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ABSTRACT  

Artificial flight on millimeter size scales has been a major challenge due to the difficulty in 

making a feasible flight mechanism in terms of fabrication, thrust and power used.  Many have 

tried to copy animal flight but there has been little success at such sizes. One proposed solution is 

to make small thrusters out of resonant curved cantilevers which act as wings that follow a 

simple 1 degree-of-freedom motion. Such wings are free of joint friction, can be planarly 

fabricated using well documented techniques, can be predictably scaled to different sizes, and 

have been shown to generate a net thrust.  

In this thesis, the work investigates the nature of the wings’ thrust through thorough studies of 

computational fluid dynamic simulations to understand how they interact with the surrounding 

fluid and how exactly the forces are generated. Specifically, it considers the role of unsteady 

lagged fluid waves generated by the wings and explains how the wing-fluid interactions relate to 

drag coefficients at low to high flapping amplitudes and Reynolds numbers ranging from 

102 -105. It then studies the effect of different wing aspect ratios on the net force and power 

efficiencies. The results are then extended to a general dependence on the wings’ aspect ratio 

which allows for this parameter to be used in optimizing the wings’ net force/power used. Test 

wings are then made using an updated fabrication method and Molybdenum as the curve-

inducing material in an attempt to produce more environmentally-stable wings with important 

successes, failures and improvements discussed. Results show that such Molybdenum-based 

wings are practical for flight, and that resonant curved cantilevers wings can be made more 

feasible by simple changes to their shape.
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1 INTRODUCTION 

For over a century, scientists and engineers have dominated the sky with large flying vehicles, 

yet when it comes to millimeter size scales, we have largely been unsuccessful. The main 

difficulty comes from the different forces coming into play when scaling large-scale technology 

like planes and rockets. Such propeller or jet-driven flight becomes impossible, or at least 

impractical, due to the large relative mechanical friction, increased difficulty in fabrications, 

decreased power efficiency and very different aerodynamics effects to consider. To overcome 

this, different flying mechanisms need to be used while considering current limitations of MEMS 

(Micro-Electro-Mechanical Systems) and which aerodynamic phenomena to exploit.  

The most obvious starting point is the usual case: to observe and learn from nature. This is 

reasonable since flying animals commonly operate on the millimeter size scale with some 

animals like the fairyfly reaching lengths as low as 158um [1]! Unfortunately, the aerodynamics 

of flapping-wing flight cannot be fully explained by current steady-state (i.e., airfoil type) 

theories, although many have tried. Only recently has the complex aerodynamics of such flight 

been thoroughly investigated and so-called, unsteady mechanisms, discovered, although exact 

descriptions of animal flight are still highly debated. 

Instead of fully understanding the nature of animal flight, many have tried to simply replicate it. 

The problem here is that it is very difficult to replicate the wing motions usually seen in birds 

and especially in insects. The joints and tissues connecting the wings allow for timely rotating, 
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pitching and heaving motions while the structure of the wing itself can add to the efficiency 

through hairs initiating turbulent flow or vortex generations from their elasticity [2].  

Furthermore, it is not obvious which animals to imitate since flapping motions vary between 

fliers and can depend on their size, wing shape, flying style or on some environment-specific 

evolutionary factor (like high winds). Thus, engineers are left with deciding which flight 

mechanism is sufficient for the task and how to recreate these fast, complex joint movements 

without breaking. 

Minnick proposed in [3] that a much simpler solution could be used that may not replicate the 

high efficiencies found in nature but would work sufficiently well to power very small flying 

vehicles. The idea is to use resonating curved cantilevers at high amplitudes to generate a net 

thrusting force. This would involve no rotating parts and the only movement would come from 

the high amplitude vibrations of the cantilevers. Some major benefits would be 

• Relatively easy construction 

• No joints (so low friction loss and longer lifetimes) 

• Easily scalable to different sizes (from centimeter to below millimeter-scales)   

• Monolithic fabrication that allows them to be fabricated in large quantities in parallel  

The ground work for these devices was developed in terms of construction, resonant properties, 

dimensional analysis and fluidic force expectations based on look-up tables from CFD 

simulations. Minnick’s work on this technology has also shown that theoretically such wings can 

generate forces higher than their own weight, and enough to support onboard power supplies and 

sensors.  

Initial results supported the theoretical predictions, yet at the time, Minnick was only able to 

create wings that lifted 2-7% of their body weight. Much of this was due to poor materials and 

possibly an inefficient shape design based on insects’ dimensions. Also, little was understood 

about how the wings generate force, since the completely different flapping motion not seen in 

nature suggests that there are new thrust mechanisms at play.  

In this thesis I will improve on Minnick’s wings by first explaining the force phenomena seen in 

these curved cantilevers undergoing large oscillations by examining simulation results. I will 

then expand these results by simulating wings of different aspect ratios to predict optimal wing 
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designs and present results for fabricated wings that I made using more stable materials. With 

these results and explanations, one can bring these devices to generate forces higher than 

previously thought possible, with a more complete knowledge of the underlying fluid dynamics 

that can be considered in future work.  

Literature Review 

Much of the work leading up to NAVs (Nano-Air Vehicles) began with the understanding of 

steady-state airfoil theory developed in the early 20th century. Unfortunately, scaling of airplanes 

and helicopter-like machines to centimeter-sizes becomes very difficult due to the complexity of 

fabricating small components and large relative friction at smaller sizes that is associated with 

rotating parts. Naturally, NAV scientists tried to overcome this by taking lessons from nature’s 

best fliers: insects and birds. 

Early attempts at modelling these animals used the same steady-state aerodynamic theories used 

for airplanes/helicopters and assumed that wings would function exactly like airfoils; thus, by 

dividing the wing’s flapping cycle and knowing its position/velocity from quickly captured 

images, one could apply steady-state solutions and reproduce the forces/power used by the wings 

over a full flapping cycle. Indeed, for a fast travelling bird or insect, where the wing flapping 

speed is slower than the forward flight speed, this approximation held well [2], [4], [5]. What this 

method failed to account for were unsteady transient effects that occur specifically for 

airfoils/wings undergoing large and rapid oscillations. As a result, most approximations using 

this “quasi-steady-state” theory led to large underestimations of the forces generated in flight, 

and the phenomena of animal hovering was left unexplained [4], [6]. Lots of work, speculation, 

and experiments went into characterizing and explaining how some of the most unlikely flyers 

like bumble bees and fruit flies can manage to stay in the air. 

Weis-Fogh [6] presented a theory to account for the extra lift force via his “clap and fling” 

mechanism, where large bound vortices are created at stroke reversals which can add 

significantly to the lift  as shown in Figure 1  
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Figure 1: Clap and fling mechanism presented by Weis-Fogh to account for extra lift generation in some 

animals [6]. As the wings peel away from each other, large bound vortices are created which follow along 

with the wing during the flapping cycle. These vortices can be large enough to account for the extra lift in 

some animals. 

However, this idea was not enough to explain flight in animals that flapped at low amplitudes 

and those that fly at low Reynolds numbers. Furthermore, the entire theory was still based on 

quasi-steady state theory, so it did not account for unsteady transient effects that were likely 

happening at points in the cycle of the oscillating wing [6]. In continuation of his work, Ellington 

explains in [7] that the leading-edge vortex (LEV) is the primary lift generating mechanism that 

most animals use. The phenomena described is that of delayed stall seen in airplanes where large 

lift occurs above the stall angle that can last for several chord lengths through the LEV created 

on the airfoil. Normally, in planes, this effect quickly dissipates but due to the cyclic flapping 

nature of animal wings, this effect can be used throughout most of each half of the flapping 

cycles. It is now generally agreed that the major contributions to lift come from some 

combination of the clap and fling, delayed stall, rapid pitching of the wings at stroke reversal and 

potentially some wake capture from vortical flow, although the amount of contribution from each 

mechanism is still a major subject of debate [8]. Most importantly, all these described 

mechanisms required that the wing still have a forward velocity relative to the fluid; that is, the 

wing never simply moves up and down, but heaves, pitches and performs complex flapping 

patterns mimicking those of flying animals. 

Eventually, engineers attempted to incorporate and replicate flapping wings at large scales to 

produce machines that could benefit from the high efficiency of a steady, forward flying airfoil, 

with the potential of hovering. These ‘ornithopters’ typically failed to increase the efficiency by 
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flapping and produced little vertical force when not moving forward in the fluid. In [9], Bennet et 

al. shows an early example of a 10-foot ornithopter undergoing large amplitude flapping motions 

at different pitching angles as seen in Figure 2, although this design suffers from the issues 

mentioned earlier. Smaller designs were eventually made as in [10]-[11], which were able to 

perform fast maneuvers such as rapid pitching and flapping, and successful flight was achieved 

on the size scale of birds – although no hovering yet.  

 

Figure 2: A typical large scale ornithopter where the different subfigures show the movements of the airfoils 

[9]. 

Karpensen et al. [12] did a thorough review of certain actuation mechanisms that could be used 

to power flapping-wing flight for NAVs and smaller aerial vehicles. Among thermally and 

statically driven options, they considered piezoelectrically actuating wings using cantilever 

bimorphs and unimorphs. Using known resonant frequency values for cantilevers in small 

oscillations, along with other dimensional parameters and the blocking force, they predicted the 

maximum force output of such devices, and provided a dimensional analysis. However, since no 

exact actuating mechanism was presented nor were any aerodynamics considered, they assumed 

the blocking force (minimum force to stop cantilever from curving) as the maximum thrusting 

force, which ignores many of the losses and aerodynamic complexities an oscillating wing in a 

fluid can experience. Also, no actual attempt to make this a reality was done - at least in using 

pure resonating cantilevers for thrust. That being said, they did present some interesting 
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frameworks, initial ideas and rough estimations for the practicality of resonating cantilevers in 

NAVs, leaving future engineers to come up with a way to use these actuators for thrust. 

Later, Harvard’s Robobees project successfully demonstrated flight of the smallest functioning 

ornithopter to date (about 3cm wing span and 100mg weight), by using piezoelectric actuators at 

the wing joints to control and imitate the flapping motions of similarly sized animals [13]. 

Although hovering has been achieved, 4 main problems still exist: 

1. The fabrication process is difficult 

2. The joint structure is brittle 

3. It requires an external power source 

4. It requires an external computer to control the wing 

Also, the hovering mechanism employed will likely need to be adjusted for different sizes, as it 

is known that insects’ flap differently and use more of certain mechanisms depending on their 

relative size and physical ability [5]. 

A couple of years later, Minnick [3] proposed that resonating cantilevers alone can be used to 

generate a net thrust by making them initially pre-curved. Having the base layer be made of a 

piezoelectric material, the cantilever could be actuated electrically at large amplitudes controlled 

by the generated electric field through the contact layers, with the Reynolds number proportional 

to resonant frequency which is governed by the cantilevers’ material properties.  He laid out an 

extensive groundwork regarding the mechanical-electrical-fluidic coupling of such a wing, 

including their expected resonant shape, expected resonant frequency, and expected force (found 

through Computational Fluid Dynamics (CFD) simulations). He showed that it could 

theoretically be used as a practical flight mechanism and built a test model that verified parts of 

the theory. This method has the benefit of easy fabrication/parallelization, less brittle joints and 

easily scalable from centimeter to millimeter length scales.  

This radical design showed that it was not necessary to replicate nature to obtain useful, working 

NAVs at such size scales. He laid out a strong framework for analyzing, testing and fabricating 

these wings, although the aerodynamic effects regarding net force generation and power used 

were not well understood; that is, the CFD drag results only presented a look-up table of values 

for a specific rectangular wing shape. Furthermore, the loose tolerances and material choices 
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during fabrication resulted in inconsistent results that made those exact wings impractical for use 

in NAVs (discussed in further detail in the next section, “background information”).  

In earlier work, many authors did investigate fluidics around a resonating cantilever, made 

possible by approximating the cantilever as a series of oscillating spheres or as an infinitely long 

cylinder. The spherical solution uses already solved analytical expressions for a sphere 

oscillating in a fluid, and considers a cantilever as a ‘string’ of such spheres, where fitting 

constants are used for numerically accurate results [14]. The cylindrical method accounts better 

for the drag created by a solid body and is analytically solved by some authors directly from 

Navier-Stokes equations, as in [15]. Both assume small amplitude vibrations, which allows for 

the use of the simpler, linearized Navier-Stokes equations to obtain the full solution of the fluid 

velocity field around the spheres or cylinder. I have not found analytical solutions for large 

amplitude vibrations, which is probably due to the complexity in solving the non-linearized 

Navier-Stokes equations - a problem usually tackled through numerical means as done by 

Minnick. Also, I found that, generally, authors are not interested in fluid force generation in 

resonating cantilevers, but instead focus on the expected resonating frequency shift and the 

change in the quality factor Q – understandably, due to the common use of thin cantilevers as 

timing and sensing devices. 

There has been work regarding flat plates oscillating at large amplitudes in fluids, exploring eddy 

vortices [16], drag coefficients  [17], and fluidic responses for oscillating plates undergoing 

timely pitching motions [8], [18]–[20], although any reference that considered force on the plate 

shows that the force over a cycle canceled out if the plate is oscillated with 0 pitching angle, due 

to the symmetry in the motion. As a result, for practicality, any investigation of aspect ratio or 

wing shape on large oscillation motions is done with non-zero pitching angle, where an actual 

cycle-average force can be seen. Also, even for large oscillations, many models considering 

pitching motions use small-amplitude oscillation concepts from aeroelasticity theory from [21] 

and [22], due to the similarities in motion for elastic airfoils experiencing ‘fluttering’.  

Since Minnick’s wings generate force with a simple oscillating motion with no pitching, 

undergoing large oscillations and a resonating mode that differs greatly compared to pitching and 

heaving motions (see background information for detail), it is not obvious which results, if any, 



M.A.Sc. Thesis – A. Goussev; McMaster University – Engineering Physics 

8 

 

can be extended to Minnick’s work. Thus, to progress Minnick’s piezoelectric resonating 

cantilever for use as practical NAV wings, I chose to investigate: 

1. General unsteady, non-linear transient force effects on the wing by investigating a simple 

flat-plate and lagged wave model, which potentially are extendible to some part of the 

force generation theory in the wings. 

2. The patterns in force generation and power used by these cantilevers by thoroughly 

examining forces and fluid motions occurring throughout the flapping cycle.   

3. Different aspect ratios of the wing to find more optimal wing designs and extend the 

known parameter space. 

4. Fabricate the wings using different materials, fabrication processes, and tighter 

tolerances, while confirming results with theory. 

Background Information 

In this section I will present the most important and relevant aerodynamic concepts and other 

theory necessary to follow the subsequent chapters. The more specific equations and figures will 

be presented in the chapters as needed. Also, as this thesis focuses on advancing knowledge of 

Minnick’s resonating curved cantilever devices, much of the background information will 

summarize important points from his work; for further detail, the reader is encouraged to read his 

work in [3].  

1.1.1 Wing Structure and Operation 

The wing is built as a multimorph structure essentially containing a piezoelectric center followed 

by a tensile/compressive layer and a conductive layer. The structure used by Minnick is shown in 

the following table in order of layers, along with the description and thickness: 
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Table 1: Stack structure for the wing made in [3] in top-bottom order. 

Stack Material (from top to bottom order) Description Thickness 

SU-8 Tensile Layer 7.6um 

Au Conducting Layer 150nm 

Cr Adhesion layer for Au and Quartz 25nm 

Quartz (x-cut) Piezoelectric Layer 7.6μm 

Cr Adhesion layer for Au and Quartz 25nm 

Au Conducting Layer 150nm 

   

The conductive layer is necessary to activate the piezoelectric strain from the electric field, while 

the SU-8 layer is used to create tension relative to the piezoelectric layer, to give an initial ‘pre-

curvature’ (i.e., curvature with no applied field) and thus bending angle, ϕ. The asymmetry about 

the quartz layer is also necessary for the wing to bend when the quartz expands/contracts in 

response to the electric field. An illustrative example of a released wing with the initial bending 

angle is shown in Figure 3, where ϕ is defined as the angle made by the circular arc, h is the 

thickness and L is the wing length. 

 

Figure 3: Example of fabricated wing pair with an initial bending angle, ϕ, of 75°. 

