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Abstract

This thesis continues the work started with my previous supervisor, Dr. Shaohua

Chen. In [15], the authors developed some tools that showed the boundedness or

blowup of solutions to a semilinear parabolic system with homogeneous Neumann

boundary conditions. This system, the so called ’Activator-Inhibitor Model’, is of in-

terest as it is used to model biological processes and pattern formation. Similar tools

were later adapted to deal with the same parabolic system in [3], in which the authors

prove global boundedness of solutions under homogeneous Dirichlet conditions. This

new problem is of mathematical interest as the solutions may grow singular near the

boundary. Shortly after, a different system was considered in [4], where the authors

proved global boundedness of solutions to a system featuring similar singular reac-

tion terms. The goal of this thesis is twofold: first, the tools developed that allow us

to tackle these sorts of problems will be demonstrated in detail to showcase its util-

ity; the second is to then use these tools to generalize some of these previous results

to a larger class of singular parabolic systems. In doing so, we expand the classi-

cal literature found in [14] and other notable works, where nonsingular equations

are extensively treated. The motivation for the first should be clear. While there
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are numerous bodies of text treating nonsingular problems, there are no collections

available dealing with these types of singularities exclusively. This is of practical use

to other mathematicians studying partial differential equations. The motivation for

the second is, perhaps, more practical. There are a growing number of models found

in physics, chemistry and biology that may be generalized to a singular type system.

Through allowing those individuals to treat these problems, we may gain valuable

insights into the real world and how these processes behave.
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Chapter 1

Introduction

1.1 Reaction-Diffusion Equations

In 1952, Alan Turing [18] proposed an answer to a curious question: How is it that

certain biological systems, which are observed to be initially spatially homogeneous,

develop patterns or structure at a later time? Originally, his idea was suggested as an

idealized mechanism to account for the phenomena of morphogenesis. Put simply,

morphogenesis is the biological process that allows various organisms to develop

their shape. This includes, for example, the embryonic development of an organism,

but can also occur inside tumor cells, or in cell culture. Turing’s answer to this

phenomena of spontaneous pattern formation is what we now refer to as Turing

instability. The key aspect of his revolutionary idea was that a system that is

linearly stable in the absence of diffusion may become unstable in the presence of

diffusion. To investigate this further, consider a general reaction-diffusion equation:
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ut = d∆u+ cf(u, v),

vt = D∆v + cg(u, v),

(1.1)

where d,D, c > 0 are real parameters. Turing realized that systems with diffusion

may have fundamentally different properties than those without. In particular, he

noted that in the absence of diffusion (d = D = 0), the equilibria of the above

system (ie. the solution when ut = vt = 0, or the so-called steady state solution)

are solutions (u∗, v∗) that satisfy f(u∗, v∗) = g(u∗, v∗) = 0. It is clear that these

equilibria are independent of the parameters d,D and c. Then, when investigating

the time dependent system, it is fairly easy to determine when these equilibria remain

linearly stable. If we define the matrix A corresponding to the linearization of (1.1)

without diffusion, we obtain

A =

fu(u∗, v∗) fv(u
∗, v∗)

gu(u
∗, v∗) gv(u

∗, v∗)

 .
The solution to this related linear ordinary differential equation can then be shown

to be linearly stable if and only if the eigenvalues of the matrix cA have negative real

part. In such cases, small perturbations in the spatial domain will always return to

its stable state. Alternatively, in the presence of diffusion (D, d 6= 0), the homoge-

neous steady state may become unstable with respect to small changes in the spatial

domain. This was the novel answer proposed by Turing: even with homogeneous

initial data, certain reaction-diffusion equations may posses such instabilities in the

presence of diffusion, resulting in interesting (and seemingly spontaneous) patterns.
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This type of instability is what we are referring to when we say ”Turing instability”.

[6] and [16] serve as good resources for an in depth exploration of diffusive instability.

Although Turing’s original work was focused on the process of morphogenesis,

his ideas have since been expanded to provide insights into other types of pattern

formation found in nature. One may think of the stripes on the tail of a raccoon, the

spots on a leopard, or the wide range of dot and stripe patterns found on seashells,

to name a few examples. The founding work on this front was a model proposed by

Gierer and Meinhardt in 1972 [10], which is now referred to as the Gierer-Meinhardt,

or Activator-Inhibitor model. This is where the motivation for the investigation of

singular parabolic systems begins.

Let Ω ⊂ RN be a bounded domain, N ≥ 1 with smooth boundary. The general

Activator-Inhibitor model then takes the following form


ut = d∆u− µu+ up

vq
+ ρ(x),

vt = D∆v − νv + ur

vs
, x ∈ Ω, t > 0,

(1.2)

where d,D, µ, ν, p, q, r, s are all positive, real valued constants. This system is a

special case of the general reaction-diffusion equations described above, and holds

interesting properties of its own. Of course, this system as written is its most general

form. The original model proposed by Gierer and Meinhardt instead took the partic-

ular powers (p, q, r, s) = (2, 1, 2, 0) and proposed homogeneous Neumann boundary

conditions (ie. ∂u/∂n = ∂v/∂n = 0, where n denotes the normal to the boundary).

Under these assumptions, Rothe [17] proved the existence and regularity of solutions

3
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for N ≤ 3 in 1984. Since then, many works have been published exploring the ex-

istence, regularity, as well as the qualitative behaviour and properties of solutions

to the Gierer-Meinhardt system, placing various conditions on the available parame-

ters, initial conditions, and the forcing term ρ(x). One may refer to a few key works

highlighting some of these results, namely [15], [5], [13], [2]. All of the literature, at

least early on, focused on the system given homogeneous Neumann boundary data.

For example, one may consider the results found by Li, Chen and Qin [15] published

in 1995. They were able to prove the long time existence, as well as finite time blow

up, of solutions given certain conditions on the constants and character of the initial

conditions. In order to do so, they considered the following functional:

ˆ
Ω

un(x, t)

vm(x, t)
dx, (1.3)

where n ≥ m > 0. Through taking the time derivative of this quantity and integrat-

ing by parts, the authors were able to obtain Lp bounds of this quantity, allowing

them to then apply semigroup theory to obtain the existence of solutions for all time.

Perhaps more interestingly (at least in a mathematical sense), when considering the

case when d = D, the authors were able to inspect the integral above with m = αn

for some α ∈ (0, 1). Applying the same strategy (deriving in time, integrating by

parts and applying some elementary inequalities), they were able to find uniform

bounds of this quantity! That is to say, they proved the existence of some C > 0,
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independent of n, so that

ˆ
Ω

un

vαn
dx ≤ Cn, (1.4)

and so we in fact have

u(x, t)

vα(x, t)
≤
∥∥∥ u
vα

∥∥∥
L∞

= lim
n→∞

n

√ˆ
Ω

( u
vα

)n
dx

≤ C <∞. (1.5)

Such an a priori bound proves very useful, as this is a bound on a term that looks

eerily similar to the nonlinearities appearing in the original system. This is no

accident, and has motivated some of the strategies to be used throughout this thesis,

as we will soon find out.

1.2 Singular Reaction-Diffusion Equations

The previous problem, while interesting, does not feature the singular behaviour

this manuscript is interested in. As it turns out, investigating the problem with

homogeneous Dirichlet boundary data is also a highly interesting endeavour, as it

presents new mathematical difficulties that the Neumann problem does not posses.

The most obvious difficulty is in the singular behaviour of the nonlinearities. That
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is, our system now takes the form:


ut = d∆u− µu+ up

vq
+ ρ(x),

vt = D∆v − νv + ur

vs
, x ∈ Ω, t > 0,

u = v = 0, x ∈ ∂Ω, t > 0,

(1.6)

and we see that for Q ∈ ∂Ω,

lim
x→Q

up(x, t)

vq(x, t)
(1.7)

is (a priori) undefined. Naturally, some restrictions must be put on the exponents

in order to make sense of this quantity, which in turn allows us to make sense of

the solution to the system (or even the sense in which we can say a solution exists).

Other technical difficulties exist as well. The system above has been referred to as

a reaction-diffusion equation and there are existence results for nonlinearities that

posses so-called monotone properties. The terms featured in the Gierer-Meinhardt

model are non-quasimonotone, and so we cannot apply classical monotone methods.

These monotone properties will be discussed in more detail in chapter 3, but here

we briefly make note of the fact that the above nonlinearities are not Lipschitz

in their arguments (u, v). One may be able to determine values for which these

nonlinearities are Hölder continuous in each of their arguments, but this removes the

more interesting cases covered in works such as [3]. This removes the case where

q, s > 0, for a simple but concrete example. Additionally, the use of the comparison

principle also fails due to the character of these nonlinearities. Fortunately, one is

6
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able to deal with such a system through regularization of the problem and considering

bounds similar, but not identical, to those found in the Neumann problem. When

we refer to regularizing the problem, we perturb the singular terms in the system by

some small, positive parameter ε:


ut = d∆u− µu+ up

(v+ε)q
+ ρ(x),

vt = D∆v − νv + ur

(v+ε)s
, x ∈ Ω, t > 0,

u = v = 0, x ∈ ∂Ω, t > 0.

(1.8)

We denote the solution to this related problem by (uε, vε). Existence of solutions

to the regularized problem (1.8) can be shown through application of the existence

results to general quasilinear parabolic systems found in [14]. This will not be shown

in detail here. We will, however, discuss how the monotone methods mentioned

previously can be used to show the existence of the regularized problems specific

to this manuscript. Once the existence of solutions to the regularized problem is

established, the goal is to then obtain a priori bounds on the solutions (uε, vε) in a

suitable space. The key fact required is that these bounds remain independent of

epsilon. We then hope to extract a subsequence (uεk , vεk) that converges (in some

sense) to a solution of our original problem.

Taking inspiration from the previous bound obtained, we wish to obtain a similar

bound for the Dirichlet problem, but this time with attention given to the boundary

behaviour of the nonlinearity. One way to do this would be to bound our nonlinearity

by some function that tends to zero as we approach the boundary. That is, if we can

7
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show

uε(x, t)

vαε (x, t)
≤ Cf(x), (1.9)

where f(x) > 0 in Ω satisfying

lim
x→Q

f(x) = 0, (1.10)

for Q ∈ ∂Ω, it is then necessarily true that

lim
x→Q

uε(x, t)

vαε (x, t)
= 0. (1.11)

This is exactly the kind of control we require at the boundary of our domain in order

to retain control of the nonlinearities appearing in our equations. So, the question

now becomes: How might we adjust the integral considered in (1.3) so that we may

obtain a bound of the form found in (1.9)? One primordial answer is to consider

ψ(x), the solution to the eigenvalue problem


0 = ∆ψ(x) + λ1ψ(x), x ∈ Ω,

0 = ψ(x), x ∈ ∂Ω,

(1.12)

where λ1 > 0 denotes the first eigenvalue. We then may construct the following

8
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quantity as it relates to the perturbed system:

ˆ
Ω

unε (x, t)

[vε(x, t) + ε]αn ψβn−2(x)
dx, (1.13)

The form of this integral, while potentially arbitrary at first glance, actually makes a

lot of practical sense. First, to ensure this integral converges, we choose α, β ∈ (0, 1)

so that α + β ≤ 1. This integral can then be shown to be well defined by Hopf’s

boundary lemma. (This is addressed more explicitly in chapter 5). If we can obtain

a similar uniform bound,

uε(x, t)

[vε(x, t) + ε]α ψβ(x)
≤ C, (1.14)

then we actually have that

uε(x, t)

vαε (x, t)
≤ Cψ(x)β. (1.15)

(Note that C may depend on t, and the existence of such a C will certainly be

dependant on the restrictions put upon (p, q, r, s), but we remind the reader that the

primary goal is to find C independent of ε). This bound is of the form found in (1.9)

and satisfies the conditions put on f . This in turn allows us to then obtain uniform

bounds of the form

mψ(x) ≤ uε(x, t), vε(x, t) ≤Mψ(x), (1.16)

for some m,M > 0, also independent of ε. This is the general philosophy to be taken

9
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when dealing with singular parabolic systems in this way.

With a set of tools at hand, attention has then been given to other parabolic prob-

lems featuring these types of singular nonlinearities. These problems are primarily

motivated by their elliptic counterparts. For example, Ghergu [8], [9], considers the

following systems: 
0 = ∆u+ 1

upvq
,

0 = ∆v + 1
urvs

, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(1.17)

and 
0 = ∆u+ 1

up
+ 1

vq
,

0 = ∆v + 1
ur

+ 1
us
, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(1.18)

where (p, q, r, s) satisfy various size restrictions. Using the method of sub and super

solutions to the regularized problem, along with some fixed point arguments, Ghergu

was able to prove the existence of solutions of varying regularity. This work then

inspired consideration of the following parabolic system:


ut = ∆u+ f(x)

vp
,

vt = ∆v + g(x)
uq
, x ∈ Ω, t > 0,

u = v = 0, x ∈ ∂Ω.

(1.19)

10
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In [4], the authors proved the existence of bounded solutions to this problem, pro-

vided p, q ∈ (0, 1) and f, g satisfy certain growth conditions related to the first

eigenvalue problem. Under more strict conditions on p, q, these solutions are further

shown to be classical. With this context provided, the goal of this thesis can now

be more readily stated. The primary goal is to extend the results found in [4] to the

following more general systems:


ut = d∆u+ f(x)

upvq
,

vt = D∆v + g(x)
urvs

, x ∈ Ω, t > 0

u = v = 0, x ∈ ∂Ω,

(1.20)

and 
ut = d∆u+ f1(x)

up
+ f2(x)

vq
,

vt = D∆v + f3(x)
ur

+ f4(x)
vs
, x ∈ Ω, t > 0

u = v = 0, x ∈ ∂Ω.

(1.21)

There are a few comparisons that can be made between these systems, (1.19), as

well as their elliptic counterparts. First, these systems feature different diffusion

coefficients, which entails its own added difficulty. Further, (1.20) is a direct general-

ization of (1.19), provided that we can set d = D and p = s = 0. There is also added

difficulty when dealing with products and sums of these singular nonlinearities, in

comparison to the standalone singularities appearing in (1.19). In chapter 6 a more

in depth exploration of the similarities and differences to other problems is given.

In order to tackle these problems in detail, some preliminary results and standard

11
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material must be reviewed.

12



Chapter 2

Preliminaries

In this section, we discuss some of the notation and elementary results referenced

throughout this manuscript.

We denote Euclidean space of dimension N ∈ N by RN . Ω ⊂ RN denotes a

bounded domain, always assumed to have a sufficiently smooth boundary. We further

denote its boundary by ∂Ω, and its closure by Ω̄ = Ω ∪ ∂Ω. We take Ω′ ⊂⊂ Ω to

mean Ω′ is a subdomain of Ω such that Ω′ ⊂ Ω. When convenient, we will sometimes

denote QT = Ω× (0, T ).

We use the usual subscript notation to denote partial derivatives with respect to

that variable. (eg. ut = ∂u/∂t, fxi = ∂f/∂xi and so on.) We write ∇u to mean

the gradient of u, the vector of partial derivatives of u; ∆u = ∇ · (∇u) to mean the

Laplacian of u, the trace of the Hessian matrix D2u.

We use the usual notation for various function spaces. C(Ω) denotes the space

13
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of all continuous functions on Ω with finite associated norm; for k ∈ N, Ck(Ω) de-

notes the space of all k-times continuously differentiable functions in Ω, also with

finite associated norm. Ck+θ(Ω) denotes the spaces of all k-times continuously dif-

ferentiable functions on Ω with its k-th derivative being θ-Hölder continuous with

exponent θ ∈ (0, 1), also having finite associated norm. The norms associated with

these spaces are defined as follows:

‖f‖Ck(Ω) =
∑
|a|≤k

sup
Ω
|Daf | ,

‖f‖C0+θ(Ω) = sup
Ω
|f |+ sup

Ω,x 6=y

|f(x)− f(y)|
|x− y|θ

,

‖f‖Ck+θ(Ω) =
∑
|a|≤k

‖Daf‖C0+θ(Ω) (2.1)

When θ = 1, we get the usual space of Lipschitz continuous functions. If a function

u ∈ Ck+α(Ω′) for any Ω′ ⊂⊂ Ω, we say that u ∈ Ck+α(Ω).

We extend these definitions in an intuitive way to include time. That is, for

k, s ∈ N, Ck,s(Ω× [0, T ]) denotes the set of all functions from Ω× [0, T ]→ R which

are k-times differentiable in the spacial domain, and s times differentiable in the

time domain. Ck+θ,s+τ (Ω × [0, T ]) denotes the same space with the k-th derivative

in space being θ-Hölder continuous, and the s-th derivative in time being τ -Hölder

continuous with θ, τ ∈ (0, 1). An in depth coverage of the norms associated with

these spaces is more an exercise in typing rather than a mathematical one. Readers

are directed to section 1.2.3 of chapter 1 in [20] for further details.

