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Abstract

Social interaction is essential for human life, but we have little understanding of the neu-

ral mechanisms supporting it. Recent research has shown correlated activity between

the brains of individuals (Goldstein et al. 2018; Müller et al. 2018; Dikker et al. 2017;

Toppi et al. 2016) using the novel technique of Electroencephalography Hyperscanning,

which allows us to record multiple persons’ electrical brain activity at the same time.

Interpretation of this data, however, is still unclear: does common activity reflect so-

cial interaction or is it just a by-product of shared perception? Furthermore, there is

no unifying framework on how to analyze these novel data. Although we did not find

evidence for synchronous brain activity between pianists playing duets using a complex

dynamics framework, we were able to differentiate music pieces with ambiguous leader-

ship roles from those with clear leadership roles using multivariate statistical approaches

(graph theory). Furthermore, ambiguous leadership network characteristics correlated

with participants’ perceptions of the quality of their performances. This thesis also con-

tributes to this field by expanding previously proposed frameworks (Duan et al. 2015)

to include a complex dynamics approach and thoroughly discussing issues in hyperbrain

analysis. By standardizing the protocols, interpretations, and data analysis approaches

of data from EEG hyperscanning, we can better elucidate what this synchrony means,

effectively helping us move the field of single-person social neuroscience towards a two

person neuroscience (Dumas 2011; Schilbach et al. 2013). This has profound implica-

tions at several levels, including the quantification of high level social constructs, such

as empathy or joint attention, to clinical research, where these statistics can be used as

diagnosis tools for the socially impaired brain.
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“How can a three-pound mass of jelly that you can hold in your palm imagine angels,

contemplate the meaning of infinity, and even question its own place in the cosmos?

Especially awe inspiring is the fact that any single brain, including yours, is made up of

atoms that were forged in the hearts of countless, far-flung stars billions of years ago.

These particles drifted for eons and light-years until gravity and change brought them

together here, now. These atoms now form a conglomerate- your brain- that can not

only ponder the very stars that gave it birth but can also think about its own ability to

think and wonder about its own ability to wonder. With the arrival of humans, it has

been said, the universe has suddenly become conscious of itself. This, truly, it the greatest

mystery of all.”

V.S. Ramachandran
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Chapter 1

Introduction

Coordinated social interaction is essential for human life (Sänger et al. 2011; Dumas

et al. 2014)). Whether helping a friend lift a heavy piece of furniture, jamming with

colleagues on a Friday afternoon, or even engaging in a seemingly trivial conversation

with your neighbor, our brains constantly integrate sensory information to meet the

coordinative demands of our daily lives. Recently, there has been a surge of studies

in which researchers scan two or more people at the same time (referred to as hyper-

scanning; Montague et al. 2002) to characterize hyperbrain networks, or networks with

nodes shared between different brains (Tognoli et al. 2007; Hari and Kujala 2009; Ba-

biloni and Astolfi 2014; Wang et al. 2018). These studies aim to move the field of

neuroscience towards a two person neuroscience, under the premise that social cogni-

tion is different when interacting with others compared to being shown videos of others

in an fMRI scanner (Dumas 2011; Schilbach et al. 2013; Dumas et al. 2014). Study-

ing real interactions present particular challenges, such as reconciling ecological validity

with tight experimental control, and the complexity of statistical models and analysis to

determine connectivity in hyperbrain networks. Furthermore, whether inter-brain syn-

chrony reflects functional similarity in common tasks (i.e., the similar task hypothesis)

or if it reflects interpersonal interaction (i.e., the cooperative interaction hypothesis) is
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still unclear (Liu et al. 2018; Hu et al. 2018). To address these fundamental method-

ological questions, we measured electroencephalography (EEG) in pianists playing duets

together to characterize hyperbrain networks as indexed by brain oscillations using a

complex dynamics framework (Dumas et al. 2014) that combines advanced signal de-

composition techniques (Limpiti et al. 2006), information theory (Staniek and Lehnertz

2008), and graph theory (Bullmore and Sporns 2009).

Hyperscanning refers to the practice of performing multiple person electrophysiology

and/or neuroimaging in order to understand how co-variations of neural activity (char-

acterized as Hyperbrain networks) are influenced by the social interactions between the

subjects (Montague et al. 2002; Mu et al. 2018). Duane and Behrendt (1965) were the

first researchers to use this paradigm to study social interaction. Unfortunately, their

area of interest was extrasensory communication between twins. EEG technology at the

time had scarce spatial resolution, and the choices of statistical and data analysis of this

report were suboptimal (Duane and Behrendt 1965). Following this, EEG hyperscanning

was forgotten by the scientific community for many years. Recently, however, multiple

person electrophysiology has seen a rise in popularity in fields such as social neuroscience

and the study of brain oscillations (Babiloni and Astolfi 2014; Mu et al. 2018; Liu et al.

2018). Dumas et al. (2010) published one of the earliest reports using EEG hyperscan-

ning to show interbrain synchrony in a social task. Participants either led or imitated

each other through hand gestures. Hyperbrain networks formed between modelers and

imitators at different frequency bands, suggesting functional purposes (i.e., possibly re-

flecting modulations related to leadership during the interaction) of these synchronies

between brains (Dumas et al. 2010).

Two competing hypotheses try to explain these synchronies: the cooperative interac-

tion hypothesis and the similar task hypothesis (Hu et al. 2018; Mu et al. 2018). The
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cooperative interaction hypothesis posits that hyperbrain networks represent neural ac-

tivity related to social interaction and are dependent on factors such as cooperation

(Balconi et al. 2018), perceived human-to-human interactions (Hu et al. 2018), and the

interplay of systems such as “self-other entrainment” and “co-representation” (Novem-

bre et al. 2016). The similar task hypothesis (related to the “common input problem”)

posits that hyperbrain networks are just a by-product of similarity in tasks, perceptions,

and sensorimotor activity as two people interact. To tease these two apart, several stud-

ies have used different ecologically valid settings, such as social games (Hu et al. 2018;

Balconi et al. 2018), real-world interactions (Hirsch et al. 2017; Goldstein et al. 2018),

and music ensembles (Novembre et al. 2016; Sänger et al. 2013; Babiloni et al. 2012).

These situations require participants to be tightly coordinated with each other at differ-

ent levels, from low-level sensorimotor coordination all the way to higher representations

of the objective at hand (Sänger et al. 2011).

Interpersonal coordination occurs when individuals synchronize their attention, ac-

tions, and mental states with each other to engage in social activities that have a com-

mon objective (Ackerman and Bargh 2010). There are two broad types of interpersonal

coordination: matching/mimicry and interactional synchrony (Mu et al. 2018; Dumas

2011). For the purposes of this thesis, we were mainly interested in interactional syn-

chrony. Human social behaviour is assumed to have cyclical and rhythmic properties.

Behavioural rhythms, like other physiological cycles—such as circadian rhythms and

hormone cycles—have entrainment properties that allow them to synchronize with an-

other "time giver" (i.e., a driver; for example, circadian rhythms entrain to the day-night

cycle). In the case of social situations, this "time giver" can be another human. Inter-

actional synchrony is thus defined as the degree of congruence between the behavioural

cycles of two or more people (Bernieri and Rosenthal 1991).

Interactional synchrony requires the perception, representation, and anticipation of

3



Master of Science– Hector D Orozco Perez; McMaster University– Department of
Psychology, Neuroscience, and Behaviour

one’s own and the partners’ actions (Sänger et al. 2011). To do this, the brain needs a

mechanism that must meet three constraints (Sänger et al. 2011):

1. Be fast enough to permit the fluidity and precision of social interaction (Roelfsema

et al. 1997)

2. Integrate and bind spatially distributed but functionally related neural information

(Varela et al. 2001)

3. Support both perception and motor function (Sanes and Donoghue 1993)

As originally proposed by (Lindenberger et al. 2009), brain oscillations satisfy these

constraints. Brain oscillations are fast and bind spatially distributed but functionally

related information at the level of individual neurons, cell assemblies, and cortical areas

(Ben-Ari 2001). Hyperbrain networks could reflect interactional synchrony and its neural

substrates. Furthermore, most of the brain regions involved in this activity seem to derive

from two broad systems: the Mirror Neuron System (MNS) and the Mentalizing System

(MS) (Mu et al. 2018).

The Mirror Neuron System (MNS), along with the Mentalizing System (MS), seem

to support human interactional synchrony (Wang et al. 2018). Most work suggests

that both systems work in a complimentary and synchronous fashion within individuals

(Van Overwalle and Baetens 2009), though some work suggests that the Mirror Neuron

System might be subservient to the Mentalizing System (Frith and Frith 2006). The

MNS includes neurons in the inferior frontal gyrus, inferior parietal lobule (which is

related to language, motor and sensory detection), the superior temporal gyrus (which

can provide additional visual information inputs as well as being an auditory processing

hub), the intraparietal and superior temporal sulcus, and premotor cortex (Rizzolatti and

Craighero 2004; Iacoboni and Dapretto 2006). It is associated with sensing other people’s

goals based on low-level behavioural input (limited to familiar executed actions; Iacoboni
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et al. 1999; Van Overwalle and Baetens 2009). Newman and Girvan (2004) expanded

the traditional conception of the MNS by proposing that it not only serves to mimic

other’s actions, but rather, at least two thirds of these neurons respond when performing

contextualized complimentary actions. Furthermore, Molenberghs et al. (2012) propose

that the MNS goes beyond the cerebral regions usually attributed to it and may even

include areas recruited during auditory, somatosensory, and affective tasks.

While the MNS serves a role in the preparation of one’s own actions and simulating

other’s actions, the MS involves the anticipation of other’s intentions and the ability to

infer other’s mental states (Sperduti et al. 2014; Frith and Frith 2006). The temporo-

parietal junction (TPJ) and the medial prefrontal cortex (mPFC) work together to

form the mentalizing system (Van Overwalle 2011; Saxe 2006). The TPJ is associated

with short-time estimates of intentions, desires, and goals related to other people (Van

Overwalle and Baetens 2009). The medial prefrontal cortex makes critical contributions

to the neural basis of mentalizing and the social self (Babiloni et al. 2007; Schilbach

et al. 2010; Funane et al. 2011; Amodio and Frith 2006), as well as to cooperation

(Decety et al. 2004). Indeed, in the context of hyperscanning, several fMRI and fNIRS

(imaging modalities with superior spatial resolution) studies have revealed interbrain

synchrony at the right inferior frontal gyrus (Saito et al. 2010; Koike et al. 2016; Cheng

et al. 2015) and the temporo-parietal junction (Bilek et al. 2015; Tang et al. 2015; Dai

et al. 2018). However, compared to fMRI and fNIRS, hyperscanning EEG methods

offer both a superior temporal resolution (in the order of milliseconds) and portability

that could further the characterization of these hyperbrain networks in more naturalistic

environments (Mu et al. 2018).

EEG is one of the most powerful techniques to explore neural oscillations in a non-

invasive manner (Cohen 2017). Its sub-millisecond temporal resolution and portability
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allow us to study social interactions in natural scenarios, reconciling ecological valid-

ity with experimental control (Cohen 2014; Wang et al. 2018). Dikker et al. (2017)

recorded students’ EEG during normal classes and determined that brain-to-brain syn-

chrony predicts both student engagement and social dynamics. The authors interpret

brain-to-brain synchrony as shared attention that modulates synchrony by "tuning" neu-

ral oscillations to the temporal structure ("rhythm") of the incoming perceptual stream.

They emphasize that brain-to-brain synchrony is not a mechanism in itself, but rather, a

way to operationalize the underlying neural computations that support the psychological

processes under investigation.

Goldstein et al. (2018) measured hyperscanning EEG in heterosexual romantic cou-

ples during pain administration to the female partner. They found that social touch dur-

ing pain conditions increased brain-to-brain coupling in hyperbrain networks at alpha-mu

frequencies. These networks showed associations between the central regions of the pain

receiver and the right hemisphere of the pain observer. Furthermore, clusters in these

networks (as indexed by a hierarchical clustering analysis) correlated with both the pain

alleviation effect (i.e., analgesia magnitude) and the observer’s empathy accuracy.

Toppi et al. (2016) recruited civil pilots and measured their simultaneous EEG’s

during a simulated flight, where they introduced artificial "malfunctions" to manipulate

hierarchical roles (Captain vs. First Officer). They showed that brain-to-brain connec-

tivity differentiated phases of the flight (e.g., denser patterns of interbrain connectivity

at both alpha and theta during landing after an artificially introduced electrical mal-

function) and these connections highlighted the role of different cortical areas involved

in cooperative behaviour (mostly parietal-central-frontal areas). Most importantly, this

paper highlights how hyperscanning methodologies are superior to single-brain analyses,

which failed to differentiate flight phases and levels of interaction.

Of particular interest to us is the study of music ensembles as a model of human
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interaction (D’Ausilio et al. 2015). Building on previous studies (Lindenberger et al.

2009; Sänger et al. 2013), we propose to study interactional synchrony in piano duos.

Music has distinct features that make it a promising avenue for social cognition research,

such as ecological validity (it serves a very explicit social function by conveying group

and individual emotions), generalizability (musicality is a wide-spread human capacity),

and a formal description of the interaction (the music score resembles a script; Merriam

and Merriam 1964; Hargreaves and North 1999; D’Ausilio et al. 2015). Previous work

(Lindenberger et al. 2009; Sänger et al. 2011; Sänger et al. 2013; Müller et al. 2018)

has determined that, indeed, it is possible to use music ensembles to study the neural

substrates of interpersonal action coordination.