Fabricated Wing Pair 
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In his analysis of resonating curve cantilevers, Minnick postulated that for a wing with thickness 

(h) much less than length (L), the infinitesimal sections of the cantilever behave as those of a flat 

cantilever, and during resonance, their local curvature changes the same amount as a flat 

cantilever at an instant in time. This allowed him to derive analytical expressions for the first 

resonant mode shape and transient behaviour of thin cantilevers undergoing large oscillations at 

any given pre-curvature. In the solution, for a given cantilever length, the oscillation amplitude 

(Ar), along with ϕ, define the motion completely. An example of the mode shape is given in 

Figure 4, where the cantilever has a ϕ of 75°, and the shapes at the different Ar  represent the 

mode shapes at the cycle maxima; that is, a wing resonating with Ar=0.7 will curve into that 

shape seen at Ar=0.7 at ¼ cycle (starting from the static bending shape), and the shape at Ar=-0.7 

at the ¾ cycle point.  

 

Figure 4: Resonant modes for a wing with ϕ=75° at different Ar (oscillation amplitude) values [3]. 

Regarding resonant frequency, ω, he found that higher ϕ has a stiffening effect, increasing the 

resonant frequency by a factor dependent only on ϕ. For a sense of the magnitude of this effect, 

for a 75° bending angle, the resonant frequency would be about 1.035 times the expected 

frequency for a straight cantilever. In a fluid, however, it is known that resonant frequencies 

decrease for resonating cantilevers due to the added virtual mass of the fluid that follows 



M.A.Sc. Thesis – A. Goussev; McMaster University – Engineering Physics 

11 

 

“attached” to the cantilever, which also has the effect of decreasing the Q. For small oscillations, 

the frequency change is approximated by the following equation [15] 
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Where 
ff  is the frequency in the fluid, vf  is the frequency in vacuum, m is the mass of the 

cantilever, ma is added virtual mass of the fluid, Cm is an added mass coefficient, 
f is the 

density of the fluid and b is the average density of the beam. Here, we see that as a first order 

approximation, virtual mass alone governs the change in oscillation frequency, even when the 

authors solved the problem to account for viscous damping. For small oscillations, this virtual 

mass can be considered as a cylinder of air with diameter and length as the width (B) and length 

(L) of the cantilever, respectively [22]. Thus, for a cantilever, the above equation becomes 
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where for convenience, I rewrite B in terms of the aspect ratio:
2

s

L
A R

B
= . The AsR is a useful 

parameter which is investigated in Chapter 5 and is a common wing parameter used in airfoils 

and the study of flapping wings (see Figure 5 for details).  

Now, although 
f b  , the length is much larger than the thickness, so we cannot ignore the 

2 fL  term in (1.3). In the case of Minnick’s wing that has an AsR=8, (under the assumption that 

this relationship is accurate for large amplitudes) then  
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So, fortunately for Minnick’s chosen AsR, the decrease in resonant frequency is small and was 

acceptably excluded from the framework, but it is important to note the dependence of the 

expected decrease in frequency on AsR. 

Interestingly, Kirstein et al. show in [15] that the Q is inversely proportionate to this frequency 

decrease because of the added mass effect at higher Re; however, for lower Re and high viscous 

damping relative to mechanical damping, the Q is expected to decrease. Note again, that these 

are first order approximations because the formulas presented were derived for small oscillations 

of a straight cantilever. In the case of Minnick’s cantilevers, the Q does decrease, but stays 

relatively large (around 40), resembling an underdamped system; thus, effects to the mode shape 

are considered negligible, while fluidic effects on frequency are ignored for the given AsR.  

 

Figure 5: Dimensions typically used in studies of animal flight and airfoils. Image taken from [23]. 

1.1.2 CFD Simulations 

Knowing how the cantilever is expected to move allows one to predict the fluidic reactions to the 

motion and shape. Such reactions are completely governed by the Navier-Stokes equations. The 

non-dimensionalized version accounting for incompressible flows and no heat transfer is: 

Length (2L) 

Chord (B) 
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where,  
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The dimensionless values Fr and Re result from the non-dimensionalization process, referring to 

the Froude and Reynolds number, respectively. The benefit of using the equation in this form is 

that one can use the solutions at different dimensional scales, so long as the dimensionless values 

Fr and Re remain equal. For the case of a flapping wing, the inertial force is much greater than 

the gravitational force, and so Fr is large and the respective term in (1.5) is negligible; thus, Re 

alone governs similar flow solutions. In other words, the problem can be scaled to any 

dimensions defined by Re and as long as Re is the same, the solution to the dimensionless 

Navier-Stokes equation will be the same as well. 

 This concept of Re scaling is used with steady-state drag coefficients for objects in motion. Such 

an object travelling at a velocity V in a fluid of density 
f  will experience a drag force given by  

 21
(Re)

2
DN fF C V A=   (1.6) 



M.A.Sc. Thesis – A. Goussev; McMaster University – Engineering Physics 

14 

 

Where CDN is the drag coefficient and A is an area describing the object. In terms of Re, this 

becomes 

 

2
21

(Re) Re
2

DNF C



=   (1.7) 

Thus, we can expect that the drag force on an object is independent of its size, if Re is the same.  

Another useful metric is the power used by the travelling object to move the fluid. This can be 

similarly defined as 

 

2
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Where CDP is the power drag coefficient. 

It is important to note at this point that equations (1.6)-(1.8) are typically used only for 

steady-state cases. Some authors have extended the use of these steady-state drag definitions to 

transient problems involving objects oscillating in fluids [3], [17], [24]. Minnick did this to both 

the force and power by averaging them over a cycle and defining the parameters in Re as 

 Re fluid

V LB



   (1.9) 
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A L
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
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where 𝜔 is the resonant frequency, L is the cantilever length, B is the cantilever width, 𝛾 is the 

frequency correction factor (i.e., the stiffening factor mentioned earlier), and Ar  is the oscillation 

amplitude constant that governs the resonant shape of the cantilever for a given ϕ (as shown in 

Figure 4). The Vrms definition comes from taking the RMS velocity over the wing length, when it 

passes the equilibrium (maximum velocity) position.  

Unfortunately, finding analytical solutions to the CDN and CDP dependence on Re and the 

flapping shape (governed by Ar and ϕ), is extremely difficult due to the non-linearity in (1.5) and 

the unsteady nature of the problem. Instead, 3D Computation Fluid Dynamics (CFD) simulations 
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were done for a cantilever of AsR=8 for a wide range of Re, Ar, and ϕ. Minnick also confirmed 

through simulations that the concept of Re scaling still works for these unsteady, transient cases, 

as long as the cantilever’s Ar, AsR, ϕ and Re remain fixed. The exact CFD solver, mesh 

parameters and simulation setup information can be found in ‘Appendix K’ in [3]. 

The contour plots for the CDN and CDP values are shown in Figure 6 and 7. 

 

Figure 6: CDN plot showing the force drag coefficient values as a function of Ar, Re and ϕ. Higher values of 

CDN correspond to higher net force generation (for equal Ar, Re and ϕ). 
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Figure 7: CDP plot showing the power drag coefficient values as a function of Ar, Re, and ϕ. Higher values of 

CDP correspond to higher cycle power used (for equal Ar, Re and ϕ). 

The following is an example on how to use these plots: 

Let us imagine that we can build a wing with the characteristics shown in Table 2 and that we 

can actuate it with an electrical potential high enough such that it resonates at an amplitude 

Ar=0.7 (this scenario is exactly the case for Figure 4). 

Table 2: Example characteristics of a fabricated wing. 

Characteristic Value 

AsR 8 (must be this to use CDN and CDP plots) 

ϕ  75° 

f 340Hz 

L  2mm 

B 0.5mm 
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Using equations (1.9) and (1.10), the corresponding Re for this wing is calculated to be 100. At 

ϕ=75°, Ar=0.7 and log10(Re)=2, the corresponding CDN and CDP values would be about 0.138 and 

0.16, respectively. These points are marked in both Figure 6 and 7 as well. Applying these to 

equations (1.7) and (1.8) results in an expected average force of 0.367μN (for 2 wings per 

flapping cycle) and an average power of 0.53μW. 

1.1.3 Issues 

Although a lot of groundwork has been presented for this wing device, there is room for 

improvement in the fabrication method/stack structure materials, and in the general 

understanding of the fluid-dynamics around such wings. 

Specifically, the drag coefficient values only exist as ‘look-up’ tables, and little is understood 

about why the trends seen in Figure 6 and 7 exist, and what would happen if a different wing 

shape was used. Also, the stack structure presented in Table 1 was easy to fabricate and resulted 

in very high curvatures during Minnick’s testing, but the use of SU-8 as the tensile material was 

impractical because its material properties would respond strongly to changes in temperature, 

pressure and humidity. As a result, the curvature of the wings would change daily, and the 

curvature would be permanently removed when exposed to a vacuum due to outgassing. These 

issues and gaps in knowledge need to be addressed to make these wings a practical reality for 

MAVs. 
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2 THE WAVE-WING 

INTERACTION 

When examining the transient forces on a set of wings for any given Ar, ϕ, Re and AsR, it can be 

seen that the forces always lag the wing position. The amount of lag is also dependent on some 

of these parameters at certain extremes.  It seems that the wings drag fluid along during the 

flapping motion and later ‘push’ against it, resulting in a lagged force generation. This chapter 

thoroughly explains this phenomenon by investigating and modelling the interaction between a 

flapping wing and the air ‘wave’ surrounding it. We will see that this wing-wave effect 

dominates the force time dependence in flapping wings and is expected to be a general effect for 

flat shapes following oscillatory motion.  

The Axial Components of the Force 

In all the simulations performed in this thesis, the frame of reference is such that the x direction 

is chord-wise (i.e., in direction of the width of the rectangularly shaped wings) and the z 

direction is upward and positive in the direction of net force. The origin of all three lies at the 

center of the two-wing or one-plate system. This is illustrated in the following Figure 8.   
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Figure 8: Visual representation of the simulated wing and components, taken in the reference frame used 

throughout the research. To preserve simulation time, only one quarter of the above wing system is 

simulated, with symmetry planes normal to x and y directions. 

When considering the net force generated for a wing pair, force components in the x & y 

directions are zero by symmetry; thus, the net force is the force in the z-direction (multiplied by 

4 if only considering the force of a half of one wing, which is what was typically simulated for 

computational efficiencies). Similarly, when considering only one wing (as in the left half in the 

above figure) the x-component of the force is zero, but the y-component remains, meaning the 

total force is a vector sum of the differential y and z component of the force vector over the 

surface of the wing. This one-wing investigation (still simulating wing-pairs flapping but looking 

at just one wing) presents more information about the transient force distribution and hence, it is 

of primary concern for this chapter. 

It is important to note that the y and z force components will naturally be different for different 

wing shapes at an instant, even if the magnitude of the vector sum is equal; thus, to group the y 

and z force components and compare flapping shapes with naturally different positions, I use the 
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magnitude of the vector sum of the forces for the following figures. I will refer to this as the 

transient force magnitude (TFM). 

Wing Simulation Observations 

For the remainder of this chapter, wing simulation results with a ϕ of 90o are investigated 

because this parameter demonstrates a good ratio of net force produced to power required (for a 

rectangular wing of AsR=8), and therefore is an interesting shape to investigate [3] . It is also a 

good space to begin wing design optimization through variation of other parameters like the AsR 

which will be done in Chapter 4. Although most of the work focuses on this area, we will see 

that other ϕ follow similar trends. 

The following are plots of the normalized TFM of the wing force throughout a flapping cycle, 

for a ϕ of 90o. The plots were normalized by dividing all values by the maximum found in the 

respective data to bring attention to their relative phase and the wing position (the actual forces 

on the wings of Re=103.5 are 3 orders of magnitude higher than those of Re=102).   

 

Figure 9: Normalized TFM for Reynolds numbers 103.5 and 102.0 for the yellow and blue curves, respectively, 

with an AsR of 8. Included is a wing visualization to show the wing shape corresponding to the wing position. 
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From the above plot we can see that both normalized TFMs are in-phase with each other, with 

quite consistent overlap in the latter ¾ of the cycle, and slight deviation before that. Both 

transient curves are out of phase from the wing position by about 10% of a cycle. For the 

convenience of the reader, a visual representation has been added to this plot to clarify the 

meaning of ‘wing position’; this convention will be used for the rest of the thesis.  

The following are two more plots examining Re=103.5 vs. Re=102 for wings with identical ϕ and 

Ar but different AsR: the first has AsR = 1 and the second has AsR=0.25. 

 

Figure 10: Normalized TFM for wings of AsR=1. 
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Figure 11: Normalized TFM forces for wings of AsR=0.25. 

Without concerning ourselves with the changes in the shapes and the relative differences in the 

TFMs (discussed thoroughly in the next chapter), we notice again that the force generated on the 

wings always lags behind the wing position by about 15-20% of a cycle (making it lead the wing 

speed by about 5-10% of a cycle). As mentioned earlier, this is true for all cases and might be 

unexpected whether one considers that an object accelerating a mass should have its acceleration 

in phase with the force, or that the point of highest drag force should be a quarter cycle out of 

phase (making it in phase with velocity). The former case is related to what many authors 

consider as the virtual mass when studying objects undergoing small oscillations, defined as a 

mass of air attached to the body which always moves in phase with the object [15], [17], [21], 

[22]. This virtual mass seems to always be included in calculations regarding fluid-cantilever 

interactions, yet unsteady fluidic effects are often ignored. The most related fluidic effect that I 

have found is the wake-capture effect proposed in insects where vortices generated in previous 

half cycles can help to generate lift during the reverse stroke [25], but this is for the complex 

wing movement case. At any rate, the phase lag effect is very noticeable and is a general 

occurrence in the simulations; thus, we begin the breakdown of the thrust generation on the wing 

with an explanation of this phenomenon.  
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2.1.1 Position-Force Phase Lag 

The reason that the force on the wing lags its position is likely from the fact that the wing does 

not simply push a mass, but it oscillates and interacts with earlier ‘pushed masses’. The mean 

mass flow is the wave created by the wing that leads it. This wave can then perhaps be 

considered as a sheet or a point mass (at least to explain the interference with the wing). To 

visualize this in the simulations, the mass-flow weighted average position was found at an instant 

in time around the wing.  This average position was taken along several straight lines of varying 

zi coordinates along the yz-plane that intersects the wing, and calculated as follows: 

 
( , ) *

( , )

i

i

v z y y
y

v z y
=




  (2.1) 

Where ( , )iv z y  is mass flow. The result is shown in the following figure for an instance in the 

flapping cycle, with ( )iy z  represented with black dots. Note that simulations have shown that 

the position of these mass-weighted averages exists away from the wing when it is at 0 velocity, 

and so this does not simply represent the virtual mass of fluid attached to the wings (which 

would be 0 and overlaid with the wing). 
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Figure 12: Mass-Flow weighted position mean that demonstrates the wave lag behind the wing. Note that 

here the wing is in motion opening upward. The black dots represent the mean positions, and when 

connected, give an idea of the wave sheet that follows the wing at this moment in the cycle.  

This same mass-sheet then interacts with the fluid between it and the wing, effectively feeling 

drag (and adding to the drag force on the wing). Despite this approximate explanation, we can 

nevertheless attempt to model the system as a mass-damper interaction, with a moving wall 

representing the wing, as shown in the following figure. 

 

Figure 13: Equivalent mechanical system approximation of the wing-fluid interaction. Note that the dashed 

lines represent the equilibrium position for the respective functions. 
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In the above model, the damper accounts for the added drag force felt by both the wave and the 

wing, based on the relative velocity of the two.  

For simplicity, we will assume laminar flow (linear drag force dependence on velocity) and so 

the differential equation for this system is 

 ( )mx L x y= − −   (2.2) 

At high t, this model has a steady sinusoidal solution for the motion of the mass with the added 

phase offset θ as shown below 
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The following is an example plot of the effect which shows the plate position and the force.  
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Figure 14: Plot of analytical solution to the mass-damper model. 

Although this model was based off a simple approximation, we can see from Figure 14 that it 

does match the simulated results (Figure 10 and 11) well, once correct L, 𝜔 and m values are 

chosen.  This suggests that there is a phase lag dependence on the amount of fluid drag, the 

‘mass’ of the wave, and the frequency of the plate oscillation.  