For 1 ≤ p ≤ ∞, denote by Lp(Ω) the set of all Lebesgue measurable functions

14
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f : Ω→ R with finite Lp norm. That is, f ∈ Lp(Ω) implies that

‖f‖Lp(Ω) ≡
(ˆ

Ω

|f |p dx
) 1

p

<∞, (2.2)

when p ∈ [1,∞), and

‖f‖L∞(Ω) ≡ ess sup {f}

≡ inf{µ ∈ R : |{f > µ}| = 0} <∞, (2.3)

when p =∞.

Lemma 2.0.1. Suppose f ∈ L∞(Ω). Then

lim
p→∞
‖f‖Lp(Ω) = ‖f‖L∞(Ω) . (2.4)

For k ∈ N and 1 ≤ p ≤ ∞, we denote by W k,p(Ω) to be the usual Sobolev space:

W k,p(Ω) consists of all Lebesgue measurable functions f : Ω → R such that f has

weak derivatives of all orders up to and including k, and each weak derivative belongs

to Lp(Ω). We consider this space with the usual norm:

‖u‖Wk,p(Ω) =

ˆ
Ω

∑
|a|≤k

|Dau|p dx

1/p

, (2.5)

where the summation is understood to be over all multi-indices a of size up to and

including k. We extend this definition to include time in the same way as before: for

k, s ∈ N, 1 ≤ p < ∞, W k,s
p (Ω × (0, T )) denotes the so-called t-anisotropic Sobolev

15
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space. A function belonging to W k,s
p (Ω × (0, T )) has weak derivatives in space of

order up to and including k; weak derivatives in time of up to order s; both of these

quantities belonging to Lp in their respective domains. Despite the general definition

given, for the purposes of this thesis, we need only consider the space W 2,1
p (Ω×(0, T ))

endowed with the norm

‖u‖W 1,2
p (QT ) =

ˆ ˆ
QT

|ut|p +
∑
|k|≤2

∣∣Dku
∣∣p1/p

. (2.6)

Recall that the sum above is understood to be taken over all multi-indices k of size

up to and including 2. Readers are directed to references such as [7], [11], [1], [20] for

an extensive summary of Sobolev spaces. We now recall a useful embedding theorem,

an analog to the embedding commonly found in the spatial domain only.

Theorem 2.0.2 (t-Anisotropic Sobolev Embedding Theorem). Let Ω ⊂ RN be a

bounded domain with appropriately smooth boundary (say C2,θ) and let 1 ≤ p < ∞.

Then, when p > (N + 2)/2, it is true that

W 2,1
p (QT ) ↪→ Cθ,θ/2(QT ), 0 < θ ≤ 2− N + 2

p
. (2.7)

This means that, under the above assumptions,

W 2,1
p (QT ) ⊂ Cθ,θ/2(QT ), (2.8)

16
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and for any f ∈ W 2,1
p (QT ) ,

‖f‖Cθ,θ/2(QT ) ≤ C(N, p,QT ) ‖f‖W 2,1
p (QT ) . (2.9)

Readers are directed to Theorem 1.4.1 in [20] for details.

We now introduce the notion of weak and classical solutions. Suppose we have a

second order, linear, nonhomogeneous heat equation with Dirichlet boundary condi-

tion: 
ut = d∆u+ f(x, t), x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

u = 0, x ∈ ∂Ω.

(2.10)

By classical solution, we mean a function u : QT → R such that u ∈ C2+θ,1+θ/2(Ω×

(0, T ))∩C1+θ,(1+θ)/2(Ω× [0, T )) for some θ > 0, and satisfies (2.10) for all (x, t) ∈ QT .

We further call a classical solution u global if u is a classical solution for all t ∈ (0,∞).

We call u a weak solution of (2.10) if u ∈ L2(0, T ;W 1,2
0 (Ω)) ∩ L∞(Ω× (0, T )),

f(x, t) ∈ L1(QT ), (2.11)

and

ˆ
Ω

u0ξdx+

ˆ T

0

ˆ
Ω

[uξt − d∇u∇ξ + f(x, t)ξ] dxdt = 0, (2.12)

for all ξ ∈ C∞(Ω×(0, T )) satisfying ξ(x, ·) = 0 on ∂Ω×(0, T ) and ξ(·, T ) = 0. Recall

that u ∈ L2((0, T );W 1,2
0 (Ω)) means that the L2-norm of ‖u‖W 1,2(Ω) with respect to

17
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time remains finite:

‖u‖L2((0,T );W 1,2
0 (Ω)) =

(ˆ T

0

‖u‖2
W 1,2(Ω) dt

)1/2

=

(ˆ T

0

ˆ
Ω

(
|u|2 + |∇u|2

)
dxdt

)1/2

<∞. (2.13)

This definition above will be expanded to define the weak solutions to a system of

equations in a later section. Next, we will review some useful material related to

some general, non-singular reaction-diffusion equations.

18



Chapter 3

Classical Theory

This section will cover the classical theory, where classical in this case refers to the

Lp theory of parabolic equations, as well as the monotone methods used for partic-

ular systems of reaction-diffusion equations. First, we merely state the Lp theory

necessary for the main results section. Second to this, we will include a more in

depth investigation of monotone properties (nonincreasing monotone properties for

our purposes, but references will be provided for nondecreasing and mixed mono-

tone cases), sub and super solutions to systems, monotonicity of iterations (starting

from sub and super solutions), and finally existence results. This will be relevant for

this manuscript as we need to be able to show existence for the perturbed system.

Ladyzhenskaya [14] may be acceptable as a reference for existence of very general

quasilinear systems, but that is employing very complicated procedures for a fairly

basic result, considering that our nonlinearities appear as zero-th order terms. Con-

sequently, the monotone methods presented here give a more immediately accessible
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process to prove the existence of (classical) solutions.

3.1 Parabolic Lp Theory

To start, let us consider the following nonhomogeneous heat equation

ut = d∆u+ f(x, t), x ∈ Ω, t > 0. (3.1)

Theorem 3.1.1 (Lp Existence). Let Ω ⊂ RN be a smooth bounded domain with

1 < p < ∞. Then, for any f ∈ Lp(QT ), problem (3.1) admits a unique strong

solution W 2,1
p (QT ) ∩

•
W 1,1

p (QT ).

Note:
•
W 1,1

p (QT ) is understood to be the closure of
•
C∞(QT ) in W 1,1

p (QT ), where
•
C∞(QT ) denotes the class of all infinitely differentiable functions vanishing near

Ω× {t = 0} ∪ ∂Ω× (0, T ).

Proof. For the proof, readers are directed to Theorem 9.2.4 in [20].

Theorem 3.1.2 (Lp Estimates). Let Ω ⊂ RN be a smooth, bounded domain with

1 < p < ∞ and u ∈ W 2,1
p (QT ) ∩

•
W

1,1

p (QT ) satisfy (3.1) almost everywhere in QT .

Then

∥∥D2u
∥∥
Lp(QT )

+

∥∥∥∥∂u∂t
∥∥∥∥
Lp(QT )

≤ C ‖f‖Lp(QT ) , (3.2)
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where C depends only on N, p, T and Ω. In particular, this means we have that

‖u‖W 2,1
p (QT ) ≤ C

(
‖f‖Lp(QT ) + ‖u‖Lp(QT )

)
. (3.3)

Proof. The reader is directed to the proof of Theorem 9.2.1 and Remarks 9.2.1 and

9.2.2 found in [20].

While this has been only a brief statement, these results will be important later

on. The inclusion of Theorem 3.1.1 may be redundant, as a classical solution is

automatically a weak (and strong) solution. Regardless, it has been included as

Theorem 3.1.2 is stated under the assumption that a strong solution exists. These

results allow us to uniformly bound the solutions to our perturbed system by showing

f ∈ Lp(QT ) independent of ε. As a final note, the reader is also directed to Theorem

6 found in [19] for an alternative approach to obtaining Theorem 3.1.2 above.
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3.2 Monotone Methods

We now turn out attention to coupled parabolic systems. To start, we introduce the

system we are interested in:



ut = d∆u+ f1(u, v),

vt = D∆v + f2(u, v), x ∈ Ω, t > 0,

u(x, 0) = u0(x),

v(x, 0) = v0(x), x ∈ Ω,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω,

(3.4)

where d,D > 0 are real valued constants, Ω ⊂ RN is a bounded domain with

∂Ω of class C2,θ and fi ∈ Cθ(R2) for some θ ∈ (0, 1). We further assume that

u0, v0 ∈ C2+θ(Ω). Note that, through an application of the barrier function technique,

this requirement can actually be weakened to merely requiring that u0, v0 ∈ C(Ω)

and all of the following conclusions still hold true. Before we discuss existence of

solutions to this problem, we must introduce a bit of terminology. Let J1, J2 denote

open sets of R.

Definition 3.2.1 (Quasimonotone nonincreasing). A function fi = fi(x1, x2) is said

to be quasimonotone nonincreasing in J1 × J2 if, for any fixed xi ∈ Ji, fi is nonin-

creasing in xj ∈ Jj, for i 6= j.

This further motivates the additional definition for vector valued functions.
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Definition 3.2.2. A vector function f = (f1, f2) is said to be quasimonotone non-

increasing if both f1 and f2 are quasimonotone nonincreasing in J1 × J2.

In particular, if f is a C1 function in each of its arguments, the above definition

corresponds to the following condition:

∂f1

∂x2

≤ 0,
∂f2

∂x1

≤ 0, (x1, x2) ∈ J1 × J2. (3.5)

Next, we will establish a definition of sub/super solutions to (3.4) so that we can

adapt monotone methods usually applied to a scalar equation to a system of equa-

tions instead. As usual, we denote the subsolution and supersolution by (u, v) and

(u, v), respectively. The chosen sub and supersolution must also satisfy the following

boundary conditions


(u, v) ≥ (0, 0) ≥ (u, v), x ∈ ∂Ω, t > 0,

(u, v) ≥ (u0, v0) ≥ (u, v), x ∈ Ω, t = 0,

(3.6)

where we interpret the inequality (x1, x2) ≥ (y1, y2) to mean x1 ≥ y1 and x2 ≥ y2. As

with the usual definition of sub and supersolutions, they are defined in terms of dif-

ferential inequalities. However, we must now give attention to the definition given in

relation to the quasimonotone properties of the reaction functions fi. In more general

cases (quasimonotone nondecreasing functions, or mixed quasimonotone functions),

the definition of sub and supersolution is different than what is presented here. For

details concerning different monotone properties, readers are directed to section 12.2

of chapter 12 in [20].
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Definition 3.2.3. A pair of functions (u, v) and (u, v) in C2,1(QT ) ∩ C(QT ) are

called ordered subsolution and supersolution to problem (3.4) if they satisfy (3.6),

(u, v) ≥ (u, v) in QT , and


ut − d∆u− f1(u, v) ≥ 0 ≥ ut − d∆u− f1(u, v),

vt −D∆v − f2(u, v) ≥ 0 ≥ vt −D∆v − f2(u, v), x ∈ Ω, t > 0.

(3.7)

Keen readers may notice that this particular choice of sub and super solutions

is not universal in the sense that one will not obtain the existence of solutions to

systems featuring any reaction function f1, f2. Instead, we focus our attention to the

case where the reaction terms are monotone nonincreasing. Specifically, we need the

above definition in order to prove Lemma 3.2.4 to follow.

We now wish to construct a monotone increasing and a monotone decreasing

sequence of functions based on these differential inequalities and the properties of fi.

Define the functions: 
F1(u, v) = c1u+ f1(u, v),

F2(u, v) = c2v + f2(u, v),

(3.8)

where the constants ci come from the one-sided Lipschitz condition


f1(x1, ·)− f1(y1, ·) ≥ −c1(x1 − y1), when x1 ≥ y1,

f2(·, x2)− f2(·, y2) ≥ −c2(x2 − y2), when x2 ≥ y2.

(3.9)
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Notice that for f ∈ C1, these conditions are automatically satisfied. Starting from

an initial iteration (u(0), v(0)) ∈ C2,1(QT )∩C(QT ), we construct our desired sequence

{(u(k), v(k))}∞k=0 through the following iteration process:



u
(k)
t − d∆u(k) + c1u

(k) = F1(u(k−1), v(k−1)),

v
(k)
t −D∆v(k) + c2v

(k) = F2(u(k−1), v(k−1)), x ∈ Ω, t > 0,

u(k)(x, 0) = u0(x),

v(k)(x, 0) = v0(x), x ∈ Ω,

u(k)(x, t) = v(k)(x, t) = 0, x ∈ ∂Ω.

(3.10)

Through construction, we have decoupled our original nonlinear system into two

linear initial-boundary value problems. By the Lp and classical theory of parabolic

equations, we know that

u(1), v(1) ∈ Cθ,θ/2(QT ), and u(k), v(k) ∈ C2+θ,1+θ/2(QT ), k ≥ 2. (3.11)

Let us clarify this claim. Consider the equation for u. First, we note that our

forcing term F1 is continuous. On our first iteration, u(0), v(0) ∈ C(QT ). As a result,

the composition F1(u(0), v(0)) ∈ Lp for arbitrary p > 1, and so u(1) ∈ W 2,1
p (QT ) by

Theorem 3.1.1. Then, we may choose p sufficiently large so that u(1) ∈ Cθ,θ/2(QT )

via Theorem 2.0.2 stated in the preliminaries. Then, for every subsequent iteration,

the forcing term now belongs to Cθ,θ/2(QT ), as we are composing F1 with a function

of slightly higher regularity. Thus, by classical parabolic theory, F1 ∈ Cθ,θ/2(QT )⇒
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u(k) ∈ C2+θ,1+θ/2(QT ), for all k ≥ 2. (One may refer to Theorem 8.3.7 in chapter 8

of [20]). The same argument holds for v(k).

We now want to ensure that this sequence {(u(k), v(k))}∞k=0 is monotone and con-

verges to a solution of our original problem (3.4). This requires a suitable choice of

our initial iteration, which the following lemma provides.

Lemma 3.2.4. For quasimonotone nonincreasing (f1, f2), the two sequences {(u(k), v(k))}

and {(u(k), v(k))}, generated by choosing (u, v) or (u, v) as our initial iteration in

(3.10) respectively, posses the monotone property

(u(k), v(k)) ≤ (u(k+1), v(k+1)) ≤ (u(k+1), v(k+1)) ≤ (u(k), v(k)) (3.12)

for (x, t) ∈ QT , for all k ≥ 0.

Proof. We will provide the proof for the case when the initial iteration (u(0), v(0)) ≡

(u, v) is chosen. The proof of the second case is quite similar. Let

w(0)(x, t) = u(0)(x, t)− u(1)(x, t) = u(x, t)− u(1)(x, t),

z(0)(x, t) = v(1)(x, t)− v(0)(x, t) = v(x, t)− v(1)(x, t), x ∈ Ω, t ≥ 0. (3.13)

By virtue of the requirements of our sub and supersolution given by (3.6) and (3.7),
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we see that
w

(0)
t − d∆w(0) + c1w

(0) ≥ F1(u, v)− F1(u(0), v(0)) = 0, x ∈ Ω, t > 0,

w(0) ≥ 0, x ∈ ∂Ω, t > 0,

w(0) ≥ 0, x ∈ Ω, t = 0,

(3.14)

and
z

(0)
t −D∆z(0) + c2z

(0) ≥ F2(u(0), v(0))− F2(u, v) = 0, x ∈ Ω, t > 0,

z(0) ≥ 0, x ∈ ∂Ω, t > 0,

z(0) ≥ 0, x ∈ Ω, t = 0.

(3.15)

The maximum principle applied to (3.14) implies that w(0) ≥ 0 in QT , and so

u(1)(x, t) ≤ u(0)(x, t) (3.16)

in QT . The same reasoning applied to (3.15) implies that

v(0)(x, t) ≤ v(1)(x, t) (3.17)

in QT . In a similar fashion, one can also show

v(1)(x, t) ≤ v(0)(x, t), and u(0)(x, t) ≤ u(1)(x, t), (3.18)

in QT . To achieve this, one simply adjusts the role of w(0) and z(0) defined above to
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obtain (3.15). It remains to show that u(1) ≤ u(1) and v(1) ≤ v(1). We apply a similar

technique, but we now consider w(1) = u(1) − u(1) and z(1) = v(1) − v(1):

w
(1)
t − d∆w(1) + c1w

(1) ≥ F1(u, v)− F1(u, v), by (3.7),

= c1(u− u) + f1(u, v)− f1(u, v)

≥ c2(v − v), by (3.9)

≥ 0, x ∈ Ω, t > 0,

z
(1)
t −D∆z(1) + c2z

(1) ≥ F2(u, v)− F2(u, v), by (3.7),

= c2(v − v) + f2(u, v)− f2(u, v)

≥ c1(u− u), by (3.9)

≥ 0, x ∈ Ω, t > 0,

w(1) = 0, x ∈ ∂Ω, t > 0,

w(1) = 0, x ∈ Ω, t = 0,

z(1) = 0, x ∈ ∂Ω, t > 0,

z(1) = 0. x ∈ Ω, t = 0, (3.19)

The maximum principle again gives us the desired conclusion:

(u(0), v(0)) ≤ (u(1), v(1)) ≤ (u(1), u(1)) ≤ (u(0), u(0)). (3.20)

Using induction, we may then repeat this process (considering w(k) = u(k) − u(k−1)
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for example) and using the fact that fi is monotone to obtain

(u(k), v(k)) ≤ (u(k+1), v(k+1)) ≤ (u(k+1), u(k+1)) ≤ (u(k), u(k)), (3.21)

valid for all k ≥ 1. This completes the proof.

