becomes more valuable. We also see that as the

frequency of transitions increases, the design approaches being able to meet demand

instantaneously. Thus the optimal volume as the frequency increases approaches 23.3

m3, which is the design for a demand scenario of 6-10 when meeting the demand is

enforced throughout the entire horizon including transitions (in our formulations in

the previous sections we do not enforce the demand constraints during transitions). It

should be noted that the dynamics of the system mean it takes about 20-30 minutes

for the system to settle to steady-state, so for frequencies of 4 and 8, the system does

not reach steady-state.

In Figure 4.31 we see that since the Relaxed design since can choose the initial steady-

state point, it can meet demand almost immediately even for a frequency of 1. Thus
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(a) Freq = 1, Vopt = 16.53 m3
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(b) Freq = 2, Vopt = 19.43 m3
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(c) Freq = 4, Vopt = 19.66 m3
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(d) Freq = 8, Vopt = 23.02 m3

Figure 4.30: The production rate of B from Reactor 2 for changes in frequency and
their corresponding optimal volumes for a demand step of 6-10 using the KKT

formulation

for a frequency of 2 the demand is met immediately. As demand is met immediately

by a frequency of 2 we did not increase the frequency further as the design would not

change. We also see that while for a frequency of 1 the KKT and Relaxed design are

similar (although as we have seen this can still make a difference in transition), as the

frequency is increased the difference between the KKT and Relaxed design becomes

much larger and presumably the operational performance would also differ further.

Thus we see if the frequency of transitions increases, it becomes of greater importance

to consider operating at steady-state optima in the optimization formulation.
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(a) Frequency = 1, Vopt = 15. 37 m3
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(b) Frequency = 2, Vopt = 16.17 m3

Figure 4.31: The production rate of B from Reactor 2 for changes in frequency and
their corresponding optimal volumes for a demand step of 6-10 using the Relaxed

formulation

4.5 Conclusion and Future work

Uncertainty in market conditions suggest that for the dynamic operation of plants,

the design of the plant must take into account future operating conditions while also

recognizing that future conditions are uncertain. Thus a plant operating under un-

certain conditions should currently be operating at the optimal operating conditions.

Finding a design in a dynamic optimization that also initially operates at the steady-

state optimum results in a bilevel optimization problem. This can be collapsed into a

single level optimization by incorporating the Karush-Kuhn-Tucker (KKT) conditions

for the initial operating points into the optimization formulation.

The KKT conditions for the initial and final operating points were embedded in a

two-stage dynamic optimization formulation to find the optimal annualized profit of

a two CSTR system (the KKT formulation). This was compared to an optimization

formulation where the KKT conditions are not present (the system can operate at

any initial point and essentially sees future demand patterns), a Relaxed formulation.

Comparing the KKT formulation and Relaxed formulation, the optimal volume of the

Relaxed design is smaller than the KKT design, and has a higher daily profit. From

the designs generated, we force both designs to initially operate at the steady-state
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optimum for the six scenarios in the two-stage stochastic optimization. In certain

cases the Relaxed design cannot meet the final demand. Furthermore in this case the

KKT design provides the better daily profit. Thus for integrated design and control,

a design that incorporates the beginning and ending optimal operating conditions

can provide an economic advantage compared to designs that are generated where

the optimization formulation behaves as if it has complete knowledge of the operating

horizon. The difference between the KKT and Relaxed design and their operation

may also be exacerbated by the frequency of the changes, and consideration of the

KKT design may become more important.

Further applications of this study would include demonstrating the importance of

considering the bilevel formulation in the integrated design and control of large scale

models of chemical plants such as an air separation unit. This may be achieved by

including the KKT conditions in the optimization formulation regarding these models,

or utilizing the brute-force method, if the KKT conditions pose numerical difficulties.



Chapter 5

Conclusion

The studies in this thesis investigated integrated design and control for plants under

uncertainty. The first study in this thesis investigated how incorporation of process

dynamics in a nitrogen plant is important when considering the design of the plant

under demand uncertainty. In addition to a nominal design, two-stage stochastic

optimization is used to generate dynamically operable and flexible designs for the

nitrogen plant. From the two-stage stochastic optimization formulation, the flexible

design provides a better annualized profit than the dynamically operable design, pri-

marily because the flexible design allows for lower operational costs. However when

both designs are subject to dynamic transitions, we see that the flexible design in

some cases provides less operational profit during transition and also may not be able

to meet the final demand. Furthermore, incorporating plant dynamics into the opti-