2.1.2 Frequency Dependence 

We will begin with investigating the frequency of the analytical model as it is the most obvious 

parameter that relates to the actual simulated wing, while the mass and damping are still loosely-

based concepts. The Reynolds number in the CDN and CDP plots (Figure 6 and Figure 7) is 

frequency dependent; thus, it makes sense to try and get a sense of the effect of frequency in the 

simulation, and how well it matches this model. In an attempt to remove other force-contributing 

factors such as the flapping motion and initial curvature, we simplify the case to that of a square 

plate, sinusoidally oscillating in air. This can be thought of as an approximation of a wing with 

ϕ=0, and AsR=2. The transient force simulation results are shown in the following figure, for 

varying frequencies (and thus, Re). 
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Figure 15: Normalized magnitudes of transient forces flat plate oscillations at varying frequencies. Note that 

the amplitude for oscillations here is 1.0mm, or half the wing side length. 

Here we see the results of the flat plate motion at different frequencies, with Reynolds numbers 

calculated ranging from 0.13 to 130 000 corresponding to frequencies of 0.1Hz to 1 000 000Hz, 

respectively. Below 100Hz, there is a clear phase shift toward the right, with maximum force 

occurring close to the beginning and middle of the cycle. At this point, the force is in phase with 

the velocity of the plate. This is consistent with the concept of Stokes’ drag where at low 

Reynolds numbers, viscous forces dominate over inertial forces, and the drag force is in phase 

and linearly proportionate to the relative velocity of the system as shown by the following 

equation: 

 dF S Bv=   (2.4) 

Where C is a drag constant, 𝜇 is the dynamic viscosity of the fluid, B is the characteristic length 

of the object and v is the relative fluid velocity. Although (2.4) is derived for steady-state 

systems, this is a good assumption at the limit of low oscillation frequencies. In fact, this is 

related to the laminar flow assumption that gave the second term in (2.2), although it must be 

stated that the model is incomplete since the mass-damper system becomes in-phase with 
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position at low frequencies. At this point of low Re, the model changes to a simple wall-damper-

plate system as in the following figure: 

 

Figure 16: Adjusted model for the case of low frequencies/Reynolds numbers. 

In any case, the most relevant Reynolds numbers are those between 13 and 130000 (i.e., 100Hz-

1 000 000Hz) that span the Re parameter used in the CDN and CDP plots. We can see from Figure 

15 that there is little difference in the plot shapes except for cases below 100Hz where the 

corresponding Re is less than 13. Here, due to the lower Re, the plate has more viscous forces 

present which have a greater effect on the overall TFM plot shape than those of higher Re. That 

being said, to a first order approximation, the plot shapes do not deviate much from one another, 

and we will see in Chapter 3 that these deviations are negligible when considering the main 

reasons behind net force generation.  

We can also note the simple force distribution about the flat plate simulation during the cycle. 

An example surface plot of where force is generated maximum velocity is shown in the 

following figure: 
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Figure 17: Surface pressure plot for half a cycle on a face of the oscillating flat plate. 

We can see that the majority of the force differential is centralized on the plate due to symmetry 

and the force decreases near the edges due to pressure escaping on the sides. Note how the 

corners provide two sides through which pressure can equalize, and so we see low force per area 

in that vicinity (an important note that I will return to when I discuss AsR effects in chapter 4). 

At this point, it is important to make three observations: 

1. The results from the flat plate transient simulation show very little phase-frequency 

dependence for the Reynolds numbers of interest (Re>100). This is also true for the 

transient results for a chosen wing AsR and ϕ (90o) as shown in Figure 9 - Figure 11. 

2. The results of the flat plate simulations are again out of phase with the wing/plate 

position which is consistent with the model and wing transient force data. 

3. The force plot shapes of the flat plate simulations are very similar to those of a flapping 

wing (comparing Figure 15 to Figures 10-11). 

Point 3 is particularly interesting as it suggests that the transient force magnitudes are not very 

dependent on how the wing flaps. This result is peculiar considering that each part of the 

resonating wing at a distance from the center always moves following a different path and 
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velocity, while for an oscillating plate, all points follow the same movement. Most likely, this 

relationship has to do with the fact that the majority of the force is generated near the parts of the 

wings that move at highest velocity: the area near the wing tips. This fast moving area more 

closely parallels a flat plate motion.   

Considering that the simple oscillating square plate produces qualitatively similar force plots to 

that of the complex wing resonant flapping shape presented in “Background Information”, we 

can continue to use this model to decouple the complexities of the force generation of the curved, 

resonating cantilever wing.  

2.1.3 Oscillation Amplitude Dependence 

The second, major variable in the CDN and CDP plots is the amplitude of the wing ‘flap’, Ar, 

defined as the ratio of the path swept by the wing tip to the wing length. I ran similar plate 

simulations for Reynolds numbers of interest of varying Ar, which in this simple case is just the 

amplitude of the motion. Note that the results of the previous subsection use an Ar of 1, and at 

around f=100 000 Hz, the transient force results consistently overlapped (i.e., there was low 

frequency dependence). The following are the force results of different Ar at 100 000Hz: 
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Figure 18: Normalized magnitudes of transient forces flat plate oscillations at varying amplitudes. The 

oscillation frequency here is 100 000Hz. 

Notice how the phase shift for smaller oscillations tends toward the wing position curve where it 

matches the function shape and is almost exactly in-phase at amplitudes less than 1% of the wing 

size (Ar=0.01 and Ar=0.001 which overlap in the above plot). In terms of Re, at constant 

frequency, the phase shifts to the left with decreasing Re.  

This is what is referred to as the “virtual mass” effect mentioned previously, where for small 

oscillations, the air near a cantilever will be displaced by the moving cantilever and can be 

considered as an inertial force term, proportional to the cantilever acceleration only. Continuing 

with the mass-damper analogy, this would be equivalent to the solution in the limit of high air 

damping that brings the wing and mass in-phase.    

Notable Conclusions 

In this chapter, the wing-wave interaction was thoroughly inspected with regards to varying 

frequency and flapping amplitude, by simulating the simple case of an oscillating plate. The 

interaction between the wing and the moving wave was explained by analogy to a mass-damper 
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system. For further investigation into the nature of the force generation of these 1-dimensional 

flapping wings, it is important to note the following conclusions: 

1. There is little frequency dependence for the force lag for wings above Re=100. 

2. Flat plate simulation results show that the transient drag force is very similar to that of 

simulated wings (when normalized), which suggests that the transient force magnitudes 

of the wing is not dependent on the flapping shape of a wing (to a first-order 

approximation).  That is, a wing can be curling or oscillating up and down yet similar 

TFM plots will be seen.  

3. The force phase of the simulated plate becomes more in phase with lower oscillation 

amplitude (shifting the force plots to the left).  

In the next chapter we will see how these results, along with effects from varying wing flapping 

parameters can explain such different net thrusts and CDN values for varying parameters Re, Ar 

and ϕ.  
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3 FORCE GENERATING EFFECTS 

In the previous chapter we looked at the Wing-Wave interaction: How the wing drags a wave of 

air along with it leading to phase-lag for the air's force on the wing.  In those results, the entire 

force magnitude was used (rather than just force in the thrusting direction, z) for comparison to 

simpler cases/models and to note relationships between parameters; this let us notice bulk "total-

force" effects that occur on the wing.  In this chapter, we will build upon the observations and 

explanations of Chapter 2 to explain how a net-thrust force (on average over a flapping cycle) is 

generated on the wing as it interacts with the transient wave created in its wake. We will see that 

the TFM is mostly the same for different ϕ with all other things equal, and that actual force and 

efficiency is related to the wing positions during the cycle.   

Results of Investigation of the Y & Z Force Components 

To examine different possible dependencies of the net force over a cycle, we begin by selecting 

points of interests based on the earlier CDN plots. Looking back at that plot in Figure 6, there 

appear to be a few major phenomena occurring: 

1. In general, above Ar=0.2, the CDN tends to increase with increasing ϕ, up to a peak at 

ϕ=90°, around where Minnick in [3] found that generally efficient and practical wings 

exist (given an AsR=8). 

2. For a given ϕ, the CDN generally increases with increasing Ar and increasing Re. 
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3. An exception to phenomena 2 is an anomaly that occurs at 0.1<Ar <0.2 and Re>102.0, 

where high CDN is found around Re=103.5. This manifests strongly at low ϕ and the CDN 

in the area gradually reduces with increasing ϕ. 

Based on these observations, 5 points (P1-P5) are chosen for investigation that fall into the 

extremes of the phenomena, as shown in Figure 19. 

 

Figure 19: CDN plots at ϕ=35 and 90°, with points P1-P5 representing points of interest to be examined. 

The corresponding force plots for each point, along with the wing position are presented in 

Figure 20. 
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Figure 20: Stacked plots of transient forces on the wing (left) and the wing flap position extremes. The white 

wing outline represents the resting wing position for that ϕ, while the top and bottom blue shapes represent 

the positions at 1/2π and 3/2π of a cycle while flapping, respectively. 
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General Net Force Generation and Efficiency 

Before we begin breaking down the effects seen in Figure 20, one concept must be pointed out 

regarding the generation of net z force of a wing or any oscillating object:  

Over an oscillation cycle, there must exist an asymmetry between the negative and positive z 

force contributions, such that there is more positive force, in order to get a net positive thrust. 

The above statement may seem obvious, but it sets the fundamental fact upon which all further 

explanations build. It follows that, other things equal, more symmetry in the z-force over a cycle 

means less net force is generated, while higher asymmetry in favor of the positive force will 

generally lead to higher efficiency in wings. Looking at the magnitude plots of Figure 20, we see 

that they all appear to roughly follow the function 

 ( ) sinF t A t  +   (3.1) 

where sin 𝜔𝑡 is the normalized wing position. This is consistent with the flat plate oscillation and 

lagged wing-wave interaction described in earlier. The main differences are in the phases and 

distribution of the force magnitude between the y and z axis (shown in blue and green, 

respectively). Considering this, we can see that the absolute limit in efficiency (and maximum 

net force for a set of parameters), is when all the force magnitude during the first half-cycle (the 

downstroke) is projected onto the wing as it is most parallel to the y axis, while the other half 

cycle that generally contributes to negative force (the upstroke) is projected in the z-direction. 

This way, the resultant force of the upstroke has no negative contribution in the thrusting 

direction z. This limit is equal to the average of the above equation for half a cycle: 

 
0

1
sin

Max

T

netF A t dt
T

 = +   (3.2) 

which is equivalent to  

 max2

0

22 2
sin

Max

T

net

FA
F A t dt

T
 

 
= + = =   (3.3) 

Where Fmax is the maximum instantaneous TFM. This theoretical max can be useful in measuring 

the efficiency of the wing, comparing to nature’s fliers, or testing if certain parameters can even 

achieve the minimum force necessary for flight. 
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Note that it can be argued that the best scenario would be where all the force throughout the 

entire cycle translates to positive-z force. This has never been seen in the simulations and is in 

contradiction with the flat plate model which suggest that there will always be a counter force 

during one half of a cycle for such a simple flapping motion as shown in Chapter 2. That being 

said, one of the reasons that many insects and some birds have evolved to produce complicated, 

3 degree-of-freedom wing flapping motions is to achieve this type of scenario where both halves 

of the flapping cycle result in positive z force and higher power efficiency (a common force plot 

for the flapping cycle of animals can be found in [8], [26]). 

Key Observations and Explanations 

In this section we will discuss the force results shown in Figure 20 in greater detail to understand 

not only the CDN plots, but in general, the factors affecting the wing force on a first order scale. 

We can later extrapolate this information to make better parametric decisions in the creation of 

more powerful, efficient wings. As done earlier, first the TFM will be discussed based on phase 

similarities, function shapes and amplitude differences. Later, we will see how this magnitude is 

projected differently onto the y and z axis of the wing, which dictates the actual net thrust on the 

wing.  

3.1.1 Phase Similarities 

Looking at the points of minimum TFM in Figure 21, we see that certain plots have the same 

phase (as shown by the dashed lines). Note that I have rearranged the order of plots to make this 

easier to see; now we compare each static bending angle at Re=103.5, first at Ar=0.5 then 

Ar=0.15. 

The similar phases support the idea that the TFM is independent of the ϕ, and strongly dependent 

on the Ar, as shown by the flat plate oscillation results. We can also note the clear negative phase 

shift for Ar=0.15 when compared to Ar=0.5. This too is consistent with the flat plate 

simplifications in Chapter 2 where inertial mass effects became more prominent at smaller 

oscillation amplitudes for a fast moving wing (high Re). Note that although the Re is equal in all 

four cases, the simulations done at Ar=0.15 oscillate at roughly 0.5/0.15=3.33 times the 
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frequency of those at Ar=0.5 which is a result of the Vrms definition (equation (1.10)); however, 

as in the flat plate simulations, this small frequency change has no noticeable effect on the phase. 

 

Figure 21: Transient force plots and corresponding wing positions for P1, P2, P4 and P5. 
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3.1.2 Function Shapes 

Another curious result is in the similarities in certain TFM shapes. Although earlier I claimed 

that the magnitude can be roughly described by that of a sinusoidal function, we can see that 

even certain supposed second order effects remain constant between simulations. In the above 

figure, we see that the same pairs of wings with equal Ar and Re (P1&P4 and P2&P5) have a 

similar TFM dependence on the cycle time, even though the flapping shapes vary so drastically. 

Consequently, we may approximate that 

 1 2( , ) ( , )F t cF t =   (3.4) 

for equal Re and Ar, where C is a constant.  

It is likely that changes in the function shape are due to complex wing interactions with the 

surrounding air and the induced wave. It has been seen that changes in Ar result in different 

magnitude vortices occurring near the edges of the wings. Vortices occur from large gradients in 

local pressures and mass flows, and such large gradients in this situation occur near the extremes 

of the wing motion, where the induced wave continues to flow past the wing boundary, while the 

flow near the surface follows the wing motion (in the opposite sense). An example is shown in 

the following figure, in which the wing is in the downward motion after the first extrema. The 

vortex phenomenon shown is more dependent on the transient wing velocities near the 

boundaries, which are constant for wing motions at constant Ar and ω (and hence, Re). 
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Figure 22: Example of vortex shedding of a wing just after the first quarter cycle for Phi0=90, Ar=0.5, and Re 

=10 3.5 . The arrows show the normalized local velocity vector, and the colours denote the pressure. Here, the 

wing is beginning its downward motion ‘dragging’ air behind, yet the induced lagged wave (seen by the 

velocity vectors on the top right half of the plane) continues upward. The result is a gradient in mass flow and 

a vortex above the wing.   

3.1.3 Amplitude Differences 

We have seen how transient force magnitudes at the same Ar behave similarly during a cycle, yet 

there is a noticeable amplitude difference. Using (3.4) and comparing P1 and P4 of Figure 21 

such that the RMS of the residuals between the plots is lowest, we find that 

 1 2( , 35 , 0.5) 1.07 ( , 90 , 0.5)o o

r rF t A F t A = = = = =   (3.5) 

Vortex Core 

Induced ‘wave’ 

from first half cycle 
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while P2 and P5 have the relation 

 
1 2( , 35 , 0.15) 1.15 ( , 90 , 0.15)o o

r rF t A F t A = = = = =   (3.6) 

It is also true that in general, the TFM of both wings with Ar=0.15 is higher than the counterparts 

at Ar=0.5 (at constant Re). This is a consequence of the inertia of part of the ‘wave’ flowing 

behind the wing. When the wings move at small amplitudes, a larger portion of the built-up mass 

flow (i.e., the lagged wave) is encountered on the reverse stroke, since the wing flaps between 

more parallel extremes (i.e., low Ar flapping wings will be pointing in almost the same direction 

at the end of the downstroke as they are at the end of the upstroke). At larger flapping 

amplitudes, the wing curves largely while the mass flow tends to follow a straight path; thus, the 

flow escapes the vicinity of the wing, contributes less to the pressure build up on the reverse 

cycle, and ultimately produces less instantaneous force. We can see this clearly in Figure 23 

where vector plots of the mass flow around the wing are presented for both the Ar=0.5 and 

Ar=0.15 cases (near the extremes); these plots show the same greyscale of pressure, so the more 

extreme shading on the Ar=0.15 case demonstrates the increased magnitude of this wing-wave 

interaction, while the direction of the green (i.e., high) velocity vectors gives an impression of 

the source of this pressure difference. 
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a)  

b)  

Figure 23: Pressure contour and mass flow vector plot taken on the symmetry plane normal to the x axis near 

the end of the first quarter cycle for a) Ar=0.15, ϕ=90° and Re=103.5 and b) Ar=0.50, ϕ=90° and Re=103.5. The 

colour scale shows the magnitude of the vector, increasing from dark blue to green. 
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At Ar=0.15 (Figure 23a), we can see that most of the mass flow follows closely behind the wing 

at relatively normal directions to the surface. At Ar=0.50 (Figure 23b), a lot of the mass flow 

escapes past the wing in the +y direction, and fluid close to the wing follows a more parallel 

trajectory. This latter case leads to less normal mass flow near the wing during the wing-wave 

interaction, and thus less force (as seen by the higher-pressure contour at Ar=0.15). Note that 

between both cases, the Vrms is almost identical at all instances throughout the cycle.  

