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Lay Abstract: 

 

Due to rapid advances in technology, many areas of scientific research are measuring 

multiple sources of massive, complex, and diverse data in hopes to better understand 

the principles underpinning puzzling phenomena. Now, more than ever, advancement 

and discovery relies upon sophisticated and robust statistical and computational 

methods that reduce the data complexity, harness variability, and integrate multiple 

sources of information. In this thesis, I test and validate the ‘sparse’ class of multivariate 

statistical methods that is becoming a promising, fresh solution to these data-driven 

challenges. Using publicly available data from genetic toxicology as motivation, I 

demonstrate the utility of these methods, find where they work best, and explore the 

possibility of improving their scientific interpretability. The work in this thesis 

contributes to both biostatistics and genomic literature, by meshing together rigorous 

statistical methodology with real-world data applications. 
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Abstract: 

 

Background: Scientists are measuring multiple sources of massive, complex, and diverse 

data in hopes to better understand the principles underpinning complex phenomena. 

Sophisticated statistical and computational methods that reduce data complexity, 

harness variability, and integrate multiple sources of information are required. The 

‘sparse’ class of multivariate statistical methods is becoming a promising solution to 

these data-driven challenges, but lacks application, testing, and development.  

Methods: In this thesis, efforts are three-fold. Sparse principal component analysis 

(sparse PCA) and sparse canonical correlation analysis (sparse CCA) are applied to a large 

toxicogenomic database to uncover candidate genes associated with drug toxicity. 

Extensive simulations are conducted to test and compare the performance of many 

sparse CCA methods, determining which methods are most accurate under a variety of 

realistic, large-data scenarios. Finally, the performance of the non-parametric bootstrap 

is examined, determining its ability to generate inferential measures for sparse CCA.  

Results: Through applications, several groups of candidate genes are obtained to point 

researchers towards promising genetic profiles of drug toxicity. Simulations expose one 

sparse CCA method that outperforms the rest in the majority of data scenarios, while 

suggesting the use of a combination of complimentary sparse CCA methods for specific 

data conditions. Simulations for the bootstrap conclude the bootstrap to be a suitable 

means for inference for the canonical correlation coefficient for sparse CCA but only 

when sample size approaches the number of variables. As well, it is shown that 

aggregating sparse CCA results from many bootstrap samples can improve accuracy of 

detection of truly cross-correlated features. 

Conclusions: Sparse multivariate methods can flexibly handle challenging integrative 

analysis tasks. Work in this thesis has demonstrated their much-needed utility in the 

field of toxicogenomics and strengthened our knowledge about how they perform 

within a complex, massive data framework, while promoting the use of bootstrapped 

inferential measures. 
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CHAPTER 1 

 

1. INTRODUCTION 

 

1.1. Big data integration in health research 

The continued development of technology allows us to measure and store data at a 

growing rate and capacity in both academic and private sectors alike.1 From marketing 

to financial transactions, social media to mobile downloads, and from the high-

resolution imaging of the brain to the microscopic examination of the human genome, 

the flow of data has become prolific.2 

The health research sector has experienced this surge in data acquisition at a 

particularly rapid pace.3,4 Tools in the clinical setting have evolved to automate the 

acquisition of patient information. The development of biotechnologies, such as the 

DNA microarray, mass-spectrometry, and next-generation sequencing, has sparked a 

genomic revolution by allowing the measurement of genetic activity with remarkable 

precision and granularity.5 

We can now detect genes (“genomics”), mRNA (“transcriptomics”), proteins 

(“proteomics”), and metabolites (“metabolomics”), providing a holistic view of an 

organism’s biological system.6 Investigators studying diseases, conditions, and 

phenomena of all kinds are simultaneously capturing ‘omic’ data sources like these 

alongside more conventional data (e.g., clinical assessments, demographics). By bringing 

together complementary views, it is hypothesized that we can extract new insights into 

the biological mechanisms underpinning complex conditions such as cancers, 

neurodevelopmental disorders, diabetes, and gene-diet interactions.4,7 

Though a marvel on its own, the measurement of such data is just the first step 

to generating new knowledge. Extracting succinct, comprehensible output from a sea of 

complex data requires thoughtful analytic work and the right tools to do-so. As such, the 

challenging task of simultaneously analyzing multiple data types has been given the 

spotlight. The undertakings to tackle this challenging task can be identified through both 

publications and larger collaborative initiatives, indexed by popularized terms such as 

‘data integration’, ‘data fusion’, and ‘integrative analysis’.8–10 

To explore common approaches and illustrate activity in this area, I searched the 

OVID Medline database for published articles that were fundamentally concerned with 

the integration of omic data (see Appendix A for a description of my search strategy). 

Figure 1 displays the number of publications found per year, updated September 14th, 

2018. The search returned 1858 publications between the years 1998 and 2018, of 
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which 931 (50%) occurred from 2015 onward. With continued technological 

advancement and the ever pressing demand for data-driven breakthroughs, I expect this 

trend to continue for years to come.  

 
Figure 1: A bar plot displaying the number of publications per year retrieved by my 

search of OVID Medline (documented in Appendix). *Since the search was last updated 

September 14th, 2018, the frequency for the year 2018 is expected to be larger by the end 

of the year. 

 

Skimming through articles, one quickly gains an appreciation for the cross-

disciplinary skillsets required to understand, process, integrate, and analyze massive 

omic data. Collaboration between a variety of health experts and statisticians, 

biostatisticians, bioinformaticians, and computer scientists is a more crucial requirement 

than ever before. Efforts have gone beyond in-house team building. The sharing of data 

and assembly of conferences and workshops have profoundly impacted the 

collaboration landscape and greatly facilitated my learning and work within this thesis. 

Data sharing projects have promoted secondary research and maximized the 

return on investment for large-scale data capture initiatives. The Gene Expression 

Omnibus (GEO), for example, is a massive repository that centralizes both data 

submission and acquisition for a wide range of health contexts.11 Databases like The 
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Cancer Genome Atlas (TCGA) provide a hub for more area-specific data mining (in this 

example, cancer).12 

Conferences and workshops are also fostering cross-disciplinary learning, 

sometimes with publicly available omic data. To improve my knowledge, I participated in 

two conferences themed around ‘analysis challenges’. Both the 2012 Genetic Analysis 

Workshop (GAW) and the 2013 International Conference on the Critical Assessment of 

Massive Data Analysis (CAMDA) attracted attendees to share innovative analyses of 

challenge datasets. The integration of massive omic data with conventional clinical 

outcomes was the primary focus for both events.13 

By reading data integration articles and engaging with real data, one can 

appreciate how diverse the term ‘integrate’ can be. There are many reasons and ways to 

integrate data. In 2009, Hamid et al, proposed a conceptual framework for categorizing 

an omic data integration task by considering three important questions regarding the 

context from which it arises.10 In short, the questions are: 1. Why are we integrating the 

data (i.e., what are we hoping to improve)? 2. What type of data are we integrating? 3. 

When are we integrating the data? 

In this thesis, I narrow my focus to addressing issues involving a particular, yet 

omnipresent, setting for data integration found in health research. The choice of this 

particular setup was motivated due to the compelling health research questions 

involved, the state of the statistical methodology prepared to answer them (summarized 

in subsequent sections), and existing collaborations involving analysis of real data using 

the statistical methods that are the focus of this thesis. Figure 2 presents the data 

integration set up that I concentrate on hereafter.  

The objective of data integration in this thesis is, therefore, to better detect 

meaningful relationships between omic data and clinical measures, with emphasis on 

finding complex relationships within and between data domains. From a health research 

perspective, the goal for integrating large sets of conventional, clinical measures and 

omic measures is to find deep connections between them that are more meaningful 

than simply observing relationships between two variables at a time. 

The type of data considered in this thesis is heterogeneous, meaning that the 

multiple sources of data to be integrated have been measured on the same samples 

(individuals, participants, observations) but contain different types of variables (e.g., 

clinical vs. omic measurements). This contrasts the homogeneous data scenario, in 

which the multiple sources of data to be integrated are different samples (e.g., cohorts) 

with the same set of variables. 
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The stage at which data integration is performed is intermediate, occurring 

intrinsically within the statistical methodology I use rather than by concatenating data 

prior to analysis (early) or aggregating analysis results (late). Though there are some 

benefits to intermediate integration, the stage is a consequence of the methods I have 

chosen rather than a deliberate choice. 

 

 
Figure 2: A depiction of the data integration scenario addressed within this thesis. 

 

1.2. Statistical analysis challenges and possible statistical approaches 

Detecting complex relationships between large heterogeneous data types with 

one or more set of omic data poses significant statistical challenges. Here I describe 

three significant technical hurdles to analyzing big data to justify and motivate the 

choice of a particular class of statistical methods from which the bulk of this thesis work 

is based. 

The first major challenge is due to the correlation between variables. Phenotypes 

such as autism spectrum disorder, cancers, nutrition and diet, and drug toxicity are 

deemed ‘complex’ because they can be measured in a variety of ways and are affected 

by a combination of many genes and environmental factors at once.14 Genetic processes 

are intricate by nature. Transcription and translation are measured from and modified 

by a multitude of factors. Therefore, both clinical/conventional data and omic data will 

tend to have correlation within and between variables and it is essential for a statistical 

analysis to harness it.  
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The fact that we capture so much correlated information proclaims an 

importance to use it jointly. The diagnosis of some conditions cannot be made without 

consulting a myriad of symptoms. For example, questionnaires to capture child 

behaviour or diet typically culminate in the calculation of composite scores as an 

attempt to classify cognitive function or level of nutrition. On the genetic end, individual 

biomarkers tend to contribute very small, hard to detect signals on their own and, with 

rare exception, work in concert.15 Finding relationships within and between data via 

groups of variables or composite variables could increase probability of detection and 

better represent the underlying biological mechanisms. 

Certain conventional multivariate methods are available to attempt such tasks, 

by parameterizing and estimating the correlation structure while searching for latent, 

combined effects. For example, principal component analysis (PCA)16, partial least 

squares (PLS)17, and canonical correlation analysis (CCA)18 are classic multivariate 

methods that can investigate the variation within and between features. 

The second major challenge is due to the dimensions of the data. Technologies 

used to measure molecular-level features are capable of doing-so at a high resolution. 

There has been movement away from candidate gene studies and toward whole-

genome sequencing.19 As a result, data will consist of thousands, up to millions of 

variables (𝑝). However, such technologies are typically expensive to acquire and use, 

demanding a large budget from investigators. This limits the sample size (𝑛) that is 

feasible for research projects; an issue that is accentuated when studying rare 

conditions without access to many participants anyways. This creates the ‘small 𝑛, large 

𝑝’ scenario, which poses significant mathematical obstructions for multivariate 

approaches like PCA, PLS, and CCA, especially when 𝑛 < 𝑝.20 The term high-dimensional 

is often used to refer to this scenario, though it does not highlight the important small 𝑛 

aspect. Thankfully, regularization adaptations21 to multivariate methods solve some of 

the mechanical challenges involved in estimation and allow them to operate as 

dimension reduction tools.22  

The third major challenge is variable selection and model interpretation. With 

thousands of variables, it is extremely difficult to come up with accurate and concise 

multivariate models. As the number of variables in each data domain increases, the 

number of possible interactions becomes almost innumerable. Though able to estimate 

complex relationships, multivariate approaches tend to be poor at variable selection. 

Typically, they retain all variables in the estimated models. Amid thousands of variables, 

it is essential to adopt statistical methods that eliminate unimportant features entirely; 

separating the signal from the noise, so to speak. 
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A special subset of regularization approaches called ‘sparse’ methods have 

emerged within the last decade and are the focus and highlight of this thesis. Sparse 

adaptations of PCA, PLS, and CCA not only bring the dimension reduction qualities to the 

𝑛 < 𝑝 scenarios, but their unique sparsity mechanic simultaneously eliminates 

unimportant variables, producing models that express relationships between small 

subsets of the original sets of variables. This provides investigators superior insight 

compared to their non-sparse and often less accurate counterparts. 

 

1.3. Sparse multivariate methods 

In this thesis, I focus on the application, testing, and development of sparse PCA and 

sparse CCA; sparse regression approaches are also applied. In this section, I introduce 

the key aspects of these methods, including their generic mathematical infrastructure, 

and highlight the major developments preceding the work. There may be overlap 

between background methodology presented in this section and that within the 

manuscripts corresponding to my contributions, purely due to their need to stand alone 

as publishable material. 

 

1.3.1. Conventional PCA: 

Conventional PCA was introduced in 1901 by Karl Pearson.23 It explores the latent 

multivariate structure of one set of variables and provides a transformative view of the 

data at a reduced dimension that can better articulate the information (variation) 

within.16,24 

Let 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑝) ′  be a vector of 𝑝 random variables. PCA first seeks a 

linear combination 𝑍1 = 𝒗1
′ 𝑿 that, over all possible choices of the vector 𝒗1 =

(𝑣11, 𝑣12, … , 𝑣1𝑝)′, has maximum variance 𝑉𝑎𝑟(𝒗1
′ 𝑿). The objective function for this first 

step in PCA can be written as 

 

maximize
𝒗1

{𝒗1
′ Σ𝒗1} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝒗1‖2
2 = 1, 

  

where Σ = 𝑉𝑎𝑟(𝑿), ‖. ‖𝑙 is the 𝐿𝑙-norm†, and the added scaling constraint on 𝒗1 dictates 

that coefficients in the vector must be between -1 and 1. Upon solving this optimization 

problem, the resulting linear combination 𝑍1 is called the first principal component (PC) 

and the vector 𝒗1 is called the first loading (coefficient, weight) vector. The components 

                                                           
† For 𝒂 = (𝑎1, 𝑎2, … , 𝑎𝑏)′, the 𝐿𝑙-norm is defined as: ‖𝒂‖𝑙 = √|𝑎1|𝑙 + |𝑎2|𝑙 + ⋯+ |𝑎𝑏|𝑙

𝑙
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𝑣11, 𝑣12, … , 𝑣1𝑝 of 𝒗1 are called loadings and, along with other measures, relay the 

extent to which each 𝑋1, 𝑋2, … , 𝑋𝑝 contribute to 𝑍1 (i.e., what 𝑍1 represents).  

Subsequent PCs 𝑍2, 𝑍3, … , 𝑍𝑝 and their loading vectors 𝒗2, 𝒗3, … , 𝒗𝑝 can be 

obtained such that the PCs are orthogonal to 𝑍1 and one-another, and represent a 

monotone decreasing amount of unique variation in the data. The full set of PCs 

𝒁 = (𝑍1, 𝑍2, … , 𝑍𝑝)′ have a sum of variances equal to that of the original variables but, 

as is the goal of PCA, should be more heavily weighted towards the first few PCs. If this is 

the case, investigators may choose to keep only the first few PCs for analysis as they 

represent the majority of information in the data, hence the power of PCA as a 

dimension reduction tool. 

Given an 𝑛 × 𝑝 matrix 𝕏 = (𝒙1, 𝒙2, … , 𝒙𝑝) representing 𝑛 observations of the 

random vector 𝑿, where 𝒙𝑗 is the observed data for variable 𝑋𝑗 (for 𝑗 = 1, … , 𝑝), then 

the sample version of PCA can be conducted by solving the above optimization problem 

with sample covariance matrix Σ̂ instead of Σ. Sample PCA returns estimated loading 

vectors �̂�1, �̂�2, … , �̂�𝑝, where �̂�𝑗 = (𝑣𝑗1, 𝑣𝑗2, … , 𝑣𝑗𝑝)′ for 𝑗 = 1,… , 𝑝, and their 

corresponding PCs ℤ = (𝒛1, 𝒛2, … , 𝒛𝑝), where 𝒛𝑗 = 𝕏�̂�𝑗 is the 𝑗𝑡ℎ PC. 

Being deeply rooted in linear algebra, classic algorithms, including eigen-value 

decomposition (EVD) and singular value decomposition (SVD), can be used to conduct 

PCA on sample data and obtain full sets of estimated PCs and estimated loading vectors. 

Eigen vectors correspond to the loading vectors and the eigen values can be used to 

calculate the percentage of total variance explained by each PC.24 

 

1.3.2. Conventional CCA: 

Conventional CCA was introduced in 1936 by Harold Hotelling.25 CCA has many of the 

same attributes that define PCA – it examines the latent multivariate structure and 

provides a unique view of the data at a reduced dimension. The two methods are also 

very closely related mathematically.26 However, CCA aims to describe correlation 

between two sets of variables.24 

Let 𝑿1 = (𝑋1,1, 𝑋2,1, … , 𝑋𝑝1,1)′ be a vector of 𝑝1 random variables and 

𝑿2 = (𝑋1,2, 𝑋2,2, … , 𝑋𝑝2,2)′ be a vector of 𝑝2 random variables‡. CCA first seeks a pair of 

                                                           
‡
 PCA and CCA are closely related and extensions to CCA have been made to accommodate more than two 

sets of variables. In turn, I chose to reflect these facts in the notation via an additional layer of subscripts 
that differentiate sets of variables when moving to CCA. The data-defining subscripts are always placed at 
the end and are separated from others by a comma. For example: 𝑋2 (from PCA; no commas) is the 
second random variable from the only possible set of variables 𝑿, whereas 𝑋1,2 (from CCA; comma and 

subscript at the end) is the first random variable from the second set of variables 𝑿2. 
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linear combinations 𝑍1,1 = 𝒘1,1
′ 𝑿1 and 𝑍1,2 = 𝒘1,2

′ 𝑿2 that, over all possible choices of 

vectors 𝒘1,1 = (𝑤11,1, 𝑤12,1, … , 𝑤1𝑝1,1)′ and 𝒘1,2 = (𝑤11,2, 𝑤12,2, … , 𝑤1𝑝2,2)′, have 

maximum correlation 𝐶𝑜𝑟𝑟(𝒘1,1
′ 𝑿1, 𝒘1,2

′ 𝑿2). The objective function for this first step in 

CCA can be written as 

 

maximize
𝒘1,1,𝒘1,2

{
𝒘1,1

′ 𝚺12𝒘1,2

√𝒘1,1
′ 𝚺11𝒘1,1√𝒘1,2

′ 𝚺22𝒘1,2

} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝒘1,1‖2

2
= 1, ‖𝒘1,2‖2

2
= 1, 

 

where 𝚺11 = 𝑉𝑎𝑟(𝑿1), 𝚺22 = 𝑉𝑎𝑟(𝑿2), and 𝚺12 = 𝐶𝑜𝑣(𝑿1, 𝑿2). Upon solving this 

optimization problem, the resulting linear combinations 𝑍1,1 and 𝑍1,2 are called the first 

canonical variate (CV) pair and have first canonical correlation 𝜌1,12 = 𝐶𝑜𝑟𝑟(𝑍1,1, 𝑍1,2), 

and the vectors 𝒘1,1 and 𝒘1,2 are called the first canonical (loading, coefficient, weight) 

vectors. Similar to the loadings in PCA, the loadings 𝑤11,1, 𝑤12,1, … , 𝑤1𝑝1,1 in 𝒘1,1 and 

𝑤11,2, 𝑤12,2, … , 𝑤1𝑝2,2 in 𝒘1,2 express the extent that each variable contributes to the 

first (highest) cross-correlation between 𝑿1 and 𝑿2. 

Subsequent pairs of CVs 𝑍2,1, 𝑍3,1, … , 𝑍min (𝑝1,𝑝2),1 and 𝑍2,2, 𝑍3,2, … , 𝑍min (𝑝1,𝑝2),2, 

with their correlations 𝜌2,12, 𝜌3,12, … , 𝜌min(𝑝1,𝑝2),12, as well as corresponding canonical 

vectors 𝒘2,1, 𝒘3,1, … ,𝒘min(𝑝1,𝑝2),1 and 𝒘2,2, 𝒘3,2, … ,𝒘min(𝑝1,𝑝2),2, can be obtained such 

that the CVs are, respectively, orthogonal to 𝑍1,1 and 𝑍1,2 (and, respectively, one-

another) and represent a monotone decreasing amount of unique cross-correlation in 

the data. From the full set of CVs 𝒁1 = (𝑍1,1, 𝑍2,1, … , 𝑍min (𝑝1,𝑝2),1)′ and 𝒁2 =

(𝑍1,2, 𝑍2,2, … , 𝑍min (𝑝1,𝑝2),2)′, the investigator might elect to keep just the first few to 

inspect cross-correlations at a reduced dimension. 

Given an 𝑛 × 𝑝1 matrix 𝕏1 = (𝒙1,1, 𝒙2,1, … , 𝒙𝑝1,1) representing 𝑛 observations of 

the random vector 𝑿1, where 𝒙𝑗1,1 is the observed data for variable 𝑋𝑗1,1 (for 𝑗1 =

1, … , 𝑝1), and an 𝑛 × 𝑝2 matrix 𝕏2 = (𝒙1,2, 𝒙2,2, … , 𝒙𝑝2,2) representing the same 𝑛 

observations but of the random vector 𝑿2, where 𝒙𝑗2,2 is the observed data for variable 

𝑋𝑗2,2 (for 𝑗2 = 1,… , 𝑝2), then the sample version of CCA can be conducted by solving the 

above optimization problem with sample covariance matrices Σ̂11, Σ̂22, and Σ̂12 instead 

of Σ11, Σ22, and Σ12, respectively. Sample CCA returns estimated canonical vectors 

�̂�1,1, �̂�2,1, … , �̂�min(𝑝1,𝑝2),1 and �̂�1,2, �̂�2,2, … , �̂�min(𝑝1,𝑝2),2, where 

�̂�𝑚,1 = (�̂�𝑚1,1, �̂�𝑚2,1, … , �̂�𝑚𝑝1,1)′ and �̂�𝑚,2 = (�̂�𝑚1,2, �̂�𝑚2,2, … , �̂�𝑚𝑝2,2)′ for 

𝑚 = 1,… ,min (𝑝1, 𝑝2), as well as their corresponding CVs 
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ℤ1 = (𝒛1,1, 𝒛2,1, … , 𝒛min(𝑝1,𝑝2),1) and ℤ2 = (𝒛1,2, 𝒛2,2, … , 𝒛min(𝑝1,𝑝2),2), where 𝒛𝑚,1 =

𝕏�̂�𝑚,1 is the 𝑚𝑡ℎ CV for 𝕏1 and 𝒛𝑚,2 = 𝕏�̂�𝑚,2 is the 𝑚𝑡ℎ CV for 𝕏2, for 𝑚 =

1, … ,min (𝑝1, 𝑝2). Similar to PCA, with sample data, components can be calculated using 

the EVD or SVD of certain matrices involving sample covariance matrices.24 

 

1.3.3. Adding regularization and sparsity 

The objective of PCA is to find linear combinations that express maximum 

variation in one set of data, whereas the objective of CCA is to find linear combinations 

that express maximum correlation between two sets of data. Regardless, obtaining 

solutions to their objective functions require the calculation of an inverse of a 

covariance matrix. This becomes challenging, and often impossible, in the presence of 

multicollinearity or 𝑛 < 𝑝 data scenarios;21 both conditions are prevalent with omic data 

integration. A covariance matrix for such data becomes ill-conditioned under these 

circumstances and its inverse does not exist, meaning the computation of PCA and CCA 

becomes compromised. 