Precursors to our work have used EEG and fNIRS hyperscanning to study saxo-

phone quartets, dyads engaged in joint singing, and guitar ensembles (from duos to

quartets). Babiloni and Astolfi (2014) found that alpha desynchronization in the right

inferior prefrontal gyrus (as indexed by an sLORETA solution) correlated with musi-

cians’ empathy quotient test scores only in conditions in which the quartet observed a

video of themselves playing music (as opposed to a resting condition, a playing condi-

tion, and a control condition). This results suggest that alpha rhythms in these regions

reflect "emotional" empathy in musicians observing their own performance. They did

not, however, try to characterize hyperbrain networks. Osaka et al. (2015) used fNIRS

hyperscanning to investigate cooperative singing and humming. The left inferior frontal

cortices of the singing dyads synchronized more for both singing and humming com-

pared to both singing alone and scrambled pairs. The right inferior frontal cortex also

synchronized between dyads in humming conditions, possibly due to more dependence

on musical processing in the absence of words. Lindenberger et al. (2009), Sänger et

al. (2011), Sänger et al. (2013), and Müller et al. (2018) found synchronicities between

guitarists’ EEG recordings in terms of phase couplings. Furthermore, they found hyper-

brain networks between the brains of guitar players with small-world properties—–an
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optimal architecture for information processing where the nodes of a network are both

functionally integrated but segregated. In their most recent article (Müller et al. 2018),

they used EEG hyperscanning to characterize hyperbrain networks in a guitar quar-

tet. Using an adaptive phase locking index paired with a sliding window procedure,

they showed that interactions between brains are characterized by dynamic changes,

such that strength statistics and modular structures are non-stationary and change as a

function of frequency and time, reflecting the musical situation and other interactional

synchrony requirements.

These experiments, however, had a number of shortcomings. The guitar ensembles

studies focused on theta and delta frequency bands (which are known to be prone to

spurious connectivity, specially when measured by phase-based statistics Lindenberger

et al. 2009; Burgess 2013), rather than mu and alpha frequency bands, which have

been traditionally associated with activity from the mirror neuron system (Bernier et al.

2007; Tognoli et al. 2007; Ahn et al. 2018; Astolfi et al. 2011); the lack of non-linear

cross-frequency analysis; the lack of correlation between specific observed behaviours

and the EEG activity (as suggested by Babiloni and Astolfi 2014); and the lack of

systematic manipulation of music pieces with different roles and motor demands for

each participant. In sum, none of the studies present a thorough characterization of

hyperbrain networks combining source modeling with non-linear multivariate statistics,

a systematic manipulation of music pieces, self-reports, and proper statistical control

(both a baseline and a shuffled participant analysis). The paradigm we employed aims to

both replicate these findings and extend them by addressing most of these shortcomings.

As a cautionary note, we are not suggesting that the existence of significant correla-

tions or covariances between different brain oscillations means a physical “communication

channel” between multiple brains. As Dikker et al. (2017) emphasizes, we propose that

this synchrony is not a mechanism itself, but rather an indication of an indirect chain of
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events that starts from a particular cerebral region of one person and ends in the cerebral

processes elicited in the brain of a second person. Such indirect relationships may be

mediated by behaviour, perception, and internal predictive models. The computational

links we are investigating in the EEG brain oscillations are a form of spatio-temporal

map of the multiple cerebral regions involved in joint music playing and, more generally,

interactional synchrony (Babiloni and Astolfi 2014).

Using brain oscillations as a neural marker of interactional synchrony has its caveats.

Notably, finding synchronous EEG activity across brains could be due to the similarity

in the perception stream impacting both brains (i.e., the similar task hypothesis). To

get around this, we propose a complex dynamics framework paired up with a leader-

follower manipulation to study hyperbrain networks (Sporns 2011; Wibral et al. 2014).

Complex dynamics science investigates entities (in this case, brain regions) where the

global system behaviour (i.e., interactional synchrony) is a non-trivial (i.e., non-linear)

result of interactions between local agents (i.e., cortical areas; Lizier n.d.; Duan et al.

2015). Specifically, we use permutation-based information theory statistics (Staniek

and Lehnertz 2008). These statistics offer several advantages, such as being model-free,

handling stochastic dynamics quite well, and capturing non-linear relationships (Lizier

n.d.).

We decided to use two types of piano duos: homophonic and polyphonic duos. In

homophonic duos, there is a clear melody (Piano I) and accompaniment (Piano II), thus

ecologically introducing a leadership situation without verbal instruction. On the other

hand, polyphonic duos are pieces where there is no clear melody and accompaniment, or

there are multiple melodies—such as in a Canon or a Fugue. These two manipulations

allow us to compare two different contexts: leadership and no leadership. By manipulat-

ing this variable, we can start to make inferences about how the direction of information

flow is influenced by context.

9
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We modelled the pianists’ brains as dynamical, non-linear systems (Boker 1996),

where each agent of the system (in this case, macro-cortical regions) simultaneously

stores, transfers, and modifies information in variable amounts (Wibral et al. 2014;

Ciaramidaro et al. 2018). For the purposes of this thesis, we focused on the description

of information flow between these cortical areas. Information in this sense refers to

a draw at a given time point from a stochastic system (Shannon 1948). We did this

modeling in a three stage process:

1. We decomposed the scalp EEG into 12 macro-cortical regions of interest using a

novel cortical patch model paired with a linearly constrained minimum variance

beamformer inverse solution (Limpiti et al. 2006). See Section 2.7.1 for details.

2. We determined effective connectivity (i.e., information flow) between these cortical

regions using Symbolic Transfer Entropy (at all possible traditional frequency band

interactions between theta, delta, alpha, beta, and gamma; Staniek and Lehnertz

2008). Effective connectivity describes the set of causal effects of one system over

another one (Garofalo et al. 2009). In this context, causality is defined as Wiener’s

"observational causality principle", where process X is causal to process Y if Y is

better predicted by incorporating past information of X than by using only past

information of Y (Wiener 2013).

3. We determined the hyperbrain networks’ characteristics using graph theory statis-

tics (Bullmore and Sporns 2009).

4. We used appropriate control conditions for statistical testing (both baseline and

scrambled pairs as suggested by Mu et al. 2018).

We used this framework to answer the question: “is information transfer between

cortical areas, as indexed by brain oscillations, related to interactional synchrony? Or, is

it just a by-product of shared perception and similarity of movements?”. We hypothesized
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that information would flow between participants’ frontal, temporal, and parietal areas

specially at alpha/mu frequencies (Tognoli et al. 2007; Lindenberger et al. 2009; Sänger

et al. 2013; Wang et al. 2018). We also hypothesized that information would flow more

from leaders to followers than vice versa, especially during homophonic duets (Toppi

et al. 2016). Ultimately, we hypothesized that hyperbrain networks are not just a by-

product of shared perception and similarity in movements, but rather a correlate of

interactional synchrony while musicians play piano duets.

11



Chapter 2

Methods

We aimed to characterize hyperbrain networks while pianists play together using ad-

vanced signal processing techniques, information theory, and graph theory.

2.1 Ethics

The experimental procedures conformed to the World Medical Association’s Declaration

of Helsinki and were approved by the McMaster Research Ethics Board. All participants

gave their informed consent by signing a form and each of them received a $100.00

honorarium.

2.2 Participants

Twelve classical pianists (six female, mean age 24.8±5.6) participated in the experiment

after providing written informed consent. Participants had had on average 13.7±2.5

years of formal piano training and 7.6±4.7 years of music ensemble training (as ac-

companists, playing chamber music, etc.). Exclusion criteria by self-report included

neurological damage or abnormalities, hearing loss, and left-handedness. Participants
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were recruited from music programs in several different institutions by both email and

word-of-mouth.

2.3 Stimuli

We chose the piano pieces based on four criteria:

1. Music style (all were classical in the popular sense with written musical scores)

2. That they were clearly either polyphonic (no dominant melody nor accompani-

ment) or homophonic (embedded social roles—leader follower; clear melody and

accompaniment dynamic)

3. That they were explicitly written for 2 pianos (a duo) and not a transcription

4. That they contained a salient moment (which we dubbed a synch point) in which

synchronization between the pianists could be particularly difficult (e.g., fermata

or ritardando/accelerando).

From these pieces, we chose 40s excerpts in which either the polyphonic or the ho-

mophonic characteristics were evident (either one piano lead the other or no clear leader

at all). In 2 cases (see Table 2.1), synch points were not explicit in the score, and were

added with the aid of a professional pianist (Erika Reiman, PhD).

We began with a pool of 15 pieces, ranging in styles (from Baroque to Romantic).

From this pool, and with the aid of a professional pianist (Erika Reiman, PhD) we chose

four pieces (see Table 2.1 and Appendix B). Most of these pieces were written in the

late romantic, early impressionist style. These pieces most clearly met the criteria listed
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above; and this specific music style is associated with increased expressiveness and emo-

tion in the music (Beard and Gloag 2004), reflected as expressive tempo markings that

required the participants to listen to each other in order to be synchronized throughout.

Table 2.1: Music Pieces

Duo Type Pieces Tempo Bars

Polyphonic Kanon, from
Sonata for 2
Pianos (3rd

Movement Kanon,
Hindemith)

Slow Bars 21-32 (added
fermata at bar 26)

Polyphonic Entre Cloches,
from Sites
Auriculaires

(Ravel)

Allégrement Bars 1-14

Homophonic Caprice
Mélancolique

(Hahn)

Andantino
Poétique

Bars 1-30 (Added a
rit. at bar 9, added
tonic at bar 30)

Homophonic Valse from Suite
No 1 Op. 15
(Arensky)

Allegro Bars 1-49

2.4 Music duo pairings

We paired the pianists ahead of time based on five factors: age, years of piano experi-

ence, if they had conservatory education or not, if they currently worked as professional

pianists or not, and if they were currently playing in an ensemble (Sänger et al. 2013; see

Table 2.2). Pianists in a same duet had never played music together and had never met

each other before (except in one duet, in which pianists reported knowing each other

but having neutral feelings for each other).

14



Master of Science– Hector D Orozco Perez; McMaster University– Department of
Psychology, Neuroscience, and Behaviour

Table 2.2: Duo pairings

Age Music
Training

Ensemble
Training

Cons
Education

Prof.
musician Ensemble

1 23 20 15 12 10 8 Y Y N Y Y N
2 29 32 10 10 7 5 Y Y N N N N
3 20 18 10 15 6 4 Y Y N N Y Y
4 21 24 15 15 4 8 Y Y Y N N N
5 38 28 15 15 20 13 Y Y N Y N N
6 21 23 14 18 4 2 Y Y Y Y Y N

Diff 3.8±2.8 2±2.1 3.2±1.9 6/6 3/6 4/6

2.5 Experimental procedure

We used a leader follower manipulation with one experimental factor (duo type: ho-

mophonic or polyphonic). We first contacted participants through email so they could

answer a screening questionnaire inquiring about the exclusion criteria (Appendix A).

We paired them up in advance using the criteria mentioned in the last section.

The experiment took place in the LIVELab, a unique 106-seat Research Performance

Hall designed to investigate the experience of music, dance, multimedia presentations,

and human interaction (McMaster University, Hamilton, Ontario, Canada). Four to six

weeks before their scheduled appointment, each participant was sent sheet music for

the four excerpts (see Appendix B and Section 2.3) and they were asked to familiarize

themselves with both parts of the duets (Piano I and Piano II). They were asked to have

a good night sleep before they came in (to minimize artifactual alpha activity) and to

bring in their glasses instead of their contacts (to minimize blinking artifact in the EEG

signal).

On the scheduled day, participants came in and were introduced to each other. From

that moment on, we explicitly forbid them to communicate verbally with each other. We

measured their heads to choose an appropriate EEG cap size, and then digitized each
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participants’ electrode positions (Polhemus Fastrak) prior to data recording. After that,

participants were taken to the main stage in the LIVELab (see Appendix D for diagram

of the setup), where they filled out a number of questionnaires (see below; importantly,

they filled out the “Music Affiliation Questionnaire”, Appendix C, before and after the

experiment) while we applied conductive gel to the electrodes in the cap. After this,

a 3 minute baseline was recorded in which participants sat still at the piano, and then

the participants underwent four experimental blocks, one per excerpt. The order of

blocks (excerpts) was pseudorandomized across participants. Participants played the

Piano 1 and Piano 2 parts of each excerpt on different trials, and the order of leadership

assignment was always counterbalanced within each piano dyad.

To determine the pseudorandomized orders of excerpts across participants, we first

calculated all possible permutation of the four excerpts (total of 24). Then, we random-

ized them using Python’s random() function. One experimental block consisted of one

“dummy” trial (a “warm-up”) followed by four trials: one participant played the Piano I

part for two trials, and then they switched parts for the last two trials. Thus, each piece

was performed 1 + 4 times in total. After each performance, participants filled out the

“Perception of Music Performance Questionnaire” (adapted from Pesquita et al. 2014;

Appendix E).

