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Lay Abstract

We have been using ultrasonic devices to investigate different things from medical

diagnosis of prenatal development to nondestructive exploration of small rocks brought

from the Moon. This study takes the ultrasonic testing to the challenge of characterizing

plastics. Using information from the propagation of these inaudible sound waves, we

can explore the entire structure and observe structural changes that can lead to defects

or failures. With the help of computer-based data processing, we investigate these

complex signals creating tools for more efficient manufacturing and safer products like

water and fuel storage tanks.

iii



Abstract

Ultrasonic testing is a nondestructive structural characterization technique with limited

examples of application for polymeric products due to the high signal attenuation

in this class of materials. Recent developments in this thesis on ultrasonics have

focused on a guided waves test method and used nonlinear analysis of harmonic

frequencies to characterize polyethylene, a semi-crystalline polymer. This sensor

technology was demonstrated in the detection of initial plastic deformation and to

monitor solvent swelling. Frequency regions of low signal attenuation and a nonlinear

ultrasonic parameter using amplitude ratio of harmonic peaks were used to classify

different crystalline morphologies, controlled by thermal treatment. With an established

connection between the ultrasonic spectrum signal and the internal structure of

polyethylene, a quality monitoring tool was developed and applied to a batch rotational

molding process. Multiple traditional quality measurements were correlated with the

ultrasonic signal using multivariate statistical analysis. Finally, an in-line statistical

approach for quality classification and an on-line process monitoring using dynamic

process modeling were validated. The results presented in this study demonstrate the

relevancy of incorporation of the ultrasonic sensor technology to promote advanced

manufacturing practices for the polymer manufacturing industry.
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Introduction
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The focus of manufacturing research and development for the early years of the

twenty-first century has been the adoption of new tools and procedures to create

more integrated and flexible production lines. ’Quantity’ has lost its standing as the

main industrial objective, giving way to concepts like product personalization, use

of sustainable resources, and cradle-to-grave waste management. All of these new

responsibilities create production challenges in managing so much variability and

maintaining final product quality.

In the search for solutions to current challenges, there has been one common mantra

for the manufacturing industry: gathering more data. In an era of informational

development, new technologies are seeking to connect more ’things’. This change in

paradigm has been called by some as the fourth industrial revolution. But outside the

branding dispute, the goal for an advanced manufacturing environment is to integrate

process and product sensors with data management technologies to support the new

demands of the market.

With a need for more information from every part produced and with more com-

puting power available to process data, multivariate nondestructive sensors have been

an attractive alternative adopted for in-line monitoring in the manufacturing industry.

Spectroscopic methods (such as infrared, UV-Vis, X-ray, acoustic, ultrasonic and

others) that use the propagation of electromagnetic or mechanical waves are common

examples. However, with increasing complexity in data, more difficulties emerge in

connecting actual product properties and a mechanistic description of the process.

High cost and demand for a highly skilled operation are barriers that create a gap in

the development and adoption of these sensors for the factory floor.

Each manufacturer also faces the task of selecting and adapting a sensor that fits

to its product peculiarities. In the case of polymer processing industry, the limitations

on sensor performance are caused by its complex structures of plastic products that

2
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are generally thermal and acoustic insulators. Another challenge is to select between

local characterization, that may not be representative of the whole part properties, or

bulk characterization, that might be limited due to physical constraints.

Based on the current scenario for polymer manufacturing, two objectives were

proposed for exploration in this research. The first part of this thesis focused on

the development of ultrasonic sensor technology for the characterization of a semi-

crystalline polymer. And the second part explored statistical strategies to combine

process data and multivariate analysis of the ultrasonic signal for product quality

monitoring. Thus, the overall goal is to demonstrate conditions for a new monitoring

tool designed for polymeric products with promotion of an efficient quality control,

based on a nondestructive sensor technology.

In order to provide a background to the concepts applied in the manuscripts and

lay out the current state for the research in the areas related to this thesis, Chapter 2

provides a historical progression on the ultrasonic sensor technology focused on plastic

characterization until recent years and the challenges of characterizing semi-crystalline

polymers. Then, a presentation of the rotational molding process, a batch polymer

manufacturing technique selected to be the application for process integration with

the ultrasonic sensor as its main monitoring tool. Lastly, the chapter includes a short

introduction to multivariate statistical tools for data processing and interpretation.

Part I of the main research work combines two published research papers, Chapters

3 and 4, that apply ultrasonic characterization to polyethylene samples. Both papers

focused on the correlation of microstructural modifications of the semi-crystalline

morphology to features of the multivariate frequency spectrum for propagated ultrasonic

signals through molded parts. In Chapter 3, polyethylene samples with different

crystalline content were plastically deformed and tested with the propagation of

ultrasonic guided waves. Cyclic strain-controlled deformation showed that specific
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frequency regions had lower signal attenuation and could be used to follow the evolving

microstructure corresponding to the initial stage of plastic deformation. Considering

the findings and methodology developed in the first manuscript, Chapter 4 follows

the crystalline morphology of the polyethylene samples as controlled by thermal

treatment. Results demonstrated that the proposed characterization technique using

a nonlinear ultrasonic descriptor based on an acoustic parameter corresponding to

the amplitude ratio of frequency harmonic peaks, was correlated with the progression

of inter-crystalline residual stresses caused by either plastic deformation or solvent

swelling.

The advances demonstrated in Part I of the research provided evidence that

multivariate frequency analysis of the ultrasonic signal could be related to structural

features of a semi-crystalline polymer part. In Part II, this multivariate sensor

technology was applied to the monitoring of a batch manufacturing process to evaluate

the final product quality; a process whose industrial reliance on destructive test

methods has left it with noted part consistency issues. The manuscript presented in

Chapter 5 shows a correlation of the ultrasonic signal with two different quality features

of rotational molded parts that would traditionally be assessed using impact testing.

Residual internal air bubbles from powder sintering and thermo-oxidative degradation

from prolonged exposure to heat have a direct impact in mechanical properties of the

molded polyethylene part which can be evaluated using the multivariate ultrasonic

signal by calibrated statistical models. Improved approaches for quality monitoring

tools applied to the rotational molding process were demonstrated in Chapter 6. In

this manuscript, different from than in the previous chapter, the focus was on the

use of available historical data from the process and the nondestructive ultrasonic

test to create both in-line and on-line statistical strategies to classify final parts

based on different categorical groups. These proposed methods showed the potential

4



McMaster University — Chemical Engineering PhD Thesis — Felipe P. C. Gomes

implementation of ultrasonic technology in an advanced manufacturing scenario with

intelligent analytical tools that can be improved with increasing data availability (i.e.

machine learning).

In addition to the results obtained and described on the main body of this thesis,

collaboration projects have sought different applications of the developed technique

for further validation or progression on the main contributions. Chapter 7 combines

excerpts of findings from three draft manuscripts that use the ultrasonic technique

to focus on the quality characterization of semi-crystalline parts. The first study is

a continuation of the Chapter 6 with the application of a model predictive control

strategy to achieved desired quality products from the batch rotational molding process.

The second and third projects used directly the methodology developed in Chapter 4

to monitor structural changes using the nonlinear ultrasonic parameter, applied to the

plasticization effect of biodiesel on polyethylene and plastic deformation of thermally

treated poly(lactic acid).

The final chapter of this thesis focuses on the overall impact of the contributions

and the future impact of these areas for the improvement of polymer processing,

nondestructive characterization and advanced manufacturing.
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In this chapter the three main areas related to the research are presented with

the definition of basic concepts and recent important publications that influenced the

findings presented in the subsequent chapters.

2.1 Ultrasonic testing for semi-crystalline

polymeric materials

Characterization using ultrasonic technique relies on the interaction of mechan-

ical waves with the material being evaluated. Traditional acoustic measurements

for describing polymeric materials are the calculated ultrasonic velocity and signal

attenuation per unit distance of propagation1. These two effects consider a pure elastic

propagation of planar waves through the solid part, following Equations 2.1 and 2.2.

δ2ux
δt2

= c2 δ
2ux
δx2 for c =

√
E

ρ
(2.1)

A = A0e
−αx (2.2)

where u is displacement (strain), x is the unidirectional spacial variable, t is the

temporal variable, c is the speed of sound at the medium, E is the Young’s modulus, ρ

is the density, A0 is the initial signal amplitude, A is the attenuated signal amplitude,

and α is the attenuation coefficient (per unit length).

In order to measure these properties and calculate these parameters, a common

approach is to use pulse-echo tests with samples of known dimensions2. Based on

the signal reflected over the thickness of the sample, the time difference between

pulses can be used to identify the speed of sound and the amplitude difference to
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calculated attenuation (schematic presented in Figure 2.1). Polymeric materials have

a distinctly higher attenuation compared to metals and ceramics that propagate

mechanical waves better3. An increase in degree of crystallinity is associated with

further signal attenuation4. Good coupling between the transducer and the surface of

the sample, and amplification of the received signal are often required to allow the use

of this technique with polymers.

Figure 2.1: Schematic of Pulse-echo ultrasonic test

An alternative to the pulse-echo test is guided wave propagation, where two

transducers are required, one acting as an emitter of the ultrasonic wave and a second

positioned in a different spot as a passive receiver of the propagated wave (see schematic

in Figure 2.2). This method relies on the principles of planar waves, also called plate

waves, which considers the propagation of ultrasonic waves over longer distances, due

to an amplified effect caused by reflection of the geometrical boundaries5. However,

signal amplification for these waves is frequency dependent. Thus, identification of

guided waves modes that have lower attenuation based on the sample geometry and

characteristics can help to increase the signal propagation and efficiency of the test6.

Equations for the dispersion curves are used to identify the modes (See equations

2.3-2.5). For semi-crystalline polymers, application of ultrasonic guided waves has
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advantages over traditional pulse-echo tests due to the fact that these are materials

with high attenuation and it allows for the exploration of larger areas.

Figure 2.2: Schematic of ultrasonic guided waves test

tan(qh)
tan(ph) = −4k2pq

(q2 − k2)2 (for symmetric modes) (2.3)

tan(qh)
tan(ph) = (q2 − k2)2

−4k2pq
(for antisymmetric modes) (2.4)

p2 = w2

c2
L

− k2 and q2 = w2

c2
T

− k2 (2.5)

where w is the circular frequency, k is the wavenumber, h is the plate thickness, cL is

the longitudinal velocity, and cT is the transverse velocity.

High signal attenuation of ultrasonic waves by semi-crystalline polymers is related

to the viscoelastic nature of these materials7. Ultrasonic propagation can be affected

by significant differences in elastic properties between internal regions and by the

mismatch of stress transmitter elements (i.e. internal defects)8. Thus, a new area of
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ultrasonic characterization has focused on the study of nonlinear propagation. The

introduction of a nonlinear elastic parameter, shown in Equation 2.6, compared to the

elastic wave equation shown in Equation 2.1, shows how there can be a significant

change in wave propagation, observable in the frequency domain with the formation

of harmonic signals9.

δ2ux
δt2

= c2(1 + β
δux
δx

)δ
2ux
δx2 (2.6)

where β is the nonlinear parameter. An increase in internal stresses and defects has

been reported to cause the appearance of higher harmonic peaks in several materials10

but has not been previously reported in semi-crystalline polymers.

Previous ultrasonic characterization studies for polyethylene have first shown the

variation of attenuation with frequency4, traditional ultrasonic testing strategies applied

for polymer blends11–14 and composites15,16. Recent studies have also investigated the

characterization by acoustic emission during destructive plastic deformation17,18.

2.2 Rotational molding process

Rotational molding is a batch process that produces hollow parts based on the

deposition, sintering and solidification of polymer powders on the walls of metallic

molds. Although the full batch cycle can be divided into six different stages (initial

powder heating, adhesion, melting, sintering, solidification and cooling), see schematic

in Figure 2.3, final part quality is most directly affected by two different processes:

sintering and degradation.

During the melting stage as powder particles gradually transition to a viscous melt,

air is trapped into voids located in the geometric spaces. The number and size of
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Figure 2.3: Rotational molding batch cycle

the initially formed bubbles is highly influenced by the particle size distribution of

the polymer powder19. With increasing heat being provided to the system the initial

concentration of bubbles tends to reduce through coalescence and air diffusion20. This

densification or sintering process has a significant effect on the mechanical strength

of the final part and optimal quality can only be achieved with minimal residual air

bubbles21.

In parallel to the sintering process, the high temperatures and the exposure to

the air inside of the metallic mold also promotes the formation of radicals that lead

to thermo-oxidative degradation. Above a certain threshold, the concentration of

stabilizers (antioxidants) originally added to the polymeric compounding manufacturer

to prevent this phenomena will decrease more rapidly22. For polyethylene molded parts,

this thermo-oxidative reaction can lead to cross-linking, changes in color, emission of

volatile compounds and in severe cases a reduction of mechanical properties due to

brittleness23.
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2.3 Multivariate statistical analysis and batch

process monitoring

Statistical data processing and analysis from multivariate signals, such as the

frequency spectrum of an ultrasonic guided wave, are necessary to extract information

contained. Due to the complexity of the interaction between a polymeric structure

and the propagated ultrasonic waves, the selection of frequencies to correlate with

final product qualities is not a trivial task. Orthogonal projections using principal

component analysis have been applied to reduce the dimensions of these multivariate

spaces without loss of important data24. A common calibration technique applied to

multivariate sensor technology is the projection to latent spaces (PLS) that correlates

the measured spectra to other standard test values25, a schematic is demonstrated in

Figure 2.4.

Figure 2.4: Schematic of PLS

A supervisory system based on advanced manufacturing tools should help un-

derstand the dynamics of the process through its observed variables and correlate

them to the final quality properties. A PLS approach can also be applied to correlate

observation from on-line batch process variables with the final quality. However, these

batches are usually non-uniform, thus, time alignment of each batch vector is required
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to form a calibration matrix26. A recent alternative to this problem has been explored

with the use of a subspace identification technique with the alignment of the batch

data into Hankel matrices. Each batch is organized in a square matrix with fix number

of rows, then each sub-matrix is concatenated to an overall Hankel matrix aligned

horizontally, thus, only the number of rows should match, allowing for batches with

different lengths to be matched27. Then, these aligned matrices of the observed and

controlled variables on the batch can be used to identify the system matrices by

ordinary least squares.

Multivariate sensor analysis for process on-line and in-line monitoring have been

previously analyzed for continuous polymer processing techniques, focused on the

traditional extrusion28–33 and injection molding processes34–39.
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ABSTRACT

Small strain deformations below yielding can cause plastic deformation in semicrys-

talline polymers by a process similar to what is described for filled rubber-like materials
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known as the Mullins effect. Inter-lamellae chains contribute predominantly in defor-

mations at this level, and the residual plastic strain can be attributed to permanent

damage to the tie chains, affecting the long-term mechanical resistance of a molded

part. With little detectable alteration of the polymer crystallinity at this early on-

set of plastic deformation, the primary characterization method applied to date is

cyclic tensile loading, which provides information of stress-softening by monitoring

the unloading path or relaxed stress behavior. An alternative method for monitoring

the development of Mullins effect is proposed that can examine a molded part by

using selected modes based on ultrasonic guided waves analysis. The technique was

examined to determine if it could follow this effect induced by cyclic strain-controlled

tensile deformations since it does not require sample preparation and could ultimately

be applied while a part was in-service. Results for different polyethylene grades agree

in trend with relaxed stress values over four cycles for tests of increasing applied tensile

strain, demonstrated by an increase in the attenuation of ultrasonic guided waves.

The correlation reveals a good promise in applying this method to structural health

monitoring of plastic parts, while in use, to follow the initiation and progress of early

service damage.

Key-words: Ultrasonics; Mullins effect; Plastic deformation; Semicrystalline.

3.1 Introduction

Polyethylene (PE) will undergo non-linear elastoplastic deformation under tensile

load before reaching its maximum stress. Although the yield point is a clear transition

onto plastic deformation, the initiation of permanent damage can occur well before

this transition1. Even small strains have been demonstrated to be capable of produc-

ing rearrangement of the semi-crystalline structure, affecting long-term mechanical
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properties2. The stress-strain response of semi-crystalline polymers at small strains

below yield corresponds to deformations of the inter-lamellae amorphous phase3. The

separation of crystallites promotes the stretching and rupture of bridging chains that

interconnect crystallites, resulting in permanent plastic damage4. Macroscopically, in

cyclic mechanical testing, it is possible to observe this damage characteristic of the

Mullins effect, mainly recognized by an observable strain-softening along the unloading

path of the stress-strain curve and a non-recoverable residual strain after only the first

cycle5. This effect is a result of the rupture of connection points (tie chains) in the

crystalline network, being dependent on the history of maximum stretching and is a

key characteristic to understanding the resistance of materials to crystalline slip that

leads to yielding6. Based on this subtle damage, the Mullins effect is considered to

reflect properties that are intrinsically correlated with long-term mechanical stability of

parts molded with semicrystalline polymers. Since the primary method of assessing the

Mullins effect is strain-controlled cycling mechanical testing, which requires detailed

data recording, sample preparation and interpretation of stress-strain curves, the

development of alternative techniques is currently sought by companies concerned with

aging behaviors of their products, either for use in quality assessment or monitoring a

part while in service.

Macroscopic, characteristic changes such as significant permanent variation of

dimensions or sample discoloration can be visually observed but only after major

plastic deformation beyond yield point of a semicrystalline polymer7. Considering

microscopic structural observations, current experimental methods used in the detection

of plastic deformation include small-angle X-Ray scattering (SAXS)8, near-infrared

spectroscopy (NIRS)9, and Raman spectroscopy10. Such methods experience difficulties

in detecting plastic flow initiation at early stages of deformation as they depend on the

presence of cavitation or significant crystal deformation and orientation, that are only
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present closer to yield11. The non-crystalline phase of PE has a significantly greater

role in dislocations during viscoelastic deformation due to its lower bulk modulus12.

Therefore, in order to promote early detection of plastic deformation it is essential to

develop practical methods capable of characterizing changes in the interconnectivity

of crystallites and non-crystalline phase mobility. However, current methods that

have demonstrated successful results such as atomic force microscopy (AFM) [4] and

nuclear magnetic resonance spectroscopy (NMR)13 require highly specialized sample

preparation and testing procedures, restricting their practical application in industry.

Ultrasonic techniques are non-destructive characterization methods that analyze

the manner by which sound waves are altered upon propagating through a medium to

reveal micro-structural details, such as information related with thermo-mechanical and

morphological properties. Important contributions from Nitta and collaborators have

demonstrated the effectiveness of ultrasonic methods using parameters of bulk wave

velocity and signal attenuation to analyze the plastic deformation of semi-crystalline ho-

mopolymers and polymer blends under oscillatory and uniaxial tensile deformation14–16.

Increases in ultrasonic velocity and attenuation were correlated with orientation of

crystallites and the occurrence of cavitation due to large strain deformation. The

dispersive nature of semi-crystalline polymers requires a spectroscopic analysis of

the ultrasonic signal since attenuation for such materials is frequency dependent17.

Recent improvements to materials characterization have been achieved with the use

of ultrasonic guided waves, a method that presents advantages to characterization

of highly attenuative materials. The interference phenomenon of reflective waves on

plate walls allows propagation over longer distances, combined with the analysis of

dispersive properties of semicrystalline polymers providing features of bulk macroscopic

properties of the investigated sample18,19.