A similar explanation can describe the amplitude differences shown by equations (3.5) and (3.6). 

A resonating wing with a higher initial curvature tends to bend away from its surface normal, 

more so than a straight, ϕ=0° wing – see Figure 24 for an exaggerated visual. This effect can be 

quite pronounced as seen in Figure 14 where the transient normal surface Vrms is shown. Here, 

at each point on the surface of the wing, the local wing velocity was projected onto the local 

surface normal - qualitatively, this is a representation of how the wings moves relative to its 

normal. The Vrms was then taken over the entire wing. If a wing is moving in a direction 

generally normal to its surface, then one can expect that, as previously stated, a stronger 

interaction between the wing and wave would take place. It turns out that resonating motions at 

smaller ϕ tend to follow more closely to the surface normal, for a given Ar. I must note that this 

explanation is harder to justify, as the differences in the TFMs at constant Ar are not very large, 

and other second order effects from local vortices and interferences might also play a factor. In 

any case, I consider this to be a second order effect and, as we shall see shorty, it is not necessary 

in describing the phenomena observed in the CDN plots. 
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Figure 24: Exaggerated visual showing the differences in wing velocity of a part of the wing and the surface 

normal at that point. 

 

Figure 25: RMS over the wing surface of the normal-to-the-surface component of the wing's velocity 

throughout a flapping cycle. 

3.1.4 Y and Z Force Projections 

An important and unexpected observation that was implied in the approximation equations (3.1)-

(3.3), is the remarkable symmetry about the minima in each plot of the TFM. It was suggested by 
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Minnick in [3] that the main reason for the net force generation in resonating curved cantilevers 

is that a closed wing has less drag than an open wing, as in steady state flows; thus, the closed 

half of the cycle would have less drag force than the open half (in opposite directions) and the 

net effect is positive thrust. However, we see very strong similarities in the TFM generated for 

both halves of the flapping cycle in each case, even at the high CDN values of P2 and P5. In fact, 

in the case of P5, if we integrate the force magnitude between the dashed lines of Figure 21, the 

second half (corresponding to the negative z force) is about 2% larger than that of the first. This 

begs the question: how do the wings really generate a net thrust? 

When considering a flat plate oscillating like in the previous chapter, the net force over a cycle 

was always 0 since the force in the z direction was the same in both halves of the cycle due to the 

plate shape and orientation remaining constant. In the case of a flapping wing with an initial 

curvature, the shape of the wing changes with time such that sometimes it is more parallel to the 

z axis (considering the wing as flat and straight). Depending on its transient position, the forces 

on the wing surface will be projected differently on the y and z axis. For example, in P4, when 

the wing is open at π/2, it is generally more parallel to the y axis and hence a larger proportion of 

the force is in the z-direction (see corresponding wing flap position extreme on the right of the 

Figure 21). Conversely, at 3π /2, when the wing is closed and more perpendicular to the y-axis, 

the total y force proportion is larger. Looking at P1, at π/2 the z force also dominates, while at 3π 

/2, the wing is roughly at a 45° angle to the horizontal, and so the forces are projected almost 

equally in both directions. 

This effect is seen even more clearly when looking at P2 and P5, which both flap at the same 

amplitude. Here, the y and z transient forces of P2 and P5 are reversed; at P2, most of the force is 

projected in the z direction, due to the transient wing shape consistently being more 

perpendicular to the z axis, while the same is true for the y-axis for P5. 

In the ideal case, the TFM would have a large amplitude and a phase such that for a given wing 

flapping shape, the maximum positive force magnitude occurs at the wing position most parallel 

to the z axis, and the maximum negative force occurring at the position most perpendicular to the 

z axis. This would approach the set limit for this flapping mechanism given by (3.3). 
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3.1.5 Skin Drag 

One last significant observation is regarding the considerably low TFM amplitude of P3 when 

compared to P4 in Figure 20. This can be explained by noting how force scales with Re2 based 

on the drag force equation presented in Chapter 1 (equation (1.7)). Since the only differences in 

these cases are that at P3, Re=2.0 and at P4, Re=3.5, the TFM of P3 should be scaled down by a 

factor of (
103.5

102.0)
2

= 1000, under the assumption that drag force is still proportional to Vrms2 

over this range. If we account for this and overlay the two plots as in Figure 26, we see that they 

match closely. 

 

Figure 26: TFM of P3 and P4 with the former scaled by a factor of 1000. 

At this Re, the presence of vortices and turbulent effects is small, and we can see this effect from 

the smoother, sinusoidal shape of P3. (Note how the consistency in the transient magnitudes also 

justifies Minnick’s fortunate choice in defining the velocity scale by the spatial Vrms, for this 

steady-state analogue.) 

There is, however, a contradiction in the above result: since both transient wing flapping shapes 

(i.e., their resonant modes) are exactly the same, and the TFM are similar, then the Y and Z 

projections and the CDN value should be very similar as well; however, the actual CDN value for 

P3 is about half of that for P4 (where Re=103.5) . If we look closely at the overlaid z force plots 

shown in Figure 27, we see that there is a discrepancy at the second cycle where more negative 

force occurs at Re=102.0, which contributes to a net lower force (and significantly lower CDN).  
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Figure 27: Transient z-force for P4 and P3 (scaled), where the red area shows the larger amount of negative 

z-force throughout the cycle at P3. 

If we look deeper into the origin of the transient z force by splitting it up into the tangential force 

(i.e., shear force due to viscosity effects), and normal force (i.e., inertial force effects), we see 

that at parts of the cycle, the tangential forces become significant (see Figure 28). This is 

expected since at low Re, the ratio between inertial and viscous forces decreases and viscous 

effects begin to play a more noticeable role. We see that the viscous forces also follow a 

sinusoidal shape, only shifted down such that there is a more negative contribution in the second 

half of the cycle (adding to the overall negative z force).  

It follows that if we disregard viscous effects, then we are left with only the inertial fluid-wing 

interactions and thus the inertial forces should match up more closely. Looking at Figure 29, we 

see that this is the case when only normal force components are considered (which roughly 

represent inertial forces on the wing).  
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Figure 28: Transient z forces of P3, including the inertial, viscous and total force. 

 

Figure 29: Transient total z-force of P4 and the inertial component of the z-force for P3 (scaled). 

The viscous force seen in Figure 28 is referred to as skin friction drag and arises from friction 

between the boundary layer of the object and the fluid passing tangentially. The size of a 

boundary layer is related to the area of the object and its surface roughness and so skin friction 

drag generally increases with increase in object area (where the area normal is perpendicular to 

the flow). In the case of these wings, at Re<102, the skin friction drag becomes more comparable 

in scale to the inertial forces, but its effect related to the wing position is in the opposite sense: 

when the wing is parallel to the z axis, skin friction drag projects more onto the z axis and 

‘drags’ the wing down. This is shown by the negative shift in the transient viscous drag in the 

above plot. An illustration of both the inertial and viscous drag contribution is shown below.  
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Figure 30: Visualization of the interaction of the viscous and inertial drag on the wing during the end of the 

downstroke. 

Summary of First-Order Effects 

Summarized effects on force are presented in the following three tables with each proceeding 

table showing the relationship to the previous table’s dependent variables, eventually leading to 

the net z force generation. The noticeable and moderately noticeable (second order) effects are 

highlighted for clarity in green and yellow, respectively. The effects in each cell assume that all 

other variables stay constant. 

Relative Normal 

Velocity Contributing 

to inertial forces (form 

drag) 

Tangential Velocity 

Contributing to viscous 

drag (skin drag) 

Wing Motion 
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Table 3. Tertiary dependencies related to the CDN. 

Dependent Variables Dependencies on CDN  

Ar ↑  ϕ ↑ ω ↑ ξ ↑ 

TFM Amplitude  Decreases Small 

Decrease 

Low 

Effect 

Low 

Effect 

TFM General Function Shape  Low Effect Low Effect Low 

Effect 

Low 

Effect 

TFM Function Asymmetry about 

Inflections 

Low Effect Low Effect Low 

Effect 

Low 

Effect 

TFM Phase Small 

Decrease  

Low Effect Low 

Effect 

Low 

Effect 

ξ Increases Increases No Effect - 

Inertial Drag/Skin Drag (Re) Increases Low Effect Increases Low 

Effect 

↑ Z-Force Projection Amplitude (at 

Low Ar) 

- Decreases Low 

Effect 

- 

     

In Table 3 I have defined the parameter ξ as a scalar quantity describing the transient flapping 

shape of the wing. Qualitatively, ξ is the physical asymmetry between the flapping extremes 

about this z axis. Quantitatively, I define it as the ratio of the xy-plane-projected wing area 

between instantaneous wing shapes at π/2 and 3π/2. 

Table 4. Secondary dependencies related to the CDN. 

Dependent 

Variables 

TFM General 

Function 

Shape ↑ 

TFM Function 

Asymmetry about 

minima ↑ 

TFM 

Phase ↑ 

ξ ↑ Inertial 

Drag/Skin 

Drag (Re) ↑ 

Z-Force 

Projection 

Efficiency 

Low Effect Increases Increases Increases Increases 
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Table 5. Primary dependencies related to the CDN. 

 TFM 

Amplitude ↑ 

Z Force Projection 

Efficiency ↑ 

↑ Z Force Projection 

Amplitude (at Low Ar) 

CDN (Normalized Net 

Z Force) 

Increases Increases Increases 

    

Neglecting all variables related to small effects, we arrive at the simpler CDN dependence shown 

in the following figure. 

 

 

Figure 31: Simplified chart explaining the CDN dependence on fundamental wing flapping parameters Ar, w, 

and ϕ. The dashed border surrounds the highly correlated effects. The up and down arrows mean increases 

and decreases, respectively. 

 

 

 

  

CDN

(Normalized net z force)

↑ with TFM 
Amplitude

↓ with Ar

Small ↓ with f

↑ with Z Force 
Projection Amplitude 

(at Low Ar)

↓ with f

↑ with Z Force 
Projection Efficiency

↑ with TFM Phase

Small ↓ with Ar

↑ with x

↑ with Ar

↑ with f

↑ with                       
(1-Skin Drag/Inertial 

Drag)

↑ with 

↑ with Ar
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Using Figure 31, the 3 phenomena mentioned at the beginning of this chapter can be explained 

as follows: 

“1. In general, above Ar=0.2, the CDN tends to increase with increasing ϕ, up to a peak at 

ϕ=90°…).” 

As ϕ increases, so does the ξ and consequently the z force projection efficiency. At this point, the 

Ar is relatively high and so the z force projection amplitude effect is small.  

“2. For a given Phi0, the CDN generally increases with increasing Ar and increasing Re.” 

As Ar increases, the TFM magnitude decreases while ξ increases. The result is less transient z 

force magnitude but higher z force projection efficiency – the latter effect is dominant at higher 

Ar.  

As Re increases (and Ar is held constant), the oscillation frequency ω increases, the skin drag 

becomes less prominent and so the overall z projection efficiency increases as well. Note that 

once the skin friction drag becomes negligible, increasing the frequency will not increase the z 

force projection efficiency since it is not related to the amount (or amplitude) of inertial drag. 

This explains why at high Re, the CDN plateaus.   

“3. An exception to phenomena 2 is an anomaly that occurs at 0.1<Ar <0.2 around and Re of 

103.5, where relatively high CDN is found, which manifests strongly at low ϕ and gradually 

reduces with increasing ϕ.” 

In this region, Ar is relatively low and so the TFM amplitude is much higher. At this point ξ is 

lower and thus so must be the force projection efficiency, yet the effect of higher TFM amplitude 

is more prominent here. This also explains why the power used at these regions is generally 

higher while efficiencies are lower since symmetric z-force projections in both halves of the 

cycle result in more force cancellation (highest possible efficiency comes from highest 

asymmetry which was described earlier by equation (3.3)). 

Finally, this ‘island’ region disappears at increasing ϕ because at low Ar and high ϕ, the wings 

generally oscillate more perpendicularly to the y axis, and so less z force amplitude is projected 

throughout the cycle. This strongly counteracts the TFM amplitude increase at low Ar. Also, we 

can note that the TFM amplitude is mainly dependent only on Ar so its increase with Ar is 
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constant for all ϕ – this may explain why said ‘island’ region remains roughly in the same 

bounds for each ϕ. 

Concluding Remarks 

In this chapter we investigated all the main phenomena related to thrust generation in wings of 

AsR = 8. In the initial work done on such high-amplitude, curved, resonating cantilevers, it was 

theorized that the main effect responsible for the thrust generation was that the cantilevers had a 

more aerodynamic shape during the half-cycle responsible for negative thrust generation, when 

compared to the other half, thus giving a net higher drag in the positive z direction. Here, I have 

shown that the steady state CDN has little effect on the TFM of the wing, and the strongest net 

force dependence is actually related to the timely wing flapping shape for efficient z-axis 

projections, force magnitude dependence on small sweeping motions, and the relative magnitude 

of viscous effects. The former two appear to be unrelated to the relative wing dimensions and so 

we can predict that different wing shapes should benefit from these effects similarly at optimal 

points of Re, φ and Ar (given all other effects remain equal). The magnitude of viscous effects, 

however, are area and texture dependent, which may present themselves more prominently given 

designs with larger areas at equivalent Re, and rougher surfaces.  
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4 WING SHAPE OPTIMIZATIONS 

In the previous 2 chapters, we have seen how the transient wing shape and flapping speed are the 

main parameters affecting CDN and flapping efficiency. In those simulations we varied Re, ϕ and 

Ar, although one important parameter was held constant: wing shape. The wing shape 

investigated so far has an aspect ratio AsR of 8 (i.e., 4:1 length to width ratio). This ratio was 

chosen simply based off the common wing AsR of flying animals; however, many of these 

insects follow complex flapping maneuvers including wing rotation about the joint, which is 

facilitated by the low moment of inertia of such high AsR wings. In fact, animals like bats, 

butterflies and moths that flap in a simpler, up-down motion, tend to have wings of lower AsRs 

(see [27] for common flying animal dimensions). Given this and the results of the previous 

chapter, we will investigate the effects of different wing AsRs on the force and power to 

characterize this new parameter that can easily be incorporated into an optimal wing design.  

Parameters of Interest 

It took thousands of hours to complete the simulations required to create the CDN and CDP plots 

presented by Minnick [3] so it would be impractical to redo these simulations for varying wing 

shapes. Fortunately, based on the results of the previous section, it appears that many of the 

points of optimal force generation can be expected to carry on to different wing dimensions (like 

the strong dependence on the wing flapping shape). This also implies that results over a few 

points may suffice to extrapolate the effects at other wing configurations.  
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Aside from characterization, an important end-goal is to physically create wings that can be used 

for micro-robotic flight. I chose to investigate the wing dimensional dependence at points P3, P4 

and P5 of the previous chapter, shown again in Figure 32. In general, this region was found to 

have high CDN and power efficiency, so it is a good parameter space to measure the effects of 

AsR. 

 

Figure 32: Plot 4 of the CDN plots with points P3-P5 chosen for investigation. 

These 3 points also vary in extremes in terms of flapping frequency and amplitude and may 

present more information to help generalize the effects about the entire parameter space (Ar, Re, 

ϕ, AsR).  

Note again that the Reynolds number definition in this plot is defined as 

 Re rms
f

V LB



   (4.1) 

Where LB  is an arbitrary definition of the Re length scale and is the same as the following 

equation, considering that the simulations always used a wing with a length to width ratio of 4:1. 