These issues can be solved by regularization techniques. Regularization was 

developed in regression settings before being ported over to solve issues experienced by 

PCA, CCA, and other multivariate methods. When regressing an outcome 𝒚 on a set of 

variables contained in design matrix 𝕏𝑑, the objective function for ordinary least squares 

(OLS) regression can be written as: 

 

minimize
𝜷

{‖𝒚 − 𝕏𝑑𝜷‖2
2}, 

  

where 𝜷 is a vector of regression coefficients (parameters) to be estimated. Estimation 

involves taking the inverse of 𝕏𝑑
′ 𝕏𝑑 in the OLS estimating equations �̂� = (𝕏𝑑

′ 𝕏𝑑)−1𝕏𝑑
′ 𝒚, 

which is not possible when 𝑛 < 𝑝. In 1970, Hoerl and Kennard presented ‘ridge 

regression’27 which adds a penalty function to OLS objective function: 

 

minimize
𝜷

{‖𝒚 − 𝕏𝑑𝜷‖2
2} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝜷‖2
2 < 𝑡, 

 

where 𝑡 is a constant to be chosen by the user referred to as a tuning parameter and, 

paired with the penalty function ‖𝜷‖2
2 that it constrains, accomplishes two important 

things. First, it allows estimation even when 𝑛 < 𝑝. Second, even though the ridge 

estimator is biased, it has potential to have greatly reduced variance, thereby achieving 
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a lower mean squared error (MSE) and becoming arguably superior to OLS.21,27 A key 

mechanical aspect to ridge regression is that the tuning parameter 𝑠ℎ𝑟𝑖𝑛𝑘𝑠 estimates 

since the sum of their squared values must be less than 𝑡. 

 In 1996, Robert Tibshirani presented least absolute shrinkage and selection 

operator (LASSO) regression28, which has the following objective function: 

 

minimize
𝜷

{‖𝒚 − 𝕏𝑑𝜷‖2
2} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝜷‖1 < 𝑡, 

 

where constraining the 𝐿1-norm penalty function not only shrinks the parameter 

estimates but also, due to its geometry, shrinks some to exactly 0. By using the LASSO 

penalty, one can obtain regression solutions that have less non-zero parameter 

estimates than there are variables in 𝕏𝑑, which greatly improves variable selection and 

model interpretation.28 This started the term ‘sparse’ regression. 

In 2005, Zou and Hastie presented ‘elastic net’ regression that included both 

ridge and LASSO penalties at the same time, allowing sparse estimation in 𝑛 < 𝑝 

scenarios.29 A multitude of developments have emerged over the years30 to improve 

penalty-based regression, including the grouped LASSO, where group structure between 

variables can be specified and incorporated to the selection process;31 the fused LASSO, 

where parameter estimates corresponding to comparable variables are influenced 

towards similar values;32 and the adaptive LASSO, where weights can be given on a per-

variable basis to further control the estimate shrinking process.33 

 In 2006, Zou, Hastie, and Tibshirani published the first sparse PCA method.34 The 

authors cast PCA as a regression problem and ported over the concepts from sparse 

regression. The same penalty functions could be applied to the loading vectors from 

PCA, resulting in the following generalized objective function for a sparse PCA method: 

 

maximize
𝒗1

{𝒗1
′ Σ𝒗1} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝒗1‖2
2 = 1 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑃(𝒗1) < 𝑡, 

 

where the penalty function 𝑃 could take on one of a number of penalties, like the ridge 

or LASSO, and there could be more than one penalty function; Zou et al., 2006 used a 

naïve elastic net, for example.34 Solving this objective function results in sparse loading 

vectors, meaning concise groups of variables are attributed to the variation explained by 
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PCs. This contrasts loading vectors estimated from non-sparse PCA, whereby all loading 

values are non-zero, leaving limited means to judge which variables are responsible for 

variation in the data.  

More sparse PCA approaches have been published since the first.35–43 For 

instance, Witten et al., 2009 published a sparse PCA method based on the penalized 

matrix decomposition (PMD) and LASSO or fused LASSO penalty functions36,44, and Lee 

et al., 2010 published a sparse PCA method based on the non-iterative partial least 

squares algorithm with random effects penalty functions.38 

In 2009, Waaijenborg et al., Parkhomenko et al., and Witten et al., published the 

first sparse CCA methods.36,44–47 Similarly, they ported in penalty functions and were 

able to cast the following generalized objective function: 

 

maximize
𝒘1,1,𝒘1,2

{
𝒘1,1

′ 𝚺12𝒘1,2

√𝒘1,1
′ 𝚺11𝒘1,1√𝒘1,2

′ 𝚺22𝒘1,2

} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝒘1,1‖2

2
= 1, ‖𝒘1,2‖2

2
= 1, 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑃1(𝒘1,1) < 𝑡1, 𝑃2(𝒘1,2) < 𝑡2 

 

where the penalty functions 𝑃1 and 𝑃2 could be of different form if desired. Much like 

sparse PCA, a variety of sparse CCA methods have emerged.48–57 For example, a few 

authors utilized the group LASSO to prioritize the grouping of genes during CCA 

estimation,53,54,58 Wilms and Croux, 2015 solved an iterative prediction-based approach 

to estimating CCA components,52 and Hao et al., 2017 developed a sparse CCA method 

for longitudinal data. 57 

 

1.3.4. Notes on solving objective functions, penalties, and tuning parameter selection 

A key difficulty for any regularized or sparse method is solving the objective 

function. The above objective functions represent just the starting point for many of the 

final expressions and algorithms designed by authors in order for them to be solvable. 

The technical particulars are not the focus of this thesis but it is important to mention 

here that a number of algorithms tend to be iterative and computationally intensive. 

The choice of penalty function can vary based on the objective of regularization 

and feasibility of implementation (i.e., depending on the way the method is formulated 

and the algorithm used to solve the corresponding objective function). Regardless of the 

penalty function chosen, tuning parameters greatly govern their influence on the 

results.46 
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There are several strategies to select tuning parameters. Typically, the sparse 

method is performed many times, each time using a different set of tuning parameters 

from a suitable range, and results across runs are compared based on some criteria 

defined by the user. Additionally, a cross-validation procedure whereby the data is split 

into training and testing sets is popular to help avoid overfitting, a modeling issue which 

is increasingly problematic as the number of variables increases (especially so for 

multivariate methods). For example, several authors have chosen tuning parameters 

that maximize the average (across cross-validation folds) test-sample canonical 

correlation, or that minimize the average (across cross-validation folds) difference 

between training-sample and test-sample canonical correlations (emphasizing the model 

reliability).36,47,52,59 

In this thesis, I use several sparse methods and tuning parameter selection 

approaches. In each case, I define and reference which method and selection approach I 

am using. 

 

1.4. Objective of this thesis and its organization 

The objective of this thesis is to apply, test, and expand our knowledge of the 

sparse class of multivariate statistical methods. Three contributions in the form of 

manuscripts are included in Chapters 2, 3, and 4, respectively. Full context for each 

project precedes the manuscripts included in Chapters 2, 3, and 4, as well as in the 

introductory sections of these manuscripts. 

Chapter 2 presents an in-depth analysis with real data from a toxicogenomics 

study. By applying sparse PCA and sparse regression, groups of genes are estimated to 

be jointly associated with drug toxicity, outlining for the toxicogenomics community a 

new a new way to observe relationships within their data. Chapter 3 presents an 

extensive simulation study that compares the performance of several popular sparse 

CCA methods for extracting accurate sets of cross-correlated features between high-

dimensional data. By finding which methods work best in a vast range of conditions, and 

by providing a simulation design to do it, new knowledge of how these methods perform 

is generated. Chapter 4 presents an investigation of the non-parametric bootstrap 

approach to constructing confidence intervals and probability estimations for which 

variables are truly cross-correlated. Through simulation experiments, the performance 

of the strategy under 𝑛 < 𝑝 conditions is demonstrated, showing its ability to improve 

our means for inference when using the otherwise exploratory sparse CCA. 

Discussion and conclusions regarding these contributions are embedded within 

the final sections of their corresponding manuscripts. In Chapter 5 of this thesis, overall 
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key findings are highlighted, common strengths and limitations of the work is 

summarized, and future research ideas valuable given the current state of sparse 

multivariate methodology and needs in health research are discussed. 
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Chapter 2 

 

2. APPLICATION OF SPARSE PCA TO TOXICOGENOMIC DATA 

 

Context 

My first project is in the form of a published, peer-reviewed manuscript. The 

work presented in this manuscript is an application of sparse PCA to real toxicogenomic 

data. The work was initially motivated by my experiences with two ‘analysis challenge’ 

conferences. 

In the first year of my Ph.D. studies, I participated in the 18th Genetic Analysis 

Workshop (GAW18) hosted in Portland, Oregon, United States on October 13-17, 2012. 

Having just finished my M.Sc. Statistics degree, for which I completed a simulation study 

comparing sparse PCA methods,60 I found a reasonable way to apply sparse PCA to the 

type-2 diabetes genomic data supplied by the conference. After attending and 

presenting my approach at the conference, I submitted it for publication.61 This work, 

along with my collaboration with the data mining group during and after the 

conference,62 created the backbone for me to hone my approach for future analyses 

with large omic data. 

Leveraging my experiences, I participated in the 2013 International Conference 

on the Critical Assessment of Massive Data Analysis (CAMDA2013), held in Berlin, 

Germany on July 19-20, 2013. It was structured similarly to GAW18 but this time 

attendees could analyze one of three challenge data bases. One challenge data base was 

from a large toxicogenomic project. 

The field of toxicogenomics has emerged to handle the merger between 

conventional drug toxicity assessment studies and large genomic, transcriptomic, and 

proteomic data. Such omic data have been incorporated to better predict toxic drugs at 

an early stage of the drug-development process, making the process more efficient and 

the final products safer for human consumption.63,64 In some instances, data from large 

initiatives like the Japanese Toxicogenomics Project (TGP),65,66 DrugMatrix,67 PredTox, 
68,69 and eTox70,71 have been made available to spark research and development. The 

CAMDA2013 organizers linked attendees to processed gene expression data from the 

TGP data base. 

After some background reading of toxicogenomics literature, I found there was a 

great need for data integration, multivariate analyses, and variable selection.72 With 

guidance from my supervisor, I designed and presented at the conference an analysis 

pipeline involving sparse PCA for extracting groups of genes associated with drug 



Ph.D. Thesis – A. J. Bonner; McMaster University – Health Research Methodology (Biostatistics) 

15 

toxicity. My initial analysis was well received and, afterwards, we pursued peer-

reviewed publication. The resulting manuscript is presented in the following section and 

constitutes the first contribution to my thesis. 

We secured peer-reviewed publication in the Systems Biomedicine journal. Below 

is the full citation and acknowledgement for our manuscript. Then, starting on the next 

page, I include our manuscript. Please note that mathematical notation in this 

manuscript deviates slightly from the notation in the rest of the thesis. This is because it 

was published before finalizing the notation for the thesis. That said, notation is fully 

explained within the manuscript. 

 Readers who have read Chapter 1 of this thesis might elect to skip the section 

called “Sparse PCA and regression methodology” within the manuscript. Although a 

difference in notation, the differences are intuitive and the rest of the manuscript is 

understandable without reading that section. 
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Abstract 

Background: The 12th Annual International Conference on the Critical Assessment of 

Massive Data Analysis (CAMDA) used data from together the massive Japanese 

Toxicogenomics Project (TGP) to predict drug-induced liver injury (DILI) concern 

provided by the U.S. Food and Drug Administration (FDA. The challenge was to predict 

DILI concern by means of gene expression data. Analysis of this high-dimensional 

toxicogenomic data requires statistical methodologies that can detect the transcriptomic 

associations with toxicity. Methods: We propose an analysis technique that involves 

sparse principal component analysis to efficiently reduce the dimension of the analysis 

problem. Sparse principal component variables are composed of groups of expressed 

genes. Associations between DILI concern and sparse principal component variables 

were tested and further scrutinized with sparse regression methodology to identify 

concise transcriptomic structures potentially responsible for and predictive of drug 

toxicity. Results: Working with a subset of the TGP data with FDA DILI concern 

classification, we identified 5 transcriptomic structures (sparse principal component 

variables) statistically associated with DILI concern. The most statistically significant 

structure consists of the genes ZBTB16, FLVCR2, TNS3, and ASB13. Conclusion: Sparse 

statistical methods offer a new way to handle analysis issues with massive omic data. 

Sparse PCA can efficiently extract groups of transcriptomic markers that may indicate 

drug toxicity. 
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2.1. Introduction 

The current estimated cost in US dollars to develop a drug is $1.8 billion, but 

most drugs never make it to market, largely due to toxicity levels deemed unsafe for the 

human liver.1 As it is unethical to test the effects of compounds in humans, toxicity has 

classically been tested in animal-based experiments. Hence, conclusions may not be 

generalizable to the human population, especially when the effects of toxicity are 

revealed after prolonged exposure. The testing inaccuracy could result in passing unsafe 

or discarding useful drugs, which hinder public health efforts and squander resources. In 

an attempt to improve testing accuracy, the field of toxicology has embraced animal and 

now human ‘omic’ data (genomics, transcriptomics, proteomics, metabolomics) to help 

identify biological material that predict the toxicity of compounds at an early stage. 

Therefore, resources are saved from developing drugs that will ultimately fail in the 

public domain. The use of omic data to inform toxicology is commonly referred to as 

toxicogenomics and is now the focus of several research initiatives. One such initiative is 

the Japanese Toxicogenomics Project (TGP).2 With human in vitro, rat in vitro, and rat in 

vivo experimental models, 131 compounds were applied to liver samples and microarray 

gene expression profiles were obtained using Affymetrix GeneChip® technology. 

To facilitate prediction of toxicity in new drugs, the Food and Drug 

Administration (FDA) developed a classification system of human drug-induced liver 

injury (DILI) concern (most, less, and no DILI concern) for drugs currently on the market.3 

The drugs they classified had been on market for a minimum of 10 years, allowing 

sufficient public interaction to obtain updated and realistic DILI concern information, not 

otherwise attainable due to ethical reasons. This new classification of human-based drug 

toxicity can be linked to toxicogenomic databases, facilitating the search for omic 

markers that predict toxicity based on this indicator. The 12th Annual International 

Conference on Critical Assessment of Massive Data Analysis (CAMDA 2013) linked FDA 

classification labeling to the TGP data and proposed analysis challenges involving 

prediction of drug toxicity. Discovering novel biomarkers associated with DILI concern 

within the TGP data may aid in our understanding of mechanisms of toxicity and 

enhance our ability to assess the toxicity of new compounds. However, the breadth and 

complexity of omic data makes analysis challenging and to extract key information it is 

important to enrich statistical methodology with biological context.4 

Commonly, simple statistical methods are used to test associations between drug 

toxicity and each marker, one at a time, developing a list of top candidate genes. 

Although this approach is easy to implement, it involves conducting thousands of 

statistical tests and is prone to spurious associations (i.e. the ‘multiple testing problem’). 
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Perhaps more concerning is that by testing markers independent of one-another, this 

analysis does not acknowledge the fact that genes may act in concert to influence a 

phenotype. Complex networks of omic material will likely be the underlying indicator of 

drug toxicity. Identifying and characterizing these indicators requires more sophisticated 

statistical methods. We believe that recent advancement in a new class of so-called 

sparse statistical methods validates the use of principal component analysis (PCA) as a 

primary analysis tool to detect these complex networks. 

PCA is a commonly used multivariate method for both dimension reduction and 

data visualization. It assembles a new set of variables, called principal components (PCs), 

from linear combinations of original variables. These PCs are uncorrelated and ordered 

by maximal variance, giving the analyst an easier dataset to work with if they can 

interpret what the PCs mean. Unfortunately, this is a major challenge with high-

dimensional data, as found in toxicogenomics, since the PCs are formed by linear 

combinations of all original variables (a weighted sum of 1000 genes, for example) and 

are uninterpretable. To overcome this limitation, sparse principal component analysis 

methods 5,6,7 have been developed by combining PCA with sparse regression 

methodology.8,9 Sparse PCA restricts principal components to be formed by interpretable 

linear combinations of smaller (sparse) subsets of the original variables (a weighted sum 

of 10 genes, for example). Tuning parameters control the level of sparseness induced, 

making sparse PCA procedures very flexible. Sparse principal components reflect concise 

and interpretable groups of original variables that remain in the linear combinations. 

In this paper, we present an analysis strategy built around using sparse PCA to 

extract groups of related genes from a toxicogenomic database, testing their 

associations with drug toxicity. We apply this analysis strategy to subsets of the TGP 

database with the FDA’s classification of human DILI concern as the measure of drug 

toxicity. We hope to convey that this new class of sparse statistical methods may prove 

beneficial to toxicogenomic analyses, as they specialize at separating the ‘signal’ from 

‘noise’ amidst high-dimensional data. 

The rest of our paper is organized as follows. In the Materials and Methods 

section, we describe the data we used, the essentials of sparse methodology, and our 

analysis strategy. We then present our Results and provide a Discussion on the potential 

merits and limitations of sparse methodology in toxicogenomic analyses. 

 

2.2. Materials and Methods 

 

Description of Data: 
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Data source: Completed in 2007, the TGP database was the result of a 5-year 

collaborative effort between government and private companies to obtain gene 

expression data using Affymetrix GeneChip® technology to characterize the response to 

various drugs across a variety of experimental units.2 The completed TGP database 

provided by CAMDA 2013 contains thousands of results from experiments, involving 131 

drugs applied at 4 dose levels (control, low, middle, and high) to human and rat in vitro 

hepatocytes, and administered to rat in vivo with either a single dose or repeated doses. 

Transcriptomic material was extracted from experimental units at several time points 

after the drugs had been given. Full details regarding the study design and protocol are 

given by Uehara et al.2 and complete data, along with the portion we obtained including 

FDA human DILI concern labels, are available through the CAMDA 2013 conference 

website (http://dokuwiki.bioinf.jku.at/doku.php). 

Samples used: We considered only those drugs with FDA human DILI concern 

classification; 93 of the 119 drugs tested on human samples, and 101 of the 131 drugs 

tested on rat samples. We primarily focused on the 93 samples from human in vitro 

experiments that specifically received high dose levels and had gene expression 

measured at 8 hours; a single subset of this rich database. However, to compare results 

across different experimental conditions, we also repeated our analysis on another 15 

subsets of the database. Anticipating that higher doses result in more robust gene 

expression measurements 10 and due to many drugs not being administered at low 

doses in the human in vitro samples, we considered only samples that received middle 

or high dose levels. Likewise, since measurements of gene expression in the human 

samples were not taken at 2 hours for many drugs, we considered only gene expression 

values measured at later time points. 

Transcriptomic markers used: Human gene expression data were obtained with 

the Affymetrix GeneChip® Human Genome U133 Plus 2.0 Array and rat gene expression 

data were obtained with Affymetrix GeneChip® RAE 230A 2.0 Array.2 Although raw gene 

expression data was available, we chose to use preprocessed data that had undergone 

batch-effect correction and the Factor Analysis for Robust Microarray Summarization 

(FARMS) 11, that was also provided. A total of 18988 probesets were available for 

replicate-collapsed human samples, and 12088 probesets were available for replicate-

collapsed rat samples. Almost all probesets had gene names provided and all gene 

names were unique; as such we refer to probesets and genes interchangeably unless the 

gene name was not provided. We used inter-quartile range to filter genes that did not 

vary much and kept the top 1000 genes to simplify analysis. 

http://dokuwiki.bioinf.jku.at/doku.php
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Classification variable for human DILI concern: Human DILI concern (‘most’, ‘less’, 

and ‘no’ DILI concern in humans) was provided to detect if gene expression 

measurements differed across DILI classification. However, since only 8 drugs are 

classified as ‘no DILI concern’, we reclassified the human DILI concern variable to be 

binary (‘most’ vs. ‘less or no’ DILI concern) to obtain a more balanced and simple 

categorical variable. Of the 93 drugs tested in human tissue, 40 are labeled as ‘most DILI 

concern’ and 53 are ‘less or no DII concern’ and of the 101 drugs tested in rat specimens, 

41 are ‘most DILI concern and 60 are ‘less or no DILI concern’. 

 

Sparse PCA and Sparse Regression Methodology: 

Here we give an intuitive description of sparse PCA and sparse regression and 

refer the reader to refs. 5,6,7,8,9 for mathematical details. 