Next, we show that this sequence as constructed produces ordered sub and su-

persolutions.

Lemma 3.2.5. Let (u, v) and (u, v) be the corresponding sub and supersolutions

of problem (3.4). Then, the iterations given by Lemma 3.2.4 are ordered sub and

supersolutions.

Proof. We compute directly using (3.9) and the monotone property of (f1, f2):

u
(k)
t − d∆u(k) = −c1u

(k) + F1(u(k−1), v(k−1))

= c1

[
u(k−1) − u(k)

]
+
[
f1(u(k−1), v(k−1))− f1(u(k), v(k−1))

]
+
[
f1(u(k), v(k−1))− f1(u(k), v(k))

]
+ f1(u(k), v(k))

≥ f1(u(k), v(k)), x ∈ Ω, t > 0,

v
(k)
t −D∆v(k) = −c2v

(k) + F2(u(k−1), v(k−1))

= −c2

[
v(k) − v(k−1)

]
−
[
f2(u(k−1), v(k))− f2(u(k−1), v(k−1))

]
+
[
f2(u(k−1), v(k))− f2(u(k), v(k))

]
+ f2(u(k), v(k))

≤ f2(u(k), v(k)), x ∈ Ω, t > 0.

(3.22)
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An almost identical calculation shows that

u
(k)
t − d∆u(k) ≤ f1(u(k), v(k)), x ∈ Ω, t > 0,

v
(k)
t −D∆v(k) ≥ f2(u(k), v(k)), x ∈ Ω, t > 0. (3.23)

Thus, for each k ≥ 1, we have shown that (u(k), v(k)) and (u(k), v(k)) are ordered sub

and supersolutions to problem (3.4), and the proof is complete.

Now we have done the hard work and are able to apply some of these conclusions

to obtain some useful existence results. Notice that, through the above construction

and calculations, the sequences (u(k), v(k)) and (u(k), v(k)) are monotone and uniformly

bounded (in k) above and below. Thus, this sequence must converge monotonically

to some limit. This limit is our candidate for a solution to problem (3.4). This brings

us now to the conclusion of this chapter.

Theorem 3.2.6. Let (u, v), (u, v) be ordered sub and supersolutions to problem (3.4)

and suppose (f1, f2) is quasimonotone nonincreasing satisfying (3.9). Then problem

(3.4) has a classical solution (u, v) ∈ C2+θ,1+θ/2(Ω× [0, T ]).

Proof. To reach this conclusion, one may consider {(u(k), v(k))}k∈N to be either {(u(k), v(k))}k∈N

or {(u(k), v(k))}k∈N, as chosen in the previous material. Since this sequence was shown

to be monotone (in either case), and by the continuity and monotonicity of our

functions Fi(u, v), we know the Fi(u
(k), v(k)) converges monotonically to some limit

F (u, v). Then, by the regularity of solutions to the heat equation (as previously
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noted),

u(1), v(1) ∈ Cθ,θ/2(Ω× [0, T ]), u(k), v(k) ∈ C2+θ,1+θ/2(Ω× [0, T ]), (3.24)

and by the usual Schauder estimates for parabolic equations (see Theorem 7.2.24 in

chapter 7 of [20]), we have the following bounds:

∥∥u(k)
∥∥
C2+θ,1+θ/2(QT )

≤ C1

(
‖u0‖C2+θ(Ω) +

∥∥u(k−1)
∥∥
C0(QT )

+
∥∥v(k−1)

∥∥
C0(QT

)
,

and∥∥v(k)
∥∥
C2+θ,1+θ/2(QT )

≤ C2

(
‖v0‖C2+θ(Ω) +

∥∥u(k−1)
∥∥
C0(QT )

+
∥∥v(k−1)

∥∥
C0(QT )

)
, (3.25)

for all k ≥ 2, where C1, C2 depend on θ,Ω, T and the Lipschitz constants associated

to fi, but remain independent of k. Since the sequence {u(k), v(k)}k∈N has been shown

to be monotone, we thus have that {u(k), v(k)}k∈N is a unformly bounded sequence in

C2+θ,1+θ/2(QT ). Consequently, the limit (u, v) ∈ C2+θ,1+θ/2(QT ) is a solution to the

original problem (3.4). This completes the proof.

This work has given us the tools necessary to guarantee the existence of a classical

solution to the perturbed problem in a later section. There are a few remarks worth

noting to conclude this section. First, we again make note of the fact that we require

(u0, v0) ∈ C2+θ(Ω), which is quite strong. This is standard in all reference material

and makes the above results more immediate, due to the nature of the Schauder

estimates used. Specifically, the norm on the initial condition appearing on the right

hand side of (3.25) is on the space C2+θ. Consequently, more care and attention must
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be given in order to obtain the same results for less regular initial data. For the sake

of space, we will not go into the details here. Theorem 8.2.3 in [20] or Theorem

6.13 in [11], combined with other relevant results in the same chapters respectively,

provide the necessary details. The second, perhaps more subtle, note to make is the

dependencies of the constants Ci, i = 1, 2 found above. Namely, they both depend

on the Lipschitz constant associated to the reaction terms fi. As one may notice, the

reaction terms of problems (1.20) and (1.21) are not Lipschitz continuous, but will

be made so through the regularization of the singularities, as we will soon see. As a

result, the Lipschitz constant associated to the perturbed reaction functions depend

explicitly on the small perturbation ε, and thus so will the constants C1, C2 found

above. The point to be made is that the following results are, indeed, nontrivial.

That is, we cannot simply regularize our problem and apply the monotone methods

above in a direct way, due to this dependence.
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Chapter 4

Some Elliptic Problems

In this section we will state some results for elliptic equations. This is not meant

to be exhaustive by any means; we are only concerned with presenting the material

necessary for the remaining sections. We first remind ourselves of the first eigenvalue

problem mentioned in the introduction. Let Ω ⊂ RN be a bounded domain with

smooth boundary. We denote by φ(x) the positive solution to the following problem:


0 = ∆φ(x) + λ1φ(x), x ∈ Ω,

0 = φ(x), x ∈ ∂Ω.

(4.1)

This problem is well understood, and so there are many useful features that we can

make note of. First, we know that the first eigenvalue is simple, and λ1 > 0. We

also know that since ∂Ω has a smooth boundary, φ ∈ C2(Ω) ∩ C(Ω). For further

details, one may refer to [7],[11],[1],[20]. We now define a related problem, which

happens (by no accident) to feature a singular nonlinearity similar to those found
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in the parabolic problems we are interested in. Denote by ψ(x) the solution to the

following problem:


0 = ∆ψ(x) + ψ−σ(x), x ∈ Ω,

0 = ψ(x), x ∈ ∂Ω.

(4.2)

There are some rather interesting results for this problem, depending on where you

let the power σ live. For our purposes, we consider the case when σ ∈ (0, 1). Under

this assumption, Gui & Lin [12] prove that ψ(x) ∈ C1,1−σ(Ω) is a positive solution.

Further, we have estimates relating φ(x) and d(x), where d(x) is the distance to the

boundary function:

d(x) = d(x, ∂Ω)

≡ inf
y∈∂Ω

d(x, y), x ∈ Ω. (4.3)

Specifically, they show that there exist γ0, γ1 > 0 so that

γ0d(x) ≤ ψ(x) ≤ γ1d(x). (4.4)

This will prove incredibly useful, as we are able to then relate φ(x) to ψ(x) near the

boundary by the smoothness of ∂Ω. We now state a lemma provided in [11].

Lemma 4.0.1. Let Ω ⊂ RN be bounded and ∂Ω ∈ Ck for k ≥ 2. Then, there exists

a positive constant µ such that d(x) ∈ Ck(Γµ), where Γµ ≡ {x ∈ Ω : d(x) < µ}.

In particular, assuming our boundary is of class C2, we ensure that d(x) ∈ C2(Γµ).
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The following argument is fairly standard and can be found in [8] or [21], for example.

Redefining d(x) outside of this neighbourhood if necessary, we may assume that

d(x) ∈ C2(Ω). Then, since φ(x) ∈ C2(Ω), we know that

|φ(x)− φ(y)| ≤ C0 |x− y| , (4.5)

for x, y ∈ Ω. Choosing y ∈ ∂Ω, recalling that φ(y) = 0, and choosing x ∈ Ω

sufficiently close to ∂Ω such that there exists a unique y ∈ ∂Ω with d(x) = |x− y|,

we then have that

|φ(x)| ≤ C0d(x). (4.6)

This argument allows us to show that

c0d(x) ≤ φ(x) ≤ C0d(x), (4.7)

and so redefining γ0, γ1 in (4.4), we are able to write

γ0φ(x) ≤ ψ(x) ≤ γ1φ(x). (4.8)

This allows us to interchange ψ(x) and φ(x) merely at the cost of some constant

multiple of the other. With these facts noted, we are now ready to prove some useful

inequalities to be used in the main results section.
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Chapter 5

Some Useful Inequalities

In this section, we display some of the key inequalities used to obtain a priori es-

timates related to the singular equations we are interested in. Many of the proofs

have the same flavour, using integration by parts and arranging higher order terms

in a particular way. Before we show this, we state a generalized version of Young’s

inequality which is also very important to this thesis. This inequality, used in con-

junction with the subsequent integral inequalities, allows us to obtain the uniform

Lk bounds we require.

Lemma 5.0.1 (Generalized Young’s Inequality). Suppose u(x), v(x), f(x), g(x) > 0.

For any indices p1, p2, q1, q2, α1, α2, β1, β2, θ1 satisfying θ1 < p1 < α1 (not necessarily

positive), and given any constant c > 0, we have that

up1fp2

vq1gq2
≤ c

uα1fα2

vβ1gβ2
+ c−(p1−θ1)/(α1−p1)u

θ1f θ2

vη1gη2
,
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where

θ2 = [p2(α1 − θ1)− α2(p1 − θ1)](α1 − p1)−1,

η1 = [q1(α1 − θ1)− β1(p1 − θ1)](α1 − p1)−1,

η2 = [q2(α1 − θ1)− β2(p1 − θ1)](α1 − p1)−1 .

Proof. By assumption we may choose p = (α1 − θ1)/(p1 − θ1) > 1 , q = (α1 −

θ1)/(α1 − p1) > 1 so that p−1 + q−1 = 1. We then apply Young’s inequality (similar

to the proof of Young’s inequality with epsilon) as follows

up1fp2

vq1gq2
=

c1/p
(
uα1/puθ1/q

) (
fα2/pfp2−α2/p

)
c1/p (vβ1/pvq1−β1/p) (gβ2/pgq2−β2/p)

=

(
c1/puα1/pfα2/p

vβ1/pgβ2/p

)(
c−1/puθ1/pfp2−α2/p

vq1−β1/pgq2−β2/p

)

≤

(
c1/puα1/pfα2/p

vβ1/pgβ2/p

)p
p

+

(
c−1/puθ1/pfp2−α2/p

vq1−β1/pgq2−β2/p

)q
q

≤ c
uα1fα2

vβ1gβ2
+ c−q/p

uθ1fp2/q−α2q/p

vq1/q−β1q/pgq2/q−β2q/p

= c
uα1fα2

vβ1gβ2
+ c−(p1−θ1)/(α1−p1)u

θ1f θ2

vη1gη2
.

This completes the proof.

5.1 Integral Inequalities

For the next few results, it is instructive to consider a linear second order system of

equations. In doing so, we highlight the focus, which is to control the diffusion terms
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found in our later equations. This should also indicate that these inequalities are

useful for many parabolic systems, not just systems featuring singular nonlinearities.

So, let (u, v) ∈ [C1,1(QT )]2 be positive solutions in QT satisfying the following:


ut = d∆u+ F (x, t), x ∈ Ω,

vt = D∆v +G(x, t), x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(5.1)

where F,G ∈ C(Ω× [0, T ]) and d,D > 0. By Hopf’s boundary lemma, since u, v = 0

on ∂Ω, we have that ∂v/∂n < 0 and ∂u/∂n < 0 on ∂Ω, where n denotes the outward

unit normal vector. The first inequality considered will be useful in obtaining lower

bounds for our solutions, and furthermore will demonstrate the tricks to be used in

proving the later inequalities.

Lemma 5.1.1. Let φ be the solution of (4.1) and u be a solution of (5.1). For any

n > 2, we have that

d

dt

ˆ
Ω

φn+2

un
dx ≤ λ1n

ˆ
Ω

φn+2

un
dx− n

ˆ
Ω

φn+2

un+1
F (x, t)dx. (5.2)

Proof. First, one must ensure these quantities are well defined. Indeed, this quantity

is well defined by Hopf’s lemma noted above. To see this, let Q ∈ ∂Ω and fix t > 0.
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Then,

lim
x→Q

φ(x)

u(x, t)
= lim

x→Q

φ(x)− φ(Q)

u(x, t)− u(Q, t)

= lim
x→Q

φ(x)− φ(Q)

x−Q

/
u(x, t)− u(Q, t)

x−Q

=
∂φ

∂n

/
∂u

∂n
> 0. (5.3)

In other words, our integral as written is well defined up to the boundary of our

domain. Also note that since our solutions to (4.1) and (5.1) are smooth, these normal

derivatives remain finite. Next, differentiating with respect to t and integrating by

parts, we have that:

d

dt

ˆ
Ω

φn+2

un
dx = −n

ˆ
Ω

φn+2

un+1
∆udx− n

ˆ
Ω

φn+2

un+1
F (x, t)dx

= n

ˆ
Ω

∇
(
φn+2

un+1

)
∇udx− n

ˆ
Ω

φn+2

un+1
F (x, t)dx

= −n(n+ 1)

ˆ
Ω

φn+2

un+2
|∇u|2 dx+ n(n+ 2)

ˆ
Ω

φn+1

un+1
∇u∇φdx

− n
ˆ

Ω

φn+2

un+1
F (x, t)dx. (5.4)

Here, we also provide justification for the removal of the boundary term. The same

reasoning will apply for the remainder of this thesis, and so often the details will be

omitted. In our case above, after integrating by parts the boundary term looks like

ˆ
∂Ω

φn+2

un+1

∂u

∂n
dS =

ˆ
∂Ω

(
∂φ/∂n

∂u/∂n

)n+1

φ
∂u

∂n
dS

= 0, (5.5)
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since φ = 0 on ∂Ω. By (5.3), we safely remove most powers of the normal derivatives

and are left with φ(x) in the numerator. This ensures that our boundary term is

indeed zero. This is important to note in the other integral inequalities to be used as

well, as this provides the intuition as to why we require the power on the numerator

to be at least 2 higher than the power on the denominator, rather than having equal

powers, for example. Continuing now, we use the following identity:

φ2 |∇u|2 = |φ∇u− u∇φ|2 + 2uφ∇u∇φ− u2 |∇φ|2 . (5.6)

We then see that (5.4) can be written instead as

d

dt

ˆ
Ω

φn+2

un
dx =− n(n+ 1)

ˆ
Ω

φn

un+2
|φ∇u− u∇φ|2 dx− n2

ˆ
Ω

φn+1

un+1
∇u∇φdx

+ n(n+ 1)

ˆ
Ω

φn

un
|∇φ|2 dx− n

ˆ
Ω

φn+2

un+1
F (x, t)dx. (5.7)

If we integrate by parts on the second term of (5.7), we find

−n2

ˆ
Ω

φn+1

un+1
∇u∇φdx = n

ˆ
Ω

φn+1∇φ∇
(

1

un

)
dx

= −n
ˆ

Ω

∇
(
φn+1∇φ

) 1

un
dx

= −n(n+ 1)

ˆ
Ω

φn

un
|∇φ|2 dx− n

ˆ
Ω

φn+1

un
∆φdx. (5.8)

We again note that the boundary term vanishes. Combining the above with the rest
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of (5.7) gives us that

d

dt

ˆ
Ω

φn+2

un
dx ≤ −n

ˆ
Ω

φn+1

un
∆φdx− n

ˆ
Ω

φn+2

un+1
F (x, t)dx. (5.9)

Lastly, we recall (4.1) to conclude that

d

dt

ˆ
Ω

φn+2

un
dx ≤ λ1n

ˆ
Ω

φn+2

un
dx− n

ˆ
Ω

φn+2

un+1
F (x, t)dx. (5.10)

This completes the proof.

The next inequality is similar to that shown above, though the difficulty is in-

creased by the presence of terms from both equations for u and v. Despite this, it

proves useful in obtaining uniform bounds in time in the case when d = D.

Lemma 5.1.2. Let φ be the solution of (4.1) and u, v be solutions of (5.1) for d = D.

Then, for any α, β > 0 satisfying α + β ≤ 1, it is true that

d

dt

ˆ
Ω

φn+2

uαnvβn
≤ −αn

ˆ
Ω

φn+2

uαn+1vβn
F (x, t)dx− βn

ˆ
Ω

φn+2

uαnvβn+1
G(x, t)dx

+ λ1(n+ 2)

ˆ
Ω

φn+2

uαnvβn
dx, (5.11)

for any n > 0.