 Re
2

rms
f

V L



   (4.2) 

Since 
2

s

L
A R

B
= , one might then express the Re in terms of the AsR like so: 
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2

Re rms
f

s

V L

A R



=   (4.3) 

The issue with equation (4.3) is that the length scale definition for the Re in (4.1) was originally 

arbitrarily chosen and not meant to consider wing shape variation. It also shows that if the same 

Re and Ar values are chosen for simulations of varying AsR wings, each simulation would have a 

different Vrms (and hence, flapping frequency ω); however, we simply cannot assume that Re 

scaling works with different shapes as it does with different μ, ρ, Ar and ω. We thus ignore this 

definition of Re for the moment and run the simulations at equal frequencies based on the 

frequencies used in points P3, P4 and P5 for the originally simulated wing of AsR=8. This gives 

a more fundamental comparison, which I will later relate to the current definition of Re in 

Chapter 5. For each point, 7 wing shapes are simulated ranging from AsR=0.25-16 – for clarity, 

the shapes of the wing pairs are shown in the following figure. 

 

Figure 33: AsR representation of the simulated wings showing the non-curved wing shapes with the numbers 

corresponding to the wing pair AsR. Two isometric views of the curved wings are shown for clarity. 

Results of Varying Wing Dimensions 

The following are qualitatively important plots regarding force, power and efficiency. By 

understanding patterns and consistent relationships in the data, we may also extrapolate this 
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information further to predict what results would be achieved at different points in the parameter 

space Ar, Re, ϕ, and AsR. At the very least, these results may be used to select the optimal AsR 

for a system with specific force and power requirements. 

4.1.1 Force 

Figure 34 shows the raw cycle-averaged force results for different wing AsRs at the parameter 

points mentioned above. Here, we can see the general result that average thrust decreases with 

increasing AsR (i.e., decreasing width-to-length ratio). Figure 35 shows more clearly that this 

increase is not linearly proportional to the increase in wing width, but approximately follows an 

AsR-3/2 relationship.   

 

Figure 34: Force and theoretical lifting mass of a wing pair at different aspect ratios, AsR. 
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Figure 35: Wing force normalized for wing width at different AsRs. 

To better sense the scale of the forces, Figure 36 shows how many more times a pair of wings 

could lift their weight when fabricated using length, thickness and materials taken from [3]. Here 

we can see that no wing design at P3 (low Re) has enough force to lift itself, while P4 and P5 

(high Re) are well beyond that threshold. We can also see that at low aspect ratios below 0.5, the 

added thrust per wing width begins to decrease in all cases, which suggests that there is at least 

one other z force-related mechanism that is dependent on the wing dimensions appearing at 

lower AsRs.  
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Figure 36: Wing force per theoretical wing weight based on current wing thickness, scale and mean density. 

Note that the bold line represents the value 1, at which point the wings generate exactly enough force to lift 

just themselves.  

4.1.2 Average Power  

Plots showing power-related dependencies on the aspect ratio follow. Figure 37 shows how the 

average power used by the wings increases and strongly follows the same AsR-3/2 relationship as 

the wing net force (even more so if we ignore AsR >4).  

Figure 38 shows the efficiency in each wing design in producing a net thrust for the power used. 

We can see here that the data spread is small with no obvious function dependency. For point P4, 

the optimal wing design when considering force per power used is around an AsR of 0.5, 

although this is only 1.75 times better than the lowest efficiency at this parameter. We can see 

that for point P5, the optimal region is around an AsR of 2 and 4.3 times more efficient than the 

lowest result. P3 has a similar result to P5 except for the optimal AsR being at 1.  

We can also see that the simulations at P3 overall show higher efficiencies when compared to all 

other points. This is directly related to the Vrms dependence of the power used by the wings in 

equation (1.8). We can divide the results by the Vrms to get the ‘power force’ vs. AsR as shown in 

Figure 38. Here we see the higher efficiency of P4 for all AsR, which is expected since it is 
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already known that this region has high efficiencies for AsR=8 [3]. Note that Figure 38 shows 

Force/Power Force which is equivalent to CDN/CDP.  

 

Figure 37: Wing power corrected for wing width, at different aspect ratios. Note that if the two highest AsR 

data points are ignored in the power fits, the dependence on the AsR for P3, P4 and P5 become x-0.474, x-0.496, 

and x-0.507, respectively (all R2 > 0.99).  

 

Figure 38: Force per Average Power used in a wing flap cycle at different AsRs. 
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Figure 39: Force per 'power force' at varying AsRs. Here, the power force is just the average power used by 

the wing but normalized for the expected Vrms dependence.   

Discussion 

4.1.3 Interpolating Results 

The consistency between AsR dependencies of some plots show that there are regions that can be 

confidently interpolated or stated as a general rule in the vicinity of that parameter space. For 

example, although no wing design with Re=102.0 is expected to be able to lift even the wings 

themselves, we can interpolate between the curves of P3 and P4 and expect that at an AsR of 0.5 

and Re ≈102.3, the wings should pass this force threshold.  

4.1.4 Force dependence and AsR 

If we imagine two pairs of wings producing forces such that the pair does not interact with the 

other, we can expect that the total force produced between them will simply be double the force 

produced by a single pair; however, the force results show that if we took these pairs of wings 

and attached them together, then given all else equal, the wings would generate about  

(
𝐴𝑠𝑅1

𝐴𝑠𝑅2
)

3/2
= (

2𝐴𝑠𝑅1

𝐴𝑠𝑅1
)

3/2
= (2)3/2 ≈ 2.8 times the force.  
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This large force dependence on AsR can be compared to a heat generating rod. A single, non-

insulated heat generating cylinder dissipates heat in all directions on its surface. A medium 

surrounding the rod will then conduct the heat away, until a stable solution exists describing the 

temperature of the rod and the surroundings in 3-D space. If another rod is added to the system 

very far away from the first rod, then the average temperature of both remains the same; 

however, if the second rod is attached to the first along the circular faces, heat generated by that 

face no longer conducts away to the medium, and the average temperature of the two-rod system 

increases.  

In the case of the wings, it is the pressure (instead of heat) that builds up around the wings 

throughout the cycle. This pressure is primarily responsible for the instantaneous force 

generation and so an increase in overall pressure increases the overall TFM and net force. During 

the wing flapping cycle, relative pressure is built up below and above the wing during the first 

and second halves of the cycles, respectively. This pressure can equalize by means of fluid 

transport around the wing, which I refer to as ‘escape mechanisms’ of air.  

The three primary escape mechanisms are: 

 1. Air escaping through the sides (the chord-wise direction, x) 

2. Air escaping through the wing tips (the length-wise direction, y & z) 

3. Air escaping through the bottom and top planes of the wings (z normal plane), away from the 

wing tips.  

From many simulations, it was found that in case 1 and 2, there is usually a high-pressure 

gradient near the edges which results in strong local vortices from pressure equalization about 

the edges. The rest of the pressure farther away from the edges equalizes through outward flow 

in the direction of the wing curve as seen in Figure 40. Case 3 captures the magnitude of the 

downwash which directly relates to the instantaneous force on the wing simply from Newton’s 

3rd law and is necessary for positive thrust.  
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Figure 40: Air flow plane showing the 3D velocity vector along the sweeping path of the wing at the two 

extremes. 

These pressure escape mechanisms are analogous to conduction surfaces in the heated rod 

example. Like the net temperature increase from joining two hot rods, we can capture more 

pressure under and above the wing by limiting the side escape mechanism by joining two wings, 

resulting in more instantaneous net force. Following the analogy, the highest pressure would then 

be reached near the center which has been verified through simulations and already shown for 

the square plate in Chapter 2.  
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To qualitatively verify these escape mechanisms, I averaged the air flow through the side plane 

of the wing, and through a plane attached perpendicularly to the wing tip. The results of the 

transient average are presented below.  

 

Figure 41: Absolute air flow through wing escape mechanisms at different AsRs. 

From the above figure, we can see that there is a gradual increase in the tip air flows with lower 

AsR, while the side flows begin to plateau. This is consistent with the idea that joining wings 

together (or decreasing their AsR), results in more pressure built up locally under the wing, yet 

the escape through the sides is sub-linearly proportionate to the increase in wing width. In the 

heated rod analogy, the equivalent result is a higher temperature near the center of the rod, while 

the average temperature of the circular faces increases sub-linearly with rod length.  

These results suggest that transient forces should always be increasing with AsR, although based 

off P5 in Figure 34, the heated rod analogy breaks down at AsR<0.5, where no significant 

increase in force is seen with increase in width. If we look at the transient z force plots of P5 in 

Figure 42, we see that the transient forces appear to be scaling normally for different AsRs but 

there is one major difference: the second (negative) half of the cycle disproportionally increases. 

Figure 43 shows this in the plot of the ratio of the absolute value of the integrated positive and 

negative force contributions. Here we see that the ratios approach 1 at lower AsRs meaning that 
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both the negative and positive contributions are close to equal, even though the transient z force 

magnitudes increase. The exact reason that this happens requires further investigation, but I 

presume this to be an effect of the wing-wing interaction, where at higher pressure buildups, the 

interaction between the two wings becomes noticeable (note that up until now, the simulations 

included two wings flapping wings joined at the base). When P3-P5 parameters were simulated 

for a single wing of AsR=8, the transient and net force differences were negligible when 

compared to the wing pair counterpart and so the effect of the presence of the second wing was 

deemed negligible; however, at lower AsR, the single wing always showed a much smaller TFM. 

This can be seen in Figure 44 in the TFM plots of a wing pair at P4 with AsR=0.5 along with the 

single wing result.  

 

Figure 42: Transient Force/Chord Length plots for different AsRs at P5 (Ar=0.15) 
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Figure 43: Magnitude of the positive to negative force ratio over a cycle at different AsRs for P3-P5. 

 

Figure 44: Transient force magnitudes for a single and double wing Simulations at AsR=0.5 at P4. 
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The reason for the large discrepancy in the TFM plots of Figure 44 may be due to the possibility 

that another pressure escape mechanism is with the second wing. At low AsRs, the wings might 

interact more by capturing more fluid and creating stronger induced waves and pressure 

gradients while near each other’s vicinity – this would result in overall larger forces during the 

flapping cycle although more investigation is required. It could also be that extra low pressures 

occur during the second half cycle when the wings open upward on the reverse stroke and ‘pull 

away’ from each other, resulting in the increased negative force – similarly described by part of 

the “fling” mechanism in insects [6].  

Conclusion 

Regardless of what exact mechanism accounts for the decrease in efficiency and force at very 

low AsRs, this data range is unlikely to be feasible for useful wing flight simply due to the highly 

unusual wing shape which would likely create mechanical problems and difficulties in the 

NAV’s movements.  In general, the results of this chapter show a surprisingly consistent AsR-3/2 

dependence for both the force and power and thus can be confidently incorporated in a general 

way to be used in optimal wing designs. We can see that by simply increasing the wing area, we 

can achieve larger forces by orders of magnitude while keeping the efficiency relatively constant 

if actuated in the optimal region (P4), similar to the original CDN/CDP plots. In the next chapter I 

will use these results along with those of Chapter 3 to quantitatively incorporate wing shape 

dependence to the old theory and discuss wing designs, fabrications methods and finally show 

real results for a wing.  
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5 DESIGNS, FABRICATION AND 

RESULTS 

In the previous few chapters, we discussed force and power dependencies on wing flapping 

parameters Ar, ϕ, ω, and AsR. Conveniently, these parameters can be adjusted while maintaining 

a key benefit in this type of wing design: monolithic fabrication. In this chapter, optimal wing 

designs will be discussed, as well as updated fabrication methods that have been improved upon 

since the original work done by Minnick in [3]. I will also present certain results of the 

fabrication attempts, failures and key successful designs from which force data was collected.  

Optimal Wing Characteristics 

5.1.1 Including a new parameter: AsR 

Based on the work presented earlier regarding the net wing force and power used, as well as the 

wing characteristics affecting them, we can state some general guidelines for creating wings. If 

we ignore the extreme points of the simulated AsR (i.e., 16 and 0.25), then the AsR-3/2 

relationship matches well with force (and even better with power) and becomes a very good 

approximation for all 3 points simulated in the previous chapter. If we assume this as a first-

order general rule, then we can rewrite the net force equation as 
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N DNF C


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=
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3/2 2 2

81
2
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8
DN

AsR
C





−  
=      

  (5.1) 

 0

2 2 1.5 2.5

2

DN rC A B L 


=   (5.2) 

In equation (5.1), Re8 is the Reynolds number for the originally simulated wing with AsR=8, 

which served as the basis for simulations of other wing sizes. 𝐶𝐷𝑁0
 is the original drag 

coefficient value associated specifically for a wing of AsR=8 (i.e., the force drag coefficient in 

Figure 6 in Chapter 1, ‘Background Information’). 

Through simulations, Minnick found that the Reynolds number description of the drag equations 

worked, which allowed for Re scaling and made the results much more useful. With the results 

presented in Chapter 4, it would be very convenient to now include the newly-found AsR 

dependence in the net force and power equations in a general way. By doing so, one would not 

have to recreate a CDN and CDP plot at specific AsRs every time a new wing design needed to be 

made. (Otherwise, the results would only be meaningful for wing designs that are exactly 2mm 

long, in air, and at 101.325kPa.) 

To try to incorporate this, let us first imagine that for a given AsR, CDN and CDP increase by a 

constant factor which is a known function of AsR. Then, for any AsR, we can easily redraw the 

CDN and CDP plots exactly by multiplying all points by said factor. For each new CDN and CDP 

plot, we can expect that Re scaling can be applied the same way as before. If this is assumed to 

be true for wings for all AsR, then we can simply group the AsR dependence as an adjustment 

factor to the drag coefficients directly, and we have 

 
2 2

8Re1

2
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f
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


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Where 8Re
2

rms
fluid

V L



  retains Minnick’s definition specifically for the AsR=8 wings. Further 

investigation into the consistency of this relationship is necessary, but if found to be accurate in 

other Re, Ar and ϕ ranges, this definition will widely broaden the usefulness of the CDN and CDP 

plots from earlier. For the moment, we can be confident that it works for ϕ= 90° between the 

parameters bounded by the triangle formed by points P3-P5 from the previous chapter as shown 

in the Figure 45. The MEMS engineer can then use these simpler equations to carefully consider 

the dimensions of a wing, or in general for predictable fluidic force and power effects on 

differently shaped cantilevers (within the AsR limits mentioned earlier). 

 

Figure 45: Parameter space where we can assume that the AsR-3/2 dependence works. 

5.1.2 Optimal Parameters 

Using the above equations (5.3)-(5.6), we can now discuss what values of Ar, ϕ, w, and AsR 

should generally be chosen for flight. For simplicity, we will discuss the case where the robot has 

an unlimited power source and needs to generate the maximum force possible for hover-flight. 
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Based on this, the wing should have a high CDN value and a high Re. Note that force is 

proportional to the square of the Re while linearly proportional to CDN. 

In general, the region covered by 0.4<Ar<0.6 and 103.0<Re<105.0 has an almost constant, high 

CDN while the location of highest
0

2

8ReDNC   (i.e., force) lies around an Ar=0.5 and Re=105. In 

earlier work for wings of AsR=8, it was difficult to reach this region because it requires that the 

wings have very high resonant frequencies or be very long. For example, 1cm wings flapping at 

Ar=0.5 in air at standard temperature and pressure (STP) would need to resonate at 173 Hz to be 

at Re=103 and 17300Hz to be at Re=105. The higher resonant frequency is difficult to obtain due 

to material and bimorph structure limitations when considering that the wing needs to flap at 

high Ar and initially be highly curved. The alternative would be to increase the wing from a 1cm 

to a 1m length, but this is counterproductive for creating NAVs.  

Now, based on the equations (5.5) and (5.6), we can see that even if the optimal CDN0 or CDP0 

region cannot be reached, the overall CDN or CDP values can be increased by decreasing the AsR. 

Note that the resonant frequency is expected to decrease with decreasing AsR as shown by 

equation (1.3), but this change will be low for wings with high densities relative to the fluid – for 

lower relative densities and low AsR, the designer should keep this effect in mind in case the 

tradeoff for higher CDN values is not worth the resultant lower resonant frequency. Thus, in 

general, to create wings that generate high force one should aim for: 

a) a high ϕ, Ar, ω and low AsR to achieve high CDN.  

b) a high resonant frequency to achieve high Re.  

One caveat is that net power used also scales proportionally to Vrms (which scales with 

frequency) so there is a tradeoff between higher force and the likely heavier power 

supply/battery required to sustain it. 