Given a data matrix 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑝), where 𝑝 variables (e.g., probsets or 

other omic markers) are measured for 𝑛 observations (samples; drugs), classical PCA 

constructs linear combinations (weighted sums) from the variables in the form 

 

𝑍𝑖 = 𝑣𝑖,1𝑋1 + 𝑣𝑖,2𝑋2 + 𝑣𝑖,3𝑋3 + ⋯+ 𝑣𝑖,𝑝−1𝑋𝑝−1 + 𝑣𝑖,𝑝𝑋𝑝,      𝑖 = 1,2, … , min(𝑛, 𝑝), 

 

where 𝑍𝑖  is the 𝑖𝑡ℎ principal component (PC) variable and the 𝑣𝑖,𝑗’s are the loadings 

(coefficients; weights) for the 𝑗𝑡ℎ variable in the 𝑖𝑡ℎ PC. By utilizing the correlation 

structure among 𝑋’s, PCA constructs PCs in such a way that they are uncorrelated, 

ordered by maximal variance, and the total amount of information (variance) in the new 

data matrix 𝒁 = (𝑍1, 𝑍2, … , 𝑍min (𝑛,𝑝)) is equal to the total amount of  information in the 

original data matrix 𝑿. We may now choose to analyze the 𝑍’s instead of 𝑋’s, as these 

defining properties potentially simplify analysis. For example, analyzing uncorrelated 𝑍’s 

allows for easier regression analysis as there is no issues with colinearity. Even more 

appealing, if 𝑛 < 𝑝 then the number of 𝑍’s to analyze will be less than the number 

of 𝑋’s. Likewise, since 𝑍’s are ordered by variance, the first few PCs will typically hold a 

large portion of the information and we can discard the trailing ones without losing 

much. For these last two reasons, PCA is an excellent so-called dimension-reduction tool, 

able to compress large amounts of data into a few important components. In some 

cases, PCA can be an excellent exploratory tool, since groups of highly correlated 𝑋’s will 

bear substantial weight in the same PC and we can detect groups of variables through 

the magnitude of their loadings (𝑣𝑖,𝑗’s). However, since PCs are linear combinations of all 

𝑋’s, this makes them nearly impossible to interpret when dealing with thousands of 

correlated 𝑋’s, as is common with high-dimensional toxicogenomics data. 
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 Sparse PCA is an extension to classical PCA that forces the loadings for some 𝑋’s 

to be exactly 0, creating sparse linear combinations in the form (for example) 

 

𝑍𝑖 = 𝑣𝑖,1𝑋1 + 𝑣𝑖,2𝑋2 + 0𝑋3 + ⋯+ 0𝑋𝑝−1 + 𝑣𝑖,𝑝𝑋𝑝,      𝑖 = 1,2, … ,min(𝑛, 𝑝), 

 

where now the 𝑣𝑖,𝑗’s that do not have much relation to a PC are removed. This results in 

a more interpretable set of PCs, having small groups of 𝑋’s (genes, for example) creating 

new variables to work with. This is objectively achieved through integrating constrained 

(sparse) regression methodology to the derivation of PCA. For example, finding classical 

PCA solutions through the singular value decomposition (SVD) 𝑿 = 𝑼𝑫𝑽′, where 𝑽 

holds all the loadings and 𝒁 = 𝑼𝑫 are the PCs,  Witten et al. 6 applied constraints to 

elements of 𝑽, shrinking some of them to 0. A so-called tuning parameter (λ) controls 

the number of loadings that are forced to 0, providing a flexible framework from which 

to obtain sparse PCs. As a trade-off for acquiring interpretable PCs by introducing 

sparseness, a proportion of the total information (variance) is lost. 

 Finally, sparse regression works in a similar way, in that the coefficients 

estimates (�̂�’s) of a regression model of the form 

 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + ⋯+ 𝛽𝑝−1𝑋𝑝−1 + 𝛽𝑝𝑋𝑝 + 𝜀, 

 

are constrained, shrinking a number of them, dictated by tuning parameters, directly to 

0. It has been integrated to many extensions of the linear model, such as generalized 

linear models, including binary logistic regression. 

 

Analysis Strategy: 

The novel component of our analysis strategy is the use of sparse PCA to 

automatically select groups of variables, however we suggest a more broad analysis 

pipeline as visualized in Figure 1.  
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Figure 1: A visual of our analysis strategy applied to human in vitro, high dose, 8 hour 

sampling time data. We begin in the top row (1-a), by conducting a Differentially 

Expressed Genes (DEGs) analysis on the gene expression matrix; columns represent the 

93 samples (40 ‘most’ and 53 ‘less or no’ DILI concern), rows represent 1000 expressed 

genes. This returns a list of top DEGs (1-b); the genes that are most significantly 

associated with DILI concern. We then move to the middle row (2-a), using sparse PCA on 

the same gene expression matrix to obtain new sparse principal component (PC) 

variables (2-b) to work with; columns for this new data matrix again represent the 93 

samples, but rows represent the 93 new sparse PC variables (we have reduced the 

dimension from 1000 to 93). Then, we conduct a Differentially Expressed PCs (DEPCs) 

analysis on the PC expression matrix to obtain a list of top DEPCs (2-c); the sparse PCs 

that are most significantly associated with DILI concern. At this point, we examine the 

genes that contribute to these DEPCs to makes sense of what the structures mean and 

make note of those genes in these structures that were also identified as differentially 

expressed in the DEGs analysis. As a final validation step (3-a), we apply sparse 

regression to the same 93 sparse PC variables to identify a concise list of sparse PCs that 

are potentially related to DILI concern (3-b). 

 

We implemented this analysis for each of the 16 subsets of the TGP data we considered 

but refer only to the human in vitro, high dose level, 8 hour gene expression sampling 
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time subset while explaining the steps in detail. All analysis was conducted with R 

statistical software (version 3.0.1).12 

Step 1: Identify genes independently associated with DILI concern with a 

Differentially Expressed Gene (DEG) analysis: This step can be visualized with 1-a and 1-b 

in Figure 1. Starting with the 1000 most variable genes, we first investigated if any genes 

are independently associated with DILI concern. Instead of using the two independent 

samples t-test for each gene, we used the moderated t-test 13 from the R package 

‘limma’ 14 which yields more conservative p-values; without this correction, when 

conducting many tests, suspiciously small standard errors can inflate test statistics. We 

obtained ‘moderated t’ test statistics with associated p-values and claimed that genes 

with p-value < 0.05 were significantly associated with DILI concern. Additionally, using 

‘limma’, we obtained q-values (p-values adjusted to account for false-discovery rates) 
15,16 to eliminate genes likely to be claimed falsely significant due to conducting multiple 

tests. With this list of differentially expressed genes likely to be independently 

associated with DILI concern, we moved to search for more complex relationships 

between the gene expression data and DILI concern. 

Step 2: Identify groups of genes jointly associated with DILI concern using sparse 

PCA and a Differentially Expressed Principal Component (DEPC) analysis: This step can be 

visualized with 2-a, 2-b, and 2-c in Figure 1. Starting with the 1000 most variable genes, 

we used the sparse PCA method by Witten et al. 6 executed with the R package ‘PMA’ 17, 

to obtain sparse principal component variables. We chose this sparse PCA method over 

certain other formulations 5,7 as a result from our previous work 18 that found it to 

perform better in computer simulations with high-dimensional data. For each of a range 

of tuning parameters (λ = 2, 3, 5, 7, 10, 15), we ran sparse PCA and examined the trade-

off between adjusted percentage explained variance 18 and sparseness among PCs with 

the goal to select a tuning parameter that delivered principal components with 

extremely sparse loading vectors while keeping a large proportion of variance. We chose 

tuning parameter λ = 3 because while compared to λ = 5, 7, 10, and 15 it resulted in 

loading vectors that were drastically more sparse at a small cost of information loss and 

loading vectors were almost as sparse as those from λ = 2 while comparatively keeping a 

substantial amount of information. Additionally, and important from a practical view, 

this delivered small and interpretable linear combinations so we could look at the 

principal components in clear detail. We then statistically tested associations between 

each sparse PC variable and DILI concern using a permutation approach claiming sparse 

PCs with p-values < 0.05 to be significantly associated with DILI concern. With this list of 

‘differentially expressed’ sparse PCs (DEPCs) likely to be independently associated with 
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DILI concern, we then recorded and examined the genes that made up the PCs along 

with their respective loadings in the PC linear combination. 

Step 3: Validate DEPCs with Sparse Regression: This step can be visualized with 3-

a and 3-b in Figure 1. We simultaneously entered the sparse principal component 

variables into a binary logistic regression model framework with DILI concern as the 

outcome, where the coefficient estimates were obtained with sparse regression 

methodology; penalized maximum likelihood with a least absolute shrinkage and 

selection operator (LASSO) penalty 8 with tuning parameter selected via a cross 

validation procedure that maintains good prediction from the model, executed with the 

R package ‘glmnet’.19 From this sparse regression model, we obtained the list of sparse 

PC variables that remained, expecting overlap with the list of sparse PCs identified to be 

significantly related to DILI concern in Step 2, then recorded and examined the genes 

and loadings in these PCs. Sparse PCs found both in Step 2 and Step 3 were deemed to 

be most likely to be associated with DILI concern. 

 

2.3. Results 

We now present the results from our analysis strategy, reporting details on the 

human in vitro, high dose, 8 hour gene expression sampling time subset but also 

including summaries of findings for the other 15 subsets. 

Of the 1000 genes, 54 had significantly different expression between ‘most’ and 

‘less or no’ DILI concern samples, according to the moderated t tests with p-value < 0.05. 

Table 1 displays their gene names, effect size, and associated p-values.  

 

Table 1: Differentially expressed genes (DEGs; independently associated with DILI 

concern) from our analysis of the human in vitro, high dose, 8 hour gene expression 

sampling time subset. *Difference in Means is ‘most’ – ‘less or no’ DILI concern; a positive 

value indicates a larger gene expression value for the most DILI concern group. **p 

indicates the p-value obtained from the moderated t test. 

Rank Gene Name Diff. in Means* p** Rank Gene Name Diff in means* p** 

1 SNAPC1 0.228 0.0001 28 TNFRSF1B -0.096 0.0263 

2 TSLP 0.221 0.0005 29 BBS12 0.109 0.0268 

3 ANKRD1 0.277 0.0027 30 FKBP5 -0.155 0.0271 

4 FHL2 0.191 0.0050 31 MIR22HG -0.189 0.0273 

5 CTH 0.126 0.0055 32 FSTL1 -0.156 0.0280 

6 HEXIM1 -0.178 0.0057 33 POR -0.088 0.0282 

7 NFIL3 0.195 0.0076 34 TUFT1 0.153 0.0289 
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8 ETS1 0.117 0.0078 35 LPIN2 -0.098 0.0304 

9 MIR3682 -0.130 0.0090 36 RBMXL1 -0.092 0.0306 

10 TUBE1 0.157 0.0098 37 CEBPD -0.124 0.0330 

11 BLNK 0.147 0.0117 38 EXT1 0.106 0.0331 

12 CIDEC -0.095 0.0132 39 SLC7A5 0.122 0.0336 

13 HAS3 -0.092 0.0134 40 LMCD1 0.187 0.0337 

14 ANGPTL4 -0.401 0.0163 41 ERBB3 -0.107 0.0352 

15 ELL2 -0.093 0.0173 42 PDLIM5 0.066 0.0352 

16 SRSF6 -0.104 0.0179 43 PDK4 -0.138 0.0352 

17 INHBE 0.197 0.0190 44 MT1F 0.072 0.0361 

18 TXNIP -0.137 0.0202 45 GEM 0.206 0.0378 

19 F3 0.240 0.0205 46 RBMX -0.111 0.0380 

20 FOXA1 -0.134 0.0209 47 ZBTB43 0.127 0.0381 

21 MTHFD2 0.173 0.0218 48 HHEX -0.139 0.0385 

22 SLC25A20 -0.125 0.0220 49 TMEM158 0.074 0.0439 

23 HSD17B2 -0.136 0.0240 50 ASNS 0.110 0.0446 

24 FOXQ1 -0.134 0.0242 51 ATP8B1 0.095 0.0458 

25 DUSP6 -0.125 0.0244 52 TNFAIP3 0.147 0.0464 

26 CHAC1 0.125 0.0258 53 C11orf96 0.124 0.0474 

27 SERTAD2 0.141 0.0261 54 RTP3 0.106 0.0496 

 

 

None of these 54 genes remained statistically significant when using the FDR-

adjusted p-value (q-value) with cut-off q < 0.10. Table 2 displays counts of the number of 

DEGs found in each of the 16 subsets we analyzed.   

 

Table 2: Counts of DEGs across all 16 subsets analysed. The total number of DEGs, along 

with the number of those that are up-regulated (‘most DILI concern’ has larger gene 

expression than ‘less or no DILI concern’) in brackets and those that are down-regulated 

in square brackets. * ‘s.Dose’ means rats received only a single dose of drug. ** ‘r.Dose’ 

means rats received repeated doses over time. 

Data  

Source 

Dose  

Level 

Gene 

Expression 

Sampling Time 

# genes p < 0.05 (mod. 

t) 

Total (up-reg) [down-

reg] 

# genes q < 0.10 

(FDR) 

Total 

Human In Vitro High 8 hour 54 (29) [25] 0 

Human In Vitro High 24 hour 26 (12) [14] 0 
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Human In Vitro Middle 8 hour 74 (32) [42] 0 

Human In Vitro Middle 24 hour 2 (2) [0] 0 

Rat In Vitro High 8 hour 29 (8) [21] 0 

Rat In Vitro High 24 hour 153 (1) [152] 17 

Rat In Vitro Middle 8 hour 42 (39) [3] 0 

Rat In Vitro Middle 24 hour 34 (20) [14] 0 

Rat In Vivo 

(s.Dose*) 

High 9 hour 53 (36) [17] 0 

Rat In Vivo (s.Dose) High 24 hour 82 (49) [33] 0 

Rat In Vivo (s.Dose) Middle 9 hour 228 (193) [35] 202 

Rat In Vivo (s.Dose) Middle 24 hour 140 (133) [7] 5 

Rat In Vivo 

(r.Dose**) 

High 15 day 50 (27) [23] 0 

Rat In Vivo (r.Dose) High 29 day 108 (21) [87] 1 

Rat In Vivo (r.Dose) Middle 15 day 53 (31) [22] 0 

Rat In Vivo (r.Dose) Middle 29 day 103 (69) [34] 0 

 

 

The rat in vivo samples receiving single dose at middle dose levels with gene expression 

measured at 9 hours had a notably large amount of DEGs compared to the rest; 228 with 

202 remaining statistically significant after the more strict FDR-adjustment. 

Applying sparse PCA with tuning parameter λ=3 to the gene expression data, we 

obtained the 93 (min (𝑛 = 93, 𝑝 = 1000)) sparse principal components. The minimum, 

median, and maximum number of genes that contributed to a sparse principal 

component with non-zero loadings was 11, 18, and 33, respectively. Compared to 

classical PCA, which would return principal components built from all 1000 genes, this is 

a substantial amount of sparseness and, therefore, interpretability gained. As a sacrifice 

for simplifying the data in this way, we lost 29.97% of total variance (information) 

contained in the original 1000 genes. Considering that sparse PCA simplified our focus to 

a median of just 18 (1.8% of the 1000) genes per component, therefore giving us groups 

of genes to explore, and reduced our analysis burden from 1000 gene tests to 93 

principal component tests, we consider this a massive gain for a comparably small loss. 

Similar data reduction statistics were observed for the remaining 15 subsets. 

Of the 93 sparse principal component variables, 5 had significantly different 

cumulative expression values between ‘most’ and ‘less or no’ DILI concern samples, 

according to the permutation test with p < 0.05. Table 3 provides a summary of these 
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DEPCs, including p-values, a list of contributing genes, and how many of the contributing 

genes were found in the DEG analysis. 

 

Table 3: Differentially expressed PCs (DEPCs; associated with DILI concern) from our 

analysis of the human in vitro, high dose, 8 hour gene expression sampling time subset. 

Also provided are counts of probesets that contribute to respective PCs, along with the 

number that were individually associated with DILI concern (DEGs) and gene names. p-

values were obtained from permutation tests. 

 

PC 

 

p-value 

# of contributing 

probesets 

(# that are DEGs) 

 

Contributing genes in order of absolute loading value 

PC49 0.0074 12 (1) 
ZBTB16, FLVCR2, TNS3, ASB13, MLPH, CUX2, FKBP5, 

SHROOM3, PANK1, TGFBR2, MYLK, ORC6 

PC15 0.0213 16 (0) 

PCK1, ID1, RRAGC, HSPA1B, SOWAHC, NPC1, PLEKHB2, 

RNF19B, STX3, CCNE2, KANSL1, PIM3, FNIP2, GNA13, 

OTUD1, IRS2 

PC13 0.0310 13 (8) 
DDIT4, MTHFD2, FGF21, DDIT3, INHBE, TRIB3, TUBE1, 

HSPA13, CHAC1, SLC7A5, TSLP, ASNS, CTH 

PC7 0.0382 15 (2) 
NUAK2, F3, C8orf4, ENC1, EDN1, CCL2, LMCD1, PLK2, 

G0S2, KRT7, C1orf63, TRIM6, FILIP1L, THBS1, FASTKD3 

PC72 0.0389 18 (3) 

SLC40A1,  SNAI2,  KRCC1,  IRS2,  LPIN2,  CYP1A1,  CBLB,  

BCL6,  HMGB2,  CEBPD,  ERBB3,  HECA,  RB1CC1,  GNA13,  

EFNA1,  TBC1D8,  C6orf203 

 

 

Figure 2 provides a visual representation of the top 3 of these PCs, showing the 

different types of groups of genes that are associated with DILI concern, in terms of size 

and composition. 
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Figure 2: A visual display for the top 3 differentially expressed (most associated with DILI 

concern) sparse principal components (DEPCs) from our analysis of the human in vitro, 

high dose, 8 hour gene expression sampling time subset. Larger central circles represent 

the principal components. Attached to each are the genes that form the linear 

combinations; probesets (gene names) and loading values are inside the outer circles. 

Shaded circles represent genes that were found to be independently associated with DILI 

concern (DEGs), whereas non-shaded circles contain genes that were not. PC15 might 

bring forth a network of transcriptomic material that is associated with DILI concern, not 

otherwise being found with more simple statistical tests. PC13 shows us that some 

marginally associated genes behave similarly. 
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PC49 consists predominantly of probesets (genes), 7704_at (ZBTB16), 55640_at 

(FLVCR2), 64759_at (TNS3), and 79754_at (ASB13), with lesser contribution from eight 

more correlated genes, meaning these may have a joint relationship with drug toxicity. 

One of these eight, 2289_at (FKBP5), was identified as significantly associated with DILI 

concern in the DEG analysis. PC15 is a slightly larger network comprised entirely of 

genes which were not identified in the DEG analysis, meaning these genes might only be 

identified when accumulated into a composite variable like this sparse principal 

component. PC15 is driven by probesets (genes) 5105_at (PCK1), 3397_at (ID1), and 

64121_at (RRAGC). In contrast, 8 out of 13 genes influencing PC13 had independent 

associations with DILI concern. Its top 4 weighted probesets (genes), 54541_at (DDIT4), 

10797_at (MTHFD2), 26291_at (FGF21), and 1649_at (DDIT3), had only one DEG, 

meaning these genes are likely related to drug toxicity although they did not 

independently surface. Table 4 reports the number of sparse PCs that were significantly 

related to DILI concern across all 16 subsets of data we analyzed.  

 

Table 4: Counts of DEPCs across all 16 subsets analysed. The total number of DEPCs, 

along with the number of those which are up-regulated (‘most DILI concern’ has larger 

PC cumulative expression values than ‘Less or No DILI concern’) in brackets and those 

which are down-regulated in square brackets. * ‘s.Dose’ means rats received only a 

single dose of drug. ** ‘r.Dose’ means rats received repeated doses over time. 

Data  

Source 

Dose  

Level 

Gene Expression 

Sampling Time 

# PCs p < 0.05 (perm.) 

Total (up-reg) [down-reg] 

Human In Vitro High 8 hour 5 (3) [2] 

Human In Vitro High 24 hour 1 (1) [0] 

Human In Vitro Middle 8 hour 12 (8) [4] 

Human In Vitro Middle 24 hour 0 (0) [0] 

Rat In Vitro High 8 hour 2 (2) [0] 

Rat In Vitro High 24 hour 18 (8) [10] 

Rat In Vitro Middle 8 hour 3 (1) [2] 

Rat In Vitro Middle 24 hour 2 (1) [1] 

Rat In Vivo (s.Dose*) High 9 hour 3 (1) [2] 

Rat In Vivo (s.Dose) High 24 hour 5 (3) [2] 

Rat In Vivo (s.Dose) Middle 9 hour 15 (5) [10] 

Rat In Vivo (s.Dose) Middle 24 hour 19 (12) [7] 

Rat In Vivo (r.Dose**) High 15 day 6 (4) [2] 

Rat In Vivo (r.Dose) High 29 day 12 (6) [6] 

Rat In Vivo (r.Dose) Middle 15 day 6 (3) [3] 
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Rat In Vivo (r.Dose) Middle 29 day 12 (5) [7] 

 

 

Lastly, sparse regression was used to narrow down a more concise list of DEPCs. 

Entering the 93 sparse PCs, the model selected PC49 and PC15. These are the top 2 

sparse PCs we identified to be most significantly associated with human DILI concern in 

the DEPCs analysis, bringing some statistical validation to these findings. 

 

2.4. Discussion 

In this paper, we identified sparse PCs that are differentially expressed between 

groups of ‘most’ and ‘less or no’ DILI concern, providing small networks of genes for 

further study in relation to drug toxicity. Apart from being able to investigate groups of 

variables, there are several components that make sparse PCA attractive. Since the 

number of principal components returned is min (𝑛, 𝑝) (i.e., minimum of 𝑛 samples and 

𝑝 variables), it will always reduce the number of variables to analyze when applied to 

high-dimensional (𝑛 < p) data. This is greatly beneficial for 𝑛 ≪ p data, as we observed 

with the TGP dataset; reducing from 1000 to 93 tests. By reducing the dimensional 

complexity of the analysis this strategy also reduces the burden of multiple testing, but it 

does not eradicate the issue and necessary adjustments should be made before 

concluding if PCs are statistically significant. In contrast to classical PCs, we argue that 

sparse PCs are interpretable since they are linear combinations consisting of small 

subsets of genes; however biological context is still required to interpret their values. 

Built from gene expression data, the sparse PCs in this paper are weighted sums of gene 

expression values, meaning they can be interpreted as accumulated gene expression 

across the genes involved. Within the same PC, genes with loading values that have 

opposite signs are negatively correlated, giving additional insight into structures 

between genes in the same PC. Since our method returns composite variables, as 

opposed to simply reporting groups of similar genes as with cluster analysis 20, this 

allows for statistical testing of joint associations. Since PCA methods are unsupervised 

(meaning they are not informed by the outcome of interest, such as DILI concern), it is 

reasonable to expect to find PCs built exclusively from genes that are not differentially 

expressed. Any of these types of group structures that are found to be associated with 

the variable of interest potentially offer a brand new source of transcriptomic material 

for researchers to explore. PC15 in our analysis of the TGP data is example of this. 