mization formulation also gave greater insight into what design compromises benefit

the operation of the plant, that otherwise would not have been in seen in flexible

and nominal formulations. Thus we see that accounting for dynamic operation of the

plant during transition is an aspect of integrated design and control that can be very

beneficial.
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While the first chapter in this thesis established the benefits of considering a dy-

namically operable design, a limitation of that study was the dynamic optimization

formulation knew the entire uncertainty profile and the plant could adjust its current

behavior to account for future demands. It is more realistic that given unknown fu-

ture demands, the current operation will be operating at the steady-state optimum

and this poses a bilevel optimization formulation. The bilevel optimization problem

can be reduced to a single level by embedding the KKT conditions for the initial

and final operating point. This method is implemented for a 2 CSTR model under

demand uncertainty where two-stage stochastic dynamic optimization is used to find

the optimal volume of the CSTRs. An optimization formulation where the KKT con-

dition are enforced generates a larger volume and thus has higher capital costs than a

formulation where the KKT conditions are not enforced. However when both designs

are forced to initially operate at the steady-state optimum for a given demand, we

see that the design volume that was generated by not enforcing the KKT conditions,

transitions slower and in some cases cannot meet the final demand compared to the

volume generated from the KKT conditions.

Throughout this thesis we see that integrated design and control is a useful tool

in investigating the design of a plant under uncertain operating conditions. The

studies in this thesis have focused on elucidating the benefits of incorporating the

dynamic behavior of plants in two-stage stochastic optimization formulations and the

implementation of realistic operating assumptions and their effect on dynamically

operable designs.
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Appendix A

This appendix provides the DAEs that define the nitrogen plant. The DAEs are given

separately for each unit of the plant, where the integrated reboiler-condenser (IRC)

and distillation column are considered a single unit. For a detailed account of the

derivation and construction of the DAEs that make up the nitrogen plant see Cao

[2011]. The description of the variables and models for the nitrogen plant are derived

from a template provided by Ian Washington .

Distillation Column and IRC

The distillation column itself consists of nc actual distillation trays and we consider

the condenser, tray nc + 1 and the reboiler, tray nc + 2. The sump is considered the

0th tray. Below are the tables that document the parameters and variables of the

DAE that makes up the distillation column and IRC. The equations shown here are

for the full order model, where there is a mass and energy balance for each tray in

the column. As has been previously mentioned, part of the column is modelled using

spatial collocation; how the full order model is translated to a reduced model is stated

at the end of Appendix A. The control variables in this unit are the liquid feed to

the column from the PHX, the nitrogen gas draw (the ratio of nitrogen gas sent to

the PHX for sale versus the nitrogen gas sent to the IRC). The design variable is the

diameter of the column.
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Distillation Column and IRC Variable Description

Index
i ∈ I component I = {1, 2, 3}, 1 := N2, 2 := O2, 3 := Ar
n ∈ N stage (tray) N = {0, . . . , nc + 2}
l liquid (superscript)
v vapor (superscript)

Example xi,n : liquid molar fraction for component i on stage n
Variable Description

Mi,n liquid phase molar holdup
xi,n liquid phase composition
yi,n vapor phase composition
y∗i,n vapor phase equilibrium composition
zi,n feed composition
Ln liquid phase molar flow rate
Vn vapor phase molar flow rate
F l,v
n feed molar flow rate

Lreflux liquid reflux molar flow rate
LN2 liquid N2 product molar flow rate
VN2 vapor N2 product molar flow rate
rdraw fraction of vapor drawn as product
rreflux liquid reflux ratio
hn height of liquid on tray
Tn temperature
Pn pressure

∆Tirc IRC temperature difference
∆Pn tray pressure drop
Hn phase molar enthalpy
En liquid phase energy holdup
hi,n component molar enthalpy
V̄ v
n vapor phase molar volume
ρn phase molar density
ρi,n component molar density
P sat
i,n vapor pressure
γi,n activity coefficient
Ki,n K-values
wn phase molar mass
an Peng-Robinson EOS parameter
bn Peng-Robinson EOS parameter

Qleak,n heat transfer to tray
Q heat transferred from condenser to reboiler

(UA)irc lumped heat transfer coefficient
lreb liquid level in reboiler
lsump liquid level in sump
Dcol column diameter



96

Distillation Column and IRC Parameters

Parameter Description

g gravity constant
R gas constant
wi molar mass
T ci critical temperature
P c
i critical pressure
ri Rackett number