Proof. Since d = D, we may rescale the space variables such that d = D = 1. Then,

for simplicity we first set

zn(t) =

ˆ
Ω

φn+2

uαnvβn
dx.
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Consider the following after taking the derivative with respect to time:

z′n(t) =− αn
ˆ

Ω

φn+2

uαn+1vβn
utdx− βn

ˆ
Ω

φn+2

uαnvβn+1
vtdx

=− αn
ˆ

Ω

φn+2

uαn+1vβn
∆udx− βn

ˆ
Ω

φn+2

uαnvβn+1
∆vdx

− αn
ˆ

Ω

φn+2

uαn+1vβn
F (x, t)dx− βn

ˆ
Ω

φn+2

uαnvβn+1
G(x, t)dx. (5.12)

Looking at only the Laplacian terms and integrating by parts gives us that:

αn

ˆ
Ω

∇
(

φn+2

uαn+1vβn

)
∇udx+ βn

ˆ
Ω

∇
(

φn+2

uαnvβn+1

)
∇vdx

= αn(n+ 2)

ˆ
Ω

φn+1

uαn+1vβn
∇φ∇udx+ βn(n+ 2)

ˆ
Ω

φn+1

uαnvβn+1
∇φ∇vdx

− αn(αn+ 1)

ˆ
Ω

φn+2

uαn+2vβn
|∇u|2 dx− βn(βn+ 1)

ˆ
Ω

φn+2

uαnvβn+2
|∇v|2 dx

− 2αβn2

ˆ
Ω

φn+2

uαn+1vβn+1
∇u∇vdx

≡
5∑

k=1

Ik. (5.13)

Once again, justification for the removal of one of the boundary terms will be pro-

vided. In this case, the first integral in the line above has a boundary that looks

like

ˆ
∂Ω

φn+2

uαn+1vβn
∂u

∂n
dS =

ˆ
∂Ω

(
φ

u

)αn(
φ

v

)βn
φn(1−α−β)+1

(
∂u

∂n

)
dS

=

ˆ
∂Ω

(
∂φ/∂n

∂u/∂n

)αn(
∂φ/∂n

∂v/∂n

)βn
φn(1−α−β)+1

(
∂u

∂n

)
dS

= 0, (5.14)
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since α+ β ≤ 1. Again, it is important to have a dominant power in the numerator,

and this condition on α, β ensures this is true for any n > 0. Now, consider the

following term and integrate by parts:

J ≡ −αn(n+ 2)

ˆ
Ω

φn+1

uαn+1vβn
∇φ∇udx

= (n+ 2)

ˆ
Ω

φn+1∇φ
vβn

∇
(

1

uαn

)
dx

= −(n+ 2)

ˆ
Ω

∇
(
φn+1∇φ
vβn

)
1

uαn
dx

= −(n+ 2)(n+ 1)

ˆ
Ω

φn

uαnvβn
|∇φ|2 dx− (n+ 2)

ˆ
Ω

φn+1

uαnvβn
∆φdx

+ βn(n+ 2)

ˆ
Ω

φn+1

uαnvβn+1
∇φ∇vdx. (5.15)

We notice some similar terms, which combine as follows:

(I1−J) + (J + I2) = 2αn(n+ 2)

ˆ
Ω

φn+1

uαn+1vβn+1
∇φ
(
v∇u+

β

α
u∇v

)
dx

− (n+ 2)(n+ 1)

ˆ
Ω

φn

uαnvβn
|∇φ|2 dx− (n+ 2)

ˆ
Ω

φn+1

uαnvβn
∆φdx . (5.16)
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This gives us

5∑
k=1

Ik = 2αn(n+ 2)

ˆ
Ω

φn+1

uαn+1vβn+1
∇φ
(
v∇u+

β

α
u∇v

)
dx

− αn(αn+ 1)

ˆ
Ω

φn+2

uαn+2vβn
|∇u|2 dx− βn(βn+ 1)

ˆ
Ω

φn+2

uαnvβn+2
|∇v|2 dx

− 2αβn2

ˆ
Ω

φn+2

uαn+1vβn+1
∇u∇vdx− (n+ 2)(n+ 1)

ˆ
Ω

φn

uαnvβn
|∇φ|2 dx

− (n+ 2)

ˆ
Ω

φn+1

uαnvβn
∆φdx. (5.17)

Then we complete the square in a specific way, keeping mind of the lower order terms

(in n):

5∑
k=1

Ik = 2αn(n+ 2)

ˆ
Ω

φn+1

uαn+1vβn+1
∇φ
(
v∇u+

β

α
u∇v

)
dx

− α2n(n+ 1)

ˆ
Ω

φn+2

uαn+2vβn+2

∣∣∣∣v∇u+
β

α
u∇v

∣∣∣∣2 dx
− α(1− α)n

ˆ
Ω

φn+2

uαn+2vβn
|∇u|2 dx− β(1− β)n

ˆ
Ω

φn+2

uαnvβn+2
|∇v|2 dx

+ 2αβn

ˆ
Ω

φn+2

uαn+1vβn+1
∇u∇vdx− (n+ 2)(n+ 1)

ˆ
Ω

φn

uαnvβn
|∇φ|2 dx

− (n+ 2)

ˆ
Ω

φn+1

uαnvβn
∆φdx. (5.18)
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If we recall that α + β ≤ 1, we combine terms 3, 4 and 5 of (5.18) as follows:

− α(1− α)n

ˆ
Ω

φn+2

uαn+2vβn
|∇u|2 dx− β(1− β)n

ˆ
Ω

φn+2

uαnvβn+2
|∇v|2 dx

+ 2αβn

ˆ
Ω

φn+2

uαn+1vβn+1
∇u∇vdx

≤− αβn
ˆ

Ω

φn+2

uαn+2vβn
|∇u|2 dx− αβn

ˆ
Ω

φn+2

uαnvβn+2
|∇v|2 dx

+ 2αβn

ˆ
Ω

φn+2

uαn+1vβn+1
∇u∇vdx

=− αβn
ˆ

Ω

φn+2

uαn+2vβn+2
|v∇u− u∇v|2 dx

≤ 0. (5.19)

Thus, we have that

5∑
k=1

Ik ≤ 2αn(n+ 2)

ˆ
Ω

φn+1

uαn+1vβn+1
∇φ
(
v∇u+

β

α
u∇v

)
dx

− α2n(n+ 1)

ˆ
Ω

φn+2

uαn+2vβn+2

∣∣∣∣v∇u+
β

α
u∇v

∣∣∣∣2 dx
− (n+ 2)(n+ 1)

ˆ
Ω

φn

uαnvβn
|∇φ|2 dx− (n+ 2)

ˆ
Ω

φn+1

uαnvβn
∆φdx. (5.20)
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Applying Cauchy’s Inequality to the first term of (5.20), we have that:

∣∣∣∣2αn(n+ 2)

ˆ
Ω

φn+1

uαn+1vβn+1
∇φ
(
v∇u+

β

α
u∇v

)
dx

∣∣∣∣
≤ 1

2

(
2α2n(n+ 1)

) ˆ
Ω

φn+2

uαn+2vβn+2

∣∣∣∣v∇u+
β

α
u∇v

∣∣∣∣2 dx
+

1

2

(
2α2n2(n+ 2)2

α2n(n+ 1)

) ˆ
Ω

φn

uαnvβn
|∇φ|2 dx

= α2n(n+ 1)

ˆ
Ω

φn+2

uαn+2vβn+2

∣∣∣∣v∇u+
β

α
u∇v

∣∣∣∣2 dx
+
n(n+ 2)2

n+ 1

ˆ
Ω

φn

uαnvβn
|∇φ|2 dx. (5.21)

Combining this with our remaining terms leaves us with the following:

5∑
k=1

Ik ≤−
[
(n+ 2)(n+ 1)− n(n+ 2)2

n+ 1

]ˆ
Ω

φn

uαnvβn
|∇φ|2 dx

− (n+ 2)

ˆ
Ω

φn+1

uαnvβn
∆φdx

=− (n+ 2)

(n+ 1)

[
(n+ 1)2 − n(n+ 2)

]ˆ
Ω

φn

uαnvβn
|∇φ|2 dx

− (n+ 2)

ˆ
Ω

φn+1

uαnvβn
∆φdx

=− (n+ 2)

(n+ 1)

ˆ
Ω

φn

uαnvβn
|∇φ|2 dx− (n+ 2)

ˆ
Ω

φn+1

uαnvβn
∆φdx

≤− (n+ 2)

ˆ
Ω

φn+1

uαnvβn
∆φdx. (5.22)
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Finally, applying (4.1) to the last term in the line above leaves us with

z′n(t) ≤− αn
ˆ

Ω

φn+2

uαn+1vβn
F (x, t)dx− βn

ˆ
Ω

φn+2

uαnvβn+1
G(x, t)dx

+ λ1(n+ 2)

ˆ
Ω

φn+2

uαnvβn
dx. (5.23)

This completes the proof.

This last inequality will be useful in obtaining upper bounds for our solutions.

The motivation behind this will become clear in the next section, but the main idea

is this: we cannot combine terms u appearing in the numerator with the perturbed

terms u+ ε appearing in the denominator in a useful way. Instead, we treat them as

their own terms and remove them individually.

Lemma 5.1.3. Suppose that u is a solution of (5.1) and let ψ be the solution of

(4.2). For any ε > 0, define wε = u + ε. Then, for any α, β ∈ (0, 1) satisfying

α + β ≤ 1, we have

d

dt

ˆ
Ω

un

wεαnψβn−2
dx ≤ n

ˆ
Ω

un−1

wεαnψβn−2
F (x, t)dx− αn

ˆ
Ω

un

wεαn+1ψβn−2
F (x, t)dx

− d(βn− 2)

ˆ
Ω

un

wεαnψβn−1+σ
dx, (5.24)

for all n > 2.

Proof. First, since α+ β ≤ 1, we know that the quantity under consideration is well

defined up to the boundary. The idea is similar to that shown in the previous proof,

but this time we instead write u = uβu1−β and show that u/ψ is defined up to the
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boundary by Hopf’s lemma. Notice that since wε is bounded away from zero near

∂Ω and positive in Ω, we need not worry about this term causing singular behaviour.

Now, similar to the proof of Lemma (5.1.2), we differentiate with respect to time

to find

(d−1)
d

dt

ˆ
Ω

un

wεαnψβn−2
dx = n

ˆ
Ω

un−1

wεαnψβn−2
[∆u+ d−1F (x, t)]dx

− αn
ˆ

Ω

un

wεαn+1ψβn−2
[∆wε + d−1F (x, t)]dx

= −n(n− 1)

ˆ
Ω

un−2

wεαnψβn−2
|∇u|2 dx

+ 2αn2

ˆ
Ω

un−1

wεαn+1ψβn−2
∇u∇wεdx

+ n(βn− 2)

ˆ
Ω

un−1

wεαnψβn−1
∇u∇ψdx

+
n

d

ˆ
Ω

un−1

wεαnψβn−2
F (x, t)dx

− αn(αn+ 1)

ˆ
Ω

un

wεαn+2ψβn−2
|∇wε|2 dx

− αn(βn− 2)

ˆ
Ω

un

wεαn+1ψβn−1
∇wε∇ψdx

− αn

d

ˆ
Ω

un

wεαn+1ψβn−2
F (x, t)dx

≡
7∑

k=1

Ik. (5.25)

By Lemma 2.5 in [3], it is true that

I1 + I2 + I3 + I5 + I6 ≤ −(βn− 2)

ˆ
Ω

un

wαnε ψβn−1+σ
dx. (5.26)
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(5.25) then becomes

(d−1)
d

dt

ˆ
Ω

un

wεαnψβn−2
dx ≤ I4 + I7 − (βn− 2)

ˆ
Ω

un

wαnε ψβn−1+σ
dx

=
n

d

ˆ
Ω

un−1

wεαnψβn−2
F (x, t)dx− αn

d

ˆ
Ω

un

wεαn+1ψβn−2
F (x, t)dx

− (βn− 2)

ˆ
Ω

un

wαnε ψβn−1+σ
dx. (5.27)

Multiplying both sides by d completes the proof.

We these inequalities at our disposal, we are now ready to discuss the main results

of this thesis.
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Chapter 6

Main Results

6.1 Problem Statement and Assumptions

In this section, we are now able to discuss the main results of this thesis. The two

systems under consideration are written as follows:



ut = d∆u+ f(x)
upvq

,

vt = D∆v + g(x)
urvs

, x ∈ Ω, t > 0,

u(x, 0) = u0(x),

v(x, 0) = v0(x), x ∈ Ω

u = v = 0, x ∈ ∂Ω,

(6.1)
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and 

ut = d∆u+ f1(x)
up

+ f2(x)
vq

,

vt = D∆v + f3(x)
ur

+ f4(x)
vs
, x ∈ Ω, t > 0,

u(x, 0) = u0(x),

v(x, 0) = v0(x), x ∈ Ω

u = v = 0, x ∈ ∂Ω.

(6.2)

For these results, we continue to consider Ω ⊂ RN , a bounded domain with smooth

boundary. For the remainder of this thesis, we consider d,D > 0 and p, q, r, s ∈ (0, 1).

Of course, further restrictions will be put upon p, q, r, s dependent on the problem,

as we will soon see. We further assume that u0, v0 ∈ C2+θ
0 (Ω), for some θ ∈ (0, 1),

and that there exists a constant ε0 > 0 so that

u0(x), v0(x) ≥ ε0φ(x). (6.3)

The reason for this assumed regularity of our initial data up to the boundary is two

fold; appealing to the theory discussed in chapter 3, we need sufficiently regular initial

data in order to obtain the existence of classical solutions to the perturbed problem,

and we also need to be able to control the ratio of the initial data with the first

eigenfunction of the Laplacian near the boundary of our domain. For simplicity, we

choose C2+θ
0 (Ω) to achieve this, though this condition can be weakened to C1

0(Ω) with

a barrier function type argument. As an interesting remark, it should be clear that

we do not expect a classical solution in the sense that u, v ∈ C2+θ,1+θ/2(Ω × [0, T ))

if f, g, fi > 0 as x → ∂Ω. We will now expand upon the definition given in chapter
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2, lines (2.10) − (2.12), for what we mean by a weak and classical solution to

problems (6.1) and (6.2). We call (u, v) a weak solution to problem (6.1) provided

u, v ∈ L2(0, T ;W 1,2
0 (Ω)) ∩ L∞(Ω× (0, T )),

f(x)

upvq
,
g(x)

urvs
∈ L1(Ω× (0, T )), (6.4)

and 
´

Ω
u0ξdx+

´ T
0

´
Ω

(
uξt − d∇u∇ξ + f

upvq
ξ
)
dxdt = 0,

´
Ω
v0ξdx+

´ T
0

´
Ω

(
vξt −D∇v∇ξ + g

urvs
ξ
)
dxdt = 0,

(6.5)

for all ξ ∈ C∞(Ω × (0, T )) with ξ(x, t) = 0 on ∂Ω × (0, T ) and ξ(x, T ) = 0 in Ω.

Furthermore, the solution (u, v) is called global if the above conditions are satisfied

for every T > 0. This distinction is a bit superfluous in the case of this thesis,

as every solution will be shown to be global. However, there is a slight distinction

to be made when considering classical solutions to problem (6.1). We call (u, v) a

classical solution to problem (6.1) if u, v ∈ C2+θ,1+θ/2(Ω× (0, T )) ∩ C1,0(Ω× [0, T ))

and satisfy (6.1) pointwise. As with weak solutions, we call (u, v) a global classical

solution if u, v exist in the classical sense for all T > 0. Finally, we call a global

classical solution a globally bounded classical solution if u, v exist in the classical

sense and also belong to L∞(Ω × [0,∞)). Here, the distinction being made is that

a global solution may blow up in infinite time, while a globally bounded solution

remains uniformly bounded for all T > 0. These definitions apply to problem (6.2)

in the obvious way, where we need only swap the nonlinearities in (6.4) and (6.5).
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The general outline of the method to be used in proving the subsequent theorem

statements comes in a number of steps:



i. Perturb the equations appropriately by some small quantity ε > 0.

ii. Obtain uniform L∞ bounds on the perturbed solutions.

iii. Obtain uniform Lk bounds on the nonlinear terms.

iv. Apply standard Lp theory to obtain a weak solution of the original problem.

v. Apply a Sobolev embedding to obtain additional smoothness of solutions.

To expand, step i removes the singular nature of the nonlinearities near the

boundary. This allows us to apply the classical theory of chapter 3 in order to

obtain the existence of classical solutions to the perturbed problem. Then, step ii

applies the material established in chapters 4 and 5 in order to uniformly bound these

perturbed solutions, where the uniformity is required to be in ε, though sometimes

these bounds are uniform in t as well. It is worth emphasizing that we require the

presence of solutions to the elliptic problems, discussed in chapter 4, in our integral

inequalities in order to maintain control of our solutions up to the boundary of Ω.