We have some cautionary notes regarding the selection of tuning parameters 

when using sparse PCA to simplify data in search of groups of genes, as it can have major 
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effects on characteristics of the sparse principal components obtained. By choosing λ=3, 

for example, we committed to identifying groups of genes of a specific size; a median of 

18 genes contributed to building the sparse principal components we obtained. For the 

purpose of demonstrating immense sparseness, this tuning parameter was a good 

choice. However, perhaps the true transcriptomic structure underlying the TGP gene 

expression data involves hundreds of correlated genes expressing similarly and as such, 

perhaps choosing a less sparse tuning parameter would more accurately capture this 

truth. This subjective choice of tuning parameter is analogous to restricting the number 

of clusters, k, in the k-means clustering algorithm. Prediction-based cross-validation 

methods are available to guide the choice of tuning parameters 6 and are typically the 

default methods built into packages 17. Bonner 18 suggested to visually inspect the 

variance-covariance structure of data to observe blocking of variables (genes), but this 

strategy has yet to be tested with rigour or under realistic data conditions. 

The analysis strategy we proposed is a practical way to explore multivariate 

patterns in large genomic data and suggest if they are worth pursuing. Sparse 

methodology has many extensions to a variety of data analysis situations and it has 

potential to benefit research in toxicogenomics. 
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Chapter 3 

  

3. EVALUATION OF SPARSE CCA FOR HIGH-DIMENSIONAL DATA 

 

Context 

My second project is in the form of a manuscript that will be submitted to a peer-

reviewed journal. The work presented in this manuscript includes extensive simulation 

experiments that compare many sparse CCA methods and a real data analysis to 

showcase the best performing methods. The work was jointly motivated by my 

experiences with toxicogenomic data from my first project and my understanding of the 

current state of the literature for sparse CCA. 

The TGP database that I used in my first project (Chapter 2) had more data types 

than I originally analyzed. In addition to the human DILI concern variable and gene 

expression data, the TGP database included measurements for conventional toxicology 

assessments on rat liver samples.66 Integrating this domain of data to the analysis could 

give additional insight into the relationships between genes and drug toxicity. However, 

since it consisted of around 40 variables itself, this would involve finding complex 

relationships between two sets of variables. Considering the natural relationship 

between PCA and CCA, I decided to investigate sparse CCA in more detail and planned to 

apply it to the toxicogenomic database. 

Several sparse CCA had been published but there did not seem to be compelling 

evidence as to which was more accurate under realistic data conditions. The simulations 

accompanying methods development, with rare exception, tended to be smaller in scale 

or not representative of relationship structures apparent in the toxicogenomic data I 

was dealing with; groups of genes. Before applying sparse PCA to the toxicogenomic 

data in Chapter 2, I had previously conducted a simulation study comparing three sparse 

PCA methods, which gave me confidence in selecting a method that would provide 

accurate results. That simulation work aided me to design a new simulation to compare 

sparse CCA approaches.73 

After reviewing the literature for sparse CCA methods, I came across a method 

by Wilms and Croux, 2015.52 Although they conducted simulation experiments to test 

their sparse CCA method against popular competitors, they included extremely sparse 

solutions which were not indicative of the data prevalent in many genomic applications, 

including toxicogenomic data. Nevertheless, the structure of their simulation design, 

along with my previous experience with sparse PCA simulations, provided a good basis 
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for me to begin my simulation experiments comparing sparse CCA methods. Details of 

my work are included in the manuscript. 

I have prepared a manuscript including my work and plan to submit it to a peer-

reviewed journal. After this page, I include our manuscript. Please note that 

mathematical notation in this manuscript has been simplified to reflect use of only the 

first canonical components of sparse CCA. Notation is fully described within the contents 

of the manuscript. 

 

MANUSCRIPT BEGINS ON THE NEXT PAGE… 
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Abstract 

Background: Many sparse canonical correlation analysis (sparse CCA) methods have 

been proposed in recent years. Each aims to detect and interpret multivariate 

relationships between high-dimensional ‘omic’ data domains, potentially elucidating the 

biological mechanisms underpinning complex traits and disease. However, how the 

methods perform relative to one another – which one is best – remains unclear. 

Methods: We designed simulation experiments to compare the performance (bias, true 

positive rate, true negative rate, overall sparsity) of several sparse CCA methods. 

Simulated data were informed by real pathology and gene expression data from a 

toxicogenomic database. Sparse CCA methods that demonstrated the best simulation 

performance were applied to the real data to estimate cross-correlated features 

between domains. 

Results: The sparse CCA methods differed markedly in terms of performance. One 

method was superior to the rest in a majority of data settings, though not optimal across 

all the evaluated categories. As such, we applied complimentary sparse CCA methods to 

the toxicogenomic data to estimate cross-correlation and detect cross-correlated 

features between data domains. 

Conclusion: Sparse CCA methods differ significantly in performance depending on the 

data structure. Our findings from simulations will provide guidance in practical 

applications and facilitate optimal analysis and interpretation. 
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3.1. Introduction 

Phenotypes are often influenced by a complex system of biological, environmental, and 

genetic factors. As a result, studies of phenotypes such as cancer, neurodevelopmental 

disorders, and drug toxicity are measuring and searching through multiple domains of 

diverse data and, with ongoing advances in technology, it is common for each to hold 

thousands of variables on the same subjects or samples. Multivariate statistical methods 

are now required to efficiently and accurately explore, describe, and infer about the 

mechanisms underlying these phenotypes. 

 Canonical correlation analysis (CCA) is a classic multivariate statistical method 

used to estimate correlation between two sets of variables.1 It does so by constructing 

linear combinations from each set that are maximally correlated. However, conventional 

CCA has poor estimation properties and returns biologically unrealistic, uninterpretable 

relationships when applied to high-dimensional data, and mathematically breaks down 

(because of singularity) when the number of variables from any dataset exceeds the 

number of samples (i.e., 𝑝1 𝑜𝑟 𝑝2 > 𝑛).2 

In recent years, several extensions to CCA have been developed to overcome 

these pitfalls, promising a new way to find multivariate relationships between large data 

domains, even when 𝑝1 𝑜𝑟 𝑝2 > 𝑛.3 In particular, sparse regression techniques4,5 have 

been fused into the CCA framework via penalty functions to create sparse CCA methods. 

Sparse CCA has superior estimation properties and, by exceling at variable selection, 

estimates interpretable models involving sparse subsets of the large number of 

variables, offering new and multivariate insights into how biological domains 

interact.2,6,7 

These tools have gained popularity in imaging genetics8–10, having been used to 

explore biological mechanisms underpinning neurologic disorders such as 

schizophrenia11, Alzheimer’s disease9, and several others12, as well as in cancer 

research13 and other conditions such as tuberculosis and malaria.14 The method has also 

been used to explore a pharmacogenomics study of gemcitabine therapy.15 The area of 

toxicogenomics is particularly in need of multivariate integrative methods. As such, the 

Japanese Toxicogenomics Project (TGP)16,17, Innomed PredTox18, and Drug Matrix19, 

three of the largest toxicogenomic databases in the world, have been made publicly 

available to promote data mining with novel statistical analysis methods in hopes to 

uncover genetic knowledge regarding drug toxicity.17 

With a multitude of sparse CCA variants emerging over the past decade and 

increasing demand for integrative applications, it is important to compare the 

performance of sparse CCA methods under different data conditions. As well, since 
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sparse CCA methods currently have few strategies for inference, simulations should be 

guided by real data and tethered to applications in order to instill confidence in the 

results. 

In this paper, we compare the performance of several sparse CCA methods for 

extracting groups of cross-correlated variables from high-dimensional data. Performance 

criteria include bias, true positive rate, true negative rate, and overall sparsity of the 

canonical vectors. We use real data from the publicly available Japanese Toxicogenomic 

Project (TGP) database to guide our simulations. We then apply the best performing 

methods to extract rich drug toxicity information from the database. Collections of 

biomarkers are extracted, potentially leading to new screening tools for future drugs. 

Differences between the sparse CCA methods are highlighted to provide readers 

directions regarding which is best to use, under what scenarios. 

 

3.2. Motivating data and sparse CCA description 

 

3.2.1. The Japanese Toxicogenomic Project (TGP) data 

We used data from the Japanese Toxicogenomics Project (TGP) 16 that were summarized 

and provided by the 2013 Conference on the Critical Assessment of Massive Data 

Analysis (CAMDA; http://dokuwiki.bioinf.jku.at/doku.php). The toxicogenomic data 

include pathology (hematology, biochemistry) and gene expression measurements taken 

from liver or kidney samples at different time points after exposure to different doses of 

over 170 drugs. The TGP database was made publicly available for investigators to apply 

advanced analysis tactics and discover relationships between genomic data, 

conventional toxicity parameters, and clinical endpoints (e.g., drug-induced damage to 

the liver or kidney).17 For a full description of the TGP dataset, along with the data 

processing steps we used, we refer the reader to the Appendix. 

Our specific data setup involves 40 continuous pathology variables (𝕏1) and 1000 

continuous gene expression variables (𝕏2) measured on 𝑛 = 226 rat liver samples, of 

which 96 had been exposed to a drug having increased concern for drug-induced liver 

injury (DILI; “Most DILI concern”) and the remaining 130 had been exposed to a drug 

having less to no concern for causing DILI (“Less or no DILI concern”). 

Figures 1a and 1b show images of the cross-correlation within and between data 

domains using all samples. To aid in identifying correlation structure, we reordered 

variables based on cluster membership, obtained from using a complete linkage 

hierarchical clustering algorithm.20 These visuals suggest that strong, multivariate 

correlations exist between pathology and gene expression variables. This exploration 

http://dokuwiki.bioinf.jku.at/doku.php
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motivates us to estimate multivariate correlation between data domains using sparse 

CCA. 

 

 
Figure 1: a) Correlation matrix between and across pathology and gene expression 

variables for our data (left). b) Cross-correlation matrix between pathology and gene 

expression variables. The grey sidebars are aligned with pathology variables and the 

green sidebars are aligned with gene expression variables. Darker colors represent 

stronger correlation. Variables have been ordered based on complete linkage 

hierarchical clustering. 

 

3.2.2. Sparse CCA 

Sparse CCA is a flexible multivariate tool that can estimate complex multivariate 

relationships such as those that appear to be present in the TGP data. In this paper, we 

tested and utilized several sparse CCA methods to estimate relationships between 

pathology and gene expression data domains. In this section, we briefly describe the 

general mathematical infrastructure of sparse CCA including inputs, outputs, tuning 

parameter selection, and statistical inference. 

Given 𝕏1 is an 𝑛 × 𝑝1 matrix of data (e.g., pathology variables) and 𝕏2 an 𝑛 × 𝑝2 

matrix of data (e.g., gene expression), the sample version of sparse CCA seeks to find a 

𝑝1 × 1 vector 𝒘1 = (𝑤11, 𝑤12, … , 𝑤1𝑝1
)′ and a 𝑝2 × 1 vector 𝒘2 = (𝑤11, 𝑤12, … , 𝑤1𝑝2

)′, 

which create linear combination variables 𝕏1𝒘1 and 𝕏2𝒘2 that are maximally 

correlated. The precise objective is to maximize correlation 𝜌12 = 𝐶𝑜𝑟𝑟(𝕏1𝒘1, 𝕏2𝒘2) 

over all possible choices of 𝒘1 and 𝒘2, subject to constraints that introduce sparsity. 

The individual weights, 𝑤1𝑗1, 𝑗1 = 1,… , 𝑝1 and 𝑤2𝑗2, 𝑗2 = 1,… , 𝑝2, often referred to as 
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loadings, reflect the contribution of each variable to the correlation, with a larger 

magnitude reflecting a larger contribution. 

The general objective function for the maximum correlation can be written as  

 

maximize
𝒘1,𝒘2

{
𝒘1�̂�12𝒘2

√𝒘1�̂�11𝒘1√𝒘2�̂�22𝒘2

},  

 

subject to the constraints 

‖𝒘1‖2
2 = 1, ‖𝒘2‖2

2 = 1 

and 

𝑃1(𝒘1) ≤ 𝑡1, 𝑃2(𝒘2) ≤ 𝑡2. 

 

In the objective function, �̂�11 and �̂�22 represent the sample covariance matrices for 𝕏1 

and 𝕏2, respectively, and �̂�12 is the sample cross-covariance matrix between 𝕏1 and 𝕏2. 

The first pair of constraints simply equates the sum of squared loading values to 1, 

because solutions are invariant to scaling; the operator ‖. ‖𝑚 denotes the 𝐿𝑚-norm. The 

second pair of constraints involves the penalty functions, 𝑃1 and 𝑃2 with tuning 

parameters, 𝑡1 and 𝑡2, which together are the defining features of sparse CCA. There are 

a number of penalty functions available 5 including classic choices such as the ‘ridge’ 21, 

least absolute shrinkage and selection operator (LASSO) 4, and elastic net 22, all of which 

aim to enable estimation under the 𝑝1, 𝑝2 < 𝑛 scenario and introduce sparsity to the 

estimated canonical (loading) vectors, preventing extraneous variables from 

contributing to the canonical variates. The level of sparsity is influenced by the users’ 

choice of tuning parameters, for which there are many approaches, including a variety of 

grid-search and cross-validation methods.  

Solving the above objective function returns the first pair of estimated canonical 

vectors �̂�1 and �̂�2, which are used to calculate the first pair of estimated canonical 

variates 𝕏1�̂�1 and 𝕏2�̂�2 (the linear combinations), with estimated canonical correlation 

�̂�12. Subsequent pairs of canonical vectors that correspond to having the second, third, 

and so on, maximum correlation can be obtained by using deflated matrices. 7. Several 

methods can provide the full set of canonical components (correlations, vectors), 

including solving eigenvector equations 23 or a singular value decomposition 6, as well as 

alternating regression procedures 24–27 and other means.28 

The choice of penalty function, approach to select tuning parameters, and 

method to obtain solutions all contribute to defining a sparse CCA method. In this paper 

we adapt the work from Wilms and Croux 29 and compare the performance of several 
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sparse CCA methods. We use traditional CCA 1 (which we denote by trcca); ridge CCA by 

Vinod et al., 1976 21 with tuning parameters selected via cross-validation maximizing 

test-sample canonical correlation (ridge.cv); sparse CCA by Parkhomenko et al., 2009 6 

with tuning parameters selected via cross-validation maximizing test-sample canonical 

correlation (parkh.cv); sparse CCA by Witten et al., 2009 7 with tuning parameters 

selected via a permutation method described by the authors (witte.au) or via cross-

validation maximizing test-sample canonical correlation (witte.cv); and sparse CCA by 

Wilms & Croux, 2015 29 with tuning parameter minimizing Bayes’ Information Criterion 

(wilms.au) or via cross-validation maximizing test-sample canonical correlation 

(wilms.cv). Details for each method can be found in the original papers. As initiated by 

Wilms & Croux, the consistent cross-validation approach (suffix .cv) allows fair 

comparison between CCA methods, but for this paper, we are primarily interested in 

finding the optimal combination of tuning parameter selection method and CCA method 

for accurately estimating multivariate correlation. 

Analysis is performed in the R statistical package and all codes are freely 

available as supplementary materials. They include modified versions of codes produced 

by Wilms and Croux, 2015 as well as additional functions to aid in the simulations and to 

facilitate graphical presentations. 

 

3.3. Simulations  

In this section, we describe the simulation design and the methods for performance 

evaluation, followed by results and conclusions regarding which methods are most 

appropriate for applications involving high-dimensional data, similar to that of the TGP 

data analyzed and presented in this paper. 

 

3.3.1. Simulation design 

Our general simulation strategy consists of five steps: 

 

1. Define true data structure by specifying values for the parameters 𝑛, 𝑝1, 𝑝2, Σ. 

2. Calculate the true canonical vectors and true canonical correlations using the 

true covariance matrix Σ. 

3. Generate 1000 pairs of data [𝕏1
𝑟 , 𝕏2

𝑟], for 𝑟 = 1,… ,1000.  

4. Apply sparse CCA to each of the 1000 pairs of data to calculate estimated 

canonical vectors and canonical correlations, using the estimated covariance 

matrices. 
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5. Evaluate the performance of the different sparse CCA methods by comparing 

estimated and true outputs. 

 

In step 1, to define simulated data structure, we first explored the TGP data and set the 

parameter values so as our simulated data mimics the structure of the TGP data. We 

used scenarios with 𝑝1 = 40 and 𝑝2 = 1000 variables in simulations, and varied sample 

size 𝑛 = 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 300, 500, 1000 to cover a range of 

high-dimensionality. For the covariance structure, we used the estimated covariance 

structure from the TGP data (presented in Figures 1a and 1b), as well as covariance 

estimates from selected dose-time subgroups to allow variations in the covariance 

structure of the simulated data. Instead of using the exact estimated covariance 

matrices for Σ in our simulations, we used simplified, sparse covariance structures to 

represent the underlying structure. 

The structures presented in Figures 1a and 1b reveal blocks of correlated 

variables in both data domains 𝕏1 and 𝕏2, and varying degrees of correlation between 

domains. As such, in our simulations, we assumed a block-diagonal covariance structure 

for each data domain, and assumed variables within those correlated groups were cross-

correlated between domains. The specific formulation of Σ we used is 

 

Σ = [
Σ11 Σ12

Σ21 Σ22
] 

 

where Σ11 is the 𝑝1 × 𝑝1 = 40 × 40 covariance matrix for variables from 𝕏1, Σ22 is the 

𝑝2 × 𝑝2 = 1000 × 1000 covariance matrix for variables from 𝕏2, and Σ12 = Σ21
𝑇  is the 

𝑝1 × 𝑝2 = 40 × 1000 cross-covariance matrix between 𝕏1 and 𝕏2. We defined  

 

Σ11 =

[
 
 
 
 
Σ11,1 𝟎 … 𝟎 𝟎

𝟎 Σ11,2 … 𝟎 𝟎
⋮ ⋮ ⋱ ⋮ ⋮
𝟎 𝟎 … Σ11,𝑀 𝟎

𝟎 𝟎 … 𝟎 Σ11,𝑒]
 
 
 
 

, Σ22 =

[
 
 
 
 
Σ22,1 𝟎 … 𝟎 𝟎

𝟎 Σ22,2 … 𝟎 𝟎
⋮ ⋮ ⋱ ⋮ ⋮
𝟎 𝟎 … Σ22,𝑀 𝟎

𝟎 𝟎 … 𝟎 Σ22,𝑒]
 
 
 
 

, 

 

where we set 𝑀 to be the number of groups of variables that are cross-correlated 

between 𝕏1 and 𝕏2. Our simulation design allows group sizes 𝑝1,𝑚 (𝑚 = 1,… ,𝑀) and 

𝑝2,𝑚 (𝑚 = 1,… ,𝑀) to vary and 𝑝1,𝑒 = 𝑝1 − ∑ 𝑝1,𝑚
𝑀
𝑚=1  and 𝑝2,𝑒 = 𝑝2 − ∑ 𝑝2,𝑚

𝑀
𝑚=1  

denote the number of uncorrelated ‘noise’ variables for the corresponding data 

domains. 
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These group sizes are the dimensions for the corresponding covariance blocks 

which are defined simply as 

 

Σ11,𝑚 = 𝜎11,𝑚
2

[
 
 
 

1 𝑐11,𝑚 … 𝑐11,𝑚

𝑐11,𝑚 1 … 𝑐11,𝑚

⋮ ⋮ ⋱ ⋮
𝑐11,𝑚 𝑐11,𝑚 … 1 ]

 
 
 
, Σ22,𝑚 = 𝜎22,𝑚

2

[
 
 
 

1 𝑐22,𝑚 … 𝑐22,𝑚

𝑐22,𝑚 1 … 𝑐22,𝑚

⋮ ⋮ ⋱ ⋮
𝑐22,𝑚 𝑐22,𝑚 … 1 ]

 
 
 
, 

 

where 𝜎11,𝑚
2  is the common variance and 𝑐11,𝑚 is the common correlation shared by 

variables in the 𝑚th group in 𝕏1 (𝜎22,𝑚
2  and 𝑐11,𝑚 for 𝕏2). The ungrouped ‘noise’ variables 

have Σ11,𝑒 = 𝜎11,𝑒
2 𝑰, Σ22,𝑒 = 𝜎22,𝑒

2 𝑰. We define the cross-covariance matrix between 𝕏1 

and 𝕏2 as 

 

Σ12 = Σ21
𝑇 =

[
 
 
 
 
Σ12,1 𝟎 … 𝟎 𝟎

𝟎 Σ12,2 … 𝟎 𝟎

⋮ ⋮ ⋱ ⋮ ⋮
𝟎 𝟎 … Σ12,𝑀 𝟎

𝟎 𝟎 … 𝟎 𝟎]
 
 
 
 

 

with 

Σ12,𝑚 = 𝜎11,𝑚𝜎22,𝑚𝑐12,𝑚𝟏𝑝1,𝑚,𝑝2,𝑚
, 

 

where 𝟏𝑎,𝑏 is a matrix of 1’s with dimensions 𝑎 × 𝑏. This means we have assumed that 

for each pair of correlated groups, all pairwise correlations between groups are equal. 

Table 1 lists the parameters used to define Σ as well as specific choice of values 

used in the simulation, which are used to generate various scenarios. We included one 

low-dimensional scenario (Scenario s = 1) and four high-dimensional scenarios (Scenario 

s = 2, 3, 4, 5). The low-dimensional scenario was included to show performance on a 

smaller scale, but is of lesser importance. For each high-dimensional scenario, we fixed 

𝑝1 = 40 and 𝑝2 = 1000 and chose different combinations of group size and correlation 

to reflect the TGP data. The designed correlation matrices for these high-dimensional 

scenarios are presented in Figure 2.  

 

*** Table 1 APPROXIMATELY HERE *** 
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Table 1: Simulation scenarios used. 
Scenario (s) 𝑀 𝑝1,1, 𝑝1,𝑒 𝜎11,1

2 , 𝜎11,𝑒
2  𝑐11,1, 𝑐11,𝑀 𝑝2,1, 𝑝2,𝑒  𝜎22,1

2 , 𝜎22,𝑒
2  𝑐22,1, 𝑐22,𝑀 𝑐12,1, 𝑐12,𝑀 

1 (Low-dimensional) 1 5, 5 10, 5 0.5, 0 10, 10 10, 5 0.5, 0 0.5, 0 

2 (Primary) 1 10, 30 10, 5 0.5, 0 100, 900 10, 5 0.5, 0 0.5, 0 
3 (Smaller group size) 1 5, 35 10, 5 0.5, 0 50, 950 10, 5 0.5, 0 0.5, 0 
4 (Less cross-corr) 1 10, 30 10, 5 0.5, 0 100, 900 10, 5 0.5, 0 0.4, 0 
5 (Both) 1 5, 35 10, 5 0.5, 0 50, 950 10, 5 0.5, 0 0.4, 0 

 

*** Figure 2 APPROXIMATELY HERE *** 

 

 
Figure 2: Correlation matrices designed for our simulation study. 