Therefore, this paper will focus on demonstrating the use of ultrasonic guided
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waves to analyze plastic deformation at its early stages in different polyethylenes (high

density, linear low density and bimodal). The novelty of the study is showing that

parametric descriptors of the ultrasonic signal are correlated with the initiation of

plastic deformation when using small strain-controlled tensile deformation testing to

detect Mullins effect. Demonstrating the practicability of ultrasonic techniques to the

observation of inter-lamellae alteration of semi-crystalline polymers undergoing plastic

deformation is an important advance to the development of a suitable characterization

methods under Industry 4.0, and can be later exploited as non-destructive evaluation

for in-line process monitoring or in-field early failure detection.

3.2 Materials and Methods

3.2.1 Materials

Four commercial grades of polyethylene were supplied by Imperial Oil Ltd (Sar-

nia, ON). Table 3.1 provides a summary of the grades, listing their corresponding

density, melt index (MFI; measured according to ASTM D1238) and environmental

stress cracking resistance (ESCR; measured according to ASTM D1693A) which were

determined by the supplier for this work, and includes PE Grade numbers which will

be used to reference these samples in this study. The grades varied from homopolymer

high density (HD) to linear low density (LL) polyethylene, with different degrees of

hexene used as copolymer. A bimodal grade (HD.B) is included in the study with

intermediate values in terms of density and ESCR. All samples were prepared as

plaques by compression molding the resin for 5 minutes at 190oC and then quenched

using water-cooled plates. Rectangular test specimens of approximately 20 mm (width)

x 180 mm (length) x 3 mm (thickness) dimensions were cut from the 180 mm x 180
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Table 3.1: List of PE grade studied and selected properties

Grade Type Density
(kg/m3)

MFI (g/10min) ESCR (hours)

HD1 Homopolymer 965 8.8 2
HD.B Bimodal 956 0.3 775
HD2 Copolymer (Hexene) 943 2.1 554
LL Copolymer (Hexene) 933 5 >1008

mm plaques.

3.2.2 Mechanical Characterization

Strain-controlled tensile testing was performed using a 10 kN benchtop Model 3366

Universal Mechanical Testing System (UMTS, Instron Corporation; Norwood, MA).

The rectangular samples were pulled longitudinally with a strain rate of 1.4x10-3 s-1.

Young’s modulus was calculated from the stress-strain data to represent specimen

stiffness. Two tests were performed: a varying strain test and a cyclic test. Every test

was stopped at a specific strain, above the proportionality limit but before the yield

point, at which time the specimen was held at that fixed displacement to observe its

relaxation stress for an additional 20 minutes. For the varying strain test, samples

were tested for elastoplastic deformation at strain values of 0.5, 1, 2, 4 and 8%. For

the cyclic strain-controlled test, each sample was submitted to four consecutive cycles

of a fixed value of 2% strain followed by relaxation with intervals of 20 minutes, and

in between each cycle the sample was removed for ultrasonic measurements. In each

cycle, three points of the cross-section of the sample were measured with a caliper

for thickness and width dimensions. The tensile tests were performed at ambient

room temperature. Reported experimental variability was based on a 95% confidence

interval from three repeats for each grade.
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3.2.3 Ultrasonic test

Pulse transmission testing to produce ultrasonic guided waves within the specimens

was performed using a Panametrics NDT C604 (2.25 MHz-1.0”) ultrasonic transducer

as an emitter and a Physical Acoustics F30α as a broadband receiver sensor.. The

emitter and sensor were positioned on opposite faces of the rectangular shaped samples

at 85 mm distance from their center points, using Dow Corning high vacuum grease as

a coupling agent. Excitation of the undeformed and strained samples after being taken

from the UMTS was done with a square wave pulse of controlled frequency produced

with an Agilent 33210A waveform generator. The received signal was amplified using a

Physical Acoustic 2/4/6c amplifier set to +60dB. Acquisition was done at a sampling

rate of 4MHz using a National Instruments Corporation 10 MHz 12-bit 4-channel data

acquisition card and a LabVIEWTM (National Instruments Corporation) software

environment to create separate files for each pulse registering an amplitude over a

threshold of 0.06 mV.

Each test consisted of creating 25 pulses of different emitted frequencies (f) varying

from 360 to 600 kHz at a step size of 10 kHz; for all polyethylenes with the specific

geometry tested, signals above 600 kHz showed modes with low signal-to-noise ratio due

to high attenuation, whereas for modes below 350 kHz, the identification of dispersion

modes was affected by overlapping waves. The selected frequency range of the study had

been previously demonstrated as relevant to characterizing the deformation mechanism

of polyethylenes in acoustic emission tests20,21. The dispersion profile used to analyze

the ultrasonic modes was generated by plotting the frequency spectrum of normalized

signal amplitude, calculated as the area under the amplitude-frequency curve integrated

between f-2.5 kHz to f+2.5 kHz and divided by the total spectrum area, compiling

all 25 detected spectra. To quantify the changes in microstructure of the strained
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polyethylene samples as a result of plastic deformation, the change in ultrasonic

signal was reported in terms of attenuation ratio, which was defined as the amplitude

after deformation over the undeformed sample maximum peak amplitude. Tests were

performed at ambient room temperature. Experimental variability was based on a

95% confidence interval from three test repeats for each grade.

3.2.4 Crystalline characterization by Differential Scanning

Calorimetry

The crystallinity of each grade of polyethylene was determined using Differential

Scanning Calorimetry (DSC). The DSC characterization was done with a TA Instru-

ments Q200 instrument over a temperature range of 15-180°C at a 10°C/min ramp rate

under nitrogen gas flow. All tested sample specimens weigthed between 7-8 mg. The

percent crystallinity was calculated using the measured melting endotherm relative to

a theoretical heat of fusion for 100% crystalline polyethylene (293 J/g,22).

3.3 Results and discussion

3.3.1 Influence of small strain deformation on mechanical

and acoustic properties of polyethylene

Table 3.2 shows how the mechanical properties of different polyethylene grades

changed after four cycles of the cyclic strain-controlled deformation at 2%, values

are compared against a control group of samples from the same grade that were not

subjected to any deformation before the tensile test. While some bulk properties like

Young’s modulus and yield stress remained statistically unchanged, other properties

that are more related with elastoplastic resistance to deformation presented a significant

28



McMaster University — Chemical Engineering PhD Thesis — Felipe P. C. Gomes

change. A reduction in the strain at yield can be explained by the residual plastic strain

due to maximum deformation history. Similarly, a reduction in tangent modulus can

be connected with the strain softening process. Both properties indicate a significant

reduction occurred over the course of the test based on the cumulative strain applied, as

evidence of the structural damage related to the Mullins effect; the sensitive mechanical

properties, shown in Table 3.2 to be demonstrating elastoplastic damage cannot be

collected per cycle since it requires strain beyond the yielding limit which is not

consistent with our test procedure. This is a deficiency of the approach, in that it

requires yielding to monitor, and hence why reported studies23,24 have relied upon

recording the unloading strain path per cycle as a mean to highlight the progressive

damage relatable to the Mullins effect. Since this study could not simultaneously

monitor the unloading strain and remove the sample between cycles for acoustic testing,

we have chosen to assess the cumulative structural changes being caused by small strain

plastic deformation via observing stress relaxation behavior instead. Figure 3.1 shows

stress-relaxation curves for different PE grades in four successive strain-controlled

cyclic tensile tests at 2%. Values were normalized based on the stress reading at the

initial time of the relaxation test. Comparison of the curves indicates different levels

of relaxation time for the different crystalline content of these PE grades, which was

quantified in Table 3.2. Although, a small deviation is noticeable between curves

of the same grade for cycles past the first applied deformation, the variation was

not considered significant. Changes in stress relaxation have been demonstrated as

indicative of the resistance of crystalline network to plastic flow, and hence was felt

to correlate with the same principles related to the Mullins effect6. Therefore, this

mechanical characterization method should be useful as an alternative to calculation

of energy dissipation using the stress softening of the unloading path in cyclic tests25,

a method that has been reported as not to follow closely the behavior observed in

29



McMaster University — Chemical Engineering PhD Thesis — Felipe P. C. Gomes

Table 3.2: Tensile mechanical properties of polyethylene samples from undeformed
control group and after four cycles of viscoelastic deformation at 2% strain

Young’s Modulus (MPa) Yield Stress (MPa) Strain (%) at Yield Tangent Modulus (MPa) Cryst.
by DSC
(%)

Grade Control Deformed Control Deformed Control Deformed Control Deformed Control
HD1 1138± 11 1192± 90 25.6± 0.1 25.8± 0.1 11.5± 0.2 9.9± 0.4 129.2± 0.9 111.0± 1.7 82
HD.B 906± 67 914± 24 22.5± 0.3 23.2± 0.2 13.0± 0.5 11.2± 0.3 126.6± 3.5 116.3± 1.7 72
HD2 625± 24 628± 20 17.2± 0.1 17.4± 0.1 15.7± 0.4 14.0± 0.4 105.5± 6.4 96.9± 0.7 58
LL 573± 17 584± 19 16.1± 0.1 16.1± 0.1 16.7± 0.2 14.9± 0.2 97.9± 1.0 93.7± 2.8 51

some rubber-like materials that exhibit Mullins effect24.

A significant change in the ultrasonic wave signal is observed in both time domain

and frequency domain when contrasting results before and after one and four cycles of

strain-controlled deformation at 2%, as demonstrated in Figure 3.2. The figure shows

the detected signal in both time and frequency domain. There was an increase in

attenuation specifically at the frequency of the emitted pulse (450 kHz), denoting an

increase in wave dispersion within the sample. Ultrasonic attenuation of polyethylene

is expected to increase as a consequence of increased plastic deformation15. An increase

in attenuation of ultrasonic guided waves can be associated with decoupling between

partial longitudinal and shear waves, reflecting the higher magnitude of attenuation of

bulk shear waves in comparison with bulk longitudinal waves26. This can mean that the

proportion of taut tie chains and mobile amorphous chains in the non-crystalline phase

affected the manner that stresses were propagated through the crystalline network,

changing attenuation and dispersion of the ultrasonic waves. Tie chains also play an

important role on the viscoplastic properties controlling the stress-strain relationship

in the pre-yield deformation region27.
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Figure 3.1: Stress relaxation curves of PE samples for four cycles of tensile deformation
at 2% strain

(a) Plot A (b) Plot B

Figure 3.2: Time-domain signal (top) and FFT spectra (bottom) of HD2 sample
undeformed (A) and after strain-controlled deformation (B). Emitted signal frequency
of 450 kHz
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3.3.2 Identification of dispersion modes for optimal

ultrasonic analysis with guided waves

As seen above, the changes in structure on account of the Mullins effect are small,

at least in the beginning and so, achieving highest sensitivity of the characterization

methods is critical. For semi-crystalline polymers, likely polyethylene, where there

is a considerable heterogeneity in the crystal structures to disperse the sound wave,

attenuation tends to be frequency dependent28. Therefore, identification of suitable

frequencies for characterization will improve the efficiency of the method by reducing

the effects of highly attenuated signals and increase the reliability in terms of signal-to-

noise ratio. Figure 3.3 shows normalized spectra for samples of HD2 grade before and

after a strain-controlled deformation to 2% strain. Additionally, a comparison of the

peak signal is shown along with a theoretically calculated dispersion curve using the

method of potentials to solve the Rayleigh-Lamb frequency equations for symmetric

and antisymmetric modes. Chan and Cawley26 have demonstrated the relevancy

of asymptotic shear modes in polymeric materials, identifying the frequency range

where phase velocity converges momentarily for the bulk longitudinal velocity ideal

for testing, providing minimum attenuation. By analyzing the dispersion curves and

spectral response of the different polyethylene grades, different modes were identified

as candidates for characterization, specifically, the sixth antisymmetric mode (A6)

for the grade HD1, the seventh symmetric mode (S7) for grades HD.B and HD2 and

the eighth antisymmetric mode (A8) for grade LL. The frequency spectrum analysis

to calculate the attenuation ratio between undeformed and strained samples was

based on the peak amplitude from the selected dispersion modes. Different authors

have demonstrated the relevance of ultrasonic guided waves to help understand the

complexity of wave propagation in viscoelastic media and how to identify specific
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modes suitable for non-destructive evaluation26,29–31. As a result, this approach was

considered most suitable for improving the sensitivity of the analysis of the Mullins

effect in our polyethylene samples.

Figure 3.3: Dispersion curve of ultrasonic guided wave mode S7 and FFT spectra for
HD2 sample before and after strain controlled deformation

3.3.3 Analysis of Mullins effect with cyclic tensile testing

The analysis of cyclic deformation testing is commonly used in order to observe the

Mullins effect, with expected stress softening and residual plastic strain dependent on

the maximum strain applied. Therefore, it is expected that the mentioned structural

damage cannot increase with successive cycles if done at the same level of deformation.

Similar trends in cyclic deformation at 2% strain were observed among all polyethylene

grades, with each showing a decrease in the attenuation ratio with increasing cycles, as

shown in Figure 3.4. A major decrease in attenuation ratio occurred with the first cycle

whereas for further cycles, the ratio value remained constant within the uncertainty

of the measurement, matching the trend seen with the reduction in strain at yield.

There are however differences seen among the PE grades, with higher attenuation for
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grades of higher degree of crystallinity. Accordingly, the same pattern was observed in

relaxed stress values from the stress relaxation data of the cyclically deformed samples,

as demonstrated in Figure 3.5. Differences are noted between the relaxed stresses of

the different PE grades but they occurred for the first cycle, with only constant values

reported for successive cycles. These observations are in agreement with the description

of the Mullins effect, reported for filled rubber-like materials23. The stress softening

consequence of the Mullins effect can be explained in semicrystalline polymers by the

disruption of tie chains (i.e. rupture, desorption, pull-out from connected crystalline

lammela) and the resultant increase in contributions from the amorphous-confined

chains in the inter-lamellae regions on the measurement of bulk modulus32. Therefore,

monitoring the Mullins effect through measurement of ultrasonic attenuation in a

plastic part, while in service, could provide valuable information about the historical

maximum deformation that was applied, thus indicating possible permanent structural

changes caused by early plastic deformation.

Figure 3.4: Attenuation ratio of different polyethylene grades after one and four
successive strain-controlled deformation cycles
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Figure 3.5: Relaxed stress for different polyethylene grades after one and four successive
strain-controlled deformation cycles

3.3.4 Analysis of ultrasonic attenuation ratio with

increasing small strain deformation

The study develops upon the analysis of Mullins effect through cyclic tensile strain

test to investigate the range of small strain deformations where the onset of plastic

initiation will occur. By increasing the fixed strain of the strain-controlled deformation

test, a significant increase in the attenuation, therefore, a decrease in attenuation ratio

and increase in relaxed stresses are expected; in all cases, the strain did not exceed the

yield limit of the polymer, though at 8% it was quite close. Figure 3.6 shows the rising

relaxed stress values while Figure 3.7 shows the ultrasonic results, with increasing

maximum strain being applied to samples of different PE grades. Although the same

trend is observed for all PE grades in terms of relaxed stresses, it is possible to observe

differences when comparing the curves of the ultrasonic attenuation ratio. Grades

HD1 and HD.B with their higher degree of crystallinity showed a faster decrease in the
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attenuation ratio for small strain values, though constant in attenuation after the first

cycle. Conversely, for lower crystallinity grades, such as HD2, a slower attenuation

increase with increasing strain was found, or no significant change was observed as for

the case of the LL grade. A larger separation of crystalline lamellae due to higher strains

will increase the probability of rupture and pull-out of tie chains that interconnect the

crystalline structure. The relevance of this statement is to show the applicability of

the proposed method using ultrasonic guided waves for small strains, before reaching

yield, is in agreement with changes in properties observed from the mechanical tests.

Therefore, macroscopic effects, that could only be studied by the stress-strain profile

before, can now be monitored by the attenuation of specific ultrasonic guided wave

modes. This proposed method also provides a way to monitor structural changes, like

the disruption of links of the elastic network structure, as result of plastic deformation

close to the onset of initiation.

Figure 3.6: Profile of relaxed stress for PE samples with different maximum strain
deformation
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Figure 3.7: Profile of relaxed stress for PE samples with different maximum strain
deformation

3.4 Conclusion

Results presented in this paper support the use of ultrasonic guided waves as

an alternative method to observe the Mullins effect in cyclic strain-controlled tests.

Attenuation of selected ultrasonic modes was correlated with historical maximum

strain applied for different polyethylene grades. Most of the reduction in amplitude

occurred after the fixed strain was reached for the first cycle, with no significant change

in successive deformations to approximately the same strain; this response is evidence

supportive that the study is observing the Mullins effect in PE. Changing responses

from stress relaxation data were used to show damage mechanically. Attenuation

was shown to increase between 20-80% with increasing strain for different PE grades,

following in trend with relaxed stress values. The promising use of this ultrasonic
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method to monitor damage indicative of long term service life will help us to develop

ways to evaluate the failure behavior of semicrystalline polymer in operation, as well

as point to important aspects in the processing of formed parts that will be predictive

of long-term mechanical resistance.
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solvent swelling.

• Connect how variations of semi-crystalline structural morphological (due to thermal

treatment) affected the initial plastic deformation by observing changes in the

nonlinear ultrasonic parameter.
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• Calculate a parametric descriptor using ultrasonic spectral data to monitor the

evolution of internal structural stresses,

ABSTRACT

Identification of precursor events related to incipient plastic deformation in polyethy-

lene parts using a nondestructive technique is investigated in this study. A pair of

ultrasonic transducers mounted on the surface of a test sample were used to propagate

ultrasonic pulses of varying frequency while progressively small flexural deformations

below yielding were applied. The evolution of higher order harmonics was observed in

association with increasing micro-structural modification. Three different polyethy-

lene grades were molded using different thermal treatments. Results showed that

different crystalline networks could be correlated to different mechanisms of plastic

deformation that were observed by a defined ultrasonic parameter under proposed

method. Variation of the ultrasonic parameter was similarly observed with the residual

stresses associated with solvent swelling, as studied by penetration of toluene into

the bimodal and copolymer grades. Results and discussion presented in this study

connect this non-destructive characterization method with mechanisms of incipient

plastic deformation in polyethylene.

Key-words: Nonlinear Ultrasonics, Plastic deformation, Polyethylene.

4.1 Introduction

Understanding the mechanisms of plastic deformation is essential for prediction of

long-term sustained service of polyethylene (PE) parts. Initiation of yielding corre-

sponds to a non-linear response to deformation prior to permanent structural damage,

which is directly associated with the concentration of internal stresses causing crys-

talline dislocation1. Heterogeneous crystalline lattice formation is an essential physical
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element providing the strength resistance and unique plasticity of semi-crystalline

polymers compared to amorphous polymers2. Although the degree of crystallinity

is an important parameter influencing this early stage of plastic deformation for PE,

another important factor controlling crystalline dislocation is the morphology of its

interlamellae crystalline regions3,4. These regions are comprised of stress transmitters

across the crystal lamellae boundaries known as tie chains, that are associated with the

mobility of the macromolecular network and are known to control structural changes

arising during these early stages of deformation5–7. Processing history, particularly

the associated crystallization kinetics, for a semi-crystalline polymer directly impact

the density of these tie chains, which in turn significantly influences the slow crack

resistance of formed parts8–10. The inter-crystalline region can also be affected by

penetration of low molecular weight contacting fluids, which can similarly promote in-

ternal stresses11. Therefore, connecting mechanical and environmental stresses through

characteristics of the inter-crystalline network is important to predict the plasticity

and long-term performance of PE parts.

