
PERCEPTIONS OF SE APPLIED TO SC

INVESTIGATING COMMON PERCEPTIONS OF SOFTWARE ENGINEERING
METHODS APPLIED TO SCIENTIFIC COMPUTING SOFTWARE

By
MALAVIKA SRINIVASAN

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfillment of the Requirements

for the degree
Master of Science in Computer Science

McMaster University
© Copyright by Malavika Srinivasan, December 29, 2018

MASTER OF SCIENCE (2018) McMaster University
(Computer science) Hamilton, Ontario

TITLE: Investigating Common Perceptions of Software Engineering Methods Ap-
plied to Scientific Computing Software
AUTHOR: Malavika Srinivasan
CO-SUPERVISORS: Dr. Spencer Smith, Dr. Sumanth Shankar
NUMBER OF PAGES: vii, 91

ii

Abstract

Scientific Computing (SC) software has significant societal impact due to its appli-
cation in safety related domains, such as nuclear, aerospace, military, and medicine.
Unfortunately, recent research has shown that SC software does not always achieve
the desired software qualities, like maintainability, reusability, and reproducibility.
Software Engineering (SE) practices have been shown to improve software qualities,
but SC developers, who are often the scientists themselves, often fail to adopt SE
practices because of the time commitment.

To promote the application of SE in SC, we conducted a case study in which we
developed new SC software. The software, we developed will be used in predicting
the nature of solidification in a casting process to facilitate the reduction of expensive
defects in parts. During the development process, we adopted SE practices and
involved the scientists from the beginning. We interviewed the scientists before and
after software development, to assess their attitude towards SE for SC.

The interviews revealed a positive response towards SE for SC. In the post de-
velopment interview, scientists had a change in their attitudes towards SE for SC
and were willing to adopt all the SE approaches that we followed. However, when it
comes to producing software artifacts, they felt overburdened and wanted more tools
to reduce the time commitment and to reduce complexity.

While contrasting our experience with the currently held perceptions of scientific
software development, we had the following observations: a) Observations that
agree with the existing literature: i) working on something that the scientists
are interested in is not enough to promote SE practices, ii) maintainability is a sec-
ondary consideration for scientific partners, iii) scientists are hesitant to learn SE
practices, iv) verification and validation are challenging in SC, v) scientists naturally
follow agile methodologies, vi) common ground for communication has always been
a problem, vii) an interdisciplinary team is essential, viii) scientists tend to choose
programming language based on their familiarity, ix) scientists prefer to use plots to
visualize, verify and understand their science, x) early identification of test cases is
advantageous, xi) scientists have a positive attitude toward issue trackers, xii) SC
software should be designed for change, xiii) faking a rational design process for doc-
umentation is advisable for SC, xiv) Scientists prefer informal, collegial knowledge
transfer, to reading documentation, b) Observations that disagree with the ex-
isting literature: i) When unexpected results were obtained, our scientists chose
to change the numerical algorithms, rather than question their scientific theories,
ii) Documentation of up-front requirements is feasible for SC

We present the requirement specification and design documentation for our soft-
ware as an evidence that with proper abstraction and application of “faked rational
design process”, it is possible to document up-front requirements and improve quality.

iii

Acknowledgments
I shall begin with my spiritual master ‘Sai’; I am presenting this work at his lotus

feet. Without his will I would have never accomplished anything in my life including
this Master’s degree.

I would like to thank all the people who contributed in some way to the work
described in this thesis. First and foremost, I would like to express my sincere thanks
and gratitude to my co-supervisor Dr. Spencer Smith for his valuable guidance, mo-
tivation, patience, cooperation and continuous support throughout this program. His
valuable guidance and feedback helped me immensely to improve my knowledge in
the field of study and specifically in writing and documentation. I feel lucky to have
him as my supervisor. It would never have been possible for me to take this work to
completion without his incredible support and encouragement.

Next, I would like to express my sincere gratitude and thanks to my co-supervisor
Dr. Sumanth Shankar for his valuable guidance, patience, financial support and co-
operation with the scientific aspects of this project. I benefited greatly from many
fruitful discussions we had in regards to this thesis. I must not forget to thank him
for believing in me and providing this opportunity to pursue this graduate studies.

I must express my gratitude to Dr. Balamurali Kannan, my husband, for his
continued and unfailing love, support and understanding during my pursuit of this
master’s degree. I am always thankful to him for giving me the liberty to choose
what I desired and pursue my dreams. This master’s would not have been possible
without his support and respect for my life choices.

I must express my gratitude to my mother, Chitra for her support, patience and
hard work in taking care of my son in my absence. I am truly blessed to be her
daughter.

I dedicate this thesis to my son, Ramanathan, who is my pride and joy of life.
I love him more than anything and I appreciate all his patience and support during
mommy’s master’s studies.

I am also thankful to my father, Srinivasan for being my role model in perseverance
and dedication. His support and advices has provided me the strength to overcome
my difficult times. My special words of thanks should go to my brother, Hariharan
for his constant encouragement and invaluable support and humor over the years.

Last but not the least, I would like to thank my grandparents and my maternal
uncle for their help and support throughout my life. These people have played a
major role in encouraging me to pursue my dreams and have been a pillar of strength
for my education. This accomplishment would not have been possible without their
blessings.

iv

Contents

Abstract iii

Acknowledgments iv

1 Introduction 2
1.1 Overview of Case Study . 4
1.2 Methodology . 6
1.3 Overview of SE Methods . 6
1.4 Scope . 7
1.5 Thesis Outline . 7

2 Software Quality and Software Engineering 9
2.1 Software Qualities . 9

2.1.1 Functional Suitability . 10
2.1.2 Performance Efficiency . 10
2.1.3 Compatibility . 10
2.1.4 Reliability . 10
2.1.5 Usability . 11
2.1.6 Security . 11
2.1.7 Maintainability . 11
2.1.8 Portability . 11

2.2 Essential Scientific Software Qualities 11
2.2.1 Verification and Validation . 12
2.2.2 Reproducibility . 12
2.2.3 Reusability . 12

2.3 The Need for SE in SC . 12
2.4 Examples of SE Applied to SC . 14

3 Case Study in Detail 16
3.1 SFS in Detail . 16

v

3.2 SE Practices and Tools in Detail . 19
3.2.1 Selection of SE Practices and Tools 20
3.2.2 SE Practices Applied to SFS 21
3.2.3 Document Driven Design . 21

3.2.3.1 Software Requirement Specification (SRS) 22
3.2.3.2 Module Guide (MG) 24
3.2.3.3 Module Interface Specification (MIS) 26
3.2.3.4 Code . 28
3.2.3.5 Software Testing . 29

3.2.4 Faked Rational Design Process 29
3.2.5 Design for Change . 30

3.2.5.1 Piecewise Module . 32
3.2.5.1.1 MG of Piecewise Data Structure Module 35
3.2.5.1.2 MIS of Piecewise Data Structure Module 35
3.2.5.2 Temperature module 38
3.2.5.2.1 Module Guide of Temperature Module 40
3.2.5.2.2MIS of Temperature Module 40

3.3 Regression Testing . 43
3.4 Task based inspection . 44
3.5 Git and Issue Tracker . 44

4 Learning and Observations 46
4.1 Attitude . 46
4.2 Scientific Computing . 51
4.3 Software Engineering . 52
4.4 Numerical Methods . 59

5 Myth Busted 62
5.1 Literature on Upfront Requirement Specification 62
5.2 Requirement Specification for SFS . 63
5.3 Design for Change in the MIS for SFS 67
5.4 Guide towards Requirement Specification 69

6 Feedback on SE Tools and Techniques 70
6.1 Methodology . 70

6.1.1 Pre-development Interview . 70
6.1.2 Post-development Interview 71

6.2 Scope . 71
6.3 Feedback . 72
6.4 Summary . 76

vi

7 Conclusions 77
7.1 Thesis Summary . 77
7.2 Future work . 80

7.2.1 Future works related to SFS 80
7.2.2 Future works related to the case study 81
7.2.3 Recommendations for Scientists developing software 82

Bibliography 83

A Presentation: A Case Study to Develop Scientific Software 92

B SRS: Software Requirement Specification 107

C Task based inspection: Task List for Scientists - SRS review 145

D Code for SFS 154
D.1 Temperature Module . 154
D.2 Piecewise Module . 164

E Pre-development Interview 173

F Guide for developing SC Software 178

vii

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

1

Chapter 1

Introduction

Scientific Computing (SC) is the collection of tools, techniques, and theories required
to computationally solve mathematical problems in science and engineering [22]. Ex-
amples of typical scientific computing software are CMAQ (Community Multi-scale
Air Quality Model) [3], and SEDA (Statistical Earthquake Data Analysis) [47]. SC
software has gained importance in the last three decades, moving science “from test
tubes into silicon-based simulation” [91]. According to Ahmed and Zeeshan [4], SC
software is used for “processing, analyzing, visualizing, managing, sharing, experi-
menting and in some cases even generating new raw data”. SC provides scope for
research in otherwise impossible conditions [71], such as simulation of a nuclear ex-
plosion. SC software has a crucial role in scientific research.

The results from SC software are often used in fields such as nuclear engineering,
medicine, climate predictions and the military [15, 38, 66]. For example, in simu-
lations of nuclear weapons, code is used to determine the impact of modifications,
since these weapons cannot be field tested [61]. At the same time, even small soft-
ware, faults such as one-off errors, have caused the loss of precision in seismic data
processing programs [23]. Considering the societal impact of SC applications, it is
critical to ensure that the SC software is faultless and of the highest quality. Ac-
cording to [19], “there is a growing concern about the reliability of scientific results
based on ... software”. Several highly influential articles had to be retracted and more
than five years of work was lost as a result of a trivial programming error in a previ-
ous researcher’s work [52]. NIST (National Institute of Standards and Technology)
claims that software bugs, or errors, are highly prevalent and detrimental, that they
cost the U.S. economy an estimated $59.5 billion annually, or about 0.6 percent of
the gross domestic product” [54]. “The time and effort needed to fix errors increases
exponentially the later they are identified” says Alden and Read [5]. Hence, it is
critical to pay attention to the quality of applications by detecting and eliminating
errors as soon as they are identified.

2

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

As mentioned earlier, there is a growing concern about the quality of SC software.
A few areas of concern include testability, reproducibility and reusability. The need
to improve testability has been highlighted by Kanewala and Bieman [36] in their re-
cent article, which says “Scientific software presents special challenges for testing due
to the characteristics of the scientific software and the cultural differences between
scientist developers and software engineers”. The need for improving reproducibil-
ity for SC software is increasingly recognized, with various conferences, workshops
and individuals calling for change [6]. Mozilla Science Lab is running an experiment
by reviewing selected pieces of code from published papers in computational biology,
with the aim to improve the quality of researcher-built software. According to Kaitlin
Thaney, the Lab director of Mozilla [25], “Scientific code does not have that com-
prehensive, off-the-shelf nature that we want to be associated with the way science is
published and presented”. The problems with reproducibility are also highlighted by
a recent study of the code for 402 computer systems papers in which only 48.3% of
the code was both available and compilable [12]. It is evident that, there is room for
improvement in the current approach to developing SC software.

The primary goal of our research is to improve the quality of SC software. Ac-
cording to Roy [64], the alarming results about the reliability of scientific software in
a case study conducted by Hatton [23, 24] highlight the need for employing good SE
practices in SC. Developers of scientific software usually perform validation to ensure
that the scientific model is precisely applied to the physical phenomena of interest [37],
using primarily mathematical analyses [61]. But they rarely perform systematic test-
ing to identify faults in the code [30, 38, 41]. These points create a strong demand to
have a process to develop scientific software, where the process improves the quality
aspects like verifiability, reproducibility, reusability, and maintainability.

In a previous attempt by Smith et al. [74] to improve the quality of SC appli-
cations, five different SC applications were redeveloped by adopting a development
process inspired by SE. It was observed that the original developers of SC software
see the value of applying SE practices and principles for SC, but felt that it was too
much work to document the requirements and design. However, this study had limi-
tations because the scientists were not involved in the software development process.
To overcome this, it is necessary to engage the scientists in the software development
from the start and obtain feedback from them. This would provide an alternate in-
sight in improving the software quality from scientists’ perspective. In this thesis,
we plan to accomplish this by conducting another case study where we develop a SC
software using approaches from SE, but this time involving the scientists from the
beginning of the development process, and then we will obtain their feedback on the
use of SE principles and practices.

We began by searching for a suitable project to be the case study for our ex-

3

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

periment. We decided on taking up a project in mechanical engineering because of
availability and as well as the requirements of the project aligned with our expec-
tations. A brief overview of the case study is given in section 1.1. We completed a
literature survey in parallel, to learn the conventional wisdom on applying SE meth-
ods to SC software for improving the quality of scientific software. From the results
of the survey, we chose the SE approaches that we thought would be suitable for
solving this particular SC problem. At that point, we realized that there are various
perceptions in applying SE to SC. While applying the SE practices to our case study,
we also analyzed the accuracy of those perceptions surrounding the application of
SE to SC. In this thesis, we present the feedback from the scientist on applying SE
principles and practices to SC. Also, our findings on the accuracy of the common
perceptions about applying SE into SC are presented. We strongly believe that the
findings of this study will have a significant impact on the attitude towards developing
SC software and improving the quality of the same.

1.1 Overview of Case Study
To analyze the common perceptions in applying SE to SC, we needed a scientific
or engineering problem that had a significant scope for software development, while
still being small enough to develop within a reasonable time frame. We selected Dr.
Shankar’s research on solidification and casting of alloys in the mechanical engineering
department at McMaster University. After a brief discussion with him, we found that
there was significant scope for software development in his research for the CleanMag
project for Haley Industries.

The software is named SFS (Software for Fraction Solid) and was developed as
part of scientific research aimed at reducing the defect ratio by predicting the fraction
solid during the solidification of an alloy. The role of SFS in Dr. Shankar’s research
is to simulate the solidification of the aircraft component being manufactured by a
casting process. The main objective of his project is to use the solid fraction output
from SFS to predict the quality of the aircraft parts and if necessary, change the
parameters of the casting to decrease the defect ratio.

The typical experimental setup for SFS data is shown in figure 3.1. The main
elements are the mold containing the molten metal and the water jet under the mold
to provide unidirectional heat extraction. The thermocouples are inserted at various
locations in the mold to record the temperature. A DAQ (Data Acquisition System) is
used for collecting the data from the thermocouples. This data will act as input data
for SFS. This temperature versus time data is then processed and used for calculating
the solid fraction.

SFS was developed by me (one developer) in Python3 under the guidance of

4

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

Figure 1.1: Typical experimental setup of SFS

Dr. Smith and consists of several thousand lines of code. When we started to develop
SFS, the science was not worked out entirely and was expected to evolve with the
software prototype. The backbone of SFS was to predict the temperature throughout
the time domain and at all locations between the thermocouples. We used standard
numerical methods such as regression, interpolation and ODE solvers from Python
to accomplish the task of finding the temperature across the cylinder.

Previously, Dr. Smith had conducted multiple case studies where the existing sci-
entific software was re-developed using SE principles and document-driven approach.
He has shown success in improving the quality of the scientific software being rede-
veloped. However, this study is significantly different from the earlier studies since
we developed the software from scratch with the involvement of the scientists from
the beginning of the project. Periodic meetings were organized for software and doc-
ument review, and we had ample communication with the scientists throughout the
software development phase.

5

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

1.2 Methodology
The primary goal of the methodology is to firm a measurable process to conduct
the case study. The results from the process can be used to list the successful and
unsuccessful SE approaches of our case study. To accomplish this, the following tasks
have been undertaken systematically.

1. Select the SC problem to be our case study and identify a partner to be involved
in the software development process.

2. Interview the scientist before the development of the software, with a goal to
understand their specialization, coding skills and exposure to SE practices. The
details related to pre-development interview is given in section 6.1.1.

3. Analyze the nature of the SC problem and choose the list of suitable SE practices
and tools from literature. The details related to the choice of the SE practices
and tools is given in section 3.2.1.

4. Develop the software using SE practices and tools identified from the literature.
(The SE methods are listed in section 1.3)

5. Involve the scientists throughout the software development process via docu-
ment reviews and periodic meetings. We also introduced software tools, such
as an issue tracker, to facilitate better communication.

6. Interview the scientists after the development of SFS to collect their feedback
on the application of SE tools and practices adopted in our case study. We used
this information to assess their attitude towards SE for SC. The details related
to post-development interview is given in section 6.1.2.

The primary goal in collecting feedback is to identify the SE approaches which
work, and those that do not. We also looked for potential modification to improve
the adoption of SE in SC going forward.

1.3 Overview of SE Methods
As suggested by Parnas and Clements [57], we followed the “Fake Rational Design
approach” to develop SFS. The basic principle behind the “Fake Rational Design
approach” is to develop the software from the beginning and prepare the documents
as if the software was developed in a rational approach. This method has various
advantages such as improved understanding, ease of review etc.

6

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

To assist in version control, we used Git, which is a distributed version control
system and source code management system. It offers easy branching and merging,
which allows one to sandbox features and ideas until they are ready for the main-
stream. Git also offers a perfect staging area to organize the changes for each commit.
It is fast and inexpensive, which makes it suitable for personal projects too.

The issue tracker in Gitlab was used for communication and task management
between people involved in software development. It offers a platform for assigning
and reporting bugs and sharing documents related to a specific task. It provides a
proper work-flow management through notifications. Each issue can be assigned to
an individual, thereby improving accountability. All the issues are located in one
shared, central location making them easier to locate.

To conduct document reviews, we used “Task-directed inspection”, suggested by
Kelly and Shepard [39]. In this approach, every scientist involved in the project was
presented with a set of tasks. The difficulty level of the task was kept minimal to
make the inspection process easier. The task-list included questions such as “Please
read section 5.1 and let us know if the equations used are balanced in terms of units”.
Each task was listed as an issue and was assigned to the scientists. The scientists had
to respond to that issue and close it.

1.4 Scope
This study aims at collecting feedback from the scientists and identifying the suc-
cessful and unsuccessful SE approaches for our case study. This study has certain
limitations discussed below.

• Since the scientists were involved from the start, there is a possibility of bias on
their feedback.

• Even though it is a detailed case study, we used only one SC software (SFS) to
cover a vast area of research.

1.5 Thesis Outline
This thesis is organized into six (6) chapters. We introduce the essential qualities
of a SC software, the role of SE in improving the qualities and the history of SE in
SC in chapter 2. In Chapter 3, we discuss the case study in detail with background
information about SFS and the list of SE principles and practices applied in developing
SFS. In Chapter 4, we present our learnings and observations from applying the SE
principles and practices to develop SFS. While developing SFS using SE inspired

7

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

approaches, we realized that one of the perception around upfront requirements for
SC was a myth. We present our arguments in chapter 5 against why we feel it is a
myth that upfront requirements are not possible for SC. In chapter 6, we present the
feedback of the scientists about SE tools and practices. In chapter 7, we summarize
the thesis and discuss the future works in relation to both SFS and SE principles and
tools applied to SC. Some of the software artifacts developed during this case study
and a guide for developing a SC software based on our experience have been included
as appendices.

8

Chapter 2

Software Quality and Software
Engineering

In this chapter, we lay out a foundation for understanding the essential qualities of
a SC software and ways to improve it. Firstly, we describe the qualities that are
important for any general purpose software. Secondly, we identify and define the
qualities which are crucial for SC. Thirdly, we demonstrate the need for SE in SC
and finally we present some of the examples where SE is applied to SC.

2.1 Software Qualities
In many cases, the developers of scientific software are ‘professional end user develop-
ers’ who are research scientists working in highly technical, knowledge-rich domains,
developing software to further their professional goals [68]. This is due to the complex
science behind the software, which the professional software developer, who has only
computer science or an SE background, may fail to understand. Typically professional
end user developers have little or no education or training in SE [71]. With this group
of professional end user developers, especially given the importance of the software
they are writing and its societal impact, we need to have clear quality standards.

According to the quality model of ISO 25010 [34], software quality is described as
a structured set of eight characteristics namely - functional suitability, performance
efficiency, compatibility, reliability, usability, security, maintainability and portability.
To facilitate better understanding, the characteristics mentioned above are explained
in detail, mostly following the ISO definitions [34].

The figure below summarizes the list of characteristics of the quality of a software
product. A detailed definition of all the sub-characteristics of each quality character-
istic can be found at [34].

9

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

Figure 2.1: Software quality: Characteristics and sub-characteristics [34]

2.1.1 Functional Suitability
Functionality is a characteristic that describes the degree to which the software prod-
uct satisfies the user’s requirement. It can be further characterized into completeness,
correctness and appropriateness.

2.1.2 Performance Efficiency
This characteristic emphasizes the efficient utilization of resources. This character-
istic is composed of three sub-characteristics namely time, resource utilization and
capacity.

2.1.3 Compatibility
The degree to which a product, system or component can exchange information with
other products, systems or components, and perform its required functions while
sharing the same hardware or software environment. This characteristic is composed
of two additional sub-characteristics namely co-existence and interoperability.

2.1.4 Reliability
The degree to which a system, product or component performs specified functions
under specified conditions for a specified period. This characteristic is composed of
the four sub-characteristics namely maturity, availability, fault tolerance and recov-
erability.

10

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

2.1.5 Usability
This characteristic represents the degree to which a software can be used effectively
by the user and achieve satisfaction in the context of usage. This can be further
classified into six sub-characteristics: recognizability, learnability, operability, user
error protection, user interface aesthetics and accessibility.

2.1.6 Security
The degree to which the software gives access to appropriate data and blocks inap-
propriate data access. This is achieved with the help of different data authorization
levels for different users of the software. This characteristic is composed of five sub-
characteristics namely confidentiality, integrity, non-repudiation, accountability and
authenticity.

2.1.7 Maintainability
This characteristic represents the degree of effort which the software requires to sup-
port for modifications and changes due to corrections and adaptations with respect
to change of requirements and environment. This characteristic is composed of five
sub-characteristics: modularity, reusability, analysability, modifiability and testabil-
ity.

2.1.8 Portability
This defines the degree of efficiency with which the software can be transferred be-
tween different hardware or different operating environments. This characteristic is
composed of the following sub-characteristics: adaptability, installability and replace-
ability.

2.2 Essential Scientific Software Qualities
The software qualities listed above are not tailored specifically for SC. Hence it is
necessary to prioritize the list of qualities that are crucial for SC. In [43], the authors
propose that characteristics such as maintainability, portability and reliability are
important for a SC application. In addition to the list of qualities mentioned in the
article [43], the authors of [75], have identified five (5) additional qualities that are
essential: verifiability, validatability, usability, reusability and reproducibility.

11

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

Based on the suggestions in the articles mentioned above and the needs of our
project, the list of qualities, which we consider essential for SC are maintainabil-
ity, portability, reliability, verifiability, validatability, usability, reusability and repro-
ducibility. Several of these are already defined in sections 2.1.7, 2.1.8, 2.1.4 and 2.1.5.
The remaining qualities (verifiability, validatability, reusability and reproducibility)
are defined below.

2.2.1 Verification and Validation
In a SC context, verification means “solving the equations right” and validation is
“solving the right equation” [75]. The degree of efficiency and effectiveness with which
verification and validation can be carried out are called verifiability and validatability.

2.2.2 Reproducibility
Reproducibility is the ability of the software to produce identical results when the
code is rerun in the future, possibly through an independent third party [14].

2.2.3 Reusability
Reusability is the degree to which existing assets such as code, test suites, designs and
documentation can be used in some form in the creation of software systems rather
than building software systems from scratch [45].

2.3 The Need for SE in SC
In the past, many attempts have been made to improve the quality of SC applications
because of their huge societal impact. SE, from its end has offered tools and techniques
to improve the quality of a SC software. However, they are not used properly because
learning and employing SE principles and practices has a nontrivial learning curve
and most of the SC applications are developed by end user developers [68] who do
not have any SE background. In addition to this, application of SE principles and
practices demands an upfront effort to create the software artifacts and some people
believe that structured SE methods are not worth the effort [84].

In a case study conducted by Carver et al [10], the author mentioned that “scien-
tists do not view rigid, process-heavy approaches, favorably and prefer agile method-
ologies”. This means that some software development approaches, such as a document-
driven approach, which are plan based, are not preferred by end user developers. As an
example from a scientific software developer, Roache [63, p. 373] considers reports for

12

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

each stage of software development as counterproductive. Another argument against
using a rational process, where software is derived from precise requirements, centers
around the opinion that, in science, requirements are impossible to determine up-
front, because the details can only emerge as the work progresses [10, 17, 35, 69, 71].

Even though end user developers do not view structured SE approaches favorably,
there is evidence in the literature that these approaches improve the quality of SC
applications. For instance, the article [79] shows that the quality of statistical soft-
ware for psychology is generally improved when developers use the structured CRAN
(Comprehensive R Archive Network) process and tools, versus an ad hoc process. A
case study described in the article [75], highlights the value of proper documenta-
tion by redeveloping nuclear safety analysis software. Twenty seven (27) worrisome
documentation problems were found, including incompleteness, ambiguity, inconsis-
tency, verifiability, modifiability, traceability and a lack of abstraction. Emphasizing
the importance of documentation in the development of scientific software, Chilana
et al. [11], Dubey et al. [16] and Fangohr et al. [18] argue that the developers of SC
software keep changing throughout the project, as people join and leave the group,
making documentation crucial for SC software. A redevelopment experiment with five
existing projects [74] enabled the code owners (as ascertained through interviews) to
clearly see the value of documentation. However, mirroring other studies [10], the
code owners felt documentation takes too much time.

In article [19], the author observes “growing concern about the reliability of scien-
tific results based on ... software”. Similarly, embarrassing failures have occurred, like
a retraction of derived molecular protein structures [52], false reproduction of sono-
luminescent fusion [60], and fixing and then reintroducing the same error in a large
code base three times over 20 years [51]. Typical SC software has a long lifetime [61]
and long-term maintenance of a SC software is prohibitively expensive [1]. It is evi-
dent that there is a growing need to concentrate on maintainability and reusability
of SC software.

In an experiment run by the Mozilla Science Lab, software engineers have reviewed
selected pieces of code from published papers in computational biology with the aim
to improve the quality of researcher-built software. According to Kaitlin Thaney,
the Lab director of Mozilla [25], “Scientific code does not have that comprehensive,
off-the-shelf nature that we want to be associated with the way science is published
and presented”. This clearly highlights that there are problems with respect to re-
producibility of published SC applications. A similar issue is highlighted in a recent
study of the code for 402 computer systems papers where only 48.3% of the code
was both available and compilable [12]. Although reproducibility is the cornerstone
of the scientific method, until recently it has not been treated seriously in software
[7]. Reproducibility problems are even more extreme when the goal is replicability.
A third party should be able to repeat a study using only the description of the

13

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

methodology from a published article, with no access to the original code or comput-
ing environment [7]. However, replicability is rarely achieved, as shown for microarray
gene expression [32] and for economics modelling [33]. In the recent years multiple
conferences, workshops and individuals are calling for dramatic change [6] in address-
ing the problem of reproducibility. For instance, in the article [59], the author claims
that the source code must be published along with scientific publications to improve
the reproducibility of the software.

A recent report on directions for SC software research and education states:
“While the volume and complexity of [SC software] have grown substantially in re-
cent decades, [SC software] traditionally has not received the focused attention it so
desperately needs ... to fulfill this key role as a cornerstone of long-term collaboration
and scientific progress” [65]. The community of SC software is finally realizing that
current practices are not enough to improve the quality of SC applications and that
their software development approach needs to be reformed.

To encourage the end user developers to learn and apply SE practices and prin-
ciples, Wilson [90] and Messina [50], organized a workshop to train the end user
developers in necessary software skills so that they can use SE methods while devel-
oping SC software to improve the quality of SC applications. Educating the scientists
proved to be a successful approach. A recent proposal on future directions for SC
software research and education [65] recognizes the desperate need for change - in-
corporating SE in SC. The leaders of SC software recognize that an interdisciplinary
approach provides the path forward. They believe that the solution to improve the
quality of SC software is applying, adapting and developing SE methods, tools and
techniques. However, typical software processes are a barrier to progress. “To break
the gridlock, we must establish a degree of cooperation and collaboration with the
[SE] community that does not yet exist” [19]. “There is a need to improve the transfer
of existing practices and tools from ... [SE] to scientific programming. In addition, ...
there is a need for research to specifically develop methods and tools that are tailored
to the domain” [82].

2.4 Examples of SE Applied to SC
SE is defined as “an engineering discipline that is concerned with all aspects of soft-
ware production” [81]. Other notable definition for SE is given by IEEE [86] where
SE is defined as “the systematic application of scientific and technological knowledge,
methods and experience to the design, implementation, testing, and documentation
of software”. The primary goal of SE is to build software while minimizing defects,
complexity and managing qualities like verifiability, usability, maintainability, avail-
ability, reliability and other quality attributes of the software.

14

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

SC applications are usually developed by scientists who are guided by the impetus
to prove a scientific hypothesis. Scientists value the software according to its progress
in scientific research and do not typically validate the software until an error affects
the accuracy of results [70]. The authors of [61, 64] suggest that the quality of SC
software can be improved by the use of standardized SE practices. The following are
a few key examples from literature which demonstrate the need for SE principles and
practices to improve the quality of SC software.

• According to Greg Wilson [56], Many scientists and engineers spend a lot of
time in writing, debugging, and maintaining software; but only a handful have
been taught how to do this effectively: Usually, after a couple of introductory
courses, they are left to rediscover (or reinvent) the rest of programming on
their own. This resulted in them having very little idea on the reliability and
accuracy of the programs written by them.

• There is a common perception among scientists that requirements can be dis-
cussed verbally rather than documenting properly [69] due to which testing
becomes difficult as there is no written information available to verify the ful-
fillment of the requirements [69, 70].

• According to Post and Kendall [61], the development of SC software requires
good project management, risk identification, software quality engineering, val-
idation, and verification.

• In [27], the authors describe an approach to simplify the development of sci-
entific applications by designing tools, applying domain engineering concepts,
and using domain-specific modelling, which are modern software engineering
methods for automating software development.

• In [44], the authors use software quality models as a tool for the quantitative
assessment of attributes that affects the quality at each stage of software devel-
opment.

• In the article [28], the authors state that automation of tasks was followed in
the Trilinois project to improve maintainability.

The above references from the literature makes it clear that adopting SE principles
and practices is a way to improve the quality of the SC applications. This is also
emphasized in [44], where the author has discussed a detailed literature summary of
related works in this field.

15

Chapter 3

Case Study in Detail

In this chapter, we present the details about the case study. This chapter is organized
into two broad sections. In the first section, we will see the details about the project
and in the second section, we will discuss the SE practices applied.

3.1 SFS in Detail
Haley Industries is a Canadian company that manufactures lightweight metal cast-
ings for use in aerospace and specialized engineering applications [85]. Dr. Sumanth
Shankar, a professor in the Department of Mechanical Engineering at McMaster Uni-
versity is working on a project called “CleanMag (Magnesium Cleaning)” to decrease
the defect ratio of the aircraft parts manufactured by Haley Industries. SFS is part
of the CleanMag project. SFS predicts the nature of solidification in the castings
based on the operating conditions before the actual casting takes place. The input
data for the software was obtained from the experiments and trials conducted at both
McMaster University and at Haley Industries.