 

Each scenario had 𝑀 = 1 group and the same distribution of group variances, 

which seemed reasonable given most covariance images showed two groups and the 

core objective function for sparse CCA involves correlation, not covariance. For each 

scenario, we tried all 13 sample sizes from our design. 
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In step 2, to obtain true canonical components, we compute the singular value 

decomposition of 𝐾 = Σ11
−1/2

Σ12Σ22
−1/2

= 𝑼𝑫𝑽𝑇, where 𝑼 = [𝒖1, 𝒖2, … , 𝒖𝑀] and 

𝑽 = [𝒗1, 𝒗2, … , 𝒗𝑀] are the left and right singular vectors of 𝐾 and 𝑫 = 𝑑𝑖𝑎𝑔(𝒅) =

𝑑𝑖𝑎𝑔([𝑑1, 𝑑2, … , 𝑑𝑀]𝑇) are the singular values of 𝐾. These relate to the quantities of 

interest from CCA. The true canonical vectors are 𝑾1 = Σ11
−1/2

𝑼 = [𝒘1,1, 𝒘1,2, … ,𝒘1,𝑀]  

and 𝑾2 = Σ22
−1/2

𝑽 = [𝒘2,1, 𝒘2,2, … ,𝒘2,𝑀], and the true canonical correlations are 

𝝆12 = 𝒅 = [𝜌12,1, 𝜌12,2, … , 𝜌12,𝑀]. This notation accommodates subsequent canonical 

components, but we simply investigated the first set: 𝒘1 = 𝒘1,1, 𝒘2 = 𝒘2,1, and 

𝜌12 = 𝜌12,1. After obtaining 𝑾1 and 𝑾2 we scaled each canonical vector 𝒘1,𝑚 by its 

magnitude ‖𝒘1,𝑚‖ to achieve the CCA condition ‖𝒘1,𝑚‖
2

2
= 1 for all 𝑚 = 1,… ,𝑀 (same 

for 𝒘2,𝑚). 

In step 3, we generated the 𝑛 samples from a multivariate normal distribution 

with mean 𝝁 = 𝟎 and covariance Σ. For step 4, we applied each of the CCA methods 

(trcca, ridge.cv, parkh.cv, witte.au, witte.cv, wilms.au, wilms.cv) to each of the 𝑅 sets 

of data using functions we adapted from code made available by Wilms and Croux, 

2015.29 The tuning parameter ranges we supplied to the tuning parameter selection 

processes are presented in Table 2. We chose ranges that spanned the possible tuning 

parameter space (as many levels of sparsity as possible), to allow the tuning parameter 

selection process to objectively choose which of the methods resulted in the best fit to 

the data. 

 

*** Table 2 APPROXIMATELY HERE *** 

 

Table 2: Tuning parameter ranges used. For some methods, we used a two-stage grid 

search to speed up the selection process. 

Method Tuning parameter Stage 1 range  Stage 2 resolution 

trcca NA NA NA 

ridge.cv ridge parameter 0.001, 0.25, 0.50, 0.75, 1 None 

parkh.cv soft-threshold 0, 0.02, 0.04, …, 2 None 

witte.au lasso proportion of OLS 0, 0.05, 0.10, …, 1 0.01 

witte.cv lasso proportion of OLS 0, 0.05, 0.10, …, 1 0.01 

wilms.au lasso proportion of OLS 0, 0.05, 0.10, …, 1 0.01 

wilms.cv lasso proportion of OLS 0, 0.05, 0.10, …, 1 0.01 

 

Ideally, for a grid of tuning parameters, this would mean extremely high resolution. To 

minimize computation time, where practical, we integrated a two-stage tuning 
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parameter selection process. For example, for Witten et al., 2009, we covered the full 

theoretical range of tuning parameters with 0.05 granularity, using (0, 0.05, 0.10,…, 0.95, 

1) in the first stage, followed by a second search with resolution of 0.01 around 

whichever tuning parameter was selected from the first stage. Notably, we used less 

granular range for ridge.cv, because it had much longer computation times than the 

other methods and, since it does not result in sparsity, which is of secondary importance 

in this paper. Other parameters for the methods, such as convergence thresholds and 

the maximum number of iterations until convergence were set to code defaults. 

For each CCA method we extracted the estimated canonical correlations and 

estimated canonical vectors, along with additional summaries to assist with 

performance evaluation. 

In step 5, we summarized the results across simulation iterations and compared 

them to the designed truth. We assessed the performance of the methods using several 

criteria. For canonical correlations we tracked bias (BIAS) and for canonical vectors we 

tracked the true positive rate (TPR), being the proportion of the 𝑝1,𝑚 (and 𝑝2,𝑚) truly 

cross-correlated variables that were correctly estimated to have non-zero contribution 

in 𝒘1,𝑚 (and 𝒘2,𝑚); true negative rate (TNR), being the proportion of the 𝑝1 − 𝑝1,𝑚 (and 

𝑝2 − 𝑝2,𝑚) truly not cross-correlated variables that were correctly estimated to have 

zero contribution in 𝒘1,𝑚 (and 𝒘2,𝑚); and total number of non-zeros (NNZ) for an 

indicator of overall sparsity. 

 

3.3.2. Simulation Results 

All simulation results for first canonical components are summarized numerically and 

visually in Figures 3 and 4a through 5c. Each figure contains a grid of cells, where each 

cell contains a numerically summarized performance measure, in each case the average, 

across the 1000 simulation iterations corresponding to a simulation scenario (row of the 

grid) and CCA method (column of the grid). We include Scenario 1 but focus 

interpretation on high-dimensional scenarios because application to high-dimensional 

data is the goal in this paper. 

 Figure 3 reports the mean bias found while estimating canonical correlation for 

the first pair of canonical variates. All methods seem to overestimate canonical 

correlation (i.e., positive bias) in scenarios with lower sample sizes. As sample size 

approaches 1000, most methods appear to become unbiased, with parkh.cv and 

witte.cv realizing this asset sooner than wilms.au and wilms.cv. The witte.au method 

begins to underestimate canonical correlation at the larger sample sizes. Judging 
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performance entirely based on bias of the canonical correlation, it appears reasonable 

to suggest that the methods perform similarly, with a slight preference to parkh.cv. 

  

*** Figure 3 APPROXIMATELY HERE *** 

 

 
Figure 3: A presentation of simulation results pertaining to bias of canonical correlation 

values from the first set of canonical variates (in the cells) across simulation scenarios 
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(rows) and CCA methods (columns). Column 1 contains the ideal value of bias, which is 0. 

All other cells contain a mean bias across R=1000 simulation runs for the scenario and 

CCA method corresponding to the cells’ location. The color scale is used to assist reading 

the table, with white being the ideal case where bias is 0, and cells closer to red 

corresponding to more (positive or negative) bias.  

  

Next we consider summaries of accuracy for the first pair of canonical vectors, 

where accuracy is measured by TPR and TNR. Figures 4a and 4b reports the TPR and 

TNR, respectively, of 𝒘1; the first canonical vector for the smaller set of data 𝕏1 

(mimicking pathology data). To compliment these results, we report overall sparsity 

(NNZ) in Figure 4c. The ideal TPR and TNR values are 1, but the ideal NNZ value depends 

on the simulation scenarios we designed. 

 

*** Figure 4a APPROXIMATELY HERE *** 

 

*** Figure 4b APPROXIMATELY HERE *** 

 

*** Figure 4c APPROXIMATELY HERE *** 

  

Overall, we would recommend the parkh.cv method for applying to data of 

similar structure to our simulation scenarios. Compared to the other methods, it was 

relatively unbiased in estimating canonical correlation and quickly obtained perfect TPR 

as sample size increased, accepting only a small proportion of variables that were not 

truly cross-correlated. It also has a practical benefit in being the fastest method to 

execute. However, at sample sizes 𝑛 ≥ 200, we recommend wilms.au, especially for 

lower cross-correlations. At very large sample sizes of 𝑛 ≥ 1000, wilms.cv could be used 

as well. 
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Figure 4a: A presentation of simulation results: the true positive rate (TPR) of the first 

canonical vector for 𝕏1 (in the cells), across simulation scenarios (rows) and CCA 

methods (columns). Column 1 contains the ideal value of TPR, which is 1. All other cells 

contain a mean TPR across R=1000 simulation runs for the scenario and CCA method 

corresponding to the cells’ location. The color scale is used to assist reading the table, 

with white being the ideal case where TPR is 1, and cells closer to red corresponding to 

reduced TPR.   
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Figure 4b: A presentation of simulation results: the true negative rate (TNR) of the first 

canonical vector for 𝕏1 (in the cells), across simulation scenarios (rows) and CCA 

methods (columns). Column 1 contains the ideal value of TNR, which is 1. All other cells 

contain a mean TNR across R=1000 simulation runs for the scenario and CCA method 

corresponding to the cells’ location. The color scale is used to assist reading the table, 

with white being the ideal case where TNR is 1, and cells closer to red corresponding to 

reduced TNR.  
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Figure 4c: A presentation of simulation results: the number of non-zero values (NNZ), or 

overall sparsity, in the first canonical vector for 𝕏1 (in the cells), across simulation 

scenarios (rows) and CCA methods (columns). Column 1 contains the ideal value of NNZ, 

which is the designed group size corresponding to the simulation scenario; see Table 1. 

All other cells contain a mean NNZ across R=1000 simulation runs for the scenario and 

CCA method corresponding to the cells’ location. No color has been used here. 

 

 Now we examine the accuracy results for 𝒘2; the first canonical vector for 𝕏2, 

the larger set of data (mimicking gene expression). Figure 5a, 5b, and 5c present the 
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TPR, TNR, and NNZ, respectively. For the most part, relative performance of the 

methods is the same as it was when comparing estimation accuracy of 𝒘1. However, the 

larger number of 𝑝2 = 1000 variables emphasized some challenges. 

 

*** Figure 5a APPROXIMATELY HERE *** 

 

*** Figure 5b APPROXIMATELY HERE *** 

 

*** Figure 5c APPROXIMATELY HERE *** 

  

Overall, for the higher-dimensional data 𝕏2 (mimicking gene expression), 

considering all sample sizes, parkh.cv would be the most trustworthy. It was able to 

capture almost all important variables while imposing a moderate level of sparsity, 

eliminating a minimum of 71% of the 1000 variables that were truly not cross-

correlated. At larger sample sizes and higher correlations (𝑠 = 2,3; 𝑛 ≥ 200), both 

wilms.au and wilms.cv were able to pick out between 38% and 55% of the important 

variables without including any unimportant variables, which could supply 

complimentary information to the somewhat under-sparse parkh.cv method. 

 Finally, since estimation for 𝒘1 and 𝒘2 is handled simultaneously with these 

methods, we need to select methods that work well with estimating both. For this 

reason, we ultimately choose parkh.cv to guide our analysis of the TGP data, using the 

strictly sparse wilms.au as a complimentary method to strengthen our conclusions 

regarding which variables are cross-correlated. The wilms.cv method would be suitable 

to include if we had 𝑛 ≥ 1000 samples. 
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Figure 5a: A presentation of simulation results: the true positive rate (TPR) of the first 

canonical vector for 𝕏2 (in the cells), across simulation scenarios (rows) and CCA 

methods (columns). Column 1 contains the ideal value of TPR, which is 1. All other cells 

contain a mean TPR across R=1000 simulation runs for the scenario and CCA method 

corresponding to the cells’ location. The color scale is used to assist reading the table, 

with white being the ideal case where TPR is 1, and cells closer to red corresponding to 

reduced TPR.  
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Figure 5b: A presentation of simulation results: the true negative rate (TNR) of the first 

canonical vector for 𝕏2 (in the cells), across simulation scenarios (rows) and CCA 

methods (columns). Column 1 contains the ideal value of TNR, which is 1. All other cells 

contain a mean TNR across R=1000 simulation runs for the scenario and CCA method 

corresponding to the cells’ location. The color scale is used to assist reading the table, 

with white being the ideal case where TNR is 1, and cells closer to red corresponding to 

reduced TNR.  
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Figure 5c: A presentation of simulation results: the number of non-zero values (NNZ), or 

overall sparsity, in the first canonical vector for 𝕏2 (in the cells), across simulation 

scenarios (rows) and CCA methods (columns). Column 1 contains the ideal value of NNZ, 

which is the designed group size corresponding to the simulation scenario; see Table 1. 

All other cells contain a mean NNZ across R=1000 simulation runs for the scenario and 

CCA method corresponding to the cells’ location. No color has been used here. 

 

3.4. Real data analysis 

In this section, we describe our analysis for the real TGP data and present results. We 

conduct two analysis strategies involving sparse CCA to tackle different research 
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questions regarding the relationship between toxicity and gene expression. The first one 

involves applying sparse CCA to the full data, and the second involves applying sparse 

CCA to data split by the FDA drug label DILI concern; once for “Most” and once for “Less 

or no” DILI concern. For each analysis strategy, guided by findings from our simulation 

experiments, we use parkh.cv as the primary sparse CCA method, using wilms.au as 

secondary method to highlight the most likely variables to be truly cross-correlated. 

 

Analysis strategy 1 

Our first sparse CCA strategy aims to estimate the overall association between 

conventional toxicity variables and gene expression, regardless of type of drug. We run 

sparse CCA analyses on the full dataset involving all 𝑛 = 226 samples, and observe 

strength of canonical correlation as well as which variables are cross-correlated. 

From the 40 pathology variables and 1000 gene expression variables, the 

parkh.cv method retained 27 pathology variables and 27 genes, with estimated 

canonical correlation 0.821. The wilms.au method, which we learned from our 

simulation experiments to be over sparse in a number of data scenarios, estimated the 

maximal correlation to exist between just 1 pathology variable, “platelet count”, and 1 

gene, “A2m: alpha-2-macroblobulin”, with estimated canonical correlation 0.768. These 

two variables had the highest estimated loading values in the canonical vectors from 

parkh.cv. Figure 6 depicts the sparsely estimated cross-correlation between the 

pathology variables and genes. Table A1 in the Appendix shows exact loading values for 

the first pair of estimated canonical vectors from applying the parkh.cv sparse CCA 

method on the TGP data. 

 

*** Figure 6 APPROXIMATELY HERE *** 
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Figure 6: A visualization of the first pair of canonical vectors estimated by the parkh.cv 

sparse CCA method. Variable names are listed around the circumference of the circular 

plot; grey variable names are from the pathology data and green variable names are 

genes. The estimated canonical correlation is presented in the middle. Lines have been 

drawn from the center of the plot to those variables which were estimated to have non-

zero contribution in the canonical variates. The loading values are represented by the 

transparency of the lines; darkest when |𝑤.𝑗| = 1 and invisible when |𝑤.𝑗| = 0. 
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Analysis strategy  

Our second sparse CCA strategy aims to estimate toxicity-gene associations 

found for drugs of “Most DILI concern” and for drugs of “Less or no DILI concern”, and 

find commonalities and differences between the results. We accomplish this by running 

two sparse CCA analyses; one for samples that had received a “Most DILI concern” drug 

and one for samples that had received a “Less or no DILI concern” drug. We then 

observe which conventional toxicity variables (𝕏1) and gene expression variables (𝕏2) 

are estimated to be cross-correlated (loading non-zero) for both levels of DILI concern, 

as well as those variables that are estimated to be cross-correlated in only one level of 

DILI concern. The most interesting variables will be those that are cross-correlated for 

“Most DILI concern” samples but not for “Less or no DILI concern” samples, since they 

will potentially strongly discriminate drugs that will unexpectedly harm humans from 

those that will perform safely. 

The sparse CCA methods returned different results across levels of DILI concern. 

The  parkh.cv method estimated a canonical correlation of 0.790 between 18 toxicity 

variables and all 1000 genes for samples subjected to drugs of most DILI concern and 

estimated a canonical correlation of 0.858 between all 40 toxicity variables and 41 genes 

for samples subjected to drugs of less or no DILI concern. The wilms.au method 

estimated a canonical correlation of 0.641 for just 1 pathology variable, “aspartate 

aminotransferase”, and 1 gene, “Cyp17a1: cytochrome P450, family 17, subfamily a, 

polypeptide 1”, for samples subjected to drugs of most DILI concern and estimated a 

canonical correlation of 0.799 between just 1 toxicity variable, “platelet count”, and 1 

gene, “A2m: alpha-2-macroblobulin”, for samples subjected to drugs of less or no DILI 

concern. Figure 7 depicts the estimated cross-correlation between the pathology 

variables and genes for both subsets. Tables A2 and A3 in the Appendix show the 

estimated loadings from the parkh.cv method for most DILI concern and less to no DILI 

concern, respectively.  

 

*** Figure 7 APPROXIMATELY HERE *** 
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Figure 7: A visualization of the first pair of canonical vectors estimated by the parkh.cv 

sparse CCA method for most DILI concern samples (left) and less or no DILI concern 

samples (right). Variable names are listed around the circumference of the circular plots; 

grey variable names are from the pathology data and green variable names are genes. 

The estimated canonical correlation is presented in the middle. Lines have been drawn 

from the center of the plot to those variables which were estimated to have non-zero 

contribution in the canonical variates. The loading values are represented by the 

transparency of the lines; darkest when |𝑤.𝑗| = 1 and invisible when |𝑤.𝑗| = 0. 

 

3.5. Discussion: 

In this paper, we conducted extensive simulations to evaluate and compare 

performances of various sparse CCA methods, with a focus on high dimensional data. 

The results from our simulations demonstrate that both the methodology used to solve 

the sparse CCA optimization problem and the criteria used to select tuning parameters 

can greatly affect the performance of a sparse CCA method. The performance of the 

methods we compared also differed with respect to strength of correlation and sample 

size, while group size was a less influential factor. Our findings indicate that the parkh.cv 

method performs well relative to witte and wilms methods, and the aggressively sparse 

wilms.au could be used to flag variables that are highly likely to be cross-correlated. 

Our study has several strengths. First, we modeled the data in our simulation 

experiments based on real data from a toxicogenomic study, and hence making the 

scenarios relevant in practical applications. This, therefore, improves upon proof-of-

concept simulations that are typically conducted alongside newly-developed methods. 
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For example, the newer methods by Wilms & Croux, 2015 used synthetic designs 

involving only a handful of cross-correlated variables that had no group structure. Using 

real data to inform our simulations allowed us to choose methods that performed best 

for the application at hand.  

Second, by using and improving upon code by Wilms & Croux, we compared the 

relative performance of a variety of methods, including a standard approach to tuning 

parameter selection; cross-validation to maximize test-sample canonical correlation. 

This allowed a fair comparison of sparse CCA methods, but also highlighted the influence 

of tuning parameter selection approach. Third, where appropriate, we implemented and 

provided a two-stage grid search for tuning parameter selection, which can cut down 

run times by a large factor. Finally, we demonstrated use of multivariate methods in the 

field of toxicogenomics; a field in need of advanced techniques to maximize the return 

on investment for long-standing research projects. 17,18 

Several improvements could be made to our simulations. First, the sparse CCA 

methods we considered in this paper are not exhaustive. We included two of the original 

methods being that they are easily accessible through readily available code.6,7 This is 

because we wanted to bring light to what is most likely to be used in practical 

applications. We included the newer approaches by Wilms & Croux, 2015, because the 

authors showed promising results in their simulations and provided a nice set of codes 

to build upon. Other methods and approaches to selecting tuning parameters could 

have been added. For instance, both Lin et al., 2013 11,30 and Wang et al., 2014 31 

developed methods involving a group-LASSO penalty 32,33 to better select groups of 

correlated features from each domain together. This improvement could be beneficial to 

data similar to the toxicogenomic data we used in this paper, where genes are highly 

correlated. Second, our simulations are restricted to assessing the accuracy of the first 

canonical variates. Although most simulation work to date has adopted this restriction, 

in application it is valuable to look beyond the first canonical variates because there can 

obviously be second, third, and so forth, cross-correlated groups of variables. 

Computation power is a limiting factor, as well as the fact that orthogonality between 

subsequent canonical variates is usually forfeited with the onset of sparsity constraints. 

Finally, we could expand the range of simulation scenarios to incorporate a high-

dimensional 𝕏1 alongside 𝕏2. 

Dedicated simulation work involving sparse CCA has been conducted and 

presented by other researchers. Chalise et al., 2012, 34 compared a variety of penalty 

functions infused to the sparse CCA formulation by Parkhomenko et al., 2009. From the 

results in their study, they suggested the use of the smoothly clipped absolute deviation 
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(SCAD) penalty 35 with an additional Bayesian information criterion (BIC) filter. 36. 

Considering we found the parkh.cv method to perform best in our simulations, we 

recommend exploring the adaptation suggested by Chalise et al., 2012. Grellman et al., 

2015 37 compared the performance of sparse CCA by Witten et al., 2009 7 with other 

multivariate feature selection methods, including partial least squares (PLS) variants, for 

high-dimensional, multi-collinear data, with the motivating context of prediction in 

neuroimaging genetic studies. 

Finally, we would like to highlight that sparse CCA methodology has been shown 

to vary widely in performance, and hence we suggest that simulation experiments, when 

computationally feasible, should preface every instance of application. The framework 

and codes designed in this paper may assist future researchers in executing this 

somewhat challenging task. 
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Appendix: 

 

Data description: 

In this section, we provide a brief description of the toxicogenomics database motivating 

our methods, along with the subset of data we analyzed in this paper. 