When all trials were done, participants were paid a $100.00 honorarium and were

debriefed that the purpose of the experiment was to examine how they interacted. On

their way out, they filled out for a second time the “Music Affiliation Questionnaire”

(Appendix C) and then answered two short questions: (1) What do you think the purpose

of this study was? (2) When doing it, did you have any thoughts as to why we were

asking certain things?
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2.6 Data Acquisition

2.6.1 Personality questionnaires

Psychometric questionnaires were delivered as online surveys using Google Forms. Par-

ticipants filled out 6 online questionnaires using Google Forms. Before the experiment,

they filled out:

1. Demographic and general music abilities questionnaire (Appendix F)

2. Goldsmiths Musical Sophistication Index (Müllensiefen et al. 2014)

3. Ten-Item Personality Inventory (Gosling et al. 2003)

4. Interpersonal Reactivity Index (Davis et al. 1980)

5. Music Affiliation Questionnaire (MAQ) (Appendix C)

At the end of the experiment, the participants filled out the MAQ a second time. Ques-

tionnaire responses were downloaded from Google Forms as a csv and imported to Python

for further processing.

2.6.2 EEG

We recorded EEG at 2048 Hz using 64 active sintered Ag/AgCl ring wet electrodes

(g.SCARABEO; g.tec medical engineering GmbH, Austria) placed on a g.GAMMAcap2

based on the international 10-10 system. Impedances were kept bellow 10kΩ. Two

g.HIamp biosignal amplifiers were used for data recording. Recordings were made with

24-bit precision, relying on oversampling to reduce noise by averaging samples. Data

were recorded using the g.Recorder software, referenced to the average of both earlobes

and with the ground at Cz, and stored for offline analysis.
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2.6.3 MIDI

We recorded MIDI files of all performances by interfacing two FP-80 Roland Digital

Pianos (Roland Corporation, Japan) with a USB audio interface (Scarlett Focusrite, Fo-

cusrite plc, England) using a Digital Audio Workstation (Reaper, Cockos Incorporated,

USA).

2.6.4 Video

We recorded the performances using a SONY PXW-X70 XDCAM camcorder. Display

resolution of the camera is 1920x1080 and the resolution of the videos is 1920x1090.

Videos were recorded at a frame rate of 59.940059 frames per second using the H264-

MPEG-4 AVC codec (part 10) (h264).

2.6.5 Trigger latency and data Synchronization

EEG, MIDI, and video data were synchronized using an in-house device consisting of

an Arduino board interfaced with 2 female DB25, a BNC connector, and a female

6.35mm TRS (see Fig. 2.1 for the basic circuit diagram; find all the details here:

https://github.com/neurohazardous/hyperSynch). A button was connected to the Ar-

duino board through BNC. When pressed, three 50ms TTL pulses (with 500ms between

them) were sent through the female parallel ports to each g.HIamp (through parallel

ports) and to both an audio interface and the video camera (through a split TRS con-

nector).

Using an Oscilloscope, we concluded that the latency of the triggers between both

EEG systems was 5µs and the latency between the EEG systems and the video/MIDI
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recording was of 10µs. These latencies are negligible as the EEG system samples every

half millisecond (2048 Hz).

To align the data, we visually inspected the MIDI recordings and determined when,

and for how long, participants played together with respect to the onset of the third

pulse. We quantified this time and trimmed the data around this window.

Figure 2.1: Diagram of in-house device used to synchronize EEG data
with both video and MIDI.

2.7 Data Analysis

For the purposes of the this thesis, we only analyzed and processed EEG data, and data

from the MAQ and the PMPQ.
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2.7.1 EEG Data: Preprocessing

Data were preprocessed in MATLAB using a combination of EEGLAB (Delorme and

Makeig 2004), FieldTrip (Oostenveld et al. 2011), and in-house developed scripts. The

preprocessing consisted of three grand steps: artifact correction and preprocessing,

template-electrode alignment, and source decomposition. We first imported data (20 tri-

als + baseline per experimental subject) to EEGLAB (pop_loadhdf5() plugin), high pass

filtered it at 0.5Hz using a zero-phase hamming window FIR filter (pop_eegfiltnew()),

loaded channel’s information and digital locations (pop_chanedit()), trimmed data start-

ing at piano play onset plus three seconds both at the beginning and at the end of

the playing time period (adding 3s padding takes care of filter and Hilbert Transform

artifacts), and used two of EEGLAB’s plugins to correct artifacts: CleanLine() and

clean_rawdata(). CleanLine() takes out line noise in the signal by running a spectral

regression of a 60 Hz sinusoid (of unknown phase and amplitude) and then subtracts it

from the data (Bigdely-Shamlo et al. 2015). Because we wanted to keep the experimen-

tal conditions as ecologically valid as possible, participants were able to move as much

as they wanted. To prune the data from high variance artifacts (e.g., motion artifacts,

eye-movement) we used EEGLAB’s clean_rawdata() function, which runs an electrode

rejection algorithm and Artifact Subspace Reconstruction (Mullen et al. 2013). First,

we rejected (1) electrodes that had a correlation of 0.75 or less with their neighbouring

electrodes, (2) electrodes with activity that was at least 8 standard deviations away

from the other electrodes, and (3) electrodes that saturated (i.e., flat lined) for more

than 5 seconds. Then, Artifact Subspace Reconstruction extracted clean data from the

recording, got calibration statistics, and used a sliding window Principal Component

Analysis to reject high variance components. After this, we ran a spherical interpolation

(pop_interp()), and re-referenced to common average (fullRankAveRef()).

The remaining two steps (template-electrode alignment and source decomposition)
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were run in FieldTrip combined with in-house scripts. Because we did not have individ-

ual MRI T1w scans, we decided to use the ICBM152 template. Specifically, we used the

symmetric, 0.5mm resolution template, which represents an unbiased non-linear average

of the MNI152 database that combines the features of both high-spatial resolution and

signal-to-noise while not being subject to variations in individual brains (Fonov et al.

2011). In addition, the ICBM152 is one of the most common templates used: FSL—a

comprehensive library of analysis tools for fMRI, MRI and DTI brain imaging data—

comes with a large set of atlases, all geared towards the ICBM152. We started by reading

off the MRI template (ft_read_mri()) and adding the fiducial locations (naison, left and

right pre-auricular points) taken from (Cutini et al. 2011). We then segmented (i.e.

separated) it into three tissues: brain, skull, and scalp (ft_volumesegment()). To create

a conductive headmodel using the boundary element method (BEM), we need to take

the volume information and transform it into surface information (main assumption:

electricity flows within the same kind of tissue in a uniform fashion, so we only need to

account for tissue changes). We did this by modelling the surfaces of the three tissues

as points (vertices) connected in a triangular way using FieldTrip’s ft_prepare_mesh()

function. We used 1000 vertices per tissue (see Fig. 2.2). From the geometric description

of each tissue, we created a volume conduction model using FieldTrip’s "dipoli" imple-

mentation (Oostendorp and Van Oosterom 1989). The headmodel was created once and

was used for each individual subject. Before decomposing the EEG data into sources, we

aligned each individual’s electrodes to the headmodel. We did so in two steps: a first, au-

tomatic pass using FieldTrip’s ft_electroderealign() function (aligns the template’s and

electrode’s fiducials) and a second interactive pass (using the same function with differ-

ent parameters). Note that this interactive pass includes three kinds of transformations:

translation, rotation, and linear scaling. After this, we prepared the leadfield matrix

by discretizing the cortical volume into a 1cm grid. The leadfield matrix describes how

each dipole along this discrete grid in our headmodel projects to the scalp. We created
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this model by using FieldTrip’s ft_prepare_leadfield(). Once we had the leadfield and

individually aligned electrodes, we created the forward model.

Figure 2.2: The geometry of the volume conduction model. All surfaces
(scalp: gray, skull: white, brain: green) plotted together. From this view,
two fiducials are visible: nasion (NAS) and Left pre-auricular point (LPA)

Table 2.3: Cortical parcellation after spatial downsampling. Bolded
patches were not included in Symbolic Transfer Entropy Analysis.

Cortical Patches

Prefrontal Left Prefrontal Right Motor Left
Motor Right Basal Ganglia Left Basal Ganglia Right
Insula Left Insula Right Parietal Left

Parietal Right Temporal Left Temporal Right
Occipital Left Occipital Right Limbic Left
Limbic Right Cerebellum Left Cerebellum Right

Cerebellum Mid

We decided to implement a cortical patch basis model (see Limpiti et al. 2006) that

describes arbitrary spatially distributed activity within each cortical patch using a set of

local basis functions. Because this model does not assume activity distribution within

the cortical patches, it can describe both focal and spatially distributed activity. We

started off with the Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et
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al. 2002), one of the most commonly used atlases in the imaging literature (Soares et al.

2016). Associating the ICBM152 template with the AAL atlas allowed us to localize

designated anatomical features in coordinate space, as well as to associate functional

results to identified anatomical regions (Soares et al. 2016). Because EEG does not offer

the same resolution as MRI, we decided to pool anatomically relevant regions, essentially

doing a spatial downsampling, going from 116 regions to 13 (see Table 2.3; note deep

brain structures were not included in further analysis because current dissipates as a

function of the square distance, making it difficult to obtain reliable data from these

regions). For each cortical patch, we determined the leadfield points (or dipole sources)

located in it (based on the downsampled AAL atlas). We modeled the signal coming

from the each patch as

Sk,j(t) ≈ Hkak,j(t) (2.1)

where Sk,j(t) is the signal originating from the kth patch during the jth epoch at time t;

Hk is a rectangular matrix with dimensions (number of channels) by 3 (number of dipoles

inside the patch). This setup corresponds to an unconstrained model because the dipole

moment orientations are unknown (i.e., we do not have individual T1w MRI scans so

we do not know each person’s individual anatomy); and ak,j(t) is a 3 (number of dipoles

inside the patch) by 1 vector whose entries represent the three components (x−, y−, and

z−coordinate directions) of the dipole amplitude at each point of the dipole grid. The

problem here is twofold: qk can be quite large even for modest sized patches (resulting

in a very large number of unknown parameters when doing the inverse solution) and the

columns of Hk can be linearly dependent (because of volume conduction). Consequently,

we did a low-rank approximation ofHk by minimizing the normalized mean-squared error

between the approximated signal within the patch (ŝk,j(t)) and the actual signal (sk,j(t)).

This minimization is done by choosing pk left singular vectors of Hk corresponding to
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the pk largest value (these are obtained by a singular value decomposition). Limpiti

et al. (2006) define the mean representation accuracy statistic (γk) to choose an

appropriate pk. The number of bases (pk) chosen for each patch determines a trade-off

between representation accuracy and the ability to differentiate between distinct patches.

We chose a γk of 0.85. With this, we get the basis function that describes activity for

each patch. This is the forward model (for a more in depth description of the process,

see Limpiti et al. 2006).

With the forward model in hand, we decided to use a linearly constrained minimum

variance (LCMV) inverse solution (Van Veen et al. 1997). The LCMV criterion designs

a spatial filter to minimize the output power subject to a unit response constraint to a

location of interest, in our case, to each patch. So, for each patch, Limpiti et al. (2006)

define the LCMV problem for the patch basis model as:

min
wk

wTk Rxwk subject to wTk Ukvk = 1, (2.2)

where wk is the weights of the spatial filter, Rx is the covariance matrix of the data,

and, in our case of unknown moment orientations, vk is chosen to be the eigenvector

corresponding to the smallest eigenvalue of UTk R−1
x Uk, where Uk is the low rank (pk)

approximation of the leadfield matrix. The spatial filter is given by:

wk = [vTk UTk R−1
x Ukvk]−1R−1

x Ukvk. (2.3)

The amplitude of the patch’s signal for each epoch is then estimated by applying the

spatial filter of 2.3 to the actual data xj(t)
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Ĝk,j = wTk xj(t). (2.4)

Once the spatial filters for each cortical patch were applied to all the data, these were

exported to Python for further analysis. Both time frequency and symbolic transfer

entropy analyses were carried out in Compute Canada’s Graham cluster using a serial

farm. We created a base Python script that intakes 6 parameters (subject a, subject

b, pair name, source frequency band, target frequency band, and delay). This heavily

optimized computation time.

2.7.2 EEG Data: Time-frequency decomposition

Preprocessed data were imported to Python and frequency bands were isolated using

a zero-phase Blackman windowed sinc FIR filter (Delta: 1 – 3 Hz; Theta: 4 – 7 Hz,

Alpha: 8 – 12 Hz, Beta: 13 – 28 Hz, Gamma: 30 – 45 Hz). We chose a Blackmann

window to minimize spectral leakage across frequency bands. Using Numerical Python

(Oliphant 2006) and Scientific Python (Oliphant 2007), we calculated the power at each

frequency band (the squared magnitude of the analytic signal; i.e., Hilbert transform).

We performed a baseline normalization (percentage change from baseline; see Eq. 2.5)

to (1) disentangle background dynamics from actual task-related oscillations and (2) to

ensure our data were normally distributed (Cohen 2014). The equation used was as

follows

%changetf = 100
activitytf − baselinef

baselinef
, (2.5)

where activitytf is a specific time-frequency point and baselinef is the average activity

across time at a given frequency band (Cohen 2014). The units of these data are %
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change from baseline. After normalizing with respect to baseline, we got rid of the 3s

padding at the beginning and end of each trial and decimated by a factor of 16 (from

2400Hz to 150 Hz; see next section).

2.7.3 EEG Data: Symbolic Transfer Entropy

Symbolic Transfer Entropy (STE) can be interpreted as a non-linear extension of Granger

Causality (Lee et al. 2015). It is based on the concept of Entropy, first developed by

Claude Shannon in 1948, as a means to quantify information in a random process (Shan-

non 2001). It quantifies how much new information a series of messages is conveying by

taking a weighted average of the probability mass function for the process of its possible

outcomes (see Eq. 2.6).