Ai, Bi, Ci Antoine parameters
Ai,j Margules interaction i, j ∈ I
ki,j binary interaction i, j ∈ I
ωi acentric parameter
pi parachor number

avi , b
v
i , c

v
i , d

v
i vapour enthalpy parameters

ali, b
l
i, c

l
i, d

l
i liquid enthalpy parameters

α pressure drop parameter
β pressure drop parameter
αtop pressure drop parameter
η tray efficiency

(UA)n leakage coefficient
(UA)base

irc base coefficient
L̄nc+1 base condensate rate
hweir weir height
lweir weir length
Stray tray spacing
factive active tray area
vcap

sump sump capacity
Lsssump controller bias
Lssreb controller bias
lsssump controller set point
lssreb controller set point
Kc1 sump controller constant
Kc2 reboiler controller constant

Tambient ambient temperature
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Distillation Column and IRC Subexpressions

P sat
i,n := exp(Ai +Bi/(Tn + Ci))

γi,n := exp
[∑

j∈I
∑

k∈I(Aji − 0.5Ajk)xj,n xk,n/(RTn)
]

Ki,n := γi,nP
sat
i,n /Pn

ρli,n :=
P c
i

RT ci
r
−[1+(1−Tn/T c

i )2/7]
i

ρln :=
∑

i∈I xi,n ρ
l
i,n

ρvn := 1/V̄ v
n

hli,n := ali Tn + bli

hvi,n := (avi Pn + bvi )Tn + cviPn + dvi

wln :=
∑

i∈I xi,nwi

wvn :=
∑

i∈I yi,nwi

fi := 0.37464 + 1.54226ωi − 0.26992ω2
i

bi := 0.0778RT ci /P
c
i

bn :=
∑nc

i=1 yi,n bi

ai,n :=
0.45724(RT c

i )2

P c
i

[1 + fi (1−
√
Tn/T ci )]2

an :=
∑nc

i=1

∑nc

j=1 yi,n yj,n(ai,n aj,n)0.5(1− kij)

vflood
nc

:= Cnc [(ρ
l
nc
wlnc
− ρvnc

wvnc
)/(ρvnc

wvnc
)]0.5

Cnc := [(0.0744Stray + 0.0117) log10(FLV −1
nc

)

+ 0.0304Stray + 0.0153](σnc/0.02)0.2

FLVnc := max

{
0.1,

Lnc w
l
nc

Vnc w
v
nc

(
ρvnc

wvnc

ρlnc
wlnc

)0.5
}

σnc :=
(∑

i∈I pi(ρ
l
nc
xi,nc − ρvnc

yi,nc)
)4

αflood
nc

:= Vnc/(ρ
v
nc
Atray)/vflood

nc
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DAE of Distillation Column and IRC

Vnc(1− rdraw)− Lnc+1 = 0

Lnc+1 − (Lreflux + LN2) = 0

Lreflux − rreflux Lnc+1 = 0

VN2 − rdraw Vnc = 0

Ṁi,0[L1 xi,1 − L0 xi,0) = 0

Ṁi,1 − [L2 xi,2 − L1 xi,1 − V1 yi,1]

+F l
1 z

l
i,1 + F v

1 z
v
i,1] = 0

Ṁi,n − [Ln+1 xi,n+1 + Vn−1 yi,n−1 − Ln xi,n

−Vnyi,n + F l
n z

l
i,n + F v

n z
v
i,n] = 0

Ṁi,nc+2 − [L0 xi,0 − Lnc+2 xi,nc+2

−Vnc+2 yi,nc+2] = 0

Ė1 − [L2H
l
2 − L2H

l
1 − V1H

v
1

+F l
1 H

l
f,1 + F v

1 H
v
f,1 +Qleak,n] = 0

Ėn − [Ln+1 H
l
n+1 + Vn−1H

v
n−1 − LnH l

n

−VnHv
n + F l

nH
l
f,n + F v

n H
v
f,n +Qleak,n] = 0

Vnc(1− rdraw)Hv
nc
− Lnc+1H

l
nc+1 −Q = 0

L0(H l
0 −H l

nc+2)− Vnc+2(Hv
nc+2 −H l

nc+2) +Q = 0∑
i∈I xi,n − 1 = 0∑
i∈I yi,n − 1 = 0

yi,n −Ki,n xi,n = 0

y∗i,n −Ki,n xi,n = 0

yi,n − [yi,n−1 + η(y∗i,n − yi,n)] = 0

xi,nc+1 − yi,nc = 0



99

hn − hweir − 1.41[Ln/(
√
g ρln lweir)]