The experiment was devised with a cylinder made of a sand mould with a cavity
whose dimension ensure approximately unidirectional heat removal. This experiment
helps in understanding the solidification process. The liquid metal alloy is poured
into the sand cavity. During solidification, heat is given out from the liquid phase to
form a solid. During this process, the alloy undergoes a phase transition from liquid
to 2 phase (solid + liquid) and finally to solid. In this project, software is developed
to estimate the fraction of solid present in the 2 phase zone. This data can then
be used to characterize the solid fraction as a function of temperature and rate of
cooling. The typical experimental setup is shown in Figure 3.1.

The experimental setup has the following components:

1. Sand mould: This acts as the container into which the metal alloy is poured.

16

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

Figure 3.1: Experimental setup for cooling a liquid metal alloy

2. Thermocouples: These act like thermometers that record the temperature with
respect to time. Many thermocouples are placed across the cylinder at different
locations. They are fixed inside the sand mould so that they have contact with
the metal alloy to avoid any error during temperature measurement. They are
represented in Figure 3.1 by the label ‘Ti’, where i is the thermocouple number.

3. Water jet: The water jet is present at the bottom of the cylinder to aid in the
cooling process and to facilitate 1D heat transfer.

4. Cavity: There is a cavity in the sand mould into which the molten metal alloy
is poured.

Typical representation of data for an alloy from a single thermocouple is shown
in Figure 3.3. When the molten alloy is poured into the cavity, the temperature of
the thermocouple begins to raise from room temperature to the actual temperature
of the alloy as shown in the Figure 3.2.

For computation of fraction solid, we consider the data only from the maximum
temperature and remove the extraneous data that accompanies the filling of the sand
mold. Therefore, the data begins at the maximum temperature. It consists of three

17

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

Figure 3.2: Typical data from a thermocouple including the extraneous data from
the time of pouring the alloy

different zones, namely solid zone, liquid zone and 2 phase zone (solid + liquid),
and important points in the data signifying solidification phenomena. Understanding
solidification involves identifying the points at which the elements present in the alloy
start and finish solidifying. These points are called liquidus, eutectic and solidus
points and are marked in the zoomed view of the data as shown in Figure 3.3.
The liquidus point occurs at the temperature where solids first start to form. It is
represented by a sudden change in curvature of the cooling curve. A eutectic point
is when the rate of energy leaving the material matches the rate of energy entering
through solidification. At the eutectic point the temperature remains constant until
all of the material has solidified. The solidus temperature specifies the temperature
below which a material is completely solid.

Before the start of solidification, marked by liquidus point, the fraction of solid is
zero and after the end of two phase zone marked by solidus point, the fraction solid
is 1. The fraction solid is obtained by solving the following ODE:

ḟs(fs, t) = Cv(fs)
Lρ(fs)

[
∂T (t)
∂t
−α(fs)∂

2T (t)
∂y2

]

L is the specific latent heat for a particular substance (Jkg−1).

18

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

Figure 3.3: Typical cooling in a binary alloy with liquidus, solidus and eutectic
points identified ([46])

Cv(fs) is the volumetric heat capacity in the two phase zone (J/(m3 ◦C)).

α(fs) is the thermal diffusivity in the two phase zone (m2/s).

ρ(fs) is the density of the alloy in the two phase zone (kgm−3).

T (y, t) is the function which returns temperature at any time t and location y,
from which ∂T

∂t and ∂2T
∂y2 can be derived, as required.

The derivation of this equation is provided in the requirements documentation for
SFS. The requirements will be discussed further in section 3.2.3.1. A typical output
from SFS for the fraction solid with respect to time are shown in Figure 3.4. The
starting time in the plot (58 seconds) represents the liquidus point which is the time at
which solidification starts (fs = 0 before liquidus point). The end time (72 seconds)
represents the solidus point which marks the end of two phase zone, beyond which
fraction solid is 1. The solid fraction does not reach 1 because of some issues with the
calibration of the sensors. Since the emphasis of this thesis is on SE, not the science
of solidification, the details of the input data will not be explored further here.

3.2 SE Practices and Tools in Detail
In this section, we describe some of the software engineering practices applied during
the development of SFS and discuss the reason for selecting those SE practices and
tools.

19

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

(a) Fs vs time (seconds) at 17mm (b) Fs vs time (seconds) at 18mm

Figure 3.4: Typical output from SFS

3.2.1 Selection of SE Practices and Tools
Here we describe the nature of SC problem related to this case study and provide
reason for choosing some of the critical SE practices and tools used for developing
SFS. We collected ample information on the SC problem during initial discussion and
the pre-development interview. Based on this information and through an extensive
literature survey, following SE practices have been selected for our case study.

1. Design for change: The science and the mathematics behind the software was
still in the exploratory phase. Hence, changes are inevitable at any point during
the development phase. To support for changes during the development, we
adopted “Design for change”, which is based on designing a software anticipating
changes. This is explained in detail in section 3.2.5.

2. One of the primary requirements of SFS was to fit the temperature versus
time data and various approaches were suggested to fit the data. Hence, it
was obvious that trial and error experiments will be necessary to choose the
most suitable method. To accommodate the trial and error experiments, we
decided to use “Regression testing”. It provides a way to evaluate different
numerical techniques used in the trial and error experiments. This is explained
in section 3.3.

3. SFS will be used for a longer period of time and may be interfaced with existing
software to automate the input of material properties. Hence, maintainability is
critical for SFSand we adopted a “Document driven design” to support for the
maintainability requirement of SFS. The details of this approach is discussed in

20

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

section 3.2.3. However, we combined it with “Faked rational process design”
because the mathematics and the scientific aspects of the software were yet
to be finalized. Therefore, we presented the documents as if we followed a
typical document driven design, even though we accommodated changes when
necessary. This is explained in section 3.2.4.

In addition to the above mentioned SE practices, we also used other SE practices
and tools which is explained in detail in section 3.2.2.

3.2.2 SE Practices Applied to SFS
The following SE practices and tools were applied during the development of SFS.

1. Document Driven Design

2. Faked rational process design

3. Design for change

4. Regression testing

5. Task based inspection

6. Issue tracking

7. Git

3.2.3 Document Driven Design
Document-driven design is a software development methodology in which a document
is produced at every phase such as requirement analysis, design, implementation,
testing and maintenance of the software development cycle. This document acts as
the driving force for the next stage. The document produced at each phase serves as
a means to collaborate with the project team members.

In this case study, we followed a document driven approach, which means that
every stage of the software development has a document associated with it. Each
of these documents represents each stage in an ideal waterfall model. The list of
documents we produced during the development of SFS includes SRS (Software Re-
quirement Specification), MG (Module Guide), MIS (Module Interface Specification)
and the code. The main purpose of each document along with suitable examples from
the case study are presented below.

21

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

3.2.3.1 Software Requirement Specification (SRS)

This is the first step in the software development process. The aim is collecting the
set of functionalities or requirements that the software must accomplish. The SRS
is a document that clearly and precisely describes each of the essential requirements
(functions, performance, constraints and quality attributes) of the software and exter-
nal interfaces [31]. This step is important because many developers consider that the
SRS helps in improving the qualities [80] mentioned in section 2.1. As an example,
we present the table of contents in Figure 3.5 and discuss the important sections of
the SRS which we developed for this case study.

To create the SRS for SFS, we followed a standard template suggested in [77, 78].
The SRS has the following sections: reference material, introduction, background,
general system description, specific system description, requirements, likely and un-
likely changes. The contents of each section are explained briefly.

Reference material
This is the first section of the SRS and it records information for ease of ref-
erence. The information contained in this section includes the table of units,
table of symbols and the list of abbreviations and acronyms used in the SRS.

Introduction
This section gives a brief introduction to the scientific problem being discussed.
It describes the primary purpose of the SRS document, its scope and the in-
tended readers. This section also provides a road map to the organization of
the SRS.

Background
This section provides a brief explanation about the scientific information nec-
essary to understand the problem being discussed. The aim is to provide the
readers of the SRS with essential background information for the problem under
consideration.

General System Description
In this section we describe the general information about the system, identify
the interfaces between the system and its environment, and describe the user
characteristics and the system constraints. Some of the information presented
in section 3.1 is also a part of this.

Specific System Description
This section presents the problem description, which gives a high-level view of
the problem to be solved. This is followed by the solution characteristics spec-
ification, which presents the assumptions, theories, definitions and finally the

22

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

1. Reference Material: a) Table of Units b) Table of Symbols c) Abbreviations
and Acronyms

2. Introduction: a) Purpose of Document b) Scope of Requirements c) In-
tended Audience d) Organization of Document

3. Background

4. General System Description: a) System Context b) User Characteristics
c) System Constraints

5. Specific System Description:
a) Problem Description: i) Terminology and Definitions ii) Physical System
Description iii) Goal Statements
b) Solution Characteristics Specification: i) Assumptions ii) Theoretical
Models iii) General Definitions iv) Data Definitions v) Instance Models
vi) Data Constraints vii) Properties of a Correct Solution

6. Requirements:
a) Functional Requirements: i) Configuration Mode ii) Calibration Mode
iii) Calculation Mode
b) Non-Functional Requirements: i) Look and Feel Requirements ii) Usabil-
ity and Humanity Requirements iii) Installability Requirements iv) Per-
formance Requirements v) Operating and Environmental Requirements
vi) Maintainability and Support Requirements vii) Security Requirements
viii) Cultural Requirements ix) Compliance Requirements

7. Likely Changes

8. Unlikely Changes

9. Supporting Information

Figure 3.5: Table of Contents for SRS

23

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

instance models that models the scientific problem being solved. Some of the
important contents of this section are the goal statements, data definitions and
the instance models. For instance, the goal statement (G1) from our SRS is
presented below.

For a given experiment with a metal alloy, using the thermocouple locations,
temperature readings, material properties and initial conditions,
G1: SFS computes the solid fraction (fs) as a function of temperature and

cooling rate (fs(T, dT
dt)).

Other parts of this section such as data definitions, instance models etc are
discussed throughout this thesis.

Requirements
This section provides the functional requirements, the business tasks that the
software is expected to complete, and the nonfunctional requirements, the qual-
ities that the software is expected to exhibit. Some of the requirements of the
SFS are presented in section 5.1 of this thesis and readers are encouraged to
read section 5.1 to get a feel of the functional requirements of SFS.

Likely and Unlikely changes
This section records the information about possible changes in SFS. This is
essential for creating a good design of the software which is discussed in detail
in section 3.2.5. Likely changes are anticipated and the software is designed to
support them to improve maintainability. The unlikely changes are considered
to be so significant that they would fundamentally change SFS. If these changes
become necessary, significant changes will be necessary for the SRS, subsequent
documents and the code. Some of the anticipated changes are presented in
3.2.5.

The SRS of SFS is available as part of appendix to this thesis (B). Readers are
encouraged to read the SRS for a complete overview of the software discussed in this
project.

3.2.3.2 Module Guide (MG)

This is a document produced during the design of the software. Software design
involves decomposing the software into modules, where the definition of a module
adopted here is a “work assignment” [55]. The Module Guide (MG) gives the sum-
mary of what the modules are intended to do and the relationship between them [80].

24

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

The primary purpose of developing the MG is to improve the maintainability of the
software. This is based on the principle of ‘abstraction’ which allows both designers
and maintainers of the SFS to easily identify the parts of the software that they want
to consider for modifications or additions without needing to know the unnecessary
complex details.

The design of the MG follows the rules layed out by [58], as follows:

• System details that are likely to change independently should be the secrets of
separate modules.

• Each data structure is used in only one module.

• Any other program that requires information stored in a module’s data struc-
tures must obtain it by calling access programs belonging to that module.

The module decomposition of SFS is presented in Table 3.1 to give an overview of
the modules of SFS contained in the MG document.

Each module has four (4) fields. The Secrets field in a module decomposition is a
brief statement of the design decision hidden by the module. The Services field spec-
ifies what the module will do without documenting how to do it. For each module,
a suggestion for the implementing software is given under the Implemented By title.
If the entry is OS, this means that the module is provided by the operating system
or by standard programming language libraries. If the entry is Python, this means
that the module is provided by Python. SFS means the module will be implemented
by the SFS software. As an example, one of the modules from the MG of SFS is
presented below.

Parameter Specification Module ()
Secrets: Constants used by SFS.

Services: Stores the parameters needed for the program, including material proper-
ties, processing conditions and numerical parameters. The values can be read
as needed. This module knows how many parameters it stores.

Implemented By: SFS

The module information about the other important modules of SFS are discussed
in section 3.2.5.

25

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

Level 1 Level 2
Hardware-Hiding Module

Behaviour-Hiding Module

Control
Input
Configuration
Experiment
Parameter Specification
Temperature
Identify Points
Calculation
Load
Output Verification
Output

Software Decision Module
Interpolation
Piecewise Data Structure
Sequence Services
Interpolation
Linear Regression
ODE Solver
Plot

Table 3.1: Module Hierarchy

3.2.3.3 Module Interface Specification (MIS)

This is another design document that we produced as part of a document driven
design. In the previous section (3.2.3.2), we presented the MG, which lists the mod-
ules in SFS. However, the information presented in the MG is not enough for each
module to be implemented independently. The syntax and semantics of the access
routines for each module are still needed [80]. The MIS aims at describing the syntax
and semantics of each module listed in MG, but does not mention how they will be
implemented. The structure of the MIS is adapted from the template proposed in
[29] and ideas from [57], with the addition that template modules have been adapted
from [21]. The MIS consists of the following sections:

• Syntax: The syntax of the MIS for each module documents the imported and
exported data types and the exported access programs. These access programs
act as the interface, which remains stable with any changes in the internal
design.

26

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

• Semantics: The semantics of the MIS for each module gives the information
about how the state of the module and its output will change depending on the
current state and the provided input.

• State Variables: The state variables of each module is used to give a memory
to the module. Some of the modules also have state invariant section, which
represents the property that holds true, at all time, for the state variable under
consideration.

• Access Program Semantics: This section represents the semantics of each
access program present in the module. It contains three (3) sections namely:
Output, Transition and Exception.

• Assumptions: This section lists the assumptions governing the use of the
module. For instance, “init() must be called before any other access program is
used”.

The MIS of the module presented as example in section 3.2.3.2 is presented here to
ensure continuity. The MIS of other more interesting modules are presented in section
3.2.5.

27

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

MIS of Parameter Specification Module

Module
specParam
Uses
None
Syntax
Exported constants

#From the Table 6 in SRS
Hmin := 0.001
Hmax := 100
Dmin := 0.001
Dmax := 100
......
CS

v min:= 1×10−4

CS
v max := 1×104

Assumptions

None
Access Routine Semantics

N/A

3.2.3.4 Code

This is the section where the software is implemented. The system implementation
is the transformation of the design to a work product [80]. The design decisions and
algorithms are finalized only during this stage. SFS is implemented in Python3. We
also used version control systems and issue tracker to help us during the coding phase.
These tools are discussed in section 3.5.

Code for few of the modules of SFS is given in appendix (D).

28

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

3.2.3.5 Software Testing

In this section, the software developed is tested to improve the confidence in the code.
An important purpose of testing in SC is to describe the quality of the software [80]. A
document driven approach improves the verifiability and validatability of the software
as it provides the list of requirements and qualities important for the software. The
software is tested for the fulfillment of the functional and non-functional requirements
specified in the SRS. Sometimes, a detailed test plan is also developed to verify the
quality of the test cases and ensure coverage of the tests. However, we did not develop
a test plan for the verification of SFS. We validated our equations through document
reviews and feedback during meetings and presentations.

We tested the important modules of SFS using pytest, the system test framework
available in Python. SFS deals with experimental data, thus, the exact solution
is not known. Hence we tested the modules by choosing simpler test cases with
known solutions. For instance, to test the temperature module, which has access
programs to compute the gradients of the temperature, we chose an analytical function
which resembled our temperature data, computed the gradients using the software and
compared it against the gradients obtained by differentiating the analytical function.
The test results were good and the maximum relative error was less than 0.03%,
which was acceptable for the SC problem under consideration.

Testing also plays a crucial role in SC because trial and error approaches are
inevitable in SC. For instance, SFS was subjected to different numerical trial and
error experiments. Regression testing, defined in section 3.3 was followed to conduct
meaningful trial and error experiments. Even though, we did not follow regression
testing since the beginning, we benefited greatly from it to quantify and conclude the
trial and error experiments.

3.2.4 Faked Rational Design Process
A rational process, also called waterfall model, is a software development approach in
which the development starts with the requirements, then moves to design where the
developer creates the modules and decides on the algorithm with the help of different
SE concepts such as “Separation of concerns,” “Information hiding” etc. The system
architecture design phase is succeeded by interface specification, during which any
major design decisions are documented. Finally, the implementation and maintenance
phase completes the entire development process. This rational software development
process is considered “not practical” because according to literature [35, 10, 71], it
may not always be possible to specify the requirements at the beginning of the process.
Sometimes, new constraints may emerge later, which makes the application of rational
software development process not suitable for SC.

29

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

Parnas and Clements [57] suggested the idea of a “Faked rational process design”
in 1986 to overcome the shortcomings of a “Rational process design.” According to
this method, the most logical way to present the documentation is to fake it as if the
software development followed a rational process design.

In our case study, we were able to write the “Requirements specification” at the
beginning of the project, which is explained in detail in chapter 5 of this thesis, but
we still needed to start the implementation phase simultaneously for the deliverables
of the weekly meetings. In addition to the meeting deliverables discussed above, we
also knew that this software would be used for a long time by different people, so
we wanted to avoid the “Mythical Man Month effect” [20], which means that when
new people join the project they should not have to depend on the developer for
information about the software. One of the significant advantages of this approach
to documentation is the amelioration of the Mythical Man Month effect. Hence, we
adopted this approach of faking the rational process design. Besides providing quality
improvements and quality assurance, this method also provides documentation that
is easier to reuse and maintain as the documentation is understandable and stan-
dardized [9]. In addition to this, the main advantage of a rational process, which
closely parallels how engineers typically think about their workflow can be obtained
by documenting the work products as if they were developed and written following
the waterfall model [57].

3.2.5 Design for Change
This is a practice followed in SE, in which existing code is treated as an asset. A
change in technology, science or society may warrant a change in the software. Hence
it is essential to keep changes in mind while designing the software. Some of the
change types are mentioned below.

1. Corrective: This type of change involves fixing the bugs in the software code.

2. Adaptive: This type of change deals with changing the software to adapt to
new technology such as a new hardware or software platform.

3. Perfective: This change type aims at adding new functionalities to improve the
performance.

In our case study, the software to be developed needed to accommodate changes
because we were not sure about the exact mathematics which will be used to solve for
fraction solid. In other words, it was evident that the software will be subjected to
“Trial and error” methods before agreeing on a specific design. In addition to this, the
software was planned to be interfaced with other scientific software for input data such

30

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

as material properties of the alloy being cast. Hence, it was necessary to design the
software in such a way that it can accommodate these changes. These requirements
led us to adopt the approach of “Design for Change”, which means to identify all
the possible changes and design the software to accommodate these changes when
the need arises. For instance, without “Design for Change”, a new version upgrade
in a scientific software to which SFS is linked could make it useless. We identified
the following anticipated changes in SFS, which are the sources of the information
that are to be hidden inside the modules. Ideally, changing one of the anticipated
changes will only require changing the one module that hides the associated decision.
Anticipated changes are labelled by AC followed by a number.

AC1: The specific hardware on which the software is running.

AC2: The format of the initial input data.

AC3: The format of the input parameters.

AC4: The constraints on the input parameters.

AC5: The format of the final output data.

AC6: The algorithm used to fit the temperature data may change.

AC7: The constraints on the output results.

AC8: How the governing ODEs are defined using the input parameters.

AC9: How the overall control of the calculations is orchestrated.

AC10: The implementation for the sequence (array) data structure.

AC11: The algorithm used for the ODE solver.

AC12: The implementation of plotting data.

While designing SFS, each of these anticipated changes is encapsulated in a mod-
ule. For instance, at the beginning of the project, we knew that we need temperature
and its derivatives at any location y across the cylinder and at any time t till the end
of input time. This means that given the input data, which is the “Temperature ver-
sus time” from each thermocouple, we need a function, represented by T (y, t) which
can give us temperature at any time ‘t’ and at any location ‘y’, inside the cylinder
including locations at which there is no thermocouples and time at which we do not
have temperature data.

31

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

Hence, we decided to use fitting functions to the input data to find the temperature
across the time and location domain. We identified that the type of fitting function
would be a likely change in this software. Hence we encapsulated the fitting function
of input data into a module called “Piecewise module” and obtaining temperature
and its derivatives into another module called “Temperature module.” The detailed
design of the Piecewise module and Temperature module is given below.

3.2.5.1 Piecewise Module

The primary purpose of this module is to fit the input data, which is the “Temperature
versus time” from each thermocouple. Each thermocouple has its own “Temperature
versus time” which had to be fit to obtain temperature at times which is not a part of
the input data. We had different options of fitting line regression, spline, interpolation
etc. Our design for Piecewise module had to accommodate these changes.

We started with regression and tried to fit one polynomial to each thermocouple.
However, this approach failed because of the following two reasons:

1. The fit obtained was not the best at regions of interest, like at the liquidus and
eutectic points.

2. At higher locations (greater location values), polynomial fit had oscillations
which further decreased the quality of the fit.

Hence, it was evident that one polynomial was not enough to fit the entire data.
Therefore, we decided to use piecewise polynomials to fit the data. Based on the
nature of the data, we decided that three sections would suffice for the data handled
by SFS. We decided to fit the data using three polynomials for each thermocouples.
The detailed description of the piecewise regression and the initial guess value for
the fit is described in the below section, which is followed by the module design of
Piecewise module.

Derivation of Piecewise Curve Fitting

The equation for the three piece regression is as follows:
p1(t) = a1t

3 + b1t
2 + c1t+d1 (between t0 and t1)

p2(t) = a2(t− t1)3 + b2(t− t1)2 + c1(t− t1) +d2 (between t1 and t2)
p3(t) = a3(t− t2)6 + b3(t− t2)5 + c3(t− t2)4 + d3(t− t2)3 + e3(t− t2)2 + f3(t− t2) + g3
(between t2 and t4)
Substituting t = 0 in p1(t),
p1(0) = T0 = a103 + b102 + c10 +d1
Hence, d1 = T0

32

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

Figure 3.6: Piecewise regression breakdown of a thermocouple

p1(t1) = p2(t1) for continuity.
So d2 = p1(t1) = a1t1

3 + b1t1
2 + c1t1 +d1

Similarly, p2(t2) = p3(t2) for continuity.
So, g3 = p2(t2) = a2(t2− t1)3 + b2(t2− t1)2 + c1(t2− t1) +d2
This idea was generalized for higher order polynomials.

Initial Piecewise Regression Equation Guesses The initial guess for the coef-
ficients is obtained from the derivation as shown below. The value of initial guess is
crucial for finding the fit. When the initial guess is closer to the actual coefficients,
the probability of finding the fit is high.

Guess between t0 to t1 Assuming a linear interpolation for the guess,
p1(t) = c1t+d1 where p1(t0) = T0
substituting d1 = T0, p1(t) = c1t+T0
p1(t1) = T1 so, c1t1 +T0 = T1

c1 = T1−T0
t1

∴, p1(t) = T1−T0
t1

t+T0

33

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

Guess between t1 to t2 Assuming a linear interpolation for the guess,

p2(t) = c2(t− t1) +d2 where d2 = p1(t1) = c2(t− t1) +p1(t1)
p2(t2) = T2 so c2(t2− t1) +p1(t1) = T2

c2 = T2−p1(t1)
t2− t1

∴ p2(t) = T2−p1(t1)
t2− t1

(t− t1) +p1(t1)

Guess between t2 to t4 For this section, we needed to add curvature. So, we used
a quadratic interpolation for the guess.

p3(t) = e3(t− t2)2 +f3(t− t2) +g3
p3(t2) = T2 = p2(t2) = g3
p3(t3) = T3 = e3(t3− t2)2 +f3(t3− t2) +g3
p3(t4) = T4 = e3(t4− t2)2 +f3(t4− t2) +g3

Solving for e3, f3 with the given matrix:

[
(t3− t2)2 (t3− t2)
(t4− t2)2 (t4− t2)

][
e3
f3

]
=
[
(T3−f3)
(T4−f3)

]
=
[
(T3−T2)
(T4−T2)

]

Using Cramer’s Rule Ax= b:

A=
∣∣∣∣∣
(t3− t2)2 (t3− t2)
(t4− t2)2 (t4− t2)

∣∣∣∣∣= (t3− t2)2(t4− t2)− (t4− t2)2(t3− t2)

B =
∣∣∣∣∣
T3−T2 (t3− t2)
T4−T2 (t3− t2)

∣∣∣∣∣= (T3−T2)(t4− t2)− (T4−T2)(t3− t2)

C =
∣∣∣∣∣
(t3− t2)2 (T3−T2)
(t4− t2)2 (T4−T2)

∣∣∣∣∣= (t3− t2)2(T4−T2)− (t4− t2)2(T3−T2)

Applying Cramer’s rule to find e3

e3 = B

A
= (T3−T2)(t4− t2)− (T4−T2)(t3− t2)

(t3− t2)2(t4− t2)− (t4− t2)2(t3− t2)
Finding f3

f3 = C

A
= (t3− t2)2(T4−T2)− (t4− t2)2(T3−T2)

(t3− t2)2(t4− t2)− (t4− t2)2(t3− t2)

34

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

With this initial guess values, the curve_fit method in scipy module can be used
to determine the values of the coefficients.

3.2.5.1.1 MG of Piecewise Data Structure Module

Secrets: The data structure used to store the thermocouple data.

Services: This module provides all the necessary information regarding a thermo-
couple like - coefficients of the equation for all 3 sections used to construct the
temperature values, the break points used for fitting, the phase change points
and a boolean value which tells whether a fit was obtained for the data.

Implemented By: SFS

In Piecewise module, the secret is the data structure used to store the thermo-
couple data. This means the data structure may vary in the future depending on
the data type or fitting technique used but the service it provides does not change.
For example, if instead of 3 section piecewise polynomial fitting, if we needed ‘n’
sections or if we use a different curve fitting technique such as ‘Smoothing’, then the
data structure which is the secret of this module alone will change. This is explained
better with the “Module Interface Specification” as shown below.

3.2.5.1.2 MIS of Piecewise Data Structure Module

Template Module: PiecewiseADT

Uses: Regression, SeqService

Syntax:

Exported Types: PiecewiseT = ?

Exported Access Programs

35

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

Name In Out Exceptions
PiecewiseT x : Rn,y : Rn, xinit

1 : R, xinit
2 : R PiecewiseT IndepNotAscending,

SeqSizeMismatch
minD R
maxD R
x1 – R
x2 – R
feval x : R R OutOfDomain

Semantics

State Variables The state variables are described below.

x1: R # first breakpoint
x2: R # second breakpoint
f : R→ R # piecewise polynomial
minx: R
maxx: R

State Invariant None

Assumptions None

Access Routine Semantics new PiecewiseT(x : Rn, y : Rn, xinit
1 : R, xinit

2 : R):

• transition: # changing the values of x1, x2 and f according to the following
steps using local real variables a1, b1, c1, d1, a2, b2, c2, a3, b3, c3, d3, e3, f3

1. Additional local variables for independent variable: x0 = x[0], x1 = xinit
1 ,

x2 = xinit
2 , n= size(x), x4 = x[n−1], x3 = x[indexOf((x4−x2)/2)] # x3 is

midway between x2 and x4

2. minx = x0

3. maxx = x4

4. Additional local variables for dependent variable: y0 = y[0], y1 = y[indexOf(x1,x)],
y2 = y[indexOf(x2,x)], y3 = y[indexOf(x3,x)], y4 = y[n−1]

5. Initial guess for parameters for first polynomial (assume linear): a1 = b1 =
0;d1 = y0;c1 = y1−y0

x1

36

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

6. Initial guess for parameters for second polynomial (assume linear): a2 =
b2 = 0;d2 = y1;c2 = y2−y1

x2−x1

7. Initial guess for parameters for third polynomial (assume quadratic): a3 =
b3 = c3 = d3 = 0;
e3 = (y3−y2)(x4−x2)−(y4−y2)(x3−x2)

(x3−x2)2(x4−x2)−(x4−x2)2(x3−x2)

f3 = (y3−y2)2(y4−y2)−(x4−x2)2(y3−y2)
(x3−x2)2(x4−x2)−(x4−x2)2(x3−x2)

g3 = y2

8. pinit = [x1,x2,a1, b1, c1,d1,a2, b2, c2,a3, b3, c3,d3, e3,f3]
9. p = optimize.curve_fit(ftrial, x, y, pinit)

Where,
- ftrial is the function which has the polynomials which represent the three
sections.
- x is the time array
- y is the temperature array
- pinit is the initial guess values for the coefficients
- This function returns the optimized list coefficients for the polynomials
in ftrial function.

10. x1 = p[0]
11. x2 = p[1]
12. f = λx : ftrial(x, p)

• output: out := self

• exception: (¬isAscending(x)⇒ IndepNotAscending||x| 6= |y|⇒ SeqSizeMismatch)

minD():

• output: out := minx

• exception: None

maxD():

• output: out := maxx

• exception: None

x1:

• output: out := x1

37

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

• exception: none

x2:

• output: out := x2

• exception: none

feval:

• output: out := f(x)

• exception: (¬(minx≤ x≤maxx)⇒OutOfDomain))

Local Functions ftrial(x, x1, x2, a1, b1, c1, d1, a2, b2, c2, a3, b3, c3, d3, e3, f3)
p1 = λx : a1x

3 + b1x
2 + c1x+d1

d2 = p1(x1)
p2 = λx : a2x

3 + b2x
2 + c2x+d2

g3 = p2(x2)
p2 = λx : a3x

6 + b3x
5 + c3x

4 +d3x
3 + e3x

2 +f3x+g3
return ((x < x1)⇒ p1(x)|(x1 ≤ x < x2)⇒ p2(x)|(x≥ x2)⇒ p3(x))

indexOf(x∗ : R, x : Rn)
indexOf(x∗, x) ≡ i such that x[i]≤ x∗ ≤ x[i+ 1] # maybe select closest x instead?

Considerations The fitting for the piecewise curve depends on determining a good
initial guess for the parameters. Section 3.2.5.1 provides an overview of how the initial
guess can be determined.

The MIS of the Piecewise module consists of the following important fields - Name
of the module, Uses, Syntax, Semantics, Local functions and considerations. The
Name and Uses section are general information that mention the name of this module
and the modules used by Piecewise module respectively. The Syntax represents the
type of data structure of the output which is a user-defined data type in this case
and the list of exported access programs. The semantics section includes the state
variables and the assumptions. The structure of the access routine are also described
in detail including transitions if any, output and exceptions.

3.2.5.2 Temperature module

The primary purpose of this module is to find the temperature and its derivatives
across the cylinder at any time t and at all locations y. It uses the Piecewise module to
find the temperature at any time t at all thermocouple locations and then uses curve

38

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

fitting to compute the temperature and its derivatives at the location of interest. In
this module, we had different potential options for curve fitting, such as regression,
spline, interpolation etc. Our design for Temperature module had to accomodate
these changes.