Minnick’s work has also shown that points a) and b) are generally true for efficient power use; 

since it was found (to a first order approximation) that the power-drag scales like force for 

varying AsR, we can expect this efficiency rule to be similar at different AsRs as well. This is 

particularly true for P4 of Figures 38 and 39 from Chapter 4 where the curve force/power used is 

relatively constant across all AsR. That being said, from the same figures, we see that P3 and P5 
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curves are not as constant with AsR and suggest optimal efficiency around 1<AsR<2 ; thus, when 

considering the highest possible efficiency where increases in factors of 3-4 are necessary, the 

engineer should keep in mind this region depending on what the cantilever parameters Ar, ϕ and 

Re are expected to be.  

Wing Design Considerations 

When making a monolithically fabricated, piezoelectric cantilever to work as a wing, I found that 

some subtle issues need to be considered which put constraints on the wing shape and design. 

These points are listed as follows: 

Arcing – To actuate the wing, it must have a conductive layer above and below the piezoelectric 

base, connected to the power source. The electric field between these layers is responsible for 

elongating and contracting the piezoelectric material, which generates the flapping motion. For 

small wing weight, high initial curvature ϕ, high flapping amplitudes per applied voltage, and 

high resonant frequency, it is generally favorable to have relatively thin wings (about 1000x less 

than the length) [3]. One issue with making the wing too thin is that the actuating voltage and 

distance between the electrodes may be near the ‘Paschen minimum’ where the onset of arcing 

begins. Aside from creating a direct short across the wing faces, an enormous amount of heat 

would be generated in the plasma, which further ionizes local molecules, and would likely cause 

instant damage to the wing.  In air at STP, this minimum occurs at a distance of about 7.5um at a 

minimum voltage of about 330V [28]. Avoiding the Paschen minima can be done by making the 

separation thinner or thicker but the tradeoff would be a lower resonance frequency or a lower 

initial bending angle, respectively. This would place the operational wing in a non-ideal part of 

the CDN plots as discussed earlier. A potential solution is presented in my wing redesign in 

section 5.1.9 inspired by the results from the first wing test, where we will see that failure from 

arcing can be disastrous. 

Surface Smoothness – As we saw in Chapter 3, skin drag was the main effect responsible for 

the decrease in CDN with decreasing Re. This effect is negligible at high Re but it is possible that 

a rough surface can increase the amount of skin drag overall and lower the CDN values in the low 

Re regime. Thus, it is important to keep the surface of the wings smooth and uniform.  
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Edge Curving – During the fabrication steps which we will see later, the transverse stress 

induced in the x-y plane of a cantilever will, expectedly, induce strain in these directions as well. 

For wings of high AsR, the strain in the x direction (the wing chord) is small and curvature will 

be approximately 1 dimensional along the y-axis. For wings of low AsR, the strain in the x-

direction may become significant, resulting in curled corners of the wing. Simulations show that 

this curling does exist but is very small even for high stresses and small thicknesses (see Figure 

46a-c for simulated 3D stress on cantilever of AsR=1). The effect of this curl on resonance and 

fluidic interaction is a point for further investigation. 

Stability in Flight – Imperfections in the wing fabrication technique may lead to different 

resonant frequencies for each wing and thus, force imbalances, that need to be stabilized by 

appropriately controlling the voltage and frequency of each wing separately. As in typical 

airfoils, designs with low AsRs will have a lower moment of rotational inertia and thus will 

benefit from higher angular acceleration (faster roll); however, the stability in the tendency to 

roll will be more difficult to control for this reason as well. Faster on-board processors and 

careful PID tuning will be required for wings of lower AsRs.  
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Figure 46: a) & b) Multiple views of a cantilever with uniform surface stress fixed at the base. c) side view of 

the bent cantilever with a circular curvature fitted, showing deviation from the 1D expectation. 

Fabrication 

5.1.3 Material Choice 

In Minnick’s work, a stack structure with x-cut quartz was used as the piezoelectric base. A coat 

of the photoresist SU-8 covered this base which created uniform stress along the surface after 

being exposed and cured. Although this resulted in an initially highly curved wing, SU-8 had the 

issue of changing its mechanical properties based on the surrounding environment; thus, the 

amount of curvature and warpage greatly changed during experiments and so this turned out to 

be an impractical material for testing and functionality.  

A better material was needed with a high Youngs modulus for higher resonance frequency that 

could also be deposited onto the piezoelectric crystal in a way that was simple and had built-in 

intrinsic stress in the layer. In collaboration with Dr. Minnick, we found that Molybdenum was a 

suitable choice as its Youngs modulus is high and can be sputtered as a compressive or tensile 

a) 

b) c) c) 
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film. After we characterized the stress dependence of the film on parameters such as thickness, 

initial chamber pressure, sputtering pressure and power, I was able to create working 

molybdenum-quartz wings. The layers of the wings structure are presented in the following table 

in order of the layers on the wing, from top to bottom. 

Table 6: Wing layers and thickness in top-to-bottom order for the new wing design. 

Material 
Thickness 

(μm) 

Au 0.15 

Mo (Tensile) 2.0 

Quartz 6.8 

Mo 

(Compressive) 
0.1 

Au 0.1 

  

5.1.4 Shadow Mask Preparations 

There are at least 3 shadow masks required for fabricating the old wing design from [3]. 

Originally, they were made for fabricating a wing with AsR=8, while the new masks were made 

to fabricate wider wings. I chose the dimensions of the new masks to maximize the area used of 

a 1” wafer to obtain high curvature (which is length based) and lower AsR to get into the higher 

CDN regions. The 3 masks are described as follows: 

1. Thinning Mask – used for thinning the area where the wings will be developed. I could 

not find a company to provide a 1” quartz wafer below 10um-thick, and so this thinning 

mask is required for thinning thicker masks later in the Reactive Ion Etching machine 

(RIE).  
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Figure 47: Original and updated release masks made (to be made from SiO2) 

2. Sputtering Mask – used for sputtering the conductive (Mo and Au) layers onto the quartz 

in the wing shape and for contacts. Original mask used in Minnick’s work is shown in 

Figure 48a while the two masks I developed for wider wings is shown in Figure 48b. The 

first mask of the new designs is used to sputter on the top while the other is for the 

underside of the wing. Originally one mask was used for both sides, but I made a second 

mask of smaller sputtering area for the purpose of avoiding arcing at high voltages 

around the perimeter. 

 

 

 

Figure 48: Sputtering shadow masks. Note that the original design (left) was used for both top and 

bottom surfaces, while the updated design has two masks of slightly different dimensions to avoid 

arcing and allow higher applied voltages across the wing. A notch has been included for alignment 

aid and the contacts are led away from the bridge for wires to not interfere with the visibility of the 

wings when looking in the x-direction (front view). 

Original Design New Design 

Original Design New Designs 

a) 
b) 
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3. Release Mask – this mask covers sputtered area so that the bare quartz surrounding the 

wings can be etched away and thus, ‘released’. These masks along with the original 

designs can be seen in Figure 49. 

 

 

Figure 49: Final mask creations including Minnick’s original designs (top) and my lower AsR wing 

designs (bottom). From left to right, the masks shown are for: thinning, sputtering and releasing. 

Note that the thinning mask must be made from SiO2 to not contaminate the quartz sample and 

cause pitting [29]. Unfortunately, most of the time the SiO2 masks were created by careful hand 

milling which usually gave imprecise cuts (as seen in Figure 49 above in the transparent SiO2 

wafers). Precise laser ablation would solve this problem, but this is difficult due to the material’s 

transparency to visible light. My attempts at this using an available 50W pulsed CO2 laser were 

unsuccessful due to long pulse times and large spot sizes leading to high local heat generation 

and cracking (shown in Figure 50). For the future, UV femtosecond lasers should be considered 

since they are more suitable for precision SiO2 cuts due to the extremely short pulses which 

result in a precisely localized heat distribution [30]. 

Original Designs 

New Designs 
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Figure 50: One of many attempts to cut out a shadow mask from an SiO2 wafer of thicknesses varying from 

0.4-1mm using a 50W CO2 laser. Left: Ablation during lasing. Right: Cracks appearing after ablating less 

than 0.1mm into the slide. 

5.1.5 Measuring Thickness  

As mentioned earlier, precise layer thickness is crucial for fabricated wings with selected 

properties. In Minnick’s work, an optical profilometer was used to find interference fringes on 

the top and bottom of the quartz wing, but this method was dependent on the researcher’s ability 

to differentiate between interference patterns from different interference sources. Furthermore, 

equipment failure lead to abandonment of this technique. Later attempts using an Alpha-Step 

stylus profilometer, micrometers, and weight scales gave inconsistent or error-prone results (see 

Figure 51 for the results of an RIE etch with etching time calibrated using a measured thickness 

value off by 3um from 100um). Ultimately, I created a more automated method based on FTIR 

spectra for IR radiation passing through the quartz. This has the same benefit of being precise 

and non-contact as the optical profilometer, but the results are more consistent between 

measurements due to eliminating the human factor. (See Appendix for details on this refined 

technique and the MATLAB code for post processing the spectra.) 
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Figure 51: Result of a 3μm inaccuracy in the measured initial thickness. The oval shaped dark patch in the 

middle is a very thin film of SiO2 (<500nm) left from the etching procedure. What should be there is a 7um 

thick area that is still attached to the rest of the wafer. 

5.1.6 Procedure 

The fabrication procedure is similar to that shown in [3] with the major difference being the 

coatings and deposition steps. It is outlined as follows: 

1. The piezoelectric substrate (x-cut quartz) is thinned to the predetermined thickness (7um). 

The SiO2 mask is used during the thinning process to selectively thin the wing region and 

keep the rest of the wafer thick for later handling. During the thinning, the sample thickness 

can be successively measured using the FTIR technique until the desired thickness is reached. 

2. Both sides of the substrate are then sputtered with molybdenum and gold using a DC 

Magneton Sputtering machine, using the steel masks shown in Figure 48. The resultant Mo 

film can be in compressive or tensile stress, depending on a wide range of parameters. In my 

trials, using Ar as the chamber medium, it was found that highest tensile stress generally 

occurred at higher powers, lower initial vacuum pressures, and at a specific sputtering 

pressure. The sputtering pressure ultimately determined if the deposited layer was tensile or 

compressive, as commonly reported [31]–[33]. Exact values found for achieving maximum 

tensile and compressive stresses are shown in the following table.  
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Table 7: Optimal parameters for sputtering Mo on quartz using DC Magneton Sputtering machine. 

Note that for tensile stress, lower initial vacuum pressures produced higher stress, but due to 

outgassing and pump speed, the limit in our machine was about 6e-6Torr which was reached after 

pumping down for 24 hours. The large error in the working pressure is due to the pump changing 

internal pressure sensors in that regime, causing uncertainty. 

 Tensile Compressive 

Initial Vacuum Pressure 6e-6Torr (or lower) 1e-4Torr 

Working Pressure 7.21+/-3 e-3Torr 3.6e-3Torr 

DC Power 250W (maxed) 250W (maxed) 

  

3. The sample is then placed into the RIE with the release shadow mask to thin the area near the 

border of the wing shape and ‘cut out’ the wing shape. If the alignment has been done 

correctly and all the quartz around the boarder has been etched, the wing is released and can 

be mounted on a PCB for testing. Detailed RIE specifications can be found in [3], [29]. 

Molybdenum-Quartz Wings Test 1: AsR=8 

5.1.7 Results 

Initially, to test the practicality of a Molybdenum-Quartz-based stack structure, the first wing 

shape was made to have the same AsR as that used by Minnick with the SU-8 test. Figure 52 

shows the final wing pair developed on a 1” quartz wafer while Figure 53 shows the wings 

flapping in the force measuring torsion bar. Note that high curvature was not achieved due to the 

difficulty in precisely controlling the sputtering parameters during sputtering. Since few 

simulations were done for ϕ<35° and forces were expected to be smaller anyway, the wing with 

ϕ=37° was primarily investigated. 
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Figure 52: First successfully developed Molybdenum-Quartz wings fabricated monolithically using 1” x-cut 

quartz substrate. 

 

Figure 53: Side view of flapping wing pair mounted on the PCB with 190V applied at resonance (148Hz). The 

stationary wing within the flapping blur is the deactivated second wing pair with less initial curvature 

(ϕ=30o). 
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This wing was initially tested in air at STP, and later in SF6 to operate the wings at a different 

Re. The force results in air are shown in the following plot which span applied voltages from 50-

190V in intervals of 10V (force results in SF6 are not shown due to unreliable data from the 

torsion bar). The overlapping data points represent data from two frequency sweeps for 

increasing and decreasing frequency. This was done for confirmation that the wings were not 

being operated in a non-linear regime where resonance hysteresis occurs. Each data point is the 

result of averaging the force on the torsion bar between 20-60 times to eliminate noise. 

 

Figure 54: Force/wing weight vs. wing frequency [Hz] for sweeps done at varying voltages in air at STP. 

In Figure 54, we see that maximum force increases with increased voltage until about 100V 

where the increase in force/applied voltage is less. Higher voltages were not applied due to risk 

of arcing and because the force appeared to approach a limit.  

Unsure of the reason for the apparent force saturation, I investigated the frequency response of 

the flapping amplitude Ar at different voltages to see if perhaps this amplitude is not increasing 

with voltage. Note that for a linear system voltage should be related to Ar by  

50V 

190V
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where for a given wing flapping at any Ar and Re, 

 air

medium

D



  . (5.8) 

A plot of Ar vs. frequency at varying voltages is shown in Figure 55. The values were found by 

visually measuring the amplitude of the flapping 37° wing pair from pictures like Figure 53. 

 

Figure 55: Frequency response of the wing flapping amplitude Ar. 

Fitting a cubic spline weighted near the peaks, I approximated the resonant frequency and 

interpolated the corresponding Ar. A plot of the wings’ Ar vs. voltage at maximum Ar (i.e., at 

resonance) in different mediums is shown below. All curves were found to be well approximated 

by the function 𝐴𝑟 = 𝑎𝑉0.5 which is consistent with equation (5.7) for constant CDP (note that 

CDP is indeed roughly constant in this regime). 
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Figure 56: Flapping amplitude (Ar) at resonance Vs. applied voltage in: air at STP, SF6 at 1 Atm, and SF6 at 

0.5Atm. 

Following these tests, the torsion bar chamber was brought to a vacuum. The reason was to 

verify that the energy loss was mostly to the surrounding fluid (rather than internal mechanical 

losses), and to reach higher Ar at low voltages. Indeed, the Q in vacuum was roughly 20 times 

larger than in air and at voltages above 70V, the wings seemed to enter a highly non-linear 

regime where the wings’ Ar rapidly increased to above 1.01 as seen in Figure 57. Furthermore, 

the Ar exhibited hysteresis as the resonant frequency depended on whether resonance was 

reached by increasing or decreasing frequency. The possibility of non-linear resonant effects was 

mentioned by Minnick in [3] but never actually seen since the wings did not retain shape under 

vacuum due to the SU-8 layer outgassing. 
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Figure 57: Wings at resonance show very large Ar when wing actuated at 90V, 157Hz in vacuum. 

5.1.8 Discussion 

Originally, the force saturation with increasing voltage seen in Figure 54 was discouraging. 

Based on the trend, it appeared that without going to voltages above 700V, these wings would 

never achieve the minimum force to lift themselves. Initial guesses were that non-linear fluidic 

damping was causing the wings to flap at lower Ar, but Figure 55 and Figure 56 show 

remarkable consistency in theory and that Ar was increasing expectedly with applied voltage. In 

fact, if we look at the constants for the best fits in Figure 56, we can see that their relative values 

between gas media are also consistent. For example, looking at equation (5.7), we can see that  

 
rA a V=   (5.9) 

where  
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Assuming that CDP varies similarly in these different gasses, using (5.10) and (5.8) we get 

 air
medium air

medium

a a



=   (5.11) 

The fit values of mediuma and the expected values based on equation (5.11) are shown in the 

following table: 

Table 8: Comparison of values of D/√𝑪𝑫𝑷 based off fit to experimental values and relative densities. 

Medium 
mediuma  (fit to experiment) mediuma (expected from density change) 

Air 0.019+/-0.001 - 

SF6 @ 1ATM 0.0078+/-0.0004 0.0086 +/-0.0003 

SF6 @ 0.5ATM 0.0111 +/-0.008 0.0122+/-0.0005 

   

Based on Table 8, we have further verification that the wings are behaving expectedly in terms 

of Ar across different media.  