2/3 = 0

hn −Mn/(ρ
l
nAtray) = 0

Pn −
(

RTn
V̄ v
n − bn

− an
(V̄ v

n − 0.414 bn)(V̄ v
n + 2.414 bn)

)
= 0

Pn−1 − Pn −∆Pn = 0

∆Pn − α ρvn−1w
v
n−1[Vn−1/(ρ

v
n−1Ahole)]

2 − β ρlnwln g hn = 0

∆Pnc+1 − αV 2
nc

= 0

Pnc+1 − [
∑

i∈I xi,nc+1 P
sat
i,nc+1] = 0

Pnc+2 − Preb = 0

H l
n − [

∑
i∈I xi,n h

l
i,n] = 0

Hv
n − [

∑
i∈I yi,n h

v
i,n] = 0

En − [Mn

∑
i∈I xi,n h

l
i,n] = 0

∆Tirc − (Tnc+1 − Tnc+2) = 0

T0 − T1 = 0

Qleak,n − (UA)n(Tambient − Tn) = 0

Q− (UA)irc ∆Tirc = 0

(UA)irc/(UA)base
irc − (Lnc+1/L̄nc+1)0.8 = 0

vreb −Mnc+2/ρ
l
nc+2 = 0

vsump −M0/ρ
l
0 = 0

lsump − vsump/v
cap
sump = 0

Lnc+2 − [Lssreb +Kc2(lreb − lssreb)] = 0

L0 − [Lsssump +Kc1(lsump − lsssump)] = 0
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Spatial collocation of distillation column

As has been previously mentioned, to reduce the size of the model spatial collocation

is used for the middle section of the column. The collocation points can be thought of

as trays (however they do not need to have an integer value) and column conditions

between collocation points are estimated using Lagrange polynomials. Thus we only

perform mass and energy balances around the spatial collocations points (where there

are fewer collocation points than trays in the distillation). Thus an example of a

component balance around a collocation point is seen below:

Ṁi,sk − [L̄(sk + 1) x̄i(sk + 1) + V̄ (sk + 1) ȳi(sk + 1)− L̄(sk) x̄i(sk + 1)

−V̄ (sk) ȳi(sk)] = 0

Where sk is the kth collocation point and sk+1 and sk−1 represent ”one tray above”

and ”one tray below” the collocation point sk. L̄ and V̄ are Lagrange polynomials

that interpolate the collocation points for the liquid and vapour flow leaving each

tray. x̄i and ȳi are the Lagrange polynomials for the liquid and vapour fractions for

component i. These Lagrange polynomials are defined by:

L̄(s) =
K+1∑
j=1

W l
j(s)Lsj x̄i(s) =

K+1∑
j=1

W l
j(s)xsj ,i

V̄ (s) =
K∑
j=0

W v
j (s)Vsj ȳi(s) =

K∑
j=0

W v
j (s) ysj ,i
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Where Lsj and Vsj are the liquid and vapour flow at the jth collocation point and xsj ,i

and ysj ,i are the liquid and vapour fractions for component i at the jth collocation

point. W l
j(s) and W v

j (s) are Lagrange polynomial basis functions that as defined by:

W l
j(s) =

K+1∏
z=0
z 6=j

s− sz
sj − sz

W v
j (s) =

K∏
z=0
z 6=j

s− sz
sj − sz

Thus we see L̄(sk) = Lsk and this holds true for the other Lagrange polynomials.

For further information on the spatial collocation method with regards to ASUs see

[Cao et al., 2016a].

Primary Heat Exchange (PHX)

The primary heat exchanger is a plate and fin heat exchanger used to cool the in-

coming air stream into the column and heat the product and waste streams. The

heat exchanger consists of three streams, the feed of air for the compressor, the N2

product from the top of the column and the vapor waste from the IRC. The PHX is

split into two zones, in Zone 1 all three streams are vapor, and in Zone 2 the feed air

stream is liquid. The full order model of the PHX divided the heat exchanger into

segments where energy balances are constructed around the segment and includes

the temperature of the metal wall of the PHX in that segment. However, as for the

column, the size of the model is reduced by using spatial collocation for Zone 1. The

collocation points are analogous to the segments in the PHX for Zone 1. In the full

order model there was only one segment in Zone 2, and that remains true for the
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reduced order model. The design variables in this unit are the length of Zone 1 and

Zone 2.
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PHX Model Variable Description