This is distinct from the problem under Neumann conditions, in which case this

inclusion is not necessary. In step iii, using these uniform bounds, one is then able to

show that the nonlinear terms are uniformly bounded in an appropriate Lk space, for

some k > 1. For steps iv and v, we then apply standard Lp theory and the Sobolev

embedding found in chapter 2 in order to obtain the existence of weak, and when

possible, classical solutions.
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6.2 Theorem Statements

Here we present the theorem statements, the proofs of which will appear in the

following sections. The first, simpler case is where the diffusion coefficients are equal.

Here, we are able to obtain the existence of globally bounded classical solutions. The

two results are as follows.

Theorem 6.2.1 (Existence). Suppose d = D, p, s ∈ [0, 1) and q, r ∈ (0, 1) such that

p+ q < 1 and r + s < 1. Also suppose that there exists c0, C0 > 0 so that


c0d

θ(x) ≤ f(x) ≤ C0d
τ (x),

c0d
η(x) ≤ g(x) ≤ C0d

µ(x),

(6.6)

where 0 ≤ µ ≤ η ≤ 1, 0 ≤ τ ≤ θ ≤ 1 and d(x) denotes the distance to the boundary

function defined in chapter 4. Then, there exists at least one global weak solution

(u, v) to problem (6.1). Furthermore, if −1 < N [τ − (p+ q)], u is a globally bounded

classical solution. If −1 < N [µ− (r + s)], v is a globally bounded classical solution.

Theorem 6.2.2 (Existence). Suppose d = D, p, q, r, s ∈ (0, 1). Also suppose that

there exists c0, C0 > 0 and c ≥ 0 so that



cdθ1(x) ≤ f1(x) ≤ C0d
τ1(x),

c0d
θ2(x) ≤ f2(x) ≤ C0d

τ2(x),

c0d
θ3(x) ≤ f3(x) ≤ C0d

τ3(x),

cdθ4(x) ≤ f4(x) ≤ C0d
τ4(x),

(6.7)
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where 0 ≤ τi ≤ θi ≤ 1, i = 1, 2, 3, 4. Then, there exists at least one global weak

solution (u, v) to problem (6.2). Furthermore, if −1 < N min{(τ1 − p), (τ2 − q)}, u

is a globally bounded classical solution. If −1 < N min{(τ3 − r), (τ4 − s)}, v is a

globally bounded classical solution.

The next two results, treating unequal diffusion coefficients, are slightly weaker

in the sense that the classical solutions obtained are not globally bounded.

Theorem 6.2.3 (Extension). Suppose d,D > 0, and all hypotheses of Theorem 6.2.1

hold. Then there exists at least one global weak solution (u, v) to problem (6.1). If

−1 < N [τ − (p + q)], u is a global classical solution. If −1 < N [µ− (r + s)], v is a

global classical solution.

Theorem 6.2.4 (Extension). Suppose d,D > 0, and all hypotheses of Theorem

6.2.2 hold. Then there exists at least one global weak solution (u, v) to problem

(6.1). If −1 < N min{(τ1 − p), (τ2 − q)}, u is a global classical solution. If −1 <

N min{(τ3 − r), (τ4 − s)}, v is a global classical solution.

Before diving into the proofs of these results, we will first discuss some of the

intuition behind the conditions appearing in these theorems, as well as how they

compare to other similar systems of equations.

6.3 Comparisons to Other Works

As mentioned in chapter 1, the two systems under consideration are motivated by the

elliptic problems given in lines (1.17) and (1.18). These systems have been treated in
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a few works, namely [8], [21] and [9]. In [8] and [21], the authors consider the system

given by (1.17) with positive exponents. In doing so, they maintain the singular

behaviour near the boundary. The tools used in these works are primarily methods

of sub and super solutions, along with some fixed point arguments. This allows the

authors to give more explicit boundary behaviour, which is covered in [21] is great

detail. In particular, they obtain some fairly exact estimates of the decay of the

solutions near the boundary, depending on the size of the exponents. These decay

rates are written as bounds on the solutions in terms of d(x) raised to various powers.

In this thesis, a time variable has been introduced, and so it should be clear that the

systems are no longer elliptic. In doing so, the methods used in these papers are no

longer applicable as prescribed. As discovered in the investigation done in chapter 3,

the definition for a sub and supersolution pair is not so obvious for parabolic systems,

even when the functions are monotone in their arguments u, v. Despite this, we are

able to construct a sub-super solution pair upon perturbing the problem, but this

does not give us a uniform bound in ε, and so additional tools are necessary in order

to obtain the existence of solutions to the unperturbed problem. Moreover, there are

other difficulties introduced in this thesis not addressed by either of these papers.

Namely, we consider different diffusion coefficients, as well as increased complexity

in the nonlinearities through the appearance of time independent functions. For

example, we include f, g in system (6.1), which is not explicitly covered in either [8]

or [21]. It should nonetheless be noted that [8] does discuss the ability of the methods

used to be applied to more general reaction functions of the form considered in this

thesis, as well as more general second order differential operators. Despite this, the
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author of this thesis believes that these generalizations are nontrivial and deserve

further investigation.

There is motivation to study the case of different diffusion coefficients in the

parabolic case. When discussing Turing instability, this phenomenon does not actu-

ally occur in the cases where d = D. As discussed in chapter 1, the diffusion drives

the resulting instability, and the unequal diffusion coefficients is key in obtaining

such results. For this reason, it is of notable worth to study (6.1) and (6.2) in such

generality for purposes of applicability, even outside the study of Turing instability.

When comparing the actual existence results, the elliptic cases treat more general

exponents (and consequently more general conditions on the exponents). For exam-

ple, the exponents may live outside the interval (0, 1), whereas this thesis considers

only the case when all exponents live within (0, 1) or [0, 1). From this, their solutions

may only be continuous up to the boundary as opposed to once continuously differen-

tiable, as is found in this work. They also discuss nonexistence as well as uniqueness

of solutions in some cases. In [9], the author discusses the existence of solutions to

problem (1.18), where similar comparisons to problem (6.2) can be made.

In the parabolic case, the most comparable problem is given in line (1.19), which

is covered in [4]. The authors discuss the existence and regularity of solutions,

similar to the results found in this thesis. However, problems (6.1) and (6.2) are

much more general. In fact, both problems can be reduced to problem (1.19) under

the assumptions found in the previous hypothesis for existence and regularity. In

particular, one is able to take p = s = 0 in Theorem 6.2.1 and recover the results

found in the main theorem of [4]. One could also take f1(x) = f4(x) = 0 under
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the hypothesis found in theorem 6.2.2 in order to recover the same result. But, as

previously mentioned, this is made even more general by the inclusion of different

diffusion coefficients, covered in Theorem 6.2.3 and Theorem 6.2.4.

Finally, we discuss some of the intuition behind the hypotheses of the theorem

statements. In Theorem’s 6.2.1 and 6.2.3, we consider p, s ∈ [0, 1) while q, r ∈ (0, 1).

The reason for this is clear when paying attention to what these exponents are

attached to. We wish to include 0 for p and s, as this allows us to generalize problem

(6.1) to the results found in [4]. Further, we do not allow r, q to take the value 0 as

this would decouple at least one of the equations in the system, and so things are

(maybe) not so interesting. Here, we note that the methods used in the following

proofs are not directly applicable to the case where r, q = 0, though this may be

considered under appropriate adjustments to the arguments made. In contrast, we

are able to freely consider the case where p, s = 0. Notice that we do not have the

same coupling in system (6.2), at least in relation to the exponents. On the other

hand, we do see the coupling through the functions fi. In the same way that some

exponents can take the value 0 in system (6.1), we allow the lower bound for f1 and

f4 to be identically 0. In doing so, we do not decouple the equation, and we are

also able to then generalize system (6.2) to the results found in [4]. As we will soon

find out, these weakened conditions on some aspects of the equations considered are

natural to the problems themselves and fall into place in an expected way.

The motivation for the seemingly complicated conditions on the boundary be-

haviour of the functions appearing in the numerator of our reaction terms comes from

works such as [12]. Here, the authors consider the same conditions for a reaction
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term, but the exponents must take the same value. Explicitly stated, they require the

existence of some constants a, b > 0 and α ∈ [0, 1] such that adα(x) ≤ p(x) ≤ bdα(x),

where p(x), a non-negative measurable function, appears in the numerator of the

singular reaction term. In our case(s), we extend this idea in order to include a

wider range of functions through considering unequal exponents in the upper and

lower bounds. For simplicity, If we restrict ourselves to one spatial dimension some

easy examples may be considered to clarify these differences. So, take Ω = (0, 1) and

observe the following reaction functions:



h1(x) = sin(πx),

h2(x) = x(1− x),

h3(x) =
√
x
√

1− x,

h4(x) =
√
x(1−

√
x).

Admittedly, these are very straightforward examples, but in choosing such examples

we demonstrate the differences between one exponent and multiple in an effective

way. To start, the function h1(x) is known to decay linearly near the boundary on

Ω, and so we may simply take d(x) ≤ h1(x) ≤ 2πd(x). Here, we see that h1(x) fits

into both the results here as well as the restriction in [12]. The second and third

example, h2(x) and h3(x), also fall into both scenarios. In this case, we simply take

2−1d(x) ≤ h2(x) ≤ 2d(x) and 2−1d1/2(x) ≤ h3(x) ≤ 2d1/2(x). Notice that in both of

these cases, the rate of decay on the bounding function d(x) corresponds to the rate

of decay on the reaction function hi, i = 2, 3. So far there are no issues, but what
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happens if there are different rates of decay at different areas of the boundary? For

this example, we consider h4(x), which decays like
√
x near x = 0 but decays linearly

near x = 1. This is an example of a function which does not fall into the condition

of equal powers on the upper and lower bounds, but does fall into the hypotheses

presented here. For example, one may take 4−1d(x) ≤ h4(x) ≤ 4d1/2(x). Here, we are

able to bound from below by linear decay, while maintaining a bound from above with

some nonlinear decay. This covers the linear decay near the right endpoint, but also

covers the nonlinear decay near the left endpoint. Alternatively, if the exponents are

required to be equal, we cannot control the left endpoint behaviour without sacrificing

control of the right endpoint behaviour, and vice versa. Put simply, the restriction

that the decay bounds from above and below must be the same rate removes any

functions that decay differently at different areas of our boundary. Though this is a

one dimensional case, it is easy to visualize how this might look in two dimensions

on a disk, for example.

One may wonder how the above examples act with the exponents to be chosen on

the nonlinearities with u and v. Given thatN = 1 and p+q < 1 (in Theorem 6.2.1, for

example), we see that the condition for the existence of a classical solution u is always

satisfied regardless of τ , the exponent on the upper bound of our reaction function.

For a more interesting example, one may consider the following two dimensional

example generalizing h3(x) on Ω = (0, 1)× (0, 1)

h(x, y) = a
√
x a
√

1− x a
√
y a
√

1− y, 1 ≤ a <∞. (6.8)

Similar to h3(x) in one dimension, this function decays like a
√
x near all sides of the
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domain. Consequently, the upper bound can be taken to be C0d
1/a(x) for some C0

sufficiently large. Theorem 6.2.1 will guarantee the existence of a positive, global

weak solution u for any p, q ∈ (0, 1) satisfying p + q < 1, but the existence of a

classical solution is no longer guaranteed. Indeed, the condition for the existence of

a classical solution u becomes

−1 < 2

(
1

a
− (p+ q)

)
, (6.9)

and so one may see that for any a ∈ [1, 2], u is a classical solution for any p, q ∈ (0, 1)

satisfying p + q < 1. Alternatively, for any a ∈ (2,∞), there exist p, q ∈ (0, 1)

satisfying p + q < 1 such that Theorem 6.2.1 does not guarantee the existence of

a classical solution. For example, take a = 3. Then, by (6.9), if we choose p = 1
2
,

q = 5
12

such that p + q = 11
12
> 5

6
, the hypotheses of Theorem 6.2.1 for u to be a

classical solution are not satisfied.

Lastly, the conditions ensuring the existence of classical solutions are clear when

one notes that we use a Sobolev embedding to obtain the additional regularity. There

is nothing very mysterious for this condition; it comes from direct computation once

one obtains appropriate Lk bounds, noted in step iii.

6.4 Existence for d = D

We begin with the proof of theorems 6.2.1 and 6.2.2, treating the simpler case where

d = D. In this case, we are able to control our solutions by an appropriate eigen-

function, independent of time. The time independence comes from applying Lemma
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5.1.2, which is only valid when d = D. Essentially, we were able to bound the higher

order terms by a non-positive functional the can be thought of as a parabolic cylin-

der. When d 6= D, this functional turns into what can be thought of as a hyperbolic

cylinder, and thus becomes positive for large arguments in particular directions. It

is worth noting that the simplicity in this case is in obtaining globally bounded so-

lutions, which is not so clear when d 6= D, though the proofs of each are still highly

nontrivial.

Proof of Theorem 6.2.1. Step i. To start, we consider the associated perturbed sys-

tem after rescaling space variables such that d = D = 1:


ut = ∆u+ f(x)

(u+ε)p(v+ε)q
,

vt = ∆v + g(x)
(u+ε)r(v+ε)s

, x ∈ Ω, t > 0.

(6.10)

First, we note that this perturbed system now satisfies the form investigated in

section 3. In particular, the reaction terms are now C∞(R+) in their arguments u, v

and monotone non-increasing. To see this, one may note

∂

∂u

(
f(x)

(u+ ε)p(v + ε)q

)
= −p f(x)

(u+ ε)p+1(v + ε)q

≤ 0, (6.11)

for example. Furthermore, we note that the Hölder continuity of the reaction terms in

their arguments u, v depend critically on ε > 0 in the sense that we lose this property

if ε = 0. To show the existence of solutions to this problem, we must construct a
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pair of sub and supersolutions satisfying the necessary conditions in Theorem 3.2.6.

First, consider the following auxiliary elliptic problem:


0 = ∆a(x) + 1, x ∈ Ω,

0 = a(x), x ∈ ∂Ω.

(6.12)

By the theory of linear elliptic equations (note that this is just Poisson’s equation

in a smooth, bounded domain), we know a smooth solution to this problem exists.

Further, since 0 is a subsolution, the maximum principle implies that a(x) > 0 in

Ω. Our goal is to use the eigenvalue problem discussed in chapter 4 in conjunction

with the elliptic problem above in order to construct an appropriate supersolution to

both problems under consideration. The reason to include this additional auxiliary

problem is to control the supersolution for arguments less than 1, while the eigenvalue

problem will control the arguments greater than 1. This can be seen explicitly in

line (6.17) below. First, let’s consider the following candidates:


(u, v) ≡ (0, 0),

(u, v) ≡ (c1φ(x) + c2a(x) + ‖u0‖L∞ , c3φ(x) + c4a(x) + ‖v0‖L∞) ,

(6.13)

where 
c1 = C0

εp+qdλ1
, c2 = C0

εp+qd
,

c3 = C0

εr+sDλ1
, c4 = C0

εr+sD
.

(6.14)
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Though we have scaled the spatial variables such that d = D = 1, we include these

parameters in the constants above since we want the existence of solutions to the

perturbed problem for general d,D > 0.

Now, for any (u, v) ≥ (0, 0), one may see that

ut − d∆u− f(x)(u+ ε)−p(v + ε)−q = −f(x)ε−p(v + ε)−q

≤ 0, (6.15)

since f(x) > 0 in Ω, and similarly

vt −D∆v − g(x)(u+ ε)−r(v + ε)−s = −g(x)ε−s(v + ε)−r

≤ 0, (6.16)

since g(x) > 0 in Ω. Then, since (0, 0) ≤ (0, 0) on ∂Ω × (0, t) and (0, 0) ≤ (u0, v0)

on Ω× {t = 0} by hypotheses, (0, 0) is an appropriate subsolution to the perturbed

problem. Taking our defined supersolution above, and noting the bounds on f, g

given in our hypotheses, we see that

ut − d∆u− f(x)(u+ ε)−p(v + ε)−q ≥ dc1λ1φ+ c2d−
C0

εp+q
φτ

=
C0

εp+q
(φ− φτ + 1)

≥ 0, (6.17)
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for all φ ≥ 0. Similarly,

vt −D∆v − g(x)(u+ ε)−r(v + ε)−s ≥ Dc3λ1φ+ c4D −
C0

εr+s
φµ

=
C0

εr+s
(φ− φµ + 1)

≥ 0, (6.18)

for all φ ≥ 0. Finally, since (0, 0) ≤ (u, v) on ∂Ω × (0, t) and (u0(x), v0(x)) ≤

(‖u0‖L∞ , ‖v0‖L∞) ≤ (u, v) on Ω× {t = 0}, (u, v) satisfy all the necessary conditions

to be an appropriate ordered supersolution. By Theorem 3.2.6, we know a positive

classical solution to this system exists for t ∈ (0, T ), and we denote it by (uε, vε).