We started with regression and tried to fit one polynomial to the list of locations
and temperature at those locations at any time t. However, this approach failed
because of two reasons:

1. The temperature values obtained failed during visual inspection, because the
temperature at all time t, for every non-thermocouple location, say T0.5, which
is between the thermocouple locations T0 and T1, did not always lie between
the temperature values of the thermocouples. The correct values for T0.5 are
shown in Figure 3.7.

2. At higher locations (greater location values), the polynomial fit had oscillations
that further decreased the quality of the fit.

Figure 3.7: Expected temperature output for T0.5 between T0 and T1

Due to these problems, we changed our curve fitting approach to “Interpolation”
instead of “Regression”. This improved the results of temperature prediction.

To find the derivatives of temperature at any time t and any location y across
the cylinder, we used standard finite difference formulas from mathematics. These
formulas could change if higher order differences are needed in the future to reduce
the error. Therefore, the Temperature module was designed to accommodate these
likely changes. The Module guide of the Temperature module is given below.

39

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

3.2.5.2.1 Module Guide of Temperature Module

Secrets: Algorithm for finding temperature values and their derivatives.

Services: Finding temperature values at any given location and time and finding
derivative of temperature with respect to time and location.

Implemented By: SFS

In Temperature module, the secret is the curve fitting technique used to find
the temperature at any given time t and at location y. This means that the curve
fitting technique may change from interpolation to splines, or back to regression, but
the module will continue to provide the temperature prediction and its derivatives
irrespective of any change to the algorithm encapsulated in the secret. This is further
explained with the “Module Interface Specification” shown below.

3.2.5.2.2 MIS of Temperature Module

Module TData

Uses config, PiecewiseADT for PiecewiseT, Load, SeqServices

Exported Constants ∆t= 1×10−5

∆y = 1×10−3

Syntax

Exported Access Programs

40

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

Name In Out Exceptions

TData_init
TData_add s : PiecewiseT, y :

R, t∗L : R, T ∗L : R,
t∗S : R, T ∗S : R

IndepNotAscending

TData_rm i : N InvalidIndex
TData_getC i : N PiecewiseT InvalidIndex
TData_getLiq i : N R, R InvalidIndex
TData_getSol i : N R, R InvalidIndex
TData_slice t : R seq of R, seq of

R
TData_breakPts seq of R, seq of

R, seq of R
TData_T y : R, t : R R OutOfDomain
TData_dTdt y : R, t : R R OutOfDomain
TData_d2Tdy2 y : R, t : R R OutOfDomain

Semantics

State Variables
S: sequence of PiecewiseT
Y : sequence of R
tL: sequence of R
TL: sequence of R
tS : sequence of R
TS : sequence of R
Where,
- S is the sequence of PiecewiseT, which is a data structure storing information about
a thermocouple such as the coefficients of the polynomials, break points for the sec-
tions etc. etc.
- Y is the locations at which the thermocouples are placed.
- tL is the time at which the thermocouples reach the liquidus point.
- TL is the temperature at which the thermocouples reach the liquidus point.
- tS is the time at which the thermocouples reach the solidus point.
- TS is the temperature at which the thermocouples reach the solidus point.

41

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

State Invariants None

Assumptions TData_init() will be called before any other access programs.

Access Routine Semantics

TData_init():

• transition: S,Y,tL,TL, tS ,TS :=<>,<>,<>,<>

• exception: none

TData_add(s,y, t∗L,T ∗L, t∗S ,T ∗S):

• transition: S,Y,tL,TL, tS ,TS := S|| < s >,Y || < y >,tL|| < t∗L >,TL|| < T ∗L >
,tS ||< t∗S >,TS ||< T ∗S >

• exception: exc := (|Y |> 0∧y ≤ Y|Y |−1⇒ IndepNotAscending)

TData_rm(i):

• transition: s := s[0..i−1]||s[i+ 1..|s|−1]

• exception: exc := (¬(0≤ i < |S|−1)⇒ InvalidIndex)

TData_getC(i):

• output: out := S[i]

• exception: exc := (¬(0≤ i < |S|−1)⇒ InvalidIndex)

TData_Liq(i):

• output: out := tL[i],TL[i]

• exception: exc := (¬(0≤ i < |S|−1)⇒ InvalidIndex)

TData_Sol(i):

• output: out := tS [i],TS [i]

• exception: exc := (¬(0≤ i < |S|−1)⇒ InvalidIndex)

TData_slice(t):

• output: out := 〈Y0,Y1, ...,Y|Y |−1〉,〈S0.feval(t),S1.feval(t), ...,S|S|−1.feval(t)〉

42

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

• exception: None

TData_breakPts():

• output: out := 〈Y0,Y1, ...,Y|Y |−1〉,〈S0.x1,S1.x1, ...,S|S|−1.x1〉,〈S0.x2,S1.x2, ...,S|S|−1.x2〉

• exception: None

TData_T(t,y):

• output: Find out using the following steps:

1. Using TData_slice(), find the temperature at time t across all the ther-
mocouples.

2. Interpolate the temperature data from TData_slice() and the location
values to find an interpolating polynomial of degree three (3).

3. Evaluate the interpolant at location y to find the required out value.

• exception: exc := (¬isInBounds(Y,y)⇒OutOfDomain)

dTdt(t,y):

• output: out := T (y,t+∆t)−T (y,t)
∆t

• exception: exc := (¬isInBounds(Y,y)⇒OutOfDomain)

d2Tdy2(t,y):

• output: out := T (y−∆y,t)+T (y+∆y,t)−2∗T (y,t)
∆y2

• exception: exc := (¬isInBounds(Y,y)⇒OutOfDomain)

3.3 Regression Testing
Regression testing is the process of re-running the functional and non functional test
suite after a change to the software to make sure that the previously developed and
tested software still performs after a change. In our case study, we employed regression
testing as we had to make several changes to SFS during its development. Some of
the changes were due to repeated trial and error for optimization of experimental
parameters. Every time, a change was made, we used pytest to run the entire test suite
to ensure that the change did not break any code that was previously working. This
technique also allows us to specify the permitted uncertainty between the predicted
and actual data. Different forms of errors such as absolute error and relative error
can be used to quantify the uncertainty.

43

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

3.4 Task based inspection
“Task-based inspection” is a technique used by Kelly and Shepard [39]. We adopted
this approach. We initially started with sending out the documents for review during
our project meetings, but were unable to obtain any feedback. It was at that point we
started our search for an efficient inspection technique and came across “Task-based
inspection.” We were excited about this approach as it requires focused effort from the
scientist, which can mean a lower time commitment. We decided to assign a task list
to the scientist matching their skillset, as suggested by Kelly and Shepard [40]. The
complexity of the task was kept simple so as to require the least amount of reading.
The task list included questions such as “Please review the system context and let
us know if there is any ambiguity.” The feedback to this task would require them to
read the system context and let us know if they found any ambiguity, or anything
else noteworthy. The list of questions developed for the inspection of the SRS of SFS
is available in the appendix (C). The primary aim of employing this approach was to
initiate communication and get them started in document review. This approach was
successful, and we could see the scientist participating in document review. In Figure
3.8, we present a screenshot of the communication between us and the scientist in
the issue tracker.

3.5 Git and Issue Tracker
Git is a version control system that is used for tracking changes in a computer files
and coordinating work on those files among multiple people. It is primarily used
for source-code management in software development. In our case study, we had
to experiment with different numerical approaches using trial and error method and
compare the results for optimization. Hence we used Git for branching and version
control. At one point during the project, capstone students developed the GUI for
SFS and helped with transitioning the code to Python 3.5, since it was originally
written in Python 2.7. At that point, we had five developers in total, and Gitlab
provided us with the necessary infrastructure to work independently on the shared
code.

The Issue Tracker is a feature in Gitlab which is used mainly for communication
and task management between people involved in software development. It offers a
great platform for assigning and reporting bugs and sharing documents related to
a specific task. In our case study, we successfully used the issue tracker for several
purposes, such as workflow management between project members, conducting docu-
ment review (see section 3.4), and communicating between team members. The issue
tracker allowed us to assign issues to a person, notify them and create a deadline for

44

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

Figure 3.8: Task based inspection

a task, thereby improving accountability. This was greatly helpful during document
review.

45

Chapter 4

Learning and Observations

In this chapter, we present the experiences and learnings, from our perspective as
software developers, in applying SE practices and principles to SC. We classify our
experiences into four (4) major areas: attitude of the scientists, scientific computing,
software engineering, and numerical techniques.

One of the observations, related to the myth that upfront requirements are infeasi-
ble for SC software, was significant enough that a complete chapter has been devoted
to it. Further details about this observation can be found in chapter 5.

The content of the current chapter is organized as follows:
1. The observation is first presented.

2. In cases where our observation coincides with the observations in the litera-
ture, we summarize the literature to reinforce the observation and present our
personal experience from this case study.

3. In cases, when our observations differ from literature, we present our personal
observations, discuss what literature has to offer regarding this observation and
explain potential reasons why they contradict the existing literature.

4.1 Attitude
Working on something in which the scientists are interested is not enough
In a previous study conducted [74], it was recommended that involving the code own-
ers (scientists), from the beginning, before any requirements or code has been written,
will facilitate a more complete understanding of the document driven development
process and SE tools. The study suggests that the transfer of SE knowledge would
be more feasible this way. This study is a successor to the previous study. So, we
followed the recommendation and involved the scientists from the beginning.

46

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

Unfortunately, we observed that the scientists interest and our interest were con-
flicting with each other. We found that the scientists tend to be interested in re-
establishing their scientific knowledge with the help of software. According to [35],
the primary intention of software development in computational science is not to
produce software but to obtain scientific results. They cling on to the working mod-
ules, but do not necessarily exhibit interest in developing high quality software, es-
pecially qualities such as maintainability, reliability, reproducibility and verifiability.
This leads to a developer spending significant amounts of time implementing small
changes. As discussed in chapter 3, the SE practice “Design for change” and proper
documentation are the critical items that need to be prioritized for achieving the
above mentioned qualities. However, the scientists tended to ignore the SE practices,
leading to the development of software that was not maintainable. In some cases, it
is possible that the entire software needs to be redeveloped when a small change is
required.

This attitude of the scientists is partly due to the difficulty in explaining the con-
sequences of not developing good quality software. The participants of the case study
were all scientists and during the meetings they were more interested in discussing
the scientific theory and the conversations inevitably went towards the equations and
the numerical algorithms for implementing them. It was difficult to find time to talk
about requirements, design and testing. All the scientists were certainly interested
in the idea of maintainability, but with the demands on their time, and the need
for results, their actions did not always match their interest. Other reasons for the
lack of interest in software qualities can also be attributed to their lack of exposure
to software qualities and skills. It was revealed in the post development interview,
discussed in chapter 6, that some of our scientific partners had little knowledge of
any SE development tools or practices.

Maintainability plays no role for scientific partners In developing a SC appli-
cation, our scientific partners thought that their task ends with obtaining a working
software. Hence, they were interested in writing the code, but showed less interest in
proper software design and documentation. As an instance, initially we were working
with a prototype of SFS, which was just a monolithic code without proper design.
This was subjected to severe trial and error experiments requiring changes in the
code. We spent considerable amount of time and energy making those changes as it
was not designed for change. This could have been avoided if we spent some time
designing the software before developing a prototype. However, scientists did not
seem bothered about this and were driven by the demand for results. This is also
pointed in [35], where they state “While domain knowledge is considered intellectual
capital, software development knowledge is merely a technique, which consequently

47

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

renders all technical decisions comparably unimportant . . . In their mind, source code
is a more or less direct representation of the underlying scientific theory”. A similar
observation has been made in the article [26] in which the author says that “because
the goal of a scientific software developer is the creation of new scientific knowledge,
the emphasis placed on software qualities like correctness, reliability and maintain-
ability are all very low”. Hence, with more emphasis on implementation, and less on
the quality aspect of the software, the software becomes unmaintainable.

In the early phase of this project, following the emphasis laid by the scientists
on the code, we developed a prototype of the software which was subjected to trial
and error experiments in fitting the experimental data. The results were not reliable
because of a lack of confidence in the code, as no proper testing system was in place.
Having proper design and documentation makes the maintenance of the software
easier and reduces the overall risk of software failure. However, as long as the software
produced scientific results close to the desired output, the scientific partners did not
seem bothered about this.

This led to a series of experiments with no proper conclusion, as there was no way
to measure the impact of a change. The testability and modifiability are important
characteristics that make software maintainable, but when time pressures mounted,
the noble goal of maintainability was one of the first casualties.

Scientists’s hesitancy to learn SE practices The domain experts are not par-
ticularly interested in learning SE practices and implementing them. For instance,
in our project we used Git, a tool for version control and tried to train the domain
experts in using it. However, they did not try using Git, because from the perspec-
tive of the scientists, it was a low priority when competing against other demands
for their time. A similar observation is mentioned in [42] that “Software Engineering
skills are not appreciated by the scientists, instead viewed as an excessive demand
to their already overwhelming job”. In [82], the author has also mentioned the same
problem: “Generally, scientists do not learn about software engineering techniques
from software engineers”. However, one exception to this is the “issue tracker”. Scien-
tists were enthusiastic about the issue tracker in Gitlab. This is discussed in section
4.3.

Verification and validation in scientific computing SC applications usually
run simulations or compute output for which the correct solution is not yet known.
This makes the verification and validation process difficult for an SC application.
In [71], the authors mention that “ Scientists often lack test oracles - real data against
which they can compare their software’s output”. In the article [10], one of the
employees in their case study, identified that inability to come up with good test cases

48

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

makes the verification and validation process more difficult for scientific computing
applications. In [80], it is mentioned that testing SC software is difficult because the
correct solution is not known.

We believe that the attitude of the scientists towards testing needs changes. More
creativity is need to test SC applications. For instance, when we were testing SFS,
we found it hard to find a proper test case. We came up with tests for verifying the
computation of gradients in one of our modules on our own, because we had trouble
making testing a priority with the scientists. However, our “fake” experimental data
was not that similar to the actual data because we did not include the discontinuity
in the slope, because of the mathematical difficulty of differentiating the closed form
solution over the discontinuity. It was not until toward the end of the project that
the lead scientist mentioned the use of the error function to approximate the sudden
changes of slope in the data. If the scientists had helped us with the test case a little
earlier, we could have tested SFS comprehensively with a more realistic test case.

Alternatively, we can also identify the critical modules at the beginning of the
project and discuss with the domain experts about ways to verify these modules.
Testing methods such as metamorphic testing, which employs properties of the data
or output, known as metamorphic relations, to generate test cases, can be employed
to detect and eliminate errors. In the article [77], the authors suggest documenting a
“solution validation strategy”. Four potential evaluation strategies include:

1. solve the problem by different techniques, such as using an electronic spread-
sheet, graphical solution etc;

2. substitute the calculated results back into the original governing equations to
calculate the residual error;

3. partially validate the problem by validating simpler subsets of it for which the
solution is known;

4. check that the governing equations are satisfied, boundary conditions are satis-
fied, energy is conserved, mass is conserved, etc.

Similarly in [48], the authors suggest a model for testing scientific software by
considering only critical modules and leaving out non critical modules. It is obvious
that along with the change in the attitude of the scientists towards testing, more
effort and creativity is needed for verification and validation of SC software.

Science behind the software should also be verified When the software did
not produce desirable results, the scientists questioned the numerical implementa-
tion. While the possibility of the numerical implementation being wrong should not

49

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

be ignored, the possibility of underlying equations and other scientific inputs being
wrong should also be considered while debugging. When SFS was developed and
did not produce desirable results, the possibility of science being wrong or missing
any details was not even considered. Even after repeated trial and error experiments
with different numerical methods, the scientists did not think about the possibility
of a flaw in the theory. In addition to the above two factors, the quality of the ex-
perimental data also plays a major role in the output from the SC software. After
we tried changing the numerical techniques with no big change in the output, it was
found that the quality of the input data also plays a major role in the output. For
instance, the output from SFS had unexplainable anomalies with noisy data, which
disappeared with better quality data.

The author’s observation in the article [66] and [17] are exactly the opposite of
what we experienced. In [66], it is mentioned that “All the scientists we interviewed
doggedly pursued causes for their output not matching the oracle, but they focused
on the theory, not the code”. A similar observation was quoted in [35], where they say
that the scientists judge model and algorithmic defects to be of far greater significance
than coding defects.

We feel that the difference in our observation from the one in the literature may
be due to three reasons. One of them being the scope of this case study. We had only
a limited number of scientists in the team (seven) and not all of them were actively
involved. So, our observation cannot be generalized. The other reason could be the
confidence in the scientific model which eventually led the scientists to look for defects
in implementation. The third reason could be the lack of awareness about the impact
of quality of the input data in producing the output. This is discussed in detail in
section 4.3. It turned out that the anomalies in input data were the reason for the
unexpected output from SFS, which could have been avoided with more emphasis on
metamorphic testing to access the quality of input data.

Scientists follow agile methodologies Agile methodologies are better accepted
by scientific and engineering code developers than more traditional methodologies [10].
While working with the domain experts to automate the detection of phase change
points, the algorithm developed by the scientist was designed to work only for the
data set in consideration. The idea was to check if the same algorithm would work for
other data sets too, if not then it could be modified until it works. This shows a typical
agile fashion of developing a software. A similar observation was made by the authors
in [17] in an ethnographic study conducted on the software development process at
Hadley climate research centre, UK. It was noted that they used the agile software
development approach combined with code reviews, version control management and
extensive verification and validation strategies tailored specifically to their domain.

50

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

4.2 Scientific Computing
Common ground for communication has always been a problem Through
out the life cycle of this project, we always had difficulties in interacting with the
scientists. For instance, when we explain the functions of a module, we had to intro-
duce SE terminologies such as user-defined data types, interface specification, state
variables etc. But the domain experts had difficulties in understanding these terms.
Similarly, scientists explained their requirements using scientific terminologies and we
had difficulties in understanding those terms. This was also mentioned in [80] as one
of the reasons why SE methods cannot be applied to scientific computing. In [35],
the author mentions that “computational science and software engineering has es-
tablished distinct terminologies. They need a common platform to understand each
party clearly. Software engineers speak regarding software, requirements, qualities
etc. whereas scientists talk concerning code.”

An interdisciplinary team is essential During the development of SFS, we al-
ways felt the need for a partner in the development process, especially developers
with domain knowledge; it could have resulted in better skill transfer. For example,
when we were conducting trial and error experiments with the prototype of SFS, we
had to change the code which required considerable amount of time and energy. We
felt that the scientists were not bothered about this because they only analyzed the
results from the software but did not change the code. If we had a domain scientist
as a partner in coding, it would have been possible to emphasis the importance of
design before implementation as they will experience the painstaking effort associated
with changing the code. It was mentioned in [35] that the shift toward larger, inter-
disciplinary teams improves the often-ignored aspects of software such as modularity,
maintainability, and team coordination. In the following articles [10, 72, 67], the au-
thors emphasize that software developers and scientists can be partners in developing
code.

Scientists tend to choose code language based on their familiarity Scien-
tists decide the programming language based on their familiarity and not based on
the requirements of the project [35]. Scientific code should be written in high level
language for known benefits like better readability, abstraction, fewer lines of code
etc., which in turn makes debugging easier [13]. When we decided that we wanted
the code to be implemented in Python, the scientists were more inclined towards
FORTRAN, as they were familiar with the latter programming language. We had to
convince them to continue with Python. Our observations match those of [72]: “the
scientist’s choice for which language and environment used falls to familiarity”.

51

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

Plots versus numbers Scientists are comfortable in analyzing the data using vi-
sual plots rather than a systematic data analysis procedure. In SFS, we determine
the fraction solid concerning time and temperature from a temperature history data
set. It was difficult for the scientists to determine the phase change points, or any
other points of interest, when the data was presented as a file. However, when the
results are presented as a plot, it does not need further processing to review the re-
sult, and it gives a glimpse of the entire data. Plots also have an advantage that you
can find the major anomalies at the first glimpse without much processing. These
factors make it suitable for scientific software development where frequent review and
analysis of output data is common due to its exploratory nature. However, it should
not be entirely relied upon for assessing correctness without further analysis. In [35],
the authors mention that “Visualization of output data is the most common tool for
verification and validation purposes”. However, they also caution against relying on
it as a testing strategy and suggest to use it as a sanity check as mentioned in [8].

Conservative constraints, early testing It is essential to obtain conservative
and correct constraints for testing. For instance, in the requirements specification
document we have a section called physical constraints and software constraints on
the inputs and calculated values. We have a wide range of allowed values for the
parameters listed in the constraints section. When the typical value of the material
properties are in the range of 1×10−8, the acceptable range need not be as wide as 0
to 100. If we had stricter constraints such as 0 to 1, then it will act as a preliminary
check for potentially incorrect calculations.
Similarly, a priori identification of some of the constraints or expected trends in the
data plots would have helped with testing. Even though, the correct answer is not
known, there are still properties of a correct solution that were known since the be-
ginning. For instance, if we had discussed it earlier, we could have automatically
tested for the intersection of temperature data from the thermocouples in the plot,
which is a sign that the data is incorrect. This was a symptom that eventually led to
diagnosing a mis-calibration in the data. If we paid more attention to the constraints,
metamorphic testing could have helped us to identify the data anomalies missed by
visual inspection.

4.3 Software Engineering
This section describes the lessons learnt during the development of software for sci-
entific computing. These lessons are specific to software engineering methods and
strategies.

52

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

Design log in issue tracker During the development of SC software, the practice
of trial and error is inevitable. Therefore, we should design for change and follow
a systematic approach. For instance, we had several meetings with the scientists
during which various scientific and mathematical approaches were suggested to fit
the experimental data. Even though we did trial and error experiments, we did
not follow a systematic approach and hence it did not lead to a proper conclusion.
Alternately, we could have derived better conclusions from the experiments by using
the issue tracker and Git. The issue tracker could have been used as a trial and error
log and Git branching could have been used to make the experiments repeatable.
Each trial could be encapsulated in a issue and a Git branch following “separation
of concerns” and grouped for similarity using features like “milestones” and “related
issues”. This prevents us from doing trial and error experiments in a spiral fashion.
A similar idea is emphasized in the article [89], where the authors state that “It is
essential to have a detailed record of the data manipulation and calculations”.

Document review via likely changes During the development of SFS, we wanted
the domain experts to review the software documents such as requirement specifica-
tion, module guide etc. But, they showed less interest in document review than in
the software prototype. It is not an uncommon practice in the software development
to prefer prototypes to documentation. In the article [49], the authors have sug-
gested that prototyping options make all life cycle models completely obsolete and
even harmful. We suggest here an alternate idea since we cannot radically change
the long standing attitude of the domain experts. We first need to identify the key
modules of the project and start discussing the likely changes during the meetings,
along with the working demonstration of the modules. This will get the scientists to
participate in the development process as they get a chance to understand the design
and working of the module. This will require them to understand the requirements
of the software and will be an indirect way of reviewing the document, besides giving
them an idea of modular programming, maintainability and software design.

This approach can be used to elicit information about a module as it gives them a
chance to think about the input to a specific module, their types and likely changes.
Frequent meetings combined with screen sharing applications and meeting software
are essential for the success of this approach.

Scientists disregard command line Git While developing SFS, we used Git for
version control. We tried to make the scientist use simple Git commands for pull,
commit and push operations to run our code. Even after setting up the initial copy
of the code and all the necessary modules in their machines, the domain experts were
not interested to use Git through command line. Upon interacting with them, one of

53

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

the expert users mentioned that “command line Git was hard to comprehend”. Git
also has a web interface and we should have chosen the web interface to the command
line interface to work with the scientists.

The same observation has been made by Greg Wilson [88] where he says “Git
is a tool that researchers love to hate, with a vexing and confusing command-line
interface intended more for seasoned programmers than casual”.

Scientists like the issue tracker During the course of SFS development, we used
the issue tracker available in Git to manage the workflow and communicate with the
domain experts [73]. Scientists liked the issue tracker and they said it was easy to
use and helpful. A casual interaction with the scientist revealed that they felt it
was better than email as they have all the information at one place for everyone. In
the article [2], the authors also mention that “We needed an issue tracking system
for formally recording bugs and communication between the teams”. In addition to
the above mentioned points, the issue tracker also helped us to communicate with
additional developers who worked in this project. The notifications, reminders and
the ability to assign issues improved the accountability of the tasks assigned. It also
helped us to create milestones and create issues under each milestone.

Task-based inspection While developing SFS, various documents were produced
at different stage of development as part of the document driven approach. We wanted
the domain experts to review the document but we obtained only limited feedback.
Hence, as suggested in [39], we tried using a task-based inspection process to obtain
feedback about the documents. We developed a list of questions, a sample of which
is available as part of appendix C, for each scientist based on their area of expertise.
Each question was put as a separate issue and was assigned to them using the issue
tracker. The questions were framed in such a way that the scientists had to read
a small section of the document and answer our question. The main aim was to
get them started in reading the documentation. This approach proved successful.
They answered our questions in the issue tracker and participated in the discussions
about design decisions. Further interaction with them revealed that they liked this
inspection, as it did not take much of their time and the questions were straight
forward. The details about this method is given in section 3.4.

Design for Change In a SC application, changes are inevitable due to its ex-
ploratory nature. Hence, when designing a SC application, it is advisable to design
for change. For instance, while developing SFS, the requirements document has been
reasonably stable since the beginning because it was created in a abstract way, with-
out implementation details. A SRS should say what to do but not how to do it [77].

54

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

All the design decisions were decoupled from the SRS which protected SRS against
change when we wanted a change in the algorithm. As an example, when we tried
different algorithms to slice through the cylinder to predict the temperature at any
given time and location, our SRS remained valid because it just documented the need
to find the temperature at any given time and location inside the cylinder and did
not mention any details about the algorithm used. This is highlighted in the general
definition below.

55

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

Number GD4
Label Transformation of Experimental Data to Appropriate Func-

tion
SI Units –
Equation T (y, t) = fit(Tdata,yT C ,dt) where fit : Rm×n→ Rn→ R→ (R→ R→

R)
Description This general definition abstracts the concept of taking experimental

data (Tdata) at the thermocouples over time and determining a func-
tion T (y, t) that can be used in the instance models. In determining
T (y, t), it is assumed that the thermal resistance of the thermocouples
can be ignored. The specifics of the transformation of the data to a
function are left as part of the design of the numerical algorithm. The
options include interpolation, regression, and using the data points
directly. In the instance models, it is assumed that partial derivatives
of T (y, t) exist and can be calculated. When needed, these partial
derivatives may be calculated directly from the experimental data, or
by first finding T (y, t) and applying mathematical operators to it. The
symbols used in the equation for this general definition are defined as
follows:
T (y, t) is a function that takes the position, as measured from the
bottom of the cylinder, and the time and returns the temperature
(◦C). It represents the cooling curve over time t for all locations y.
y is the distance from the bottom of the cylinder (m).
t is the time from the start of data collection (second).
fit() is a function that takes the thermocouple data Tdata, the loca-
tions of the thermocouples yT C and the time step dt, and returns the
appropriate function T (y, t).
Tdata is a 2D array of temperature readings. The columns correspond
to each of the n different thermocouples, starting from the bottom and
going up. The m rows correspond to the time of measurement. The
start time for measurement is assumed to be 0 and the time between
data points is assumed to be dt.
yT C is a 1D array of position values (in m) for the n thermocouples.
dt is the time between experimental measurements of the time
(second).
m is the number of instants of time where the thermocouple data is
measured.
n is the number of thermocouples.

Source –
Ref. By DD6, DD7, IM1

56

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

Other documents such as the Module Guide (MG) and the Module Interface Spec-
ification (MIS) were also designed at the right level of abstraction. The MG lists only
the modules, their secrets and services. It is abstract enough to hide the algorithm.
For instance, we have a module called TData which predicts the temperature and
its derivatives at a given time and location across the cylinder. We initially used a
single polynomial to fit the temperature of each thermocouple but we were not satis-
fied with the results. Later we decided to use a piecewise polynomial to fit the data.
These changes did not impact the requirements document and only the secrets of the
module guide will undergo changes. This is the advantage of designing for change.
The MIS contains all the details about the algorithm. When a new approach or a
different algorithm is tried, the interface of the module remains stable, but it may be
necessary to update the specification of the semantics.

Test driven development After developing SFS, we started designing the test
cases. According to [10], “These issues combine to make the task of verification and
validation for scientific and engineering applications very difficult. A member of the
EAGLE team provided another reason why verification and validation is difficult:
V&V is very hard because it is hard to come up with good test cases”. Hence, we
need to use creativity in designing the test cases. We can obtain information about
the expected output through questions such as “Please draw the output you expect
to obtain”. This information can then be used in metamorphic testing to test SC
application as most of them use plots as a preliminary check to test the software [35].
We could automate the test cases to check the metamorphic relations. For instance, in
SFS, we could check that the temperature values at location ‘y’ lies between the data
values at the thermocouple above and below. Metamorphic testing in combination
with “Test driven development”, where we begin writing test cases in parallel with the
implementation, could be a better way to develop and test SC applications. In [73],
the author propose to start software development by writing test cases even before
the development process. This approach will help in improving the confidence in the
code due to better testing approaches. Similarly, the authors of [2, 53, 62, 83] also
advocate the test driven development for SC.

Faked rational design process In developing SFS, we followed a faked rational
process design, as advocated in [80]. If we followed a pure waterfall model, we would
have started by writing down the requirements upfront, which is a challenging task
for a SC. After the requirement specification, we proceed to develop the MG and the
MIS. At the end of each development phase, a document would have been produced
which will need to be verified by the domain experts. But, the domain experts usually
show less interest towards documentation as described previously. This would have

57

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

resulted in delayed feedback or sometimes no feedback at all. If we proceeded with
the implementation without document review, then the risk of software failure or
software not being functionally suitable would be very high. Hence, this approach
would not be suitable for SC applications where scientist place more value on code
than the qualities of the software. This is also mentioned in the article [35] based
on [17] that “Traditional software development processes that employ a big design up
front approach such as the waterfall model are a poor fit for computational science”.

As an alternative, faked rational process design was proposed [57]. In this ap-
proach of developing software, we can start with the implementation and present the
documents as if the software was designed following a rational process. In a typical
SC application, feedback and participation from the domain expert is critical for the
success of the software. In the article [74], the author mentions that getting the sci-
entists involved in the project from the beginning has positive potential. Without a
prototype of the actual software, it is difficult to get the scientists involved in the de-
velopment process. We followed a faked rational process design and document driven
approach to develop SFS with the goal to involve the scientists since the beginning
of the project. Hence, we started by implementing the critical modules of SFS. Even
though we were not able to obtain active participation from the domain experts, they
were quite accommodating when it came to interpreting the results and debugging
the anomalies in the graph.

Scientists lack awareness about software quality and skills Scientist lack
awareness about software quality. For an SC application, qualities such as correctness,
confidence and maintainability are considered important. The scientist often perceives
the code as a mere representation of the theory [35]. Hence, they do not concern
themselves with the quality of the software. Sometimes, the domain experts think
that if an algorithm works for a particular data, then it can be made to work for
all the cases. But that is not always true. Without confidence in the code, correct
results can sometimes be an illusion. For instance, when SFS was developed and the
experimental data was converted to a function of temperature and time, we tried to
automate the detection of phase change points. An algorithm was developed and
implemented successfully for the data set in consideration. However, they did not
work for other data sets. The above situation clearly portrays the lack of awareness
about developing a reliable algorithm which will work for most data sets.