Index
k ∈ K zone K := {1, 2}
j ∈ J stream J := {1, 2, 3}

1 := cold waste, 2 := cold N2 product, 3 := hot air
n ∈ Nk The number of collocation points (Zone 1) or segments (Zone 2)

Nk := {1, . . . , nc,k} in zone k
sn ∈ Sk The set of collocation points (Zone 1) or segments (Zone 2)

Sk := {s1 . . . snc,k
}

For Zone 2, nc,2 = 1 and since there is no collocation s1 = 1
i ∈ I component I := {1, 2, 3}, 1 := N2, 2 := O2, 3 := Ar
l liquid (superscript)
v vapor (superscript)

Variable Description

Ek,j,sn energy holdup at the nth collocation point
Tk,j,sn temperature at the nth collocation point
Tmk,sn metal wall temperature at the nth collocation point
Tj,in stream inlet temperature
Tj,out stream outlet temperature
Tj,pur purge point temperature

(UA)k,j lumped heat transfer coefficient
Hk,j,sn molar enthalpy at the nth collocation point
Hj,in stream inlet molar enthalpy
Hj,out stream outlet molar enthalpy
Hj,pur purge point molar enthalpy
hk,j,sn,i component molar enthalpy at the nth collocation point
Fk,j molar flow rate
yj,i vapor composition
x3,i liquid composition
Vk,j volume of stream in zone
V slot
j volume of fin

V layer
j volume of layer of fins

Pk,j,sn pressure at the nth collocation point
∆Pk,j pressure drop at the nth collocation point
Pj,in stream inlet pressure
Pj,out stream outlet pressure
Pj,pur purge point pressure
V̄ v
k,j,sn

vapor phase molar volume at the nth collocation point
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PHX Model Variable Description

Variable Description

V̄ v
k,j,sn

vapor phase molar volume at the nth collocation point
mk,sn mass of metal
ρk,j,sn molar density at the nth collocation point
ρk,j,sn,i component molar density at the nth collocation point
ρm specific density
ak,j,sn Peng-Robinson EOS parameter
bk,j,sn Peng-Robinson EOS parameter
l1 length of zone 1
l2 length of zone 2

PHX Model Parameters

Parameter Description

ρm metal wall density
Cp aluminum heat capacity
bj parting sheet distance for stream j
Nj fins per inch for stream j
nj number of layers for stream j
tfinj

fin thickness for stream j
tedge thickness of PHX shell
W PHX width
H PHX height
nc,1 number of collocation points in zone 1

āvi , b̄
v
i , c̄

v
i , d̄

v
i vapour enthalpy parameter

ek,j pressure drop parameter
(UA)base

k,j base coefficient
F base
k,j base flow rate
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PHX Subexpressions

ρl2,3,1,i :=
P c
i

RT ci
r
−[1+(1−T2,3,1/T c

i )2/7]
i

ρl2,3,1 :=
∑

i∈I x3,i ρ
l
2,3,1,i

ρv1,j,sn := 1/V̄ v
1,j,sn

ρv2,j,1 := 1/V̄ v
2,j,1

h̄v1,j,sn,i := (āvi P1,j,sn + b̄vi )T1,j,sn + c̄viP1,j,sn + d̄vi

hv2,j,1,i := (avi P2,j,1 + bvi )T2,j,1 + cviP2,j,1 + dvi

hl2,3,1,i := ali T2,3,1 + bli

hvj,pur,i := (avi Pj,pur + bvi )Tj,pur + cviPj,pur + dvi

hvj,in,i := (avi Pj,in + bvi )Tj,in + cviPj,in + dvi

hv3,in,i := (āvi P3,in + b̄vi )T3,in + c̄viP3,in + d̄vi

hvj,out,i := (avi Pj,out + bvi )Tj,out + cviPj,out + dvi

hl3,out,i := ali T3,out + bli

fi := 0.37464 + 1.54226ωi − 0.26992ω2
i

bi := 0.0778RT ci /P
c
i

bj :=
∑nc

i=1 yj,i bi

ak,j,sn,i :=
0.45724(RT c

i )2

P c
i

[1 + fi (1−
√
Tk,j,sn/T

c
i )]2

ak,j,sn :=
∑nc

i=1

∑nc

r=1 yj,i yj,r(ak,j,sn,i ak,j,sn,r)
0.5(1− kir)
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PHX DAE