Step ii. The goal is to now find uniform bounds for (uε, vε). To start, let wε =

uε + ε and zε = vε + ε. Lemma (5.1.2), with u replaced by wε and v replaced by zε

gives us the following:

d

dt

ˆ
Ω

φn+2

wαnε zβnε
dx ≤ λ1(n+ 2)

ˆ
Ω

φn+2

wαnε zβnε
dx− αn

ˆ
Ω

φn+2f(x)

wαn+p+1
ε zβn+q

ε

dx

− βn
ˆ

Ω

φn+2g(x)

wαn+r
ε zβn+s+1

ε

dx . (6.19)

Notice the three terms appearing above, with one positive and two negative.

Instead of throwing away the two negative terms (which results in a useful bound,

but it depends exponentially on t, which we want to remove), we use these two terms

to control the positive term. In doing so, we are able to remove explicit dependence

on wε, zε on the right hand side of (6.19). This allows us to then integrate in time

instead of applying the Grönwall inequality. So, applying Lemma 5.0.1 to the first
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term of (6.19) gives us the following, valid for any δ > 0 and n ≥ 2:

λ1(n+ 2)

wαnε zβnε
≤ αn

f(x)

wαn+p+1
ε zβn+q

ε

+ λ1(n+ 2)

(
αn

λ1(n+ 2)

)−δ
f−δ(x)

w
αn−δ(p+1)
ε zβn−qδε

,

(6.20)

where

λ1(n+ 2)

(
αn

λ1(n+ 2)

)−δ
≤ λ1(n+ 2)

(
2λ1

α

)δ
≡ c1(n) . (6.21)

Combining (6.20) and (6.21) with (6.19) leaves us with the following:

d

dt

ˆ
Ω

φn+2

wαnε zβnε
dx ≤ c1(n)

ˆ
Ω

φn+2

w
βn−δ(p+1)
ε zβn−qδε f δ(x)

dx

− βn
ˆ

Ω

φn+2g(x)

wαn+r
ε zβn+s+1

ε

dx . (6.22)

If we apply Lemma 5.0.1 to the first term of (6.22), similar to (6.20), we may find

the following:

c1(n)

w
αn−δ(p+1)
ε zβn−qδε f δ(x)

= c1(n)
(w−1

ε )αn−δ(p+1)g0(x)

zβn−qδε f δ(x)

≤ βn
(w−1

ε )αn+rg(x)

zβn+s+1
ε

+ c1(n)

(
βn

c1(n)

)− (αn−δ(p+1))
(r+δ(p+1)) gθ2(x)

zη1ε f η2(x)
, (6.23)
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where

θ2 = − [αn− δ(p+ 1)]

r + δ(p+ 1)
,

η1 =
[(βn− qδ)(αn+ r)− (βn+ s+ 1)(αn− δ(p+ 1))]

r + δ(p+ 1)

=
[βnr − αn(s+ 1)− δ(αnq − βn(p+ 1) + rq − (s+ 1)(p+ 1))]

r + δ(p+ 1)
,

η2 =
δ(αn+ r)

r + δ(p+ 1)
, (6.24)

and

c1(n)

(
βn

c1(n)

)− (αn−δ(p+1))
(r+δ(p+1))

≤ λ1(n+ 2)

(
2λ1

α

)δ (
(2λ1)δ+1

αδβ

) (αn−δ(p+1))
(r+δ(p+1))

≡ c2(n) . (6.25)

Combining (6.23)-(6.25) with (6.22) then yields

d

dt

ˆ
Ω

φn+2

wαnε zβnε
dx ≤ c2(n)

ˆ
Ω

φn+2gθ2(x)

zη1ε f η2(x)
dx. (6.26)

The goal is to now set η1 = 0 (by choosing a particular δ) to remove the dependence

on zε on the right hand side of (6.26) and show that δ > 0, as required. If we set

η1 = 0 and solve for δ, we find that

δ =
n(α(s+ 1)− βr)

n(β(p+ 1)− αq) + (s+ 1)(p+ 1)− rq
. (6.27)
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From this, we see that we must require

α(s+ 1)− βr > 0, (6.28)

β(p+ 1)− αq ≥ 0, (6.29)

so that δ > 0. Before we attempt to choose appropriate values for α, β, we simplify

(6.26) further by using that c0φ
θ ≤ f(x) and c0φ

η ≤ g(x):

φn+2

f η2g−θ2
≤ 1

cη2−θ20

φn+2−θη2+ηθ2 . (6.30)

Naturally, we require that n+2−θη2+ηθ2 ≥ 0 so φ in the integral remains nonsingular

as we approach the boundary. Simplifying this, we see

n+ 2− θη2 + ηθ2 = n+ 2−
(
αθδn+ rθδ + αηn− ηδ(p+ 1)

r + δ(p+ 1)

)
= n

(
r − αη + δ(p+ 1− αθ)

r + δ(p+ 1)

)
− δ(rθ − η(p+ 1))

r + δ(p+ 1)
+ 2. (6.31)

Given that we are to take n large, if the coefficient on n is positive, our exponent will

be positive for n sufficiently large. Since 0 < α < 1, 0 ≤ θ ≤ 1, we have p + 1 > αθ

for any p ∈ [0, 1), and so we only require that

r − αη ≥ 0 (6.32)

to ensure (6.31) remains positive for sufficiently large n. Define 2∗ ≡ q + r which
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may be close, but not equal, to 2. If we choose α = r
2∗

, β = q
2∗

so that α+ β = 1, we

see that under the hypotheses of the theorem,

α(s+ 1)− βr =
r

2∗
(s+ 1− q) > 0,

β(p+ 1)− αq =
q

2∗
(p+ 1− r) > 0,

r − αη = r(1− η

2∗
) > 0,

and so (6.28), (6.29), (6.32) are satisfied. Putting all of this together, (6.28) becomes

d

dt

ˆ
Ω

φn+2

wαnε zβnε
dx ≤ c3(n)

ˆ
Ω

φ
n(r−αη+δ(p+1−αθ))−δ(rθ−η(p+1))

r+δ(p+1)
+2dx, (6.33)

where

c3(n) =
c2(n)

cη2−θ20

.

Integrating (6.33) from 0 to t, we then arrive at

ˆ
Ω

φn+2

wαnε zβnε
dx ≤ c3(n)T

ˆ
Ω

φ
n(r−αη+δ(p+1−αθ))−δ(rθ−η(p+1))

r+δ(p+1)
+2dx+

ˆ
Ω

φn+2

uαn0 vβn0

dx,
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for arbitrary T > 0. Extracting nth roots and taking n→∞, we finally obtain

φ(x)

w
r
2∗
ε (x, t)z

q
2∗
ε (x, t)

≤

∥∥∥∥∥ φ

w
r
2∗
ε z

q
2∗
ε

∥∥∥∥∥
∞

≤ max

{
m1 ‖φσ1‖∞ ,

∥∥∥∥∥ φ

u
r
2∗
0 v

q
2∗
0

∥∥∥∥∥
∞

}

≡M1 <∞, (6.34)

where

σ1 =
r(1− η

2∗
) + δ(p+ 1− rθ

2∗
)

r + δ(p+ 1)
> 0,

m1 =
λ1

c
α(δ+1)
r+δ(p+1)

0

·
(

(2λ1)δ+1

αδβ

) α
r+δ(p+1)

.

Notice that while M1 depends on many of our given parameters, it remains inde-

pendent of ε and a maximal time T . Consequently, the bound above holds for all

t ∈ (0,∞). This result will be helpful in obtaining upper bounds for both wε and zε,

as we will find in the following steps.

In this next step, we will obtain upper bounds for uε, independent of ε and T .

Referring to Lemma 5.1.3, we replace u with uε and see that

d

dt

ˆ
Ω

unε
wαnε ψβn−2

dx ≤ n

ˆ
Ω

un−1
ε f(x)

wαn+p
ε zqεψβn−2

dx− αn
ˆ

Ω

unεf(x)

wαn+p+1
ε zqεψβn−2

dx

− (βn− 2)

ˆ
Ω

unε
wαnε ψβn−1+σ

dx . (6.35)

Note that these α, β are a new parameters to be determined, independent of the
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previous choices r/2∗ and q/2∗. Now, for any δ1 > 1 we may apply Lemma 5.0.1 to

to first term of (6.35) to find that

un−1
ε

wαn+p
ε

≤ α
unε

wαn+p+1
ε

+ α−(δ1−1) un−δ1ε

wαn+p+1−δ1
ε

,

in which case (6.35) becomes

d

dt

ˆ
Ω

unε
wαnε ψβn−2

dx ≤ n

αδ1−1

ˆ
Ω

un−δ1ε f(x)

wαn+p+1−δ1
ε zqεψβn−2

dx

− (βn− 2)

ˆ
Ω

unε
wαnε ψβn−1+σ

dx . (6.36)

Here is where we use our previously obtained bound, noting the independence of

time and ε. If we apply (4.8) and (6.34) to (6.36), we can then remove zqε from the

denominator of the positive term above as follows:

un−δ1ε f(x)

wαn+p+1−δ1
ε zqεψβn−2

=
un−δ1ε f(x)

wαn+p+1−δ1−r
ε ψβn−2+2∗

(
φ

w
r
2∗
ε z

q
2∗
ε

)2∗ (
ψ

φ

)2∗

≤ γ2∗

1 M
2∗

1

un−δ1ε f(x)

wαn+p+1−r−δ1
ε ψβn−2+2∗

. (6.37)

If we pair the above with Lemma 5.0.1, we can then obtain

M2∗
1 γ2∗

1 n

αδ1−1

un−δ1ε f(x)

wαn+p+1−r−δ1
ε ψβn−2+2∗

≤ (βn− 2)
unε

wαnε ψβn−1+σ

+

(
M2∗

1 γ2∗
1 n

αδ1−1

)(
(βn− 2)αδ1−1

M2∗
1 γ2∗

1 n

)− n
δ1

+1
f
n
δ1

wη1ε ψη2

≤ (βn− 2)
unε

wαnε ψβn−1+σ
+ c4(n)

f
n
δ1

wη1ε ψη2
, (6.38)
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where

η1 =
[(αn+ p+ 1− r − δ1)(n)− (αn)(n− δ1)]

δ1

=
n(p+ 1− r)− nδ1(1− α)

δ1

,

η2 =
[(βn− 2 + 2∗)(n)− (βn− 1 + σ)(n− δ1)]

δ1

=
−n(1 + σ − 2∗ − δ1β)

δ1

− (1− σ) , (6.39)

and

(
M2∗

1 γ2∗
1 n

αδ1−1

)(
(βn− 2)αδ1−1

M2∗
1 γ2∗

1 n

)− n
δ1

+1

≤ (βn− 2)

(
2M2∗

1 γ2∗
1

αδ1−1β

) n
δ1

≡ c4(n). (6.40)

With these computations, (6.36) then becomes

d

dt

ˆ
Ω

unε
wαnε ψβn−2

dx ≤ c4(n)

ˆ
Ω

f
n
δ1

wη1ε ψη2
dx. (6.41)

The goal is to now remove the dependence on wε on the right hand side of (6.41) by

setting η1 = 0. Doing so, we find

δ1 =
p+ 1− r

1− α
. (6.42)

Recall that we require δ1 > 1. Given that p + 1 − r > 0, one may notice that this
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holds true for α ∈ (r, 1). (6.41) may then be written as

d

dt

ˆ
Ω

unε
wαnε ψβn−2

dx ≤ c4(n)

ˆ
Ω

f
n
δ1

ψη2
dx. (6.43)

We now require the integral on the right hand side of (6.43) to be finite in order to

appropriately bound uε. Through the strategy above, we have actually removed any

dependence our desired bound may have on ε or the solutions uε and vε. Using that

f(x) ≤ C0ψ
τ via (4.4), we further simplify (6.43):

d

dt

ˆ
Ω

unε
wαnε ψβn−2

dx ≤ C
n
δ1
0 c4(n)

ˆ
Ω

ψ
n
δ1

(1+σ+τ−2∗−βδ1)+1−σ
dx. (6.44)

In order for the right hand side to remain finite, we require that

−1 <
n

δ1

(1 + σ + τ − 2∗ − βδ1) + 1− σ, (6.45)

but as n gets large, this can only be true if 1 + σ + τ − 2∗ − βδ1 > 0. In order to

show this is true, recall that 2∗ = q+ r and choose α ∈ (r, 1) with β = 1−α. achieve

this, we choose σ sufficiently close to 1 such that 1 + σ − 2∗ > 0. Now compute the

following:

1 + σ + τ − 2∗ − βδ1 ≥ 1 + σ − q − r − (p+ 1− r)

= σ − (p+ q)

> 0, (6.46)
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which is true for σ sufficiently close to 1, since p+q < 1 by hypothesis. Consequently,

(6.45) is true for any τ ∈ [0, 1]. With this, we may now solve (6.44) to find that

ˆ
Ω

unε
wαnε ψβn−2

dx ≤ C
n
δ1
0 c4(n)T

ˆ
Ω

ψ
n
δ1

(1+σ+τ−2∗−βδ1)+1−σ
dx+

ˆ
Ω

un0
(u0 + ε)αnψβn−2

dx

≤ C
n
δ1
0 c4(n)T

ˆ
Ω

ψ
n
δ1

(1+σ+τ−2∗−βδ1)+1−σ
dx+

ˆ
Ω

u
n(1−α)
0

ψβn−2
dx, (6.47)

for any T > 0. We now justify bounding the last term of (6.47) above, particularly

near the boundary. First, by the smoothness of ∂Ω, for x sufficiently close to ∂Ω, we

know that there exists a unique point y ∈ ∂Ω such that d(x) = |x− y|. Using (4.4)

and the fact that u0(x) ∈ C1
0(Ω), we then see that

u0(x)

ψ(x)
≤ 1

γ0

|u0(x)− u0(y)|
|x− y|

≤ Ku

γ0

, (6.48)

where Ku is a fixed constant. As a result, (6.47) can be written as

ˆ
Ω

unε
wαnε ψβn−2

dx ≤ C
n
δ1
0 c4(n)T

ˆ
Ω

ψ
n
δ1

(σ+τ−p−q)+1−σ
dx

+

(
Ku

γ0

)βn ˆ
Ω

ψ2dx. (6.49)
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Extracting nth roots and letting n→∞, we arrive at

uε(x, t)

wαε (x, t)ψβ(x)
≤
∥∥∥∥ uε
wαε ψ

β

∥∥∥∥
∞

≤ max

{
m2

∥∥ψ(σ+τ−p−q)/δ1
∥∥
∞ ,

(
Ku

γ0

)β}

≡M2 <∞, (6.50)

where

m2 = C
1/δ1
0

(
2M2∗

1 γ2∗
1

αδ1−1β

) 1
δ1

,

independent of ε. Rearranging we finally find that

uε(x, t) ≤M
1

1−α
2 ψ(x), (6.51)

and since T was arbitrary, this bound holds for all t ∈ (0,∞). We now state the

analogous result for vε. Many of the technical details will be omitted, as they are

essentially the exact same calculations as those done for uε previously, but the condi-

tions now relate to the exponents r, s instead. Notice that in (6.34), we have control

over a term involving w
−r/2∗
ε . In the same way we removed z−qε for the equation for

uε, we are able to remove w−rε in the equation for vε. Computations yield

d

dt

ˆ
Ω

vnε
zαnε ψβn−2

dx ≤ C
n
δ2
0 c5(n)

ˆ
Ω

ψ
n
δ2

(σ+µ−r−s)+1−σ
dx, (6.52)
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where

δ2 =
s+ 1− q

1− α
,

c5(n) = (βn− 2)

(
2M2∗

1 γ2∗
1

αδ2−1β

) n
δ2

, (6.53)

where we now choose α ∈ (q, 1) so that δ2 > 1. Integrating, and again using the fact

that v0 ∈ C1
0(Ω), we obtain

ˆ
Ω

vnε
zαnε ψβn−2

dx ≤ C
n
δ2
0 c5(n)T

ˆ
Ω

ψ
n
δ2

(σ+µ−r−s)+1−σ
dx

+

(
Kv

γ0

)βn ˆ
Ω

ψ2dx, (6.54)

for any T > 0. Notice that by the same reasoning, we may choose β = 1− α and σ

sufficiently close to 1 so that the exponent on ψ on the right hand side of (6.52) is

positive. Extracting nth roots and letting n→∞ yields

vε(x, t)

zαε (x, t)ψβ(x)
≤
∥∥∥∥ vε
zαε ψ

β

∥∥∥∥
∞

≤ max

{
m3

∥∥ψ(σ+µ−r−s)/δ2
∥∥
∞ ,

(
Kv

γ0

)β}

≡M3 <∞, (6.55)

where

m3 = C
1/δ2
0

(
2M2∗

1 γ2∗
0

αδ2−1β

) 1
δ2

.
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Putting this all together, we have

vε(x, t) ≤M
1

1−α
3 ψ(x), (6.56)

uniformly for all t ∈ (0,∞). At this point, we have succeeded in obtaining upper

bounds for uε, vε independent of ε. The next step is to obtain similar uniform lower

bounds. To see this, we apply Lemma 5.1.1 with u replaced by wε to see that

d

dt

ˆ
Ω

φn+2

wnε
dx ≤ λ1n

ˆ
Ω

φn+2

wnε
dx− n

ˆ
Ω

φn+2f(x)

wn+p+1
ε zqε

dx. (6.57)

We then apply Young’s Inequality to the first term of (6.57) to obtain

λ1(w−1
ε )n ≤ (w−1

ε )n+p+1f(x)

zqε
+ λ1

(
1

λ1

)− n
p+1 f−

n
p+1 (x)

z
− qn
p+1

ε

.