Similarly, scientists lack software skills. Their view about the software is limited
to “code” without any thought about defined interface and reuse. In [13] the authors
suggest that software skills must be taught during undergraduate or graduate courses
so that scientist do not lack awareness about software tools, techniques and their
benefits. In our case study, we observed the same through their attitudes and lack of

58

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

interest when we introduced any software tools such as Git or in discussions about
design aspect of the software such as “separation of concerns”, “design for change”
etc. As an example, when SFS did not produce expected outputs, the domain experts
helped us to analyze the wrong outputs. They preferred looking at a monolithic
code to understand the design to reading the Module Guide and Module Interface
Specification.

Mythical man effect Scientists prefer obtaining knowledge from coworkers to
reading documents. This authors of [35] also mention that the scientists prefer in-
formal, collegial ways of knowledge transfer to understand a piece of software than
relying on its documentation. They find it harder to read and understand documen-
tation artifacts than to contact the author of a particular part of the software and
discuss their questions with them. As an example, when the first prototype of the
software was developed, the domain experts wanted a copy of the code and preferred
informal and casual meetings to ask questions about the code. They did not bother
obtaining information about the software from the requirement document and module
guide even after repeated emphasis and instructions from our end.

4.4 Numerical Methods
In this section, we present our observations concerning the application of numerical
methods during the development of SFS.

Systematic trial and error Trial and error experiments are inevitable while devel-
oping a scientific computing software. However, it should be integrated with testing
to have a meaningful outcome. As an example, we tried different algorithms for slic-
ing through the height of the cylinder to find the temperature at a given location
and time. All these approaches gave us outputs which differed only slightly from
each other. We should have tested these approaches with the idea of quantifying
the impact of using a certain approach. If we code anticipating changes, we can de-
termine which algorithm is best suited and save time by only completing numerical
experiments once. Further, these trial and error experiments can be incorporated into
strategy design pattern to make it easier to switch between algorithms.

Difficulty in handling scientific data. SC significantly differs from computing in
other domains in terms of their source of input data. In SC, we handle experimental
data which is prone to uncertainties, such as human error, equipment malfunction
etc. Correct input is crucial for a SC software. In the article [82], the author also

59

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

mentions that “Many of the issues raised in the literature regarding software quality
have also been identified in the wider context of data quality. The growth in the size
of research data sets and software processing capabilities have led several researchers
to consider quality from a data rather than software process perspective”.

As an instance, we found that SFS behaved better with the data obtained from
industrial trials than the data from experiments in the lab. The quality of the data
improved drastically with the high precision thermocouples, which in turn had a
significant impact on the results from SFS.

Assessing input data In SC, we handle experimental data which is prone to un-
certainties such as human error, equipment malfunction etc. A mere visual inspection
may not be enough to ascertain the quality of the input data. Correct input is cru-
cial for SC software. In the article [82], the author also mentions that “Many of the
issues raised in the literature regarding software quality have also been identified in
the wider context of data quality”. So, it is necessary to access the quality of the
data.

As an instance, when we did not obtain expected output from SFS, we eventually
determined that the source of the inaccurate results was actually the input data. To
demonstrate this, we present the equation which is used to calculate the fraction solid.

ḟs(fs, t) = Cv(fs)
Lρ(fs)

[
∂T (t)
∂t
−α(fs)∂

2T (t)
∂y2

]

In the above equation, it can be clearly seen that the calculation depends on the
partial derivatives ∂T

∂t and ∂2T
∂y2 . Hence, when the results were not correct, we decided

to check the computation of ∂T
∂t and ∂2T

∂y2 . We found that the second derivative ∂2T
∂y2

was not metamorphically correct based on the feedback from the scientist . The plots
were supposed to be smooth and converge into x-axis at values closer to zero after
solidus time. We traced the cause to be three reasons.

• The value of ∆y in the formula for ∂2T
∂y2 needs to be greater than the χ2 of the

fit [87].

• The formula for ∂2T
∂y2 was changed. We were using a central difference formula,

which was changed to a forward difference formula based on the suggestion
from the scientist. This improved the results because previously the formula
was using thermocouples which were in different phases such as 2 phase zone
and solidus zone. With the new formula, the calculations were restricted to
thermocouples which were in the same zone.

60

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

• The primary cause was however traced to be the actual data itself because the
data from the thermocouples had anomalies which could not be identified with
a brief visual inspection.

For instance a closer look at the data revealed that after 60 mm from the bottom,
the data had anomalies which was the reason for the wrong metamorphic form of the
∂2T
∂y2 at locations greater than 25 mm. Once we identified this error, we were able
to restrict our calculations until 60 mm and were able to produce expected output.
This clearly indicates that the quality of the input data has a major impact on the
outputs.

In this chapter, we have described various factors that can potentially impact the
development and quality of SC software. Even though the lessons and experiences
described were pertaining to the development of SFS, most of them are supported
by literature references as well. This collection of experiences may be used by future
developers as a reference during their experiments in applying SE practices into SC.

61

Chapter 5

Myth Busted

In the previous chapter, we discussed some of the experiences during software devel-
opment for SFS. We found that one of the observations from the literature regarding
upfront requirements specification can be characterized as a myth. In this chapter,
we discuss the evidence for why we consider it as a myth.

The content of this chapter is organized into four (4) sections. In the first section,
we present the observations from the literature which states that ‘upfront require-
ments are not possible for SC’. In the second section, we present our experience in
specifying requirements for SFS and present instances from the requirements doc-
ument to explain the process. In the third section, we discuss the idea behind the
design of SFS. In the last section, we demonstrate the approach we followed to identify
the requirements at the beginning of the project.

5.1 Literature on Upfront Requirement Specifica-
tion

Myth: “Upfront requirements are not possible for Scientific Computing”

It is a common observation in literature that “upfront requirements are not possi-
ble for SC”. It is also often claimed that the above statement is true, not just for SC,
but for any programming domain [49]. In this section, we will discuss some of the
references in the literature that claims that upfront requirements are not possible for
SC.

There are multiple references in the literature regarding the above myth. To
quote a few:

• In article [35], it is mentioned that “In science, software is used to make novel

62

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

discoveries and to further our understanding of the world. Since scientific soft-
ware is deeply embedded into an exploratory process, you never know where its
development might take you. Thus, it is hard to specify the requirements for
this kind of software up front as demanded by traditional software processes”.

• Segal and Morris [71] say that “Full up-front requirement specifications are
impossible: requirements emerge as the software and the concomitant under-
standing of the domain progress”.

• In the article [10] the authors state “While most scientific and engineering
projects are ultimately based on the underlying laws of nature, which are fixed,
the application of those laws to a specific problem is often unknown at the start
of the project. Most requirements, beyond some obvious high-level ones, are
discovered during the course of the project”.

• In the article [67], Segal says that “The research scientists are experienced in
developing their own software in the laboratory in a highly iterative manner, and
having requirements emerge in succeeding iterations. They do not appreciate
the need to articulate requirements fully and upfront as demanded by a staged
methodology, and found this articulation very difficult to do”.

• A similar statement was also made by the authors of [17] where they claim
that “computational scientists generally adopt an agile development approach
because they generally do not know the requirements up front”.

• Segal mentioned that “Supplying requirements upfront ran counter to the pre-
vious experience of developing their own software in the laboratory” in a case
study where software developers developed the SC software for the scientists [68].
Similarly in the article [66], the authors referenced a statement mentioned by
one of their interviewees which says “None of our interviewees created an up-
front formal requirements specification. If regulations in their field mandated a
requirements document, they wrote it when the software was almost complete”.

• In [69], the author articulates that “Requirements emerge, as the understanding
of both the software and the science evolves” which emphasizes that upfront
requirements are not possible.

5.2 Requirement Specification for SFS
In this section, we present our experience in identifying requirements for SFS and
present our reasons to why we think the above observation discussed in section 5.1 is

63

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

a myth. In [77], the authors presented a template for SRS, which was successfully used
for different SC applications [80, 75, 74, 78, 76]. This template allows you to create
the requirements document at proper level of abstraction which makes requirements
specification easier.

For instance, in our project, we used this template and identified the critical re-
quirements of the project and documented it in the requirements document. We
did not mention any design decisions such as algorithms or specific numerical tech-
niques which were to be used. The requirements of SFS from the SRS document is
summarized below.

R1: Input the configuration and specification parameters.

R2: Input the temperature data collected from the thermocouples: Tdata, n, neces-
sary material properties for the known alloy and the temperature of the envi-
ronment: kS(T), CS

p (T), ρS(T) and Tenv

R3: Using the input information (R1 and R2) calculate the heat transfer coefficient
(h(t)).

R4: After running the experiment, input the temperature data collected from the
thermocouples: Tdata.

R5: Compute αb and αe.

R6: Input the additional information necessary to solve for fs: L

R7: Using the temperature data (R4) and other information (R5 and R6) and con-
figuration information (R1), calculate the value of fs(t).

R8: Using fs(t) and T (t) find fs(T).

These requirements identified at the beginning have remained stable throughout
the development process because we did not mention any details about how these
requirements will be implemented. Similarly, in the section “General definition” in
SRS, we stated that we want to translate the experimental data to a fitting function,
but we did not specify the details of how this will be accomplished. This is highlighted
in the general definition below.

64

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

This figure is repeated here for reader’s convenience.

Number GD4
Label Transformation of Experimental Data to Appropriate Func-

tion
SI Units –
Equation T (y, t) = fit(Tdata,yT C ,dt) where fit : Rm×n→ Rn→ R→ (R→ R→

R)
Description This general definition abstracts the concept of taking experimental

data (Tdata) at the thermocouples over time and determining a func-
tion T (y, t) that can be used in the instance models. In determining
T (y, t), it is assumed that the thermal resistance of the thermocouples
can be ignored. The specifics of the transformation of the data to a
function are left as part of the design of the numerical algorithm. The
options include interpolation, regression, and using the data points
directly. The symbols used in the equation for this general definition
are defined as follows:
T (y, t) is a function that takes the position, as measured from the
bottom of the cylinder, and the time and returns the temperature
(◦C). It represents the cooling curve over time t for all locations y.
y is the distance from the bottom of the cylinder (m).
t is the time from the start of data collection (second).
fit() is a function that takes the thermocouple data Tdata, the loca-
tions of the thermocouples yT C and the time step dt, and returns the
appropriate function T (y, t).
...

m is the number of instants of time where the thermocouple data is
measured.
n is the number of thermocouples.

Source –
Ref. By DD6, DD7, IM1

This general definition is further refined into an “Instance model” in the SRS
where we discuss about GD4 from which the partial derivatives are calculated. The
instance model is presented below which is also designed at proper level of abstraction.

65

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

Number IM4

Label Solve Inverse Heat Transfer Problem for Heat Transfer Co-
efficient

Input T (y, t) (see 5.2), from which ∂T
∂t and ∂2T

∂y2 can be derived, as required.

Material property kS(T), CS
p (T), ρS(T)

Tenv

Output h(t) such that the following PDE and boundary conditions are satisfied
using the experimental data represented in T (y, t):

∂T

∂t
= αS(T)∂

2T

∂y2 , where αS(T) = kS(T)
ρS(T)CS

p (T) (5.1)

subject to the boundary conditions q = 0 on all boundaries, except for
the bottom of the cylinder where q(t) = h(t)(T0(t)−Tenv(t)).

Description The symbols used in this model are as follows:

T (y, t) is the temperature in ◦C found using the temperature values
at the known thermocouple locations in (m) at time t (s) (from 5.2)
...

ρS(T) is the density of the solid metal, potentially as a function of
temperature (kgm−3)

Sources Some related information is available at: http://web.cecs.pdx.edu/
~gerry/class/ME448/notes/pdf/

Ref. By

The highlighted text in the instance model above shows that the ∂T
∂t and ∂2T

∂y2 needs
to be calculated. However, it is not mentioned how the calculation will be done. There
are different formulas that we can use to compute the partial derivatives.

In the sections from the SRS document presented above, we only describe what
to do but not how to do, as mentioned in [77]. For a typical SC application trial and
error is inevitable due to its exploratory nature. Hence we need to design for change,
which means to we should have the freedom to explore different numerical methods.
Our SRS template is primarily focused on writing the requirements at proper level of

66

http://web.cecs.pdx.edu/~gerry/class/ME448/notes/pdf/
http://web.cecs.pdx.edu/~gerry/class/ME448/notes/pdf/

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

abstraction.
Specifying upfront requirements for a SC application, even though feasible, may

be a challenging task. However, with “Faked rational design process”, it is possible
to update the SRS document as it evolves, faking the documentation to look like we
had a perfect understanding from the beginning. The benefits of this approach are
discussed in section 4.3.

5.3 Design for Change in the MIS for SFS
In this section, we discuss the design for SFS and the software artifacts produced
during the design phase. As an example, the MIS of the Temperature module is
presented below.

In the MIS, the method T(y, t) gives the temperature at any time t and location
y. The syntax of this method, given in section 5.3 does not change with changes in
the algorithm, making the interface stable.

Similarly, the methods such as dTdt(t, y) and d2Tdy2(t, y) gives the derivatives
of the temperature with respect to time and location. The formulas for computing
the gradients may be changed but the interface of these methods does not undergo
any change. We presented this document as if we knew the formula during the design
phase but we actually faked it in this document by changing the formula once it was
finalized.

Module Interface Specification of Temperature Module
Module TData

Uses config, PiecewiseADT for PiecewiseT, Load, SeqServices

Exported Constants ∆t= 1×10−5

∆y = 1×10−3

Syntax

Exported Access Programs

67

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

Name In Out Exceptions

TData_slice t : R seq of R, seq of R
...

TData_T y : R, t : R R OutOfDomain
TData_dTdt y : R, t : R R OutOfDomain
TData_d2Tdy2 y : R, t : R R OutOfDomain

Semantics

State Variables
S: sequence of PiecewiseT
Y : sequence of R
...
Where,
- S is the sequence of PiecewiseT, which is a data structure storing information about
a thermocouple such as the coefficients of the polynomials, break points for the sec-
tions etc.
- Y is the locations at which the thermocouples are placed.

State Invariants None

Access Routine Semantics...
TData_slice(t):

• output: out := 〈Y0,Y1, ...,Y|Y |−1〉,〈S0.feval(t),S1.feval(t), ...,S|S|−1.feval(t)〉

• exception: None

TData_T(t,y):

• output: Find out using the following steps:

1. Using TData_slice(), find the temperature at time t across all the ther-
mocouples.

68

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

2. Interpolate the temperature data from TData_slice() and the location
values to find an interpolating polynomial of degree three (3).

3. Evaluate the interpolant at location y to find the required out value.

• exception: exc := (¬isInBounds(Y,y)⇒OutOfDomain)

dTdt(t,y):

• output: out := T (y,t+∆t)−T (y,t)
∆t

• exception: exc := (¬isInBounds(Y,y)⇒OutOfDomain)

d2Tdy2(t,y):

• output: out := T (y−∆y,t)+T (y+∆y,t)−2∗T (y,t)
∆y2

• exception: exc := (¬isInBounds(Y,y)⇒OutOfDomain)

5.4 Guide towards Requirement Specification
In this section, we present some of the approaches we followed in identifying the
requirements for SFS. This can be viewed as a beginner’s guide to identify the re-
quirements for a SC application.

• We interacted with the scientists at the beginning not just to determine the
requirements of SFS, but also to identify the likely changes. While we gathered
information about the functional and non-functional requirements of SFS, we
also focused on identifying and documenting the likely and unlikely changes.
These discussions helped us to restrict the scope of the software and to design
the software to adapt easily for the changes.

• We followed a faked document driven method to develop SFS. This has been
discussed in detail in chapter 3 of this thesis. This approach gave us the freedom
to add any necessary information in the requirement document at a later stage
and fake the presentation of the document as if it was part of the original
document.

However, it is worth noting that identifying the likely changes for a SC application
may not be easy. We suggest the scientific developers identify the family of likely
programs that their final program will be a part of, then it is feasible to document
requirements, and to start this “up front”.

69

Chapter 6

Feedback on SE Tools and
Techniques

In this chapter we present the feedback of the scientists on the SE principles and
practices applied in developing SFS. The content of this chapter is organized into
three sections namely methodology (6.1), scope (6.2), feedback (6.3) and summary
(6.4).

6.1 Methodology
In this section, we describe the methodology for collecting the feedback. We con-
ducted two (2) interviews:
- Pre-development interview
- Post-development interview

6.1.1 Pre-development Interview
In this section, we present the details about the pre-development interview. We inter-
viewed the scientists at the start of the project and gathered information about their
expertise, area of specialization, exposure to software skills and coding experience,
if any. We discussed the list of qualities that are essential for SFS. In this process,
we studied their attitude towards SE tools and techniques. All the scientists were
interested in maintainability of SFS. Other qualities such as correctness and verifia-
bility were also considered important for SFS. All of them had previous experience
in working with scientific software. Some of them had developed code, but did not
follow a software development approach. It was observed that some of them thought
coding was the only activity in the software development process. The list of inter-

70

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

view questions and the answers from one of the scientists is available in appendix
(E).

6.1.2 Post-development Interview
In this section, we present the details about the post-development interview. We
developed SFS using SE tools and principles mentioned in section 3.2. We involved
the scientists from the beginning of the development cycle, even before any require-
ments or code was written, giving them an opportunity to witness the application
of SE in developing SC software, as per the recommendation in [74]. To study their
attitude towards SE tools and techniques, we decided to interview them and collect
their feedback. The methodology was as follows.

• After the development of SFS, we presented the SE tools and techniques that
we applied in developing SFS. This step was necessary because some of the
principles like “Design for change”, were adopted during the design phase, con-
sidering the needs of the project. We did not involve the scientists in the design
phase because during the pre-development interview (6.1.1), we realized that
the scientists did not have prior exposure to software design and hence we were
worried that scientists may find the task of designing the software arduous.
Hence it was necessary to summarize all the principles and practices applied in
developing SFS before asking for feedback.

• We had a set of questions which will be presented in section 6.3 and we requested
the scientists to answer those questions.

• We analyzed the responses and feedback from the scientists to classify the SE
approaches which were successful and to study the attitude of the scientists
towards applying SE into SC.

6.2 Scope
In this section we discuss the scope of the post-development interview. This study is
a successor to previous research carried out by Smith et al. in [74], in which existing
SC software was redeveloped using SE approaches without involving the scientists
during the development process. In this study, we planned to collect feedback from the
scientists on applying SE approaches to SC by involving them during the development
of SFS. Even though we had seven scientists in our project team, only two of them
were actively involved during the development of SFS. Other members in the team

71

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

of scientists contributed towards the scientific theory but their involvement towards
the SE aspect of this case study was minimal.

We had a total of twelve (12) interviewees. The participants of the post-development
interview are mostly academicians from a diverse background who were interested in
scientific software development and were not just from the team of scientists in the
case study. This implies that some of them were not a part of the project from the
beginning. However, it was not necessary because the interview was aimed at col-
lecting feedback on SE principles and practices applied in developing SFS, and not
about the actual software. The value of this work would have been enhanced if we
had additional interviewees from industry.

Some of the interviewees have been working with us since the beginning of this
project and hence there is a possibility of an unconscious bias in their feedback.
During the analysis of responses from the interviewees, we felt that some of the
questions in the interview, even though unintentionally, were biased and may have
led the scientists towards positive comments.

6.3 Feedback
In this section we present the feedback of the scientists on the SE principles and
practices applied for developing SFS. The content of this section is organized into a list
of questions posed to the scientists along with their responses and feedback obtained
during the post development interview. The questions were primarily focused on
studying their attitude towards applying SE into SC. The content of the presentation
is available in the appendix (A).

Q1: What could go wrong when the software does not produce expected results?

1. Science
2. Code

A1: About 15% of the interviewees thought that ‘Code’ could be wrong and the
remaining were inclined towards both options. It is worth noting that, the 15%
of the interviewees who chose ‘code’ thought that by ‘Science’ we meant the
basic proven scientific principles. However, by the word ‘Science’ we meant the
equations and principles used to solve the scientific problem associated with the
software. This was revealed when we asked for the reason behind their choice
and upon clarification, they were also inclined towards the possibility of both
potentially being wrong.

72

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

It is worth noting that this feedback is different from our observation presented
in section 4.1. Our observation was based on working with only one (1) scientist
and it cannot be generalized.

Q2: After this presentation, has your idea about software development changed from
just writing code? Please explain?

A2: All of the interviewees answered ‘Yes’. Upon further discussion, it was discovered
that many of the scientists originally thought that software development was
just writing code. One of our interviewees, who had previous experience in
developing software mentioned that, ‘I always felt the void while developing
software and SE fills the void’. Another interviewee felt that learning SE helps
them understand the rationale behind software decisions.

Q3: Were you aware of software skills and tools like design for change, separation of
concerns, testing techniques, issue tracker, version control etc before the start
of this project?

A3: About 75% of the interviewees said that they had previous experience in using
version control. One of them had prior exposure with the Github workflow
and doxygen comments. Some of the interviewees have had an exposure to
tools such as issue tracker (bug tracker) and have used version control system.
About 10% of our interviewees had absolutely no exposure to software skills.
The only part of the software known to them was the code. .

Q4: Do you feel it would have been nice if there was an exposure about software
skills during your graduate studies? If yes, how it would have been helpful.

A4: All of them unanimously agreed to this statement. One of our interviewees
wrote that “Yes, nowadays, one cannot be successful without exposure to soft-
ware”. Another interviewee mentioned that she was taking a course on SE to
get exposure to SE principles and practices. This feedback has reinforced the
author’s observation in [13].

Q5: If you want to incorporate any of the above mentioned steps in future software
development practices, what would be it? Please choose from below:

1. SRS (Documenting science) (Let us assume you have automatic tools)
2. Module Guide (Module decomposition of code)
3. Issue tracker (Use issue tracker)
4. Testing

73

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

5. Design for change

A5: About 80% of the interviewees mentioned that they liked to implement all of the
SE tools and practices which we presented. One of our interviewee mentioned
that all the SE principles and practices suggested above are useful only if the
SC software will be used by people other than the developer and the software
will be used for a long period of time. Keeping in mind the effort required to
apply the SE principles and practices such as document-driven development, it
makes good sense to apply these practices to a software which will be used for
a considerable amount of time.
It is also essential to note all the software documentation related to SFS was
prepared by us and scientists had no idea how much of an effort it was to put
them together. Their choice may have been different if we asked them to prepare
the documentation.
In addition to this, it is worth noting that there is an inherent bias in our
approach because the post-development interview was conducted with scientists
who were either familiar with this project or known to us for a long time. It
could have been avoided if we had more time and resources.

Q6: Do you think review of the documents would have increased your confidence in
the software?

A6: Most of our interviewees appreciated document-driven design. Almost 90% of
our interviewees mentioned that document review would have increased their
confidence. One of them mentioned that “Yes, the review of all the documents
together would have increased the confidence on the software”. One of our
interviewees expressed his concern over the test cases chosen. However, he was
convinced when we mentioned that the test cases can also be verified from the
Verification and Validation plan.

Q7: If you want to develop a scientific computing software, which scenario would be
the best?

1. Scenario 1 : Scientists learning and using the software engineering tools
and techniques? They can use existing templates for documentation and
automatic documentation generator tools will also be available.

2. Scenario 2 : A software engineer understanding the scientific research
(Please consider the wide range of scientific computing domain) and de-
veloping the software.

74

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

A7: About 80% of the interviewees mentioned that scenario 1 was a better choice.
Generally, understanding the scientific research is considered as a daunting task
by a software developer. In the article [10], the author mentions that “It will
be easier for the scientists to learn code than for the developers to comprehend
the science behind the project”. However, some of our interviewees felt that
it will be an additional burden on their work load. One of our interviewees
mentioned that it should be a combined effort from both scientists and the soft-
ware developers. Other notable feedbacks included having a multi disciplinary
team and a combined effort by the team members would be the best. . This
feedback has reinforced the observation in the following articles [35, 10, 72, 67]
where they say that an inter-disciplinary team will be beneficial for developing
SC software.

Q8: Can you make future changes in a software with just the code and no documen-
tation?

A8: Almost 80% of our interviewees mentioned that it will not be possible to main-
tain software without documentation. Some of our interviewees mentioned that
“It is possible to maintain the software even without any documentation, but
it will be very difficult. However, future changes will be impossible”.

Q9: With the given level of documents, do you think a new person could understand
the software and continue the work?

A9: All the interviewees agreed that it was possible to maintain the software with the
given level of documents. One of our interviewee mentioned that some training
may be necessary in the program environment in addition to the documents.

Q10: Please share your feedback about issue tracker. Do you think it is better than
email?

A10: All the interviewees unanimously mentioned that they liked the issue tracker.
The reasons for the success of issue tracker as mentioned by the interviewees
included easy record keeping and follow up. Some of them mentioned that
it is easier to track information in an issue tracker when compared to email.
However, one of our interviewees mentioned that issue tracker is suitable for
small problems and smaller team size and not suitable for bigger problems
running into pages with more number of developers working on the project.
However, we believe that issue tracker is even more valuable for bigger softwares
with multiple developers. Some of the advantages of issue tracker are discussed
in chapter 2, which makes it explicit why it is suitable for a large scale project
with several developers.

75

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

6.4 Summary
In this section we summarize the feedback of the scientists presented in detail in
section 6.3. Almost all the interviewees who were scientists see the value of applying
SE into SC. They are optimistic that SE will improve the quality of SC applications.
However, when it comes to learning the SE approaches, we saw a decline in the number
and they opted to have multi disciplinary team. Some of our interviewees mentioned
that they liked the idea of applying SE approaches to SC but they were also worried
about the learning curve of the SE practices and principles. Moving forward, it is
clear that scientists see the value of SE approaches for SC but “lazy proof” practices
and tools, that are easy to learn and use, without requiring much effort, are necessary
for scientists to use SE in developing SC applications.

76

Chapter 7

Conclusions

In this chapter, we provide a summary of the thesis with concluding remarks and a
list of potential future work.

7.1 Thesis Summary
This thesis has provided insight into applying SE practices to develop SC applications.
The primary objective of this thesis is to improve the quality of SC applications by
applying SE principles and practices. Often, the developers of the SC applications
are the scientists themselves, who are also the end users of the software. Typically
the professional end user developers have little or no education or training in SE [71].
Hence, it becomes necessary to motivate the end user developers, also referred as
‘scientists’, to use the principles and practices of SE to produce high quality SC
software.

In a previous attempt to bridge the gap between SE and SC developers in [74], it
was observed that the end user developers see the value of document driven design,
but were not convinced with the amount of effort required. It was recommended to
involve the scientific partners, from the beginning, before any requirements or code are
written. This will facilitate a more complete understanding of the document driven
development process and SE tools. Also, they [74] suggested that the transfer of SE
knowledge would be more feasible this way. This study is a successor of the previous
study. We involved the scientists in the software development process, giving them
an opportunity to witness the application of SE practices and principles to develop
an SC application. The methodology for conducting this case study is presented in
section 1.2. This summary is organized based on the steps mentioned in section 1.2.

As per the steps mentioned in section 1.2, we chose a suitable SC problem to
be our case study (SFS) and identified the scientific partners. We interviewed the

77

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

scientists before the development of SFS to learn about their expertise and exposure
to software skills. Then, we chose the SE approaches from the literature, suitable to
SFS. A brief review of the literature about SE for SC is given in chapter 2. The SE
practices which we followed during this case study are listed below.

• We followed a document driven approach in combination with a “faked” rational
design process. In chapter 3, we discuss this approach in detail and in chapter
4, we present our observations while implementing this approach.

• To review the documents produced, we adopted “Task-based inspection”. The
details of this approach are discussed in chapter 3.

• We followed principles such as “Design for change” which deals with designing
the software to accommodate anticipated changes. This is discussed in detail
in chapters 3, 4 and 5.

• We used Git and an issue tracker for version control and work flow management.
We also used the issue tracker for task-based inspection and communication
between the scientists. This is elaborated in chapter 3 and chapter 4.

• Finally, we used regression testing to test our implementation. This is essential
because in an SC domain, changes are inevitable. To accommodate ‘trial and
error’ experiments, it is essential to ensure that any changes made do not break
anything that was previously working. This approach is discussed in chapter 3
and chapter 4.

In applying the above mentioned SE principles and practices for the development
of SFS, we had few difficulties in working with the scientists. We present these
difficulties in the form of learnings and observations, which is discussed in chapter 4.
Most of our observations resembled the literature and only a couple of them differed.
We also identified that one of the observations, centering around the thought “upfront
requirements are not feasible for SC” was a myth. Based on our case study, we
identified that, with proper abstraction and using “faked document driven approach”,
it is possible to specify requirements in the beginning itself. This is elaborately
discussed in chapter 5. The list of all observations are categorized and listed below.

78

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

1. Observations that agree with the existing literature: a) work-
ing on something that the scientists are interested in is not enough to
promote SE practices, b) maintainability is a secondary consideration
for scientific partners, c) scientists are hesitant to learn SE practices,
d) verification and validation are challenging in SC, e) scientists natu-
rally follow agile methodologies, f) common ground for communication
has always been a problem, g) an interdisciplinary team is essential,
h) scientists tend to choose programming language based on their fa-
miliarity, i) scientists prefer to use plots to visualize, verify and under-
stand their science, j) early identification of test cases is advantageous,
k) scientists have a positive attitude toward issue trackers, l) SC soft-
ware should be designed for change, m) faking a rational design process
for documentation is advisable for SC, n) Scientists prefer informal, col-
legial knowledge transfer, to reading documentation,

2. Observations that disagree with the existing literature:
a) When unexpected results were obtained, our scientists chose to
change the numerical algorithms, rather than question their scientific
theories, b) Documentation of up-front requirements is feasible for SC

Following the steps mentioned in the methodology section (1.2) of chapter 1, we
wanted to study the attitude of the scientists in applying SE to SC. To understand
their attitudes, we interviewed the scientists after the development of the SFS and an-
alyzed their feedback, to see if there are any changes in their attitude after witnessing
the application of SE for SC. Our pre-development interview was primarily focused
on understanding the background, specialization and their exposure to software skills.
We found that some of them had limited exposure to coding but none of them were
familiar with SE principles and practices. Most of our interviewees thought that soft-
ware development, only involves coding. However, we saw a significant change in their
attitudes after witnessing the application of SE into SC. Most of them accepted that
SE can improve the quality of SC. The results from the interview and the feedback
from the scientists are presented in chapter 6. This has reinforced the author’s intu-
ition in the article [74], a predecessor to this case study, that involving the scientists
in the development process will improve the knowledge transfer of SE to scientific
partners. In our case, the scientific partners appreciated the document driven design
and also consider it as highly beneficial. However, it is also important to consider
that some of the interviewees have been working with us since the beginning of this
project and hence there is a possibility of an unconscious bias in their feedback. Also,
some of the questions in the interview, even though unintentionally, were biased and

79

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

may have led the scientists towards positive comments.
This thesis will act like a model document for those who want to apply SE for

SC. It portrays the difficulties we encountered during the development of a SC ap-
plication and offers solution from SE to overcome them. While developing SFS, we
realized that scientists were not actually interested in reviewing documents and learn-
ing SE tools and principles. One exception to this is the issue tracker, which scientist
readily adopted. Furthermore, communication between software developers and sci-
entific partners was also a problem because of the scientific terminologies and software
engineering jargons.