Above the proportionality limits of elasticity, internal microstructural damage

leads to an accumulation of residual stresses attributable to crystal shear, lamellae

separation/cavitation and/or crystal stretching12. Currently, a limited number of

characterization methods can be applied to observe structural changes at the onset

of plastic deformation. Local strain deformation can be observed at the microscopic

level through the long period of crystals using in situ small angle X-ray scattering

(SAXS)3,13. Orientation by plastic deformation is demonstrated by in situ Raman

spectroscopy14 and small angle neutron scattering (SANS)15. Mobility of different semi-

crystalline domains can be measured using nuclear magnetic resonance spectroscopy

(NMR)16. Permanent damage due to crystalline fragmentation has been visualized

by atomic force microscopy (AFM)17. Additionally, the energy from cavitation and
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crystal damage can be recorded using acoustic sensors18. Although, these methods

are effective in the investigation of some elements of initial plastic deformation, they

provide micro to meso-scale analysis of local events, which has a limited applicability

to predict macroscale events that occur in the long-term service of these parts19. From

a practical perspective, none of the current experimental methods can characterize the

bulk plasticity of PE samples.

Conversely, characterization methods based on ultrasonic guided waves are promis-

ing non-destructive alternatives that can be used for damage monitoring in bulk

samples20. The non-destructive qualities and capacity to assess the bulk nature of

materials by such methods lend themselves well to inclusion as sensing technology

in advanced manufacturing platforms21. Recent evidence has shown the application

of such methods to observe post-yielding lamellae to fribrillar transformation22 and

strain-softening after small cyclic deformation23 for PE samples using tensile tests. The

complexity of the propagated signal often requires further processing and spectroscopic

analysis. A promising spectroscopic characterization is the use of detected variations in

the amplitude of higher harmonics, also referred to as nonlinear ultrasonic evaluation24.

The use of nonlinear ultrasonic guided waves methods to follow the degree of plastic

deformation has been demonstrated in metals25–28, which are comparatively homoge-

neous in their structure, but also to detect localized damages in composites29. The

suitability of the nonlinear ultrasonic approach has yet to be experimentally demon-

strated with semicrystalline polymers, being only previously described theoretically

for a second harmonic resonance30 and for linear elastic regime31,32. Based on the

elements demonstrated, this paper presents the use of nonlinear ultrasonic guided

waves to evaluate incipient plastic behavior in modified polyethylene samples before

yielding and assess the influence of their crystallization history or solvent swelling in

the performance of prepared parts.
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4.2 Materials and Methods

4.2.1 Materials

Three different grades of polyethylene were supplied in pellet form by Imperial Oil

Ltd. (Sarnia, ON). These grades included a reference homopolymer (HO) grade with

density of 965 kg/m3 and melt flow index (MFI) of 8.8 g/10min and two modified

grades, namely: a hexene copolymer grade with bimodal molecular weight distribution

(BM), density of 956 kg/m3 and MFI of 0.3 g/10 min; and, a hexene copolymer (CO)

grade with density of 933 kg/m3 and MFI of 5 g/10 min. Detailed information related

to the concentration of hexene was not provided. Reported data on density and MFI

were measured and provided by the supplier.

4.2.2 Specimen Preparation

Samples of each polyethylene grade were compression molded into 180 mm x 180

mm x 3.2 mm thick plaques using a laboratory Carver press with heated platens.

Pellets in a mold were initially heated to 145 oC for five minutes and then increased

to 170 oC for additional five minutes, with gradually increasing pressure up to 10 MPa

across the two stages of heating. With the polymer fully melted and compressed, two

different thermal treatments were applied, namely: i) rapid quenching (Q), where

the mold was water cooled at a rate of approximately 72 oC/min till reaching 80 oC,

while maintaining pressure; or ii) annealing (A), where the platen temperature was

reduced to 100 oC at the same previous cooling rate and then kept constant while the

sample was held at pressure for one hour. After each treatment, the sample plaque was

removed from the mold and allowed to further cool in ambient air. Flexural specimens

with dimensions of 180mm (length) x 20mm (width) x 3.2mm (thickness) were cut
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from the plaques. Tensile samples with Type IV dimensions accordingly with ASTM

D638-14 were prepared in a split mold using the same melting and thermal treatment

procedures described above.

For studies involving solvent physical swelling, flexural and tensile specimens of

each sample were immersed in toluene (laboratory grade, Caledon Laboratories) for 15

and 48hrs at room temperature. After removal, samples were kept in the fume-hood for

30 minutes and wiped cleaned with paper tower to remove any excess of the chemical

from the surface before testing. Weight of each sample was measured before immersion

and after removal from the fume-hood using a Mettler Toledo analytical balance (model

AE200).

4.2.3 Tensile and Flexural tests

Mechanical characterization of the samples was done with a Model 3366 benchtop

universal mechanical testing system (Instron Corporation) at room temperature and

a relative humidity of 35%. Under tensile deformation, appropriate specimens were

constantly strained to failure at a crosshead speed of 100 mm/min. Studies on flexural

deformation were performed using a three-point method with a 65 mm support span.

Specimens were progressively deformed to different degrees of strain (0.5, 1, 1.5 and

2%) in a step-wise manner at a crosshead speed of 2 mm/min. After being strained

to one of these conditions, a specimen was allowed to relax with the return of the

crosshead to its original position and ultrasonic testing was then performed while still

in place before continuing to the next strain state.
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4.2.4 Ultrasonic test

With a specimen positioned for three-point flexural testing, two ultrasonic trans-

ducers were coupled to its surface using high vacuum grease (Dow Corning), each at a

distance of 35 mm from the center where the crosshead tip would press to deflect. A

150 kHz resonant transducer (Physical Acoustics) was used as the signal emitter and a

350 kHz broadband sensor (Physical Acoustics) as the receiver. The signal was induced

using a waveform generator (Agilent) to create a 10-cycles pulse, with each pulse at a

predefined yet different frequency varying from 135 to 165 kHz by steps of 1 kHz. The

received signal was recorded using a data acquisition system (National Instruments)

with 4 MHz acquisition rate. Amplitude of time-domain events is reported in decibels

(dB) converting the maximum recorded level using a reference threshold of 0.06 V. Each

event was converted to frequency domain using fast Fourier transformation, totaling

31 spectra being collected per strain condition. The collected data was analyzed using

code programmed in Python language to calculate an ’ultrasonic parameter’ that

was based on the ratio of the third harmonic amplitude (A3) to the amplitude at

the emitted frequency (A1). In order to allow the comparison between samples with

different attenuation, results reported in this study follow the progress of the ultrasonic

parameter using the amplitude ratio normalized based on the parameter value for the

same sample before the first step in flexural strain was applied. The selection of the

frequency range for the higher harmonics was based on previously identified guided

wave modes that were suitable to characterization due to their low attenuation23.

4.2.5 Differential Scanning Calorimetry (DSC)

DSC tests were performed in a TA Instruments (model Q200) to analyze the

melting peak of crystals from samples with different thermal histories. Samples of
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approximately 8 mg were cut from molded plaques for flexural samples, and tested in

a hermetically sealed Tzero pans. With a heat ramp rate of 10 oC/min, heat flow was

recorded between 23 oC and 180 oC. The environmental chamber was kept with a

constant nitrogen gas flow of approximately 50 ml/min. The content of crystals was

calculated based on the enthalpy of the melting endotherm relative to an enthalpy of

290 J/g for purely crystalline PE33.

4.2.6 Modified Bent Strip test

For the long-term characterization of the PE samples, a modified bent strip test,

adapted from the ASTM D1693 was performed. Strips with 115mm (length) x 20mm

(width) x 3.2mm (thickness) were simultaneously bent into a U-shape with a 15.88mm

radius and notched (0.5mm deep) with an in-house developed rig. The U-bent sample

was mounted in a custom-made retaining device against an affixed 0.1 kN force sensor,

allowing compression forces to be recorded over the test time. This test was capable of

providing detailed information about the progression of slow crack growth. Analysis

was made based on the crack growth time which is defined as the difference between

the time of crack initiation (defined as the point of inflexion of the force after full

stress relaxation) and the time of fracture.

4.3 Results

Over the two following sections, characterization of PE properties is given for

the different grades with different thermal processing histories (Section 4.3.1). These

results based on traditional destructive tests serve as reference to correlate with the

proposed nonlinear ultrasonic results in Section 4.3.2. Complementary observations of

the ultrasonic method are presented in Section 4.3.3 with varied swelling states based

51



McMaster University — Chemical Engineering PhD Thesis — Felipe P. C. Gomes

on exposure of PE to toluene. Discussion is presented in Section 4.4.

4.3.1 Effects of Annealing on PE properties

Figure 4.1 shows the DSC thermograms of samples prepared from different grades

and thermal histories. The PE grades are indicated based on their unique structural

characteristic: homopolymer (HO), bimodal molecular weight distribution (BM), and

copolymer (CO). A general increase in the endothermic peak, from 8 to 12 J/g can

be observed in the annealed (A) samples compared to the quenched (Q), pointing

to a higher degree of crystallinity in the former cases. The transition exhibited a

single, though wider, peak in the thermograms of both annealed BM and HO samples

compared to their respective quenched conditions, demonstrating the effect of prolonged

crystallization time to promote growth of the lamellae thickness34. In contrast, the

thermogram of annealed CO presented a noticeable secondary crystallization peak at

105 oC located closer to the annealing temperature, in addition to its peak transition

temperature at 130 oC. This form of shoulder in the transition profile might be an

indication of the organization of smaller crystals from mobile chains that were “frozen”

in the amorphous phase in the quenching process. This effect can happen in parallel

to the lamellae thickening of the main crystallization peak35.

The effects of thermal history on crystallinity and mechanical properties for the

different resin grades are presented in Table 4.1, assuming that samples from the same

PE grade processed at similar thermal treatments present closely related properties.

Elastic properties, namely flexural modulus and yield stress, can be direct correlated

with changes in the total crystal content, with both increasing for the annealed sample

versus quenched samples from all grades. Crystallinity increased between 2 and 7 %

from quenched versus annealed samples, while flexural modulus increased between
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Figure 4.1: DSC curves of PE samples for different thermal treatments

4 and 10%, respectively. Properties knowingly related to the plastic behavior of

semi-crystalline polymers showed some divergent results among the three resins. A

reduction in elongation at break was observed for annealed HO and BM compared to

quenching. Reduction in plasticity caused by annealing also affected crack propagation,

as results in Table 4.1 show a small reduction in crack growth time for HO and a

significant decrease for BM. The lower resistance to crack propagation of an annealed

specimen can be related to modifications in tie chain conformation, with progressively

straightening reported as being inversely proportional to the lamellae thickness7.

Conversely, annealed CO showed a general increase in plasticity based on strain at

break values. Secondary crystallization seen by DSC in the CO samples might have

created a reinforcement of the macromolecular network, responsible for increasing its

yield stress and enhancing its plasticity34. Other short-term mechanical properties
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Table 4.1: DSC and mechanical characterization results for PE grades with different
thermal history

Material Crystallinity
– DSC (%)

Flexural
Modulus
(MPa)

Tensile -
Yield Stress
(MPa)

Tensile –
Elongation
at break
(%)

Slow Crack
Growth
Time (h)*

PE-HO-Q 75.4± 1.0 1265± 100 29.8± 0.3 17± 2.0 3.9
PE-HO-A 77.0± 1.1 1343± 129 27.1± 1.0 4± 1.7 3.1
PE-BM-Q 75.7± 1.0 1086± 61 25.4± 0.9 60± 37 73
PE-BM-A 77.5± 1.1 1143± 86 28.2± 1.0 24± 6.1 38
PE-CO-Q 56.6± 0.8 749± 16 18.2± 0.2 197± 4.3 47
PE-CO-A 61.1± 0.9 674± 77 22.0± 0.5 255± 42 57

*Standard deviation for these results was not determined

that could only be observed for CO samples under tensile load, and not for HO or

BM, were natural draw ratio (NDR) and strain hardening (SH). The CO samples

demonstrated a significant increase from quenched (NDR = 1.86, SH =10.6 MPa) to

annealed (NDR = 2, SH = 14.4 MPa) samples for both properties. Both properties

are expected to correlate with concentration of tie chains36. Therefore, these results

presented corroborate the earlier observation by DSC of secondary crystallization, in

this case having a dominant effect on the plasticity of CO samples compared to any

changes in tie chain conformation.

4.3.2 Nonlinear Ultrasonics

Traditional ultrasonic characterization relies on information drawn from the ampli-

tude or travel time of an ultrasonic signal in the time domain. Figure 4.2 demonstrates

how maximum recorded amplitude from each polyethylene grade of differing thermal

histories is correlated with flexural modulus. As the modulus decreases with declin-

ing crystal content, attenuation of the ultrasonic signal increases. This is a reliable
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non-destructive estimation of the density and stiffness of the crystalline structure

prior to incipient plastic deformation. However, no information can be drawn on the

plastic behavior of these samples from such analysis. No significant differences be-

tween annealed and quenched samples are observed by this manner of characterization.

Another similar measurement that is directly correlated with the elastic properties is

the ultrasonic sound velocity, which also requires the precise measurement and control

of the sample thickness. Therefore, a new approach is proposed to characterize the

initial plastic deformation using nonlinear ultrasonic guided waves.

Figure 4.2: Flexural modulus and ultrasonic signal amplitude of PE samples with
different thermal treatments

Figure 4.3 shows how the amplitude of the third harmonic (A3) grew with increased

flexural deformation in the elasto-plastic region well before yielding (expected at 5

to 6 %). Observations of these harmonics are only possible due to nonlinearities in

the structure of the material, thus this distinguishes the analysis from the traditional

ultrasonic methods24. The amplitude ratio between the third harmonic (A3) and the

input frequency or primary wave (A1), referred to as the ultrasonic parameter, is pro-

posed to be used as an analytical descriptor of structural changes without interference
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of attenuation of the ultrasonic signal. Figure 4.4 highlights the strong correlation

found between the nonlinear ultrasonic parameter and increasing flexural deformation

of the PE specimen, most notable beyond the purely elastic limits (highlighted by the

included dashed line). The initiation of plastic behavior in the deforming specimen

affects its crystalline network by creating residual stresses12. Higher harmonics are di-

rectly coupled with structural anisotropy induced by permanent spatial deformations37.

A noticeable peak is already present in the original spectrum for the processed sample

before flexural deformation, possibly an indication of inherent anisotropy, which then

increases with induced deformation. Similar evidence relating a variation in ultrasonic

spectrum with increasing plastic deformation was previously demonstrated to PE

samples after applied tensile stresses below yielding23.

Figure 4.3: Normalized ultrasonic frequency spectra for increasing flexural deformation
in PE-BM-Q sample showing variation of third harmonic amplitude (A3) correlated
with input frequency (A1)

Plots (a-c) in Figure 4.5 show the profile of the ultrasonic parameter with increasing
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Figure 4.4: Evolution of nonlinear ultrasonic parameter with increasing flexural defor-
mation in PE-BM-Q samples (dashed and solid lines were included for visual reference
only)

flexural deformation for samples with different thermal history. Samples with higher

crystal content yet same quenched thermal treatment showed significantly higher values

of the ultrasonic parameter with increasing deformation. Negligible change for the

normalized ultrasonic parameter was observed for the annealed cases of both HO and

BM, seen in plots (a,b), whereas their quenched cases showed a progressive increase

with deformation. For CO, plot (c) shows the annealed sample produced the same

lack of variation in the parameter seen with the other two resins, while the quenched

sample increasingly exhibited a decrease in ultrasonic parameter value as deformation

increased.
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(a) Plot A

(b) Plot B

(c) Plot C

Figure 4.5: Profile of nonlinear ultrasonic parameter with increasing flexural deforma-
tion for homopolymer (a), bimodal (b) and copolymer (c) PE with different thermal
treatments
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4.3.3 Effects of Swelling on PE properties

Effects of solvent swelling on incipient plastic behavior were examined with quenched

BM and CO samples, which exhibited similar chemistries yet vastly different crys-

tallinity. The changes in mechanical properties from long term immersion in toluene

are reported in Table 4.2.These two polyethylene grades are manufactured to enhance

environmental stress cracking resistance, making them commercially interesting to

study for exposure to solvents. A significant decrease is observed in the flexural

modulus of both grades due to toluene penetration. This effect seen under flexural

deformation is plotted in Figure 4.6 for BM, which demonstrates a direct relation

between declining modulus and the time allowed for penetration of toluene; the same

trend was seen for CO and as a result, not shown in the figure. Although significant

reduction of mechanical elastic properties was reported, no significant reduction in

crystallinity was directly related to solvent swelling was observed in DSC tests for

samples after 48 hours of contact with toluene. The absorption rate was significantly

different with BM samples presenting an increase in weight of 2.1 % (+/− 0.1) after

15 hours and 4.2 % (+/− 0.1) after 48 hours of soaking; meanwhile CO samples

had a higher weight gain with 3.1% (+/− 0.2) after 15 hours and 6.0 % (+/− 0.3)

after 48 hours in contact with toluene. CO samples after 48 hours of contact with

the fluid showed a significant increase in strain at break, demonstrating an expected

plasticization effect of toluene38. Conversely, BM samples demonstrated an opposite

effect, with a decrease in elongation before break, which was considered to similarly

indicate a decrease in plasticity.

Plots (a, b) in Figure 4.7 demonstrate how the signal amplitude (in the time

domain) and ultrasonic parameter were affected by swelling for the quenched BM

and CO samples. Attenuation of the average ultrasonic signal can be correlated with
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Table 4.2: Mechanical characterization for PE samples after solvent physical swelling

Material Flexural Modu-
lus (MPa)

Tensile - Yield
Stress (MPa)

Tensile – Elonga-
tion at break (%)

PE-BM-Q 1142± 85 25.4± 0.9 60± 37
PE-BM-TL48 617± 124 25.6± 0.3 35± 5
PE-CO-Q 749± 16 18.2± 0.2 197± 4

PE-CO-TL48 407± 23 18.9± 0.4 228± 32

Figure 4.6: Flexural stress-strain curves for bimodal (BM) PE samples with increasing
swelling time

the effect of toluene to decrease elastic modulus, as shown in Table 2. However, the

ultrasonic parameter, which is based on the nonlinear interaction with the structure of

a material, did not follow the same trend. The harmonic amplitude ratio remained

insignificantly changed for BM, while progressively increased for CO based on contact

time with the fluid.
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(a) Plot A

(b) Plot B

Figure 4.7: Nonlinear ultrasonic parameter and the time domain signal amplitude for
(a) bimodal and (b) copolymer PE with increasing time immersed in toluene

4.4 Discussion

Results presented in the previous sections showed a distinctive elastic and plastic

behavior among the PE samples studied. The three grades of polyethylene were

chosen to highlight how the introduced ultrasonic technique can distinguish changing

morphological details in the inter-crystalline region, often best detected by mechanical

characterizations, that are related to incipient yielding and affected by annealing or

swelling. The primary assumption of this study is that propagation of ultrasonic
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waves in PE will be dispersive and differ from a perfect elastic body. Therefore, our

proposed approach focuses on the non-linear interaction of ultrasonic vibrations with

the discontinuities of a semicrystalline network responsible for generating a signal with

a frequency different than the original wave introduced39. Reliance on linear equations,

such as Hooke’s law, can only be applied to describe the bulk wave interaction through

velocity and attenuation with major structural events, namely, cavitation and fibrillar

transition22,40,41. The introduced nonlinear ultrasonic method is believed to be sensitive

to more minute microstructure events that modify the crystalline network at incipient

plastic deformation, by observation of the evolution of anharmonicity in PE samples

with increasing stresses below the yield point.