(6.57) then becomes

d

dt

ˆ
Ω

φn+2

wnε
dx ≤ nλ

n+p+1
p+1

1

ˆ
Ω

φn+2z
nq
p+1
ε

f
n
p+1

dx. (6.58)

Using that c0φ
θ ≤ f , we see that

f−
n
p+1 ≤ c

− n
p+1

0 φ−
θn
p+1 .

Combining this with (6.58), we arrive at

d

dt

ˆ
Ω

φn+2

wnε
dx ≤ nλ

n+p+1
p+1

1 c
− n
p+1

0

ˆ
Ω

φn+2− θn
p+1 z

nq
p+1
ε dx. (6.59)
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Integrating (6.59) and using (6.3), we find

ˆ
Ω

φn+2

wnε
dx ≤ nλ

n+p+1
p+1

1 c
− n
p+1

0 T

ˆ
Ω

φn+2− θn
p+1 z

nq
p+1
ε dx+

1

εn0

ˆ
Ω

φ2dx, (6.60)

for any T > 0. Extracting nth roots and letting n→∞ yields

φ(x)

wε(x, t)
≤
∥∥∥∥ φwε

∥∥∥∥
∞

≤ max
{
m4

∥∥∥φ p+1−θ
p+1 v

q
p+1
ε

∥∥∥
∞
, ε−1

0

}
≡M4 <∞, (6.61)

where

m4 =

(
λ1

c0

) 1
p+1

.

Notice that despite vε appearing in our constant M4, by (6.56), M4 does indeed

remain independent of ε by the previously obtained bounds from above on vε. Re-

arranging, we see that wε ≥ φM−1
4 for all t > 0. Repeating this process for vε gives

us

φ(x)

vε(x, t)
≤
∥∥∥∥ φvε

∥∥∥∥
∞

≤ max
{
m5

∥∥∥φ s+1−η
s+1 w

r
s+1
ε

∥∥∥
∞
, ε−1

0

}
≡M5 <∞, (6.62)

78



M.Sc. Thesis – Yurij Salmaniw McMaster University – Mathematics and Statistics

where

m5 =

(
λ1

c0

) 1
s+1

.

Thus, M−1
5 φ(x) ≤ zε(x, t) for all t > 0.

Step iii. The next step is to use these estimates to show that the nonlinear terms

of our system are uniformly bounded in Lk(Ω) for some k > 1. To see this, we

compute for any k1 ∈ (1, 1
p+q

)

ˆ
Ω

∣∣∣∣ f(x)

wpεz
q
ε

∣∣∣∣k1 dx ≤ ck10

ˆ
Ω

φk1τ

wk1pε zk1qε

dx

≤M6

ˆ
Ω

φk1[τ−(p+q)]dx. (6.63)

Similarly, for k2 ∈ (1, 1
r+s

)

ˆ
Ω

∣∣∣∣ g(x)

wrεz
s
ε

∣∣∣∣k2 dx ≤ ck20

ˆ
Ω

φk2µ

wk2rε zk2sε

dx

≤M7

ˆ
Ω

φk2[µ−(r+s)]dx. (6.64)

These choices in where ki lives ensures that −1 < k1(τ − (p + q)) and −1 < k2(µ−

(r + s)) for any θ, µ ∈ [0, 1].

Step iv. Since we know (uε, vε) are classical solutions, they are also strong so-

lutions. From this, we apply the Lp estimates found in Theorem 3.1.2 to find that

(uε, vε) are uniformly bounded in [W 2,1
k1

(Ω × (0, T ))] × [W 2,1
k2

(Ω × (0, T ))]. Thus, a

subsequence (uεi , vεi) can be extracted that converges to a weak solution of (6.1).
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Step v. If we have the additional information that −1 < N(τ − (p + q)), we

may choose k1 > N so that −1 < k1(τ − (p + q)), and (6.63) remains true. Then,

by Lemma 2.0.2, uε → u ∈ C1+κ,1/2+κ/2(QT ) for some κ ∈ (0, 1). If we then fix

Ω′ ⊂⊂ Ω and define Q′T = Ω′× (t∗, t
∗) for any 0 < t∗ < t∗ <∞, it is easy to see that

our nonlinear term f(x)u−pv−q ∈ Cκ,κ/2(Q′T ) for some κ ∈ (0, 1). By the classical

theory of parabolic equations (see Theorem 8.3.7 in [20], for example), we then have

that u ∈ C2+κ,1+κ/2(Q′T ), and so u ∈ C2+κ,1+κ/2(QT ), by definition. Consequently,

since T > 0 was arbitrary, u ∈ C2+κ,1+κ/2(Ω × (0,∞)) ∩ C1+κ,(1+κ)/2(Ω × [0,∞)) is

a classical solution. Similarly, if −1 < N(µ− (r + s)), then v is a classical solution.

This completes the proof.

Proof of Theorem 6.2.2. Making the same perturbation and rescaling as before, sys-

tem (6.2) becomes


ut = ∆u+ f1(x)

(u+ε)p
+ f2(x)

(v+ε)q
,

vt = ∆v + f3(x)
(u+ε)r

+ f4(x)
(v+ε)s

, x ∈ Ω, t > 0.

(6.65)

We know solutions to this perturbed system exist, and we denote that (uε, vε). In-

deed, the following can be shown to be sub and supersolutions to the system through

direct computation:


(u, v) ≡ (0, 0),

(u, v) ≡ (c1φ(x) + c2a(x) + ‖u0‖L∞ , c3φ(x) + c4a(x) + ‖v0‖L∞) ,

(6.66)
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where, in contrast to the previous constants used, we now take


c1 = C0

dλ1

(
1
εp

+ 1
εq

)
, c2 = C0

d

(
1
εp

+ 1
εq

)
,

c3 = C0

Dλ1

(
1
εr

+ 1
εs

)
, c4 = C0

D

(
1
εr

+ 1
εs

)
.

(6.67)

We leave this computation to the reader, as it is essentially the exact same as the

previous result. With the substitution wε = uε + ε, zε = vε + ε, an application of

Lemma 5.1.2 gives us

d

dt

ˆ
Ω

φn+2

wαnε zβnε
dx ≤ −αn

ˆ
Ω

φn+2f1(x)

wαn+p+1
ε zβnε

dx− αn
ˆ

Ω

φn+2f2(x)

wαn+1
ε zβn+q

ε

dx

− βn
ˆ

Ω

φn+2f3(x)

wαn+r
ε zβn+1

ε

dx− βn
ˆ

Ω

φn+2f4(x)

wαnε zβn+s+1
ε

dx

+ λ1(n+ 2)

ˆ
Ω

φn+2

wαnε zβnε
dx

≤ −αn
ˆ

Ω

φn+2f2(x)

wαn+1
ε zβn+q

ε

dx− βn
ˆ

Ω

φn+2f3(x)

wαn+r
ε zβn+1

ε

dx

+ λ1(n+ 2)

ˆ
Ω

φn+2

wαnε zβnε
dx. (6.68)

Notice that we have thrown away two terms above. Motivated by the previous result,

we actually only require two negative terms to completely control the positive term

for all t > 0. For any δ > 0, applying Lemma 5.0.1 to the positive term of (6.68)

yields

λ1(n+ 2)
f 0

2

wαnε zβnε
≤ αn

f2

wαn+1
ε zβn+q

ε

+ λ1(n+ 2)

(
αn

λ1(n+ 2)

)−δ
f−δ2

wαn−δε zβn−qδε

,

(6.69)
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where

λ1(n+ 2)

(
αn

λ1(n+ 2)

)−δ
≤ λ1(n+ 2)

(
2λ1

α

)δ
≡ c1(n). (6.70)

Combining (6.69) and (6.70) with (6.68) leaves us with

d

dt

ˆ
Ω

φn+2

wαnε zβnε
dx ≤ c1(n)

ˆ
Ω

φn+2f−δ2

wαn−δε zβn−qδε

dx− βn
ˆ

Ω

φn+2f3(x)

wαn+r
ε zβn+1

ε

dx. (6.71)

Applying Lemma 5.0.1 to the positive term of (6.71) yields

c1(n)
(w−1

e )αn−δf 0
3

zβn−qδε f δ2
≤ βn

(w−1
ε )αn+r

zβn+1
ε f 0

2

+ c1(n)

(
βn

c1(n)

)−(αn−δ)/(δ+r)
(w−1

ε )0f θ03

zη1ε f
η2
2

, (6.72)

where

θ0 = −(αn− δ)
δ + r

,

η1 =
[(βn− qδ)(αn+ r)− (βn+ 1)(αn− δ)]

δ + r

=
−n(α− βr) + δ(β − αq + 1− rq)

δ + r
,

η2 =
δ(αn+ r)

δ + r
, (6.73)
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and

c1(n)

(
βn

c1(n)

)−(αn−δ)/(δ+r)

≤ λ1(n+ 2)

(
2λ1

α

)δ (
(2λ1)δ+1

αδβ

)(αn−δ)/(δ+r)

≡ c2(n). (6.74)

(6.71) can then be written as

d

dt

ˆ
Ω

φn+2

wαnε zβnε
dx ≤ c2(n)

ˆ
Ω

φn+2f θ03

zη1ε f
η2
2

dx. (6.75)

We now apply the same trick used in the previous proof. With the freedom to choose

δ, we set η1 = 0 and find

δ =
n(α− βr)

n(β − αq) + 1− rq
.

If we choose α = r
2∗

and β = q
2∗

, where 2∗ ≡ r + q as defined previously, we see that

α− βr =
r

2∗
(1− q) > 0,

β − αq =
q

2∗
(1− r) > 0,

and so δ > 0 as required. Under the hypotheses of our theorem, we also know

c0φ
θi(x) ≤ fi(x), and so (6.75) can be further simplified as

d

dt

ˆ
Ω

φn+2

wαnε zβnε
dx ≤ c2(n)

c
[αn(δ+1)−δ(1−r)]/(δ+r)
0

ˆ
Ω

φn+2+θ0θ3−η2θ2dx. (6.76)
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As in the previous proof, we now ensure that the integral on the right hand side

remains finite. Indeed, we require n+ 2 + θ0θ3 − η2θ2 ≥ 0, and so we confirm this in

the following calculations. For n sufficiently large, we have that

n+ 2 + θ0θ3 − η2θ2 = n+ 2− [θ2δ(αn+ r) + θ3(αn− δ)]
(δ + r)

=
[n(δ + r − θ2δα− θ3α)− δ(rθ2 + θ3)]

(δ + r)
+ 2

=
[n(r − θ3α + δ(1− θ2α))− δ(rθ2 + θ3)]

(δ + r)
+ 2

> 0, (6.77)

since δ(1 − αθ2) > 0 and r − αθ3 = r(1 − θ3/2
∗) > 0. Consequently, (6.76) remains

finite. Integrating in time and recalling that ε0φ ≤ u0, v0 gives us

ˆ
Ω

φ

wαnε zβnε
dx ≤ c2(n)T

c
[αn(δ+1)−δ(1−r)]/(δ+r)
0

ˆ
Ω

φn+2+θ0θ3−η2θ2dx+

ˆ
Ω

φn+2

uαn0 vβn0

dx

≤ c2(n)T

c
[αn(δ+1)−δ(1−r)]/(δ+r)
0

ˆ
Ω

φn+2+θ0θ3−η2θ2dx+
1

εn0

ˆ
Ω

φ2dx, (6.78)

for any T > 0. Extracting nth roots and letting n→∞ gives us our desired result:

φ(x)

w
r
2∗
ε (x, t)z

q
2∗
ε (x, t)

≤

∥∥∥∥∥ φ

w
r
2∗
ε z

q
2∗
ε

∥∥∥∥∥
∞

≤ max{m1 ‖φσ1‖∞ , ε
−1
0 }

≡M1 <∞, (6.79)
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where

σ1 =
r(1− θ3

2∗
) + δ(1− rθ2

2∗
)

δ + r
> 0,

m1 =

(
(2λ1)δ+1

αδβcδ+1
0

)α/(δ+r)
. (6.80)

The next step is to use this uniform bound to obtain an upper bound for uε. This

process will be similar to the previous proof. For new α, β, Lemma 5.1.3 with u

replaced by uε yields

d

dt

ˆ
Ω

unε
wαnε ψβn−2

dx ≤ n

ˆ
Ω

un−1
ε f1

wαn+p
ε ψβn−2

dx+ n

ˆ
Ω

un−1
ε f2

wαnε zqεψβn−2
dx

− αn
ˆ

Ω

unεf1

wαn+p+1
ε ψβn−2

dx− αn
ˆ

Ω

unεf2

wαn+1
ε zqεψβn−2

dx

− (βn− 2)

ˆ
Ω

unε
wαnε ψβn−1+σ

dx. (6.81)

For any δ1, δ2 > 1, applying Lemma 5.0.1 to terms 1 and 2 of (6.81) gives us

un−1
ε

wαn+p
ε

≤ α
unε

wαn+p+1
ε

+
1

αδ1−1
· un−δ1ε

wαn+p+1−δ1
ε

, (6.82)

and

un−1
ε

wαnε
≤ α

unε
wαn+1
ε

+
1

αδ2−1
· un−δ2ε

wαn+1−δ2
ε

. (6.83)
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Combining (6.82) and (6.83) with (6.81) leaves us with

d

dt

ˆ
Ω

unε
wαnε ψβn−2

dx ≤ n

αδ3−1

ˆ
Ω

un−δ3ε f1

wαn+p+1−δ3
ε ψβn−2

dx+
n

αδ4−1

ˆ
Ω

un−δ4ε f2

wαn+1−δ4
ε zqεψβn−2

dx

− (βn− 2)

ˆ
Ω

unε
wαnε ψβn−1+σ

dx. (6.84)

We now use (6.79) and (4.8) to remove the dependence on zε in line (6.84) as follows

un−δ2ε f1

wαn+1−δ2
ε zqεψβn−2

=
un−δ2ε f1

wαn+1−r−δ2
ε ψβn−2+2∗

(
φ

w
r
2∗
ε z

q
2∗
ε

)2∗ (
ψ

φ

)2∗

≤M2∗

1 γ2∗

1

un−δ2ε f1

wαn+1−r−δ2
ε ψβn−2+2∗

. (6.85)

Thus, (6.84) becomes

d

dt

ˆ
Ω

unε
wαnε ψβn−2

dx ≤ n

αδ1−1

ˆ
Ω

un−δ1ε f1

wαn+p+1−δ1
ε ψβn−2

dx

+
M2∗

1 γ2∗
1 n

αδ2−1

ˆ
Ω

un−δ2ε f2

wαn+1−r−δ2
ε ψβn−2+2∗

dx

− (βn− 2)

ˆ
Ω

unε
wαnε ψβn−1+σ

dx. (6.86)

We now apply Lemma 5.0.1 again to the first term of (6.86):

( n

αδ1−1

) un−δ1ε f1

wαn+p+1−δ1
ε ψβn−2

≤
(

(βn− 2)

2

)
unε

wαnε ψβn−1+σ

+
( n

αδ1−1

)(αδ1−1(βn− 2)

2n

)− n
δ1

+1
f
n
δ1

1

wη1ε ψη2
, (6.87)
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where

η1 =
n(p+ 1)− n(1− α)δ1

δ1

,

η2 =
−n(1 + σ − βδ1)

δ1

− (1− σ),

7.31 and

( n

αδ1−1

)(αδ1−1(βn− 2)

2n

)− n
δ1

+1

≤
(

(βn− 2)

2

)(
4

αδ1−1
1 β

) n
δ3

≡ c3(n). (6.88)

Doing the usual trick, if we set η1 = 0, we find that

δ1 =
p+ 1

1− α
> 1,

for any α ∈ (0, 1). Combining all of these estimates with (6.86) gives us

d

dt

ˆ
Ω

unε
wαnε ψβn−2

dx ≤ c3(n)

ˆ
Ω

f
n
δ1

1 ψ
n(1+σ−βδ1)

δ1
+(1−σ)

dx+
M2∗

1 γ2∗
1 n

αδ2−1

ˆ
Ω

un−δ2ε f2

wαn+1−r−δ2
ε ψβn−2+2∗

dx

− (βn− 2)

2

ˆ
Ω

unε
wαnε ψβn−1+σ

dx. (6.89)

We now repeat this process. Applying Lemma 5.0.1 to the second term of (6.89)
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yields

(
M2∗

1 γ2∗
1 n

αδ2−1

)
un−δ2ε f2

wαn+1−r−δ2
ε ψβn−2+2∗

≤
(

(βn− 2)

2

)
unε

wαnε ψβn−1+σ

+

(
M2∗

1 γ2∗
1 n

αδ2−1

)(
αδ2−1(βn− 2)

2M2∗
1 γ2∗

1 n

)− n
δ2

+1
f
n
δ2

2

wη1ε ψη2
,

(6.90)

where

η1 =
n(1− r)− nδ2(1− α)

δ2

,

η2 =
−n(1 + σ − 2∗ − βδ2)

δ2

− (1− σ), (6.91)

and

(
M2∗

1 γ2∗
1 n

αδ2−1

)(
αδ2−1(βn− 2)

2M2∗
1 γ2∗

1 n

)− n
δ2

+1

≤
(

(βn− 2)

2

)(
4M2∗

1 γ2∗
1

αδ2−1β

) n
δ4

≡ c4(n).