To address the above-mentioned difficulties, we adopted a “task-based inspection”
to minimize the effort and time commitment required for document review. We also
tried to stay away from SE jargons in our communication with the scientific partners
during the post development interview. To motivate the scientists to apply SE for
SC, we involved them from the beginning in the software development process as
suggested in the literature. These approaches were successful and there was a positive
change in the attitude of the scientists towards SE practices after the development
of SFS. This work also insists that documents, templates and good engineering alone
are not enough for the scientists to apply SE for SC. Tools, such as issue trackers,
are important for the scientists to readily adopt SE approaches. In other words,
for successful application of SE in SC, the SE tools and practices needs to be “lazy
proof”, that are easy to learn and use, without requiring much effort. Based on our
experience in developing SFS, we listed a set of guidelines in appendix F for software
developers developing SC applications.

7.2 Future work
In this section we present some of the future works and recommendations in regards
to our case study. This is organized in two (2) categories as shown below.

7.2.1 Future works related to SFS
Some potential future work related to SFS are mentioned below.

• SFS was basically developed to predict the fraction solid with respect to temper-
ature or time for a 1D heat transfer system. However, it could also be extended
to 2D systems.

• The Piecewise module fits the input data by optimizing the fit based on an
initial guess for break points. Currently, the initial guess is a manual input.

80

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

This could be automated and compute the initial guess for the breakpoints by
detecting sudden change in slope.

• The piecewise module uses 3 sections to fit the input data. However, it needs to
be automated to increase or decrease the number of sections and accommodate
the fitting of input data without manual intervention.

• While developing SFS, we tried to automatically detect the phase change points.
However, we could not accomplish this due to lack of time and resources. This
could be considered as a future work for SFS.

• The current version of SFS requires the user to manually input the material
properties of the alloy. This can be modified in the future by interfacing with
other commercial software such as Thermocalc, which will predict the material
properties based on the composition of the alloy.

7.2.2 Future works related to the case study
Some of the future works in relation to this case study of applying SE practices and
principles to improve the quality of SC applications are listed below.

• In future, for developing a SC application, the system tests and metamorphic
relations in the data must be identified earlier. Early identification of the system
tests gives a chance to perform meaningful trial and error experiments when
necessary. Metamorphic relations in the data, to some extent, may be used to
validate the input and output data.

• When SFS did not produce expected results, the primary cause for the anomalies
in the results was identified to be the input data. This is discussed in detail in
chapter 4. In the future, this situation can be avoided by early identification
of the system and data constraints. These constraints can be used to test the
input data using metamorphic testing which is used to test for patterns in input
data and warning messages may be generated for discrepancies or anomalies in
the data. This will also improve the quality of the test cases.

• Throughout the development of SFS, we felt the need to collaborate with a
domain scientist who could be a partner in code development. This will enable
better knowledge transfer across scientist and developer. Such collaborations
can be tried in future to evaluate the benefits.

The future works discussed in section 7.2.1 can be viewed as an extension to the
existing software to make it more robust and complete. The SFS, in its current version

81

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

must be viewed as a proof of concept and additional work is necessary to make it more
reliable and robust. We also presented the future works in relation to our case study
in section 7.2.2. This can also be viewed as the list of things we want to try if given
a chance to develop SFS once again in addition to our existing approaches.

7.2.3 Recommendations for Scientists developing software
In this section, we provide a set of recommendations to scientists who want to develop
a software, which will be used for a longer period of time and by person other than
the developer.

1. Identify the critical requirements and the likely changes.

2. Identify the metamorphic relations in input and output data and the properties
of correct solution.

3. Design the software encapsulating each likely change in a module.

4. Choose a programming language based on the requirements of the project and
not based on familiarity.

5. Use suitable tools from SE such as Issue tracker to manage the work flow and
communication.

6. Concentrate on verification and validation since the beginning of the project.

7. If trial and error experiments are necessary, choose proper approach and metrics
to measure each trial.

8. If possible, collaborate with a software developer for better skill transferability.

82

Bibliography

[1] Jim Woodcock A. Shaon and E. Conway. Tools and guidelines for preserving and
accessing software as a research output report ii: Case studies. technical report.
the university of york., 2009.

[2] K. S. Ackroyd, S. H. Kinder, G. R. Mant, M. C. Miller, C. A. Ramsdale, and
P. C. Stephenson. Scientific software development at a research facility. IEEE
Software, 25(4):44–51, July 2008.

[3] United States Environmental Protection Agency. Models, tools, and databases
for climate change research. https://www.epa.gov/climate-research/
models-tools-and-databases-climate-change-research.

[4] Zeeshan Ahmed and Saman Zeeshan. Cultivating software solutions development
in the scientific academia. Recent Patents on Computer Science, 7(1):54–66,
2014. http://www.eurekaselect.com/node/122718/article.

[5] Kieran Alden and Mark Read. Scientific software needs quality control. Nature,
502:448 EP –, 10 2013. http://dx.doi.org/10.1038/502448d.

[6] David H. Bailey, Jonathan M. Borwein, and Victoria Stodden, 2016.

[7] F. Benureau and N. Rougier. Re-run, Repeat, Reproduce, Reuse, Replicate:
Transforming Code into Scientific Contributions. ArXiv e-prints, August 2017.

[8] Jeffrey C. Carver and Lorin Hochstein. observations about software development
for high end computing, 2006.

[9] Jeffrey C. Carver, Neil P. Chue Hong, and George K. Thiruvathukal, editors.
Software Engineering for Science. Chapman & Hall/CRC Computational Sci-
ence. Chapman and Hall/CRC, 2016.

[10] Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E. Post.
Software development environments for scientific and engineering software: A

83

https://www.epa.gov/climate-research/models-tools-and-databases- climate-change-research
https://www.epa.gov/climate-research/models-tools-and-databases- climate-change-research
http://www.eurekaselect.com/node/122718/article
http://dx.doi.org/10.1038/502448d

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

series of case studies. In ICSE ’07: Proceedings of the 29th International Con-
ference on Software Engineering, pages 550–559, Washington, DC, USA, 2007.
IEEE Computer Society.

[11] Parmit K. Chilana, Carole L. Palmer, and Andrew J. Ko. Comparing bioin-
formatics software development by computer scientists and biologists: An ex-
ploratory study. In Proceedings of the 2009 ICSE Workshop on Software Engi-
neering for Computational Science and Engineering, SECSE ’09, pages 72–79,
Washington, DC, USA, 2009. IEEE Computer Society. http://dx.doi.org/10.
1109/SECSE.2009.5069165.

[12] Christian Collberg, Todd Proebsting, and Alex M Warren. Repeatability and
benefaction in computer systems research. Technical Report TR 14-04, Depart-
ment of Computer Science, University of Arizona, Tucson, AZ, 2015. http:
//repeatability.cs.arizona.edu/v2/RepeatabilityTR.pdf.

[13] Tom Crick, Benjamin A. Hall, and Samin Ishtiaq. “Can I implement your al-
gorithm?”: A model for reproducible research software. CoRR, abs/1407.5981,
2014.

[14] A. P. Davison. Automated capture of experiment context for easier reproducibil-
ity in computational research. Computing in Science & Engineering, 14(4):48–56,
July-Aug 2012.

[15] John B. Drake, Philip W. Jones, and Jr. George R. Carr. Overview of the software
design of the community climate system model. The International Journal of
High Performance Computing Applications, 19(3):177–186, 2005. https://doi.
org/10.1177/1094342005056094.

[16] Anshu Dubey, Katie Antypas, Alan Calder, Bruce Fryxell, Don Lamb, Paul
Ricker, Lynn Reid, Katherine Riley, Robert Rosner, Andrew Siegel, Francis
Timmes, Natalia Vladimirova, and Klaus Weide. The software development
process of flash, a multiphysics simulation code. In Proceedings of the 5th In-
ternational Workshop on Software Engineering for Computational Science and
Engineering, SE-CSE ’13, pages 1–8, Piscataway, NJ, USA, 2013. IEEE Press.
http://dl.acm.org/citation.cfm?id=2663370.2663372.

[17] S. M. Easterbrook and T. C. Johns. Engineering the software for understanding
climate change. Computing in Science Engineering, 11(6):65–74, Nov 2009.

[18] Hans Fangohr, Maximilian Albert, and Matteo Franchin. Nmag micromagnetic
simulation tool - software engineering lessons learned. CoRR, abs/1601.07392,
2016. http://arxiv.org/abs/1601.07392.

84

http://dx.doi.org/10.1109/SECSE.2009.5069165
http://dx.doi.org/10.1109/SECSE.2009.5069165
http://repeatability.cs.arizona.edu/v2/RepeatabilityTR.pdf
http://repeatability.cs.arizona.edu/v2/RepeatabilityTR.pdf
https://doi.org/10.1177/1094342005056094
https://doi.org/10.1177/1094342005056094
http://dl.acm.org/citation.cfm?id=2663370.2663372
http://arxiv.org/abs/1601.07392

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

[19] S. Faulk, E. Loh, M. L. V. D. Vanter, S. Squires, and L. G. Votta. Scientific
computing’s productivity gridlock: How software engineering can help. Comput-
ing in Science Engineering, 11(6):30–39, Nov 2009. https://doi.org/10.1109/
MCSE.2009.205.

[20] Jr. Frederick P. Brooks. The Mythical Man-month (Anniversary Ed.). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 9 edition, 1995.

[21] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software
Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

[22] Gene H. Golub and James M. Ortega. Scientific Computing and Differential
Equations. Academic Press, Boston, 1992. http://www.sciencedirect.com/
science/article/pii/B9780080516691500034.

[23] Les Hatton. The t experiments: Errors in scientific software. IEEE Compu-
tational Science and Engineering, 4(2):27–38, April 1997. https://doi.org/10.
1109/99.609829.

[24] Les Hatton and Andy Roberts. How accurate is scientific software? IEEE Trans.
Softw. Eng., 20(10):785–797, October 1994. http://dx.doi.org/10.1109/32.
328993.

[25] Erika Check Hayden. Mozilla plan seeks to debug scientific code. https://www.
nature.com/news/mozilla-plan-seeks-to-debug-scientific-code-1.13.

[26] Dustin Heaton and Jeffrey C. Carver. Claims about the use of software engineer-
ing practices in science. Inf. Softw. Technol., 67(C):207–219, November 2015.
http://dx.doi.org/10.1016/j.infsof.2015.07.011.

[27] Francisco Hernández, Purushotham Bangalore, and Kevin Reilly. Automating
the development of scientific applications using domain-specific modeling. In
Proceedings of the Second International Workshop on Software Engineering for
High Performance Computing System Applications, SE-HPCS ’05, pages 50–
54, New York, NY, USA, 2005. ACM. http://doi.acm.org/10.1145/1145319.
1145334.

[28] Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra,
Jonathan J. Hu, Tamara G. Kolda, Richard B. Lehoucq, Kevin R. Long, Roger P.
Pawlowski, Eric T. Phipps, Andrew G. Salinger, Heidi K. Thornquist, Ray S.
Tuminaro, James M. Willenbring, Alan Williams, and Kendall S. Stanley. An
overview of the trilinos project. ACM Trans. Math. Softw., 31(3):397–423,
September 2005. http://doi.acm.org/10.1145/1089014.1089021.

85

https://doi.org/10.1109/MCSE.2009.205
https://doi.org/10.1109/MCSE.2009.205
http://www.sciencedirect.com/science/article/pii/B9780080516691500034
http://www.sciencedirect.com/science/article/pii/B9780080516691500034
https://doi.org/10.1109/99.609829
https://doi.org/10.1109/99.609829
http://dx.doi.org/10.1109/32.328993
http://dx.doi.org/10.1109/32.328993
https://www.nature.com/news/mozilla-plan-seeks-to-debug-scientific-code-1.13
https://www.nature.com/news/mozilla-plan-seeks-to-debug-scientific-code-1.13
http://dx.doi.org/10.1016/j.infsof.2015.07.011
http://doi.acm.org/10.1145/1145319.1145334
http://doi.acm.org/10.1145/1145319.1145334
http://doi.acm.org/10.1145/1089014.1089021

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

[29] Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Test-
ing, and Maintenance: A Practical Approach. International Thomson Computer
Press, New York, NY, USA, 1995. http://citeseer.ist.psu.edu/428727.html.

[30] Daniel Hook and Diane Kelly. Testing for trustworthiness in scientific soft-
ware. In Proceedings of the 2009 ICSE Workshop on Software Engineering for
Computational Science and Engineering, SECSE ’09, pages 59–64, Washington,
DC, USA, 2009. IEEE Computer Society. http://dx.doi.org/10.1109/SECSE.
2009.5069163.

[31] IEEE. Recommended practice for software requirements specifications. IEEE
Std 830-1998, pages 1–40, Oct 1998.

[32] John PA Ioannidis, David B Allison, Catherine A Ball, Issa Coulibaly, Xi-
angqin Cui, Aedín C Culhane, Mario Falchi, Cesare Furlanello, Laurence Game,
Giuseppe Jurman, et al. Repeatability of published microarray gene expression
analyses. Nature genetics, 41(2):149–155, 2009.

[33] Cezar Ionescu and Patrik Jansson. Dependently-Typed Programming in Sci-
entific Computing — Examples from Economic Modelling. In Revised Selected
Papers of the 24th International Symposium on Implementation and Application
of Functional Languages, volume 8241 of Lecture Notes in Computer Science,
pages 140–156. Springer International Publishing, 2012.

[34] ISO. Iso 25000 software product quality. http://iso25000.com/index.php/
en/iso-25000-standards/iso-25010.

[35] Arne N. Johanson and Wilhelm Hasselbring. Software engineering for compu-
tational science: Past, present, future. Computing in Science & Engineering,
Accepted:1–31, 2018.

[36] Upulee Kanewala and James M. Bieman. Testing scientific software: A sys-
tematic literature review. CoRR, abs/1804.01954, 2018. http://arxiv.org/abs/
1804.01954.

[37] D. Kelly, D. Hook, and R. Sanders. Five recommended practices for computa-
tional scientists who write software. Computing in Science and Engg., 11(5):48–
53, September 2009. http://dx.doi.org/10.1109/MCSE.2009.139.

[38] Diane Kelly and Rebecca Sanders. The challenge of testing scientific software.
In Proceedings of the Conference for the Association for Software Testing, pages
30–36, 2008.

86

http:// citeseer.ist.psu.edu/428727.html
http://dx.doi.org/10.1109/SECSE.2009.5069163
http://dx.doi.org/10.1109/SECSE.2009.5069163
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://arxiv.org/abs/1804.01954
http://arxiv.org/abs/1804.01954
http://dx.doi.org/10.1109/MCSE.2009.139

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

[39] Diane Kelly and Terry Shepard. Task-directed software inspection technique: an
experiment and case study. In CASCON ’00: Proceedings of the 2000 conference
of the Centre for Advanced Studies on Collaborative research, page 6. IBM Press,
2000. http://portal.acm.org/citation.cfm?id=782040#.

[40] Diane Kelly and Terry Shepard. Eight maxims for software inspectors. Software
Testing, Verification and Reliability, 14(4):243–256, 2004.

[41] Diane F. Kelly and Rebecca Sanders. Assessing the quality of scientific soft-
ware. In Proceedings of the First International Workshop on Software Engineer-
ing for Computational Science and Engineering (SECSE 2008), Leipzig, Ger-
many, 2008. In conjunction with the 30th International Conference on Software
Engineering (ICSE). http://www.cse.msstate.edu/~SECSE08/schedule.htm.

[42] Sarah Killcoyne and John Boyle. Managing chaos: Lessons learned developing
software in the life sciences. Computing in Science and Engg., 11(6):20–29,
November 2009. http://dx.doi.org/10.1109/MCSE.2009.198.

[43] Bojana Koteska, Anastas Mishev, and Ljupco Pejov. Quantitative measurement
of scientific software quality: Definition of a novel quality model. International
Journal of Software Engineering and Knowledge Engineering, 28(03):407–425,
2018. https://doi.org/10.1142/S0218194018500146.

[44] Bojana Koteska, Anastas Mishev, and Ljupco Pejov. Quantitative measurement
of scientific software quality: Definition of a novel quality model. International
Journal of Software Engineering and Knowledge Engineering, 28(03):407–425,
2018. https://doi.org/10.1142/S0218194018500146.

[45] Charles W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131–183, June
1992. http://doi.acm.org/10.1145/130844.130856.

[46] Chemistry: LibreTexts. Liquid-solid phase diagrams: Tin and lead.
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_
Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_
Theoretical_Chemistry)/Equilibria/Physical_Equilibria/Liquid-Solid_
Phase_Diagrams%3A_Tin_and_Lead.

[47] A M Lombardi. Seda: A software package for the statistical earthquake data
analysis. Scientific Reports, 7:44171, 2017. http://www.ncbi.nlm.nih.gov/
pmc/articles/PMC5349582/.

[48] G. Uma Maheswari and Dr. V. V. Rama Prasad. Optimized software quality
assurance model for testing scientific software.

87

http://portal.acm.org/citation.cfm?id=782040#
http://www.cse.msstate.edu/~SECSE08/schedule.htm
http://dx.doi.org/10.1109/MCSE.2009.198
https://doi.org/10.1142/S0218194018500146
https://doi.org/10.1142/S0218194018500146
http://doi.acm.org/10.1145/130844.130856
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Equilibria/Physical_Equilibria/Liquid-Solid_Phase_Diagrams%3A_Tin_and_Lead
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Equilibria/Physical_Equilibria/Liquid-Solid_Phase_Diagrams%3A_Tin_and_Lead
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Equilibria/Physical_Equilibria/Liquid-Solid_Phase_Diagrams%3A_Tin_and_Lead
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Equilibria/Physical_Equilibria/Liquid-Solid_Phase_Diagrams%3A_Tin_and_Lead
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349582/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349582/

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

[49] Daniel D. McCracken and Michael A. Jackson. Life cycle concept considered
harmful. SIGSOFT Softw. Eng. Notes, 7(2):29–32, April 1982. http://doi.
acm.org/10.1145/1005937.1005943.

[50] P. Messina. Gaining the broad expertise needed for high-end computational
science and engineering research. Computing in Science Engineering, 17(2):89–
90, Mar 2015.

[51] Reed Milewicz and Elaine M. Raybourn. Talk to me: A case study on coordinat-
ing expertise in large-scale scientific software projects. CoRR, abs/1809.06317,
2018.

[52] Greg Miller. A scientist’s nightmare: Software problem leads to five retractions.
Science, 314(5807):1856–1857, 2006. http://science.sciencemag.org/content/
314/5807/1856.

[53] A. Nanthaamornphong, K. Morris, D. W. I. Rouson, and H. A. Michelsen. A
case study: Agile development in the community laser-induced incandescence
modeling environment (cliime). In 2013 5th International Workshop on Software
Engineering for Computational Science and Engineering (SE-CSE), pages 9–18,
May 2013.

[54] National Institute of Standards and Technology. Nist assesses technical needs
of industry to improve software-testing. http://www.abeacha.com/NIST_
press_release_bugs_cost.htm.

[55] D. L. Parnas. A technique for the specification of software modules with exam-
ples. CACM, 15(5):330–336, 1972.

[56] David L. Parnas and P.C. Clements. Software carpentry, 2006.

[57] David L. Parnas and P.C. Clements. A rational design process: How and why to
fake it. IEEE Transactions on Software Engineering, 12(2):251–257, February
1986.

[58] D.L. Parnas, P.C. Clement, and D. M. Weiss. The modular structure of complex
systems. In International Conference on Software Engineering, pages 408–419,
1984.

[59] Roger D. Peng. Reproducible research in computational science. Science,
334(6060):1226–1227, 2011.

[60] D. E. Post and L. G. Votta. Computational Science Demands a New Paradigm.
Physics Today, 58(1):35–41, January 2005.

88

http://doi.acm.org/10.1145/1005937.1005943
http://doi.acm.org/10.1145/1005937.1005943
http://science.sciencemag.org/content/314/5807/1856
http://science.sciencemag.org/content/314/5807/1856
http://www.abeacha.com/NIST_press_release_bugs_cost.htm
http://www.abeacha.com/NIST_press_release_bugs_cost.htm

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

[61] Douglass E. Post and Richard P. Kendall. Software project management and
quality engineering practices for complex, coupled multiphysics, massively paral-
lel computational simulations: Lessons learned from asci. IJHPCA, 18:399–416,
2004.

[62] Michael Rilee and Thomas Clune. Towards test driven development for compu-
tational science with pfunit. In Proceedings of the 2Nd International Workshop
on Software Engineering for High Performance Computing in Computational
Science and Engineering, SE-HPCCSE ’14, pages 20–27, Piscataway, NJ, USA,
2014. IEEE Press. https://doi.org/10.1109/SE-HPCCSE.2014.5.

[63] Patrick J. Roache. Verification and Validation in Computational Science and
Engineering. Hermosa Publishers, Albuquerque, New Mexico, 1998.

[64] Christopher Roy. Practical software engineering strategies for scientific com-
puting. In 19th AIAA Computational Fluid Dynamics. American Institute of
Aeronautics and Astronautics, 2018/09/27 2009. https://doi.org/10.2514/6.
2009-3997.

[65] U. Rüde, K. Willcox, L. McInnes, and H. Sterck. Research and education in
computational science and engineering. SIAM Review, 60(3):707–754, 2018.
https://doi.org/10.1137/16M1096840.

[66] R. Sanders and D. Kelly. Dealing with risk in scientific software development.
IEEE Software, 25(4):21–28, July 2008.

[67] Judith Segal. When software engineers met research scientists: A case study.
Empirical Softw. Engg., 10(4):517–536, October 2005.

[68] Judith Segal. Some problems of professional end user developers. In VLHCC ’07:
Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing, pages 111–118, Washington, DC, USA, 2007. IEEE Computer Soci-
ety.

[69] Judith Segal. Models of scientific software development, 2008. http://www.cs.
ua.edu/~SECSE08/Papers/Segal.pdf.

[70] Judith Segal. Scientists and software engineers: a tale of two cultures, 2008.
http://oro.open.ac.uk/17671/1/PPIG_08Segal.pdf.

[71] Judith Segal and Chris Morris. Developing scientific software. IEEE Software,
25(4), July/August 2008.

89

https://doi.org/10.1109/SE-HPCCSE.2014.5
https://doi.org/10.2514/6.2009-3997
https://doi.org/10.2514/6.2009-3997
https://doi.org/10.1137/16M1096840
http://www.cs.ua.edu/~SECSE08/Papers/Segal.pdf
http://www.cs.ua.edu/~SECSE08/Papers/Segal.pdf
http://oro.open.ac.uk/17671/1/PPIG_08Segal.pdf

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

[72] W. A. Simm, F. Samreen, R. Bassett, M. A. Ferrario, G. Blair, J. Whittle,
and P. J. Young. Se in es: Opportunities for software engineering and cloud
computing in environmental science. In 2018 ACM/IEEE 40th International
Conference on Software Engineering: Software Engineering in Society, pages 1–
10, 2018.

[73] W. Spencer Smith. A rational document driven design process for scientific
computing software. In Jeffrey C. Carver, Neil Chue Hong, and George Thiru-
vathukal, editors, Software Engineering for Science, Chapman & Hall/CRC
Computational Science, chapter Examples of the Application of Traditional Soft-
ware Engineering Practices to Science, pages 33–63. Taylor & Francis, Boca
Raton, FL, 2016.

[74] W. Spencer Smith, Thulasi Jegatheesan, and Diane F. Kelly. Advantages, dis-
advantages and misunderstandings about document driven design for scientific
software. In Proceedings of the Fourth International Workshop on Software En-
gineering for High Performance Computing in Computational Science and Engi-
neering (SE-HPCCE), November 2016. 8 pp.

[75] W. Spencer Smith and Nirmitha Koothoor. A document-driven method for
certifying scientific computing software for use in nuclear safety analysis. Nuclear
Engineering and Technology, 48(2):404 – 418, 2016. http://www.sciencedirect.
com/science/article/pii/S1738573315002582.

[76] W. Spencer Smith, Nirmitha Koothoor, and Ned Nedialkov. A document driven
method for facilitating certification of scientific computing software. IEEE Trans-
actions on Software Engineering, Submitted 2014.

[77] W. Spencer Smith and Lei Lai. A new requirements template for scientific com-
puting. In J. Ralyté, P. Ȧgerfalk, and N. Kraiem, editors, Proceedings of the
First International Workshop on Situational Requirements Engineering Processes
– Methods, Techniques and Tools to Support Situation-Specific Requirements En-
gineering Processes, SREP’05, Paris, France, August 2005. In conjunction with
13th IEEE International Requirements Engineering Conference.

[78] W. Spencer Smith, Lei Lai, and Ridha Khedri. Requirements analysis for en-
gineering computation: A systematic approach for improving software reliabil-
ity. Reliable Computing, Special Issue on Reliable Engineering Computation,
13(1):83–107, February 2007.

[79] W. Spencer Smith, Yue Sun, and Jacques Carette. Comparing psychometrics
software development between CRAN and other communities. Technical Report
CAS-15-01-SS, McMaster University, January 2015. 43 pp.

90

http://www.sciencedirect.com/science/article/pii/S1738573315002582
http://www.sciencedirect.com/science/article/pii/S1738573315002582

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

[80] W. Spencer Smith and Wen Yu. A document driven methodology for improv-
ing the quality of a parallel mesh generation toolbox. Advances in Engineering
Software, 40(11):1155–1167, November 2009.

[81] Ian Sommerville, editor. Software Engineering. Pearson, 9th edition, 2011.

[82] Tim Storer. Bridging the chasm: A survey of software engineering practice in
scientific programming. ACM Comput. Surv., 50(4):47:1–47:32, August 2017.

[83] Burak Turhan, Lucas Layman, Madeline Diep, Forrest Shull, and Hakan Erdog-
mus, editors. Making Software. O’Reilly Media, 9th edition, 2010.

[84] Noel Viehmeyer. Waterfall and why itâĂŹs not suitable for soft-
ware development, 2015. https://www.boost.co.nz/blog/2015/10/
waterfall-and-why-its-not-suitable-for-software-development.

[85] Wikipedia. Haley industries. https://en.wikipedia.org/wiki/Haley_
Industries.

[86] Wikipedia. Institute of electrical and electronics engineers. https://en.
wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers.

[87] From Wikipedia. Goodness of fit. https://en.wikipedia.org/wiki/Goodness_
of_fit.

[88] Greg Wilson. Techblog: Git: The reproducibility tool scientists love to hate,
2018.

[89] Greg Wilson, D. A. Aruliah, C. Titus Brown, Neil P. Chue Hong, Matt Davis,
Richard T. Guy, Steven H. D. Haddock, Kathryn D. Huff, Ian M. Mitchell,
Mark D. Plumbley, Ben Waugh, Ethan P. White, and Paul Wilson. Best practices
for scientific computing. PLoS Biol, 12(1):e1001745, January 2014.

[90] Gregory V. Wilson. Software carpentry: lessons learned [version 1; referees: 3
approved], 2014.

[91] D. Woollard, N. Medvidovic, Y. Gil, and C. A. Mattmann. Scientific software
as workflows: From discovery to distribution. IEEE Software, 25(4):37–43, July
2008.

91

https://www.boost.co.nz/blog/2015/10/waterfall-and-why-its-not-suitable -for-software-development
https://www.boost.co.nz/blog/2015/10/waterfall-and-why-its-not-suitable -for-software-development
https://en.wikipedia.org/wiki/Haley_Industries
https://en.wikipedia.org/wiki/Haley_Industries
https://en.wikipedia.org/wiki/Institute_of_Electrical_and_ Electronics_Engineers
https://en.wikipedia.org/wiki/Institute_of_Electrical_and_ Electronics_Engineers
https://en.wikipedia.org/wiki/Goodness_of_fit
https://en.wikipedia.org/wiki/Goodness_of_fit

Appendix A

Presentation: A Case Study to
Develop Scientific Software

92

11/20/18

1

SFS: Software for Fraction Solid
- A case study to develop Scientific Software

Agenda

• Question (5 min)
• Presentation (40 min)
• Discussion (25 min)
• Questionnaire (15 min)

Scenario

SFS is developed

Not expected output

Let’s debug?

Question
Not expected output

93

11/20/18

2

Answer

1. Science
2. Code

We will pick the answer later J

Presentation

“No Science please !!”

Terminologies
Casting is a process of pouring a molten metal
into a mold.

Solidification is a process by which the liquid
metal solidifies into solid by losing heat.

Defects during solidification is related to solid
fraction. - Expensive

94

11/20/18

3

SFS Experimental setup Data

Input:
Experiment details: H, D, n_TC, y_loc, dt, dy, Temp and time
Material properties: Cp, α, L and ρ

Output: fs(t)

How SFS works? Working of SFS: Piecewise Module

Input Data: T vs t at each thermocouple location Output: Piecewise fit of each TC

95

11/20/18

4

Working of SFS: Temperature module

Input : Temp(T) vs time(t) at each thermocouple location
Output : A function T(y,t), which gives temperature and time at all location, time (subject to
experimental and numerical constraints) and its derivatives.

Sample Output

fs as a function of temperature

Recap: SFS
Important modules:

1. Piecewise module : Fit the data

2. Temperature module: Predict temperature.
Discussion

96

11/20/18

5

What if….

1. I graduate and don’t give you any
files? [Hypothetical J]

2. No documentation
3. Problem in the results: (First question)
4. Needs changes

SFS
How will you make changes to SFS?

- Different physical model?
- Integration with thermocalc?
- Changes in underlying mathematics (Splines

instead of interpolation and regression)
- Changes in ODE

Steps

To illustrate the steps,

- ACTIVITY

Design for Change
Lets say we want to make a change,

Task: Change the formula of dT/dt

Current formula:
(Forward difference)

Proposed change:
(Central difference)

Lets go to code,

97

11/20/18

6

The code ……

- Is code alone enough?
- Is the code easy to understand?
- Will it suffice if I explain everything now?
- Will you be able to modify the code for
changes?

Answer: NO

Please think about the following..

Need more guidance?

Module Guide

What is a module?
Module is an independent unit used to construct a
complex structure.

M1

M2

M3

98

11/20/18

7

Modules List

Is this easier to understand than the code?
Why is it easy?

“Abstraction”
(Hiding complexities for ease of understanding

and utility)

So, what we did?

Ideal Development process
1. Start writing code
from the beginning.
2. Prepare
documents as if you
followed a document
driven approach.

What we did?

Faked Rational
process Design,
Document driven
approach

Requirements
(Math model)

Next Question:

Did we finish our task??
Lets change the code….
So where do you explain code??

-MIS
(Module Interface Specification)

99

11/20/18

8

What is an interface?
Service: electricity
Algorithm: May be solar, wind or water MIS of a Module

- Variables
- Methods
- Algorithm

MIS of Piecewise module
MIS of TData module

100

11/20/18

9

Change
Lets change the formula…..
But, where is the code??

- The code.

101

11/20/18

10

Why so much effort needed?

“Design for change”
(Design a software anticipating changes)

Why we need it?
What if you want to fit a different data?

What if you do not want to use interpolation
and regression?

Discussion

How do you know SFS modules are correct?
How do you know your change hasn’t broken
anything?
Confidence in code?

Testing

Question
Software fails

Answer

1. Science
2. Code

“What would be the first step to
prove code is not wrong?”