Since the wings are working expectedly and considering that the force is proportional to Ar2 

(from equations (1.7)-(1.10)) , then the maximum force should have increased linearly with 

voltage. The frequency, μ, and ρ at a given medium also stayed the same so neither of these 

factors explain why the force data only marginally increased at higher voltages. 

The exact reason becomes more apparent when noting where on the CDN plot the air tests were 

done. Figure 58 shows this along with the SF6 tests where the points from left to right 

respectively correspond to those of Figure 56. It turns out that as the voltage increased at each 

sweep along with Ar, the wings passed along the ‘island’ region talked about earlier in Chapter 3. 

Coincidentally, the higher voltage sweeps occurred where CDN decreases with increasing Ar and 

Re, just above the island region. Specifically, we can see that from voltages 5-100V (first 12 

points from the left for Air), the CDN increases from 0.04 to 0.10, and then decreases past 120V. 
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Looking at Figure 54, we see that this is around where the increase in voltage showed minimal 

increase in force. Thus, the solution was simply to continue to increase the applied voltage to 

increase Ar which would place the wing much past the island region and into that of increasing 

CDN where larger force/applied voltage is expected (albeit this might have been risky territory 

based on the possibility of arcing at higher voltages, as we shall see shortly). Note that this effect 

was not detected in the previous discussion because the CDP in this region is relatively constant 

and has no such ‘island region’. 

 

Figure 58: Overlay of Re and Ar at which the wings were operating that resulted in the force peaks. Each 

point corresponds to the applied voltage, where points plotted from left to right correspond to increasing 

applied voltage. 

The vacuum results also show that the wings are durable against high stresses at large Ar, 

including the 0.8mm-wide bridge the supports both wings.  Another point in favor of their 

durability is that throughout changing gasses and pressures, the wing ϕ never changed nor did the 

Air 

SF6 0.5Atm 

SF6 1Atm 
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wings deform like those made from SU-8. This justifies the use of the Molybdenum layers as a 

superior material to SU-8 in terms of stability to the environment. Ultimately, after about 0.8 

billion flapping cycles (~1500 hours of flapping), a programing error resulted in a high applied 

voltage of an estimated 500-1000V on the wings. Afterwards, they became inoperable due to a 

short being created at the contact sides and a connection loss near the bridge. Looking at Figure 

59, we can see that arcing likely occurred near the tips of the wings and the bridge, where the 

gold melted off due to the high heat from the plasma. This led to the modified arc-resistant wing 

design attempted for the AsR=1.3 wings described in the next subsection.  

 

 

 

Figure 59: Post-mortem of the Molybdenum-Quartz wings after receiving a high applied voltage that caused 

arcing in the regions shown. Aside from this failure, the wings showed no difference in all other characteristic 

throughout their long hours of use.   
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Molybdenum-Quartz Wings Test 2: AsR=1.3 

5.1.9 Results & Discussion 

Following the mask designs for the wider wings, initial attempts in fabrication failed due to 

changes in the sputtering machine. Nevertheless, the failures do show important results that 

should be considered in the fabrication process. In this section, I will present the failed 

fabrication attempts, discuss the reasons and make a prediction of the expected characteristics of 

such a wing once fabricated successfully. 

About 2 years following the fabrication of the AsR=8 wings, the DC Magneton sputtering 

machine had its gas flow sensors replaced and the vacuum pump was working slower (this was 

quantitatively confirmed after characterizing steady-state chamber pressures with known gas 

flows). Another issue included bad calibration between the two chamber pressure gauges (used 

separately for high and low pressures) at the point where they switched (around 7e-3mTor); 

coincidentally, this was the steady-state working pressure region for sputtering that was meant to 

develop the highest intrinsic tensile stress. Due to the sensitivity of the intrinsic film stress to the 

working pressure, these issues made it difficult to recreate the previous sputtering environment.  

Using the new pump speed characterization, I estimated what changes had to be made to the 

Argon flow rate in order to work at the same sputtering pressure as in the old tests. The new rates 

used were 8, 9, and 11sccm. Initially, a 0.5um sputtering test was done for each rate using a 

Molybdenum target and a Silicon substrate. Using a profilometer to measure the curvature of the 

substrate and corresponding stress from the Stoney equation [34], the 9sccm results showed the 

highest tensile stress of about 850MPa+/-100MPa. This stress is more than twice as large as 

largest of the older Mo-Si tests for similar thicknesses and an order of magnitude larger than the 

intrinsic stress that caused the curvature in the AsR=8 wings from the previous section. 

Proceeding with the normal fabrication steps as explained previously, 2μm of Mo and 0.15μm of 

Au were sputtered on a 9um quartz substrate without opening the sputtering chamber in between. 

A surprising result is shown in Figure 60 where we can see the shattered sample and mask in a 

sample holder. Since the middle of the sample holder was sputtered gold, this suggests that the 

substrate broke during deposition, and not in response to me opening the chamber.  
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Figure 60: Shattered sample after Mo and Au deposition. The rest of the sample is covered by the shadow 

mask and both are held in place by a sample holder.  

To examine the exact reason for this delamination (which to date had never occurred before), I 

reran the tests on bare Si with the same parameters but with 2um of Mo thickness instead of 

0.5um, and no Au. Upon backfilling the chamber with room temperature nitrogen and opening it, 

I noticed rapid delamination of the Mo films, bursting into cylindrical flakes as seen in Figure 61 

with radii of curvature of about 1.3+-0.3mm.  
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Figure 61: Result of sputtering Molybdenum on a Silicon wafer using the new 'optimal' sputtering 

parameters. The delamination continued to occur after taking the sample out of the chamber. 

The delamination described here is a common occurrence in tensile thin film deposition where 

the intrinsic stress of the deposited film surpasses the "fracture resistance" at the material-

substrate interface [35], [36]. The curling then naturally occurs if a stress gradient is present 

throughout the thickness of the film [37]. Similar flakes are shown by the authors in [38] that 

sputtered titanium nitride thin films with high intrinsic stresses built in.  

Unfortunately, due to the delamination, I could not use the profilometer to test the built-in stress 

but a common formula for deflections for thin cantilevers with a residual stress gradient can be 
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found in [39]–[41]. In the limit where circular curvature can be approximated by quadratic 

curvature and assuming that the stress gradient is constant, the mean intrinsic bending stress 

calculated from the radius of curvature of the flakes is approximately 1.05+/- 0.4GPa. This is 

fairly larger than the highest measured stress of 800MPa done a couple years earlier, but lower 

than the 1.7GPa stress found by other authors where flaking did not occur [42], [43].  

Repeating these tests and changing the Argon flow rates by ±1sccm still showed similar flaking 

upon exposure to room temperature nitrogen and air, but with stresses from gradients measuring 

only 0.5±0.2MPa. This, along with the spontaneous flaking when exposed to lower temperature 

environments suggests that the delamination is due to high intrinsic stresses, stress gradients and 

thermal stress from thermal strain mismatch between Mo and Si when cooled down after being 

sputtering at high temperatures. It is also known that the adhesion stability of thin films tends to 

decrease with thickness [44]; thus, the solution to this issue is simply to deposit lower thickness 

films using the same parameters, or work at much different flow rates to fabricate lower built-in 

stress.  

By using the formulas derived by Minnick [3] based off Timoshenko’s beam curvature theory for 

a multimorph stack structure, we can calculate the expected bending angle based on an expected 

layer stress (see Chapter 2 in [3] for details on beam statics and resonance). At 0.5um of 

deposited Mo, we already know that we can achieve around 850MPa of tensile stress without 

delamination; thus, by assuming these parameters for the tensile Mo layer of the stack structure 

shown in Table 6 and all other thickness/stresses equal, the fabricated wings would have a ϕ of 

131.6°! Of course, this design would quickly become impractical at high Ar due to the two wings 

colliding; that being said, the benefit in being able to deposit a layer with so much intrinsic stress 

is that it allows us to increase the thicknesses of certain layers to reach higher resonant 

frequencies and hence, higher Re. For example, by using this tensile Mo layer and increasing the 

quartz thickness from 6.8um to 13.6um (by two times), the expected ϕ drops to 47° (close to the 

37° in the old wings), while the resonant frequency ω increases by 1.64 times. Ignoring the 

change in CDN with ϕ and considering constant Ar, this alone would increase the force by 
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If we now consider that the wing’s AsR=1.3, using equation (5.5), the adjusted CDN would be  
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Combining the two factors from (5.12) and (5.13) means that the expected force should be about 

41 times larger for AsR=1.3 than the AsR=8 wings from the previous section. Now considering 

that these wings are about 6.2 times wider and thicker due to the new Quartz layer, they are 

expected to weigh about 8.6 times more. Thus, the force/weight is expected to be 4.7 times larger 

than the AsR=8 wings. Given that the same maximum Ar=0.27 could be achieved as done for 

AsR=8 wings (shown in Figure 58), this would mean a lifting force of at least 1.5 times the 

wings’ weight – enough to lift themselves and a load of about 5mg. It is important to note that 

the forces from Figure 54 do not take into account interference from the PCB on which the wing 

is mounted. Minnick notes that simulations have shown that the interference of the wing flapping 

near the PCB can result in a decrease in measured force as much as 70%, which leads to two 

important possibilities: 

1. The successfully fabricated wings of AsR=8 may have actually achieved sufficient thrust 

to lift 1.1 times their weight instead of just 0.34 as seen in Figure 54– a milestone so far 

for these wing types. 

2. The larger wings of AsR=1.3 might produce a force 5 times their weight - enough to lift 

an extra 25mg which is more than twice the maximum lifting capacity of an average 

house fly [45]! 

These are very promising results and suggest that this wing design might already be good enough 

to be implemented for tethered flight. 
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6 CONCLUSION 

At the end of Minnick’s work on using curved, resonating, piezoelectric cantilevers as a method 

of thrust, he found that such devices could be fabricated and do give a net force, yet little was 

still understood about where the force comes from and if other wing shapes may work better. 

Poor materials also led to inconsistent results and impractical wings which failed to produce high 

forces. I began this thesis with the intent to carry on this work by filling in these gaps in 

knowledge and making wings that are suitable to be incorporated in MAVs.  

I found that the wing forces are generated from unsteady effects that strongly relate to the 

induced lagged flow during the wing’s oscillation. By carefully examining the transient forces on 

the wing, I found that the net positive thrust comes from timely interactions with the unsteady 

flow which depends heavily on the transient flapping shape of the wing. After describing the 

force phenomena for a wing of an aspect ratio of 8, I investigated the changes in force and power 

for wings of different aspect ratios, to see if there are more optimal shapes that can considered 

when building functional NAV wings. A surprisingly consistent relationship was discovered 

which I incorporated into the force and power drag equations, allowing for a much broader use 

of the results from previous work. I updated the fabrication technique to create more robust 

wings and managed to create the first functioning Molybdenum-Quartz wings of this type. These 

wings proved to be better than earlier models and generated the highest forces to date for 

resonant curved cantilevers. Simulations showed that lower aspect ratios would work even better, 
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and although my attempts to fabricate such wings have so far been unsuccessful, I showed what 

changes need to be made in future attempts for them to work. 

The next steps would be to fabricate and test the wider wings while continuing simulations in 

different parameter spaces. The aspect ratio dependence at other wing parameters should be 

confirmed and it is still unclear why the surprisingly consistent relationship of aspect ratio breaks 

down at lower values. In any case, even for the small range of parameters simulated, the 

relationship is promising, and lower aspect ratios should be explored physically where the 

fabrication method described in Chapter 5 is a good starting point. There are also more ways to 

optimize these wings than just changing the aspect ratio; for example, one might extend the 

simple 1-degree of freedom flapping motion of these wings to 2-degree designs (to mimic the 

more efficient insect flight patterns) by changing the layer properties in the x direction through 

appropriately etching holes or varying thicknesses. The planar fabrication method also allows for 

one to deviate from the rectangular-based wings and try other shapes that may capture and expel 

fluid in a more efficient way. 

Although there is still much to learn about the potential of resonant curved cantilever wings, the 

results and furthered groundwork presented in this thesis show that the original wings can indeed 

be significantly improved and have serious potential as NAV flight mechanisms. We now know 

how unusually they work and even though they do not use the same flight mechanics as nature’s 

fliers, we are one step closer to creating our own tiny flying machines and bringing these wings 

to life.  
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8 APPENDICES 

Measuring Substrate Thicknesses with FTIR 

 

Here I describe how one can accurately measure the thickness of a thin translucent sample 

(quartz, for example) and provide the MATLAB code at the end.  

Using the transmission mode or reflection in the FTIR, one should see interference patterns on 

the resulting spectrum due to the interference between the incident ray passing through the 

sample, and the secondary ray that reflects inside the sample, and comes out at the same point. 
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This is illustrated in the following diagram:

 

Figure 62: Diagram showing the path length of the incident light as it passes through and is reflected 

internally in the sample, before leaving again. They yellow ray represents the original incident light, while the 

green rays represent the internally reflected rays following the path that leads them out of the sample in the 

same direction. Note that in the actual setup, the Rays are at normal incidence, but are off-axis here for visual 

clarity; for this reason, the effects of refractance are not shown.  

The internal reflecting pattern continues within the crystal with further attenuation, and more 

rays reflect and transmit through the crystal at each boundary of the incident ray. For the 

transmission mode of the FTIR, we do not consider the back-transmission of the ray (shown in 

read) as that component is not well captured. We also can ignore ray paths 3 and higher as they 

will be more attenuated (as shown by the array thickness) and will have perpetually smaller 

effects on the final interference pattern. For the following calculations, we consider exiting rays 

1 and 2. 

Two coincident, coherent rays at a point can be shown to have irradiance given by  

                                  𝐼 = 𝐼1 + 𝐼2 + 2√𝐼1𝐼2 cos(𝑘(𝑠2 − 𝑠1) + 𝛷2 − 𝛷1)                        (A1) 

Ray 1 

Ray 2 

Ray 3 

Back-transmission 
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Where I is the irradiance, k is the wavenumber 
2𝜋

 𝜆 
, 𝜆 is the wavelength, s is the beam path length, 

Φ is the initial phase, and the indices correspond one of the two interfering waves. Since 

initially, there was only one beam, the initial phases are equal and Φ2 − Φ1 = 0.  The difference 

in beam path lengths is simply the added path length of Ray 2 within the sample, 2𝑁(𝜆)𝑡, where 

𝑁(𝜆) is the wave-dependent index of refraction and t is the thickness of the sample. Also note 

that this works under the assumption of perfect transparent material (i.e., no complex index of 

refraction), and only in transmission mode – here, we don’t have to account for 180 degree phase 

shift in the calculation due to reflections because n1>n2, but this can be included in the final 

formula by adding the shift in if working in reflection mode (later, in equation 6). Note that that 

the factor of two is present to account for the ray travelling twice the sample thickness. The 

equation thus simplifies to 

𝐼 = 𝐼1 + 𝐼2 + 2√𝐼1𝐼2cos (
2𝜋

 𝜆 
2𝑁(𝜆)𝑡)                                       A2 

The following is a typical FTIR spectrum for a 100um quartz sample. 

 

 

Figure 63: FTIR Spectrum for 100um quartz in transmission mode. 
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In Figure 63, we can see that small interference patterns are captured following the general 

transmission curve. We will select data at noticeable patterns for further processing to get 

‘cleaner’ results.  

Note that equation A2 does not account for the transmission curve of the light through quartz. To 

remedy this, we can multiply equation 2 by a transmission curve function 𝑇𝑐(𝜆) that fits the 

model: 

𝐴 = 𝑇𝑐(𝜆) (𝐼1 + 𝐼2 + 2√𝐼1𝐼2 cos (
2𝜋

 𝜆 
2𝑁(𝜆)𝑡)) 

                                          = 𝑇𝑐(𝜆)(𝐼1 + 𝐼2) + 𝑇𝑐(𝜆)2√𝐼1𝐼2 cos (
2𝜋

 𝜆 
2𝑁(𝜆)𝑡)                           A3 

Where A is not the amplitude seen in the above figure. Ideally, to perform a Fourier Transform 

on A, we would only include the cosine term. 

 

Now we can use a Fourier Transform on equation 3, but it would be difficult to determine which 

part of the result corresponds to the part inside the cosine term and, and to differentiate that part 

from noise in the transformed domain. Instead, we should eliminate this 𝑇𝑐(𝜆) and any DC 

(constant) terms.  