S = −
∑
i

Pilog2(Pi). (2.6)

To infer information transfer between two processes, Schreiber (2000) proposed the con-

cept of transfer entropy. Given a source signal X and a target signal Y , transfer entropy

quantifies how much information is flowing from process X to process Y based on the

influences the state of X has on the nth transition probabilities of system Y. It is im-

portant to note that Transfer Entropy is asymmetrical because of the conditioning on

the transition probabilities. The basic idea is to model both time series as two sep-

arate Markov process: one including only the target signal, and the other including

both the target and the source signals. The deviation between both distributions is

then estimated. If both signals are completely independent, or if they are completely

synchronized, transfer entropy tends to 0 (Schreiber 2000). Studying time series with

this approach, however, becomes problematic because collapsing a time series into a

probability distribution requires the choice of several parameters (frequency distribution
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bins, method of approximation, etc.). To get around this, Staniek and Lehnertz (2008)

proposed Symbolic Transfer Entropy, a particular implementation from the permutation

entropy approaches (Bandt and Pompe 2002).

TSX→Y =
∑

p(ŷi, ŷi−1, x̂i−δ)log2
p(ŷi|ŷi−1, x̂i−δ)
p(ŷi|ŷi−1) (2.7)

This approach to calculating transfer entropy starts with a symbolization process that

restricts the user input in the algorithm to three parameters: an embedding dimension

(m), a sample lag between the symbolized points (l, which is closely related to the process

of decimating), and the lag between the past points of the source signal x used to predict

the future points of signal y (δ). Symbols are defined by reordering the amplitude values

of both signals xi and yi (i indicating the ith sample). For a given i, m (or the embedding

dimension) amplitude values Xi = {x(i), x(i+ l), ..., x(i+ (m− 1)l} are arranged in an

ascending order {x(i+ (ki1 − 1)l) ≤ x(i+ (ki2 − 1)l) ≤ ... ≤ x(i+ (kim − 1)l). This way,

every Xi is uniquely mapped onto one of the m! possible permutations. A symbol is then

defined as x̂i ≡ ki1, ki2, ..., ki3 and with the relative frequency of symbols we estimate

joint and conditional probabilities of the sequence of permutation indices.

Eq. 2.7 shows a slightly modified version from the originally proposed method. Here,

we only delayed the source signal, as opposed to both the source signal and the target

signal. We did this for several reasons:

1. Delaying only the target signal is one less parameter to deal with (instead of

delaying both signal and source), rendering our model simpler. Occam’s razor

tells us that when two models are compatible with a set of observations, we should

always go for the simpler model (for a more in depth description, see Chapter 28

of MacKay and Mac Kay 2003).
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2. As outlined by Wibral et al. (2013), this delay conditioning represents an actual

causal relationship; it also properly eliminates any information storage from the

past of Y that could otherwise be mistaken as information transfer fromX. Finally,

this allows us to take a dynamical systems view of the state transition Yt−1 → Yt,

and consider the TE as measuring how much information Xt−δ provides about the

state transition.

3. It aligns with the Wiener principle of causality (Wiener 2013).

4. It takes a while for current to travel from cortical patch X to cortical patch Y ,

but neurons in Y have their own intrinsic dynamics that act much faster than the

X → Y transmission. In this case, delaying both signals is likely to underestimate

relevant information in the target’s past, and therefore overestimate STE and

inflate false positives.

All in all, Symbolic Transfer Entropy is a convenient, robust, and computationally

fast method that allows us to quantify the preferred direction of information flow between

time series from observed data.

2.7.4 Symbolic Transfer Entropy: Parameters and calculation

Instead of manipulating the sample lag parameter l, we decided to decimate the data by

a factor of 16. We chose an embedding dimension of 3, i.e. creating symbols by taking

three samples back as suggested by Staniek and Lehnertz (2007), and we explored three

different delays: 20ms, 200ms, and 1000ms. These parameters give us a resolution of

20ms per symbol; in other words, we use 20ms worth of data to predict a future 20ms

delayed either by 20ms, 200ms, or 1000 ms. We chose these delays for the following

reasons:
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1. Testing different delays allows us to correctly interpret information transfer re-

vealed by any analysis of directed interactions across brain structures; simulations

show that Transfer Entropy will be maximal at the system’s delay. Transfer En-

tropy increases as we approach the true delay, and it also detects bidirectional

interactions. Despite this, we acknowledge that testing only three delays is not

sufficient to completely characterize the range of dynamics the human brain ex-

hibits (Wibral et al. 2013).

2. The relevant timescale at which information flows in both within and between

networks is an empirical question by itself, so we chose three delays: short, mid,

and long. We hypothesized that shorter and medium delays were relevant for

within networks, while medium and long delays were relevant for between networks

(Honey et al. 2007; Varela et al. 2001).

3. Most of the work done so far only uses one delay (Lungarella and Sporns 2006;

Buehlmann and Deco 2010), mostly because of limited computational resources.

Simulation studies have shown that delayed transfer entropy identifies synapses

at a better performance than other algorithms (Ito et al. 2011). Though we are

looking at oscillating cortical activity, these results are encouraging.

2.7.5 Grand Hyperbrain Networks

Using Numerical Python (Oliphant 2006) and Scientific Python (Oliphant 2007), we

calculated, per delay, STE scores for each region pair (including self-interactions), across

both subjects (within-person and between-person networks), at each frequency pair (both

within and cross frequencies). We ended up with a "Grand" Hyperbrain Network for each

delay, which are non-symmetrical square matrices with 14,400 entries (12 brain regions,

2 roles [piano 1, piano 2], 5 frequency bands; see Chapter 3 for examples of these). The
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first question we sought to answer was: can we identify between-person connections

that are significantly different from both baseline and noise while participants are playing

with each other? To answer this, we performed two statistical tests. First, we averaged

both homophonic and polyphonic networks to obtain one playing matrix per duet pair.

From this playing matrices, we averaged all pairs together to determine the top .33%

between-person connections at each delay (i.e. 48 connections per delay, a total of 143).

Once we identified these, we went back to the data for each duet pair, and compared

them to two other values: a baseline value and a scrambled pairs value. To estimate the

baselines we determined the Grand Hyperbrain Networks per pair per delay for the 3

minute recordings taken prior to playing. For the scrambled comparison, we scrambled

the participant pairs and determined scrambled Grand Hyperbrain Networks (for this

step, we kept experimental structure consistent, i.e., subject 3A’s Entre Cloche trial

when they were Piano I was analyzed with subject’s 5B trial of the same piece when

they were Piano II). To compare both baseline and scrambled values to those obtained

while they were playing the duets for the 143 top-valued connections, we performed

permutation-based, paired t-tests (Ernst et al. 2004). The process is as follows:

1. Get the ordered vectors (a 6 by 2 matrix where each row represents one pair)

of data containing the playing statistic and either the corresponding baseline or

scrambled values.

2. Get the experimental (paired) t-statistic from these two vectors.

3. The null hypothesis is: the only difference between these two vectors is the label,

so we permute the data. Because this is a paired test, we keep the ordering of the

data (i.e., we only permute the values in the rows, not in the columns to keep the

ordering of the pairs). This leaves us with 64 permutations.

4. Construct the distribution of the paired statistic. Because this is a one tailed test,
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we calculate the p-value as the ratio of permuted t-statistics that are larger than

the experimental one.

5. Perform an FDR (BH) procedure to control for multiple comparisons at each delay

(Groppe et al. 2011; Benjamini and Hochberg 1995), setting the significance level

at α = 0.05.

We considered the between connections to be significant if they were statistically

higher than both the baseline and the noise (scrambled) threshold. Connections that

were significant were then correlated (Pearson correlation coefficient) at the trial level

with the trial average (both subjects) of the first three PMPQ scales: synergy, quality,

and synchrony (see Appendix E) using SciPy’s pearsonr() function. It evaluates the

significance of these correlations by estimating the probability of an uncorrelated system

producing data sets that have a Pearson correlation at least as extreme as the one

computed from the actual data.

2.7.6 Music Affiliation Questionnaire

To determine how affiliated participants felt before and after the experiment, we admin-

istered the Music Affiliation Questionnaire (Appendix C). We compared pre and post

answers of questions 4 through 6 to determine if participants reported greater affiliation

then before the experimental session. To evaluate the statistical significance of this, we

used a permutation-based paired t-test (see section 2.7.5).

2.7.7 Graph Theory

The second question we sought to answer was: "Are there differences between Homo-

phonic and Polyphonic pieces?" To tackle this, we used Graph Theory Statistics to
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compare the Grand Hyperbrain Networks from each experimental factor. Graph Theory

is the branch of mathematics that deals with the description and analysis of graphs. A

graph is an abstract representation of a system’s elements and its dyadic interactions,

and it is defined as a set of nodes (vertices) linked by connections (edges; Bullmore and

Sporns 2009; Sporns 2011). In our case, these graphs are the hyperbrain grand matrices:

the vertices are the cortical patches and the edges are the directed Symbolic Transfer

Entropy scores. Because of this, the graphs we analyzed are considered to be both di-

rected (because they are not symmetrical) and weighted (because the connections are

not binary).

We obtained two hyperbrain networks per pair (see Section 2.7.5 for details) by aver-

aging all the homophonic pieces and the polyphonic pieces. From this, we derived four

graph theory statistics using a Python implementation of MATLAB’s Brain Connectivity

Toolbox (LaPlante 2018):

1. Average Clustering Coefficient (weighted, directed), which quantifies (in average)

the "intensity" of triangles around a node

2. Average Node Strength (directed), which quantifies the sum of weights (STE) of

links connected to the node

3. Characteristic Path Length, the average shortest path length in the network

4. Global efficiency, the average inverse shortest path length in the network

After we obtained these statistics, we compared Homophonic and Polyphonic duos

using a permutation-based, paired t-tests and an FDR procedure to control for multiple

comparisons (see Section 2.7.5) at each delay. In this case, because it was a two-tailed

test, we compared the absolute value of the statistic to the absolute value of the permu-

tation distribution. After this, we correlated these four statistics at the trial level with

32



Master of Science– Hector D Orozco Perez; McMaster University– Department of
Psychology, Neuroscience, and Behaviour

the trial average (across subjects) of the first three PMPQ scales: synergy, quality, and

synchrony (see Appendix E) using SciPy’s pearsonr() function. To correct for multiple

comparisons, we used an FDR procedure.

2.7.8 Small-world properties as a function of time

The third and last question we sought to answer was: "do these networks exhibit in-

creasing small world properties as a function of time?". The Small world property of

networks combines high levels of local clustering among nodes of a network (cliques, so

to speak) and short paths that globally link all nodes of the network (Bullmore and

Sporns 2009). These networks were first described in the context of social networks

(Travers and Milgram 1967). These networks exhibit optimized architectures where all

nodes of a large system are linked through relatively few intermediate steps, even when

most nodes are only connected to their own neighborhood.

To determine the trial-level small world coefficient, we calculated the ratio between

the Average Clustering Coefficient and the Characteristic Path Length. Then, we aver-

aged all the trials for each block (i.e., the five repetitions of one piece) for each duet pair

(these were consistent within pairs but differed between pairs—each experimental block

consisted of one piece but the pieces were pseudorandomized). Then, we calculated the

correlation between this score and the position of the block in the experiment to deter-

mine if the small-world properties of the networks evolved as a function of time over

the experiment. Our hypothesis was that, because this was the first time participants

played with each other, the more they played with each other the more optimized the

hyperbrain networks would become. We corrected for multiple comparisons using an

FDR procedure.
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2.7.9 Small-world coefficient and music affiliation questionnaire

As an final analysis, we compared the evolution of small-world coefficients across the

blocks with the change of affiliation before and after playing together. We first obtained

the slope of the line going from the first experimental block of the small-world coefficients

to the fourth (last) experimental block. We then obtained the difference of the MAQ

scores between the pre and post experiment questionnaires. Finally, we correlated these

two measurements. Given that we had only 6 pairs, these results should be taken

as exploratory, and as a guide for future studies. Again, we corrected for multiple

comparisons using an FDR procedure.
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Chapter 3

Results

3.1 Music Affiliation Questionnaire

Subjects report higher affiliation after the experiment (paired t-statistic = 3.11, per-

muted p value < 0.05; see Fig. 3.1).This is particularly interesting as these people never

played together before, and that we explicitly forbade them to talk to each other for the

duration of the experiment.
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Figure 3.1: Average of the scores from questions 4 - 7 of the Music
Affiliation Questionnaire (see Appendix C). Error bars represent 95%
confidence intervals. An asterisk signifies the difference is statistically
significant at α = 0.05
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3.2 Grand Hyperbrain Networks

3.2.1 Hyperbrain networks: Full Characterization

To characterize hyperbrain networks while pianists play with each other we initially

averaged all the pieces together. These matrices are not symmetrical and they have not

been thresholded in any way. For the purposes of this thesis, we were mainly interested

in the between-person networks, but the within-person connections are interesting and

will be discussed briefly.

At a timescale of 20ms (see Fig. 3.2), we see that the strongest connections are

within the cortical patches (feedback loops) at the highest frequencies (beta and gamma).

Most connections appear to be bidirectional (i.e. X → Y ≈ Y → X), and the most

prominent connections appear similar across frequencies are: (1) a bidirectional loop

between the temporal and insula patch (both left and right), (2) a bidirectional loop

between prefrontal and insula (mostly on the right side), and (3) a bidirectional loop

between the motor and prefrontal areas (both left and right). Note that we see no

cross-frequency interactions at this timescale.