 

The Japanese Toxicogenomic Project (TGP) database 

The TGP was a joint collaboration between the National Institute of Biomedical 

Innovation (NIBIO), the National Institute of Health Sciences (NIHS), and 18 

pharmaceutical companies starting in 2002.1–3 The TGP initiative produced a massive 

toxicogenomics database containing quantitative hematology, biochemistry, and gene 

expression measurements, alongside histopathology assessments from pathology 

images. Measurements were taken from liver or kidney samples at different time points 

after exposing rat in vivo, rat in vitro, and human in vitro experimental units to different 

doses of over 170 drugs. The database has been made publicly available 

(http://toxico.nibiohn.go.jp/english/) via the Open Toxicogenomics Project-Genomics 

Assisted Toxicity Evaluation Systems (TG-GATEs). For full details regarding the TGP, we 

refer the reader to.2,3 

 

Subset of TGP data analyzed in this paper 

We used data summarized and provided by the 2013 Conference on the Critical 

Assessment of Massive Data Analysis (CAMDA). The TGP data from CAMDA can be 

obtained here: http://dokuwiki.bioinf.jku.at/doku.php/contest_dataset. The CAMDA 

competition also linked a classification of human drug-induced liver injury (DILI) concern 

for drugs that had been assessed by the Food and Drug Administration (FDA).4 These 

drugs had been on the market for over 10 years, and were attributed a class of “most”, 

“less”, or “no” DILI concern, based on FDA-approved drug labels. This classification 

offers critical insight into the toxicity of drugs in the human population. In the following 

paragraphs, we describe our specific choices regarding the samples and variables from 

the TGP database. 

Samples: We considered only liver samples from rat in vivo repeated dose 

experiments. These samples had both conventional toxicity assessment data 

(hematology, biochemistry, liver weight) measurements and gene expression data; we 

excluded samples that were missing data from either one of these domains. 

Furthermore, appreciating that higher doses result in more robust measurements of 

gene expression,5 we considered only those samples that received a middle or high dose 

http://toxico.nibiohn.go.jp/english/
http://dokuwiki.bioinf.jku.at/doku.php/contest_dataset
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of drug. We also considered only those samples that had measurements taken at 15 day 

or 29 day time points, anticipating that longer exposure times would generate data 

more concordant with situations where humans would experience toxicity (i.e., 

repeated doses, prolonged exposure). Finally, we only considered samples that had 

received a drug with a FDA human DILI concern classification. 

Variables: There were three data domains – conventional toxicology assessment 

variables, gene expression variables, and a single human drug-induced liver injury (DILI) 

concern variable. 

Conventional toxicology assessment (pathology) variables: We considered all 

hematology assessment parameters (16 variables), all biochemical parameters (21 

variables), and all liver weight measurements (3 variables) in tandem as one data 

domain containing 40 conventional toxicology assessment variables. All variables were 

continuous by nature and we centered and scaled each. 

Gene expression variables: Gene expression data had been measured with 

Affymetrix GeneChip® RAE 230A 2.0 Array technology. We used the replicate-collapsed 

gene expression data that had undergone batch-correction and Factor Analysis for 

Robust Microarray Summarization (FARMS) [REF: Hochreiter2006], as performed by the 

CAMDA organizers. A total of 12088 gene expression variables were available, annotated 

with unique gene names. We kept only those gene expression variables that had an 

informative/non-informative call value less than 0.5, indicating the variable is likely to 

offer more signal than noise.6 This unsupervised filtering technique is extended from the 

FARMS method and has been shown to be a successful dimension reduction tool.6 

Finally, we excluded variables with low variability across samples, keeping only the top 

1000 variables based on their inter-quartile range. 

Human DILI concern variable: We used a binary version of the three-class human 

DILI concern variable. The variable originally consisted of class labels: “most…”, “less…”, 

or “no human DILI concern”. However, we combined the class labels “less…” and “no 

human DILI concern” because for each analysis we planned to perform, there were 

seldom enough samples that received a drug labeled “no human DILI concern” to 

reliably incorporate and measure the impact of this distinction. 

 

Final data considered for analysis 

In summary, the final data we used for analysis contained 𝑛 = 226 rat liver samples, 

each having been subjected, in vivo, to repeated high or moderate doses of a drug for 

either 15 days or 29 days. Each sample had measurements from 𝑝1 = 40 conventional 
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toxicology assessment variables and 𝑝2 = 1000 gene expression variables, as well as a 

human DILI concern classification for the drug it was subjected to. 

 

Data visualization 

Figures A1 shows an image (heatmap) of the pathology data. Variables are 

displayed across the columns, with the grey sidebar indicating pathology variables. 

Samples are displayed across the rows; the red sidebar spans samples that received a 

drug classified as “Most DILI concern” and the blue sidebar spans samples that received 

a drug classified as “Less or no DILI concern”.  

 

*** Figure A1 APPROXIMATELY HERE *** 

 

 
Figure A1: An image of pathology data for samples from our primary dataset. The data 

has been scaled. The range of the data was [-6.07, 14.31] but the color scale range was 

set to [-14.31, 14.31] to ensure data coloring was centered at 0 (white). 
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Figure A2 shows an image of the gene expression data. The image is organized 

similarly, but with the green sidebar indicating the variables are gene expression and the 

color scale now covering the gene expression data range. 

 

*** Figure A2 APPROXIMATELY HERE *** 

 

 
Figure A2: An image of the gene expression data for samples from our primary set of 

samples. The range of the data was [-5.16, 4.9] but the color scale range was set to [-

5.16, 5.16] to ensure data coloring was centered at 0 (white). 
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Full Interpretation from Simulation Results:  

Interpretation of estimation accuracy for canonical vector from 𝕏1 (Figures 4a, 4b, 4c): 

As expected, with a TPR of 1 and TNR of 0, both non-sparse methods, trcca and 

ridge.cv, capture all truly cross-correlated variables but fail to exclude any variables that 

were truly not cross-correlated. The parkh.cv method was very successful, with a perfect 

or near-perfect TPR for all sample sizes under both the primary scenario (𝑠 = 2) and the 

smaller group scenario (𝑠 = 3). When strength of correlation was lowered (𝑠 = 4,5), it 

captured a minimum average of 87% (for 𝑛 = 30) truly cross-correlated variables from 

𝕏1 and perfect TPR with 𝑛 ≥ 200. The parkh.cv method also succeeded at eliminating 

variables that were unimportant to the cross-correlation in high-dimensional scenarios, 

with the smallest average TNR of 0.77 experienced when correlation was lowered (𝑠 =

4) and at 𝑛 = 30; for higher correlation (𝑠 = 2,3) as sample size increased, parkh.cv 

reached almost perfect TPR and TNR. The witte.cv method performed similarly to the 

parkh.cv method, but had slightly less TPR at lower sample sizes and, most importantly, 

was not as sparse as parkh.cv; witte.cv had between 0.12 and 0.26 less TNR than 

parkh.cv depending on the simulation scenario, with larger deficits at higher sample 

sizes (it did not get better as sample size increased, whereas parkh.cv did). 

The wilms.cv method also performed similarly to parkh.cv but with less TPR and, 

most importantly, a differing degree of TNR depending on the scenario. At lower sample 

sizes, wilms.cv had less TNR than parkh.cv, and lower than witte.cv, too. However, at 

larger samples sizes it approached the performance of parkh.cv, and even surpassed it 

in the presence of lower correlation (𝑠 = 4) when 𝑛 ≥ 100. The wilms.au method had 

either near-perfect or perfect 1 TNR across all scenarios, but was overly sparse at lower 

sample sizes, particularly in lower correlation scenarios (𝑠 = 4,5), with TPR as low as 

0.31. However, at larger sample sizes, wilms.au obtains near-perfect to perfect 1 TPR; 

𝑛 ≥ 200 for higher correlation scenarios (𝑠 = 2,3), 𝑛 > 500 for lower correlation 

scenarios (𝑠 = 4,5). Given its’ consistent specificity, wilms.au is likely the best 

performing method for large sample sizes. 

The witte.au method generally underperformed compared to the other 

methods. At higher cross-correlations (𝑠 = 2,3) it lost some truly cross-correlated 

variables with TPR ranging from 0.71 to 0.99 at the highest sample size, while failing to 

exclude a large number of variables that were designed not to be truly cross-correlated; 

evident from TNR values as low as 0.1 depending on sample size. For lower cross-

correlation (𝑠 = 4,5), similar to wilms.au, it became aggressively over-sparse. However, 
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contrary to what was experienced by wilms.au, witte.au did not enjoy the benefits of 

perfect TNR and did not improve as sample size increased. 

 

Interpretation of estimation accuracy for canonical vector from 𝕏2 (Figures 5a, 5b, 5c): 

The parkh.cv method again performs well, though with the larger number of 

variables experienced slightly reduced TPR and TNR. The witte.cv method was 

competitive with parkh.cv, but the larger number of variables increased its deficit in TPR 

and especially TNR (it was less sparse) relative to parkh.cv. The wilms.cv method was 

aggressively over-sparse, failing to capture as many as 84% truly cross-correlated 

variables from 𝕏2 (TPR of 0.16) across the simulation settings. Despite the over-sparse 

solutions, it only achieved perfect 1 TNR at the highest (𝑛 ≥ 500) of sample sizes. 

Interestingly, the TPR was not monotone increasing with sample size and the wilms.cv 

method performed worst at moderate sample sizes (e.g., 𝑛 = 100). The wilms.au 

method proved even more aggressive at reducing model complexity in the presence of 

higher-dimensional data. For example, in the primary simulation setting (𝑠 = 2), the 

wilms.au began by letting an average of only 10.2 variables in the canonical vector 

(TPR=0.1) with 𝑛 = 30 and increased to an average of 68 variables (TPR = 0.68) with 

𝑛 = 1000. However, with rare exception, the method only ever included variables that 

were designed to be important (TNR of 1). The witte.au method performed similarly 

poorly as it did for estimating 𝒘1.  

 

Tables from Real Data Analysis: 

 

Table A1: Variable names and loading values for the top canonical vector pair from the 

parkh.cv sparse CCA method used in Analysis 1. 

 Pathology Variable loading Gene Name Gene Description loading 

1 platelet count* 0.368 A2m* alpha-2-macroglobulin* 0.4083 

2 lymphocyte -0.3229 Lcn2 lipocalin 2 0.3931 

3 hemoglobin -0.3147 Lbp lipopolysaccharide 
binding protein 

0.3598 

4 reticulocyte 0.3133 LOC360228 WDNM1 homolog 0.3006 

5 hematocrit value -0.3059 S100a9 S100 calcium binding 
protein A9 

0.2792 

6 neutrophil 0.2979 Alox15 arachidonate 15-
lipoxygenase 

0.2458 

7 red blood cell count -0.2625 Stac3 SH3 and cysteine rich 
domain 3 

-0.2351 

8 total protein -0.2475 Serpina7 serpin peptidase 0.2106 
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inhibitor, clade A (alpha-1 
antiproteinase, 
antitrypsin), member 7 

9 fibrinogen 0.2434 Igfbp2 insulin-like growth factor 
binding protein 2 

0.2004 

10 terminal body weight -0.2019 Cxcl1 chemokine (C-X-C motif) 
ligand 1 (melanoma 
growth stimulating 
activity, alpha) 

0.1862 

11 gamma-
glutamyltranspeptidase 

0.1929 Spink3 serine peptidase 
inhibitor, Kazal type 3 

0.1599 

12 white blood cell count 0.1802 Dhrs7 dehydrogenase/reductase 
(SDR family) member 7 

-0.1456 

13 albumin -0.1513 Ddc dopa decarboxylase 
(aromatic L-amino acid 
decarboxylase) 

-0.1436 

14 mean corpuscular 
hemoglobin 
concentration 

-0.1486 Hamp hepcidin antimicrobial 
peptide 

-0.1103 

15 glucose -0.1063 Cyp3a9 cytochrome P450, family 
3, subfamily a, 
polypeptide 9 

-0.1068 

16 calcium -0.0944 Akr7a3 aldo-keto reductase 
family 7, member A3 
(aflatoxin aldehyde 
reductase) 

-0.1001 

17 relative liver weight 0.0572 Car3 carbonic anhydrase 3 -0.098 

18 total cholesterol 0.0546 Ces1f carboxylesterase 1F -0.0874 

19 monocyte 0.0542 Mettl7b methyltransferase like 7B -0.0833 

20 blood urea nitrogen 0.0422 Nupr1 nuclear protein, 
transcriptional regulator, 
1 

0.0778 

21 prothrombin time 0.0372 Igfbp1 insulin-like growth factor 
binding protein 1 

0.0686 

22 lactate dehydrogenase 0.0355 Gpt glutamic-pyruvate 
transaminase (alanine 
aminotransferase) 

-0.0672 

23 aspartate 
aminotransferase 

0.035 C5 complement component 
5 

0.0531 

24 direct bilirubin 0.0248 Oat ornithine 
aminotransferase 

-0.0333 

25 albumin globulin ratio -0.0156 Inmt indolethylamine N-
methyltransferase 

-0.0323 

26 mean corpuscular -0.0076 Stat3 signal transducer and 0.0264 
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hemoglobin activator of transcription 
3 (acute-phase response 
factor) 

27 phospholipid 0.0044 Insig2 insulin induced gene 2 -0.0061 

* Variables involved in the canonical vectors estimated by wilms.au 

 

Table A2: Variable names and loading values for the top canonical vector pair from the 

parkh.cv sparse CCA method used in Analysis 2, for rat liver samples receiving drugs of 

most DILI concern. The gene list is truncated to match the length of the pathology 

variable list; in reality, all genes were estimated to have non-zero loadings. 

 Pathology Variable loading Gene Name Gene Description loading 

1 terminal body weight -0.4727 Pla2g12a phospholipase A2, group 
XIIA 

0.0819 

2 lactate dehydrogenase 0.407 Ctsl1 cathepsin L1 0.0768 

3 aspartate 
aminotransferase* 

0.3812 Rbm3 RNA binding motif (RNP1, 
RRM) protein 3 

0.0741 

4 prothrombin time 0.3799 Pgcp plasma glutamate 
carboxypeptidase 

-0.072 

5 gamma-
glutamyltranspeptidase 

0.2559 Asl argininosuccinate lyase 0.0719 

6 calcium -0.2493 Pter phosphotriesterase 
related 

0.0717 

7 triglyceride -0.2292 Adipor2 adiponectin receptor 2 -0.0705 

8 blood urea nitrogen 0.1874 Afm afamin -0.0705 

9 liver weight -0.1424 Enpp2 ectonucleotide 
pyrophosphatase/ 
phosphodiesterase 2 

-0.0698 

10 chlorine 0.1336 Pygl phosphorylase, glycogen, 
liver 

-0.0689 

11 total protein -0.1295 Trim5 tripartite motif-
containing 5 

-0.0681 

12 lymphocyte -0.1211 Gucy1b2 guanylate cyclase 1, 
soluble, beta 2 

-0.0679 

13 neutrophil 0.1182 Cyp17a1* cytochrome P450, family 
17, subfamily a, 
polypeptide 1* 

0.0677 

14 mean corpuscular 
hemoglobin 

-0.0944 Gstm2 glutathione S-transferase 
mu 2 

-0.0674 

15 activated partial 
thromboplastin time 

0.0838 Slc4a4 solute carrier family 4, 
sodium bicarbonate 
cotransporter, member 4 

0.0674 

16 mean corpuscular -0.06 Rps5 ribosomal protein S5 0.0672 
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volume 

17 eosinophil -0.053 Abcb1a ATP-binding cassette, 
sub-family B (MDR/TAP), 
member 1A 

0.067 

18 total cholesterol 0.0131 LOC100360406 rCG34104-like 0.0661 

* Variables involved in the canonical vectors estimated by wilms.au 

 

Table A3: Variable names and loading values for the top canonical vector pair from the 

parkh.cv sparse CCA method used in Analysis 2, for rat liver samples receiving drugs of 

less or no DILI concern. 

 Pathology Variable loading Gene Name Gene Description loading 

1 platelet count* 0.304 A2m* alpha-2-macroglobulin* 0.3657 

2 hemoglobin -0.2908 Lcn2 lipocalin 2 0.3567 

3 hematocrit value -0.2898 Lbp lipopolysaccharide 
binding protein 

0.3266 

4 lymphocyte -0.2768 LOC360228 WDNM1 homolog 0.2929 

5 red blood cell count -0.2766 S100a9 S100 calcium binding 
protein A9 

0.2606 

6 reticulocyte 0.2765 Igfbp2 insulin-like growth factor 
binding protein 2 

0.2521 

7 neutrophil 0.2549 Cxcl1 chemokine (C-X-C motif) 
ligand 1 (melanoma 
growth stimulating 
activity, alpha) 

0.2203 

8 total protein -0.2329 Serpina7 serpin peptidase 
inhibitor, clade A (alpha-
1 antiproteinase, 
antitrypsin), member 7 

0.2172 

9 fibrinogen 0.226 Alox15 arachidonate 15-
lipoxygenase 

0.2166 

10 gamma-
glutamyltranspeptidas
e 

0.1947 Stac3 SH3 and cysteine rich 
domain 3 

-0.2038 

11 terminal body weight -0.1925 Spink3 serine peptidase 
inhibitor, Kazal type 3 

0.1539 

12 white blood cell count 0.1856 Ddc dopa decarboxylase 
(aromatic L-amino acid 
decarboxylase) 

-0.1478 

13 albumin -0.1694 Ces1f carboxylesterase 1F -0.1477 

14 glucose -0.1602 Dhrs7 dehydrogenase/reductas
e (SDR family) member 7 

-0.1458 

15 mean corpuscular -0.154 Cyp3a9 cytochrome P450, family -0.1389 
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hemoglobin 
concentration 

3, subfamily a, 
polypeptide 9 

16 calcium -0.1294 Car3 carbonic anhydrase 3 -0.1149 

17 monocyte 0.1098 Nupr1 nuclear protein, 
transcriptional regulator, 
1 

0.1088 

18 blood urea nitrogen 0.1066 Hamp hepcidin antimicrobial 
peptide 

-0.1022 

19 total cholesterol 0.0983 Igfbp1 insulin-like growth factor 
binding protein 1 

0.1018 

20 direct bilirubin 0.0931 C5 complement component 
5 

0.1003 

21 alkaline phosphatase -0.0911 Stat3 signal transducer and 
activator of transcription 
3 (acute-phase response 
factor) 

0.0995 

22 lactate dehydrogenase 0.0868 Inmt indolethylamine N-
methyltransferase 

-0.0925 

23 phospholipid 0.083 Akr7a3 aldo-keto reductase 
family 7, member A3 
(aflatoxin aldehyde 
reductase) 

-0.0885 

24 relative liver weight 0.0827 Oat ornithine 
aminotransferase 

-0.0877 

25 chlorine 0.0803 Insig2 insulin induced gene 2 -0.0831 

26 aspartate 
aminotransferase 

0.0801 Mettl7b methyltransferase like 
7B 

-0.0762 

27 albumin globulin ratio -0.0779 Hao2 hydroxyacid oxidase 2 
(long chain) 

-0.0683 

28 prothrombin time 0.0771 Hmox1 heme oxygenase 
(decycling) 1 

0.0675 

29 mean corpuscular 
hemoglobin 

-0.0767 Gpt glutamic-pyruvate 
transaminase (alanine 
aminotransferase) 

-0.0533 

30 potassium 0.0766 Me1 malic enzyme 1, 
NADP(+)-dependent, 
cytosolic 

-0.0441 

31 triglyceride 0.0737 Bdh1 3-hydroxybutyrate 
dehydrogenase, type 1 

-0.0431 

32 mean corpuscular 
volume 

0.0692 Cyp3a23/3a1 cytochrome P450, family 
3, subfamily a, 
polypeptide 
23/polypeptide 1 

-0.0394 

33 liver weight -0.0676 Fgl1 fibrinogen-like 1 0.0335 
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34 inorganic phosphorus 0.0586 Tnfrsf9 tumor necrosis factor 
receptor superfamily, 
member 9 

0.0312 

35 sodium -0.0583 Cd63 Cd63 molecule 0.0261 

36 total bilirubin 0.0404 RGD1307603 similar to hypothetical 
protein MGC37914 

-0.0112 

37 alanine 
aminotransferase 

0.0359 Mgll monoglyceride lipase -0.0075 

38 activated partial 
thromboplastin time 

0.0338 Igfals insulin-like growth factor 
binding protein, acid 
labile subunit 

-0.0052 

39 creatinine -0.0338 Ces1d carboxylesterase 1D -0.0049 

40 eosinophil -0.0087 Btg2 BTG family, member 2 0.004 

41   Rbm3 RNA binding motif 
(RNP1, RRM) protein 3 

0.0014 

* Variables involved in the canonical vectors estimated by wilms.au 
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Chapter 4 

 

4. EVALUATION OF BOOTSTRAPING FOR SPARSE CCA 

 

Context 

My third project is in the form of a manuscript that will be submitted to a peer-

reviewed journal. The work presented in this manuscript includes a rigorous simulation 

study that evaluates the performance of the non-parametric bootstrap approach at 

generating inferential measures for sparse CCA. The work was motivated by my 

understanding of the current state of the literature for sparse CCA and multivariate 

methods in general. 

 While reading methods and application papers, I noticed that reporting results 

from sparse CCA tended to consist of estimated canonical correlations and loading 

vectors, but no standard errors or confidence intervals. As well, there are limited tests of 

hypotheses available to judge the statistical significance of results from sparse CCA, as 

well as other multivariate methods.24,74 As I outline in my manuscript, only a few papers 

have included such measures of variation and tests.74–77 I decided to explore what 

inferential measures were available and potential strategies to bring more objective 

measures to the otherwise exploratory sparse CCA tools. 

I found a couple instances where authors used bootstrapping to create standard 

errors and confidence intervals for the canonical correlations and loading vectors.75,77 

However, they did not investigate the reliability of the bootstrapped measures, which is 

suspect in the presence of 𝑛 < 𝑝 data. I set forth to design and conduct simulation 

experiments to test the performance of the bootstrap approach to generate such 

measures for sparse CCA estimates. 

I have prepared a manuscript including my work and plan to submit to a peer-

reviewed journal. Starting on the next page, I include an MS Word formatted version of 

our manuscript. Please note that mathematical notation in this manuscript has been 

simplified to reflect use of only the first canonical components of sparse CCA. Notation is 

fully described within the contents of the manuscript. 

 

MANUSCRIPT BEGINS ON THE NEXT PAGE… 
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Abstract: 

Background: Sparse canonical correlation analysis (sparse CCA) excels at exploring 

complex relationships between multiple data domains, especially in situations involving 

high-dimensional data. However, certain limitations and methodological gaps do exist, 

where researchers face challenges in providing inferential measures related to strength 

of correlation between domains and in determining which variables are truly cross-

correlated. 