Between quenched samples with differing crystal content it was observed that

higher crystallinity promote a larger variation of the ultrasonic parameter for the same

level of deformation. From Figure 5, while quenched HO and BM grades showed an

increase of 2 to 3 times in the ultrasonic parameter after 2% of flexural strain was

applied, CO quenched samples, with significantly lower crystallinity, demonstrated

an actual decrease in the ultrasonic parameter from its baseline value for the same

deformation level. There is a direct relation between the crystalline structure and

differentiation of bulk PE from an ideal oscillator to small deformations42. However,

comparison of ultrasonic parameter results from annealed to quenched samples showed

that there is no direct correlation between the generation of harmonics and the degree

of crystallinity. Noticeably, contributions to anharmonicity are not related to the size

of PE crystals themselves, but on their interaction through the non-crystalline regions.

Three different mechanisms are normally used to explain initiation of plastic defor-

mation: cavitation, elongation and shear43. For the PE grades tested under flexural

load below yielding, no cavitation should be expected44 leaving two competing crystal-

lographic mechanisms to be considered, homogeneous crystal slip and heterogeneous
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lamellae stack separation. Both events occur in the vicinity of a inter-crystalline

interface. In such cases, the conformation of tie chains plays a very important role in

balancing between these two mechanisms. A reduction in plasticity is demonstrated

through the significant reduction in elongation at break and slow crack growth time

for annealed cases of HO and BM, reported in Table 4.1. The decline in these prop-

erties by annealing indicated a change in the conformation of tie chains resulting

from increasing lamellae thickness35, which in part will favor interlamellae crystal slip

during early stages of plastic deformation. From a bulk to meso-scale perspective, a

higher concentration of crystal slips represents a homogeneous rearrangement of the

macromolecular network for the same level of internal stresses45, in this case induced by

flexural deformation. Analysis of the ultrasonic parameter showed that samples with

theoretically more homogeneous inter-crystalline dislocations caused by mechanical

deformation presented little to no effect in the anharmonicity of the PE structure,

while samples with expected higher concentration of heterogeneous intra-lamellae

separation, ie. quenched HO and BM, showed an increase in the amplitude of higher

harmonics. Nonlinear ultrasonic wave propagation can be correlated to microstructural

asymmetries and discontinuities26, thus relating the observed increase in ultrasonic

parameter with plastic deformation through intralamellae separation that is expected

to be prominent in crystals aligned to the applied force13. Conversely, it was the

quenched samples rather than annealed case for CO that exhibited reduced slow crack

growth time and elongation at break as well as produced significant attenuation of

the higher harmonics, pointing to extensive occurrence of crystal slip in the former.

The annealed CO samples showed the same resistance to variation of the ultrasonic

parameter as the other resins, which can be correlated with the reportedly hindering

of the interlamellae slipping by secondary crystallization46.

To complement the observations made by mechanical deformation, swelling results
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were presented as additional evidence on how the proposed ultrasonic test can be used

to follow progressive changes in microstructure of polyethylene. Increased contact

time of the samples with toluene showed a significant weight gain and reduction in

the elastic modulus on both CO and BM samples. Penetration of compatible low

molecular weight agents is expected to promote swelling of the amorphous phase,

which induces internal stresses within the interlamellae region47. Thus, observations

of an increase in the ultrasonic parameter with exposure time to toluene might be

interpreted as an indication of the level of penetration of the fluid, creating a localized

stress concentration in the interlamellar region of crystallites closely located to the

exposed surface. This swelling is only located in the amorphous phase and does not

affect the crystallographic interpretation of the plastic deformation modes previously

described, but the resultant residual stresses can be compared to the localized stresses

associated with heterogeneous dislocations in the highly crystalline quenched samples

after incipient plastic deformation. A higher penetration rate was observed for CO

samples, possibly due to their lower crystal content resulting in greater vulnerability

to swelling48. And the stability presented by the BM can also be explained by the

barrier effect of tie chains to diffusion of low molecular weight molecules49. This is

unlikely to be the exclusive reason with some consideration given to the possibility

of a ‘skin effect’ due to differences in cooling rate from the outside to the core of

each sample, that can lead to relative differences in crystalline morphology and hence

differences in solvent penetration between the two polymers. These results highlight

the potential of using the ultrasonic parameter to monitor diffusion of low molecular

weight components over exposure time in polyethylene parts in use.

Based on the evidence shown in this study, nonlinear ultrasonics seems to be

a relevant non-destructive method to characterize stress-induced micro-structural

modifications of a crystalline network. Initial results demonstrated by this technique
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indicate a potential to follow localized stresses concentrated in the intralamellae

region related to incipient plastic deformation or in the interlamellae region caused

by penetration of low molecular weight component, as summarized in Figure 4.8.

Understanding early processes of plastic deformation can help predict the kinetic

control over the propagation of dislocations in the later stages50. Further theoretical

analysis and modeling can also help understand the capabilities of this method to

quantify and predict the long-term plastic behavior of tested samples in operating

conditions51. However, it is also important to highlight that propagation of the

ultrasonic guided waves in the bulk material is affected by several characteristic

properties. Thus, the path to a practical application of this technique requires the

isolation of the micro-structural phenomena from other macroscopic changes that

might affect the signal, such as reducing dimensional and surface changes.

Figure 4.8: Schematic of the correlation between plastic deformation and swelling of
PE samples with increase in higher harmonic amplitude of ultrasonic guided waves
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4.5 Conclusions

Plasticity of PE samples with different thermal history and after solvent swelling

was evaluated using traditional destructive methods and a proposed non-destructive

alternative using ultrasonics. A nonlinear ultrasonic parameter, based on the the

amplitude ratio of the third harmonic and the input frequency, was correlated with

increased localized stresses due to crystalline plane dislocations and low molecular

weight swelling of the amorphous phase. Results showed that the proposed method

was able to monitor microstructural changes in crystalline network during incipient

plastically deformed PE samples from different grades and thermal history. Variation of

the ultrasonic parameter with increasing flexural deformation was significantly higher

for samples with higher crystallinity and fast cooling rate history.

Annealed samples for HO and BM grades showed a reduction in plasticity, observed

from traditional destructive short-term and long-term tests and also through a signifi-

cant reduction in the variation of the ultrasonic parameter. Changes can be linked to

a significant restriction in conformation of tie chains due to thermal treatment. Sec-

ondary crystallization observed in annealed CO samples caused an opposite effect, with

a hindering effect comparing results from quenched CO samples. A second application

of the proposed method involving the observation of the ultrasonic parameter with

sorption of toluene, showed that BM samples demonstrated a lower variation of the

ultrasonic parameter over CO samples subjected to the same contact time, highlighting

different barrier properties due to crystalline morphology and plasticity.

Different from the traditional ultrasonic testing that can mostly be linked with

variations of elastic properties or dimensional changes for PE samples, this proposed

approach based can provide important quantification of the contribution of different

semicrystalline morphologies to the resistance to plastic deformation. With further
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research and development this method can become an important nondestructive

technique for characterization of PE.
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Developments in new sensor technologies and data processing are helping to increase

the number of applications of nondestructive characterization methods. In this study,

two major physiochemical phenomena affecting product quality of rotationally molded

polyethylene parts, namely sintering and degradation, were evaluated using both

traditional characterization techniques and a newer alternative ultrasonic-based method.

Oven temperature and heating cycle time were controlled to produce six different

process conditions for rotomolding. Increasing peak internal air temperature (PIAT)

inside the mold produced a reduction in surface voids (pitting) and increased the

impact strength for produced parts, which can be related to greater densification

during sintering. Contrary to these characterizations denoting improved part quality,

degradation was detected for PIAT above 220 oC by an increase in surface carbonyl

groups by Fourier-transform infrared spectroscopy (FT-IR) and an increase in zero-

shear viscosity, both relatable to thermo-oxidative free radical reactions. The newly

proposed monitoring technique applying propagating ultrasonic guided waves showed

that its data-rich spectral features based on harmonic frequencies were positively

correlated to the same sintering and degradation properties observed above. Coupled

with multivariate statistical analysis, the nondestructive ultrasonic technique shows

great promise for combining multiple analyses in a single sensor technology, making

it well suited to the implementation of advanced manufacturing methodologies in

polymer processing practices.

Key-words: nondestructive evaluation, ultrasonic, impact, degradation, polyethy-

lene
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5.1 Introduction

Industry has been changing in recent years with the introduction of digital in-

formatics and the growing efforts towards advanced manufacturing. The focus in

manufacturing is moving towards the development of tools that will allow more reli-

ability, flexibility and capacity for optimizing processes. These tools are not simply

hardware but rather process information collection with improved data processing,

new control strategies and faster communications1. Examples of these advancements

in polymer processing have been gradually presented2–5. Those studies have shown

how sensor signals conveying single variable descriptive data can improve a process;

however, the challenge becomes how to incorporate more complex data-heavy tech-

niques and sensors that can expand the possibility of the envisaged framework for

advance manufacturing in polymer processes.

The production of hollow parts using rotational molding involves the melting then

densification of polymer powders without the aid of external compression or shear

forces; these steps are referred to as sintering and are similarly seen in the newer 3-D

printing technology known as selective laser sintering (SLS)6. This method is widely

used for production of large shapes such as storage tanks, marine shells and other

diverse components. Final quality of rotational molded parts is highly dependent on

the extent of two contrasting phenomena: sintering and thermo-oxidative degradation7.

During the melting stage of the process, liquid bridges form among the particles

trapping air bubbles that need to vanish during the subsequent densification stage,

all occurring under moderate temperatures above the polymer melting point for a

moderate period of time8. If these bubbles are not removed, the produced parts will

have poor mechanical properties9. Due to the nature of the hollow mold, the polymer

melt will be constantly exposed to oxygen and maintained at high temperatures, which
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will promote thermo-oxidative degradation and also alter mechanical properties10.

Polyethylene degradation leads to discoloration, poor long term mechanical properties

and possibly embrittlement due to chain crosslinking11. Process reliability depends

on monitoring features of the produced part related with these two processes, and

thus the selection of characterization methods plays a key role in ensuring production

quality.

Currently, the manufacturing industry relies on destructive tests to assess the quality

of these parts. Impact strength is the most heavily relied upon property for rotational

molding, being easily affected by process conditions and readily highlighting issues

related to incomplete sintering7,12. Other similar options are to evaluate elastic modulus,

hardness13 and fracture toughness14. Chain branching and cross-linking during thermo-

oxidative degradation will increase the viscosity of polyethylenes typically used in

rotational molding, which can be seen by measurements like melt flow index15 or

parallel plate rheometry16. However, none of these tests are applicable to quality

assurance of each part produced, instead requiring a small number of parts from each

production run to be diverted for testing and where those tests can take hours before

the processor is informed whether the process conditions were acceptable. Therefore,

in order to adopt practices of increased process reliability and flexibility, applications

of nondestructive techniques are desirable.

Spectroscopic methods are examples of nondestructive techniques that have seen

limited use in manufacturing, mostly because of the large amounts of data collected

and expertise required by the user for their interpretation, but there have been rare

examples of their use for rotational molding albeit not for quality assurance. Fourier-

transform infrared spectroscopy (FT-IR) was used to identify oxidation products

at the surface of rotomolded parts17. Additionally, X-ray diffraction18 and Raman

spectroscopy19 were used to evaluate changes in crystal morphology for evidence of
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degradation. Neither technique is readily integrated into a manufacturing process

and these instruments are expensive. Linear ultrasonic measurements have been

demonstrated for processed polyethylene comparing acoustic properties with different

materials, at different temperatures and different stresses20,21. On the other hand,

no reports have been made of ultrasonic spectroscopic testing in rotational molding

of polyethylene. Traditional single variable ultrasonic methods are very efficient for

density measurement by relating this property to changes in velocity or attenuation

of a sound wave propagating through a sample, with noted examples for different

polyolefins22,23 and polymer foams24. However, recent developments in the field of

ultrasonics have turned the focus towards the generated spectrum from a propagated

signal as means to interpret structural features of polyethylene samples25. Specifically,

a new approach analyzing the amplitude of spectral harmonics has been successfully

applied to evaluate changes in crystal morphology using ultrasonic guided waves26.

This advancement in ultrasonic methods relies upon small out-of-plane mechanical

strain to correlate structural features of a material to resonant frequencies in the

collected signal; the method did not permanently damage a part but not all shapes

molded can be easily distorted and hence a better training method is needed to extract

the information from these complex signals and correlate with quality properties. The

challenge of any new spectroscopic techniques, however, is how to correlate the large

quantity of spectral data with one or multiple quality properties currently of interest to

the industry, and consequently their incorporation in the production line for improved

process operations.

This study compares the effectiveness of a ultrasonic nondestructive spectroscopic

technique to replace multiple traditional destructive and nondestructive tests needed to

evaluate both sintering and degradation processes for rotational molded polyethylene

samples. An important goal of the work was to better highlight the benefits of ultrasonic
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spectroscopic techniques in polymer processing.

5.2 Methods

5.2.1 Material

For this study, a high density polyethylene (ExxonMobilTM HD 8660.29) powder

of 35 Mesh size was provided by Imperial Oil Ltd. The resin has a melt index of 2

g/10 min (ASTM D1238, with a standard load of 2.16 kg) and stated crystal melting

temperature of 129 oC, according to the vendor.

5.2.2 Rotational molding

Samples were prepared using a laboratory-scale uniaxial rotational molding device

coupled with a data acquisition system for monitoring of the internal mold air tem-

perature as well as controlling the oven temperature. A shot of 100 g was loaded to

a Teflon-coated steel mold. The oven was pre-heated to the designated temperature

and the batch run was started when the mold was moved inside. Each batch run

followed a specific heating cycle time, and after a designated period of time the mold

was removed from the oven to be cooled by forced air applied at approximately 2.5

m/s (measured by a digital anemometer). The time between start of the batch and the

removal from the oven is considered the heating or oven time. The mold was cooled to

80 oC before removal of the sample. The final samples resembled a cube missing its

front and back panels, with each molded wall panel being approximately 85 mm x 85

mm by 3 mm thick cut from the sample using a band saw. Each chosen heating cycle

condition was used to prepare at least three replicate samples.
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5.2.3 Surface analysis

A square area of 40 mm x 40 mm was isolated on the outer facing surface of a

wall panel using adhesive tape. A low viscosity lubricant containing a mixture of

micron-sized copper and graphite particles (Permatex) was brushed over the designated

area, with the excess wiped away. By this procedure, surface holes were filled with the

dark colored lubricant so they would be more clearly seen. Images were taken with

a digital camera and processed with image analysis software to estimate the surface

area coverage of voids per sample.

5.2.4 Fourier-transform infrared spectroscopy

Infrared vibrational spectroscopy (FT-IR) was performed with a Thermo Scientific

Nicolet 6700 in attenuated total reflection (ATR) mode. Both internal and external

surfaces of the panels were analyzed by FT-IR. Mid-range wavenumbers between 700

to 4000 cm−1 were scanned at a resolution of 0.4 cm−1 and an average of 32 scans was

reported. After baseline correction, peaks were identified using a Voigt window search

and normalized based on the reference peak at 2915 cm−1.

5.2.5 Ultrasonic spectroscopy

Panel wall specimens were tested using an ultrasonic guided waves test apparatus,

as previously reported26. The distance between ultrasonic transducers was kept at

55 mm. Each resultant spectrum per specimen was produced from the combined

averaging of 31 different signals corresponding to a stepwise frequency sweep from 135

to 165 kHz, incremented by steps of 1 kHz. Three panels were tested per sample.
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5.2.6 Impact test

After samples were tested using the non-destructive methods of FT-IR and ultra-

sonic, each wall panel was characterized for impact behavior using a dart impact test.

Samples were grouped based on the processing conditions, thus totaling 12 tests per

group. Test samples were pre-conditioned in a freezer at -40 oC for 24 h. For each

group, an initial height was selected and moved using the staircase method based on

the resultant failure or non-failure. A standard 6.804 kg dart was used with varying

height steps of 0.1524 m (0.5 ft) based on minimum scale unit of the equipment used

for this study. A resultant average failure height was converted to impact energy in

Joules (J) and reported for each group. Standard deviation of mean energy value was

calculated following ASTM D5420.

5.2.7 Rheology

Specimens from the molded samples were evaluated for their viscosity with a

Discovery HR-2 TA Instruments configured to operate with 25 mm parallel plates.

A small square was cut from the wall panel of a sample and melted in the plates at

190 oC. Polymer melt was compressed to a gap between plates of 1.5 mm, residual

air bubbles were reduced and the excess polymer was removed. A frequency sweep

spanning 0.1 to 200 s−1 was performed at a strain of 0.15. Zero-shear viscosity was

estimated using the Cross model after transformation of the oscillatory data to steady

shear considering Cox-Merz relationship. Additional information related to rheology

tests and model used can be seen in Appendix A.

84



McMaster University — Chemical Engineering PhD Thesis — Felipe P. C. Gomes

5.2.8 Multivariate statistical analysis

Spectral data collected from the ultrasonic tests was used to construct a statistical

model to differentiate molded samples in relation to both sintering and degradation

processes. Two projections to latent structures (PLS) models were built using mea-

surements from traditional tests as training references. The statistical software R

was used with the library ’pls’. Ultrasonic spectra matrix data was pre-processed

with a baseline correction for the sintering model and additional normalization for the

degradation model. The number of components chosen were based on the minimum

root-mean square of prediction error (RMSEP) for an internal cross-validation using

the leave-one-out method.

5.3 Results and Discussion

5.3.1 Process exploration

Two factors were considered for the experimental design: oven temperature, that

influenced the heating rate; and heating time, considered to be the duration that the

mold stayed inside the oven. It was expected that both would influence the profile

of the mold temperature. Longer oven time and higher heating rates leading to a

higher maximum temperature reached. A two level factorial with center point was

designed, with lower and upper limits of 300 and 340 oC for the oven temperature,

and 12 minutes and 18 minutes for heating time. A sixth point was added to further

explore the upper limits of heating rate at the center point oven time of 15 minutes.

Experiments were monitored using a thermocouple installed in the rotational arm

that measured the internal mold air temperature. Resulting internal temperature

profiles, shown in Figure 5.1, demonstrate the positive effect of the two factors towards
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reaching the highest possible maximum temperature inside the mold. A common

way of interpreting variations between rotational molding batches is to refer to the

maximum temperature inside the mold as the peak internal air temperature (PIAT).

Although this measurement does not reflect the complete history of the heating and

cooling cycle, it can be used as a single variable descriptor for the effectiveness of

sintering. Thus, for the next sections, experimental results will be referenced based on

their values of PIAT.

From the results presented in Table 5.1 it was observed that operating at the lower

factor levels, samples produced lower impact strength and higher surface voids in the

molded parts, due to incomplete sintering. Conversely, for the higher factor levels, a

significant increase in zero-shear viscosity was observed, indicating crosslinking due to

thermo-oxidative degradation. Longer heating cycles at a low heating rate produced a

slight improvement in impact strength compared to shorter heating cycles at higher

heating rates, even though both approaches reached similar PIAT.