Testing

102

11/20/18

11

Testing
Let us look at dT/dt…
(Before the formula change)

Testing

Pytest
Test case fails

Visual inspection can fail

Testing
(After the formula change) Testing

Pytest
Test case passed

103

11/20/18

12

Testing
1. Visual inspections can fail
2. Manual testing too tedious

Solution: Regression Testing

Regression Testing

• Regression testing is re-running functional
and non-functional tests to ensure that
previously developed and tested software still
performs after a change.

• Approximation error:
– Absolute error
– Relative error

Where is the science?

Where is the science documented?

SRS
Software Requirement specification

No information about design.
[Handout : Table of contents]

(Background, Goals, Requirements, Assumptions and
equations to solve for SFS.)

Software Tools
- Issue Tracker
- doxygen

104

11/20/18

13

Recap: Document Review

SRS Review:
1. Task based inspection.
2. Issue Tracker.

Questions
1. What could go wrong when the software does
not produce expected results?
• Science
• Code

2. After this presentation, has your idea about
software development changed from just
writing code? Please explain?

3. Were you aware of software skills and tools
like design for change, separation of concerns,
testing techniques, issue tracker, version control
etc before the start of this project? [Yes or No]

4. Do you feel it would have been nice if there
was an exposure about software skills during
their graduate studies? If yes, how it would have
been helpful.

Questions
5. If you want to incorporate any of the above
mentioned steps in future software
development practices, what would be it?
Please choose from below:
• SRS (Documenting science) (Let us assume you

have automatic tools)
• Module Guide(Module decomposition of

code)
• Issue tracker (Use issue tracker)
• Testing
• Design for change

Questions

105

11/20/18

14

6. Do you think review of the documents would
have increased your confidence in the software?

Questions 7. If you want to develop a scientific computing
software, which scenario would be the best?
a. Scientists learning and using the software

engineering tools and techniques? They can
use existing templates for documentation
and automatic documentation generator
tools will also be available.

b. A software engineer understanding the
scientific research (Please consider the wide
range of scientific computing domain) and
developing the software.

Questions

8. Can you make future changes in a software
with just the code and no documentation?

9. With the given level of documents, do you
think a new person could understand the
software and continue the work? (SRS, MG, MIS)

10. Please share your feedback about issue
tracker. Do you think it is better than email?

Questions

Thank you !!!

106

Appendix B

SRS: Software Requirement
Specification

107

Software Requirements Specification for Software for
Solidification

Malavika Srinivasan and Spencer Smith

December 13, 2018

Contents
1 Reference Material 3

1.1 Table of Units . 3
1.2 Table of Symbols . 3
1.3 Abbreviations and Acronyms . 5

2 Introduction 5
2.1 Purpose of Document . 5
2.2 Scope of Requirements . 6
2.3 Intended Audience . 6
2.4 Organization of Document . 6

3 Background 7

4 General System Description 7
4.1 System Context . 8
4.2 User Characteristics . 9
4.3 System Constraints . 9

5 Specific System Description 9
5.1 Problem Description . 9

5.1.1 Terminology and Definitions . 9
5.1.2 Physical System Description . 10
5.1.3 Goal Statements . 10

5.2 Solution Characteristics Specification . 10
5.2.1 Assumptions . 10
5.2.2 Theoretical Models . 12
5.2.3 General Definitions . 13
5.2.4 Data Definitions . 17

1 108

5.2.5 Instance Model . 23
5.2.6 Data Constraints . 28
5.2.7 Properties of a Correct Solution . 30

6 Requirements 31
6.1 Functional Requirements . 31

6.1.1 Configuration Mode . 31
6.1.2 Calibration Mode . 32
6.1.3 Calculation Mode . 32

6.2 Non-Functional Requirements . 33
6.2.1 Look and Feel Requirements . 33
6.2.2 Usability and Humanity Requirements 33
6.2.3 Installability Requirements . 33
6.2.4 Performance Requirements . 33
6.2.5 Operating and Environmental Requirements 34
6.2.6 Maintainability and Support Requirements 34
6.2.7 Security Requirements . 34
6.2.8 Cultural Requirements . 34
6.2.9 Compliance Requirements . 34

7 Likely Changes 34

8 Unlikely Changes 35

A Supporting Information 36

2 109

1 Reference Material
This section records information for ease of reference. The information includes the units,
symbols and abbreviations used in this document.

1.1 Table of Units
Throughout this document SI (Système International d’Unités) is employed as the unit
system. (The one exception is that degrees Celsius is used for temperature, instead of
Kelvin, in keeping with standard practice for the problem domain.) In addition to the basic
units, several derived units are used as described below. For each unit, the symbol is given
followed by a description of the unit with the SI name.

symbol unit SI

m length metre
kg mass kilogram
s time second
◦C temperature centigrade
J energy Joule
W power Watt (W = J s−1)

1.2 Table of Symbols
The table that follows summarizes the symbols used in this document along with their
units. The choice of symbols was made to be consistent with the heat transfer literature and
with existing documentation for software for solidification systems. When vector quantities
are presented, the units apply for each element of the vector. The symbols are listed in
alphabetical order.

symbol unit description

Cv J/(m3 ◦C) Volumetric heat capacity
CL
v J/(m3 ◦C) Volumetric heat capacity at beginning of solidification

CS
v J/(m3 ◦C) Volumetric heat capacity at end of solidification

Cp J/(kg ◦C) Specific heat capacity
fs no unit Fraction of solid formed during solidification
ḟs 1/s Fraction solid w.r.t. time across different locations
g W/m3 Rate of volumetric heat generation
k W/(m ◦C) Thermal conductivity

3 110

L J/kg Latent heat of solidification
m kg Mass
q W/m2 The thermal flux vector
qs W/m3 Heat released during solidification
Q J Latent heat energy
t s Time
T ◦C Temperature
Ṫ ◦C/s Change of temperature w.r.t. time across different locations
V m3 Volume
α m2/s Thermal diffusivity
αS m2/s Thermal diffusivity of solid as a function of temperature
αb m2/s Thermal diffusivity at beginning of solidification (at the liquidus

point)
αe m2/s Thermal diffusivity when first solid (at the solidification point)
ρ kg/m3 Density
ρb kg/m3 Density at beginning of solidification
ρe kg/m3 Density at end of solidification
ρL kg/m3 Density in liquidus zone as a function of temperature
ρS kg/m3 Density in solidus zone as a function of temperature
τ s Temporary time variable
∆y m Distance between thermocouples
λ variable Generic material properties
∇ no unit Gradient operator

4 111

1.3 Abbreviations and Acronyms

symbol description

A Assumption
DD Data Definition
GD General Definition
GS Goal Statement
IM Instance Model
LC Likely Change
ODE Ordinary Differential Equation
PS Physical System Description
R Requirement
SRS Software Requirements Specification
SFS Software for Solidification
T Theoretical Model
1D 1 Dimensional
w.r.t. with respect to

2 Introduction
Solidification is a branch of science that deals with the study of transition of a liquid, in the
present case a liquid metal alloy, to a solid as its temperature is lowered. During solidification
heat is given out from the liquid phase to form a solid. During this process, the element or
the alloy undergoes phase transition from liquid to 2 phase (solid + liquid) and finally to
solid. In this project, software is developed to estimate the fraction of solid present in the 2
phase zone. An experiment is devised with a cylinder of alloy such that unidirectional heat
removal can be assumed. Data is collected, via thermocouples, of the temperature inside
the cylinder over time. This data can then be used to characterize the solid fraction as a
function of temperature and the rate of cooling.

The following section provides an overview of the Software Requirements Specification
(SRS) for a solidification system for a cast material. The developed program will be referred
to as Software For Solidification (SFS). This section explains the purpose of this document,
the scope of the system, the organization of the document and the intended audience.

2.1 Purpose of Document
The main purpose of this document is to explain the physics behind SFS. The SRS is abstract
because the contents say what problem is being solved, but do not say how to solve it. This

5 112

document will be used as a starting point for subsequent development phases, including
writing the design specification and the software verification and validation plan. The design
document will show how the requirements are to be realized, including decisions on the
numerical algorithms and programming environment. The verification and validation plan
will show the steps that will be used to increase confidence in the software documentation
and the implementation. Although the SRS fits in a series of documents that follow the so-
called waterfall model, the actual development process is not constrained in any way. Even
when the process is not waterfall, as Parnas and Clements [4] point out, the most logical
way to present the documentation is still to “fake” a rational design process.

2.2 Scope of Requirements
The scope of the requirements is limited to predict the solidification characteristics of a
specific alloy system. Given the appropriate inputs, the code for SFS is intended to predict
the solid fraction of the solidifying alloy. This entire document is written assuming that the
heat removal out of the system is unidirectional.

The scope of these requirements do not extend to the experimental data collection. SFS
is not itself a data acquisition system. The data will be collected by another program and
then provided to SFS.

2.3 Intended Audience
This document is intended for the users of this software as well as software engineers and
programmers who may be working in this project. The typical reader is expected to have
basic knowledge about thermodynamics, physics and mathematics. This document will
be reviewed by scientists and mechanical engineers with respect to the theory behind the
solidification of liquid alloys.

2.4 Organization of Document
The organization of this document follows the template for an Software Requirement Spec-
ification (SRS) for scientific computing software proposed by [3] and [6]. The presentation
follows the standard pattern of presenting goals, theories, definitions, and assumptions. For
readers that would like a more bottom up approach, they can start reading the instance
model in Section 5.2.5 and trace back to find any additional information they require. The
instance model provides the Ordinary Differential Equation (ODE) and algebraic equations
that model the solidification process. SFS solves the ODE mentioned in the instance model.

The goal statements are refined to the theoretical models, and theoretical models to the
instance models.

6 113

3 Background
Solidification is a branch of science that deals with the study of transition of a liquid to
solid when its temperature is lowered below its melting or freezing point. Understanding
solidification is critical for a casting process, where an object is made by pouring molten
metal or molten alloy into a mold.

In an alloy, the components of the alloy may have different freezing points and may
solidify at different temperatures. During this process, there are 3 different phases - Solid
zone, Liquid zone and 2 phase zone (solid + liquid). Understanding solidification involves
identifying the points at which the elements present in the alloy start and finish solidifying.
These points are called liquidus, eutectic and solidus points. These points are marked in
Figure 1. The liquidus point occurs at the temperature where solids first start to form. It
is represented by a sudden change in curvature of the cooling curve. A eutectic point is
when the rate of energy leaving the material matches the rate of energy entering through
solidification. At the eutectic point the temperature remains constant until all of the material
has solidified. The solidus temperature specifies the temperature below which a material is
completely solid.

The main aim of SFS is to estimate the solid fraction in the 2 phase zone, which is the
percentage of solid present in the mixture of solid and liquid. Finding the fraction solid is
essential in predicting the properties of the solidified alloy. These properties determine the
quality of the castings.

Figure 1: Typical cooling in a binary alloy with liquidus, solidus and eutectic points identified

4 General System Description
This section provides general information about the system, identifies the interfaces between
the system and its environment, and describes the user characteristics and the system con-

7 114

straints.

4.1 System Context
Figure 2 shows the system context. A circle represents an external entity outside the software,
the user in this case. A rectangle represents the software system itself (SFS). Arrows are
used to show the data flow between the system and its environment.

User User

User User

SFS

SFS
fs(T,

dT

dt
)

a) Calibration Run (Solve Inverse Heat Transfer Problem)

b) Solid Fraction Run (Solve for Material Properties and fs Function)

Material Properties Boundary Conditions

Boundary Conditions Unknown Mat Props

Known Material Props

Figure 2: System Context

The system has three modes:

1. Configuration Mode: Many experiments will share the same configuration information,
such as the dimensions of the cylinder and the locations of the thermocouples; therefore,
the stable/persistent data is entered in a separate mode. This data entry only needs
to be repeated when their are changes to the configuration.

2. Calibration Mode: An inverse heat transfer problem is solved to determine the thermal
boundary conditions on the bottom of the plate using an experiment with an alloy that
has known material properties. Specifically, the purpose is to find the heat transfer
coefficient.

3. Solid Fraction Mode: Using the boundary conditions determined from the calibration
run and the known material properties the system solves for the unknown material
properties and for the solid fraction as a function of temperature and temperature
gradient.

SFS is mostly self-contained. The only external interaction is through the user interface.
The responsibilities of the user and the system are as follows:

• User Responsibilities:

8 115

– Enter configuration information
– Decide whether to do a Calibration Run or a Solid Fraction Run
– Run the appropriate experiment to obtain the required data
– Provide the input data to the system, ensuring no errors in the data entry
– Take care that consistent units are used for input variables

• SFS Responsibilities:

– Detect data type mismatch, such as a string of characters instead of a floating
point number

– Determine if the inputs satisfy the required physical and software constraints
– Calculate the required outputs

4.2 User Characteristics
The end user of SFS should have an understanding of level I calculus, thermodynamics and
solidification.

4.3 System Constraints
SC1: The software needs to work on Windows. Ideally, it should also be portable to other

operating systems, including Mac OSX and Linux.

5 Specific System Description
This section first presents the problem description, which gives a high-level view of the
problem to be solved. This is followed by the solution characteristics specification, which
presents the assumptions, theories, definitions and finally the instance models that models
the solidification system.

5.1 Problem Description
SFS is a computer program developed to find the solid fraction as a function of temperature
and rate of cooling.

5.1.1 Terminology and Definitions

This subsection provides a list of terms that are used in the subsequent sections and their
meaning, with the purpose of reducing ambiguity and making it easier to correctly under-
stand the requirements:

• Heat Flux: The rate of heat energy transfer per unit area.

9 116

• Specific Heat: Heat capacity per unit mass.

• Isotropic: The phenomena by which the physical property of the material has the same
value when measured in different directions.

• Thermal conductivity: The rate at which heat passes through a specified material,
expressed as the amount of heat that flows per unit time through a unit area with a
temperature gradient of one degree per unit distance.

• Thermal diffusivity: Thermal conductivity divided by density and specific heat capac-
ity.

• Advection: Transfer of heat or matter by the flow of a fluid, especially horizontally in
the atmosphere.

5.1.2 Physical System Description

The physical system of SFS, as shown in Figure 3, includes the following elements:

PS1: Mold containing the cast metal.

PS2: Water jet under the mold to provide unidirectional heat extraction.

main

5.1.3 Goal Statements

For a given experiment with a metal alloy, using the thermocouple locations, temperature
readings, material properties and initial conditions, SFS:

GS1: Computes the solid fraction (fs) as a function of temperature and cooling rate (fs(T, dTdt)).

5.2 Solution Characteristics Specification
The instance model (ODE) that govern SFS is presented in Subsection 5.2.5. The informa-
tion to understand the meaning of the instance model and its derivation is also presented,
so that the instance model can be verified.

5.2.1 Assumptions

This section simplifies the original problem and helps in developing the theoretical model by
filling in the missing information for the physical system. The numbers given in the square
brackets refer to the theoretical model [T], general definition [GD], data definition [DD],
instance model [IM], likely change [LC], or unlikely change [UC], in which the respective
assumption is used.

10 117

Figure 3: SFS system with unidirectional heat extraction, where n is the number of ther-
mocouples, Ti is the thermocouple temperature at location i and ∆yi is the distance between
the thermocouples i and i+ 1.

A1: The only form of energy that is relevant for this problem is thermal energy. All other
forms of energy, such as mechanical energy, are assumed to be negligible [T1, UC1].

A2: The heat removal is assumed to be unidirectional and the heat conduction in axial
direction is assumed to be 0 [GD1, UC2].

A3: Heat transfer through the cylinder takes place by conduction only, not advection.
[DD5].

A4: We assume that Cv(T) can be expressed as a linear combination of the values at the
beginning and at the end of solidification [IM4, DD1, GD2].
at

A5: We assume that α(T) can be expressed as a linear combination of the values at the
beginning and at the end of solidification [IM4, DD2, GD2].

A6: We assume that ρ(T) can be expressed as a linear combination of the values at the
beginning and at the end of solidification [IM4, DD3, GD2].

A7: Thermal conductivity through the liquid and solid metal is isotropic.

11 118

A8: Newton’s law of convective cooling applies between the water and the cast alloy [GD3,
DD8].

A9: The heat transfer coefficient at the bottom of the cylinder is assumed to be independent
of temperature [GD3, LC1].

A10: The thermal resistance due to the thermocouples is assumed to be negligible [GD4].

A11: The cast metal is perfectly insulated by the sand mold so that there is no heat loss
from the sand mold [GD1].

A12: The density of the solidifying material is assumed to be constant for the derivation of
ḟs [IM4].

A13: The data collected from the thermocouples starts at time 0 and there is a constant
time step between each data point [GD4, LC2].

5.2.2 Theoretical Models

This section focuses on the general equations and laws that SFS is based on.

Number T1

Label Conservation of thermal energy

Equation −∇ · q + g = ρCp
∂T
∂t

Description The above equation gives the conservation of energy for time varying heat
transfer in a material of specific heat capacity Cp (J kg−1 ◦C−1) and density
ρ (kg m−3) where

q is the thermal flux vector (W m−2)

g is the rate of volumetric heat generation (W m−3)

T is the temperature (◦C)

t is time (s)

∇ is the gradient operator.

For this equation to apply, other forms of energy, such as mechanical energy,
are assumed to be negligible in the system (A1). In general, ρ and Cp depend
on temperature T .

Source http://www.efunda.com/formulae/heat_transfer/conduction/
overview_cond.cfm

Ref. By IM4, GD1, DD5

12 119

Number T2

Label Latent heat energy

Equation Q(t) =
∫ b
a
dQ(τ)
dτ

dτ , with Q(0) = 0

Description Q is the change in thermal energy (J),
∫ b
a
dQ(τ)
dτ

dτ is the rate of change of Q with respect to time τ (s). a and b
are the times (s) when calculating the latent heat energy starts and ends,
respectively.

Source http://en.wikipedia.org/wiki/Latent_heat

Ref. By IM4, DD5

Number T3

Label Fourier’s Law

Equation q = −k∇T
Description An empirical relationship between the conduction rate in a material and the

temperature gradient in the direction of energy flow.

k is the thermal conductivity (W m−1 ◦C−1)

q is the thermal flux vector (W m−3)

∇ is the gradient operator.

T is the temperature (◦C).

To simplify Fourier’s law to only have one thermal conductivity, the above
equation assumes that the material is isotropic (A7).

Source https://en.wikipedia.org/wiki/Thermal_conduction#Fourier.27s_law

Ref. By GD1, IM4

5.2.3 General Definitions

This section collects the laws and equations that will be used in deriving the data definitions,
which in turn will be used to build the instance models.

13 120

Number GD1

Label Conservation of Thermal Energy in the Cylinder

SI Units ◦C s−1

Equation ∂T
∂t

= α∂
2T
∂y2 + qs

Cv
, where α = k

ρCp
and Cv = ρCp

Description where α is the thermal diffusivity in m2 s−1

Cv is the volumetric heat capacity in J m−3 ◦C−1

ρ is the density in kg m−3

Cp is the heat capacity in J kg−1 ◦C−1

T is the temperature in ◦C

t is the time in s

k is the thermal conductivity in W m−1 ◦C−1

qs is the rate of heat generated by solidification in W m−3.

This equation is derived by substituting T3 in T1 and invoking A11 and
A2, which makes ∇ = [0, ∂

∂y
, 0], where y is the dimension along the axis of

the cylinder. Also, g is relabelled as qs, to clarify the connection that the
heat is generated by solidification. To isolate ∂T

∂t
on the left hand side of the

equation, the conservation equation is divided by ρCp = Cv.

Source –

Ref. By IM4

14 121

Number GD2

Label Generic Material Properties dependent on Temperature

SI Units Units of λ(fs)

Equation λ(fs) = λb(1− fs) + λefs

Description where λ is any generic material property which is dependent on solid frac-
tion. λb and λe represent the material property at the beginning and end of
solidification.

fs represents the fraction of solid formed.

Based on assumptions A4, A5 and A6 material properties like Cv, ρ and α
can be expressed as a linear combination of the values at the beginning and
end of solidification.

Source [1]

Ref. By DD1, DD2, DD3

Number GD3

Label Newton’s law of cooling

SI Units W m−2

Equation q(t) = h∆T (t)

Description Newton’s law of cooling describes convective cooling from a surface. The
law is stated as: the rate of heat loss from a body is proportional to the
difference in temperatures between the body and its surroundings.

q(t) is the thermal flux (W m−2).

h is the heat transfer coefficient, assumed independent of T (A9)
(W m−2 ◦C−1).

∆T (t)= T (t)− Tenv(t) is the time-dependent thermal gradient between the
environment and the object (◦C).

Source [2, p. 8]

Ref. By

15 122

Number GD4

Label Transformation of Experimental Data to Appropriate Function

SI Units –

Equation T (y, t) = fit(Tdata, yTC , dt) where fit : Rm×n → Rn → R→ (R→ R→ R)

Description This general definition abstracts the concept of taking experimental data
(Tdata) at the thermocouples (shown in Figure 3) over time and determin-
ing a function T (y, t) that can be used in the instance models. In determin-
ing T (y, t), it is assumed that the thermal resistance of the thermocouples
can be ignored (A10). The specifics of the transformation of the data to
a function are left as part of the design of the numerical algorithm. The
options include interpolation, regression, and using the data points directly.
In the instance models, it is assumed that partial derivatives of T (y, t) exist
and can be calculated. When needed, these partial derivatives may be cal-
culated directly from the experimental data, or by first finding T (y, t) and
applying mathematical operators to it. The symbols used in the equation
for this general definition are defined as follows:

T (y, t) is a function that takes the position, as measured from the bottom of
the cylinder, and the time and returns the temperature (◦C). It represents
the cooling curve over time t for all locations y.

y is the distance from the bottom of the cylinder (m).

t is the time from the start of data collection (second).

fit() is a function that takes the thermocouple data Tdata, the locations of
the thermocouples yTC and the time step dt, and returns the appropriate
function T (y, t).

Tdata is a 2D array of temperature readings. The columns correspond to
each of the n different thermocouples, starting from the bottom and going
up. The m rows correspond to the time of measurement. The start time
for measurement is assumed to be 0 and the time between data points is
assumed to be dt (A13).

yTC is a 1D array of position values (in m) for the n thermocouples.

dt is the time between experimental measurements of the time (second).

m is the number of instants of time where the thermocouple data is mea-
sured.

n is the number of thermocouples.

Source –

Ref. By DD6, DD7, IM1
16 123

5.2.4 Data Definitions

This section collects and defines all the data needed to build the instance model. The di-
mension of each quantity is also given.

Number DD1

Label Approximate Volumetric Heat capacity

Symbol Cv(fs)

SI Units J m−3 ◦C−1

Equation Cv(fs) = Cb
v(1− fs) + Ce

vfs

Description Cv(fs) is the volumetric heat capacity (J m−3 ◦C−1) where Cv = ρCp.

Cb
v is the volumetric heat capacity at start of solidification (J m−3 ◦C−1).

Cb
v = CL

v (TL), where TL is the temperature at the liquidus point (DD6) and
CL
v (T) is a function that maps a temperature T in the liquidus zone to a

value of Cv.

Ce
v is the volumetric heat capacity at the end of solidification (J m−3 ◦C−1).

Cb
v = CS

v (TS), where TS is the temperature at the solidus point (DD7) and
CS
v (T) is a function that maps a temperature T in the solidus zone to a

value of Cv.

The above equation can be obtained from GD2.

We assume that Cv(fs) can be expressed as a linear combination of the
values at the beginning and end of the solidification (from A4).

Sources [,]

Ref. By IM4

17 124

Number DD2

Label Approximate Thermal Diffusivity

Symbol α(fs)

SI Units m2 s−1

Equation α(fs) = αb(1− fs) + αefs

Description α(fs) is the thermal diffusivity (m2 s−1). α = k
ρCp

= k/Cv where k is the
thermal conductivity, ρ is the density, Cp is the specific heat capacity and
Cv is the volumetric heat capacity.

αb is the thermal diffusivity at the start of the solidification (m2 s−1). αb =
αL(TL), where TL is the temperature at the liquidus point (DD6) and αL(T)
is a function that maps a temperature T in the liquidus zone to a value of
α.

αe is the thermal diffusivity at the end of the solidification (m2 s−1). αe =
αS(TS), where TS is the temperature at the solidus point (DD7) and αS(T)
is a function that maps a temperature T in the solidus zone to a value of α.

T is the temperature (◦C).

This can be obtained from GD2.

we assume that α(fs) can be expressed as a linear combination of the values
at the beginning and at the end of the solidification (from A5).

Sources [,]

Ref. By IM4

18 125

Number DD3

Label Approximate Density

Symbol ρ(fs)

SI Units kg m−3

Equation ρ(fs) = ρb(1− fs) + ρefs

Description ρ(fs) is the density (kg m−3). ρ = m/V where m and V are the mass and
volume of the material currently under consideration.

ρb is the density at the start of the solidification (kg m−3). ρb = ρL(TL),
where TL is the temperature at the liquidus point (DD6) and ρL(T) is a
function that maps a temperature T in the liquidus zone to a value of ρ.

ρe is the density at the end of the solidification (kg m−3). ρe = ρS(TS), where
TS is the temperature at the solidus point (DD7) and ρS(T) is a function
that maps a temperature T in the solidus zone to a value of ρ.

T is the temperature (◦C).

This can be obtained from GD2.

We assume that ρ(fs) can be expressed as a linear combination of the values
at the beginning and at the end of the solidification (from A6).

Sources [,]

Ref. By IM4

Number DD4

Label Latent heat of solidification

Symbol L

SI Units J/kg

Equation L = Qs

m

Description Qs is the amount of energy released (in J) during the phase change from
liquid to solid,

m is the mass of the substance (in kg), and

L is the specific latent heat for a particular substance (J kg−1).

Source http://en.wikipedia.org/wiki/Latent_heat

Ref. By IM4, DD5

19 126

Number DD5

Label Solid Fraction

Symbol fs

SI Units unitless

Equation fs = 1
Lρ

∫ t
tb
qs(τ)dτ

Description fs is the solid fraction (unitless).

L is the latent heat of solidification (J kg−1) (from DD4).

tb is the beginning of solidification in (s).

t is the current time in (s).

τ is the dummy time for integration in (s).

ρ is the density of the metal alloy (kg m−3).

qs is the rate of heat generated by solidification (W m−3).

Following Fourier’s method, the fraction of solid corresponds to the ratio
of the heat released up to time t to the total heat released for complete
solidification. For Fourier’s method to apply, it is necessary that the only
mode of heat transfer is via conduction (A3). The denominator is found
by rearranging GD4 to find Qs = Lm, where m is the mass of the material
under consideration. The numerator (heat released up to time t) is found
using T2 with dQ

dt
=

∫
V g(t)dV = g(t)V , where g is the volumetric heat

generated from T1 and V is the volume of material under consideration. To
clarify that the heat generated is from solidification, g is relabelled as qS. To
use T2, the integration limit a is tb and b is the current time t. Combining

the above, fs = Qs

Lm
=

V
∫ t

tb
qs(τ)dτ
Lm

= V
Lm

∫ t
tb
qs(τ)dτ = 1

Lρ

∫ t
tb
qs(τ)dτ , where

ρ = m/V .

Sources [7, p. 113]

Ref. By IM4

20 127

Number DD6

Label Liquidus point

Symbol (tL, TL)

SI Units ◦C for TL and s for tL
Equation (tL, TL) = liquidus(Ty∗(t)), where liquidus : (R → R) → R × R and Ty∗ =

T (y∗, t) using the function T (y, t) from GD4.

Description The liquidus temperature specifies the temperature above which a material
is completely liquid, and the maximum temperature at which crystals can
co-exist with the melt in thermodynamic equilibrium. The liquidus point
for a given height in the cylinder (y∗) is the time (tL) and the temperature
(TL) when the first solids start to appear. This point is detected in the
cooling curve as the first point where the slope changes dramatically (as
shown on Figure 1). The height (y∗) where the liquidus point is calculated
will usually correspond to the location of a thermocouple, but in the inter-
est of generality this is not required. As stated in GD4, the temperature
function T (y, t) is an abstraction. The calculations will likely come from the
discretized experimental data directly. The symbols used in the equation
for this definition are defined as follows:

tL is the time for the cooling curve when solids first appear (s).

TL is the temperature in the cooling curve when solids first appear (◦C).

T (y, t) is the cooling curve over time t at all possible locations y (◦C). (GD4)

Ty∗(t) is the cooling curve at location y∗ (◦C).

y is the distance from the bottom of the cylinder (m).

y∗ is the specific distance from the bottom of the cylinder for which the
liquidus point is being calculated (m).

t is the time from the start of data collection (s).

liquidus() is a function that takes the cooling curve Ty∗(t) at location y∗ and
returns the tuple representing the liquidus point.

Sources https://en.wikipedia.org/wiki/Liquidus

Ref. By DD1, DD2, DD3, IM2, IM4, R12

21 128

Number DD7

Label Solidus Point

Symbol (tS, TS)

SI Units ◦C for TS and s for tS
Equation (tS, TS) = solidus(Ty∗(t)), where solidus : (R → R) → R × R and Ty∗ =

T (y∗, t) using the function T (y, t) from GD4.

Description The solidus temperature specifies the temperature below which a material is
completely solid. In other words, solidus defines the temperature at which
a substance begins to melt. The solidus point for a given height in the
cylinder (y∗) is the time (tS) and the temperature (TS) when the material
is completely solid.
This point is detected in the cooling curve as the end of the region of approx-
imately zero slope (as shown on Figure 1). The height (y∗) where the solidus
point is calculated will usually correspond to the location of a thermocouple,
but in the interest of generality this is not required. As stated in GD4, the
temperature function T (y, t) is an abstraction. The calculations will likely
come from the discretized experimental data directly. The symbols used in
the equation for this definition are defined as follows:

tS is the time for the cooling curve when the material is first completely
solid (s).

TS is the temperature in the cooling curve when the material is first com-
pletely solid (◦C).

T (y, t) is the cooling curve over time t at all possible locations y (◦C). (GD4)

Ty∗(t) is the cooling curve at location y∗ (◦C).

y is the distance from the bottom of the cylinder (m).

y∗ is the specific distance from the bottom of the cylinder for which the
solidus point is being calculated (m).

t is the time from the start of data collection (s).

solidus() is a function that takes the cooling curve Ty∗(t) at location y∗ and
returns the tuple representing the solidus point.

Sources http://link.springer.com/referenceworkentry/10.1007%
2F978-3-642-11274-4_1467

Ref. By DD1, DD2, DD3, IM1, IM3, IM4, R13

22 129

Number DD8

Label Heat flux at bottom of cylinder

Symbol q

SI Units W m−2

Equation q(t) = h(T0(t)− Tenv(t)), over area A

Description T0(t) is the temperature at the bottom of the cylinder over time. Tenv is the
temperature of the air around the bottom of copper plate on the bottom
of the mold. The heat flux out of the plate, q, is found by assuming that
Newton’s Law of Cooling applies (A8). This law (GD3) is used on the
surface of the copper plate, which has area A and heat transfer coefficient
h (W/(m2 ◦C)).

Sources –

Ref. By IM1, IM2, IM3

5.2.5 Instance Model

This section transforms the problem defined in the Section 5.1 into one which is expressed in
mathematical terms. It uses concrete symbols defined in Section 5.2.4 to replace the abstract
symbols in the models identified in the Sections 5.2.2 and 5.2.3.