At a timescale of 200ms (see Fig. 3.3), we see again that the strongest connections

are between within-person cortical patches (feedback loops), but this time at lower fre-

quencies (theta, delta, and alpha). Again, most connections appear to be bidirectional

(i.e. X → Y ≈ Y → X), and even though we see more complex patterns of connectivity

than at the early delay, the most prominent connections are (specially at lower frequen-

cies): (1) a bidirectional loop between the temporal and insula cortical patches (both left

and right), (2) a bidirectional loop between prefrontal and insula (mostly on the right

side), and (3) a bidirectional loop between the motor and prefrontal areas (both left and

right). In addition, the bidirectional relationship between both occipital left and right
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cortical patches is more prominent than at 20 ms. Once again, please note that we see

no cross-frequency interactions at this timescale.

At a timescale of 1000ms (see Fig. 3.4), no clear brain connectivity patterns are

visible. Please note that the three graphs at different delays use different scales for STE,

and that the scores at 1000ms are about half of those from the 200ms delay, and about

one order of magnitude smaller than those at the earliest (20ms) delay. At 1000 ms,

there is, however, a pattern at the level of frequency interactions: if this is actually

relevant to brain functioning or not remains to be tested.

3.2.2 Hyperbrain Networks: Between Connections

After characterizing the full Hyperbrain networks, examined the between connections in

more detail (see Figs 3.5, 3.6, and 3.7). All of the top 1% connections (i.e., 48 connections

per delay) were significantly different from baseline, but none of them were significantly

different from the values obtained by scrambling the pairs (for specific connections and

statistical values, see Appendix G), suggesting that there was no significant STE present.

Because none of the values were significant, we did not proceed to correlate any of these

values with the PMPQ results.

3.3 Graph Theory Statistics

In the next series of analyses, we aimed to examine differences between the grand hy-

perbrain networks at the level of one of our experimental manipulations: homophonic

versus polyphonic musical structure. We see that at all delays, and for all graph theory

statistics, homophonic and polyphonic music gave rise to different network properties:

polyphonic duos had larger average clustering coefficients, average node strength, and
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efficiency, whereas homophonic duos had greater characteristic path length (see Fig.

3.8). For a detailed description of the statistical values, see Appendix H.

Because we found significant differences related to our experimental manipulation

of musical structure, we decided to correlate the trial level values of the graph theory

statistics with the first three scales of the PMPQ (see Appendix E), namely synergy,

synchrony, and quality. After correcting for multiple comparisons using an FDR pro-

cedure, all the Polyphonic graph theory statistics correlated with the self reports on

quality at the trial level (see Fig. 3.9). Average clustering coefficient, average node

strength, and characteristic path length correlated positively, while efficiency correlated

negatively with quality. Please note that, regardless of delay, these correlations remained

significant. For a detailed description of the statistical values, see Appendix H.

3.4 Small-world coefficient

As a final analysis, we examined the small world properties of the hyperbrain networks

as a function of both time and affiliation. We found no significant correlation between

time block (i.e., experimental block 1, 2, 3, or 4) and the pieces position (i.e., the 5

repetitions of the piece averaged together) in the experiment (see Fig. 3.10 a, b, c) nor

a significant correlation between the change in affiliation and the slope of the change

between the first piece and last piece’s small world coefficient for each pair of performers

(see Fig. 3.10 d, e, f). The latter results might reflect our sample size (6 pairs). For a

detailed description of the statistical values, see Appendix I.
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Figure 3.2: Full Hyperbrain networks at 20ms delay. Colorbar repre-
sents STE values. Each big quadrant (solid lines) represents a frequency
interaction (gamma to gamma, alpha to beta, delta to delta, etc.). Note
this matrix is not symmetrical and it has not been thresholded in any way.
The matrix is ordered based on three hierarchical factors: frequency, lead-
ership, and brain patch. Symbolic transfer entropy was calculated from
row to column (i.e., source signals are on the x axis and target signals
are on the y axis). Big quadrants (solid lines) represent frequency inter-
actions (gamma, beta, alpha, delta, theta). Medium quadrants (dotted
lines) represent leadership role and information flow (leader to leader, fol-
lower to leader, leader to follower, follower to follower). Each entry of
the matrix represents the STE score originating at a given cortical patch,
at a given frequency, from a given role in one person (x-axis), to a given
cortical patch, at a given frequency, from a given role in the second person
(y-axis).
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Figure 3.3: Full Hyperbrain networks at 200ms delay. Colorbar repre-
sents STE values. Each big quadrant (solid lines) represents a frequency
interaction (gamma to gamma, alpha to beta, delta to delta, etc.). Note
this matrix is not symmetrical and it has not been thresholded in any way.
The matrix is ordered based on three hierarchical factors: frequency, lead-
ership, and brain patch. Symbolic transfer entropy was calculated from
row to column (i.e., source signals are on the x axis and target signals
are on the y axis). Big quadrants (solid lines) represent frequency inter-
actions (gamma, beta, alpha, delta, theta). Medium quadrants (dotted
lines) represent leadership role and information flow (leader to leader, fol-
lower to leader, leader to follower, follower to follower). Each entry of
the matrix represents the STE score originating at a given cortical patch,
at a given frequency, from a given role in one person (x-axis), to a given
cortical patch, at a given frequency, from a given role in the second person
(y-axis).
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Figure 3.4: Full Hyperbrain networks at 1000ms delay. Colorbar repre-
sents STE values. Each big quadrant (solid lines) represents a frequency
interaction (gamma to gamma, alpha to beta, delta to delta, etc.). Note
this matrix is not symmetrical and it has not been thresholded in any way.
The matrix is ordered based on three hierarchical factors: frequency, lead-
ership, and brain patch. Symbolic transfer entropy was calculated from
row to column (i.e., source signals are on the x axis and target signals
are on the y axis). Big quadrants (solid lines) represent frequency inter-
actions (gamma, beta, alpha, delta, theta). Medium quadrants (dotted
lines) represent leadership role and information flow (leader to leader, fol-
lower to leader, leader to follower, follower to follower). Each entry of
the matrix represents the STE score originating at a given cortical patch,
at a given frequency, from a given role in one person (x-axis), to a given
cortical patch, at a given frequency, from a given role in the second person
(y-axis).
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Figure 3.5: Between networks at 20ms delay (within connections have
been set to zero). Colorbar represents STE values. Each big quadrant
(solid lines) represents a frequency interaction (gamma to gamma, alpha
to beta, delta to delta, etc.). Note this matrix is not symmetrical and it
has not been thresholded in any way. The matrix is ordered based on three
hierarchical factors: frequency, leadership, and brain patch. Symbolic
transfer entropy was calculated from row to column (i.e., source signals
are on the x axis and target signals are on the y axis). Big quadrants
(solid lines) represent frequency interactions (gamma to beta, delta to
theta, etc.). Medium quadrants (dotted lines) represent leadership role
and information flow (leader to leader, follower to leader...). Each entry of
the matrix represents the STE score originating at a given cortical patch,
at a given frequency, from a given role in one person (x-axis), to a given
cortical patch, at a given frequency, from a given role in the second person
(y-axis).
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Figure 3.6: Between networks at 200ms delay (within connections have
been set to zero). Colorbar represents STE values. Each big quadrant
(solid lines) represents a frequency interaction (gamma to gamma, alpha
to beta, delta to delta, etc.). Note this matrix is not symmetrical and it
has not been thresholded in any way. The matrix is ordered based on three
hierarchical factors: frequency, leadership, and brain patch. Symbolic
transfer entropy was calculated from row to column (i.e., source signals
are on the x axis and target signals are on the y axis). Big quadrants
(solid lines) represent frequency interactions (gamma to beta, delta to
theta, etc.). Medium quadrants (dotted lines) represent leadership role
and information flow (leader to leader, follower to leader...). Each entry of
the matrix represents the STE score originating at a given cortical patch,
at a given frequency, from a given role in one person (x-axis), to a given
cortical patch, at a given frequency, from a given role in the second person
(y-axis).
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Figure 3.7: Between networks at 1000ms delay (within connections have
been set to zero). Colorbar represents STE values. Each big quadrant
(solid lines) represents a frequency interaction (gamma to gamma, alpha
to beta, delta to delta, etc.). Note this matrix is not symmetrical and it
has not been thresholded in any way. The matrix is ordered based on three
hierarchical factors: frequency, leadership, and brain patch. Symbolic
transfer entropy was calculated from row to column (i.e., source signals
are on the x axis and target signals are on the y axis). Big quadrants
(solid lines) represent frequency interactions (gamma to beta, delta to
theta, etc.). Medium quadrants (dotted lines) represent leadership role
and information flow (leader to leader, follower to leader...). Each entry of
the matrix represents the STE score originating at a given cortical patch,
at a given frequency, from a given role in one person (x-axis), to a given
cortical patch, at a given frequency, from a given role in the second person
(y-axis).
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Figure 3.8: Comparison of graph theory statistics between polyphonic
and homophonic pieces. Plotted here are violin plots. These are similar
to box and whisker plots, but instead of showing actual data points, they
show a kernel density estimation of the underlying data distribution. An
asterisk signifies the difference is statistically significant at α = 0.05. In
this case, all statistics were significantly different between Homophonic
and Polyphonic pieces. (a) Delay of 20ms. (b) Delay of 200ms. (c)
Delay of 1000ms
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Figure 3.9: All graph theory statistics from polyphonic duos correlated
significantly with the self report PMPQ measures. Shown here are scatter
plots of each graph theory statistic by PMPQ measure at the trial level.
The linear regression lines are shown as well. All correlations plotted here
are statistically significant at α = 0.05. (a) Delay of 20ms. (b) Delay of
200ms. (c) Delay of 1000ms
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Figure 3.10: Small world coefficients as a function of time (a, b, c) and
the difference score in music affiliation (d, e, f). Scatter plots also include
a linear regression. (a, b, c). Each individual point is the average of the
five experimental trials for that experimental block position per duet pair
at each delay ((a): 20ms, (b):200ms, (c):1000ms). (d, e, f). Correlation
between the difference score of affiliation before and after the experiment,
and the rate of change between the first and last experimental blocks
small world coefficients. Each individual point is one pair ((a): 20ms,
(b):200ms, (c):1000ms).
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Chapter 4

Discussion

Using a complex dynamics framework, we did not find statistically significant hyperbrain

networks during joint music playing. Characteristics of the grand hyperbrain networks,

however, differentiated between experimental conditions. Furthermore, statistics related

to polyphonic grand hyperbrain networks correlated with how good pianists thought

their performance was. Here we discuss these results, acknowledge some limitations of

this study, and provide some guidance for follow up analysis and future research.

4.1 Affiliation increases after experiment

The pianists in this study reported higher affiliation with their playing partners after

compared to before the experimental procedure, even though they were explicitly forbid-

den to communicate verbally with each other. This is consistent with previous research

showing that joint music making and synchronous movements promote pro-social be-

haviour and positive affect (Kirschner and Tomasello 2010; Cirelli et al. 2014; Mogan

et al. 2017). We cannot conclude that music playing alone caused the increase in affili-

ation because we did not have proper control conditions. However, our results suggest

that it is important to include self-report and behavioural measurements as they may
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inform the interpretation of models of hyperbrain networks (Babiloni and Astolfi 2014;

Hu et al. 2018; Goldstein et al. 2018). For more information on this, see Section 4.5

4.2 Top between-person connections are not distinguish-

able from noise

All of the top 1% between-person connections (0.33% per delay) were significantly dif-

ferent from the baseline levels, but not from the scrambled levels, suggesting that the

Symbolic Transfer Entropy values reflected primarily noise. As Mu et al. (2018) suggests,

having a proper baseline and control analyses is key when characterizing hyperbrain net-

works. None of the previous guitar ensemble studies (Lindenberger et al. 2009; Sänger

et al. 2012; Sänger et al. 2013; Müller et al. 2018) included a scrambled analysis, nor a

proper baseline, although they did threshold their hyperbrain networks using surrogate

time series. Despite this, thresholding will only inform us of the significance of connec-

tions against noise, not of their interpretation—i.e., is it due to the perceptual stream

or are these hyperconnections indexing other psychological mechanisms? We propose

that using scrambled data (or other proper control conditions) allows us to correctly

interpret these hyperbrain networks. Future hyperscanning studies should make use of

experimental designs that manipulate variables to address this problem (Burgess 2013).

For example, by introducing a perturbation in the system, we can then test whether

the perturbation causes a change in between-person brain networks, indicating a real

interaction rather than a potential coincidental synchrony (Weule et al. 1998). There

are several possible reasons as to why we did not find the between connections we were

looking for. These are discussed in the following paragraphs.

In the present study, we did take the approach of manipulating variables and choosing
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an ecologically valid situation that required participants to be tightly synchronized—

significant interaction is required to produce good quality music. However, it is possible

that the pieces we chose were too difficult, and pianists concentrated more on playing

their own part than interacting with each other. Using easier pieces would also have

enabled less highly trained pianists to participate meaningfully, and could have enabled

us to increase our sample size.