Figure 5.1: Rotational molding temperature profiles (marked dots indicate the removal
of the mold from the oven and the end of the heating cycle)
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Table 5.1: Results from experimental design

Process conditions Product characterization
Oven Tem-
perature –
oC

Heating
time - min

Peak internal
air tempera-
ture (PIAT) –
oC

Impact En-
ergy – J

Surface
voids area
coverage –
%

Zero-shear
viscosity –
Pa.s

300(−1) 12(−1) 181± 5 0.31± 0.18 6.6± 1.1 6403± 212
340(+1) 12(−1) 200± 2 0.37± 0.13 4.5± 0.9 6496± 44
300(−1) 18(+1) 218± 5 0.50± 0.16 1.8± 0.8 7242± 741
340(+1) 18(+1) 250± 3 0.65± 0.16 0.4± 0.2 12689±714
320(0) 15(0) 215± 6 0.43± 0.18 3.6± 1.9 6868± 893
340(+1) 15(0) 238± 4 0.65± 0.16 0.6± 0.2 12033± 84

5.3.2 Sintering

Based on changes in the temperature profiles shown in Figure 5.1, the powder

cohesion and melting phase took between 8 minutes to 10 minutes. After this point,

the additional heat energy was directed to the densification or melt coalescence process

by removal of the air bubbles formed during initial melting. Observations from the

surface of the samples provided a direct estimation of the residual concentration of

bubbles at the end of a batch trial. Figure 5.2 presents a comparison of images and

calculated coverage area of surface voids (i.e. pitting) from the samples with different

PIAT and a control sample (compression molded for 10 minutes at 175 oC and 2 kPa,

then quenched using water-cooled plates); surface coverage area is being considered as

a two dimensional representation of the void content or porosity of the overall sample

in this work. Results from control group can be interpreted as baseline for testing

methods, however, their values cannot be practically achieved from the rotational

molding method due to the different nature of the process without variation in pressure.

A high PIAT produces molded parts with lower value of residual bubbles. A maximum

of 5 % to 7 % was observed for the surface coverage area with low PIAT whereas
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near-negligible values below 1 % (still higher than the control) were reported for

samples with PIAT above 230 o C. From Figure 5.2c is possible to visually observe

large residual bubbles at the end of the sintering process, those will take a longer

time to disappear even at high mold temperatures, as the removal rate of bubbles will

be proportional to the porosity of the part (which is related to bubble size and the

number of bubbles present) [24].

Figure 5.2: Rotational molding temperature profiles (marked dots indicate the removal
of the mold from the oven and the end of the heating cycle)

The extent of bubble removal is inversly related to impact properties. As shown in

Figure 5.3, samples with higher coverage area of surface voids showed a lower value

of impact energy. Those samples at the low end of the range of impact properties

often demonstrated a brittle failure during testing with easy crack propagation found
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between voids. A progressive increase in impact strength was observed with reducing

porosity, which correspondingly denoted a transition between brittle to ductile failure

with increased fibrillation observed at the point of impact. No significant increase

in impact energy was observed for samples above 230 oC, which corresponded to the

lower observed range for the surface voids coverage area. The maximum impact values

observed were lower than obtained by the control samples, prepared by compression

molding.

Figure 5.3: Surface voids area coverage and impact energy for rotational molded
samples with different peak internal air temperatures (horizontal dashed lines indicate
reference values for the control samples)

The multiple methods of analysis mentioned above are standards for the industry

to provide a good estimation for the degree of sintering, but do not reflect the overall

concentration of voids internally and at least in the case of the surface analysis, might

not be practical for all mold profiles or different types of product finishes. An alternative
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yet still traditional nondestructive test method for porosity is to use ultrasonics to

infer density based on the propagation of sound waves through the part; while this

approach is not what is ultimately to be disclosed in this paper regarding the perceived

strength of ultrasonic analysis, it provides a context to build towards that discussion.

Using the same propagation distance for samples of similar dimensions, variations

in the maximum signal amplitude of a propagating sound waves (on a time domain)

may be connected with the attenuation caused by the presence of bubbles in the part.

Figure 5.4 shows the increased ultrasound amplitude found with increasing PIAT,

thus presenting a good correlation with the impact energy of this group of samples.

Samples with PIAT above 230 oC showed amplitude values comparable to the control

sample. A lower limit for the application of this method is the detection of signals for

samples with high value of attenuation.

90



McMaster University — Chemical Engineering PhD Thesis — Felipe P. C. Gomes

Figure 5.4: Ultrasonic signal amplitude and impact energy for rotational molded
samples with different peak internal air temperatures (horizontal dashed lines indicate
reference values for the control samples)

5.3.3 Degradation

Effects of degradation were investigated using FT-IR spectroscopy to monitor for

oxidation products at the surface of the molded samples. Both surfaces of panel cut from

a sample were tested ; however, only the internal surfaces showed any development of

carbonyl compounds which were detected at 1715 cm-1; thermo-oxidative degradation

is expected to be predominantly on inner surfaces of a part due to their continuous

exposure to trapped air at high temperatures during rotational molding, while outer

layers are effectively shielded by their contact with the mold surface that prevents

direct contact with hot air and reduces the consumption rate of antioxidants7. Figure

5.5 gives FT-IR spectra showing the appearance of the oxidation product for inner
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surfaces of samples with PIAT above 230 oC. For samples molded with PIAT lower

than this threshold it can be expected that antioxidants were not depleted.

Figure 5.5: FT-IR spectra from the internal surface of samples with different PIAT
highlighting the appearance of subproducts of thermo-oxidative degradation (vertical
dashed line indicates the wavenumber of the carbonyl peak)

Alternatively, rheology can be used as an indirect method to evaluate degradation.

During thermo-oxidative degradation, free radicals are formed increasing the chances of

chain cross-linking for polyethylene. This will have a significant effect on the molecular

weight distribution, thus affecting the viscosity16. A marked increase in degradation

is seen by the significant rise in zero-shear viscosity for samples with PIAT higher

than 220 oC, observable in Figure 5.6. Comparing the trends between the rheological

and infrared analysis, the viscosity measurements seemed to provide better sensitivity

to degradative changes, because of their bulk nature of assessment rather than being

limited to only the top several microns of polymer species near the surface of the panel

by FT-IR. Although, other references have mentioned an effect of crosslinking on

impact strength, which could be initially beneficial but ultimately reduce the quality
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at very high PIAT values (above 250 oC)11, none of the mechanical detrimental effects

were observed for the process conditions investigated in this study.

Figure 5.6: Zero-shear viscosity and absorbance level of carbonyl peak from FT-IR
for samples with different PIAT (horizontal dashed lines indicate reference values for
control sample)

5.3.4 Ultrasonic spectrum with multivariate statistical

analysis

Results from the methods previously described in this study presented good but

limited response to either sintering or degradation quality related features. With the

objective to evaluate the quality of samples related to both phenomena simultaneously, a

new approach was tested using spectroscopic analysis of the ultrasonic wave propagation.

Figures 5.7 and 5.8 show examples of ultrasonic spectra from parts with increasing

PIAT. For the first case, looking at samples selected for showing little or no level
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of degradation, an increase was observed in Figure 5.7 for the peak corresponding

to the frequency range of the excitation signal (between 135 and 165 kHz) reflecting

a decrease in attenuation of the propagated wave due to fewer voids for a higher

PIAT. This behavior is similar to what was found from the time domain analysis, as

demonstrated in Figure 5.4, but now identified as being localized to specific resonant

frequencies. In Figure 5.8, a second group of samples was selected with similar extent of

sintering but differing degrees of thermo-oxidative degradation. The resultant spectra

were normalized before plotting and show an increase in the third harmonic range

(frequencies from 405 to 495 kHz) related to the excitation frequencies with increasing

PIAT. This variation in the ratio between the peak amplitude of higher harmonics

was highlighted in a previous publication being a as descriptor of morphological

changes within semi-crystalline structures after applied plastic deformation or solvent

absorption26. Although, so far, results presented in this section have demonstrated that

features of the ultrasonic spectrum can be correlated with sintering and degradation

phenomena, interpretation of this spectroscopic data for different molded parts is not

trivial and cannot be compared to the descriptors used in previous study that observed

the progression of modifications for the same sample. In order to make definitive

correlations based on the variance contained in the ultrasonic spectral dataset of several

molded parts with traditional characterization methods, an inferential model using

latent variables statistical methods was developed.

Two PLS models were constructed using the full spectral dataset from the ultrasonic

measurements of the molded samples. Table 5.2 presents a summary of conditions

used as some general descriptors to develop these models. Data from the coverage area

of surface voids was used as reference information for calibrating the sintering model,

while results from zero-shear viscosity were applied for the degradation estimation. An

internal cross-validation, based on the leave-one-out method, estimated a root-mean
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Figure 5.7: Ultrasonic spectra for samples with different PIAT presenting different
levels of sintering (A1 indicates the peaks at original excited frequencies and A3
indicates the peaks at third harmonic range)

Figure 5.8: Ultrasonic spectra for samples with different PIAT presenting different
levels of degradation (A1 indicates the peaks at original excited frequencies and A3
indicates the peaks at third harmonic range)

squared error of prediction (RMSEP) for several number of components. The ultimate

number of four components was chosen to fit the model based on the case with lower

value of error, 1.37 % for the sintering model and 2524 Pa.s for the degradation model.

A higher number of components could have been selected to increase the variability
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Table 5.2: Summary of PLS models

Number of experimental samples for training 15
Number of ultrasonic spectra per sample 3

Points per spectra (frequencies) 2500
Total number of points for data matrix 112500

Model Sintering Degradation
Variable used for training Surface voids area coverage Zero-shear viscosity
PLS - Number of compo-
nents

4 4

Internal cross-validation
error- RMSEP

1.37 % 2524 Pa.s

Variance explained of the
training variable

80.9 % 73.0 %

Variance explained of the
data matrix

83.5 % 58.6 %

explained, however the selection based on the RMSEP value helped to avoid over

fitting and still was able to explain the correlation between the matrices introduced

for calibration. Additional information on the design of the model can be found in

Appendix B. The value of RMSEP showed in Table 2 demonstrates the error for

the model to predict an internal value. Moderate values of explained variance were

observed for both models, which shows how much of the variance from the original

data was used in the correlation between the training variable and the calibration

matrix.

Figures 5.9 and 5.10 present the model predictions superimposed with the observed

values. Errors in prediction were higher for the sintering model at high concentration

of voids (values of coverage area of surface voids higher than 5 %), mostly due to

limitations imposed on the method by the high attenuation of the propagated signal.

A classification of the inferred properties was proposed by comparing the estimated

value with two control groups, formed by samples selected from the training group that

had complete sintering (coverage area of surface voids <1.0 %) and no degradation
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(zero-shear viscosity <7000 Pa.s), with six and nine samples per group, respectively.

The model predictions were statistically compared with the reference groups and if

the value exceeded a 98 % confidence interval threshold, they would be classified as

incomplete sintering or degraded samples. This classification criteria represents the

capacity of the model constructed with the ultrasonic spectroscopic data to distinguish

a sample with unsatisfactory properties. Results of this classification are shown in

Figures 9 and 10 highlighted as solid or hollow circles, and a group separation is

observed around a PIAT of 220 oC, marking the point of end of the sintering process

and acceleration of degradation process.

Figure 5.9: Prediction results for surface voids area coverage of samples with different
PIAT using a PLS model (classification of incomplete sintering based on statistical
comparison with reference group, for a p-value<0.02)

Analysis of the PLS model parameters can help to explain the success of its predic-

tions and to understand elements of the multivariate spectrum ultrasonic signal27,28.

Higher values of model loadings were attributed to two groups of frequencies located
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Figure 5.10: Prediction results for zero-shear viscosity of samples with different PIAT
using a PLS model (classification of degraded based on statistical comparison with
reference group, for a p-value<0.02)

close to the primary signal (between 135 and 165 kHz) and the third harmonic (be-

tween 430 and 480 kHz). An interesting aspect for the viscosity PLS model is an

inverse relationship between harmonic areas for components 3 and 4, in agreement

with the previous observation of the importance of the amplitude ratio to prediction

of degradation.

A group of four samples was randomly chosen from the original batch runs and

was not introduced in the model during its training to serve as a validation group.

Table 5.3 shows both the prediction values and the classification of these samples

for sintering and degradation. These results support our assertion that the model is

capable of predicting major changes for both phenomena correctly, recognizing for

increasing PIAT values that the prediction should be for coverage area of surface voids

to decrease while zero-shear viscosity increases accordingly.
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Table 5.3: Comparison of PLS model prediction using ultrasonic spectra data for
validation group

Sample Sintering – surface voids area coverage Degradation – zero-shear viscosity
PIAT
(oC)

Predicted
value
(%)

Observed
value
(%)

p-value Incomplete
sinter-
ing?
(p<0.02)

Predicted
value
(Pa.s)

Observed
value
(Pa.s)

p-value Degraded?
(p<0.02)

201 5.4 3.9 < 10−3 Yes 6843 6447 0.36 No
214 2.6 3.2 0.006 Yes 8228 6541 0.001 Yes
220 3.1 2.6 0.006 Yes 10011 7622 0.0008 Yes
233 1.1 0.8 0.69 No 11187 12019 0.0001 Yes

5.4 Conclusions

A new nondestructive evaluation method was demonstrated to simultaneously

evaluate both sintering and degradation phenomena in polyethylene rotational molded

samples. Spectral amplitude at excitation frequencies can be used to evaluate the de-

gree of sintering, with increase amplitude showing a reduction in attenuation caused by

void concentration. This is a standard density evaluation. However, at the same time

the amplitude of higher harmonics in the ultrasonic spectrum increased with increasing

degradation. When compared to more traditional degradation characterization meth-

ods, the harmonic amplitude showed good correlation with the rheological data and

higher sensitivity than FT-IR. A key point in favor of this new method for monitoring

degradation is that greater damage has been shown to occur to the internal surfaces of

the rotomolded parts, which are not accessible to nondestructive testing using FT-IR.

PLS models showed their potential to estimate the values from the traditional methods

and classify samples based on sintering and degradation properties, decoupling this

spectroscopic approach from its earlier reliance on mechanical deformation to train

the method to identify structural changes. Overall, this study demonstrates a new

characterization method for rotational molded parts that not only can provide an
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alternative to current destructive techniques but also combines the observation of

two distinctive phenomena in one single technique. The development of this method

can represent a valuable additional tool for the polymer processing industry to tackle

the challenge towards advanced manufacturing, improving on process reliability and

flexibility.
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ABSTRACT
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Incorporation of advanced manufacturing practices into polymer processing depends

on efficient strategies that can use new sensor technologies to improve quality monitoring

and process understanding. Nonlinear ultrasonics have been proposed a multivariate

nondestructive method for the characterization of produced plastic parts to observe

changes in polymer’s mesostructure. To enable efficient use of this technique, two

approaches are proposed that analyze and integrate ultrasonic spectroscopic data for

in-line quality classification and on-line monitoring and prediction. Data processing

with principal component analysis (PCA) and a soft class analogy classification method

are used for cluster identification of products with differing quality based on information

contained in the multivariate ultrasonic signal. A state-space dynamic model using

subspace identification is applied to historical process data and correlated with the

ultrasonic-based quality data for on-line quality prediction. Results were validated

with experimental data from the sintering phase of a polyethylene uniaxial rotational

molding process.

Keywords: Advanced manufacturing, Quality monitoring, Nonlinear ultrasonics,

Batch dynamic modeling.

6.1 Introduction

Manufacturing has progressively changed from a manual to machine-dependent

environment over the last century. Based on recent trends, the next decades will be

focused on wide utilization of advanced manufacturing concepts, such as big data,

cyber-physical systems and cloud computing1. Although these cyber resources are

gradually becoming known and adopted for use, broad application of these techniques

is still years away from being realized.

In polymer manufacturing, which is the focus of the present application, much
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emphasis has been on additive manufacturing2, with too little discussion yet on

intelligent, data-driven smart manufacturing strategies for traditional processes. The

concept of data-driven smart manufacturing refers to the collection and use of larger

amounts of process and quality data to make decisions based on a more intimate

understanding of the process3. The concept of smart manufacturing is becoming

increasingly relevant due to the increase in the amount of digital data being recorded

and stored, which in turn arises from the adoption of new sensors to monitor processes

and characterize produced parts, moving beyond traditional univariate descriptors,

such as temperature, pressure and flow. Spectral sensors, for example, generate

multivariate datasets that can provide multiple quality parameters for individual

produced parts. On the molecular-level, structural modification has been demonstrated

with the use of spectroscopic techniques, such as Raman spectroscopy to monitor

changes in morphological amorphous and crystalline structures4; fast-Fourier transform

infrared (FTIR) spectroscopy was used for observing chemical modification5; and,

nuclear magnetic resonance (NMR) can be used to to differentiate molecular level

chain dynamics6.

When considering bulk nondestructive characterization methods, a study7 recently

demonstrated the use of multivariate nonlinear ultrasonics to identify differences in

the structural morphology of polyethylene (PE). Linear ultrasonic characterization

based on sound velocity and attenuation through the media has been traditionally

applied8–10; however, this approach is limited by the viscoelastic nature of industrial

polymers, like PE, creating a high signal attenuation that is dependent on frequency11.

Although the adoption of new testing methods focused on multivariate analysis is

suggested, a high level of expertise and high cost are the technological and economic

barriers that have prevented implementation of these sensors for in-line manufacturing

quality monitoring; in-line monitoring refers to the quality assessment after the product
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has been produced.

Addressing the technological barrier, intelligent systems12 have been proposed as an

alternative. These decision tools are sought that can incorporate new groups of data,

and improve their assessment and prediction performance of current quality control

systems. Development of these techniques has been largely investigated in areas such

as chemometrics13 and image processing14. Orthogonal projections techniques, such as

principal component analysis (PCA), have been a foundation for several multivariate

data analysis tools. It can be used to simplify and quickly understand complex

databases with an algorithm that is simple to implement and easy to compute15.

PCA has been widely used for analysis of in-line spectroscopic sensors to monitor

chemical changes16 and to detect tracer elements17 in continuous compounding. In the

area of polymer processing, infra-red and Raman spectroscopy sensors and univariate

ultrasonic in-line measurements were applied to monitoring an extrusion process18. A

hyperspectral imaging sensor was also applied to continuous extrusion and correlated

with the final quality using multivariate statistical analysis19. Another studied process

is the injection molding, where temperature and pressure sensors were used to monitor

the process dynamics and predict and control final quality20,21. A new multivariate

sensor technology was also introduced to improve monitoring ability22. Although these

relevant studies have demonstrated the potential use of some nondestructive sensors,

the application of multivariate spectral analysis of ultrasonic sensors for in-line polymer

quality classification and further on-line (during the manufacturing of the product)

monitoring for batch manufacturing process correlated with the final product quality

measurement has not been explored.

Motivated by the above considerations, this study proposes an analytical and

statistical framework that can efficiently use multivariate ultrasonic spectroscopic data

(nonlinear ultrasonics) combined with process modeling to provide an in-line monitoring
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tool for nondestructive assessment of produced parts and an on-line process modeling

tool to improve understanding of the process variables and allow final quality prediction.