23 130

Number IM1

Label Solve Inverse Heat Transfer Problem for Heat Transfer Coefficient

Input T (y, t) (see DD4), from which ∂T
∂t

and ∂2T
∂y2 can be derived, as required.

Material property kS(T), CS
p (T), ρS(T)

Tenv

Output h(t) such that the following PDE and boundary conditions are satisfied
using the experimental data represented in T (y, t):

∂T

∂t
= αS(T)∂

2T

∂y2 , where αS(T) = kS(T)
ρS(T)CS

p (T) (1)

subject to the boundary conditions q = 0 on all boundaries, except for the
bottom of the cylinder where q(t) = h(t)(T0(t)− Tenv(t)) from DD8.

Description To determine the heat transfer coefficient at the bottom of the cylinder
requires a calibration run with an alloy with known material properties.
Finding the heat transfer coefficient involves solving an inverse heat transfer
problem. The calculations are done on the data after solidification of the
cylinder. The solidus point can be found using DD7. The governing PDE
comes from GD1, but with the source term (qs) zero, since the metal is
assumed to be solid. The symbols used in this model are as follows:

T (y, t) is the temperature in ◦C found using the temperature values at the
known thermocouple locations in (m) at time t (s) (from GD4)

kS(T) is the thermal conductivity of the solid metal as a function of tem-
perature (W m−1 ◦C−1)

ρS(T) is the density of the solid metal, potentially as a function of temper-
ature (kg m−3) (DD3)

CS
p is the specific heat capacity of the solid metal, possibly as a function of

temperature (J kg−1 ◦C−1)

αS(T) is the thermal diffusivity of the solid metal as a function of temper-
ature (m2/s)

Tenv is the temperature of the air at the bottom of the cylinder (◦C)

Sources Some related information is available at: http://web.cecs.pdx.edu/
~gerry/class/ME448/notes/pdf/

Ref. By IM2, IM3, R7, R10, R12, R13

24 131

Number IM2

Label Find αb the thermal diffusivity at the liquidus point

Input T (y, t) (see DD4), from which ∂T
∂t

and ∂2T
∂y2 can be derived, as required.

Heat transfer coefficient h(t) using IM1 and Tenv

(tL, TL) from DD6

Output αb such that the following PDE and boundary conditions are satisfied using
the experimental data represented in T (y, t):

∂T

∂t
= αb

∂2T

∂y2 (2)

subject to the boundary conditions q = 0 on all boundaries, except for the
bottom of the cylinder where q(t) = h(t)(T0(t)− Tenv(t)) from DD8.

Description To determine the liquidus thermal conductivity an inverse heat transfer
problem is solved. The data used is for time 0 to time tL. The governing
PDE comes from GD1, but with the source term (qs) zero, since the metal
is assumed to be liquid. The symbols used in this model are as follows:

T (y, t) is the temperature in ◦C found using the temperature values at the
known thermocouple locations in (m) at time t (s) (from GD4)

αb is the thermal diffusivity of the metal at the liquidus point (m2 s−1)

h heat transfer coefficient (W/(m2 ◦C))

Tenv temperature of the air at the bottom of the cylinder (◦C)

tL is the time for the cooling curve when solids first appear (s).

TL is the temperature in the cooling curve when solids first appear (◦C)

Sources –

Ref. By IM4, R12, R17

25 132

Number IM3

Label Find αe the thermal diffusivity at the solidus point

Input T (y, t) (see DD4), from which ∂T
∂t

and ∂2T
∂y2 can be derived, as required.

Heat transfer coefficient h(t) using IM1 and Tenv

(tS, TS) from DD7

Output αe such that the following PDE and boundary conditions are satisfied using
the experimental data represented in T (y, t):

∂T

∂t
= αe

∂2T

∂y2 (3)

subject to the boundary conditions q = 0 on all boundaries, except for the
bottom of the cylinder where q(t) = h(t)(T0(t)− Tenv(t)) from DD8.

Description To determine the solidus thermal conductivity an inverse heat transfer prob-
lem is solved. The data used is for time tS to the end of the experiment.
The governing PDE comes from GD1, but with the source term (qs) zero,
since the metal is assumed to be solid. The symbols used in this model are
as follows:

T (y, t) is the temperature in ◦C found using the temperature values at the
known thermocouple locations in (m) at time t (from GD4) (s)

αe is the thermal diffusivity of the solid alloy (m2 s−1)

h heat transfer coefficient (W/(m2 ◦C))

Tenv temperature of the air at the bottom of the cylinder (◦C)

tS is the time for the cooling curve when the material has first solidified (s).

TS is the temperature in the cooling curve when it first solidifies (◦C)

Sources –

Ref. By IM4, R13, R18

26 133

Number IM4

Label Find Fraction Solid fs as a Function of Temperature

Input T (y, t) (see DD4), from which ∂T
∂t

and ∂2T
∂y2 can be derived, as required

Material properties CL
v (T), CS

v (T), ρL(T), ρS(T), αb (from IM2), αe (from
IM3), and L

y∗, (tL, TL) from DD6 and (tS, TS) from DD7

Output Solve fs(t) at location y∗ such that the following ODE is satisfied with
fs(tL) = 0:

ḟs(fs, t) = Cv(fs)
Lρ(fs)

[
∂T (t)
∂t
− α(fs)∂

2T (t)
∂y2

]
where

Cv(fs) = Cb
v(1− fs) + Ce

vfs

ρ(fs) = ρb(1− fs) + ρefs

α(fs) = αb(1− fs) + αefs

where Cb
v = CL

v (TL), Ce
v = CS

v (TS), ρb = ρL(TL), ρe = ρS(TS).
After solving the ODE, f(t) and T (t) are known, which means that f(T)
can be shown.

Description T (y, t) is the temperature readings in (◦C) found by the temperature values
at the known thermocouple locations in (m) at time t (s)

CL
v (T), CS

v (T) is the volumetric heat capacity of the alloy as a function of
temperature, as a liquid and a solid, respectively (J/(m3 ◦C))

ρL(T), ρS(T) is the density as a function of temperature for the liquid and
solid alloy, respectively (kg/m3)

αb, αe is the thermal diffusivity at the liquidus point and solidus point,
respectively (m2/s) (IM2)

L is the specific latent heat for a particular substance (J kg−1)

Cv(fs) is the volumetric heat capacity in the two phase zone (J/(m3 ◦C))
(DD1)

α(fs) is the thermal diffusivity in the two phase zone (m2/s) (DD2)

ρ(fs) is the density of the alloyin the two phase zone (kg m−3) (DD3)

y∗ is the specific distance from the bottom of the cylinder for which the solid
fraction is being calculated (m).

The detailed derivation is below.

Sources –

Ref. By R14, R19 27 134

Derivation of the Fraction Solid

To find the rate of change of fs with respect to temperature, we start from the conservation
of thermal energy equation. From GD1 we have:

∂T

∂t
= α

∂2T

∂y2 + qs
Cv

(4)

To find qs in terms of fs, we differentiate DD5 and rearrange to obtain:

qs = ḟsLρ (5)
Here density ρ is assumed constant based on our assumption A12. The above equation for
qs also appears in [5].

Substituting Equation 5 into Equation 4 we obtain

∂T

∂t
= α

∂2T

∂y2 + ḟsLρ

Cv
(6)

Rearranging the above, we obtain:

ḟs = Cv
Lρ

[
∂T

∂t
− α∂

2T

∂y2

]
(7)

To make the functional dependence explicit, Equation 5.2.5 can be written as:

ḟs(fs, t) = Cv(fs)
Lρ(fs)

[
∂T (t)
∂t
− α(fs)

∂2T (t)
∂y2

]
(8)

For the initial conditions, we know that fs(tL) = 0, since at the liquidus temperature
solids just start to form. We also know that we should get the result that fs(tS) = 1.

5.2.6 Data Constraints

Table 1 shows the data constraints on the input variables for the configuration mode. The
configuration mode is where the data that is typically stable across multiple runs is entered.
The relevant data consists of the height of the cylindrical mold (H), the diameter of the
mold (D), the number of thermocouples (n) and their locations (yTC).

The column for physical constraints gives the physical limitations on the range of values
that can be taken by the variables. The column for software constraints restricts the range of
inputs to reasonable values. The constraints are conservative, to give the user of the model
the flexibility to experiment with unusual situations. The column of typical values is intended
to provide a feel for a common scenario. The uncertainty column (labelled UC) provides
an estimate of the confidence with which the physical quantities can be measured. This

28 135

information would be part of the input if one were performing an uncertainty quantification
exercise.

Table 1: Input Variables for Configuration Mode

Vara Type b Physical Constraints Software Constraints Typical
Value

UC

Hc R H > 0 Hmin ≤ H ≤ Hmax 0.15 m 10%
Dd R D > 0 Dmin ≤ D ≤ Dmax 0.05 m 10%
n N n > 0 n ≤ nmax 8 NA

yTC Rn ∀(i : N|i ∈ [1..n]·0 ≤ yTCi ≤
H)

∀(i : N|i ∈ [1..n− 1] · yTCi+1 >
yTCi)

yTC
e m 10%

dt R dt > 0 dtmin ≤ dt ≤ dtmax 0.01 s 10%

aThe symbols used in this table are explained in GD4
bType refers to the data type of the variable
cHeight of the cylinder
dDiameter of the cylinder
eyT C = [0.005, 0.015, 0.025, 0.040, 0.060, 0.080, 0.1, 0.13]

Table 2 summarizes the input variables for transforming them experimental temperature
readings for each of the n thermocouples (Tdata) to the function T (y, t). The symbols used
in this table are explained in GD4.

Table 2: Input Variables for Calculating T (y, t)

Vara Type Physical Constraints Software Constraints Typical
Value

UC

m N m > 0 m ≤ mmax 7000 NA
Tdataijb R Tdataij > AbsZero Tmin ≤ Tdataij ≤ Tmax 600 ◦C 10%

aThe symbols used in this table are explained in GD4
bi ∈ [1..m], j ∈ [1..n]

Both the calibration and calculation modes require material properties for the alloys that
are being cooled. Table 3 summarizes the data constraints on the material properties. In
addition, the table includes the operating conditions as given by the value of the temperature
of the environment around the bottom of the cylinder Tenv.

Tables 1, 2 and 3 are parameterized by various constants. The values of these constants
are given in the specification parameters table in the Appendix (Table 6).

29 136

Table 3: Input Variables for Material Properties and Operating Conditions

Var Type Physical Con-
straints

Software Constraints Typical
Value

UC

kS R→ R ∀(T : R| · kS(T) > 0) ∀(T : R| · kSmin ≤ kS(T) ≤ kSmax) 180
W/(m ◦C)

10%

ρS R→ R ∀(T : R| · ρS(T) > 0) ∀(T : R| · ρSmin ≤ ρS(T) ≤ ρSmax) 2700 kg/m3 10%

CS
P R→ R ∀(T : R| ·CS

P (T) > 0) ∀(T : R| · CS
Pmin ≤ CS

P (T) ≤
CS
Pmax)

1 J/(kg ◦C) 10%

Tenv R Tenv > AbsZero Tenvmin ≤ Tenv ≤ Tenvmax 25 ◦C 10%

CL
v R→ R ∀(T : R| ·CL

v (T) > 0) ∀(T : R| · CL
v min ≤ CL

v (T) ≤
CL
v max)

2700
J/(m3 ◦C)

10%

CS
v R→ R ∀(T : R| ·CS

v (T) > 0) ∀(T : R| · CS
vmin ≤ CS

v (T) ≤
CS
vmax)

2700
J/(m3 ◦C)

10%

ρL R→ R ∀(T : R| · ρL(T) > 0) ∀(T : R| · ρLmin ≤ ρL(T) ≤ ρLmax) 2700 kg/m3 10%

L R L > 0 Lmin ≤ L ≤ Lmax 397500 J/kg 10%

Table 4: Place holder for Unidirectional constraint

Var Physical Constraints (for unidirectional constraint)

var constraint

5.2.7 Properties of a Correct Solution

In addition to the properties that must be true of the input variables, constraints also exist
on valid outputs. The properties that need to be true of correct solutions are summarized in
Table 5. This table includes entries for the output of the calibration mode and the calculation
mode. In the calibration mode (IM1) the output is the heat transfer coefficient as a function
of time, h(t). In the calculation mode (IM2, IM3 and IM4), the outputs are the thermal
diffusivity and the beginning and end of solidification (αb and αe) and the solid fraction as
a function of temperature (fs(T)).

Table 5: Output Variables

Var Physical Constraints

h h > 0
αb kb > 0
αe ke > 0
fs 0 ≤ fs ≤ 1

30 137

6 Requirements
This section provides the functional requirements, the business tasks that the software is
expected to complete, and the nonfunctional requirements, the qualities that the software is
expected to exhibit.

6.1 Functional Requirements
The functional requirements are split between three different modes: configuration mode,
calibration mode and fs calculation mode.

6.1.1 Configuration Mode

The experimental set-up is not expected to vary too often. Therefore, the associated data
is considered separately as configuration information. The important quantities to enter are
the dimensions of the cylindrical mold, the locations of the thermocouples and the sampling
rate.

R1: Input the following quantities, which define the dimensions of the cylindrical mold, the
locations of the thermocouples and the sampling rate:

symbol type unit description

H R m height of cylindrical mold
D R m diameter of cylindrical mold
n N NA number of thermocouples
yTC Rn m locations of n thermocouples
dt R s time step between collected data points

R2: Input the symbolic parameters (used for input verification) specified in the Appendix
in Table 6.

R3: Verify that the dimensions of the cylinder are consistent with the assumption of uni-
directional heat flow (A2). (Dr. Mohamed Hamed mentioned perviously that he had a
means to judge the validity of the assumption, but this information has not yet been
collected). If the dimensions do not satisfy the unidirectional heat flow condition, then
a warning message will be issued.

R4: Verify that the configuration input data satisfies the constraints listed in Table 1.

R5: The configuration data should be persistent between program runs, unless it is explic-
itly changed.

31 138

6.1.2 Calibration Mode

In the calibration mode an experiment is run with an alloy where the material properties are
known. This allows for calculation of the heat transfer coefficient at the base of the cylinder.

R6: After running the calibration experiment, input the temperature data collected from
the thermocouples: Tdata, n (GD4).

R7: Input the necessary material properties for the known alloy and the temperature of
the environment: kS(T), CS

p (T), ρS(T) and Tenv (IM1).

R8: Verify the temperature data against the constraints in Table 2.

R9: Verify the material properties and operating conditions against the constraints in Ta-
ble 3.

R10: Using the input information (R7 and R7) and configuration information (R1), calculate
the heat transfer coefficient (h(t)) (IM1).

6.1.3 Calculation Mode

Once the heat transfer coefficient for the experimental set-up is known, the calculations can
move to finding the solid fraction as a function of temperature. This involves first finding
the material properties at the liquidus and solidus points, and then using this information
to solve for the evolution of the fraction solid in the two phase zone.

R11: After running the experiment, input the temperature data collected from the thermo-
couples: Tdata, n (GD4).

R12: Input the necessary data to calculate αb, which includes the following:

– Heat transfer coefficient and environment temperature: h(t) and Tenv (IM1)
– Liquidus point: (tL, TL) (DD6)

R13: Input the necessary data to calculate αe, which includes the following:

– Heat transfer coefficient and environment temperature: h(t) and Tenv (IM1)
– Solidus point: (tS, TS) (DD7)

R14: Input the additional information necessary to solve for fs: L (IM4)

R15: Verify the temperature data against the constraints in Table 2.

R16: Verify the material properties and operating conditions against the constraints in Ta-
ble 3.

32 139

R17: Using the input information (R12) and configuration information (R1), calculate the
value of αb (IM2).

R18: Using the input information (R13) and configuration information (R1), calculate the
value of αe (IM3).

R19: Using the temperature data (R11) and other input information (R12, R13 and R14)
and configuration information (R1), calculate the value of fs(t) (IM4).

R20: Using fs(t) and T (t) find fs(T) (IM4).

6.2 Non-Functional Requirements
throughout

6.2.1 Look and Feel Requirements

• 85% of surveyed users shall be able to see button labels and text descriptions on the
screen.

• 85% of surveyed users shall agree that the software provides an adequate amount of
data visualization for the user.

6.2.2 Usability and Humanity Requirements

• 85% of surveyed users shall agree that the software is simple enough to learn and use.

• Both Fahrenheit and Celsius values shall be available.

• A single workflow shall be applicable for different alloys.

6.2.3 Installability Requirements

• 90% of surveyed users shall agree that the software has a simple installation process,
comparable to a typical application.

6.2.4 Performance Requirements

• Software startup time shall be equal or better than other comparable applications on
all operating systems.

• 90% of surveyed users shall agree that the response times of non-calculation actions of
the user interface are better or equal to other comparable software.

• Software response time for calculation actions shall have a response time of less than
15 minutes.

33 140

• A database query shall take less than 1 minute.

• All calculation results shall have the correct amount significant digits according to the
input values.

• Predicted values of a temperature at a certain time and location shall be within a 2%
deviation from the test values of a closely related location at the same given time.

• The system shall always have a coefficient value of cooling available even if the database
the system interfaces with is down/offline.

6.2.5 Operating and Environmental Requirements

• The software shall be able to interface with Hayley’s database system.

• The software shall interact with the building’s internet network which is connected to
the World Wide Web to use a remote database.

• The software shall be able to run on Windows 7/10, Linux, and Mac OSX operating
systems.

6.2.6 Maintainability and Support Requirements

• Additional features or bug fixes for the software shall take less than 10% of software
development resources.

• The software shall have the ability to log software errors.

6.2.7 Security Requirements

• Not applicable.

6.2.8 Cultural Requirements

• Not applicable.

6.2.9 Compliance Requirements

• Not applicable.

7 Likely Changes

LC1: The heat transfer coefficient at the bottom of the cylinder could potentially depend on
temperature (A9).

LC2: The thermocouple data is currently assumed to start at time 0 and have a constant
time step (A13). However, a more complex form of the thermocouple data is possible.

34 141

8 Unlikely Changes
The changes listed here are considered to be so significant that they would fundamentally
change SFS. If these changes become necessary, significant changes will be necessary for the
SRS and subsequent documents.

UC1: If for some reason forms of energy other than thermal energy (A1) had to be considered,
the software will be invalid.

UC2: If heat flow is not unidirectional A2 the software will be invalid.

References
[1] Attila Diószegi and Jesper Hattel. Inverse thermal analysis method to study solidification

in cast iron. International Journal of Cast Metals Research, 17(5):311–318, 2004.

[2] F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine. Fundamentals of Heat
and Mass Transfer. John Wiley and Sons, United States, sixth edition edition, 2007.

[3] Nirmitha Koothoor. A document drive approach to certifying scientific computing soft-
ware. Master’s thesis, McMaster University, Hamilton, Ontario, Canada, 2013.

[4] David L. Parnas and P.C. Clements. A rational design process: How and why to fake it.
IEEE Transactions on Software Engineering, 12(2):251–257, February 1986.

[5] Hacı Mehmet Şahin, Kadir Kocatepe, Ramazan Kayıkcı, and Neşet Akar. Determination
of unidirectional heat transfer coefficient during unsteady-state solidification at metal
casting–chill interface. Energy conversion and management, 47(1):19–34, 2006.

[6] W. Spencer Smith and Lei Lai. A new requirements template for scientific computing.
In J. Ralyté, P. Ȧgerfalk, and N. Kraiem, editors, Proceedings of the First International
Workshop on Situational Requirements Engineering Processes – Methods, Techniques and
Tools to Support Situation-Specific Requirements Engineering Processes, SREP’05, pages
107–121, Paris, France, 2005. In conjunction with 13th IEEE International Requirements
Engineering Conference.

[7] Doru Stefanescu. Science and Engineering of Casting Solidification. Kluwer Aca-
demic/Plenum Publishers, 2002.

35 142

A Supporting Information

36 143

Table 6: Specification Parameter Values

Var Value

AbsZero 273.15 ◦C
Hmin 0.001 m
Hmax 100 m
Dmin 0.001 m
Dmax 100 m
mmax 1000
dtmin 0.0001 s
dtmax 1000 s
nmax 1× 104

Tmin 100 ◦C
Tmax 1× 104 ◦C
kLmin 0.001 W/(m ◦C)
kLmax 1× 105 W/(m ◦C)
kSmin 0.001 W/(m ◦C)
kSmax 1× 105 W/(m ◦C)
ρSmin 0.001 kg m−3

ρSmax 1× 104 kg m−3

ρLmin 0.001 kg m−3

ρLmax 1× 104 kg m−3

CL
Pmin 1× 10−4 J kg−1 ◦C−1

CL
Pmax 1× 104 J kg−1 ◦C−1

CS
Pmin 1× 10−4 J kg−1 ◦C−1

CS
Pmax 1× 104 J kg−1 ◦C−1

CL
v min 1× 10−4 J kg−1 ◦C−1

CL
v max 1× 104 J kg−1 ◦C−1

CS
vmin 1× 10−4 J kg−1 ◦C−1

CS
vmax 1× 104 J kg−1 ◦C−1

Lmin 0.001 m
Lmax 1× 1010 m
Tenvmin 0 ◦C
Tenvmax 100 ◦C

37 144

Appendix C

Task based inspection: Task List
for Scientists - SRS review

145

Task list for Scientists - SRS Review

Malavika Srinivasan and Spencer Smith

December 3, 2018

Contents

1 Purpose of Document 2

2 Questions for Dr. Kumar 2

3 Questions for Dr. Shankar 5

1
146

1 Purpose of Document

This document is intended to act as a guide to review the SRS document. The
scope of this document is to involve the scientists in reading and reviewing
the SRS document. To initiate the review process, we have assigned a set
of tasks which needs to be completed. Every task is framed as a question in
a specific section of the SRS. Each question is to be answered after reading
the corresponding section in the SRS document. The tasks will be assigned
to the reviewers, and the responses recorded, using GitLab issue tracking.

An SRS is an abstract document which says what problem is being solved,
but do how to solve it. The SRS is used as a starting point for subsequent
development phases, including writing the design specification and the soft-
ware verification and validation plan. Review of SRS document is important
to reach a common platform between software engineers and scientists. Any
changes required in the software are finalized after the review of SRS. A
properly reviewed SRS acts as an agreement between the scientists and the
software engineers regarding the deliverables of the project.

2 Questions for Dr. Kumar

We would like all the scientists involved in this project to go through the
SRS document fully, review the document and give us suggestions. However
we understand if you cannot go through the entire document. Below are the
specific questions that we would like to clarify with you. Please respond on
the GitLab issue tracker.

1: Please go through the System Context and let us know if it is complete
and unambiguous. - Section 4.1 in SRS

2: Please read assumption A2 and let us know if this is acceptable with
respect to SFS. Are you aware of a mathematical bounds on the cylin-
der dimension or aspect ratio that define the limits of applicability of
this assumption? - Section 5.2.1 Assumption A2 in SRS

2
147

3: Please read assumptions A3, A4, A5 and A6. In these assumptions, we
have assumed that the material properties can be expressed as a linear
combination of their values at the beginning and end of solidification.
Please let us know if this seems reasonable with respect to SFS. - Sec-
tion 5.2.1 Assumption A3, A4, A5 and A6 in SRS

4: Please read assumption A9. We have assumed that the thermal re-
sistance due to thermocouples is negligible. Please let us know if this
assumption is reasonable for SFS. - Section 5.2.1 Assumption A9
in SRS

5: Please read assumption A12 and let us know if it is reasonable with
respect to SFS. - Section 5.2.1 Assumption A12 in SRS

6: Please let us know if the Data Definition 1 - Solid Fraction is explained
clearly. Can you also please verify if the units in LHS and RHS of the
fs expression match. For eg: fs is unitless. So, RHS should be unitless
as well. If you are aware of a good reference that explains the material
covered in the definition, please let us know. - DD1 in section 5.2.4
in SRS

7: The Data Definitions DD2, DD3, DD4 and DD5 are based on the as-
sumption A3, A4, A5 and A6. Please let us know if the definitions
are correct and have been explained clearly. If you are aware of any
reference from literature, where they have used this idea in a similar
situation, please let us know and we will cite it. - DD2, DD3, DD4
and DD5 in section 5.2.4 in SRS

8: Please let us know if the Data Definition DD6 - Latent Heat of Solid-
ification is explained clearly. Also can you please verify if the units in

3
148

LHS and RHS of the L expression match. If you are aware of a good
reference that explains the material covered in the definition, please let
us know. - DD6 in section 5.2.4 in SRS

9: Please let us know if the Data Definitions DD7, DD8 and DD9 - Liq-
uidus point, Eutectic point and Solidus point are explained clearly. If
you have any other theoretical definition for the same, please explain.
If you are aware of a good reference that explains the material covered
in the definition,please let us know. - DD7, DD8 and DD9 in sec-
tion 5.2.4 in SRS

10: Read IM1 and let us know if it is complete, correct and unambiguous.
Also for the calibration run, we assume that the metal starts to freeze
shortly after being poured and the equation (1) in IM1 is based on
this assumption and GD1. Is this a reasonable assumption? - IM1 in
section 5.2.5 in SRS

11: Read IM2, IM3 and let us know if they need more explanation. q is as-
sumed to be 0 on all boundaries other than the bottom of the cylinder.
Please confirm if this is correct. Also please check if the units on both
sides of the equation 2 and 3 in IM2 and IM3, respectively, match. -
IM2 and IM3 in section 5.2.5 in SRS

12: Read IM4 and let us know if the equation for ḟ s is correct. Does the
units of LHS and RHS match for the ḟ s equation? - IM4 in section
5.2.5 in SRS

13: The IM4 is followed by the derivation of the fraction solid. Please re-
view the derivation and let us know if all the steps can be followed

4
149

easily. If any of the steps are missing or unclear, please let us know. -
Derivation of IM4 in section 5.2.5 in SRS

3 Questions for Dr. Shankar

We would like all the scientists involved in this project to go through the
SRS document fully, review the document and provide us with suggestions.
However we understand if you cannot review the entire document. Below
are the specific questions that we wanted to clarify with you. Please respond
using the GitLab issue tracker.

14: Please go through the System Context and let us know if it is complete
and unambiguous. - Section 4.1 in SRS

15: Please read assumption A2 and let us know if this is acceptable with
respect to SFS. Are you aware of a mathematical bounds on the cylin-
der dimension or aspect ratio that define the limits of applicability of
this assumption? - Section 5.2.1 Assumption A2 in SRS

16: Please read assumptions A3, A4, A5 and A6. In these assumptions, we
have assumed that the material properties can be expressed as a linear
combination of their values at the beginning and end of solidification.
Please let us know if this seems reasonable with respect to SFS. - Sec-
tion 5.2.1 Assumption A3, A4, A5 and A6 in SRS

17: Please read assumption A9, we have assumed that the thermal resis-
tance due to thermocouples is negligible. Please let us know if this
assumption is reasonable for SFS. - Section 5.2.1 Assumption A9
in SRS

5
150

18: Please read assumption A12 and let us know if it is reasonable with
respect to SFS. - Section 5.2.1 Assumption A12 in SRS

19: Can you please tell us the mathematical characterization that defines
the liquidus and solidus points with respect to the data in the cooling
curve? We need this information to automatically extract these points
from the thermocouple data. - DD6, DD7 in section 5.2.4 in SRS

20: We understand that G is the temperature gradient at a point when
solid-liquid interface passes through it. How should G be calculated?
If possible, please point us to a reference related to G. - DD9 in sec-
tion 5.2.4 in SRS

21: We understand that R is the Velocity of the solid-liquid interface when
it passes a given location. What is the mathematical definition of R?
If possible, please point us to a reference related to R. - DD10 in sec-
tion 5.2.4 in SRS

22: Read IM1 and let us know if it is correct, complete and unambigu-
ous. Also, for the calibration run, we assume that the metal starts
to freeze shortly after poured and the equation(1) in IM1 is based on
this assumption and GD1. Is this a reasonable assumption? - IM1 in
section 5.2.5 in SRS

23: Please let us know whether the material property input for the inverse
heat transfer problem in IM1 should just be α, or if it should be k, Cp

and ρ? IM1 is written such that only α is needed which will be an
input from the user. However, for practical purposes, we might want

6
151

to have the program calculate α from the other material properties like
k, Cp and ρ. - IM1 in section 5.2.5 in SRS

24: Read IM2, IM3 and let us know if they need further explanation. q is
assumed to be 0 on all boundaries except the bottom. Please confirm
if this is correct. Also please check if the units on both sides of the
equation 2 and 3 in IM2 and IM3 match. - IM2 and IM3 in section
5.2.5 in SRS

25: Read IM4 and let us know if the equation for ḟ s is correct. Does the
units of LHS and RHS match for the ḟ s equation? - IM4 in section
5.2.5 in SRS

26: The IM4 is followed by the derivation of the fraction solid. Please re-
view the derivation and let us know if all the steps can be followed
easily. If any of the steps are missing or you feel lacks continuity and
need further explanation, please let us know. - Derivation of IM4 in
section 5.2.5 in SRS

27: In IM4, we could reduce the number of material properties needed by
substituting CV with CP ∗ ρ. The values of ρ in the numerator and
denominator would cancel and hence the material properties needed
would be only CP and L. Is there any value to doing this, or is it
better with CV and ρ explicitly in the equation? - IM4 in section
5.2.5 in SRSSFS

28: Please read Requirement R3. During the last quarterly meeting Dr.
Hamed informed us that he would be able to give the aspect ratio for
the cylinder so that it can be made as a constraint to use the software.

7
152

Outside the constraint, the 1D heat transfer assumption wouldn’t hold.
Should the input verification check the validity of the input dimensions?
If so, please provide the necessary information. - R3 in section 6.1
in SRS

29: Please read the non functional requirements and let us know if you
would like to add anything to it. - Section 6.2 in SRS

30: Currently we have all the inputs in a .csv file. Is there a possibility
that the input file will be in any other format other than .csv?

31: Please refer to Table 3 which contains a list of inputs to SFS. Are there
any other inputs to SFS other than those mentioned in the table?

32: Can you please go through the elements in the Table 5 “Specification
Parameter values” and let us know if the values assumed are reasonable
or require any changes. The values given in this table are mostly to
define extreme bounds for the input variables. The bounds are extreme
enough that exceeding them is obviously an error. - Table 5 in SRS.

8
153

Appendix D

Code for SFS

D.1 Temperature Module

@file TData.py

@author David Li, Malavika Srinivasan, Spencer Smith

@brief Abstract object for storing temperature data at each thermocouple

@date 05/05/2018

import csv
import numpy.polynomial.polynomial as poly
import numpy as np
import math
from scipy import interpolate
from Util.Exceptions import *
from Util import Load
from Modules.PiecewiseADT import PiecewiseADT
from Modules.Configuration import Configuration

Initialize Temperature Module using a data file.

This must be called before using any other function in this module.

def init():
global S, Y, tL, TL, tS, TS, TCNums
S = [] # !< sequence of PiecewiseT

Y = [] # !< sequence of Real Numbers (Height)

tL = [] # !< sequence of Real Numbers (Liquidus Point time)

154

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

TL = [] # !< sequence of Real Numbers (Liquidus Point temperature)

tS = [] # !< sequence of Real Numbers (Solidus Point time)

TS = [] # !< sequence of Real Numbers (Solidus Point temperature

TCNums = [] # !< sequence of thermocouple numbers

@brief This method adds data

@details Each thermocouple is described by a series of parameters namely -

S - Piece wise polynomial coefficients, Y - Location, tL - Liquidus time, Tl

- Liquidus temp,

tS - Solidus time, TS - Solidus temp, tc_num - Thermocouple number. All

these informations are stored together in the TData

module.