Methods: We considered the non-parametric bootstrap method and performed 

extensive simulations to investigate the performance of inferential measures for sparse 

CCA. Coverage probabilities of the bootstrapped confidence intervals for the canonical 

correlation coefficients were assessed for a range of high-dimensional data scenarios, 

varying sample sizes, number of variables, and strengths of correlations. Bootstrapped 

probabilities of each variable’s inclusion were calculated to aid in identifying cross-

correlated variables. 

Results: The performance of bootstrapped measures ranged, based primarily on 

strength of canonical correlation and sample size relative to number of variables. At 

moderate to high canonical correlation, and as sample size approaches the number of 

variables, the bootstrapped confidence intervals of the coefficients approached nominal 

coverage. However, coverage was severely lacking for small sample sizes and moderate 

to weak correlation. Variables determined to have the high probability of being cross-

correlated, as estimated by the bootstrap, had higher true-positive rate compared to 

those conventionally estimated to be cross-correlated with the sparse CCA method. 

Conclusion: Bootstrapping allows inferential statements regarding sparse CCA to be 

made, but reliability of bootstrapped measures can be suspect when derived using high-

dimensional data. Investigators using sparse CCA on data domains should consider 

adding bootstrapped inferential measures to strengthen their conclusions. 
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4.1. Introduction 

Detecting and characterizing complex relationships among massive sets of data is 

becoming a common goal for researchers. Recent papers in neuroimaging and cancer 

research tackled this challenging task of ‘cross-correlation’ using variants of the classic 

multivariate analysis tool canonical correlation analysis (CCA).1–4 

Given 𝑛 observations on 𝑝1 variables represented by 𝕏1 and 𝑝2 variables 

represented by 𝕏2, CCA finds a linear combination of variables from 𝕏1 and a linear 

combination of variables from 𝕏2 that are maximally correlated.5 The resulting linear 

combinations 𝕏1𝒘1 and 𝕏2𝒘2 are called canonical variables and the correlation 

between the two linear combinations is referred to as canonical correlation, denoted by 

𝜌12. The coefficient vectors 𝒘1 = (𝑤11, 𝑤12, … , 𝑤1𝑝1
)′ and 𝒘2 = (𝑤21, 𝑤22, … , 𝑤2𝑝2

)′ 

can be used to determine which variables contribute to the multivariate cross-

correlation between 𝕏1 and 𝕏2, providing insight to more complex associations existing 

between data domains. 

Conventional CCA, however, is not well-suited for studying complex relationships 

between data domains that are high-dimensional in size (i.e., the ‘small 𝑛, large 𝑝’ 

scenario), such as those easily captured by advanced technologies today.6 When 

𝑛 < min (𝑝1, 𝑝2) or when high collinearity exists between variables in either domain, 

solutions to CCA do not exist due to matrices involved in the estimation becoming ill-

conditioned.7,8 Even when solutions to CCA exist, it is almost always the case that all 

coefficients within the vectors 𝒘1 and 𝒘2 are estimated to be non-zero. With large 𝑝1 

and 𝑝2, this leads to the implausible and impractical interpretation that all variables 

from 𝕏1 are correlated with all variables from 𝕏2. 

Over the past decade, several groups of researchers have added special 

regularization constraints to the CCA objective function 7,9–15, both enabling its 

application when 𝑛 < min (𝑝1, 𝑝2) and estimating sparse coefficient vectors 𝒘1 and 𝒘2, 

which have a more plausible and practical interpretation; that only a subset of variables 

from 𝕏1 are correlated with a subset of variables from 𝕏2. This class of so-called sparse 

CCA methods allows us to easily explore multivariate connections between massive data 

domains and have the potential to uncover and characterize newfound relationships. In 

the case of genetics, for example, these methods can elucidate cross-omic mechanisms 

behind complex diseases and disorders; the challenging goal of many health research 

disciplines. 

One challenge with any CCA method, and multivariate statistical methods in 

general, is drawing statistical inference.16 Without inferential approaches for CCA, 

investigators are limited when drawing conclusions regarding the strength of correlation 
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between 𝕏1 and 𝕏2 or in determining which variables are involved in the relationship. 

Theoretical sampling distributions for estimators and test statistics arising from CCA are 

either questionable in reality or all-together non-existent.17 This opens the door for 

resampling strategies to become the main form of statistical inference in CCA. 

Some resampling approaches have been applied or tested for the conventional 

CCA. For instance, permutation tests have been used to obtain empirical p-values for 

canonical correlation estimates18, but merely help to conclude whether or not the 

canonical correlation is likely to be greater than zero. In 1996, Fan & Wang showed, on a 

small scale (𝑝1 = 3, 𝑝2 = 3), that the non-parametric bootstrap performed better than 

the jackknife at obtaining reasonable standard errors for canonical vector loadings.17 In 

2014, Sakar demonstrated that an ensemble CCA approach based on resampling and 

estimation aggregation can return canonical variables with increased canonical 

correlation in unseen test data, as compared to canonical variables estimated from a 

single instance of training data alone.19 Their resampling strategies included the 

bootstrap, jackknife, and data partitioning, with the bootstrap having notably better 

performance in a number of examples. 

A few papers have used the bootstrap for regularized or sparse CCA to 

accompany their results with standard errors or confidence intervals.18,20,21 As well, one 

of the original sparse CCA papers 6 used it briefly to report the stability of canonical 

variates and appearance of certain variables within their experiments. Szefer et al., 2017 

bootstrapped sparse CCA in an attempt to improve variable selection via selecting 

variables that were most frequently estimated across bootstrap samples.22 However, 

despite dealing with high-dimensional (i.e., 𝑛 < 𝑝) data, these papers did not investigate 

the reliability of the bootstrap strategy for sparse CCA. If resampling is to play a role in 

improving inference for sparse CCA, its performance must be evaluated using extensive 

simulations. 

In this paper, we examine the performance of the bootstrap approach in 

facilitating inference for sparse CCA, with a focus on high-dimensional scenarios. In 

particular, we examine the reliability of bootstrap confidence intervals for canonical 

correlation coefficients as well as bootstrap probability estimates for variables to be 

included in the cross-correlation. In Section 2, we describe the methodology of 

conventional CCA, sparse CCA, and the general bootstrap, followed by our specific 

definitions for the bootstrap procedure for sparse CCA. In Section 3, we describe the 

simulation strategy we used to evaluate the bootstrap methods and present the 

simulation results. In Section 4, we discuss key findings from our simulation and 

potential future directions regarding the bootstrap method for sparse CCA. 
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4.2. Methods 

  

4.2.1. Canonical Correlation Analysis (CCA) 

Consider observing 𝑛 samples on two sets of data; let 𝕏1 be a 𝑛 × 𝑝1 matrix of data and 

𝕏2 be a 𝑛 × 𝑝2 matrix of data. Suppose we are interested in finding a linear combination 

𝕏1𝒘1, and a linear combination 𝕏2𝒘2, that are highly correlated. CCA seeks to find a 

pair of coefficient vectors, 𝒘1 and 𝒘2, that return linear combinations with the highest 

correlation, 𝜌12 = 𝐶𝑜𝑟𝑟(𝕏1𝒘1, 𝕏2𝒘2).16 Since the choice of 𝒘1 and 𝒘2 is invariant to 

scaling, constraints 𝒘1 ∈ {‖𝒘1‖2
2 = 1} and 𝒘2 ∈ {‖𝒘2‖2

2 = 1} are included when 

formulating the objective of CCA: 

 

maximize
𝒘1,𝒘2

{
𝒘1�̂�12𝒘2

√𝒘1�̂�11𝒘1√𝒘2�̂�22𝒘2

} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝒘1‖2
2 = 1, ‖𝒘2‖2

2 = 1, 

 

where �̂�11 = 𝑉𝑎�̂�(𝕏1), �̂�22 = 𝑉𝑎�̂�(𝕏2), and �̂�12 = 𝐶𝑜�̂�(𝕏1, 𝕏2) are sample quantities 

and the “hat” symbol (    ̂) in combination with a function represents an estimator and in 

combination with a parameter represents an estimate. The operator ‖. ‖𝑚 denotes the 

L-𝑚 norm. Subsequent pairs of linear combinations can be determined but for the 

entirety of this paper we consider only the first and most correlated pair. 

The quantities of interest for CCA are the estimated coefficient vectors �̂�1 and 

�̂�2 that solve the above maximization problem, the resulting pairs of canonical variables 

𝕏1�̂�1 and 𝕏2�̂�2, and their estimated canonical correlation �̂�12. These are estimated 

quantities of the true coefficient vectors 𝒘1 and 𝒘2, true canonical variables 𝕏1𝒘1 and 

𝕏2𝒘2, and true canonical correlation 𝜌12. 

Solutions to CCA exist given certain conditions.16 Define the following sample 

variance-covariance matrix that holds all sample variances and covariances between 

variables in both 𝕏1 and 𝕏2: 

 

�̂� = [
�̂�11 �̂�12

�̂�21 �̂�22

]. 

 

Then, �̂� must be of full rank to obtain solutions to CCA. In addition, the maximum 

number of pairs of coefficient vectors will be less than min(𝑝1, 𝑝2). Solutions are based 

upon the eigen-structure of elements from �̂�. Specifically, �̂�1 and �̂�2 are the first eigen-

vectors of �̂�11
−1�̂�12�̂�22

−1�̂�21 and �̂�22
−1�̂�21�̂�11

−1�̂�12, respectively, and �̂�12 is the square root of 
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the first corresponding eigen-value. Common alternate and related routes to solutions 

are through the singular value decomposition (SVD) 7 and the non-iterative partial least 

squares (NIPALS) algorithm 15. 

 

4.2.2. Sparse Canonical Correlation Analysis (Sparse CCA) 

Sparse CCA follows the above set-up with some adaptations. To obtain sparse coefficient 

vectors �̂�1 and �̂�2, additional constraints are applied to �̂�1 and �̂�2. This results in a 

sparse version of the objective function for CCA: 

 

maximize
𝒘1,𝒘2

{
𝒘1�̂�12𝒘2

√𝒘1�̂�11𝒘1√𝒘2�̂�22𝒘2

}  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝒘1‖2
2 = 1, ‖𝒘2‖2

2 = 1 

𝑎𝑛𝑑 𝑃1(𝒘1) ≤ 𝑡1, 𝑃2(𝒘2) ≤ 𝑡2. 

 

The penalty functions 𝑃1 and 𝑃2 can take on many forms, while being constrained by 

tuning parameters 𝑡1 and 𝑡2, which are specified by the user. Several versions of sparse 

CCA have emerged by choosing different penalty functions, or solving the optimization 

problem in different ways.4,6,7,9,10,13,23–29 For example, Witten et al., 2009 considered the 

least absolute shrinkage and selection operator (LASSO) 𝑃(𝒘) = ‖𝒘‖1 and the fused 

LASSO 𝑃(𝒘) = ∑ |𝑤𝑗+1 − 𝑤𝑗|𝑗 .10 Sparse CCA solutions are often obtained by 

transforming the objective function into a convex optimization problem and solving via 

alternating algorithms 10. 

 Tuning parameter selection is critical during the implementation of a sparse CCA 

method.13 Authors of methodological papers have suggested a wide range of 

approaches. The most common are cross-validation strategies whereby sparse CCA is 

applied numerous times with different tuning parameters, and they often accompany 

code for executing the method itself.7,13,26,30 

 

4.2.3. Bootstrap re-sampling for sparse CCA 

The bootstrap technique is a means to estimate the sampling distribution of a random 

variable by sampling from a probability distribution or resampling from observed data. 
31,32 In this paper, we utilize the non-parametric bootstrap method, which makes no 

assumptions regarding the underlying distribution from which data is generated. 

We denote the data setup for sparse CCA as [𝕏1, 𝕏2], representing the pair of 

original datasets with dimensions 𝑛 × 𝑝1 and 𝑛 × 𝑝2, respectively. From this original pair 

of data, 𝐵 bootstrapped pairs of datasets [𝕏1, 𝕏2]
∗1, [𝕏1, 𝕏2]

∗2, … , [𝕏1, 𝕏2]
∗𝐵 can be 
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obtained by taking random samples of size 𝑛 with replacement from the 𝑛 observations 

contained in the original pair of data. For each of these 𝐵 bootstrapped pairs of samples, 

sparse CCA is applied, thereby returning 𝐵 estimated canonical correlation values, 

denoted by �̂�12
∗1, �̂�12

∗2, … , �̂�12
∗𝐵, and 𝐵 sets of estimated coefficient vectors, denoted by 

[�̂�1, �̂�2]
∗1, [�̂�1, �̂�2]

∗2, … , [�̂�1, �̂�2]
∗𝐵. Summary measures can subsequently be used to 

infer about their distribution, notably their variability, and give us a level of confidence 

in the results. 

 Specifically, we focus on two primary measures of inference; one for canonical 

correlation and one for the canonical vector loadings. For the canonical correlations, we 

construct bootstrap confidence intervals using the empirical distribution33, by taking 

2.5th and 97.5th percentiles of the ordered 𝐵 bootstrapped correlations to construct 95% 

confidence intervals. For the canonical vector loadings, for each variable’s loading, we 

calculated the frequency at which the bootstrapped sparse CCA resulted in a non-zero 

estimate. We then calculated the proportion, where the denominator is the number of 

runs (𝐵), which estimates the probability that a particular variable is involved in the 

cross-correlation. This is very important in practice because a single run of sparse CCA, 

as typically done, may not include all truly associated variables. 

  

4.3. Simulations 

In this section, we test the performance of the bootstrap approach for conducting 

inference in sparse CCA, where extensive simulations with a range of data scenarios are 

considered. We first describe the design of our simulation experiments and then report 

the results. Fundamentally, this section is devoted to testing the ability of the 

bootstrapping method to produce reliable inferential measures for sparse CCA. The R 

statistical software version 3.4.3 was used for performing all components of our 

simulation and codes will be made available upon request.34 

 

4.3.1. Simulation Design 

A depiction of our simulation design is presented in Figure 1. Our simulation strategy 

consists of the following seven steps, which are described in detail in this section: 

 

1. Define the true data structure by selecting various values of the parameters 𝑛, 

𝑝1, 𝑝2, Σ. 

2. Calculate the true canonical vectors and canonical correlations by using the true 

Σ. 

3. Simulate 𝑅 = 1000 pairs of data, denoted [𝕏1
𝑟 , 𝕏2

𝑟], for 𝑟 = 1,… , 𝑅. 
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4. Bootstrap 𝐵 = 1000 pairs of data, denoted [𝕏1
𝑟 , 𝕏2

𝑟]∗𝑏, for 𝑟 = 1,… , 𝑅, 

𝑏 = 1,… , 𝐵. 

5. Apply sparse CCA to all 𝑅 ∗ 𝐵 pairs of data. 

6. Calculate bootstrap confidence intervals and probability estimates of variable 

inclusion. 

7. Summarize performance of these bootstrapped measures. 

  

*** Figure 1 APPROXIMATELY HERE *** 

 

 
Figure 1: A depiction of our simulation strategy for each simulation setting. 

 

Step 1 (define true parameters / data structure) 

We used block-diagonal covariance matrices to specify simulated data structures. A 

more generalized definition for our simulation structure can be found in a previous 
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paper. [REF: Bonner2018Paper2] We denoted the covariance between all variables 

across both data domains as 

 

Σ = [
Σ11 Σ12

Σ21 Σ22
], 

 

where Σ11 is the covariance matrix for the 𝑝1 variables from 𝕏1, Σ22 is the covariance 

matrix for the 𝑝2 variables from 𝕏2, and Σ12 = Σ21
𝑇  is the cross-covariance matrix 

between the 𝑝1 variables from 𝕏1 and 𝑝2 variables from 𝕏2. Without loss of generality, 

we kept 𝑝1 = 10 for the entirety of the simulations but allow 𝑝2 to fluctuate from small 

to very large, assuming 𝑝2,1 = 10 of the variables from 𝕏2 to be cross-correlated with 

the 𝑝1 variables from 𝕏1, leaving the remaining 𝑝2,2 = 𝑝2 − 𝑝2,1 variables as 

uncorrelated noise. The covariance matrices for 𝕏1 and 𝕏2 are defined as 

 

Σ11 = 𝜎11
2 [

1 𝑐11 … 𝑐11

𝑐11 1 … 𝑐11

⋮ ⋮ ⋱ ⋮
𝑐11 𝑐11 … 1

]

𝑝1×𝑝1

, Σ22 = [
Σ22,1 𝟎

𝟎 Σ22,2
]
𝑝2×𝑝2

, 

 

Σ22,1 = 𝜎22,1
2

[
 
 
 

1 𝑐22,1 … 𝑐22,1

𝑐22,1 1 … 𝑐22,1

⋮ ⋮ ⋱ ⋮
𝑐22,1 𝑐22,1 … 1 ]

 
 
 

𝑝2,1×𝑝2,1

, Σ22,2 = 𝜎22,2
2 𝐼𝑝2,2×𝑝2,2

, 

 

where 𝜎11
2  and 𝑐11 are the common variance and correlation for variables within 𝕏1, 

𝜎22,1
2  and 𝑐22,1 are the common variance and correlation for the first 𝑝2,1 variables within 

𝕏2, and 𝜎22,2
2  and 𝑐22,2 = 0 are the common variance and correlation for the next 𝑝2,2 

variables within 𝕏2. We define the cross-covariance matrix as 

 

Σ12 = Σ21
𝑇 = [

𝜎11
2 𝜎22,1

2 𝑐12𝟏𝑝1,𝑝2,1
𝟎

𝟎 𝟎
], 

 

where 𝑐12 is the common correlation shared between variables from 𝕏1 and the first 

𝑝2,1 variables from 𝕏2, and 𝟏𝑎,𝑏 is notation for a matrix of 1’s with dimensions 𝑎 × 𝑏.  

Table 1 lists our simulation scenarios in terms of the essential parameters 

described above. We tested 15 scenarios based on a combination of three possible 

cross-correlation values (𝑐12 = 0.8, 0.4, or 0.2) and five possible variable sizes for 𝕏2 
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(𝑝2 = 50, 100, 200, 500, or 1000). For each of these 15 scenarios, we ran simulations 

with a range of five possible sample sizes (𝑛 = 50, 100, 200, 500, or 1000), leading to a 

total of 75 data settings. Figure 2 displays a colored plot of Σ for simulation scenarios 1 

and 15, demonstrating the scaling of dimension for 𝕏2 compared to the number of truly 

cross-correlated variables. 

 

*** Table 1 APPROXIMATELY HERE *** 

 

Table 1: A list of simulation scenarios we designed to test the performance of our 

methods. Each scenario was tested with sample sizes 𝑛 = 50, 100, 200, 500, 1000. 

Scenario 𝑝1 𝜎11,1
2  𝑐11,1 𝑝2 𝑝2,1, 𝑝2,2 𝜎22,1

2 , 𝜎22,2
2  𝑐22,1, 𝑐22,2 𝑐12 

1 10 10 0.8 50 10, 40 10, 6 0.8, 0 0.8 

2 10 10 0.8 100 10, 90 10, 6 0.8, 0 0.8 

3 10 10 0.8 200 10, 190 10, 6 0.8, 0 0.8 

4 10 10 0.8 500 10, 490 10, 6 0.8, 0 0.8 

5 10 10 0.8 1000 10, 990 10, 6 0.8, 0 0.8 

6 10 10 0.5 50 10, 40 10, 6 0.5, 0 0.4 

7 10 10 0.5 100 10, 90 10, 6 0.5, 0 0.4 

8 10 10 0.5 200 10, 190 10, 6 0.5, 0 0.4 

9 10 10 0.5 500 10, 490 10, 6 0.5, 0 0.4 

10 10 10 0.5 1000 10, 990 10, 6 0.5, 0 0.4 

11 10 10 0.5 50 10, 40 10, 6 0.5, 0 0.2 

12 10 10 0.5 100 10, 90 10, 6 0.5, 0 0.2 

13 10 10 0.5 200 10, 190 10, 6 0.5, 0 0.2 

14 10 10 0.5 500 10, 490 10, 6 0.5, 0 0.2 

15 10 10 0.5 1000 10, 990 10, 6 0.5, 0 0.2 

 

*** Figure 2 APPROXIMATELY HERE *** 
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Figure 2: A colored plot of the 𝛴 matrices behind the most extreme simulation scenarios; 

simulation 1 (left) with 𝑝2 = 50, 𝑐12 = 0.8 and simulation 15 (right) with 𝑝2 =

1000, 𝑐12 = 0.2. The thin black lines within the matrix help to distinguish variables from 

𝕏1 and 𝕏2. 

 

Step 2 (calculate true CCA components) 

We performed the singular value decomposition of the matrix 𝐾 = Σ11
−1/2 

Σ12Σ22
−1/2 

=

𝑈𝐷𝑉𝑇 to obtain true CCA components, for all the 75 data settings. This involves the 

matrix Σ being positive semi-definite, as such we tested and ensured that our simulation 

scenarios resulted in a positive semi-definite Σ. The true canonical correlations were 

then calculated as 𝜌12 = 𝑑𝑖𝑎𝑔(𝐷), the true canonical vectors are calculated as 

𝑊1 = Σ11
−1/2

𝑈 and 𝑊2 = Σ22
−1/2

𝑉. 

 

Step 3 (simulate 𝑅 = 1000 pairs of data) 

We used a multivariate normal distribution with mean vector 𝝁 = 𝟎 and covariance 

matrix Σ to generate all 𝑅 pairs of simulated data, using unique seeds to randomize a 

reproducible generation process. Figure 3 illustrates the comparability between the true 

Σ for simulation scenario 1 compared to estimates Σ̂ using generated data at different 

sample sizes. 

 

*** Figure 3 APPROXIMATELY HERE *** 
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Figure 3: Colored images of 𝛴 from our simulated design (top-left), and corresponding 

estimates �̂� from 𝑛 = 50 (top-right), 200 (bottom-left), and 1000 samples (bottom-right) 

generated from a multivariate normal distribution. 