The proposed methods were applied to a batch rotational molding manufacturing system

to evaluate the ability of the monitoring tool to classify different product qualities

related to structural properties captured by the ultrasonic multivariate signals and

demonstrates the ability to predict final quality on-line. The manuscript is organized

as follows: Section 2 shows the experimental methods used for practical application

and validation of the technique. Section 3 describes the statistical approaches used

for multivariate data processing and process modeling. Section 4 demonstrates the

application of the monitoring tools, with historical batch data being used to build

the models and demonstration of the prediction capability. Section 5 presents the

concluding remarks.

6.2 Process Description and Quality

Measurements

In this section, we describe the specific polymer manufacturing process and the

destructive and nondestructive techniques utilized for characterization of the manufac-

tured part quality.

6.2.1 Batch Manufacturing Process

A laboratory-scaled uniaxial rotational molding system was operated to prepare

cubic samples using a high density polyethylene powder (Exxon MobilTM HD 8660.29,

supplied by Imperial Oil Ltd.). Rotation speed was kept constant at 4 RPM. Two

heated panels and a compressed air supply were manipulated variables, used to control
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the heaters to a constant temperature using PI controllers. Temperature data for

the heated panels and internal mold air was measured using K-type thermocouples

and collected using a custom-written data acquisition system in Labview (National

Instruments). After the powder was charged into the 90 mm cubic mold, each sample

was subjected first to a heating cycle to a selected maximum temperature. In the

subsequent cooling cycle, external forced air was applied to the mold to solidify the

part, while all manipulated variables were turned off.

It is well understood that the final product quality is largely influenced by the

temperature trajectory of the mold23 The mold undergoes the following four phases

over the course of the processing (see Figure 6.1 for a representative profile of the

internal mold temperature)- the first is the adhesion phase, where the powder heats

up and adheres to the surface, followed by the melting phase, and then the sintering

phase. At the point where the heating is turned off, the mold first begins to cool down

and then the molded part solidifies. Of the constituent phases, the sintering phase

is the most critical component that dictates product quality24. Depending on the

duration and temperature trajectory during the sintering phase, one can achieve a

product with incomplete sintering (residual internal air bubbles present), or it could

be degraded, with extensive thermo-oxidative degradation due to long exposure to

heat; and, if the temperature trajectory is just right, meeting target quality, optimal

mechanical properties and no significant degradation are observed. The determination

of the temperature trajectory, and a quantitative understanding of how it influences

the final product quality, remains an incredibly challenging problem. Traditionally,

a univariate selection of batch time or maximum internal air temperature is used as

decision for the end of the heating cycle. The changes in process operation (i.e. raw

material variability) can be very frequent, requiring several adjustments in process

variables to achieve desired quality. Monitoring approaches, that enable inexpensive
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and quick quantification of the product quality in-line or on-line, are therefore highly

valuable.

Figure 6.1: Rotational molding batch internal air mold temperature profile

6.2.2 Destructive characterization

In order to validate the quality of each sample, two traditional destructive tests

were performed to evaluate the mechanical properties of produced parts. The extent

of melt consolidation from sintering (i.e. removal of trapped air bubbles during the

process) was evaluated using a standard falling weight dart impact test (ASTM D5420).

The impact data was used for classification purposes in this study where a sample was

considered fully sintered if its impact value was above 0.41 Joules (J); this threshold

was determined as 80% of the maximum impact energy measured from historical

batches available (0.51 J). To evaluate the thermo-oxidative degradation occurring

for the polyethylene due to prolonged exposure to high temperatures, an oscillatory

rheology test was performed on a square cut, 30 mm, from the wall edge of a part in a

DHR 2 parallel plate rheometer (TA Instruments). Complex viscosity estimation was

obtained with a frequency sweep from 0.1-100 rad/s at a temperature of 190 oC. Data
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was converted using Cox-Merz transformation and approximate using the Cross model

to estimate the value of zero-shear viscosity. Samples were classified as degraded if

the zero-shear viscosity was above 8160 Pa.s, or 20% higher than the material before

processing (approximately 6800 Pa.s).

The current industrial practice of the described characterization methods is limited

to a small set of samples from a series of produced parts. Information obtained from

a sampled group might not portray the real quality of all batch runs. Total cost of

the quality assessment procedure is increased by the use of specific equipment and

specialized procedures for different quality tests that need to be executed separately

(sintering and degradation). This motivates the use of alternative, less expensive, quick

and non-destructive test methods.

6.2.3 Ultrasonic characterization

Nonlinear ultrasonics was shown in a recent work24 as an effective tool that can be

correlated with traditional quality tests to evaluate both sintering and degradation

aspects of a rotational molded polyethylene part. The ultrasonic measurements were

carried out as follows: after the sample was removed from the mold and cooled to room

temperature, two ultrasonic transducers (F30a - broadband and R15 - resonant at 150

kHz, Physical Acoustics Corp.) were positioned on one of the external surfaces at a

distance of 35 mm apart (using a high vacuum grease, Dow Corning) to perform the

nondestructive characterization. 10 cycles-burst of pulses with controlled frequencies

from 135 to 165 kHz, in 1 kHz ascending frequency steps, were introduced to an uncut

molded sample by the R15 resonant transducer acting as an emitter and captured by

the F30a broadband transducer acting as a receiver. The signal was sampled at an

acquisition rate of 4 MHz (using a National Instruments data acquisition board). The
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spectrum used in the analyses was from all 31 captured signals for the same sample

after Fourier transformation.

6.3 Data-driven classification and modeling

approaches

We address the monitoring problem for the general scenario where a nondestructive

multivariate sensor is available at the end of a batch process for product characterization,

with specific application to the rotomolding process. To this end, two approaches

are proposed, one for in-line quality classification and the second for on-line quality

prediction and process visualization. The first approach focuses on the ultrasonic

data evaluated from a produced part at the end of every batch run for an in-line

classification. Strategies described in Section 6.3.1 and 6.3.2 demonstrate a data

processing methodology to reduce the complexity of the signal and how to improve

classification between qualitative classes. This nondestructive classification tool can

be applied to situations where traditional characterization tests are ideally minimized

since there is too much in every part to justify its sacrifice. The second approach

combines process modeling and non-parametric evaluation, explained in Section 6.3.3

and 6.3.4, for on-line prediction of the final part quality. Correlation between a dynamic

model with the ultrasonic reduced space allows, at the current state of the process, to

predict the final product quality, which can be validated using the ultrasonic sensor

once the process is concluded and the part is formed. This model as a decision support

tool can help the user to understand causes of process variability and be a foundation

for quality control strategies.
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6.3.1 Principal component analysis (PCA)

Nonlinear ultrasonic analysis implies the interpretation of harmonic signals, thus

requiring that the captured signal must be converted from the time to frequency

domain. Instead of traditional ultrasonic analysis that focuses on amplitude and sound

velocity calculations, in nonlinear ultrasonic analysis, changes in peak amplitude from

different frequencies are correlated with structural characteristics24. To achieve this,

Principal component analysis (PCA) was applied to first reduce the dimensionality of

the ultrasonic multivariate data without losing important information, using Equation

1 below:

U = TPt + e (6.1)

where U is the matrix with ultrasonic spectra organized in rows from different batches;

T is the concatenated scores vectors, P is a matrix with loading vectors, and e is the

matrix of residuals. The reduced score space is able to capture the essence of the

information available in the ultrasonic measurement, and can be interpreted using the

loadings vector to understand the importance of frequencies. The PCA then forms the

basis of the classification strategy described next.

6.3.2 Soft independent modeling of class analogy (SIMCA)

Ultrasonic spectroscopic data from rotational molded parts was correlated with

traditional destructive tests to evaluate both sintering and degradation problems24.

However, in the previous results, in order to create a calibration model for predicting

product quality, controlled conditions based on a design of experiments and results

from destructive tests are required. In practical industrial applications, this type of
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data might not be available. Thus, a flexible and efficient method is proposed for

quality classification based only on nondestructive data of historical samples, that can

later be validated with secondary (destructive) tests. The soft independent modeling

of class analogy (SIMCA) tool was utilized. The method utilizes the square prediction

error (SPE) values calculated from PCA models to achieve classifcation25.

Algorithm 1 describes in detail the steps required to create and update a classifica-

tion model for different quality classes. Specifically, for the rotational molding process,

three classes are used as a starting point for the SIMCA algorithm, in order to utilize

the ultrasonic measurements alone to identify the presence of these different quality

products. Any new sample is determined to belong to a particular class based on the

SPE values, and the PCA models updated at the end of one set of new measurements

to enable subsequent classification.

Algorithm 1 SIMCA algorithm

1. Create base PCA model with all available data.

2. Identify initial cluster points from the scores space, separate data into defined
classes

(a) Calculate separate PCA models for each class.

3. Classification of a new element

(a) Calculate standard prediction error (SPE) for each PCA model.
(b) Compare calculated values and locate in similar class using SPE limit values.

4. Model improvement: If a classification to a specific group meets the criteria,
incorporate new sample to classified group; Repeat step 2 with the new dataset
built. If newly introduced sample does not fit in to any previous groups, consider
the creation of a new class.

This approach only requires data from the ultrasonic test and can be applied to

any classification that allows differentiation by physical characteristics that reflect on
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the ultrasonic spectrum, such as conditions covered by nonlinear ultrasonics, allowing

a simple interpretation from a complex data set. As indicated earlier, supplementary

destructive tests can be conducted to give meaningful physical labels after the fact. In

the present examples, these could include, for instance, categories of target quality

(on-spec equivalent), incomplete sintering and degraded.

6.3.3 Subspace identification for dynamic batch process

modeling

The development of the on-line monitoring tool is based on a dynamic model

that is able to predict the trajectories of the process variables (the internal mold

temperature for the present application), for a candidate future manipulated input

trajectory. Furthermore, the prediction from the dynamic model can then be utilized

as the basis to predict the ultrasonic spectrum (described in the Section 6.3.4).

Batch manufacturing processes have traditionally been treated with a rigid recipe

approach, requiring a design that would fit for each material and equipment. A flexible

tool to model and understand variability in these processes is proposed with the

application of subspace identification27. The model identification procedure outlined

in27,28 yields a linear time-invariant dynamic model that enables prediction of process

outputs (based on candidate future inputs trajectories), and generalizes the subspace

identification procedure29 for batch process operation30. In contrast to previous PLS

based modeling approaches31 no batch time alignment is required. The identified

model takes the form of Eqs.6.2-6.3 below:

xdk+1 = Axdk + Buk (6.2)
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yk = Cxdk + Duk (6.3)

where xk ∈ Rn represents the process state at different sampling instants, k; uk ∈ Rm

and yk ∈ Rl denote the input and output values at sampling instant k, respectively;

and matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m, m input variables, and

l measured variables. The model relies on subspace states to appropriately capture

the process dynamics over the training data. For the purpose of prediction for a new

batch, the subspace states need to be first estimated, and in the present work, this is

done using a Luengberg observer, as shown in Eq. 6.4 (see,32 for more details).

x̂[k + 1] = Ax̂[k] + Bû[k] + L(y[k]− ŷ[k]) (6.4)

where the hat mark denotes the observer prediction and L is the observer gain deter-

mined by ensuring that the matrix (A− LC) is stable. From any point in time for a

new batch (after the state estimator has converged), this model can be used to predict

the process outputs for any candidate input trajectory, and can thus be utilized as a

on-line monitoring tool. One of the contributions of the present work is to utilize the

underlying dynamic model to build an associated quality model that is able to predict,

and visualize the final quality, enabling its use as a quality monitoring tool.

6.3.4 On-line final quality projection

A combination of the ultrasonic data processing, described in Section 6.3.1, and

the dynamic modeling, presented in Section 6.3.3, was used to develop an on-line

monitoring tool to correlate process state and the final product quality.

The proposed new approach connects the subspace state variables with the reduced

variables related to the final quality (ultrasonic frequency data after PCA) using the
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historical batch data available for training. More specifically, multiple linear regression

was utilized to build a model (see Eq. 6.5).

T = Rax̂f + Rb (6.5)

where Ra and Rb are the multiple linear regression matrices that correlate the final

state variable, x̂f , from the subspace models of Section 3.3 with the scores, T, from

the PCA of ultrasonic spectra.

This relationship is not built on a mechanistic understanding, but relies on the

assumption that all of the information about the process is captured in the state vector.

Thus, the final quality must also depend on the final state vector. This is also the

basis of how the states are determined in the subspace identification approach.

Important advantages can be stated with the combination of the two techniques

for on-line monitoring. The use of a subspace based time invariant model allows the

quality model to be applied for all batches regardless of the batch length, without

the need for an alignment variable. Any nonlinearities in the process dynamics are

captured (as best as they are expressed in the available data) through the choice of

the number of states and the resultant subspace model. The use of the reduced space

(instead of the full spectrum) for the ultrasonic multivariate signal, on the other hand

captures the essence of the information contained in the spectrum, and thus a linear

relationship between these two sets of variables ends up being sufficient to predict the

final quality.

One important contribution of the present work is the development of the visual-

ization tool (that goes beyond the framework developed in27) In other words, while

the subspace states are important in capturing the process dynamics, evolution of the

subspace states by themselves does not lend itself readily to physical interpretation
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(beyond the outputs they predict). In the present work, therefore, a visualization tool

is developed aimed at predicting the ultrasonic spectrum at batch termination. Note

that the ultrasonic spectrum, with its correlation to the final part quality, is much

easier to interpret and be read by practitioners (see33 for another instance of off-line

process visualization tool).

Another tool that utilizes the proposed correlation between subspace states and the

reduced space of the ultrasonics is demonstrated as an alternative to the classification

steps in Section 3.2. A univariate non-parametric classification approach is utilized

next to classify final quality based on the on-line reduced space projection of the

ultrasonic signal. The task is then, for a new batch, to identify in the known samples

which ones are most similar to the new produced part. This approach does not require

an extensive calibration based on previous data points. In order to execute this search

and recognition, the use of the k nearest neighbors (k-NN) algorithm is proposed. The

objective is to find closest, or most similar, cases for a certain number of observations,

k, thus minimizing the value of the Euclidean distance, d defined as follows:

d =

√√√√ k∑
a=1

p∑
b=1

(t̂b − tab )2 (6.6)

where p is the number of components of the reduced space, t̂ is the projected score

from the current state variable from Eq. 6.5, and ta is the score from the a-th closest

sample from the database of historical batches.

With this non-parametric evaluation, the process data extracted from the subspace

identification can be used to explore all the previous batch data available for prediction

of product quality. Therefore, with new data being available, the prediction can be

improved. However, bigger available datasets also require more computing power

for the search, thus justifying the work being done in a reduced spaced (i.e. data
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processing using PCA).

6.4 Results

6.4.1 In-line quality monitoring

Recall that univariate analysis of an ultrasonic signal, focused on time domain

estimation of amplitude and sound velocity, is traditionally used for characterization or

process monitoring. In order to demonstrate the effectiveness of the proposed approach,

the traditional methodology is used as comparison. Figure 6.2 shows the ultrasonic

amplitude for several batch runs with known final qualities separated into three different

categories: incomplete sintering, with residual internal air bubbles present; degraded,

with extensive thermo-oxidative degradation due to long exposure to heat; and, meeting

target quality, optimal mechanical properties and no significant degradation. It is

possible to observe a clear distinction between samples with incomplete sintering and

the other groups, since the air bubbles present caused an increase in signal attenuation

that reduced the final amplitude. However, no clear distinction is notable between

the target and degraded groups. Also, even if a threshold value for amplitude was

selected for differentiating each group, some samples would fall outside the defined

groups due to natural variation in the amplitude that is related to the experimental

procedure (for example, measurement sensitivity to the application of coupling the

vacuum grease between transducer and surface of the sample). Thus, in the case of

this study, relying only on the univariate analysis (i.e. signal amplitude) would not

allow for a clear in-line classification between quality groups.

Using the same samples that were classified into the three categories previously

mentioned, Figure 6.3 shows a score map of the first two components of a PCA model
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Figure 6.2: Ultrasonic amplitude of rotational molded polyethylene samples (symbols
indicate different quality groups defined based on destructive tests)

constructed from the ultrasonic spectra for the group of molded samples. Of the

available samples, 31 batch runs were used for training purposes. The number of

components was determined by the minimum that would achieve a 90% variance

explained for the selected group. A group of 7 samples was reserved for validation and

not included in the calibration of the model. As can be seen from the projection, some

clusters can be identified to help create the base groups, but do not elucidate all the

differences between classes. Note that since the final class for each marked group is

unknown, groups were numbered and not labeled. This first clustering using a general

PCA model with the whole group of samples thus serves as the starting point for the

classification. The SIMCA algorithm described in Section 3.2 was performed to create

PCA projections from each individual group of samples (details on the performed

calculation can be seen in Appendix A).

Although the selection of the samples contained in each group was based on the

scores of the ultrasonic PCA, the experimental validation (see Table 6.1) demonstrates

that each class is mainly populated by samples of different quality groups (incomplete

sintering, target and degraded). In a practical scenario, only a small sample from each
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Figure 6.3: Projection of PCA scores from experimental batch samples using ultrasonic
spectra data (different classes indicated by marker format)

Table 6.1: SIMCA groups label

Experimental validation
Group Degraded Target quality Incomplete sintering Label

1 58 % 20 % 0 % Degraded
2 0 % 20 % 100 % Incomplete sintering
3 42 % 50 % 0 % Target

Total 100 % (n = 12) 100 % (n = 6) 100 % (n = 14)

group is necessary to be tested in order to determine a quality label. For the clusters

observed in Figure 6.3, Group 1 contained most of the degraded samples (58 %), Group

2 was populated with all parts characterized as incomplete sintering samples (100

%), and Group 3 had a combination of target (50 %) and degraded samples. These

clear distinctions based only on the ultrasonic spectra differences represent significant

evidence to support the proposed in-line classification method, that does not require

extensive calibration with destructive methods, but only one or two samples from the

respective groups can be tested for the purpose of labeling.
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Another instructive analysis of each constructed PCA model is an evaluation of

their loadings. Figure 6.4 shows the ultrasonic projection of the loadings considering

all scores to be zero (center or average sample representation). Considering the areas of

harmonic peaks, amplitude at the primary frequencies (same as the generated pulses)

is lowest in the case of incomplete sintering, and increases for samples classified as

target quality and degraded. This amplitude variation is expected from the increase in

density with reduction of air bubbles. In the case of the third harmonic frequency range,

there is also an increase in amplitude that follows the previous pattern between classes;

however, another distinction was the increase in amplitude ratio value from target

to degraded group. The variation in this nonlinear parameter, harmonics amplitude

ratio, has been demonstrated as a sensitive indicator of morphological changes such as

those related with thermo-oxidative degradation24. All of this analysis was observed

considering only the clusters of groups based on given class attributes and data from

ultrasonic spectra.