Toppi et al. (2016) also used an ecologically valid situation (Captain and First Offi-

cer in a flight simulation) and manipulated the task by having three phases: Take off,

Cruising (control) and Landing. They used what they described as interconnections

density—a graph theoretical statistic that quantifies how dense connections are between

participants. Using this, they showed differences between both of their experimental

conditions (Take off and Landing) and the control condition (Cruising). After shuffling

the pairs and calculating the randomized Interconnections density, they found no dif-

ference between real and shuffled couples for Take off or Cruising, but they did find a

significant difference for Landing against the shuffled statistics. The authors concluded

that this was due to the Landing phase being the part of the experiment in which the

pilots had to be the most synchronized. The approach taken by Toppi et al. (2016)

may help inform future analysis of musical interactions. Specifically, they used graph

theory statistics to determine information flow between leaders (Captain) and followers

(First Officers) by thresholding their graphs and binarizing them (Bullmore and Sporns

2009; Sporns 2011) as opposed to looking at specific pairwise electrode (or brain region)

relationships, as we did in the present study. They found direction of flow was affected

by their experimental manipulation as indexed by the interconnections density. Given

EEG’s poor spatial resolution (Cohen 2014) and how coupling of the between-person

networks seem to be consistently weaker than the within-person networks (Lindenberger

et al. 2009; Sänger et al. 2013), perhaps it is better to use a graph theory approach

for hypothesis testing (i.e. multivariate statistics to summarize the whole network into
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one single scalar, or even look at every brain as a single vertex of a graph; Duan et al.

2015) as opposed to testing for differences at the pairwise interaction levels (i.e.. mass

univariate testing framework).

Hyperbrain EEG has been used successfully in the past to characterize leader and

follower dynamics (Jiang et al. 2015; Sänger et al. 2013; Konvalinka et al. 2014). In our

case, we actively avoided the words "leader" and "follower" so as to not explicitly prime

our participants to behave a certain way. Rather, we were expecting the music structure

itself (homophonic vs. polyphonic) to provide enough context for leadership. We defined

leadership as a high level construct embedded in the melody of the music—whoever has

the melody, leads. Nevertheless, leadership in this context is probably mediated by a

myriad of variables ranging from low level ones, such as who starts the piece, to high level

ones, such as personality traits (e.g., people with more outgoing personalities may be

more likely to lead) and context (e.g., the more experienced of the two pianists might be

more likely to lead). Previous work has shown that leadership emergence is an empirical

question in itself (Modlmeier et al. 2014; Smith and Foti 1998; Jiang et al. 2015) and

future hyperscanning studies should take into account inherent asymmetries between

people (Dumas 2011).

To date, no other Hyperscanning EEG study had tried to characterize networks at

the source level (Burgess 2013). We chose a structural decomposition that included 12

major brain regions. This might have not been ideal: the event-related potential lit-

erature suggests that the activity measured at the scalp level is generated at specific

neuroanatomical modules (as opposed to individual structures) when computational op-

erations are performed (Näätänen and Picton 1987; Neuper and Pfurtscheller 2001; Luck

2014). Perhaps using a functional approach based on other kind of decompositions, such

as Principal Component Analysis or Individual Component Analysis, might provide more

insightful answers in future studies, although such approaches do not localize activity to
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specific brain regions.

Symbolic Transfer Entropy provides a means of investigating very fine grain dynam-

ics in complex systems. Nevertheless, the researcher has to choose the values of many

parameters (delay, embedding dimension, etc). Out of these, two are of particular im-

portance in the present context: delay and sampling rate. However, there is no one way

to determine optimal values for these a priori (Weber et al. 2017; Wibral et al. 2014),

so we chose to do a parameter space sweep. One factor that may have contributed to

our null effects is that we tried to characterize too many relations (e.g., cross-frequency

relations, relations between multiple brain regions) at the same time using a one-size-fits

all approach of using the same parameter values in all cases (Jirsa and Müller 2013).

Furthermore, we were exploring new territory as Symbolic Transfer Entropy had never

been used previously to characterize this kind of network. We chose STE rather than

Circular Correlation (Goldstein et al. 2018) and Partial Directed Coherence (Toppi et al.

2016), statistics slowly gaining popularity in the field, because the latter do not readily

offer the possibility to investigate delays of the information transfer in the system under

study (Burgess 2013). We hypothesized that a short, a medium, and a long delay would

constitute a good start to characterizing EEG hyperscanning networks (Varela et al.

2001). However, our results suggest that Transfer Entropy is not a good statistic to use,

at least for initial exploratory analysis.

In terms of sampling rate, previous work showed that Transfer Entropy is quite robust

to common preprocessing steps (as opposed to Granger Causality and other connectivity

methods; Weber et al. 2017). By decimating the signal (i.e., symbolizing windows of

20ms of data) we were trying to tap into relevant scales of neural activity (i.e., making the

self prediction of Y optimal). Transfer Entropy is robust against Type II errors as long

as we do not filter out or decimate out the effect we are looking for. Optimal sampling

rate and delay then become empirical questions in and of themselves. Furthermore,
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these two parameters interact with each other in complex manners, and the relevant

time scales of the complex system under study (brains playing in concert) are unknown.

To our knowledge, only one other research study has tried to characterize Hyperbrain

connectivity between cooperating partners using Transfer Entropy, also with null results.

It is important to note that they used a delay of 7.8ms, which might not be ideal

to characterize between brain connectivity (Cha and Lee 2018). In sum, the optimal

parameter space to use when employing transfer entropy remains a significant challenge

for future work.

Finally, there is no information transfer without a causal interaction, but the reverse

does not hold true—Transfer entropy can be zero even when there is causality involved

between two signals (Wibral et al. 2014). This happens because TE quantifies infor-

mation transfer, but information can be transfered immediately between the interacting

parts of the system, or even stored for variable amounts of time. If this happens, then

there is nothing to predict. Furthermore, Transfer Entropy is not able to differenti-

ate a lack of information transfer from an inhibitory processes (Garofalo et al. 2009),

and, despite its robustness, it is best at identifying strong connections (Ito et al. 2011),

which might explain why we are not able to identify the between-person connections

reported by (Sänger et al. 2012; Sänger et al. 2013). Certainly, we found between-person

connections were considerably weaker than within-person connections.

4.3 Networks change as a function of music structure

Using different graph theory statistics (efficiency, characteristic path length, average

node strength, average clustering coefficient) we demonstrated that grand hyperbrain

networks do distinguish between musical structure when pianists play together. Because
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none the top between-person connections were significantly different from noise, the dif-

ferences we see at the whole network level might be driven largely by the within-person

parts of the networks. Grand hyperbrain networks during the polyphonic pieces had a

higher rate of information transfer (average node strength) and more complex structures

(higher efficiency and average clustering coefficients; Bullmore and Sporns 2009) than

homophonic pieces at every delay we investigated (short, medium, and long). Homo-

phonic pieces provide a clear leadership scenario, where Piano I plays the melody while

Piano II accompanies. Polyphonic pieces, on the other hand, provide an "ambiguous

role" scenario, where both pianists are either playing the same melody at different de-

lays (e.g., Hindemith’s Kanon), or there is no melody at all (Ravel’s Entre Cloche).

Perhaps, the lack of a clear leader role rendered the participants to be more active in

their interactions with each other, so they could meet the coordinative demands of these

two pieces.

Role ambiguity provides opportunity for individuals to "rise to the occasion". In an

organization setting, House and Rizzo (1972) found that the presence of role ambigu-

ity provides an opportunity for a person to expansively define their role. Under these

conditions, individuals are more likely to perform effective leadership, even if they were

not explicitly designated as leaders. Emergent leaders posit positive influence on group

performance and satisfaction when they establish functional structure. This might ex-

plain why we found significant correlations between quality and graph theory statistics

only for polyphonic pieces (see below). Leaders are able to recognize, explore, and ben-

efit from ambiguous situations (Wilkinson 2006), and these situations require leaders to

more thoroughly define lines of communication between themselves and their followers

for successful leadership in organizations (Omar 2016). Because we counterbalanced

the roles, it is possible that, given the right conditions, any individual can rise to the

occasion and take on a leadership role. Modlmeier et al. (2014) define the concept of

"episodic keystone individuals", which are individuals who influence their group (or, in
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this case, their peer) for restricted periods of time. Together, these ideas provide a plau-

sible explanation as to why Polyphonic pieces might have led to higher synchronization

through their role ambiguity.

4.4 Polyphonic network characteristics correlate with per-

ceived quality of musical performance

All graph theory statistics from polyphonic pieces correlated significantly with partici-

pants’ self reports of the quality of their musical performance at the trial level at each

delay. In line with our results, Kitzbichler et al. (2011) found modulations in network

topology (efficiency) that were associated with the difficulty of an n-back task. Global

efficiency in beta band networks distinguished between fast and slow performing partici-

pants in an n-back test. Several studies in the Hyperscanning literature have successfully

correlated behaviour and self reports with hyperbrain network characteristics: Dikker

et al. (2017) used heuristic statistics that are very similar to average node strength

(i.e., total and student-to-group interdependence) and correlated them with self reports

of likeability and affiliation; Goldstein et al. (2018) correlated activity at hyperbrain

clusters with the pain mitigating effect of social touch and the observer’s empathic ac-

curacy; Hu et al. (2018) correlated cooperation rate with mean Alpha phase locking

value in human interactions; Ciaramidaro et al. (2018) showed that network topology

(modularity, efficiency, interbrain density) was modulated as a function of the level of

fairness in a "Third Party Punishment" game. We also looked at the correlation between

amount of time they had played together (first vs. last experimental block) and change

in small world properties; and the pre to post change in affiliation ratings with change in

small world properties. Even though we did not have enough statistical power to draw

conclusions in the later case, the former one did not show a clear pattern. We were

not, however, the first to try to correlate network topology with some measurements
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of affiliation: Müller and Lindenberger (2014) correlated subjectively assessed partner-

oriented kissing satisfaction and immediate kissing quality with average node strength

in hyperbrain networks, while Dikker et al. (2017) correlated student self-reported close-

ness with pairwise total interdependence. All in all, as Duan et al. (2015) suggested,

collecting both self reports and behavioural data help us to establish a framework for

how hyperbrain networks topology is related to real world dynamics and behaviour.

4.5 Limitations and future directions

Here we will discuss limitations of our study, starting from the particular choices that

we made, all the way to general critiques of the fields of brain connectomics and network

science. First, we were only able to recruit 6 pairs of participants. The recruitment

process was quite cumbersome because we required a time commitment from the partic-

ipants of about a month and a half. Professional pianists were reluctant to participate

because they did not consider we were paying them enough. Future studies should still

try to systematically manipulate the kind of music used, but choosing easier pieces would

likely make recruitment easier. Consulting with professional musicians or musicologists

would help enlighten us as to what kind of pieces we should use. It is also clear from our

results that the definition of leadership should be established using low-level constructs

and more explicit instructions for the participants (see Chang et al. 2017).

Given our naturalistic environment (the LIVELab), the EEG data we obtained were

very noisy, especially because we avoided telling participants to be still. Despite employ-

ing thorough, state of the art preprocessing, even the best algorithms cannot substitute

for clean data (Luck 2014; Bigdely-Shamlo et al. 2015). Source decompositions are sen-

sitive to low levels of signal-to-noise ratio. On the other hand, the Cortical Patch Basis

model is fairly robust against noisy data (Limpiti et al. 2006) and we defined patches that
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were fairly large (e.g., temporal lobe or insular cortex). However, the "goodness" of the

source decomposition is very hard to assess, specially because we used a head template

for all experimental subjects in the absence of individual MRI scans. As we discussed

in Section 4.2, there is common agreement that activity picked up at the scalp tends to

be a complex combination of activity from different cortical structures (Näätänen and

Picton 1987; Neuper and Pfurtscheller 2001; Luck 2014). Future hyperscanning studies

should compare scalp level results with both anatomical (beamformer, dipole solutions)

and functional (Independent Component Analysis, Principal Component Analysis) de-

compositions, as well as compare functional and anatomical with each other. This will

provide very useful insights not only for the field of hyperscanning, but for the general

field of advanced EEG processing and brain connectivity.

There are two basic types of statistics that can be used to determine dyadic relations

between vertices (such as cortical patches, channels, neurons, etc.). On the one hand,

there are statistics that measure coupling, or synchrony in the Huygens’s sense (i.e.

appearance of phase locking due to interaction; Pikovsky et al. 2003). These statistics

posit that the adjustment of rhythms due to interaction is the essence of synchronization.

Of these statistics, Burgess (2013) concludes that the two least biased are Circular

Correlation and Kraskov’s Mutual Information. This paper, however, failed to account

for a second type of statistics—Wiener-based statistics. As discussed previously, Wiener-

based statistics, such as Partial Directed Coherence, Granger Causality, and Transfer

Entropy, measure how the prediction of signal Y is better by including the past of X

in the model. Wiener-based statistics are not coupling measurements (Wibral et al.

2014), and they should be strictly interpreted as Predictive Information Transfer. This

was actually inadvertently shown by Burgess (2013) (see Fig. 5C, D from their paper),

where Partial Directed Coherence is shown to be insensitive to immediate couplings, but

is actually able to pick up delayed interactions. Here, we examined Symbolic Transfer

Entropy in an attempted proof of concept, but we found null results for between-person
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connections. Future hyperscanning studies should not take the choice of statistic lightly;

here we propose to use a multi-step process. Step zero is to truly define the psychological

mechanism that is being indexed by the hyperbrain networks (see next paragraph).