 

Step 4 (bootstrap 𝐵 = 1000 pairs of data, for each 𝑟 = 1,… ,1000)  

We used the non-parametric bootstrap approach described in Section 2.3 to generate all 

𝐵 pairs of bootstrapped data for each of the 𝑅 pairs of simulated data. For the 𝑟𝑡ℎ pair 

of data, the 𝑏𝑡ℎ bootstrapped pair of data is denoted by [𝕏1
𝑟 , 𝕏2

𝑟]∗𝑏. Again, unique seeds 

were set and used to make the generation process reproducible. 
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Step 5 (apply sparse CCA to all pairs of data) 

We applied the sparse CCA approach developed by Parkhomenko et al., 2009 to each 

pair of data [𝕏1
𝑟 , 𝕏2

𝑟]∗𝑏, 𝑟 = 1,… ,1000, 𝑏 = 1, … ,1000.7 We chose this sparse CCA 

method over others 10,13 because it out-performed them when tested via rigorous 

simulation experiments, [REF: Bonner2018Paper2] and showed minimal, if any, bias and 

good variable selection properties including true-positive rate, true-negative rate, and 

overall sparsity. 

Two tuning parameters need to be chosen while using the sparse CCA method 

proposed by Parkhomenko et al., 2009; 𝜆1 controls sparsity in 𝒘1 and 𝜆2 controls 

sparsity in 𝒘2. The possible range of tuning parameters for this method is from 0 (no 

sparsity) to 2 (maximum theoretical sparsity). We designed our simulation scenarios 

such that all 𝑝1 variables from 𝕏1 would be involved in the cross-correlation. Therefore, 

we set 𝜆1 = 0. We considered but chose against using one of the many tuning 

parameter selection strategies we implemented in a previous work (see Bonner et al., 

2018 [REF: Bonner2018Paper2] for a brief summary). Selecting tuning parameters 

optimally for sparse CCA is still an open research problem and if a tuning parameter 

selection strategy performs poorly, it may confound our conclusions regarding the 

performance of the bootstrap. As well, many tuning parameter selection strategies 

involve heavy, iterative computation, which would drastically inflate overall execution 

time for simulations when combined with the bootstrapping.  

Instead, we chose 𝜆2 such that the resulting number of non-zero loadings in �̂�2 

would equal 𝑝2,1, the true number of variables involved in the cross-correlation. This 

was achieved by an iterative search approach starting at 𝜆2 = 0 (no sparsity), increasing 

𝜆2 and re-running if the number of non-zero loadings in the estimated �̂�2 was more 

than 𝑝2,1, decreasing 𝜆2 and re-running if the number was less, or accepting 𝜆2 and 

associated sparse CCA results if the estimated number of non-zeros in �̂�2 was equal to 

𝑝2,1. As a safeguard to excessive computation, we always halved the ‘step’ of 𝜆2 

between iterations and set the maximum number of computations for this iterative step 

to 20, accepting the results afterward. 

We estimated canonical correlations �̂�12
𝑟∗1, �̂�12

𝑟∗2, … , �̂�12
𝑟∗𝐵 and estimated 

coefficient vectors [�̂�1
𝑟 , �̂�2

𝑟]∗1, [�̂�1
𝑟 , �̂�2

𝑟]∗2, … , [�̂�1
𝑟 , �̂�2

𝑟]∗𝐵, for 𝑟 = 1,… , 𝑅. 

 

Step 6 (calculate bootstrapped measures of variability) 
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We calculated 95% basic bootstrap percentile confidence intervals for the canonical 

correlations [�̂�12,0.025
1 , �̂�12,0.975

1 ], [�̂�12,0.025
2 , �̂�12,0.975

2 ], … , [�̂�12,0.025
𝑅 , �̂�12,0.975

𝑅 ] and 

calculated the proportion at which a variable’s loading within its’ canonical vector was 

non-zero, storing them in vectors denoted 𝒄2
1, 𝒄2

2, … , 𝒄2
𝑅  (we only applied sparsity to 𝒘2). 

 

Step 7 (summarize performance of bootstrapped measures of variability) 

We examined the coverage probability of the bootstrapped 95% confidence intervals for 

canonical correlations; which is the proportion of times they covered the true canonical 

correlation value. We calculated the true-positive rate (TPR) of the variables 

corresponding to the top 10 values within each 𝒄2
𝑟  (i.e., the 10 variables most probable 

to be cross-correlated). We compared the mean TPR, across 𝑅 simulation iterations, of 

those ‘top-10’ variables with the TPR of variables corresponding to non-zero loadings in 

𝒘2 estimated at the simulation level. This revealed if the top 10 obtained using the 

bootstrap resampling could out-perform the sets estimated by single runs of sparse CCA. 

 

4.3.2. Simulation Results 

 

Quality assurance: 

The sparse CCA algorithm successfully ran for all 𝑅 ∗ 𝐵 = 1,000,000 pairs of data, for 

each of the 75 data settings. The iterative step to select tuning parameters converged 

before the maximum number of iterations in 99.986% of all runs. For the very small 

percentage of runs, for which the simulations did not converge, the number of variables 

from 𝕏2 estimated to be cross-correlated with 𝕏1 had a range of 2 to 19. Nevertheless, 

90.9% of results estimated between 9 and 11 non-zero loadings (i.e., within one value of 

the true number of variables). All sparse CCA results were retained for summarizing and 

interpretation. 

 

Canonical correlation: 

Figure 4 shows estimated coverage of the bootstrap confidence intervals across all 

simulation scenarios. When the canonical correlation is large (left plot; 𝑐12 = 0.8, 

𝜌12 = 0.976) the sample size and number of variables have little to no effect on the 

coverage. All simulation scenarios tend towards achieving nominal coverage, but have a 

small positive bias in coverage probability, especially for the larger sample sizes. The 

coverage probabilities range from 0.943 to 0.980 for the large correlation scenarios.  

 When the canonical correlation is designed to be moderate (middle plot; 

𝑐12 = 0.4, 𝜌12 = 0.727), the effect of sample size and number of variables becomes 
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evident. At the larger sample sizes (𝑛 = 200, 500, 1000), coverage tends toward 

nominal regardless of the number of variables in 𝕏2; again, a small positive bias in 

coverage for the largest sample sizes (𝑛 = 500,1000), with coverage ranging from 0.950 

to 0.978. At lower samples sizes (𝑛 = 50,100), however, coverage probability is lower 

than nominal and we start to see the effect of 𝑝2. For 𝑛 = 100 scenarios, coverage 

probability ranges from 0.878 at 𝑝2 = 50 to 0.818 at 𝑝2 = 1000. For 𝑛 = 50, coverage 

probability starts at 0.665 at 𝑝2 = 50 but quickly decreases towards 0 as 𝑝2 increases; 

coverage is 0.001 at 𝑝2 = 1000. 

 For the smallest canonical correlation scenarios (right plot; 𝑐12 = 0.2, 𝜌12 =

0.364), only bootstrap intervals built from the largest sample size scenarios (𝑛 = 1000) 

achieve nominal coverage; again, regardless of 𝑝2. When 𝑛 = 500, coverage ranges 

from 0.918 at 𝑝2 = 50 to 0.846 at 𝑝2 = 1000. When 𝑛 = 200, coverage sharply 

declines from 0.464 at 𝑝2 = 50 to almost or exactly 0 coverage. Bootstrap intervals 

made from smaller sample sizes (𝑛 = 50,100) have 0 coverage probability regardless of 

𝑝2. 

 

*** Figure 4 APPROXIMATELY HERE *** 

 

 
Figure 4: Plots for the coverage of 95% bootstrap confidence intervals for the canonical 

correlation coefficient from sparse CCA versus canonical correlation, sample size, and 

number of variables. 
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 In Figure 5 we show 10% of the 𝑅 bootstrap confidence intervals (selected at 

random) for each simulation scenario, excluding the moderate levels of 𝑝2 

(100, 200, 500). These plots show that the lack of coverage is due to an overestimation 

of canonical correlation in some cases; a result that is emphasized when true canonical 

correlation and sample size becomes smaller. 

 

*** Figure 5 APPROXIMATELY HERE *** 
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Figure 5: Plots of 95% bootstrap confidence intervals from simulation scenarios. A 

random selection of 10% (100) confidence intervals are presented for each scenario 

displayed. The back vertical lines represent the true canonical correlation coefficient for 
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the corresponding scenarios. Bootstrap intervals that overlap the true canonical 

correlation are highlighted blue, and those that do not are highlighted red. 

 

Canonical vectors (variable selection): 

Figure 6 displays our comparison of mean TPR from the simulation-level estimates of 𝒘2 

and the ‘top-10’ list of variables derived from the bootstrapped estimates of 𝒘2. For 

higher canonical correlations, the sparse CCA method had perfect TPR. At lower 

canonical correlations, we see a clear discrepancy in TPR in favor of the bootstrapped 

‘top-10’ list of variables that were deemed most likely to be involved in the cross-

correlation. This discrepancy in TPR was larger for lower samples sizes, but did not seem 

related to number of variables in 𝕏2. However, the number of variables certainly 

affected sparse CCA performance in general, shown by decreasing TPR for both 

strategies for identifying cross-correlated variables. 

  

 
Figure 6: Plots of the TPR for simulation-level estimates of 𝒘2 vs. ‘top-10’ variables 

derived from the bootstrap-level estimates of 𝒘2. 

 

4.4. Discussion 

In this paper, we considered sparse CCA and the non-parametric bootstrap 

resampling approach, and conducted extensive simulations to investigate whether or 

not the non-parametric bootstrap resampling approach can offer reliable measures of 

inference for sparse CCA. Our findings show that the bootstrap confidence intervals for 
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the canonical correlation coefficients attain nominal coverage for higher values of 

canonical correlations and when sample size approaches the number of variables. 

However, results also showed that the confidence intervals lack coverage for smaller 

sample sizes, when correlation between data is weak. The bootstrap approach allowed 

us to estimate the probability at which a variable is involved in the cross-correlation. For 

lower canonical correlation values, the variables with highest bootstrapped probabilities 

had superior true positive rate (TPR) than those estimated from single-runs of sparse 

CCA. This finding should encourage further research into the benefits of bootstrapping 

with statistical methods that focus on variable selection. Similar attempts were made at 

improving variable selection via the bootstrap with sparse regression and CCA methods, 

with application in neurodevelopment.22,35 These authors reported empirical 

improvements in the variable selection process, further encouraging the pursuit of 

research into such approaches. 

Several improvements could be made to our simulation experiments. First, we 

only applied sparsity constraints to one data domain. Though this is suitable for some 

data applications, certain data scenarios will call for sparsity in both. We made this 

decision to mitigate a great deal of computation time; a common hindrance when 

applying the bootstrap in conjunction with another iterative procedure, such as tuning 

parameter selection. Although we used parallel computing, there are more advanced 

options to speed up computation times worth trying in the future. Using GPUs rather 

than CPUs, for example, can drastically improve computational power of sparse CCA and 

other iterative.36 Second, although our approach to selecting tuning parameters allowed 

us to focus on the performance of the bootstrap, there would be no guarantee that such 

an approach would be accurate in practice. Fixing the number of variables is a suitable 

approach if the investigator has good rationale behind their choice. 9 However, in the 

absence of such information, a more objective tuning parameter selection method, such 

as maximizing some function of canonical correlation, would be more suitable. Third, 

there are many sparse CCA methods that we did not test in our simulations. Though we 

supported our choice of method based on comparative simulation work [REF: 

Bonner2018paper2], performance of the bootstrap measures is likely to differ based on 

which method is used. Extending our work to test different tuning parameter selection 

and sparse CCA methods could further illuminate the performance of the bootstrap 

approach. 

We restricted our investigation of inferential measures to the canonical 

correlation coefficient and loading values. Another less popular, though important, 

output of CCA methods is the correlation between each variable contributing to the 
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canonical variates and the canonical variates themselves.37 These are sometimes 

referred to as structural coefficients; loadings are sometimes referred to as functional 

coefficients. Building confidence intervals for structural coefficients could further reveal 

which variables truly drive to the relationships between data domains. 

Sparse CCA and other multivariate integration methods are powerful tools to 

explore deep patterns among complex data. Resampling techniques can supply such 

methods with inferential measures to enhance their utility. Knowledge of how the 

bootstrap performs for sparse CCA could encourage researchers to pursue similar 

experiments for other methods. We encourage investigators to test and adopt 

bootstrapping approaches, especially in circumstances when sample size is large enough 

(i.e., when sample size approaches the number of variables). 
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CHAPTER 5 

 

5. SUMMARY AND CONCLUSIONS 

 

As the pursuit of a system-wide understanding of complex diseases and traits continues, 

researchers are measuring omic data at a pace surpassing the development of statistical 

methodology we have to analyse it. The omic data is complex and diverse in structure, 

as well as large in dimension, positioning data analytics as a major bottleneck to 

discovery in the realm of health research.78 

In this thesis, I applied and tested the performance of a variety of sparse 

multivariate statistical methods, to advance knowledge regarding their power and 

pitfalls for handling the integration of omic data. In Chapter 2, I focused on one set of 

data and an outcome, by analysing a toxicogenomic database that houses rich genomic 

information. By designing and performing an analysis pipeline involving sparse PCA and 

sparse regression, I extracted groups of genes that may be important to our 

understanding of the relative toxicity of drugs in humans. In Chapter 3, I expanded to 

two sets of data, and conducted extensive simulation experiments to compare the 

performance of multiple sparse CCA methods. After identifying the sparse CCA methods 

that perform best with real high-dimensional data, I applied them to find complex 

correlations between conventional toxicity assessment measures and gene expression. 

In Chapter 4, I investigated the performance and reliability of using bootstrapped 

measures of inference for sparse CCA. Using extensive simulations, I identified 

conditions for which bootstrap confidence intervals for the correlation coefficient 

perform well, and demonstrated that variables deemed most probable to be cross-

correlated across bootstrap iterations can more accurately estimate underlying 

relationships than conventional sparse CCA estimates. 

 Work in this thesis informs health researchers aiming to infer complex 

relationships from large, high-dimensional (𝑛 < 𝑝) data. In particular, it promotes the 

class of sparse multivariate methods that can embrace the complex data structures 

presented by biological omic data. Although analysis strategies were applied to 

toxicogenomic data, they can also be used in other fields of study with equivalent 

success, so long as data properties remain similar. For instance, sparse PCA and CCA 

have recently experienced vibrant activity in neurology, where omic data have become 

seemingly ubiquitous.54,79 

 Results and conclusions from Chapters 3 and 4 should benefit statisticians who 

are currently working to improve sparse methodology. As more research teams adopt 
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sparse methods to analyze their data, this will further attract methods development. 

The extensive simulations presented here demonstrate how differently sparse CCA 

methods can perform with real data. They should encourage and provide a basis for 

developers of new approaches to thoroughly test their methods. 

 There are strengths that I have attempted to thread throughout the work 

presented in this thesis. First, I incorporated real data from a field of study that requires 

implementation. Toxicogenomic studies are in great need of innovative analysis 

strategies and, compared to other areas, have little application of the methods I’ve 

used.80 Second, I’ve designed simulation experiments that mimic real data scenarios at 

high dimensions, but can also adapt to handle new methods and changes in data 

structure. The block-diagonal covariance design in my simulations is simple to adjust and 

generalize to different data. This contrasts more complicated simulation strategies that 

may depend on very specific data set ups.81 Third, I attempted to make improvements to 

the coding behind sparse methods and simulation experiments; R code is available upon 

request and is planned to be made available through manuscripts as we continue to 

pursue publication. For example, I’ve sped up the tuning parameter selection 

procedures, where possible, by including a two-tiered grid search algorithm. This is less 

important for application, but helps greatly when conducting simulations or 

bootstrapping. Finally, I’ve attempted to carefully articulate each step of the sparse 

methodology implemented, including penalty functions, tuning parameter selection 

approaches, and summary measures. With many layers of methodology, reports of 

sparse multivariate method applications can lack in essential details for reproducibility. 

 There are also some limitations that come with certain methodological decisions 

made within this thesis. In the next few paragraphs, I summarize the main limitations 

alongside ideas to address them with future work. First, despite using real data to guide 

simulations, the scenarios still represent only a subset of the data structures that exist. 

For example, the toxicogenomic database included continuous measurements which 

made it convenient to parameterize simulations based on a multivariate normal 

distribution. Other omic data types, such as single-nucleotide polymorphism (SNP) data, 

involve non-continuous measures and could react very differently to sparse 

methodology than the results I presented in this thesis. 

Second, the generalizability of my results is also limited by selecting a subset of 

methods available. Newer methods could outperform the methods investigated in this 

thesis. We focused mostly on methods that were popularized because they were 

published first and had readily available code. Other code packages and tools have 

emerged during the course of the work completed for this thesis and will likely promote 
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the adoption of more up to date methods.82–84 For example, the R package ‘mixOmics’ 

has grown to include a variety of multivariate approaches, including regularized and 

sparse CCA and PLS.83,85,86 This package is also home to some innovative visualization 

techniques that are otherwise in short supply for multivariate methods.87 

Third, investigation of the performance of sparse CCA in Chapters 3 and 4 was 

restricted to the first canonical vectors only. In reality, subsequent CVs can carry 

important cross-correlations and should be examined by the investigator should there 

be reason to expect more than one set of correlated features. Though it is possible to 

extend both bodies of simulation work to test subsequent CVs, the effort would involve 

immense computation. To be accurate, tuning parameters need to be selected 

separately for each set of CVs, which would extend computation time significantly.44 

Another drawback to estimating more than one pair of CVs is the fact that sparsity 

constraints can intrude upon the orthogonality of CVs, meaning the cross-correlated 

groups of variables found in subsequent CVs could significantly overlap with the first.36 

This consequence is not necessarily a deterrent for implementation with real data, 

however, so the study of how accurate second, third, and so on, CVs are could be a 

valuable extension to the simulation studies presented in this thesis. 

 Finally, I had to make compromises while choosing tuning parameters. 

Determining the optimal ways to choose tuning parameters is still an area requiring 

dedicated research. Results from sparse PCA and sparse CCA can be sensitive to 

variations in the selected tuning parameter value.20 Although isolating the best 

approaches was not the focus of my thesis, the simulations from my second project 

(Chapter 3) were able to demonstrate the effect tuning parameter selection could have. 

In other work, I attempted to either make informed decisions when choosing a selection 

approach (Chapter 1) or eliminate its influence entirely (Chapter 4). Investigators 

planning to use a sparse method should justify their choice of tuning parameter 

selection approach by consulting external simulations, such as the ones shown in this 

thesis, or by conducting their own. Certainly, at the very least, they should run the 

sparse method many times across the range of possible tuning parameters at a high 

resolution and investigate how the results change before accepting results. 

Several attractive extensions to sparse CCA have emerged to handle specific data 

integration challenges and could be studied and tested in the future. Sparse ‘multi-set’ 

CCA has been the focus of a few groups, enabling estimation of cross-correlation 

between three or more data domains simultaneously.44,88,89 By infusing penalty 

functions to conventional multiset CCA, these methods are poised to handle multi-omic 

databases like those emerging in toxicogenomics.70,72,90,91 ‘Supervised’ sparse CCA can 
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incorporate an outcome to the objective of CCA, by influencing the estimation of cross-

correlated variables to capture features that are jointly associated with the 

response.44,92,93 Implementing such a method to find groups of cross-correlated genes 

and conventional measures for toxicity that are jointly associated with FDA-labeled DILI 

concern could help discern more concrete toxicity profiles in the TGP data, for example. 

A sparse CCA adaptation to find complex correlations between genomic data and 

longitudinal endpoints has recently been developed and could become pivotal as 

longitudinal studies ramp up the acquisition of omic data.57 As well, the vast number of 

penalty functions available has propagated a wide array of sparse CCA methods that can 

handle more minor, yet important, structural intricacies of data domains.30,81,94  

Sparse PCA, sparse CCA, and their variants are not the only methods to handle 

data integration problems. Borga described the link between objective functions for 

PCA, CCA, PLS, and multiple linear regression, by means of the generalized 

eigenproblem.26 Sparse PLS methodology has been growing in tandem to sparse PCA 

and sparse CCA.95,96 Although work in this thesis does not contribute directly to sparse 

PLS, it could naturally extend to involve it. For example, sparse PLS could be applied in 

Chapter 2, as a supervised alternative to the sparse PCA analysis. However, I would want 

to precede such an analysis with proper simulations first, to identify the most accurate 

sparse PLS method for the toxicogenomic data. Future work could include adapting the 

simulation infrastructure in my second project to test a variety of sparse PLS methods. 

 Between the alternating algorithms used to solve sparse CCA, grid-search tuning 

parameter selection methods that often involve cross-validation, and permutation tests 

for testing significance, there is a massive computational burden with executing sparse 

CCA. Though computation is a small cost for methodological rigour, it is certainly a 

restraint worth exploring solutions to. Yan et al., 2014 has discussed this issue and 

outlined strategies involving running sparse CCA algorithms in parallel to speed up the 

computation. Pursuing strategies such as this could catalyze further testing.97 

 Through more development, testing, and careful application, sparse 

methodology is maturing towards being the ideal toolset to handle massive data 

integration challenges. As data continues to barrage the health research landscape, we 

must arm ourselves with knowledge of the tools we have to analyze it. The work from 

this thesis should further our understanding of how sparse multivariate methods 

interact with high-dimensional omic data and offer some outlets for future work in this 

vibrant, cross-disciplinary research area. 
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Appendix:  

 

Search strategy of omic data integration articles: 

 

The literature review I summarize in Chapter 1: Introduction is described in detail here. 

On September 14, 2018, using OVID, I searched the U.S. National Library of Medicine’s 

database MEDLINE, from the year 1946 and onward, for articles that contained, within 

their title or abstract, terminology related to both data integration and omic data. I 

submitted the following keyword search strategy using OVID Medline: 

 

1. data integration.ab,ti. 

2. data fusion.ab,ti. 

3. integrative analysis.ab,ti. 

4. 1 or 2 or 3 

5. genetics.ab,ti. 

6. genom*.ab,ti. 

7. transcriptom*.ab,ti. 

8. proteome*.ab,ti. 

9. metabolom*.ab,ti. 

10. metabonom*.ab,ti. 

11. methyl*.ab,ti. 

12. microbiom*.ab,ti. 

13. 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 

14. 4 or 13 

 

The final keyword search (14. from above) returned 1858 articles. Figure 1 in the 

Introduction section of this thesis presents the frequency of articles published per year; 

the increasing frequency of publications over time is an indicator of elevated interest in 

and application of data integration methodology. 

 