Figure 6.4: Ultrasonic spectra projected from loadings of PCA models of different
quality groups

Validation of the classification approach using the SIMCA methodology is demon-

strated in Table 6.2. Classification used the value of SPE as a reference for classification
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Table 6.2: SIMCA groups classification

SPE Values
Sample Group 1 Group 2 Group 3 Classification Experimental validation

1 2590 4663 1779 Target Target
2 2568 19665 13618 Degraded Degraded
3 2877 1932 2486 Inc. Sintering Inc. Sintering
4 2911 2044 2614 Inc. Sintering Inc. Sintering
5 2670 1567 2386 Inc. Sintering Inc. Sintering
6 3638 38187 2062 Target Degraded
7 6351 40058 3736 Target Target

into the labeled groups defined previously. All samples except one (Sample 6) were

successfully classified based on the experimental validation test. It is possible to argue

that classification in Group 3 accommodated samples with target quality and with

some level of degradation, but did not represent the same structural change as observed

in degraded samples classified in Group 1. A reclassification of the experimental limits

or the separation of group 3 into two subgroups could be tried to improve classification.

Recall that the traditional univariate descriptors simply did not allow any classification,

and thus no attempt at validation was made. In contrast, the proposed approach was

excellent in its ability to classify samples.

6.4.2 On-line quality monitoring and prediction

Process modeling and projection validation

The first step for the on-line approach is the process modeling using subspace

identification. Following the approach described in Section 6.3.3, a third order state-

space model was created using subspace identification for the process data available

from historical rotational molding batches. In Figure 6.5, the fit using the dynamic

model is shown for two representative batches.

Figure 6.6 shows the validation results using the identified model. In these results,
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Figure 6.5: Batch internal air temperature profile for two validation batches until the
instant of heating stage termination

the initial duration of a new batch is utilized by a Lungberger observer to estimate

the state of the subspace model (thus imbuing the modeling approach with learning

characteristics). After the states have converged (corroborated via the convergence of

the estimated outputs to the measured outputs), the measured output trajectory is

predicted for the remainder of the batch. The predictions are done starting from 3

different time points in the batch and demonstrate the improved ability of the model

to predict the process evolution farther along in the batch.
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(a) Batch 1

(b) Batch 2

Figure 6.6: Validation for dynamic model

On-line process visualization

Having illustrated the ability of the subspace model to capture the process dynamics,

the objective of this section is to demonstrate the ability to predict the spectrum of

the molded part. To this end, first, a model is built between the terminal subspace

states, and the reduced ultrasonic spectrum for the training batches (as described in
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Section 3.4). Thus, a multiple linear regression model was determined between the

final state variables (dimension = 3) and the ultrasonic spectra data in a reduced

dimension after PCA (number of components = 8). A total of 21 batch runs (with

measured process variables and ultrasonic spectra from the molded part) were used

to calibrate the model. A group of 7 samples, that were not included in the original

model calculation, were separated for validation.

The results for this proposed correlation show excellent prediction capability. In

particular, for validation purposes, two batches were chosen which corresponded to a

incomplete sintering and degraded parts, respectively, exhibiting significantly different

spectra. The model however, was able to predict very well the spectrum utilizing

the final subspace states alone, as can be seen in Figures 6.7 and 6.8. The ability

to predict the dynamic behavior (shown in section 4.2.1), along with the ability to

predict the terminal spectrum based on the terminal states built confidence in the

possibility of using the dynamic model together with the multiple regression model for

the purpose of online monitoring, that is, for the purpose of predicting the terminal

spectrum on-line.

Figure 6.9 shows the trajectory of a batch run for the first two components of the

ultrasonic spectrum based on the process trajectory with batch time. In this figure,

the states at any given point in time are used to compute the terminal scores. As the

process evolves, the states get closer to the terminal states, and thus the ability to

predict the terminal PCA scores keeps continually improving. In other words, with

the progression of the sintering phase and increase in temperature during the heating

phase, the process gets closer to the finished product, and thus closer to the region

of model validity. This on-line process monitoring that combines measured process

data with a projection of the product quality gives a useful visualization of the process

state that goes beyond the collection of univariate measurements.

128



McMaster University — Chemical Engineering PhD Thesis — Felipe P. C. Gomes

Figure 6.7: Experimental validation of the ultrasonic spectra projection from an
incomplete sintering sample

Figure 6.8: Experimental validation of the ultrasonic spectra projection from a degraded
sample

The next set of figures shows another visualization tool. In particular, the tool

captures the evolution of the mold through the various phases as the batch evolves.

To build the tool, first the classification method using the k-NN algorithm described
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Figure 6.9: Process trajectory considering state-space variables at each sampling
instant to project first two components of the reduced PCA ultrasonic spectra for a
final degraded sample

in Section 3.4, with a k=3 was built. The predicted ultrasonic spectra were converted

from the reduced space to the frequency domain using the PCA loadings, and the

absolute values of the amplitudes were used (to avoid meaningless negative values).

Figure 6.10 show the evolution of a particular batch. On the k-NN plot (top right

corner), it is possible to see a gradual decrease in the calculated distance from the

beginning of the sintering phase with prediction of incomplete sintering quality, when

it shifts temporarily to degraded quality, but then consolidates as target quality in

terms of a class prediction. From the projected ultrasonic spectra an increase in

amplitude on the primary frequencies is first observed at early sampling instances,

with a consequent reduction of the amplitude ratio based on the third harmonic peak

amplitude. Note that there is no experimental validation of the spectrum predicted

during this particular batch- i.e., the processing was not terminated at say 12 minutes

into the batch. However, the training and, more importantly, validation samples

did include batches that were terminated at different times into the batch, and that

demonstrate the ability to predict the final spectrum at different times during the
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batch.. Furthermore, the model-based classification also matches with the experimental

classification.

Figure 6.10: Process monitoring for a target quality sample with measured variables
(top left), manipulated variables (bottom left), k-NN evaluation (top right) and
ultrasonic spectrum projections (bottom right)

We next demonstrate the application of the proposed tool for the detection of

process conditions and samples outside specifications, and explored with two extreme

cases: an incomplete sintering and a degraded sample. For the first case, Figure 6.11

demonstrates the on-line measurements and projections during the sintering phase

of the rotational molding process. Descriptor from the k-NN average distance shows

a progression on the sintering process, however the terminal process conditions of

low heating and internal temperature profile are not sufficient to remove the residual

air bubbles. Thus, the predicted quality classification at the final instance indicates

incomplete sintering. A different heating cycle is observed in Figure 6.12, with the

process monitored presenting a higher heating rate that allows the internal mold
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temperature to reach high values in a short time. The results represent a shift in

classification with the k-NN search algorithm from incomplete sintering to a degraded

projected final quality after 11 minutes of batch run, at which time the internal

temperature was already above 220 oC. In both cases, the prediction of the final

product quality class is a relevant tool. However, the proposed monitoring tools also

allow for further process data interpretation. For the second profile, shown in Figure

6.12, it is noticeable that the heating conditions shifted the projections from incomplete

sintering directly to a degraded sample. In contrast to the example shown in Figure

6.10, the sample did not go through a target quality condition. This questions the

traditional view for the rotational molding process where the quality depends only on

either the selection of the time to stop the heating cycle based on a fixed heating rate

or based on the peak internal air temperature. In other words, a process operation

run using the traditional understanding would not yield the target quality for either

of these samples. It is understood that sintering and thermo-oxidative degradation

in rotational molding are parallel processes influenced by a combination of time and

temperature34–36. Thus, it is understandable that some heating profiles can accelerate

or reduce these processes and might not be fully explained by the monitoring of

individual variables. In summary, the proposed multivariate monitoring approach

combines sufficient process knowledge without the need of mechanistic determination

to provide an estimation of the progression of the final quality during the batch run.

In order to demonstrate the adaptability of the proposed statistical tools for quality

monitoring, Table 6.3 groups the predictions and experimental verification for samples

on the validation group, with all product classes being accurately predicted.
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Figure 6.11: Process monitoring for an incomplete sintering quality sample with
measured variables (top left), manipulated variables (bottom left), k-NN evaluation
(top right) and ultrasonic spectrum projections (bottom right)

Table 6.3: Results for classification prediction and experimental measurements for
validation group

On-Line Prediction Experimental validation
Sample k-NN Prediction Impact Incomplete

sintering?
Viscosity Degraded? Observed

1 95 Target 0.50 No 8088 No Target
2 234 Incomplete 0.31 Yes 6645 No Incomplete
3 62 Target 0.43 No 7522 No Target
4 264 Degraded 0.65 No 13418 Yes Degraded
5 52 Target 0.51 No 6966 No Target
6 45 Degraded 0.51 No 11365 Yes Degraded
7 82 Incomplete 0.37 Yes 6447 No Incomplete
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Figure 6.12: Process monitoring for a degraded quality sample with measured variables
(top left), manipulated variables (bottom left), k-NN evaluation (top right) and
ultrasonic spectrum projections (bottom right)
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6.5 Conclusions

Data-driven approaches have been demonstrated for in-line classification and on-line

monitoring and prediction of product quality based on the nonlinear ultrasonics data.

Classification based on multivariate statistical analysis was efficient, even with minimal

qualitative input, to confirm the validity of important structural properties contained

on the multivariate ultrasonic spectrum measured from rotomolded polyethylene parts.

The proposed correlation between the termination state-space from the end of the

heating phase and the reduced space ultrasonic spectrum was applied for the on-line

visualization and quality prediction. The data-driven tools described have strong

potential to be used not only for quality evaluation but also to improve process

understanding and to be used as basis for batch control strategies. The presented work

also addresses the usefulness of nonlinear ultrasonics as a viable sensor technology for

advanced manufacturing practices of batch processes in polymer industry.

Acknowledgement

The authors would like to acknowledge the financial support from Conselho Nacional

de Desenvolvimento Cientifico e Tecnologico (CNPQ-Brazil).

Bibliography

[1] Behzad Esmaeilian, Sara Behdad, and Ben Wang. The evolution and future of

manufacturing: A review. Journal of Manufacturing Systems, 39:79–100, apr

2016.

[2] Dazhong Wu, David W. Rosen, Lihui Wang, and Dirk Schaefer. Cloud-based

design and manufacturing: A new paradigm in digital manufacturing and design

innovation. CAD Computer Aided Design, 59:1–14, 2015.

135



McMaster University — Chemical Engineering PhD Thesis — Felipe P. C. Gomes

[3] Fei Tao, Qinglin Qi, Ang Liu, and Andrew Kusiak. Data-driven smart manufac-

turing. Journal of Manufacturing Systems, 2018.

[4] Yusuke Hiejima, Takumitsu Kida, Kento Takeda, Toshio Igarashi, and Koh-hei

Nitta. Microscopic structural changes during photodegradation of low-density

polyethylene detected by Raman spectroscopy. Polymer Degradation and Stability,

150:67–72, apr 2018.

[5] Mintra Meemusaw, Joao Maia, Alexander Jamieson, and Rathanawan Magara-

phan. Structural changes in HDPE produced by in-line plasma-pretreated reactive

extrusion. Materials Chemistry and Physics, 199:34–42, sep 2017.

[6] Yadollah Teymouri, Alina Adams, and Bernhard Blümich. Impact of Exposure

Conditions on the Morphology of Polyethylene by Compact NMR. Macromolecular

Symposia, 378(1):1600156, apr 2018.

[7] F.P.C. Gomes, W.T.J. West, and M.R. Thompson. Effects of annealing

and swelling to initial plastic deformation of polyethylene probed by nonlinear

ultrasonic guided waves. Polymer, 131:160–168, nov 2017.

[8] Vikram K. Kinra and Vasudevan R. Iyer. Ultrasonic measurement of the

thickness, phase velocity, density or attenuation of a thin-viscoelastic plate. Part

II: the inverse problem. Ultrasonics, 33(2):111–122, 1995.

[9] Akira Tanaka, K Nitta, and S Onogi. Ultrasonic velocity and attenuation of

polymeric solids under oscillatory deformation: Apparatus and preliminary results.

Polymer Engineering and Science, 29(16):1124–1130, aug 1989.

[10] Yi Zhang, P.-Y. Ben Jar, Kim-Cuong T. Nguyen, and Lawrence H. Le. Char-

136



McMaster University — Chemical Engineering PhD Thesis — Felipe P. C. Gomes

acterization of ductile damage in polyethylene plate using ultrasonic testing.

Polymer Testing, 62:51–60, sep 2017.

[11] J. S. Egerton, M. J. S. Lowe, P. Huthwaite, and H. V. Halai. Ultrasonic

attenuation and phase velocity of high-density polyethylene pipe material. The

Journal of the Acoustical Society of America, 141(3):1535–1545, mar 2017.

[12] Farid Meziane, Sunil Vadera, Khairy Kobbacy, and Nathan Proudlove. Intelligent

systems in manufacturing: current developments and future prospects. Integrated

Manufacturing Systems, 11(4):218–238, jul 2000.

[13] Richard G. Brereton. Pattern recognition in chemometrics. Chemometrics and

Intelligent Laboratory Systems, 149:90–96, dec 2015.

[14] C. Duchesne, J.J. Liu, and J.F. MacGregor. Multivariate image analysis in the

process industries: A review. Chemometrics and Intelligent Laboratory Systems,

117:116–128, aug 2012.

[15] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.

Chemometrics and Intelligent Laboratory Systems, 2(1-3):37–52, aug 1987.

[16] A. Almeida, L. Saerens, T. De Beer, J.P. Remon, and C. Vervaet. Upscaling and

in-line process monitoring via spectroscopic techniques of ethylene vinyl acetate

hot-melt extruded formulations. International Journal of Pharmaceutics, 439

(1-2):223–229, dec 2012.

[17] Walker Camacho and Sigbritt Karlsson. NIR, DSC, and FTIR as quantitative

methods for compositional analysis of blends of polymers obtained from recycled

mixed plastic waste. Polymer Engineering and Science, 41(9):1626–1635, 2001.

137



McMaster University — Chemical Engineering PhD Thesis — Felipe P. C. Gomes

[18] P.D. Coates, S.E. Barnes, M.G. Sibley, E.C. Brown, H.G.M. Edwards, and I.J.

Scowen. In-process vibrational spectroscopy and ultrasound measurements in

polymer melt extrusion. Polymer, 44(19):5937–5949, sep 2003.

[19] Ryan Gosselin, Denis Rodrigue, and Carl Duchesne. A hyperspectral imaging sen-

sor for on-line quality control of extruded polymer composite products. Computers

& Chemical Engineering, 35(2):296–306, feb 2011.

[20] Songtao Zhang, Rickey Dubay, and Meaghan Charest. A principal component

analysis model-based predictive controller for controlling part warpage in plastic

injection molding. Expert Systems with Applications, 42(6):2919–2927, apr 2015.

[21] Xundao Zhou, Yun Zhang, Ting Mao, and Huamin Zhou. Monitoring and

dynamic control of quality stability for injection molding process. Journal of

Materials Processing Technology, 249(March):358–366, nov 2017.

[22] Guthrie Gordon, David O. Kazmer, Xinyao Tang, Zhoayan Fan, and Robert X.

Gao. Quality control using a multivariate injection molding sensor. The

International Journal of Advanced Manufacturing Technology, 78(9-12):1381–1391,

jun 2015.

[23] M. J. Oliveira, M. C. Cramez, and R. J. Crawford. Structure-properties

relationships in rotationally moulded polyethylene. Journal of Materials Science,

31(9):2227–2240, 1996.

[24] F.P.C. Gomes and M.R. Thompson. Nondestructive evaluation of sintering

and degradation for rotational molded polyethylene. Polymer Degradation and

Stability, 157:34–43, nov 2018.

138



McMaster University — Chemical Engineering PhD Thesis — Felipe P. C. Gomes

[25] Yukio Tominaga. Comparative study of class data analysis with PCA-LDA,

SIMCA, PLS, ANNs, and k-NN. Chemometrics and Intelligent Laboratory

Systems, 49(1):105–115, sep 1999.

[26] R. De Maesschalck, A. Candolfi, D. L. Massart, and S. Heuerding. Decision

criteria for soft independent modelling of class analogy applied to near infrared

data. Chemometrics and Intelligent Laboratory Systems, 47(1):65–77, 1999.

[27] Brandon Corbett and Prashant Mhaskar. Subspace identification for data-driven

modeling and quality control of batch processes. AIChE Journal, 62(5):1581–1601,

may 2016.

[28] Abhinav Garg and Prashant Mhaskar. Subspace Identification-Based Modeling

and Control of Batch Particulate Processes. Industrial and Engineering Chemistry

Research, 56(26):7491–7502, 2017.

[29] S. Joe Qin. An overview of subspace identification. Computers & Chemical

Engineering, 30(10-12):1502–1513, sep 2006.

[30] Lennart Ljung. System Identification. In Signal Analysis and Prediction, pages

163–173. 1998.

[31] Johan a Westerhuis, Theodora Kourti, and John F. MacGregor. Comparing

alternative approaches for multivariate statistical analysis of batch process data.

Journal of Chemometrics, 13(3-4):397–413, may 1999.

[32] Abhinav Garg, Brandon Corbett, Prashant Mhaskar, Gangshi Hu, and Jesus

Flores-Cerrillo. Subspace-based model identification of a hydrogen plant startup

dynamics. Computers & Chemical Engineering, 106:183–190, nov 2017.

139



McMaster University — Chemical Engineering PhD Thesis — Felipe P. C. Gomes

[33] Ray Wang, Thomas F. Edgar, Michael Baldea, Mark Nixon, Willy Wojsznis,

and Ricardo Dunia. A geometric method for batch data visualization, process

monitoring and fault detection. Journal of Process Control, 67:197–205, jul 2018.

[34] M.C Cramez, M.J Oliveira, and R.J Crawford. Optimisation of rotational

moulding of polyethylene by predicting antioxidant consumption. Polymer

Degradation and Stability, 75(2):321–327, jan 2002.

[35] A. Hamidi, S. Farzaneh, F. Nony, Z. Ortega, S. Khelladi, M. Monzon, F. Bakir,

and A. Tcharkhtchi. Modelling of sintering during rotational moulding of the

thermoplastic polymers. International Journal of Material Forming, 9(4):519–530,

sep 2016.

[36] M. Kontopoulou and J. Vlachopoulos. Bubble dissolution in molten polymers and

its role in rotational molding. Polymer Engineering & Science, 39(7):1189–1198,

jul 1999.

140



Chapter 7

Applications

141



McMaster University — Chemical Engineering PhD Thesis — Felipe P. C. Gomes

The following chapter is a compiled collection of demonstrated uses of the developed

testing methodology and process monitoring. Where the work has been published or

in preparation to be published, the reference and all authors will be highlighted. The

full published content shall not be included for brevity but a short presentation of the

significant contributions and specific results related to the other chapters of this thesis

will be given. Applications 1 and 2 show the use of the methodology described in

Chapter 4 as nondestructive evidence for structural modification. Lastly, Application 3

demonstrates a control scheme based on the process modeling demonstrated in Chapter

6 for the rotational molding process.

7.1 Application 1: Plasticization of polyethylene

Plasticizing effect of oxidized biodiesel on polyethylene observed by

nondestructive method

A.K. Saad1, F.P.C. Gomes1, M.R. Thompson1

1Department of Chemical Engineering, CAPPA-D/MMRI

McMaster University, Hamilton, Ontario, Canada

Manuscript draft under review

Author contribution:

The second author, F.P.C. Gomes, contributed with the supervision of the design

of experiments, ultrasonic, mechanical and thermal characterization of the samples,

and revision of the manuscript. The main author, A.K. Saad, was responsible for the

design of the experiments, execution of the diffusion tests and other characterization

techniques, and primarily contributed for the writing of the manuscript. The author

M.R. Thompson was responsible for experiments supervision and revision of the

manuscript.
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Main scientific contributions of the paper:

• Demonstration of a nondestructive method to observe the effect of biodiesel as a

plasticizer for polyethylene.