As a first analysis step, Circular Correlation and Kraskov’s Mutual Information seem

to be multi-purpose statistics that will fare well under different contexts (Goldstein

et al. 2018). Then, if the experimental manipulation introduces asymmetries between

the participants (such as leader-follower roles), Partial Directed Coherence will help

determine asymmetrical interactions (Toppi et al. 2016), specially because simulations

show that squared partial directed coherence more stable than Granger Causality (Florin

et al. 2010). As a final step, Transfer Entropy can be used to characterize the delays

of the interactions, as well as cross-frequency interactions (see below), allowing us to

build and model the system (Dumas et al. 2014). The bottom line is that the researcher

should be fully aware of the limitations and advantages of the statistic they are using in

order to be able to interpret the results accordingly. For this, we need to lay down the

groundwork of the neural processes these statistics are actually indexing.

The field of brain connectomics as a whole is at a very early stage. Currently, we char-

acterize dyadic relationships between interacting entities of the system under study. This

is not optimal, because simulations have shown the existence of "synergistic" systems; or

systems with higher level interactions (three, four, five...) that cannot be accounted for

by using naive dyadic approaches (James et al. 2016). Despite the current existence of

methods to alleviate this, such as Conditional Granger Causality or conditioning Trans-

fer Entropy on multiple signals’ pasts, these methods have yet to be widely adopted by

the community. Furthermore, the field needs to move from a mass-univariate framework

(Groppe et al. 2011) towards a multivariate framework (McIntosh and Mišić 2013; Duan

et al. 2015), exploiting the multivariate methods that already exist. Of special interest

for us is Graph Theory, which allows us to summarize the characteristics of the networks

under different conditions (Müller et al. 2018). Furthermore, when using statistics such
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as PDC, we should binarize and threshold our graphs (Toppi et al. 2016). As a first

step, dyadic-based interactions will keep the field busy in the near future, but we should

monitor developments in the "hypergraph" literature (graphs that characterize higher

order interactions—three, four, five...—as opposed to dyadic; James et al. 2016).

Hyperbrain studies have a particular problem: interpretation. Because most of the

research published at this point has been very exploratory, a framework regarding the

underlying mechanisms of synchronization still needs to be proposed (Liu et al. 2018).

Dumas (2011) proposes these synchronies index sensory-motor loops influenced by a bi-

directional coupling between participants with the behaviour of each one influencing the

other’s behaviour in complex and dynamical ways. Along these lines, Sänger et al. (2011)

propose a forward model of action regulation to Interpersonal Action Coordination.

Taking a step back and trying to make this framework more general, and following

up on the proposed ideas of Dikker et al. (2017), Buehlmann and Deco (2010), and

Dumas (2011), we propose to regard hyperbrain activity not as a mechanism in itself,

but rather a way of operationalizing high level social constructs. As Toppi et al. (2016)

concluded, there are interactions that go unnoticed when scanning only one person.

Moving towards a two person neuroscience (Dumas 2011; Schilbach et al. 2013) will help

us understand complex social mechanisms, such as joint attention (Dikker et al. 2017),

empathy (Babiloni et al. 2012), and interactional synchroncy (Müller et al. 2018) in more

naturalistic ways and indexed by objective metrics (multivariate statistics on hyperbrain

networks). Both the field of brain connectomics and hyperscanning will greatly benefit

from being able to draw lines between these high level constructs and the low-level brain

activity supporting them (Mu et al. 2018).

In our definition of interactional synchrony, there is always a driver. The prob-

lem can potentially arise when the experiment itself becomes the driver, imposing a

rhythm causing hyperconnnections to be spurious (e.g., the hyperconnections related to
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the metronome frequency in Lindenberger et al. 2009). As Burgess (2013) concluded,

spurious hyperconnections can be found under a broad range of experimental condi-

tions. This happens because any systematic difference between conditions (movement,

mentation, stimulus) will entrain the brain of the participants (be the driver) as op-

posed to the participants driving each other. Furthermore, the danger here is that these

hyperconnections are not just Type-I errors that can be taken care of by using an appro-

priate statistical control. We propose here that using appropriate baseline and control

conditions, such as a shuffled participant analysis, provides enough statistical power to

conclude participants are driving each other (Burgess 2013).

Taking all of the information discussed so far, we propose this framework to approach-

ing the hyperscanning endeavour:

1. Define the psychological mechanism under study (empathy, joint attention, inter-

actional synchrony) and design an experiment with a good baseline and a good

control conditions. (Goldstein et al. 2018; Jiang et al. 2015) provide good examples

of proper experimental control.

2. Choose a statistic based on the psychological mechanism of interest. For most

exploratory studies, either Kraskov’s Mutual Information or Circular Coherence

(Burgess 2013) should suffice. If there are reasons to believe there will be asymme-

tries in the way information is flowing between participants, or if such asymmetries

are dictated through experimental manipulation, then exploratory studies should

use Partial Directed Coherence (Florin et al. 2010). Transfer Entropy should be

used to fully characterize and model the underlying system, not as a first step

(Wibral et al. 2014).

3. Binarize and threshold the matrices (see Toppi et al. 2016). Matrices can be thresh-

olded using surrogate time series. After this, graph theory (or any multivariate
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approach can be used; see Bullmore and Sporns 2009; McIntosh and Mišić 2013;

Sporns 2011) to determine the characteristics of the networks. Most importantly,

choices need to relate to the hypotheses in question. One of the biggest issues of

the guitar ensemble papers (Lindenberger et al. 2009; Sänger et al. 2013; Müller

et al. 2018) is that they do several analysis without any real underlying hypothe-

ses. Good studies using graph theory for hypothesis testing are: Toppi et al. 2016;

Goldstein et al. 2018; Jiang et al. 2015.

4. For statistical testing, compare either the statistics (multivariate) or the individ-

ual connections (mass univariate) to both baseline and control condition/scrambled

participants. This step is crucial: using surrogate time series to threshold the ma-

trices will ensure choosing statistically relevant connections, but the interpretation

of these will fall short if they are not compared to an appropriate control (see

Burgess 2013).

5. To build stronger arguments, correlate either the individual vertices or the graph

characteristics with self reports and measurements of behaviour related to the

underlying psychological mechanisms (Duan et al. 2015; Jiang et al. 2015).

4.6 Conclusion

EEG Hyperscanning is a novel and promising avenue for the field of neuroscience as a

whole. It has implications at a number of distinct levels. At the clinical level, under-

standing hyperbrain networks will allow us to objectively operationalize high level social

constructs such as interactional synchrony and empathy, thus helping us to understand

complex disorders such as Autism Spectrum Disorder (Wang et al. 2018; Liu et al. 2018;

Dickten and Lehnertz 2014). Identifying brain areas and underlying mechanisms allow
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us to both diagnose these disorders better, and measure progress and efficacy of thera-

pies. At the research level, as we have discussed above, the study of hyperbrain networks

allows us to operationalize high level constructs, such as joint attention, or even con-

sciousness (Dumas 2011; Toppi et al. 2016; Dikker et al. 2017). As Dumas et al. (2014)

mentions, we need to create a multiscale framework for social interaction, from neurobi-

ological accounts of social cognition to its dynamical neural components. Hyperscanning

can help elucidate and link these scales. Finally, Hyperscanning can be of interest even

at the industry level: it can help us come up with educational settings to elicit better

student engagement (Dikker et al. 2017), or even minimize errors in high stakes settings,

such as nuclear reactors (Cha and Lee 2018). Here, we proposed for the first time a more

unified multivariate framework on how to approach the study of hyperbrain networks

in naturalistic settings as indexed by EEG. Despite our null results at the individual

connection level, we were able to show differences in network topology due to ambigu-

ity in music structure and roles. Furthermore, these network characteristics correlated

with the participants’ perceptions of the their performances, but only when there was

ambiguity in leadership. In sum, the field of EEG hyperscanning is very fertile and

it will benefit greatly from more holistic (both methodological and multidisciplinary)

approaches.
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Appendix A

LIVELab study: Screening

Questionnaire (On-line)

Hello! Thank you for taking the time to answer this questionnaire. It will take you about

five minutes to complete. We aim to determine your eligibility for our study with these

questions. Please take your time to read them carefully. Note that this information will

remain anonymous and it won’t be shared with anyone. We will get back to you as soon

as possible regarding next steps. Should you have any question, please do not hesitate

to contact us (orozcoph@mcmaster.ca). -Hector

1. Email address

2. First name

3. Last name

4. Are you right handed or left handed?

5. Do you have any neurological disorders?

(a) If so, please specify
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Master of Science– Hector D Orozco Perez; McMaster University– Department of
Psychology, Neuroscience, and Behaviour

6. Do you have any hearing problems that you are aware of?

(a) If so, please specify

7. How many years of musical training do you have?

8. Have you played in any kind of music ensemble before?

(a) If so, how many years?

(b) Please specify what kind of ensemble
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Appendix B

Music Sheet

Here you can find the four music sheets used for this experiment. For details, see the

section 2.3 in chapter 2

79





rit.























Appendix C

Music Affiliation Questionnaire

The following statements inquire about your thoughts and feelings regarding your music

partner. For each item, indicate how well it describes how you currently feel by choosing

the appropriate number on the scale. When you have decided on your answer, circle the

number on the scale. READ EACH ITEM CAREFULLY BEFORE RESPONDING.

Answer as honestly as you can. Know that this answers are anonymous and will not be

shown to your music partner. Thank you.

1. I enjoyed playing music with my music partner

Totally
Disagree

Mostly
Disagree

Slightly
Disagree

Slightly
Agree

Mostly
Agree

Totally
Agree

1 2 3 4 5 6

2. I would like to play again with my music partner

Totally
Disagree

Mostly
Disagree

Slightly
Disagree

Slightly
Agree

Mostly
Agree

Totally
Agree

1 2 3 4 5 6

3. When I played Secondo, I had no trouble musically accompanying my music partner
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Master of Science– Hector D Orozco Perez; McMaster University– Department of
Psychology, Neuroscience, and Behaviour

Totally
Disagree

Mostly
Disagree

Slightly
Disagree

Slightly
Agree

Mostly
Agree

Totally
Agree

1 2 3 4 5 6

4. I would like to become friends with my music partner

Totally
Disagree

Mostly
Disagree

Slightly
Disagree

Slightly
Agree

Mostly
Agree

Totally
Agree

1 2 3 4 5 6

5. If my music partner needed help, I would help them

Totally
Disagree

Mostly
Disagree

Slightly
Disagree

Slightly
Agree

Mostly
Agree

Totally
Agree

1 2 3 4 5 6

6. I would trust my music partner with a secret

Totally
Disagree

Mostly
Disagree

Slightly
Disagree

Slightly
Agree

Mostly
Agree

Totally
Agree

1 2 3 4 5 6
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Appendix D

LIVELab Experimental Setup
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Appendix E

Perception of Music Performance

Questionnaire
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Perception of Music Performance Questionnaire 
(PMPQ) 

 
The following statements inquire about different aspects of the last piano 
performance. Rate each scale using a small vertical line. READ EACH ITEM 
CAREFULLY BEFORE RESPONDING. Answer as honestly as you can. Know that 
this answers are anonymous and will not be shown to your music partner. Thank 
you.  
 
 
SYNERGY 
Synergy refers to the notion that a “whole” is greater than the sum of the individual parts. 
That is, there is added value derived from cooperating and playing together.  
 

 
 
 
 
SYNCHRONY  
Synchrony refers to the notion of temporal coordination. That is, when playing 
synchronized, each note of the music is temporally precise.  
 

 
 
 
 
QUALITY 
Quality refers to how good or bad the performance was.  
 

 
 
ANXIETY 
Anxiety refers to an emotional state of inner turmoil and apprehension. It includes feelings 
of tension, nervousness and worry.  
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Participant Information Form
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PARTICIPANT INFORMATION FORM 

The following information will be kept confidential.  

 

First Name: ____________________________  Age: _______________  Sex: 

__________ 

 

1. Do you currently play a musical instrument (including voice)? 

_____ Yes (go to question #2)                       _____ No (skip to question #3) 

 

2. Please provide the following information for each instrument you currently play, 

starting with the one that you consider your primary instrument. 

 

Instrument 

Ages during which you 

have played this 

instrument 

Ages during which 

you took music lessons 

on this instrument 

Hours per week that 

you play this 

instrument currently 

    

    

    

 

Please describe the situations in which you play (e.g., alone, in a small ensemble or band, in 

a large orchestra or choir, etc.) 

_________________________________________________________________________

___________________________________________________________________ 

 

3. Have you previously played an instrument (including voice) that you no longer play 

(e.g., as a child)? 

____ Yes (go to question #4)                       _____ No (skip to question #5) 

 

4. Please provide the following information for each instrument that you used to play. 

 

Instrument 

Ages during which you 

played this instrument 

Ages during which 

you took lessons on 

this instrument 

Hours per week that 

you played this 

instrument  

    

    

    

 

Please describe the situations in which you played (e.g., alone, in a small ensemble or band, 

in a large orchestra or choir, etc.) 



_________________________________________________________________________

___________________________________________________________________ 

5. Do you have dance experience (lessons, amateur or professional experience)? 

_____ Yes (go to question #6)                       _____ No (skip to question #7) 

 

6. Please provide the following information for each dance style you are familiar with. 

 

Style of dance 

Ages during which you 

danced this style 

Ages during which 

you took lessons in 

this style 

Hours per week that 

you dance(d) this 

style  

    

    

    

 

Please describe the situations in which you dance(d) (e.g. alone, with family, in group 

classes) 

______________________________________________________________________ 

 

7. Please indicate the highest formal music levels (instrumental/vocal performance, dance 

or theory) that you have achieved (e.g. Royal Conservatory, Theory, Suzuki Books, 

etc). 