Ė1,j,sn − (F1,j(H̄
v
1,j(sn + 1)−Hv

1,j,sn) + (UA)1,j(T
m
1,sn − T1,j,sn)) = 0

Ė1,j,snc,1
− (F1,j(H

v
j,pur −Hv

1,j,snc,1
) + (UA)1,j(T

m
1,snc,1

− T1,j,snc,1
)) = 0

Ė1,3,s1 − (F1,3(Hv
3,in −Hv

1,3,s1
) + (UA)1,3(Tm1,s1 − T1,3,s1)) = 0

Ė1,3,sn − (F1,3(H̄v
1,3(sn − 1)−Hv

1,3,sn) + (UA)1,3(Tm1,n − T1,3,n)) = 0

Ė2,j,1 − (F2,j(H
v
j,in −Hv

j,pur) + (UA)2,j(T
m
2,1 − T2,j,1)) = 0

Ė2,3,1 − (F2,3(Hv
3,pur −H l

3,out) + (UA)2,3(Tm2,1 − T2,3,1)) = 0

mk Cp Ṫ
m
k,sn − [

∑
j∈J (UA)k,j(Tk,j,n − Tmk,sn)] = 0

E1,j,sn −Hv
1,j,sn V1,j ρ

v
1,j,sn = 0

E2,j,1 −Hv
2,j,1 V2,j ρ

v
2,j,1 = 0

E2,3,1 −H l
2,3,1 V2,3 ρ

l
2,3,1 = 0

T2,j,1 − (Tj,pur + Tj,in)/2 = 0

T2,3,1 − (T3,pur + T3,out)/2 = 0

Tj,out − T1,j,s1 = 0

T3,pur − T1,3,snc,1
= 0

Hv
1,j,sn − [

∑
i∈I yj,i h

v
1,j,sn,i] = 0

Hv
j,in − [

∑
i∈I yj,i h

v
j,in,i] = 0

Hv
j,out − [

∑
i∈I yj,i h

v
j,out,i] = 0

H l
3,out − [

∑
i∈I x3,i h

l
3,out,i] = 0

Hv
j,pur − [

∑
i∈I yj,i h

v
j,pur,i] = 0

Hv
2,j,1 − [

∑
i∈I yj,i h

v
2,j,1,i] = 0

H l
2,3,1 − [

∑
i∈I x3,i h

l
2,3,1,i] = 0

(UA)k,j − (UA)base
k,j (Fk,j/F

base
k,j )0.8 = 0
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P1,j,sn −

(
RT1,j,sn

V̄ v
1,j,sn

− bj
− a1,j,sn

(V̄ v
1,j,sn

− 0.414 bj)(V̄ v
1,j,sn

+ 2.414 bj)

)
= 0

P2,j,1 −

(
RT2,j,1

V̄ v
2,j,1 − bj

− a2,j,1

(V̄ v
2,j,1 − 0.414 bj)(V̄ v

2,j,1 + 2.414 bj)

)
= 0

P2,j,1 − (Pj,pur + Pj,in)/2 = 0

P2,3,1 − (P3,pur + P3,out)/2 = 0

∆Pk,j − ek,jF 0.5
k,j = 0

Pj,pur − (Pj,in + ∆P2,j) = 0

P3,pur − (P3,in −∆P1,3) = 0

Pj,out − (Pj,pur + ∆P1,j) = 0

P3,out − (P3,pur −∆P2,3) = 0

P1,j,1 − Pj,out = 0

P1,j,sn − (P̄1,j(sn − 1)−∆P1,j/(snc,1 − 1)) = 0

P1,3,sn − (P3,in − n∆P1,3/snc,1) = 0

In the above DAE we see the Lagrange polynomials H̄v
1,j(s) and P̄1,j(sn − 1) which

are the Lagrange polynomials representing the profiles of the vapor molar enthalpy

and pressure respectively. These are given by the expressions:
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H̄v
1,j(s) =

nc,1∑
n=1

Wn(s)H1,j,sn

P̄1,j(s) =

nc,1∑
n=1

Wn(s)P1,j,sn

Wn(s) =

nc,1∏
z=1
z 6=n

s− sz
sn − sz

Air compressor model

The air compressor consists of multiple stages. The compressor is modelled solely by

algebraic equations. The discharge pressure of air feed is calculated using regression

equations from data provided by Praxair Inc. The power required by the compressor

is assumed to be the theoretical power required by the compressor which can be found

through given equations. The surge line (so we can find the minimum flow necessary

to the compressor) is also estimated using a regression equation from data provided

by our industrial partner. The control variable is the air feed to the compressor. The

design variable in this unit is the maximum power to the compressor.
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Compressor Model Variable Description