@param s(Piecewise coefficients), y(Thermocouple location), tl(Liquidus

time), Tl(Liquidus temp),

ts(Solidus time), Ts(Solidus temp),tc_num(Thermocouple number)

This method is used by Load.py.

@todo Link Load.py method

@exception none

@see Load.py

@return none

def add(s, y, tl, Tl, ts, Ts, tc_num):
global S, Y, tL, TL, tS, TS, TCNums

S.append(s);
Y.append(y);
tL.append(tl)
TL.append(Tl);
tS.append(ts);
TS.append(Ts)
TCNums.append(tc_num);

@brief Remove unwanted thermocouple

@details This method removes the unwanted thermocouple by maintaining

an index of unwanted thermocouples.

If the given thermocouple number matches the number in unwanted index,

all the relevant data to that thermocouple

like S, y, Liquidus and solidus points etc are removed.

This method is called by removeThermocouple() from calibration.py which

155

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

is called by removeTC() method from CalibrationScreen.py.

@param i - Thermocouple number

@exception Out of bounds - When the thermocouple index to be removed

doesn’t match the index list obtained using add().

@return none

def rm(i):
if i in TCNums:

try:
index_remove = TCNums.index(i);
del S[index_remove], Y[index_remove], tL[index_remove], TL[

index_remove], tS[index_remove], TS[
index_remove], TCNums[index_remove]

except IndexError:
print("TData.rm(i):␣Index␣out␣of␣bounds") # raise exception

instead

return None

@brief Get thermocouple data

@details This method is used to get the coefficients of ith thermocouple.

This is called by the getBreakPoints() method from calibration.py to obtain

information about a thermocouple.

@param i - Thermocouple number

@todo Link Calibration.py

@exception Out of bounds - Raises this exception when the index number

in parameter doesnt match index in s[i] from piecewise module.

@see Calibration.py

@return none

def getC(i):
try:

j = 0
print(’Printing␣S[i]␣from␣getC␣TData’)
print(S[i])
return S[i]

except IndexError:
print("TData.getC(i):␣Index␣out␣of␣bounds") # raise exception

return None

@brief Liquidus point of a thermocouple

156

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

@details This method returns the liquidus point of a thermocouple. This

information is loaded into this module using add() from Load.py.

@param i - Thermocouple number

@exception Out of bounds - Raises this exception when the index number

in parameter doesnt match index in s[i] from piecewise module.

@return Liquidus time, Liquidus temp

def Liq(i):
try:

return tL[i], TL[i]
except IndexError:

print("TData.Liq(i):␣Index␣out␣of␣bounds") # raise exception

return None

@brief Solidus point of a thermocouple

@details This method returns the Solidus point of a thermocouple. This

information is loaded into this module using add() from Load.py.

@param i - Thermocouple number

@exception Out of bounds - Raises this exception when the index number

in parameter doesnt match index in s[i] from piecewise module.

@return Solidus time, Solidus temp

def Sol(i):
try:

return tS[i], TS[i]
except IndexError:

print("TData.Liq(i):␣Index␣out␣of␣bounds") # raise exception

return None

@brief Temp across all thermocouple at any time t

@details This method gives the temperature across all thermocouples at

any given time t. It uses feval() from PiecewiseADT module.

This method is used in T(y, t) and visual analysis.

@param t - time

@exception Value error - If no data is found for the thermocouples at time t

.

@see PiecewiseADT.py

@return Location value of all thermocouple, temp at all thermocouples at

time t.

@note This generates a value error if we dont have temp values at any

157

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

given time. I cannot put it in exception. Please suggest.

Return the height array and the array of piecewise functions evaluated at

time t.

def slice(t):
temp = []
y = []
for i in range(len(S)):

try:
temp.append(S[i].feval(t))
y.append(Y[i])
print (temp)

print (y)

except ValueError:
pass

if (len(y) == 0):
raise ValueError(’No␣valid␣data␣points␣at␣this␣time’)

return y, temp;

@brief Finds breakpoint values from PiecewiseADT module.

@details This method is used by _Tinterp().

@param none

@exception none

@see PiecewiseADT.py

@return Y - Location array, bkA - first break point at all locations, bkB -

Second breakpoint at all locations.

@note This method has to be removed if _Tinterp() is not going to be used

.

Return 3 values, height array, array of first breakpoints

def breakPts():
bkA = []
bkB = []
for p in S:

bkA.append(p.get_x1())
bkB.append(p.get_x2())

return Y, bkA, bkB

@brief Finds temperature

158

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

@details This method is used to find the temperature at a given location

and time value. Works based on cubic interpolation.

@param y - location, t - time

@exception type error

@return Temperature value

@note This again throws a type error. Not sure if this has to be mentioned

in exception.

def T(y, t): # this works well

try:
yy, Ty = slice(t)
Tint = interpolate.interp1d(yy, Ty, kind=’cubic’)
return Tint(y)

except TypeError:
return None

@brief Finds temperature

@details This method is used to find the temperature at a given location

and time value. Works based on polynomial fit.

@param y - location, t - time

@exception type error

@return Temperature value

@note This again throws a type error. Not sure if this has to be mentioned

in exception.

def TfullInterp(y, t): # with regression - not good for dTdt, but

smooths out d2Tdy2

assumes 10 thermocouples

try:
yy, Ty = slice(t)
Tz = np.polyfit(yy, Ty, 9)
p = np.poly1d(Tz)
return p(y)

except TypeError:
return None

@brief Finds temperature

@details This method is used to find the temperature at a given location

and time value. Works based on spline.

@param y - location, t - time

159

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

@exception type error

@return Temperature value

@note This again throws a type error. Not sure if this has to be mentioned

in exception.

def Treg(y, t): # with regression - not good for dTdt, but smooths out

d2Tdy2, probably too much smoothing

try:
yy, Ty = slice(t)
Tz = interpolate.splrep(yy, Ty, k=5, s=0)
return interpolate.splev(y, Tz, der=0)

except TypeError:
return None

@brief Finds temperature

@details This method is used to find the temperature at a given location

and time value. Works based on cubic spline.

@param y - location, t - time

@exception type error

@return Temperature value

@note This again throws a type error. Not sure if this has to be mentioned

in exception.

def Tspline(y, t): # answers apparently pretty much the same as cubic

interpolation

try:
yy, Ty = slice(t)
Tspline = interpolate.CubicSpline(yy, Ty)
return Tspline(y)

except TypeError:
return None

@brief Finds temperature

@details This method is used to find the temperature at a given location

and time value. It works based on interpolation.

@param y - Location, t - time

@todo Needs to be redone if this is the final approach to find temperature

at given y,t.

@exception none

@return Temperature value

160

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

def _T(y, t):
yy, Ty = slice(t)
yintPts1, TintPts1, yintPts2, TintPts2, yintPts3, TintPts3 = _Tinterp(y,

t)

if (yintPts1[0] <= y <= yintPts1[-1]):
if (len(yintPts1) == 1):

return TintPts1[0]
else:

Tintfun = interpolate.interp1d(yintPts1, TintPts1, kind=’linear’)
return Tintfun(y)

if (yintPts3[-1] < y < yintPts1[0]): # middle

if (len(yintPts2) == 1):

return TintPts2[0]

else:

Tintfun = interpolate.interp1d(yy, Ty, kind=’cubic’, assume_sorted=
False)

return Tintfun(y)
if (yintPts3[0] <= y <= yintPts3[-1]):

if (len(yintPts3) == 1):
return TintPts3[0]

else:
Tintfun = interpolate.interp1d(yintPts3, TintPts3, kind=’linear’)
return Tintfun(y)

@brief Finds temperature across different thermocouples based on the t.

@details This method finds temperature across different thermocouples

which can be used for interpolation. This makes sure that

if the given time is less than the liq_time at that location, then only

thermocouples which has temperature below liquidus at that time are

considered.

@param y - Location, t - time

@exception none

@return yintPts1,TintPts1(below liquidus point location and temp),

yintPts2, TintPts2(2phase zone location and temp), yintPts3, TintPts3(

after solidus point location and temp)

@note Likely not needed

def _Tinterp(y, t):
yy, Ty = slice(t)

161

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

yyy, t1, t2 = breakPts()
yintPts1 = []
TintPts1 = []
yintPts2 = []
TintPts2 = []
yintPts3 = []
TintPts3 = []
for i in range(len(yy)):

if (t < t1[i]):
yintPts1.append(yy[i])
TintPts1.append(Ty[i])

if (t1[i] <= t <= t2[i]):
yintPts2.append(yy[i])
TintPts2.append(Ty[i])

if (t > t2[i]):
yintPts3.append(yy[i])
TintPts3.append(Ty[i])

return yintPts1, TintPts1, yintPts2, TintPts2, yintPts3, TintPts3

@brief Finding dT/dt

@details This method finds dT/dt using forward difference formula. This

method is used in Calculation module in various methods like

calculate_h(), calculate_alpha() and calculate_FS.

@param y - Location, t - time

The details section needs modification once Calculation.py undergoes

change.

@exception none

@see Configuration.py

@return dT/dt

@note This method is being used now.

def dTdt(y, t):
dt = Configuration.timestep

dt = 0.0001 # Configuration.timestep #FIXME

return (T(y, t + dt) - T(y, t)) / dt

@brief Finding dT/dt

@details This method finds dT/dt using fourth order centered difference

formula. This method is used in Calculation module in various methods

162

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

like

calculate_h(), calculate_alpha() and calculate_FS.

@param y - Location, t - time

The details section needs modification once Calculation.py undergoes

change.

@exception none

@see Configuration.py

@return dT/dt

@note This method is not used now.

def _dTdt(y, t): # higher order divided difference

dt = 0.001 # Configuration.timestep #FIXME

return (-T(y, t + 2 * dt) + 8 * T(y, t + dt) - 8 * T(y, t - dt) + T(y, t -
2 * dt)) / (12 * dt)

@brief Compute curvature

@details This method computes d2T/dy2 using central difference method

at any given location and time. This uses configuration.py.

@param y - Location, t - time

@exception none

@see Configuration.py

@return d2Tdy2(number)

@note Units have to checked (This was written below)

def d2Tdy2(y, t):
dy = Configuration.locstep

dy = 0.01
T1 = T(y + (3 * dy), t)
T2 = T(y + (2 * dy), t)
T3 = T(y + dy, t)
T4 = T(y, t)

return (-T1 + (4 * T2) - (5 * T3) + (2 * T4)) / (dy * dy)

@brief Compute curvature

@details This method computes d2T/dy2 using central difference method

at any given location and time. This uses configuration.py.

@param y - Location, t - time

@exception none

@see Configuration.py

163

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

@return d2Tdy2(number)

@note Units have to checked (This was written below)

def _d2Tdy2(y, t):
dy = Configuration.locstep

dy = 0.01
print (T(y-dy, t))

print (T(y+dy, t))

print (T(y,t))

return (T(y - dy, t) + T(y + dy, t) - 2 * T(y, t)) / (dy * dy)

@brief Compute curvature

@details This method computes d2T/dy2 using central difference method

at any given location and time. This uses configuration.py.

@param y - Location, t - time

@exception none

@see Configuration.py

@return d2Tdy2(number)

@note Units have to checked (This was written below)

def _d2Tdy2(y, t):
dy = 0.01
return (-T(y + (2 * dy), t) + 16 * T((y + dy), t) - 30 * T(t, y) + 6 * T

((y - dy), t) - T(y - (2 * dy), t) / 12 * (
dy * dy))

@brief Length of thermocouples which could be fit

@details This method finds the no: of thermocouples which obtained a

piecewise fit. This need not match the actual no: of thermocouples.

@note Will be removed later. Not sure if it is used.

def size():
return len(S)

D.2 Piecewise Module

@file PiecewiseADT.py

@author Vincent Lee, Spencer Smith and Malavika Srinivasan

@brief Exports PiecewiseT - creates a Piecewise object which contains a

piecewise polynomial fit for one thermocouple

164

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

@date 17/04/2018

import numpy as np
from scipy import optimize
import math
PiecewiseADT provides the curve fitting algorithm for

thermocouples. The curve is made up of 3 segments (polynomials) with

continuity

of the value enforced, but no requirement for continuity of any

derivatives. The algorithm may alter the order of the polynomials

to achieve a better fit. Some details of the algorithm are

available at @see{https://gitlab.cas.mcmaster.ca/smiths/sfs/blob/master/

Doc/Design/MIS/MIS.pdf}

class PiecewiseADT:

@brief PiecewiseT constructor

@details The constructor takes the values for the state

variables and sets them

def __init__(self, ordP1, coeffP1, ordP2, coeffP2, ordP3, coeffP3,x1, x2,
maxD, minD, foundFit):

self._curFirstPolyDegree = ordP1
self._p1 = coeffP1
self._curSecondPolyDegree = ordP2
self._p2 = coeffP2
self._curThirdPolyDegree = ordP3
self._p3 = coeffP3
self._x1 = x1
self._x2 = x2
self._maxD = maxD
self._minD = minD
self._foundFit = foundFit

@brief PiecewiseT fromPrevFit

@details Following the factory design pattern this class method

will return a PiecewiseADT object using previously determined

fit parameters (no need to refit)

@classmethod

165

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

def fromPrevFit(cls, ordP1, coeffP1, ordP2, coeffP2, ordP3, coeffP3, x1,
x2, maxD, minD, foundFit):

add [0] to match the raw data calculations - n degree poly

will have n+1 coefficients

return cls(ordP1, coeffP1, ordP2, coeffP2+[0], ordP3, coeffP3+[0], x1,
x2, maxD, minD, foundFit)

@brief Piecewise Fitting

@details This method is used to obtain a piecewise fit for the

thermocouple.

This follows the factory design pattern. This class method

will return a PiecewiseADT object by using the raw temperature

data and fitting the best polynomials.

This method is used by the Load.py to obtain a fit for the

thermocouples.

@param xPoints - list of x values sorted in ascending order, yPoints

- list of corresponding y values to the the x’s in the x list,

x1_init - Initial guess for first breakpoint, x2_init - Initial guess

for second breakpoint

@exception none

@return FirstPolyDegree, p1 (First polynomial degree, Polynomial

coefficient)

curSecondPolyDegree, p2(Second polynomial degree, Polynomial

coefficient),

curThirdPolyDegree, p3(Third polynomial degree, Polynomial

coefficient),

x1, x2 (Optimized breakpoints),

maxD, minD - Minimum and maximum domain values (time values

between which the fit is valid)

foundFit - True or False (This tells if a thermocouple has a fit or

obtaining a fit was not feasible)

@classmethod
def fromRawData(cls, xPoints, yPoints, x1_init, x2_init):

x1 = x1_init #First breakpoint

x2 = x2_init #Second breakpoint

maxD = 0 #max domain value

minD = 0 #min domain value

baseFirstPolyDegree = 5 #degree of first polynomial (min 1)

166

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

baseSecondPolyDegree = 4 #degree of second polynomial (min 1)

baseThirdPolyDegree = 6 #degree of third polynomial (min 2)

firstDegreeIncrease = 1 #how much to increase the degree of first

poly todo: change this value from 0

secondDegreeIncrease = 1 #how much to increase the degree of

second poly todo: change this value from 0

thirdDegreeIncrease = 1 #how much to increase the degree of third

poly todo: change this value from 0

curFirstPolyDegree = baseFirstPolyDegree #current first poly degree

curSecondPolyDegree = baseSecondPolyDegree #current second poly

degree

curThirdPolyDegree = baseThirdPolyDegree #current third poly

degree

p1 = [0] * (baseFirstPolyDegree + 1) #Final Coefficents for the first

polynomial (degree + constant, highest degree first)

p2 = [0] * (baseSecondPolyDegree + 1) #Final Coefficents for the

second polynomial (degree + constant,highest degree first)

p3 = [0] * (baseThirdPolyDegree + 1) #Final Coefficents for the

third polynomial (degree + constant,highest degree first)

initP1 = [0] * (baseFirstPolyDegree + 1) #Inital Coefficents for the

first polynomial (degree + constant,highest degree first)

initP2 = [0] * (baseSecondPolyDegree + 1) #Inital Coefficents for the

second polynomial (degree + constant,highest degree first)

initP3 = [0] * (baseThirdPolyDegree + 1) #Inital Coefficents for the

third polynomial (degree + constant,highest degree first)

foundFit = False #flag to determine if a fit curve was found

print (’^^^’)
print (’Printing␣x␣array␣from␣PiecewiseADT’)
print (xPoints[0])
print (’Printing␣y␣array␣from␣PiecewiseADT’)
print (yPoints[0])
print (’^^^’)

#check if data matches in size

if len(xPoints) != len(yPoints):
raise ValueError(’Number␣of␣x-values␣do␣not␣match␣number␣of␣

y-values’)

#set min/max domain values

maxD = xPoints[-1]

167

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

minD = xPoints[0]

print(’given␣x1␣=␣{0}␣and␣given␣x2=␣{1}\n’.format(x1, x2))

#get critical points of the 3rd polynomial curve

x4 = xPoints[-1]
x3 = round((x4 + x2)/2)
y4 = yPoints[indexOf(xPoints, x4)]
y3 = yPoints[indexOf(xPoints, x3)]

#first polynomial guess (assume linear, 1 degree)

y1 = yPoints[indexOf(xPoints, x1)]
initP1[baseFirstPolyDegree] = yPoints[0] #contsnt

initP1[baseFirstPolyDegree - 1] = (y1 - yPoints[0]) / x1 #first degree

#second polynomial guess (assume linear, 1 degree)

y2 = yPoints[indexOf(xPoints, x2)]
initP2[baseSecondPolyDegree] = y1 #constant

initP2[baseSecondPolyDegree - 1] = (y2 - y1) / (x2 - x1) #first

degree

#third polynomial guess

initP3[baseThirdPolyDegree] = y2 #constant

initP3[baseThirdPolyDegree - 2] = ((y3 - y2) * (x4 - x2) - (y4 - y2)
* (x3 - x2)) / (pow((x3 - x2), 2) * (x4 - x2) - pow((x4 - x2), 2) *
(x3 - x2)) #second degree

initP3[baseThirdPolyDegree - 1] = (pow((y3 - y2), 2) * (y4 - y2) -
pow((x4 - x2), 2) * (y3 - y2)) / (pow((x3 - x2), 2) * (x4 - x2) -
pow((x4 - x2), 2) * (x3 - x2)) #first degree

#optimize the functions to create a final piecewise func

fitError = math.inf
fittedFirstDeg = 0
fittedSecondDeg = 0
fittedThirdDef = 0
for firstDegInc in range(0, firstDegreeIncrease + 1):

for secondDegInc in range(0, secondDegreeIncrease + 1):
for thirdDegInc in range(0, thirdDegreeIncrease + 1):

testP1 = [0] * firstDegInc + initP1 # increase degrees if

needed

168

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

testP2 = [0] * secondDegInc + initP2
testP3 = [0] * thirdDegInc + initP3

curFirstPolyDegree = baseFirstPolyDegree + firstDegInc
curSecondPolyDegree = baseSecondPolyDegree +

secondDegInc
curThirdPolyDegree = baseThirdPolyDegree +

thirdDegInc

pInit = [x1] + [x2] + testP1 + testP2[:-1] + testP3[:-1]
#initial parameters

try:
print(’{0}␣and␣{1}␣and␣{2}\n’.format(

curFirstPolyDegree, curSecondPolyDegree,
curThirdPolyDegree))

func = lambda x, x1, x2, *args: function(x, x1, x2,
curFirstPolyDegree, curSecondPolyDegree,
curThirdPolyDegree, *args)

p, e = optimize.curve_fit(func, xPoints, yPoints,
pInit, ftol=1e-15, maxfev = 5000)

foundFit = True
except:

continue

#check if error is less than best error

if math.fabs(sum(np.diag(e).tolist())) < fitError:

fitError = math.fabs(sum(np.diag(e).tolist()))

#adjust function coefficents based on curve fit results

p = p.tolist()
poly1EndIndex = 2 + (curFirstPolyDegree + 1) #2

for first 2 params, +1 to include constant

poly2EndIndex = poly1EndIndex +
curSecondPolyDegree

poly3EndIndex = poly2EndIndex +
curThirdPolyDegree

x1 = p[0]

169

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

x2 = p[1]
p1 = p[2:poly1EndIndex]
p2 = p[poly1EndIndex:poly2EndIndex] + [0]
p3 = p[poly2EndIndex:poly3EndIndex] + [0]

print(’found␣fit␣and␣x1␣=␣{0}␣and␣x2=␣{1}\n’.
format(x1, x2))

fittedFirstDeg = curFirstPolyDegree
fittedSecondDeg = curSecondPolyDegree
fittedThirdDef = curThirdPolyDegree

#at the end of fitting set the polynomial degrees

curFirstPolyDegree = fittedFirstDeg
curSecondPolyDegree = fittedSecondDeg
curThirdPolyDegree = fittedThirdDef
#print (foundFit)

return cls(curFirstPolyDegree, p1, curSecondPolyDegree, p2,
curThirdPolyDegree, p3, x1, x2, maxD, minD, foundFit)

@brief minD returns the minimum value of the independent variable

@return value representing the left limit of the indep var

def get_foundFit(self):
return self._foundFit

@brief feval evaluates function at a given x value.

@details This gives the information necessary to find the temp

using the function().

This calls the function with the necessary parameters to find the

temperature of the thermocouple at a particular time.

@param x - time value.

@exception Out of domain - Value error when x < minD and x >

minD

@return Returns a function call to function() which in turn returns

temperature at x.

def feval(self, x):
#check if a fit was found

170

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

if not self._foundFit:
raise ValueError(’No␣fitting␣function␣found’)

#check if value is within domain

if type(x) is np.ndarray:
if np.any(x < self._minD):

raise ValueError(’Out␣of␣domain’)
elif np.any(x > self._maxD):

raise ValueError(’Out␣of␣domain’)
elif x < self._minD or x > self._maxD:

raise ValueError(’Out␣of␣domain’)

funcParams = self._p1 + self._p2[:-1] + self._p3[:-1]
return function(x, self._x1, self._x2, self._curFirstPolyDegree, self.

_curSecondPolyDegree, self._curThirdPolyDegree,*funcParams)

@brief minD returns the minimum value of the independent variable

@return value representing the left limit of the indep var

def get_minD(self):
return self._minD

@brief maxD returns the maximum value of the independent variable

@return value representing the right limit of the indep var

def get_maxD(self):
return self._maxD

@brief get_x1 returns the first breakpoint

@return value representing the first breakpoint

def get_x1(self):
return self._x1

@brief get_x2 returns the first breakpoint

@return value representing the first breakpoint

def get_x2(self):
return self._x2

@brief return coefficients

@return values of coefficients for piecewise fit -

@return returns each poly degree followed by the polynomial

coefficients

171

MASc Thesis - Malavika Srinivasan - McMaster - Computing and Software

def get_coeff(self):
ordP1 = self._curFirstPolyDegree
coeffP1 = self._p1
ordP2 = self._curSecondPolyDegree
coeffP2 = self._p2[:-1]
ordP3 = self._curThirdPolyDegree
coeffP3 = self._p3[:-1]
return ordP1, coeffP1, ordP2, coeffP2, ordP3, coeffP3

@brief return coefficients

@param list - array, value - element which has to be found.

@return index of value closest to input value

def indexOf(list, value):
return min(range(len(list)), key=lambda i: abs(list[i]-value))

172

Appendix E

Pre-development Interview

173

Interview Questions Before Software Development

Malavika Srinivasan and Spencer Smith

December 9, 2018

Contents

1 Introduction 2

2 Related Terminologies 2

3 Participants 2

4 Questions 2
4.1 General Questions . 2

1

174

1 Introduction

This document contains a list of questions to assess the attitude of research scientists
towards the development of a scientific software. Before beginning our document driven
development, we want to assess the attitudes of the stakeholders. After the completion
of the software development, we will interview them again to see if their attitudes have
changed in any way as a result of our work.

2 Related Terminologies

3 Participants

P1: Dr. Sumanth Shankar - Professor, Dept of Mechanical Engineering, McMaster
University.

P2: Dr. Mohammed Hamed - Professor, Dept of Mechanical Engineering, McMaster
University.

P3: Dr. Kumar Sadayappan - Research Scientist, Natural Resources Canada - Can-
metMATERIALS.

P4: Dr. Jeyakumar Manickaraj - Research Associate, Dept of Mechanical Engineering,
McMaster University.

4 Questions

4.1 General Questions

Q1: Please let us know your scientific background. This information will be helpful in
evaluating our results when we are writing up the thesis.

A1: Phd in Material science and Engg from Worcester Polytechnic Institute,Massachusetts.
UnderGrad in Metallurgy from- IIT.

Q2: What is your level of programming experience? What programming languages
have you used?

A2: Have some programming experience in Fortran, Pascal, Visual basic, Matlab, Ma-
chine level logic, definition of algorithms e.t.c. No programming courses were taken.
Syntax of any programming language needs little more experience. Can trouble
shoot and understand code in C, C++, Fortran.

Q3: What software tools do you use in the course of doing your scientific work?

A3: Tools used include - Microsoft suite. Latex was used and discontinued. Graphical
softwares like easy plot(extremely user friendly and condensed), Familiar with

2

175

Sigma plot, Pandat(Thermodynamic software), Factsage , ThermoCalc e.t.c. Have
some trainings in CAD and ProE. Have good analysis knowledge in Photoshop.
Version control software or issue tracker was not used. GIT will be used.

Q4: Do you have an initial thoughts on how one should go about developing high quality
scientific software?

A4: Based on personal experience a good software should be able to have a help system
to answer questions if anything needs to be done. It should have a help tutorial to
learn a software. Dynamic tutorials like user documentation would be even better.

Q5: In the SFS project what are some ways that the software could fail? What is the
worst that could happen if the software fails?

A5: There are no safety concerns if the project fails. There is no wastage of money
compared to the size and total budget of the project. If this project fails, the
calculations done by this software will be done manually but that would be tedious.

Q6: What if the software works well but doesn?t give correct results?

A6: Then it still would be good data because it is useful in finding whether the under-
standing about the science behind this project is wrong or implementation of the
science in the software is wrong.

Q7: What are the most important software qualities for your work?

A7: Correctness is essential because significantly important industries will be the users
of this software and lots of money will be involved to take it to industrial scale and
these industries act as the backbone of economy in many nations. Verifiability will
be important as well . Speed is important, the maximum timeline is 15 min to
max 30 min altogether for the casting experiment, data acquisition by a DAQ, the
software to work and then give a GO or no GO. Portability is not very important.
Maintainability is required as it is continuous evolution.

Q8: What are your attitudes toward documentation of a software product? What kind
of information do you think should be documented?

A8: Documentation should be a combination of both software and scientific aspects. It
shouldn’t be long. It could be a substitute for textbook references. Can contribute
some document content like theory and other scientific aspects.

Q9: Do you use other people’s software? How do you ensure that it is trustworthy?
What do you find is the greatest difficulty in using other people’s software? Ideally,
what would you like to see that would help?

A9: Just trust the software

Q10: What could have other softwares given you that could have helped?

3

176

A10: Test cases can be generated and added as appendix to documentation.. Test cases
are important in aerospace and automobile industries. When castings are modelled,
the software can be used to predict fraction solid and that could be a verification
system for the SW. (Can be included in VV plan)

4

177

Appendix F

Guide for developing SC Software

178

In this document we provide a set of guidelines based on our experience in devel-
oping a scientific software.

1. At first, discuss with the scientists and identify the key requirements and likely
changes.

2. Identify the properties of correct input and output data. This information can
be used to automate the software to test for metamorphic trends in the input
and output data which can be used as a preliminary test before processing the
data.

3. Adopt a ‘Document driven design’ in combination with ‘Faked rational process
design’ to present the documents.

4. Involve scientists to a maximum extent from the beginning of the development
process. If possible, have a partner in coding who is also a domain scientist. It
is better to avoid SE jargons when communicating with the scientists.

5. “Design for change” must be adopted for SC.

6. When finalizing the mathematical equations used in the software, convert them
to canonical forms so that any generic solvers can be used.

7. When implementing the software, choose a programming language based on the
requirements of the project and not based on scientists’ familiarity of program-
ming languages.

8. Identify the test cases for each module and start testing the modules as they are
implemented. However, it is not easy to identify test cases for a SC application
due to the oracle problem. Hence, the developer needs to be adept and insightful
in identifying the test cases.

9. If the software does not produce desirable results, it is important to concentrate
on testing the modules to improve confidence in coding.

10. If trial and error experiments are necessary, adopt a SE approach such as re-
gression testing, which provides a way to measure each approach. It is also
advisable to keep track of a log in issue tracker where the list of all approaches
along with their results can be maintained. A version control system such as
Git may be used in which trials can be conducted on a separate branches and
the best approach can be used by merging the branch.

11. If document reviews are necessary, adopt ‘Task based inspection’ which requires
focused effort, meaning lesser time commitment from the scientists.

1179

12. In general, easy to use, lazy proof tools are readily accepted by the scientists.
Making proper use of such tools will be helpful during the development process.

2180

	Abstract
	Acknowledgments
	Introduction
	Overview of Case Study
	Methodology
	Overview of SE Methods
	Scope
	Thesis Outline

	Software Quality and Software Engineering
	Software Qualities
	Functional Suitability
	Performance Efficiency
	Compatibility
	Reliability
	Usability
	Security
	Maintainability
	Portability

	Essential Scientific Software Qualities
	Verification and Validation
	Reproducibility
	Reusability

	The Need for SE in SC
	Examples of SE Applied to SC

	Case Study in Detail
	SFS in Detail
	SE Practices and Tools in Detail
	Selection of SE Practices and Tools
	SE Practices Applied to SFS
	Document Driven Design
	Software Requirement Specification (SRS)
	Module Guide (MG)
	Module Interface Specification (MIS)
	Code
	Software Testing

	Faked Rational Design Process
	Design for Change
	Piecewise Module
	MG of Piecewise Data Structure Module
	MIS of Piecewise Data Structure Module

	Temperature module
	Module Guide of Temperature Module
	MIS of Temperature Module

	Regression Testing
	Task based inspection
	Git and Issue Tracker

	Learning and Observations
	Attitude
	Scientific Computing
	Software Engineering
	Numerical Methods

	Myth Busted
	Literature on Upfront Requirement Specification
	Requirement Specification for SFS
	Design for Change in the MIS for SFS
	Guide towards Requirement Specification

	Feedback on SE Tools and Techniques
	Methodology
	Pre-development Interview
	Post-development Interview

	Scope
	Feedback
	Summary

	Conclusions
	Thesis Summary
	Future work
	Future works related to SFS
	Future works related to the case study
	Recommendations for Scientists developing software

	Bibliography
	Presentation: A Case Study to Develop Scientific Software
	SRS: Software Requirement Specification
	Task based inspection: Task List for Scientists - SRS review
	Code for SFS
	Temperature Module
	Piecewise Module

	Pre-development Interview
	Guide for developing SC Software