Instrument/Course/Subject Level 

  

  

  

 

8. Do you play music professionally? If so, please describe the situations in which you are 

paid to play music (e.g. performance, teaching, playing in bands, DJ, etc): 

______________________________________________________________________ 

9. Have you played music in an ensemble? If so, please specify the number of years, type 

of ensemble and your role (melodist, accompanist, leader…)  

______________________________________________________________________ 

10. Describe your current recreational music and dance activities (e.g., “jam sessions” with 

friends, singing karaoke, dancing at nightclubs, etc.): 

_________________________________________________________________________

___________________________________________________________________ 

 



11. For how many years have you played any instrument (including voice) or danced 

regularly and consistently (e.g. at least 3x per week, most weeks of the year?) 

_________________ 

 

12. How often do you attend musical or dance concerts or performances? 

________________ 

 

13.  Have you had any formal ear training*?  ___ Yes ( ____ years)     ___ No

 ___ Not sure 

* In ear training or “aural skills” lessons, musicians learn to identify musical elements such as intervals, chords 

and rhythms, simply by hearing them.   

14. Do you play by ear*?    ____Yes  ____ No 

* playing or learning to play a piece of music by listening to a musical rendition, without the aid of printed 

material 

 

15. Do you have absolute/”perfect” pitch*?  ___Yes ___ No  ___ Not 

sure 

* absolute pitch is the ability to name notes without a reference, e.g. to hear a tone and immediately know it was a 

“C” 

 

16. Can you name a note if you are given a reference*?      ___ Yes     ____No     ___NS 

* e.g., if you heard two notes on the piano and were told the first one was a “C”, could you name the other note? 

 

17. To the best of your knowledge, are you tone deaf*?       ___ Yes     ____No     ___NS 

* tone deafness is when you are unable to perceive differences of musical pitch accurately 

 

18. How many hours per week do you spend listening to music? _______ hours/week 

 

19. Please describe your regular listening habits (e.g., listen to mp3/iPod on the bus, play 

stereo at home, etc.): 

_________________________________________________________________________

___________________________________________________________________ 

20. Do you pay close attention when listening to music? Please rank from 1 to 5 

(music is background only)  1 2 3 4 5       (always pay close 

attention) 

 

21. What styles of music do you listen to (e.g., rock, r&b, classical, traditional/folk, etc.) 

_________________________________________________________________________

___________________________________________________________________ 

 



22. Do any of your close friends or family members play a musical instrument (or did so in 

the past)? If so, please provide the following information.   

 

Their relation to 

you 

 

Instrument that they 

play(ed) 

How old were you (age 

range) when you 

heard them play? 

Number of hours 

per week that you 

hear/heard them 

play 

    

    

    

 

23. Please briefly describe your other main activities or interests (e.g., sports, outdoor 

activities, art, reading, video game playing, etc.). 

_________________________________________________________________________

___________________________________________________________________ 

24. What is the highest level of education you have completed, or are currently completing? 

____ High school / High school equivalency 

 ____ College / skilled trade training program 

 ____ University undergraduate (e.g. B.Sc., H.B.A, etc) 

 ____ Graduate school – professional or academic (e.g. LLD, MD, Ph.D) 

 ____ Other (please specify) ____________________ 

 ____ Prefer not to say 

 

24. What is your current employment status? 

 ____ Student 

 ____ Employed – Full time 

 ____ Employed – Part time 

 ____ Unemployed 

 ____ Retired 

 ____ Other 

 ____ Prefer not to say 

 

25. Please indicate the range that reflects your annual household income 

 ____ less than $30,000 

 ____ $30,000 - $60,000 

____   $60,000 - $90,000 



____   $90,000 - $120,000 

____ $120,000 - $150,000 

____  greater than $150,000 

____ Prefer not to say 

 

24. Do you currently speak any other languages besides English?  ___ Yes ___ No 

If yes, please indicate which language(s) including English, the percentage of time that you 

use them, and the situations in which you speak each language. 

Language Percentage (%) of time that you 

use this language 

Situations in which you use the 

language 

 

 

  

 

 

  

 

 

  

 

25. Did you previously speak any languages other than English that you no longer speak? 

If yes, please list and describe the ages and situations in which you used these 

languages: 

_________________________________________________________________________

___________________________________________________________________ 
 

26. Have you lived in North America for all your life?  ____Yes  ____No 

If not, please describe where else you have lived, and for how long. 

Location How old were you (age range) when you 

lived there? 

  

  

  

 

27. Do you have any hearing problems that you are aware of? If yes, please specify. 

______________________________________________________________________ 

 

28. Please indicate whether you are left or right handed when performing the following 

tasks:  

Left   Right   Both 

Writing    _____   _____   _____ 



Drawing    _____   _____   _____ 

Using a Spoon   _____   _____   _____ 

Throwing     _____   _____   _____ 

Kicking    _____   _____   _____ 

  

 

29. Do you wear glasses or contacts?    ____Yes  ____No 

 

30. Do you currently have a cold?    ____Yes  ____No 

 

31. Do you have any major neurological disorders? If yes, please specify. 

______________________________________________________________________ 

 

32. Do you take any medications regularly? If yes, please specify.  

______________________________________________________________________ 

33. Have you lost consciousness in the past 6 months? ____Yes  ____No 

 

34. How anxious did you feel last month?  

 

 

 

 

35. How stressed did you feel last month?  

 

 

 

 

 

 

Thank you for your assistance! 

 

 



Appendix G

Top Hyperbrain Network

Connections - Values and

Significance

Here you will find all the top 48 between connections at each delay for the playing STE

(average of all pieces) and their comparison to baseline and scrambled-pairs values. See

Section 2.7.5 for more information.
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Table A7.1: Top Between Connections: Comparison between baseline,
playing, and scrambled conditions
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Table A7.2: Top Between Connections: Comparison between baseline,
playing, and scrambled conditions
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Table A7.3: Top Between Connections: Comparison between baseline,
playing, and scrambled conditions
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Appendix H

Graph Theory Statistics: Detailed

Statistical Description

Here you will find a detailed description of the statistical values used for the statistical

comparison of homophonic vs polyphonic duos and the correlations between these values

and the PMPQ scales. See Section 2.7.7 for more information.

Table A8.1: Comparison of Homophonic and Polyphonic pieces using
graph theory (20ms)

Graph Statistic P Value (FDR) Homophonic Polyphonic T Test

Average Clustering Coefficient 0 0.001869524 0.002254327 2.989822895
Average Node Strength 0 0.479907906 0.57542127 3.006609666

Characteristic Path Length 0 563.943702 453.8268615 -2.112409787
Efficiency 0 0.002098883 0.002537704 2.993939107

Table A8.2: Comparison of Homophonic and Polyphonic pieces using
graph theory (200ms)

Graph Statistic P Value (FDR) Homophonic Polyphonic T Test

Average Clustering Coefficient 0 0.001836987 0.002225507 3.011748115
Average Node Strength 0 0.459004868 0.556318783 3.03092332

Characteristic Path Length 0 580.1421138 463.8955691 -2.137330821
Efficiency 0 0.002015942 0.00246426 3.053698503
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Table A8.3: Comparison of Homophonic and Polyphonic pieces using
graph theory (1000ms)

Graph Statistic P Value (FDR) Homophonic Polyphonic T Test

Average Clustering Coefficient 0 0.001816607 0.002214234 3.008713225
Average Node Strength 0 0.45050908 0.550549187 3.019747503

Characteristic Path Length 0 582.7493852 463.3260307 -2.133029853
Efficiency 0 0.002011337 0.002475265 3.03413717

Table A8.4: Correlations between graph theory statistics and the
PMPQ at 20ms delay

Correlation Duo Type Graph Statitistics PMPQ Scale P Value (FDR)

-0.357642722 p Average Clustering Coefficient quality 0.048904494
0.15719801 h Average Clustering Coefficient quality 0.290942418
-0.353881525 p Average Node Strength quality 0.048904494
0.161197297 h Average Node Strength quality 0.290942418
0.3735079 p Characteristic Path Length quality 0.048904494

-0.060000689 h Characteristic Path Length quality 0.64882348
-0.344212269 p Efficiency quality 0.048904494
0.166649151 h Efficiency quality 0.28680161
-0.28533732 p Average Clustering Coefficient synchrony 0.076620346
0.17881686 h Average Clustering Coefficient synchrony 0.274590944
-0.282090186 p Average Node Strength synchrony 0.076620346
0.182889035 h Average Node Strength synchrony 0.274590944
0.291669839 p Characteristic Path Length synchrony 0.076620346
-0.105653318 h Characteristic Path Length synchrony 0.44006592
-0.273525055 p Efficiency synchrony 0.082363647
0.189412663 h Efficiency synchrony 0.271761336
-0.135663922 p Average Clustering Coefficient synergy 0.370862932
0.308373917 h Average Clustering Coefficient synergy 0.05665157
-0.131670596 p Average Node Strength synergy 0.370862932
0.313631975 h Average Node Strength synergy 0.05665157
0.170189328 p Characteristic Path Length synergy 0.28680161
-0.197012278 h Characteristic Path Length synergy 0.262710603
-0.121154011 p Efficiency synergy 0.398146986
0.320780232 h Efficiency synergy 0.05665157
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Table A8.5: Correlations between graph theory statistics and the
PMPQ at 200ms delay

Correlation Duo Type Graph Statitistics PMPQ Scale P Value (FDR)

-0.361613898 p Average Clustering Coefficient quality 0.03442548
0.15479648 h Average Clustering Coefficient quality 0.30015006
-0.36025942 p Average Node Strength quality 0.03442548
0.156810114 h Average Node Strength quality 0.30015006
0.388330455 p Characteristic Path Length quality 0.03442548
-0.053464769 h Characteristic Path Length quality 0.684952065
-0.358389953 p Efficiency quality 0.03442548
0.161359511 h Efficiency quality 0.30015006
-0.288244115 p Average Clustering Coefficient synchrony 0.063926473
0.176825386 h Average Clustering Coefficient synchrony 0.264779726
-0.287236838 p Average Node Strength synchrony 0.063926473
0.178912956 h Average Node Strength synchrony 0.264779726
0.304922197 p Characteristic Path Length synchrony 0.0598332
-0.098719149 h Characteristic Path Length synchrony 0.472694156
-0.286384169 p Efficiency synchrony 0.063926473
0.182942531 h Efficiency synchrony 0.264779726
-0.140271005 p Average Clustering Coefficient synergy 0.329015646
0.304574904 h Average Clustering Coefficient synergy 0.0598332
-0.138843655 p Average Node Strength synergy 0.329015646
0.30706804 h Average Node Strength synergy 0.0598332
0.189170779 p Characteristic Path Length synergy 0.264779726
-0.188348028 h Characteristic Path Length synergy 0.264779726
-0.137995002 p Efficiency synergy 0.329015646
0.31180484 h Efficiency synergy 0.0598332
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Table A8.6: Correlations between graph theory statistics and the
PMPQ at 1000ms delay

Correlation Duo Type Graph Statitistics PMPQ Scale P Value (FDR)

-0.361907219 p Average Clustering Coefficient quality 0.034101385
0.153593169 h Average Clustering Coefficient quality 0.304838228
-0.36095025 p Average Node Strength quality 0.034101385
0.155297064 h Average Node Strength quality 0.304838228
0.388605136 p Characteristic Path Length quality 0.034101385
-0.048236922 h Characteristic Path Length quality 0.714368928
-0.358763413 p Efficiency quality 0.034101385
0.157715243 h Efficiency quality 0.304838228
-0.290351059 p Average Clustering Coefficient synchrony 0.062065855
0.173941638 h Average Clustering Coefficient synchrony 0.275692168
-0.289678336 p Average Node Strength synchrony 0.062065855
0.175461347 h Average Node Strength synchrony 0.275692168
0.306031106 p Characteristic Path Length synchrony 0.058428999
-0.093007407 h Characteristic Path Length synchrony 0.500539403
-0.287848196 p Efficiency synchrony 0.062065855
0.177989123 h Efficiency synchrony 0.275692168
-0.142230447 p Average Clustering Coefficient synergy 0.323440866
0.303938703 h Average Clustering Coefficient synergy 0.058428999
-0.141440395 p Average Node Strength synergy 0.323440866
0.305959749 h Average Node Strength synergy 0.058428999
0.192602624 p Characteristic Path Length synergy 0.275692168
-0.183953115 h Characteristic Path Length synergy 0.275692168
-0.139447759 p Efficiency synergy 0.323440866
0.309297415 h Efficiency synergy 0.058428999
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Appendix I

Small World Coefficients:

Detailed Statistical Description

Here you will find a detailed description of the statistical values, both correlation coef-

ficients and pvalues, for the small world coefficient analysis. See Section 2.7.8 and 2.7.9

for more information.

Table A9.1: Pearson Correlation Coefficient and significance of Small
world as a function of time and music affiliation

Correlation Delay P Value (FDR) Scale

0.113129977 20ms 0.445123704 Small world as a funtion of time
0.116885965 200ms 0.445123704 Small world as a funtion of time
0.118306012 1000ms 0.445123704 Small world as a funtion of time
-0.259322736 20ms 0.6197354 Small world correlated with music affiliation change
-0.259330569 200ms 0.6197354 Small world correlated with music affiliation change
-0.26007884 1000ms 0.6197354 Small world correlated with music affiliation change
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