Index
k ∈ K K := {in, out}
i ∈ I component I = {1, 2, 3}, 1 := N2, 2 := O2, 3 := Ar
j ∈ J J := {1, 2, 3}

in inlet
out outlet
v vapor

Variable Description

Tk temperature
Pk pressure
Zk compressibility
V̄ v
k molar volume
Fin molar flow rate

V̇ std
in standard volumetric flow rate

V̇ reg
in transformed volumetric flow rate for compressor map

V̇ sur
in volumetric flow rate at compressor surge
yi feed composition
α inlet vane guide angle

Compressor Model Parameters

Parameter Description

ρstd
in air molar density
n poly index
ηp poly efficiency
nstg number of stages
ma,j parameter to determine discharge pressure
mb,j parameter to determine discharge pressure
mc,j parameter to determine discharge pressure
md,j parameter to determine discharge pressure
me,j parameter to determine surge line
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Air Compressor Subexpressions

bi := 0.0778RT ci /P
c
i ∀ i ∈ I

b :=
∑nc

i=1 yi bi

fi := 0.37464 + 1.54226ωi − 0.26992ω2
i

ak,i :=
0.45724(RT c

i )2

P c
i

[1 + fi (1−
√
Tk/T ci )]2

ak :=
∑nc

i=1

∑nc

j=1 yi yj(ak,i ak,j)
0.5(1− kij)

w :=
∑

i∈I wi yi
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Air Compressor Algebraic Equations

Pk −
(

RTk
V̄ v
k − b

− ak
(V̄ v

k − 0.414 b)(V̄ v
k + 2.414 b)

)
= 0

V̇ std
in ρstd

in − Fin = 0

V̇ reg
in − exp(V̇ std

in · 10−4) · 10−7 = 0

Pout −
(
a (V̇ reg

in )3 + b (V̇ reg
in )2 + c V̇ reg

in + d
)

= 0

Zk RTk − PkV̄ v
k = 0 ∀ k ∈ K

Zavg − (Zin + Zout)/2 = 0

rnstg
p Pin − Pout = 0

Hpoly − Zavg R/w Tin n/(n− 1)(r(n−1)/n
p − 1) = 0

W − nstg FinwHpoly/ηpoly = 0

Tout − Tin r
(n−1)/n
p = 0

V̇ sur
in − e = 0

log10(−a)− (ma,1 α
2 +ma,2 α +ma,3) = 0

log10(b)− (mb,1 α
2 +mb,2 α +mb,3) = 0

log10(−c)− (mc,1 α
2 +mc,2 α +mc,3) = 0

d− (md,1 α
2 +md,2 α +md,3) = 0

e− (me,1 α
2 +me,2 α +me,3) = 0

Turbine model

The air exiting the PHX is further cooled using a turbine. The state of the turbine is

determined by a set of correlations relating the polytropic head, volumetric flow rate
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and fan speed of the turbine, as well some of the theoretical calculations also seen in

the compressor equations.

Turbine Model Variables

Index
k ∈ K K := {in, out}

Variable Description

Tk temperature
Pk pressure
Zk compressibility
V̄ v
k molar volume
Fin molar flow rate
yi feed composition
u turbine fan speed

Turbine Model Parameters

Parameter Description

n polytropic index
a speed parameter
b speed parameter
c head parameter
d head parameter
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Turbine Subexpressions

P sat
i := exp(Ai +Bi/(Tdew + Ci))

bi := 0.0778RT ci /P
c
i

b :=
∑nc

i=1 yi bi

fi := 0.37464 + 1.54226ωi − 0.26992ω2
i

ak,i :=
0.45724(RT c

i )2

P c
i

[1 + fi (1−
√
Tk/T ci )]2

ak :=
∑nc

i=1

∑nc

j=1 yi yj(ak,i ak,j)
0.5(1− kij)

w :=
∑

i∈I wi yi

Turbine Algebraic Equations

Pk −
(

RTk
V̄ v
k − b

− ak
(V̄ v

k − 0.414 b)(V̄ v
k + 2.414 b)