Again, setting η1 = 0 and solving for δ2 yields

δ2 =
1− r
1− α

> 1,
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for α ∈ (r, 1). Thus, (6.89) becomes

d

dt

ˆ
Ω

unε
wαnε ψβn−2

dx ≤ c3(n)

ˆ
Ω

f
n
δ1

1 ψ
n(1+σ−βδ1)

δ1
+(1−σ)

dx+ c4(n)

ˆ
Ω

f
n
δ2

2 ψ
n(1+σ−2∗−βδ2)

δ2
+(1−σ)

dx.

(6.92)

Similar to the previous proof, choose α ∈ (r, 1) with β = 1− α. Direct computation

gives 1 +σ−βδ1 = σ− p > 0 and 1 +σ− 2∗−βδ2 = σ− q > 0 for σ sufficiently close

to 1, and so both integrals on the right hand side (6.92) are indeed finite. Integrating

this result in time gives us

ˆ
Ω

unε
wαnε ψβn−2

dx ≤ c3(n)T

ˆ
Ω

f
n
δ1

1 ψ
n(σ−p)
δ1

+(1−σ)
dx

+ c4(n)T

ˆ
Ω

f
n
δ2

2 ψ
n(σ−q)
δ2

+(1−σ)
dx

+

ˆ
Ω

u
n(1−α)
0

ψβn−2
dx, (6.93)

and if we refer again to (6.49), we can further simplify this as

ˆ
Ω

unε
wαnε ψβn−2

dx ≤ c3(n)T

ˆ
Ω

f
n
δ1

1 ψ
n(σ−p)
δ1

+(1−σ)
dx

+ c4(n)T

ˆ
Ω

f
n
δ2

2 ψ
n(σ−q)
δ2

+(1−σ)
dx

+

(
Ku

γ0

)βn ˆ
Ω

ψ2dx, (6.94)
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for all t ∈ (0,∞). Extracting nth roots and letting n→∞ gives our desired bound:

uε(x, t)

wαε (x, t)ψβ(x)
≤
∥∥∥∥ uε
wαε ψ

β

∥∥∥∥
∞

≤ max

{
m3

∥∥∥∥f 1
δ1

1 ψ
σ−p
δ1

∥∥∥∥
∞
, m4

∥∥∥∥f 1
δ2

2 ψ
σ−q
δ2

∥∥∥∥
∞
,

(
Ku

γ0

)β}

≡M2 <∞, (6.95)

where

m3 =

(
4

αδ1−1β

) 1
δ1

,

m4 =

(
4M2∗

1 γ2∗
1

αδ2−1β

) 1
δ2

,

independent of ε. Rearranging this, we obtain

uε(x, t) ≤M
1

1−α
2 ψ(x), (6.96)

uniformly for all t ∈ (0,∞), for any ε > 0. The exact same procedure yields the

following upper bound for vε:

vε(x, t) ≤M
1

1−α
3 ψ(x), (6.97)

also independent of ε, for all t ∈ (0,∞). We will now use these estimates to obtain
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a lower bound for uε. To start, Lemma 5.1.1 with u replaced by wε gives us

d

dt

ˆ
Ω

φn+2

wnε
dx ≤ λ1n

ˆ
Ω

φn+2

wnε
dx− n

ˆ
Ω

φn+2f1

wn+p+1
ε

dx− n
ˆ

Ω

φn+2f2

wn+1
ε zqε

. (6.98)

For any δ > 0, applying Lemma 5.0.1 to the first term of (6.98) yields

f 0
1

wnε
≤ λ1

f1

wn+p+1
ε

+ λ−δ1

f−δ1

w
n−δ(p+1)
ε

. (6.99)

With this, (6.98) then becomes

d

dt

ˆ
Ω

φn+2

wnε
dx ≤ λ−δ1 n

ˆ
Ω

φn+2f−δ1

w
n−δ(p+1)
ε

− n
ˆ

Ω

φn+2f2

wn+1
ε zqε

. (6.100)

Applying Lemma 5.0.1 again to the first term of (6.100) gives us

λ−δ1

(w−1
ε )n−δ(p+1)f 0

2

f δ1
≤ (w−1

ε )n+1f2

zqε
+
(
λδ1
)− [n−δ(p+1)]

δ(p+1)+1
f θ02

zη1ε f
η2
1

, (6.101)

where

θ0 = − [n− δ(p+ 1)]

δ(p+ 1) + 1
,

η1 = −q[n− δ(p+ 1)]

δ(p+ 1) + 1
< 0,

η2 =
δ(n+ 1)

δ(p+ 1) + 1
. (6.102)
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Combining this to (6.100) gives us

d

dt

ˆ
Ω

φn+2

wnε
dx ≤ λ−δ1

(
1

λδ1

)n−δ(p+1)
δ(p+1)+1

n

ˆ
Ω

φn+2f θ02

zη1ε f
η2
1

dx. (6.103)

From our hypothesis, we know that c0φ
θi(x) ≤ fi(x), and so we further simplify the

above as

d

dt

ˆ
Ω

φn+2

wnε
dx ≤ λ−δ1

cη2−θ00

(
1

λδ1

)n−δ(p+1)
δ(p+1)+1

n

ˆ
Ω

φn+2+θ0θ2−η2θ1

zη1ε
dx. (6.104)

We now need to ensure that the integral on the right hand side is finite. One can

see that, since zε is bounded by the previous result, and η1 < 0, this will converge

provided that

n+ 2 + θ0θ2 − η2θ1 ≥ 0,

and so we compute:

n+ 2 + θ0θ2 − η2θ1 = n+ 2− [θ2(n− δ(p+ 1)) + θ1δ(n+ 1)]

δ(p+ 1) + 1

=
n[1− θ2 + δ(p+ 1− θ1)] + δ(θ2(p+ 1)− θ1)

δ(p+ 1) + 1
+ 2

> 0, (6.105)

since 1 − θ2 ≥ 0 and p + 1 − θ1 > 0 for any θ1, θ2 ∈ [0, 1]. Integrating in time and
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applying our assumption that ε0φ(x) ≤ u0(x), we see that

ˆ
Ω

φn+2

wnε
dx ≤ λ−δ1

cη2−θ00

(
1

λδ1

)n−δ(p+1)
δ(p+1)+1

nT

ˆ
Ω

φn+2+θ0θ2−η2θ1

zη1ε

+

ˆ
Ω

φn+2

un0
dx

≤ λ−δ1

cη2−θ00

(
1

λδ1

)n−δ(p+1)
δ(p+1)+1

nT

ˆ
Ω

φn+2+θ0θ2−η2θ1

zη1ε

+ ε−n0

ˆ
Ω

φ2dx. (6.106)

Extracting nth roots and letting n→∞ yields

φ(x)

wε(x, t)
≤
∥∥∥∥ φwε

∥∥∥∥
∞

≤ max{m5

∥∥∥∥φ [1−θ2+δ(p+1−θ1)]
δ(p+1)+1 z

q
δ(p+1)+1
ε

∥∥∥∥
∞
, ε−1

0 }

≡M3 <∞, (6.107)

where

m5 =

(
1

cδ+1
0 λδ1

)1/[δ(p+1)+1]

,

independent of ε, uniformly for all t ∈ (0,∞). Consequently, we have obtained

the bound M−1
3 φ(x) ≤ wε(x, t). Applying the same technique yields M−1

4 φ(x) ≤

zε(x, t). Our next step is to show that the nonlinear terms of our perturbed system

are uniformly bounded in Lk(Ω). To see this, let k1 ∈ (1,min{1
p
, 1
q
}), and apply
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Minkowski’s Inequality as follows:

∥∥∥∥f1(x)

wpε
+
f2(x)

zqε

∥∥∥∥
Lk1

dx ≤

(ˆ
Ω

∣∣∣∣f1(x)

wpε

∣∣∣∣k1 dx
) 1

k1

+

(ˆ
Ω

∣∣∣∣f2(x)

zqε

∣∣∣∣k1 dx
) 1

k1

≤ C0M
p
3

(ˆ
Ω

φk1(τ1−p)dx

) 1
k1

+ C0M
q
4

(ˆ
Ω

φk1(τ2−q)dx

) 1
k1

<∞, (6.108)

where our choice in k1 ensures that −1 < k1(τ1 − p) and −1 < k1(τ2 − q) for any

τ1, τ2 ∈ [0, 1], and so (6.108) is true. Similarly, for any k2 ∈ (1,min{1
r
, 1
s
}), it is true

that

∥∥∥∥f3(x)

wrε
+
f4(x)

zsε

∥∥∥∥
Lk2

<∞. (6.109)

By Theorem 3.1.2, (uε, vε) are uniformly bounded in
[
W 2,1
k1

(Ω× (0, T ))
]
×
[
W 2,1
k2

(Ω× (0, T ))
]
,

and so we may extract a subsequence (uεi , vεi) which converges to a weak solution of

(6.2).

We now argue similar to the previous proof. If −1 < N min{(τ1 − p), (τ2 − q)},

we may choose k1 > N so that (6.108) is true. By Lemma 2.0.2, we then have that

uε → u ∈ C1+κ,1/2+κ/2(QT ) for some κ ∈ (0, 1), and so u is a classical solution.

Similarly, if −1 < N min{(τ3 − r), (τ4 − s)}, we can again choose k2 > N so that

(6.109) is true, and vε → v ∈ C1+κ,1/2+κ/2(QT ), and v is a classical solution. This

completes the proof.
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6.5 Existence for d 6= D

We now prove the existence results for d 6= D when d,D > 0, but the results are

only valid locally in time.

Proof of Theorem 6.2.3. The proof of this theorem will be highly condensed, as we

mainly refer to the results of Theorem 6.2.1. Considering the same perturbed system,

we notice that for any d > 0, Lemma 5.1.1 gives us that

d

dt

ˆ
Ω

φn+2

wnε
dx ≤ λ1dn

ˆ
Ω

φn+2

wnε
dx, (6.110)

and so by the Gronwall inequality and the assumption that ε0φ(x) ≤ u0(x), we find

ˆ
Ω

φn+2

wnε
dx ≤ enλ1dT

ˆ
Ω

φn+2

un0
dx

≤ ε−n0 enλ1dT
ˆ

Ω

φ2dx, (6.111)

and so extracting nth roots yields φ(x) ≤ ε−1
0 eλ1dTwε(x, t), for all ε > 0 and all

t ∈ (0, T ). The same procedure gives us that φ(x) ≤ ε−1
0 eλ1DT zε(x, t). This time

dependent lower bounds will replace the uniform in time bound given by (6.34) in

the proof of Theorem 6.2.1. Next, Lemma 5.1.3 gives us that

d

dt

ˆ
Ω

un

wεαnψβn−2
dx ≤ n

ˆ
Ω

un−1f(x)

wεαn+pzqεψβn−2
dx− αn

ˆ
Ω

unf(x)

wεαn+p+1zqεψβn−2
dx

− d(βn− 2)

ˆ
Ω

un

wεαnψβn−1+σ
dx, (6.112)
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and referring to (6.35)− (6.41), the same procedure yields

d

dt

ˆ
Ω

unε
wαnε ψβn−2

dx ≤ c4(n, T )

ˆ
Ω

f
n
δ1

wη1ε ψη2
dx, (6.113)

where

η1 =
n(p+ 1)− δ1n(1− α)

δ1

,

η2 = − n
δ1

[1 + σ − q − βδ1]− (1− σ),

c4(n, T ) = d(βn− 2)

(
2γq1e

λ1DqT

dαδ1−1βεq0

) n
δ1

. (6.114)

Notice that the constant c4(n, T ) now depends non-trivially on our maximal existence

time T . Similar to the previous process, setting η1 = 0 yields

δ1 =
p+ 1

1− α
> 1,

for any α ∈ (0, 1). In this case, we may choose α, β such that α + β = 1. Then,

1 + σ − q − βδ1 = 1 + σ − q − p− 1

= σ − (p+ q) > 0, (6.115)

for σ sufficiently close to 1. As a result, the right hand side of (6.113) is finite, in
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which case we may solve the differential inequality to obtain

ˆ
Ω

unε
wαnε ψβn−2

dx ≤ c4(n, T )T

ˆ
Ω

f
n
δ1ψ

n
δ1

(σ−p−q)+1−σ
dx+

ˆ
Ω

u
n(1−α)
0

ψβn−2
dx

≤ c4(n, T )T

ˆ
Ω

f
n
δ1ψ

n
δ1

(σ−p−q)+1−σ
dx+

(
Ku

γ0

)βn ˆ
Ω

ψ2dx. (6.116)

Extracting nth roots and taking n→∞, we have

uε
wαε ψ

β
≤
∥∥∥∥ uε
wαε ψ

β

∥∥∥∥
L∞

≤ max

{
m1

∥∥∥f 1
δ1ψ

σ−p−q
δ1

∥∥∥
L∞

,

(
Ku

γ0

)β}

≡M1 <∞, (6.117)

where

m1 =

(
2γq1e

λ1DqT

dαδ1−1βεq0

) 1
δ1

.

The same procedure yields

vε
zαε ψ

β
≤
∥∥∥∥ vε
zαε ψ

β

∥∥∥∥
L∞

≤M2, (6.118)

ndependent of ε, for all t ∈ (0, T ). With these estimates, one can see that (6.63) and

(6.64) are true, independent of ε, for all t ∈ (0, T ), and so there exists a subsequence

(uεi , vεi) converging to a global weak solution of problem (6.1). The same argument
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used to obtain additional regularity in Theorem 6.2.1 now holds, and the proof is

complete.

Proof of Theorem 6.2.4. Similar to the proof of Theorem 6.2.3, we may obtain lower

bounds on our solutions, independent of ε for all t ∈ (0, T ). We may then use these

estimates to obtain upper bounds for our perturbed solutions. Taking ε to zero

yields the existence of a global weak solution. With the additional assumptions on

our exponents, we are then able to obtain the existence of a global classical solutions.

This completes the proof.
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Chapter 7

Conclusion

In this thesis, we have investigated various parabolic systems featuring singular non-

linearities. This includes a generalization of [4], as well as some additional results. As

we have seen, this introduces many mathematical difficulties. In particular, classical

methods are unsuccessful in proving the existence of solutions. This is somewhat

unsurprising, as the classical methods require the nonlinearity to be, at the very

least, Hölder continuous up to the boundary. Through the tools developed in pre-

vious works, such as [15], [2], [3], [4] and others, we are able to prove the existence

of both weak and classical solutions. The key differences between these founding

works and the work featured here is primarily the perspective taken on what a priori

bounds we actually wish to obtain. In [4], for example, bounds are obtained on a

particular functional for some general exponents α, β ∈ (0, 1). Here, more attention

is given to what exactly these exponents could be in relation to the nonlinearities as

they appear in the respective systems. This seems to give more clarity in what the
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purpose is of the preliminary bounds obtained. For example, when considering the

case where the coupling of equations appear as u−pv−q and u−rv−s, it makes intuitive

sense to attempt to remove v−q from the equation for u, and u−r from the equation

for v. Hence the motivation to choose α and β dependent on r and q, respectively.

Through the development of these tools and doing this research, the various

works available concerning singular equations has also become more evident. This

concerns both elliptic and parabolic equations. Despite this, there are still very few

results concerning singular systems, especially in the parabolic case. This motivates

further development of these tools in order to handle singular equations where the

singularity appears in a higher order term. For example, one may consider the

Keller-Segel system in a smooth, bounded domain, written as


ut = ∆u− χ∇ ·

(
u
v
∇v
)
,

vt = ∆v − v + u, x ∈ Ω, t > 0,

(7.1)

where χ > 0 is some constant. Under homogeneous Dirichlet boundary conditions,

this system may become singular near the boundary, but this time the singularity

appears under a gradient term. This system is much more difficult to deal with,

primarily due to diffusion of both u and v appearing in the equation for u. This

makes it more difficult to obtain integral inequalities used extensively in proving the

results found within this thesis. Consequently, there is future works to be done.

Finally, these tools may be further developed to obtain additional results related

to singular parabolic systems. This could include a more detail exploration of the
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boundary behaviour, such as that found in [8], [9] or [21]. One could further inves-

tigate the properties of solutions when the exponents are allowed to take values in

(1, 2), such as less regularity of solutions (up to the boundary) and nonexistence re-

sults. This could also include finite time blowup results, as well as bounded solutions

for all time when d 6= D, or even weakening conditions on the initial data and the

functions f, g appearing in denominator of our nonlinearities.
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