• Differentiation of the plasticizing effect between biodiesel and toluene.

• Analysis of the effect of biodiesel degradation on the diffusion and plasticizing effect.

ABSTRACT

This paper explores the compatibility of biodiesel with different grades of polyethy-

lene, specifically examining their plasticization effect for better understanding of the

interactions occurring after penetration. Initially, the influence on the polyethylene

mesostructure was investigated by evaluated mass uptake, mechanical testing and

the application of a novel nondestructive ultrasonic testing method. Diffusion and

plasticization by biodiesel were directly compared with results obtained by toluene, a

known plasticizer for polyethylene. Traditional tests confirmed that biodiesel acted

as a plasticizer with reduced mechanical properties observed for the polyethylene

proportional to the amount of fuel uptake; biodiesel uptake was inversely proportional

to crystal content of the polymer and only 3% of toluene uptake. However, spectral

analysis by ultrasonics showed that absorbed toluene and biodiesel influenced the

microstructure of polyethylene differently. Notable differences in internal stresses were

noted between the two fluids for the same amount absorbed. A subsequent study

analyzed the impact that biodiesel degradation had on plasticization. Although, the

trend showed a reduction in diffusion rate with increasing oxidation of the medium,

the mechanical results did not show significant differences between fresh and degraded

biodiesel test conditions within the span of the test. Combining the evidence observed
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in this study, a mechanism is proposed for biodiesel plasticization that can help with

failure prevention and material selection.

7.1.1 Highlighted results

Although biodiesel has been demonstrated as a plasticizer for polyethylene, some

evidence indicates that the mode of interaction with the polymer semi-crystalline

structure is completely different than a plasticizer like toluene. Results from the

non-destructive ultrasonic testing help to support this hypothesis. Figures 7.1 and 7.2

show the different spectra attained from the samples before and after immersion in

each fluid, Toluene and biodiesel, respectively, until it reached a saturation of around

3-4% of weight gain. Differences between samples are observed on the upper harmonics,

more specifically at the third harmonic region (between 400-500 kHz). For the PE

immersed in Toluene, this region presented a significant increase, while the samples

in biodiesel had a minor reduction. When comparing the variation of the ultrasonic

parameter for the different PE grades, it is clear that the opposite behavior on the

propagated ultrasonic waves is evident for all and they all fall on the same variability,

as observed in Figure 7.3.

The increase of this nonlinear ultrasonic parameter is known to be related to the

swelling effect with a proportional increase in concentrated internal stress forces created

by the penetrating molecules. Thus, it is noticeable that the biodiesel incorporation

on PE did not show this effect, and can indicate that it might have helped to decrease

internal stresses. This argument can be connected to the observation of the plastic

deformation witnessed by these samples after immersion in the different plasticizers,

as samples exposed to biodiesel had a significant decrease in fibrillation compared to

toluene. A possible interpretation of the modes of plasticization is that while toluene
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Figure 7.1: Ultrasonic spectra for the PE HD1 sample before and after biodiesel
immersion (the arrow indicates the decrease of the third harmonic peak amplitude
considering normalized signal based on primary frequency amplitude)

Figure 7.2: Ultrasonic spectra for the PE HD1 sample before and after Toluene
immersion (the arrow indicates the increase of the third harmonic peak amplitude
considering normalized signal based on primary frequency amplitude)

acts by penetrating the amorphous region, increasing the mobility of that phase and

creating internal stresses, biodiesel is responsible for lubrication of the inter-crystalline

chains, promoting more crystal slips during plastic deformation with no increase in

internal stress.
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Figure 7.3: Nonlinear ultrasonic parameter variation for different PE grades with
immersion in Toluene and biodiesel

7.2 Application 2: Plastic deformation of

poly(lactic acid)

Physical aging as the driving force for brittle-ductile transition of

polylactic acid

G. Zhao1, F. P. C. Gomes2, H. Marway2, M. R. Thompson2, Z. Zhu1

1 Tongji University, China
2 McMaster University, Canada

Manuscript draft under review

Author contribution:
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partially writing introduction, methodology and results sections. The main author, G.

Zhao, was responsible for the design and execution of experiments, and writing of the

manuscript. The authors H. Marway, M.R. Thompson and Z.Zhu were responsible for

the project supervision and manuscript revision.

146



McMaster University — Chemical Engineering PhD Thesis — Felipe P. C. Gomes

Main scientific contributions of the paper:

• Proposed treatment based on physical aging to improve toughness of PLA.

• Observation of the treatment effect on the initiation of plastic deformation using

the proposed nonlinear ultrasonic parameter.

ABSTRACT

Polylactic acid (PLA) is inherently a brittle polymer in commercial uses, exhibiting

a high modulus and elongation at break below 5%. To transition the failure mode

of this polymer to one that is more ductile without loss in strength is challenging.

To produce a more ductile PLA, a new strategy combining freezing and physical

aging with ultraviolet (UV) radiation was carried out to improve the mechanical

properties. A three-step method was used to control the plastic deformation nature of

PLA: (a) low temperature treatment, applied to slow down the physical aging and

transforming the sub-ordered structures into a more stable state; (b) introduction of

a chain extender (CE) into PLA system to form branching structures and decrease

the mobility of polymer chains for UV irradiation; and finally (c) UV treatment to

increase the entanglement density of the amorphous phase and decrease the formation

of undesired sub-ordered structures during physical aging. The elongation at break of

PLA prepared with 0.75%CE was increased up to 18.25% by conditioning at -40℃

for 48 h followed by UV irradiation for 30 h. Results also demonstrated that tensile

strength and Young’s modulus remain statistically unchanged.

7.2.1 Highlighted results

Figure 7.4 shows the progression of the third harmonic peak for a treated sample

with increasing flexural deformation. The harmonic generation is a reflection of the
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initial plastic deformation, causing a nonlinear propagation of the ultrasonic signal. A

variation of this parameter can be linked to the presence of connecting chains that

accumulate internal stresses related to increased structural deformation. A small

variation of the nonlinear ultrasonic parameter indicates that a secondary dislocation

process has happened, i.e. crystal slip.

Figure 7.4: Ultrasonic spectrum of PLA+Joncryl+Thermal+UV sample with increasing
flexural deformation (internal box highlights the third harmonic region)

Figure 7.5 shows that the addition of the chain extender, Joncryl, improves the

plasticity of PLA, increasing the variation of the nonlinear ultrasonic parameter.

In order to understand the effect of the thermal treatment on the plasticity of the

treated PLA, samples were kept in freezing conditions after compression molded and

equilibrated at room temperature for 5 minutes before test. Results showed a decrease

in the nonlinear parameter that might be connected with a reduction in mobility

of the chains. A similar reduction was observed in Figure 7.6 for samples after UV

treatment, where the decrease in plasticity can be explained by an increase in the
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degree of crosslinks. However, results for the complete treatment with the combination

of thermal and UV subsequent stages, demonstrate a level of plasticity comparable to

the original sample with Joncryl before the physical aging.

Figure 7.5: Maximum nonlinear ultrasonic parameter variation for PLA and
PLA+Joncryl samples after flexural deformation (max. value of 1.25% strain)

Figure 7.6: Maximum nonlinear ultrasonic parameter variation for PLA and
PLA+Joncryl treated with UV or Thermal+UV samples after flexural deformation
(max. value of 1.25% strain)
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7.3 Application 3 : Process control for rotational

molding

Model Predictive Control of Uni-Axial Rotational Molding Process

Authors: A. Garg1, F. P .C. Gomes2, P. Mhaskar1, M. R. Thompson1

1Department of Chemical Engineering, MACC
2Department of Chemical Engineering, CAPPA-D/MMRI

McMaster University, Hamilton, Ontario, Canada

Published manuscript at Computers and Chemical Engineering

Licensed under the CC BY-NC-ND 4.0 ©2018 Elsevier

DOI: 10.1016/j.compchemeng.2018.11.005
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The second author, F.P.C. Gomes, adapted and executed the rotational molding

experiments, tested the final quality of the produced parts and wrote partially the
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of the experiments, coding of the application for modeling and control, supervision of
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Main scientific contributions of the paper:

• Application of subspace identification approach and model based predictive control

for a rotational molding process.

• Proposed methodology for product quality optimization based on the operator

selection from the historical batches available.
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• Validation of the proposed method, demonstrating the effectiveness of the control

scheme to achieve desired quality.

ABSTRACT

This paper addresses the problem of achieving tight product quality, and also

enabling automated process changes to produce new product grade in a uni-axial

rotational molding process. This is achieved by the implementation of a novel modeling

and control formulation. In particular, a data driven state-space model of the process

is first identified using experimental data. For a given trajectory of input moves

(heater and cold air profiles), this dynamic model is able to predict the evolution of the

measured variable (internal product temperature). The dynamic model is augmented

with a quality model, which relates the terminal predictions from the dynamic model

to the key quality variables (sinkhole area, ultrasonic spectra amplitude, impact test

metric and viscosity). The dynamic and quality model are in turn utilized within a

model predictive control (MPC) framework that enables specifying product quality

requirements explicitly. Experimental results demonstrate the ability of the MPC not

only in achieving tight quality control but also providing on-spec product for a new

product grade.

7.3.1 Highlighted results

One of the key strengths of the proposed formulation is the ability to specify the

control objective to reflect the product quality. In particular, to recognize the fact

that the desired product quality reflects, in some sense, trading off some of the quality

variables against others. This is quantified through the choice of the vector β. In this

particular implementation, β is chosen in the following fashion: First, ‘reasonable’

values of the parameters are chosen based on the relative importance (and magnitudes)
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of the quality variables. The objective function is then evaluated for the 21 batches in

the training data and the batches ranked according to the objective function. The

value of the parameters are then tweaked to ensure that the batches which are deemed,

qualitatively, to be better are consistent with the objective function value (i.e., the

best batches have the lowest objective function value). This is in line with industrial

practice where an operator/quality controller could be asked to rank the product in

terms of quality, which would then enable picking the parameters of β in a similar

fashion. The above optimization problem is essentially a mixed integer linear program

(MILP) but instead solved in a brute force fashion as three linear programs using

linprog in MATLAB. To implement the control algorithm on the experimental setup,

MATLAB is interfaced with LabView which inturn works as a data acquisition system.

The proposed modeling and control approach is next implemented on the experi-

mental setups. Two sets of closed-loop implementations are carried out. Firstly, it is

proposed to evaluate the ability of the controller to reject variability and meet product

specifications (considering balanced importance given to all quality measurements).

Secondly, the objetive is to evaluate the ability of the controller and achieve new

product specifications. In the first implementation, the controller was implemented on

five new batches. The feedback control algorithm achieves excellent quality results with

the values obtained meeting the desired product specifications, and more importantly,

the average value of the objective function obtained in the these MPC batches is

5.06. From these results, it can be noticed that the thermo-oxidative degradation was

minimized with no significant change in viscosity (Q4) from the base material. However,

values of Q1-Q3 (sinkhole area coverage, ultrasonic amplitude and impact energy)

achieved an average quality. This formulation would be suitable for applications where

effects from degradation should be minimized, such as formation of volatile components

that can contaminate rotomolded water tanks.
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In the second implementation, the efficacy of the proposed approach to obtain a

different product quality (for instance, due to a client requirement), is evaluated. For

some applications, a small degree of thermo-oxidative degradation can be acceptable

with no drawbacks to mechanical stability. Thus, the objective function in the earlier

formulation was modified such that the training batches with higher impact properties

are the ones that result in the lowest values of the objective function. It should

be noted that all the quality variables were still considered in this formulations as

excessive heating and degradation should still be minimized. It can be seen that in

this case, the product obtained at the end of the batches had lower sintering. It should

be noted that the MPC resulted in a sharp increase in the internal mold temperature

with reduced batch time (lf = tswitch + 300) compared to the previous case where

MPC selected a safe heating profile with minimized degradation over a longer batch

duration. This is to facilitate lower sintering in the product at the expense of some

degradation. It demonstrates the capability of the proposed model in predicting the

terminal quality effectively and thereby optimizing the process according to the desired

quality requirements. Although not pursued in this work, the MPC formulation can

readily be adapted to specify constraints on the value of individual quality variables.

To implement the proposed approach in an industrial setting, the model can

be developed by utilizing the data from plant historian with a few identification

experiments, if required. Once the proposed system is in place, the operator would

not need any details on the identification or MPC algorithm and the desired product

properties can be specified using a simplified interface. Further, for initial training the

approach can be developed and provided to a operator in the form of a decision support

tool which can aid in the decision making process with the flexibility to implement a

safe the control action.
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7.4 Conclusions

Results demonstrated in these applications help to validate the methodology

proposed in previous chapters. In terms of the use of nonlinear ultrasonics for charac-

terization of structural modifications, the study presented in Application 2 expands

from the original paper (shown in Chapter 4) as it demonstrates how the method is

capable to differentiate the effect from diffusion of biodiesel and toluene on polyethy-

lene. Both fluids act as plasticizers but their extent and structural effect could be

differentiated by the ultrasonic parameter from the harmonic amplitude ratio. Ap-

plication 3 is a demonstration that proposed monitoring of the plastic deformation

using nonlinear ultrasonic testing can be applied to a semi-crystalline polymer different

from polyethylene. And, finally, Application 4 connects the data-driven framework

approach demonstrated in Chapter 6 with the proposed process control strategy.
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Under a limited scenario for quality control of polymer parts based on traditional

destructive tests, we have presented a viable alternative for bulk structural characteri-

zation using a nondestructive methodology. With the use of a multivariate analysis

of ultrasonic signal propagation in produced parts, relevant features of the internal

micro-structure can be revealed. The validation of this sensor technology represents

an important element to promote adoptions of advanced manufacturing strategies for

the polymer manufacturing industry.

Barriers for application of ultrasonic testing to plastic characterization have been

addressed with the adoption of new practices focused on the test format and signal

processing. Advantages of guided waves over traditional pulse-echo tests have reduced

the effects of signal attenuation in polymer parts and allowed characterization of a

larger bulk area. Test efficiency was also improved with the selection of frequencies

targeted for maximum signal amplitude specifically for polyethylene parts. In addition

to the test format, a multivariate analysis of the propagated signal in the frequency

domain helped to identify features of the signal that were not contained in the uni-

variate analysis of amplitude and sound velocity. Based on variations of the harmonic

peaks, considering the foundations of nonlinear ultrasonic propagation theory, changes

in structural morphologies and damage progression were identified. The proposed

ultrasonic characterization methodology was capable of identifying levels of plastic

deformation and diffusion of solvents with a sensitivity that has not been report by

other nondestructive tests.

Aside from a structural quality monitoring tool, the ultrasonic sensor technology

applied for characterization of plastic parts has also been demonstrated as an important

element for in-line process monitoring. Variations in process quality of a batch rotational

molding process were connected with spectroscopic analysis of the propagated ultrasonic

guided wave signals. Two different quality aspects, previously only characterized by
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separate test methods, have been correlated to different ultrasonic frequency peaks

using multivariate statistical analysis. As a result, we believe the application of

an ultrasonic test on produced parts has sufficient information to provide quality

classification of structural aspects in an in-line monitoring scenario. A novel approach

was proposed as modeling tool that connects the process data from a dynamic modeling

with the projection of the ultrasonic signal to a reduced space. This new approach

can also be used for on-line visualization and can help improve process understanding.

Thus, not only has the importance of the ultrasonic test have been demonstrated,

but we have also examined through detailed studies which strategies to follow for

incorporating this sensor technology into an advanced manufacturing framework for

the polymer processing industry.

Contributions from this study only represent the starting point for application of

this in-line monitoring technology for polymer processing. Other challenges have to be

faced in test development, data processing and process understanding.

Some future research and development that will benefit the further development of

this technology is the analysis of different ultrasonic sensors. In this study, contact

piezoelectric transducers were applied with a coupling agent, however other alternatives

have been investigated such as air-coupled and array sensors that can remove test

barriers and improve performance.

Another important aspect to transfer this technology from laboratory to industrial

conditions is consideration of the local-to-bulk properties in large parts. Investigation

is required to determine how the spatial variability is reflected in the ultrasonic signal

and how many tests from different areas are required to evaluate the part quality. A

connection has to be estabilished between the information collected in the tested local

area and the overall part quality and detection of process variability and defects. In

addition, integration between different multivariate in-line sensors with the information
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provided by the ultrasonic test can be developed. Combination of the structural quality

from the ultrasonic with dimensional and/or chemical measurements by other sensors

can provide a complete quality assessment of the produced part. Finally, the robustness

of the proposed in-line monitoring tool can also be evaluated to quantify variability in

feedstock or process variables, developing a more intelligent oversight system for the

manufacturing process. Other polymer manufacturing processes can be explored by

the technique now.
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A.1 Rheology

The selection of oscillatory strain for frequency sweep tests was based on the

viscoelastic limit observed from strain sweep curves of different polyethylene processed

samples considering the linear limit for the storage modulus, as observed in Figure A.1.

Rheology parameters from the frequency sweep tests were determined by fitting based

on Cross model and comparison between tested samples was focused on the zero-shear

viscosity representing the best fit to approximate initial plateau of curves, as seen in

Figure A.2.

Figure A.1: Strain sweep curves for tested polyethylene samples after rotational
molding processing at different peak internal air temperatures (PIAT) (vertical dashed
line at 0.15 indicate the oscillatory strain selected for frequency sweep tests)
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Figure A.2: Frequency sweep curves after Cox-Merz transformation for tested polyethy-
lene samples after rotational molding processing at different peak internal air tem-
pearatures (PIAT) (dashed lines indicate the projection of fitted Cross model values)

A.2 PLS Model

An important aspect of the design of a multivariate statistical analysis model using

projection to latent spaces (PLS) is the selection of the number of components. Figure

A.3 and A.4 show the progression of the variance explained and the root-mean square

sum error of prediction (RMSEP) for both sintering and degradation models based on

internal cross-validation with independent calculation between components.
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Figure A.3: Variance explained and error of prediction based on internal cross-validation
for different components of PLS model correlating sintering quality and ultrasonic
spectroscopic data (vertical dashed line indicated the selected optimal number of
components)

Figure A.4: Variance explained and error of prediction based on internal cross-validation
for different components of PLS model correlating degradation quality and ultrasonic
spectroscopic data (vertical dashed line indicated the selected optimal number of
components)
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B.1 SIMCA - PCA models

Figures A1, A2 and A3 and Table A1 demonstrate the details of PCA models con-

structed using samples with know product quality of three different classes (incomplete

sintering, target quality and degraded) based on multivariate ultrasonic spectra data.

Figure B.1: Projection of PCA scores from experimental batch samples using ultrasonic
spectra data of Group 1 (labelled as "Degraded")

Table B.1: Summary of PCA models for different quality groups

Model Group 1 Group 2 Group 3
Label Degraded Incomplete sintering Target quality
Number of components 5 12 5
Variance explained 90.6% 91.0% 91.2%
Number of samples on cali-
bration data set

8 15 8

Number of variables on the
original domain (ultrasonic
frequencies)

1376
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Figure B.2: Projection of PCA scores from experimental batch samples using ultrasonic
spectra data of Group 2 (labelled as "Incomplete sintering")

Figure B.3: Projection of PCA scores from experimental batch samples using ultrasonic
spectra data of Group 3 (labelled as "Target quality")
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