A simple way to do this is to take a moving average where the number of points selected for the 

average is larger than the points contained within the length of consecutive interference peaks. If 

this is done on a curve following equation 2, using a sufficiently large averaging period, the 

result of the average would be  

〈𝐼〉 = 〈𝐼1 + 𝐼2 + 2√𝐼1𝐼2 cos (
2𝜋

 𝜆 
2𝑁(𝜆)𝑡)〉 

= 𝐼1 + 𝐼2 + 〈2√𝐼1𝐼2 cos (
2𝜋

 𝜆 
2𝑁(𝜆)𝑡)〉 

= 𝐼1 + 𝐼2 + 2√𝐼1𝐼2 〈cos (
2𝜋

 𝜆 
2𝑁(𝜆)𝑡)〉 

= 𝐼1 + 𝐼2 
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If the chosen averaging period is relatively small to the fluctuations in the curve of 𝑇𝑐(𝜆), the 

resultant transmission part of curve is relatively constant, and such a moving average on equation 

A3 would follow as  

𝑇𝑐(𝜆)(𝐼1 + 𝐼2)            A4 

A smoothing spline fit does a similar average but with higher curve continuity. Such a fit is 

presented in the following figure: 

 

Figure 64: Smoothing spline fit (blue) of the FTIR curve about the range of noticeable peaks. 

Now with this fit, we are able to eliminate the first term in equation 3 by simply dividing (3) by 

(4) which should give  

𝐴2 =  1 +
2√𝐼1𝐼2

(𝐼1+𝐼2)
cos (

2𝜋

 𝜆 
2𝑁(𝜆)𝑡)           A5 

Subtracting 1 from the above gives only the cosine term with a scaled amplitude. 

𝐴3 =  
2√𝐼1𝐼2

(𝐼1+𝐼2)
cos (

2𝜋

 𝜆 
2𝑁(𝜆)𝑡)           A6 
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 To account for the wavelength dependence of the refractive index, we can plot 𝐴3 𝑣𝑠
𝑁(𝜆)

𝜆
. Such 

a plot of the above curve following these adjustments is shown below.  

 

Figure 65: Plot of the normalized interference pattern, or A3 from equation A6. 

Here we can see that the curve is now sinusoidal, but appears to have a beat, which suggests a 

tertiary interference with another wave. Assuming that this tertiary interference comes from a 

linear combination of another ray, taking the Fourier transform should still show the main peak 

which is proportional to t in A6. This is shown in the following figure: 
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Figure 66: Result of Fast Fourier Transform on the data from the previous plot. Note that the x-axis values 

are proportional to twice the thickness, t, as expected from equation 6. 

Note that two narrow peaks can be seen (highlighted in yellow). One corresponding to Ray 1-

Ray 2 interference, and the second at exactly twice the dimension on the x axis. This is most 

likely due to the Ray 1-Ray 3 Interference where the thickness that Ray 3 travels is twice that of 

Ray 2. Since the peak location is proportional to t, we expect this second peak to be 

proportionally at twice the x-value.  

Note quartz is birefringent in the x-cut plane, which is the cut used for the wings in this thesis. 

The birefringence is relatively small so interference from the ordinary and extraordinary ray 

would not be noticed on this scale but should be kept in mind that the resultant peak of the FFT 

is a linear combination of both. The effect is quantified below: 

Assuming a linear combination of two interference patterns caused by the two rays, normalized 

to an amplitude of 1, the resultant linear sum will be a sum of two cosines 

𝑓(𝜆) = cos (
2𝜋

 𝜆 
2𝑁𝑒𝑥(𝜆)𝑡) + cos (

2𝜋

 𝜆 
2𝑁𝑜𝑟(𝜆)𝑡)              A7 
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Where Nex and Nor are the indices of refraction for the extraordinary and ordinary rays 

respectively, as a function of the wavelength. If we now group the  𝜆 dependences of the first 

term such that 𝑥 =
𝑁𝑒𝑥(𝜆)

𝜆
, 

Then the above can be rewritten as  

𝑓(𝑥) = cos(4𝜋𝑥𝑡) + cos (4𝜋
𝑁𝑜𝑟(𝜆)

𝑁𝑒𝑥(𝜆)
𝑡)               A8 

In general, 𝑁𝑒𝑥(𝜆) ≈ 1.009 𝑁𝑜𝑟(𝜆) and thus we can see that a Fourier transform will gives us 

two peaks, one corresponding to the thickness t and the other at thickness t/1.009.  

The refractive index chosen for this process is that of the extraordinary ray, as it consistently 

transmits slightly better than the ordinary ray and the peak can be assumed to belong to that ray.  

This can actually be seen at a close up of the FFT as in the following figure.  

 

Complex Index of Refraction 

To make this program more universal and have the ability to accurately measure thicknesses in 

semiconductors, we need to account for complex index of refraction and its effect on the phase 

change of the secondary ray (that gets reflected twice). For this ray at reflection, n1 (silicon for 

example) >  n2 (vacuum or air).  

For reflectance where the initial medium n1>n2, the phase shift of the wave relative to the 

unshifted is then: 

ϕ = arctan(
2𝑛2𝑘

𝑛1
2+𝑘2−𝑛2

2)                          A9 
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Although for something like Silicon, the FTIR wavelength range that we use (where good peaks 

are seen) is between 1.1 to 1.37um. The effect on the phase shift can be seen in the following 

plot with relation to wavelength: 

 

So, we can see that in our working range, we are much below multiples of Pi (which I use as a 

bench mark as this is the required parameter for when simple counting the peaks and the 

distances between them). To avoid mistakes from the phase shift, one should simply choose the 

most transmitted part of the spectrum. If required however, using the above formula for Phi, one 

would have to adjust the formula to shift every point to account for the degree shift of the one 

reflecting arm.  

We can see this by simply using a trigonometric identity: 

cos(𝛼 + 𝛽) = cos(𝛼) cos(𝛽) − sin(𝛼) sin(𝛽)  A10 
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In our case, 𝛽 is essentially zero as even for thin films, the term in the cosine of A6 is on the 

order of 1. This eliminates the right term and makes cos(𝛽) about 1. Otherwise, the adjustment 

necessary to the program would be to divide the solution A7 by G(𝜆) = cos(𝛽 (𝜆)) at each 

necessary wavelength. Taking the Fourier Transform after that should give a clean peak at cos(𝛼) 

that trumps the result of the FFT of -sin(𝛼)sin(𝛽)/(G(𝜆)) . 

The MATLAB code using these mentioned principles for calculating thickness from a 

transmission spectrum is presented in the following Appendix. 

MATLAB Code for Finding Material Thickness Given FTIR Spectra 

%%%%%%%%%%%%%%%%README%%%%%%%%%%%%%%% 

%This is a user-friendly script written to calculate the thickness of a 

%sample given it's interference spectrum (amplitude vs wavenumber). It 

%adjusts the pattern to account for the index of refraction, 

%eliminates non oscillitory data (irrelevant to interference pattern), and 

%then perform an FFT to determine the sample thickness. 

%%%%%%%%%%%%%%%%%%%IMPORTANT NOTES%%%%%%%%%%% 

%The refraction indices here are given for the extraordinary and ordinary 

%rays of crystal quartz. For the wavelengths covered by FTIR up to 60um, 

%the transmission of the extraordinary ray is higher than the ordinary, and 

%so the prevailing peak will corresond to that; hence, I recommend using 

%the extraordinary index of refraction. 

%You will often see two peaks close to each other, from left to right. This  

%is likely attributed to the ordinary and extraordinary ray, in that order. 

%Usually the extraordinary ray shoes up more prominently, so use that. 

%More often you will see a second smaller peak at twice the x-value (thickness). It has been 

%determined that this smaller peak is in fact a secondary internal 

%reflection which can be used to verify the result. See documentation for 

%more details: "On Sample Thickness Calculations" 

%Note that this works for transmission mode of FTIR 

%Author: Andrey Goussev 6/14/2018 

  

clear all; 

close all; 

  

%Coefficients for calculating refractive index of x cut quartz 

%or other material of choice (ordinary and extraordinary rays) 

ao = 1.28604141; aex = 1.28851804; 

bo = 1.07044083; bex = 1.09509924; 

co = 1.00585997*10^-2; cex = 1.02101864*10^-2; 

do = 1.10202242; dex = 1.15662475; 
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fo = 100; fex = 100; 

  

  

[WaveNumber, Amplitude] = textread('C:\Users\Andrey\OneDrive - McMaster University\Research\Thickness Calculations through 

FTIR\repeatability_background.45.dpt'); 

  

%%%%%%%%%%%%%%%%%%% 

%Select Bounds 

plot(Amplitude);  %plot Amplitude vs index to select the bounds  

title('Select bounds in comman window'); 

Bounds(1) = 0; 

while Bounds(1) == 0 %error handling since can't index at 0 

    Bounds = input('Please select bounds based off plot with minimum bound at 1. E.g. "1:4000", "100:3500", etc": '); 

    if Bounds(1) ==  0; 

       fprintf('Bounds must start at an integer >0\n') 

    end 

end 

close 

 

WaveNumber1 = WaveNumber(Bounds,1); 

Amplitude1 = Amplitude(Bounds,1); 

Wavelength= (1./WaveNumber1)*10.^4; 

  

%%%%%%%%%%%%%%%%%%% 

%Select which ray  

%Remember to run/add to path the RefrIndex.m 

which_Ray = input('Extraordinary [ex], Ordinary [or] ray or Other [other]? (suggest ex for quartz)  ','s') 

if strcmp(which_Ray,'or')== 1; 

    n = RefrIndex(ao,bo,co,do,fo,Wavelength);  

elseif strcmp(which_Ray,'ex')== 1; 

    n = RefrIndex(aex,bex,cex,dex,fex,Wavelength); 

elseif strcmp(which_Ray,'other')==1; 

    %Reads a file containing the values for wavelength and index of refraction 

    %in order "wavelength [nm], index of refraction" with the first row omitted 

    which_file = input('Input CSV file name in working folder with extension like "myfile.csv": ','s'); 

    m = csvread(strcat('C:\Users\Andrey\OneDrive - McMaster University\Research\Thickness Calculations through 

FTIR\',which_file),1,0); 

    w = m(:,1)/1000; %reads and converts to [um] wavelength 

    n1 = m(:,2);  

    Refr_Index_Fit = fit(w,n1,'cubicinterp'); 

    n = feval(Refr_Index_Fit,Wavelength);  

else 

    fprintf('Input not valid; Defaulting to extraordinary ray'); 

    n = RefrIndex(aex,bex,cex,dex,fex,Wavelength); 

end 
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WaveNumber_Adjusted = WaveNumber1.*n; 

[xData, yData] = prepareCurveData( WaveNumber_Adjusted, Amplitude1 ); 

  

%%%%%%%%%%%%%%%%%%% 

%Set up fit type and options. 

refit = 0; 

opts = fitoptions( 'Method', 'SmoothingSpline' ); 

opts.Normalize = 'on'; 

opts.SmoothingParam = 0.9995803772631482; 

while refit ~= 1 

    ft = fittype( 'smoothingspline' ); 

   %Change this depending on the density of the peaks if you see that normalization is not working well 

    %opts.SmoothingParam =0.9525741268224331 

    % Fit model to data. 

    [fitresult, gof] = fit( xData, yData, ft, opts ); 

  

    % Plot fit with data. 

    figure( 'Name', 'untitled fit 1' ); 

    h = plot( fitresult, xData, yData ); 

    legend( h, 'Amplitude vs. WaveNumber', 'Smooth Fit', 'Location', 'NorthEast' ); 

    % Label axes 

    xlabel WaveNumber 

    ylabel Amplitude 

    grid on 

    isgoodfit = input('Does the fit look good? It should follow the general trend of the curve, not the small sinusoids.\n Yes [y], 

Smoother [s], Rougher [r], Manual [m]: ','s'); 

    close 

    if strcmp(isgoodfit,'y')== 1; 

        refit = 1; 

    elseif strcmp(isgoodfit,'s')== 1; 

        opts.SmoothingParam = opts.SmoothingParam^2 

    elseif strcmp(isgoodfit,'r')== 1; 

        opts.SmoothingParam = (opts.SmoothingParam+1)/2 

    elseif strcmp(isgoodfit,'m')== 1; 

        opts.SmoothingParam = input('Input Smoothing Parameter 0-1: '); 

    else 

        fprintf('Input not valid; try again'); 

    end 

end 

  

%%%%%%%%%%%%% 

%Normalize 

fit_eval = fitresult(WaveNumber_Adjusted); 

Normalized = Amplitude1./fit_eval; 
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Normalized_Centered = Normalized-1; 

  

%%%%%%%%%%% 

%Equally Space Data for FFT 

Normalized_Centered_Fit = fit(WaveNumber_Adjusted,Normalized_Centered,'cubicinterp'); 

  

Lin_WaveNumber_Adjusted = linspace(min(WaveNumber_Adjusted), 

max(WaveNumber_Adjusted),length(WaveNumber_Adjusted)); %create equally spaced query points 

Lin_Spaced_Normalized_Centered = feval(Normalized_Centered_Fit,Lin_WaveNumber_Adjusted); %evaluates the previous cubic fit 

at equally spaced points Lin_WaveNumber_Adjusted 

Sampling_Period = abs(Lin_WaveNumber_Adjusted(2)-Lin_WaveNumber_Adjusted(1)); %for calculating effective Sampling 

Frequency 

L = length(Lin_WaveNumber_Adjusted); 

 

%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%% 

%Evaluate the FFT and thickness of sample. Makes sure user is happy with 

%result :) 

 

happy = 0; 

while happy == 0  

    trails = input('Input order number of padded zeros to add\nExample: 0-10+ for higher precision (not necessarily 

accuracy)\nRecommend between 5-10:  ') 

    L_Sample = L*2^trails; 

    min_wave = min(Lin_WaveNumber_Adjusted); 

    technique = input('Use hanning window or not [y/n]? Hanning gives less spectral leakage than 0 padding,\n and is generally good 

for single spectral component detection, and detecting small signals next to large\n although worse for detecting adjacent large 

peaks.:  ', 's') 

    if strcmp(technique,'y'); 

      %%%For using the hann method 

        Y=fft(hanning(length(Lin_Spaced_Normalized_Centered)).*Lin_Spaced_Normalized_Centered,L_Sample); 

    elseif strcmp(technique,'n'); 

        Y = fft(Lin_Spaced_Normalized_Centered, L_Sample); 

    end  

    %%% 

    P2 = abs(Y);  

    P1 = P2(1:(L_Sample)/2+1);  %Cuts half of the spectrum off 

     P1(2:end-1) = 2*P1(2:end-1);   %Multiplies spectrum by two except 1st (to keep properly normalized spectrum since we got rid of 

half) 

    Fs = 1/Sampling_Period;  %Equivalent to a 'Sampling Frequency' for normal sinusoid 

    f = Fs*(0:((L_Sample)/2))/(L_Sample); 

    f = f*10000/2; %Adjust axis to represent scale in [um] 

%     plot(WaveNumber_Adjusted, Normalized_Centered) 

    figure 

    s(1) = subplot(2,1,1); 
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    plot(WaveNumber_Adjusted, Normalized_Centered); %plots subplot of normalized amplitude 

    s(2) = subplot(2,1,2); 

    plot(f,P1); %Plot FFT 

    title(s(1),'Zero-Centered Spectrum') 

    xlabel(s(1),'Wavenumber [cm^-1]') 

    title(s(2),'Fourier Transform Domain') 

    xlabel(s(2),'Thickness [um]') 

    [psor,lsor] = findpeaks(P1,f,'SortStr','descend'); 

    fprintf('1st peak %s at %s [um]\n',psor(1),lsor(1)); 

    fprintf('2nd peak %s at %s [um]\n',psor(2), lsor(2)); 

    fprintf('Average %s at %s [um]\n',(psor(2)+psor(1))/2, (lsor(2)+lsor(1))/2); 

    happy_quest = input('Are you happy (with results) [y/n]:  ','s'); 

    if strcmp(happy_quest,'y')== 1; 

        happy = 1; 

    elseif strcmp(happy_quest,'n')== 1; 

        close all; 

        continue  

    end          

end 

 fprintf('Done!\n') 

%%%%%%%%%%%%%%% 
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