)
= 0

u− (aFin + b) = 0

Hpoly − (c u2 + d) = 0

Zk RTk − PkV̄ v
k = 0

Zavg − (Zin + Zout)/2 = 0

rp Pin − Pout = 0

Hpoly − Zavg R/w Tin n/(n− 1)(r(n−1)/n
p − 1) = 0

Tout − Tin r
(n−1)/n
p = 0

Pout

∑
iyi/P

sat
i − 1 = 0
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Appendix B

Parameters for 2 CSTR Model

Symbol Description and steady-state values

cA,F1 concentration of A in feed to Reactor 1, 20 mol/m3

cB,F1 concentration of B in feed to Reactor 1, 0 mol/m3

cC,F1 concentration of C in feed to Reactor 1, 0 mol/m3

cA,M concentration of A in feed to Mixer, 20 mol/m3

cB,M concentration of B in feed to Mixer, 0 mol/m3

cC,M concentration of C in feed to Mixer, 0 mol/m3

EI/R activation energy of main reaction, A → B, 6000 K

EII/R activation energy of side reaction, B → C, 4500 K

k0,I main reaction rate constant, 2.7× 108 s−1

k0,II side reaction rate constant, 160 s−1

qcool,1 cooling rate for the Reactor 1, m3K/s

qcool,2 cooling rate for the Reactor 2, m3K/s

Qc1 cooling water flow to Reactor 1, 0.7 m3/s

Qc2 cooling water flow to Reactor 2, 0.7 m3/s

Tc1,in inlet cooling water temperature to Reactor 1, 300 K

Tc2,in inlet cooling water temperature to Reactor 2 , 275 K

TF1 temperature of feed flow to Reactor 1, 300 K

TM temperature of feed flow to the Mixer, 300 K

Ua1 heat transfer coefficient in Reactor 1, 0.35 m3/s

Ua2 heat transfer coefficient in Reactor 2, 0.35 m3/s
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Notes:

In the two-stage stochastic formulation all parameters that are rates have their time

units changed from seconds to minutes.

To slow down the dynamic in the two-stage stochastic optimization rate constants

k0,I and k0,II are multiplied by 0.25.

Backward Euler Method

The Backward Eueler method is a technique used in simultaneous methods to convert

a DAE into a set of algebraic equations. The concept of the Backward Euler method

is as follows, given the first order differential equation:

dx(t)

dt
= f(x, t)

x(to) = x0

To estimate the profile of x(t) from to to tf we will discretize x(t) into
tf−to
h

values,

where h is the time step between each discretized value of x(t). Let the next value

of x(t) we calculated be xk, (k = 1) where xk is an approximate value of x(to + kh).

Given dx(t)
dt

= f(x, t), we see that at t = to + h = t1, the slope of the tangent line at

x1 is f(x1, t1). If x(to +h) is sufficiently close to x(to) (i.e h is a small value) then the

approximation of x(to + h) (x1) can be given as:

x1 = hf(x1, t1) + x0

Thus if we know x0, the entire profile of x(t) in terms of its discretized approximations
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can be found by solving the above equation to find x1, and then replacing x0 with x1

and solving the resulting equation for x2 and so on. Backward Euler is an implicit

method as xk is expressed as a function of xk, and thus an equation must be solved.

However since we are using this to discretize a DAE, where a system of algebraic

equations will have to be solved anyway, this does not pose much difficulty. Using

the Backward Euler method we can convert the differential equations in the DAE

into algebraic equations. Thus the DAE is converted into a set of algebraic equations

and the entire optimization problem is solved as an NLP. Using Backward Euler, a

dynamic optimization problem can be converted into an NLP as seen below:

min
uo,u1.....uf

∫ tf

to

φ(x(t),y(t),u(t),p)

s.t

f(x(t),y(t),u(t),p) = ẋ(t)

h(x(t),y(t),u(t),p) = 0

g(x(t),y(t),u(t),p) ≤ 0

κ(x(ti),yi(t),ui(t),p) ≤ 0 ∀i ∈ {0, ....n}

x(0) = xo

Where x, y and u are the differential, algebraic and control variables respectively,

and p are parameters in the optimization. f and h are the differential and algebraic

equations that make up the differential algebraic equations (DAE) that govern the

system being optimized. g and κ are the path constraints and point constraints

respectively.

Using the Backward Euler method, the above formulation can be converted into an

NLP as seen in the following formulation:
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min
u0,u1....un
x0,x1....xn
y0,y1....yn

h

n∑
k=0

φ(xk,yk,uk,p)

s.t

h · f(xk+1,yk+1,uk+1,p) = xk+1 − xk

h(xk+1,yk+1,uk+1,p) = 0

g(xk+1,yk+1,uk+1,p) ≤ 0

κ(xk+1,yk+1,uk+1,p) ≤ 0 ∀k ∈ {0, ....n− 1}

x(0) = xo

n =
tf − to
h
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