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Abstract

Haze and smog are among the most common environmental factors impacting image qual-

ity and, therefore, image analysis. In this paper, I propose an end-to-end generative method

for single image dehazing problem. It is based on fully convolutional network and effective

network structures to recognize haze structure in input images and restore clear, haze-free

ones. The proposed method is agnostic in the sense that it does not explore the atmosphere

scattering model, it makes use of convolutional networks advantage in feature extraction

and transfer instead. Somewhat surprisingly, it achieves superior performance relative to all

existing state-of-the-art methods for image dehazing even on SOTS outdoor images, which

are synthesized using the atmosphere scattering model.

In order to improve its weakness in indoor hazy images and enhance the dehazed im-

age’s visual quality, a lightweight parallel network is put forward. It employs a different

convolution strategy that extracts features with larger reception field to generate a comple-

mentary image. With the help of a parallel stream, the fusion of the two outputs performs

better in PSNR and SSIM than other methods.
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Notation and abbreviations

GMAN Generic Model-Agnostic neural Network

FCN Fully Convolutional Network

CNN Convolutional Neural Network

Adam Adaptive moment estimation algorithm

ReLu Rectified Linear unit

PN Parallel Network

MSE Mean Square Error

PSNR Peak Signal-to-Noise Ratio

SSIM Structural Similarity

GPU Graphics Processing Unit

DCP Dark Channel Prior

MSCNN Multi-Scale Convolutional Neural Network

GFN Gate Fusion Network
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SOTS Synthetic Objective Testing Set
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Chapter 1

Introduction and Problem Statement

Modern applications rely on analyzing visual data to discover patterns and make decisions.

Some examples could be found in intelligent surveillance, tracking, and control systems,

where good quality images or frames are essential for accurate results and reliable perfor-

mance. However, such systems could be significantly affected by environmentally induced

distortions, the most common of which are haze and smog caused by dust or small water

droplets in the atmosphere. And this problem occurs especially in cities. Therefore, a lot of

research in the computer vision community has been dedicated to addressing the problem

of restoring good-quality images from their hazy counterparts, Zhu et al. (2015); Cai et al.

(2016); He et al. (2011); Berman et al. (2016) to name a few. That problem is commonly

referred to as the dehaze problem.

The relationship between original images and hazy images (Narasimhan and Nayar,

2002) is approximately captured by the following equation known as the atmosphere scat-

tering model (Figure 1.1):

I i(x) = J i(x)t(x) + A(1− t(x)) i = 1, 2, 3, (1.1)

1
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Figure 1.1: Schematic diagram of atmospheric scattering model.

where for a pixel in the ith color channel and spatially indexed by x, I i(x) is the intensity

of the hazy pixel, J i(x) is the actual intensity of that pixel, and t(x) is the medium trans-

mission function that depends on the scene depth and the atmospheric scattering coefficient

β. Parameter A in Equation (1.1) is the atmosphere light intensity, which is assumed to be

a global constant over the whole image. Since all variables in Equation (1.1) are unknown

except the hazy pixel intensity I i(x), dehaze is in general an undetermined problem.

Over the past couple of decades, many methods have been proposed to solve the dehaze

problem. Those methods could be loosely grouped into two categories: traditional and

Machine Learning (ML)-based methods. The likes of He et al. (2011), Zhu et al. (2015),

and Tan (2008) are some examples of the first category. They solve the underdetermined

problem by exploiting some form of prior information.

On the other hand, works such as Tang et al. (2014), Cai et al. (2016), Ren et al. (2016),

and Li et al. (2017a) have followed a learning-based approach. They leverage the advances

in classic and deep learning technologies to tackle the dehaze problem. Regardless how

different those two categories may seem, they all aim to recover the original image by

first estimating the unknown parameters A and t(x) and then inverting Equation (1.1) to

2
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determine J i(x):

J i(x) =
I i(x)− A(1− t(x))

t(x)
i = 1, 2, 3. (1.2)

From the viewpoint of estimation theory, the methods in both categories fall under the

umbrella of the plug-in principle1, and they will all be referred to as plug-in methods.

However, for the dehaze problem, the optimality of the plug-in principle is not completely

justified. Indeed, it is unlikely that the problem of lossy reconstruction of the original

image can be transformed equivalently to an estimation problem for parameters A and t(x)

(or their variants), at least when the two problems are subject to the same evaluation metric.

Moreover, the actual relation between the original and hazy images can be fairly complex

and may not be fully captured by the atmosphere scattering model. Due to this potential

mismatch, methods that rely on the atmosphere scattering model (including but not limited

to plug-in methods) do not guarantee desirable generalization to natural images even if they

can achieve good performance on synthetic images.

Based on the aforementioned take on plug-in methods (and, more generally, model-

dependent methods), this paper approaches the dehaze problem from a different, and more

agnostic, angle; it presents a dehaze neural network that solely focuses on producing a

haze-free version of the input image. It utilizes the recent advances in deep learning to

build an encoder-decoder network architecture that is trained to directly restore the clear

image, ignoring the parameter estimation problem altogether. The proposed method also

has the potential of recognizing complex haze structures present in the training data but not

captured by the atmosphere scattering model. See Figure (1.2) for a dehazing example. To

1Consider a parametric model P = {Pθ : θ ∈ Θ} and a mapping τ : Θ → R. Suppose the observation
comes from Pθ∗ . The plug-in principle refers to the method of constructing an estimate of τ(θ∗) by first
deriving an estimate of θ∗, denoted by θ̂, then plugging θ̂ into τ(·).

3
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(a) (b)

Figure 1.2: Dehazing result of a synthetic example. Left: Hazy input. Right: Clear output.

the best of our knowledge, such view of the dehaze problem has never been explored ex-

cept in the recent work Ren et al. (2018), where a so-called Gated Fusion Network (GFN) is

introduced for image dehazing. It will be seen that our proposed network has several advan-

tages over GFN, especially in terms of architecture complexity and input-size flexibility;

moreover, certain characteristics of GFN are specifically tailored to the dehaze problem

whereas the architecture of our network is more generic and consequently more broadly

applicable.

The rest of this paper is organized as follows: In Chapter 2, many related work or

methods for image dehazing are reviewed. Chapter 3 introduces the proposed Generic

Model-Agnostic convolutional neural Network (GMAN) together with a detailed explana-

tion of the network architecture and its building blocks. Chapter 4 illustrates details of the

network’s implementation based on GPU and deep learning framework, and also shows

the experimental results of GMAN and the performance comparison with other methods.

Chapter 5 introduces the proposed parallel network that improves dehazing performance

and displays the experimental results. Finally, Chapter 6 makes the conclusion and dis-

cusses our future work of image restoration problem.

4



Chapter 2

Background and Related Work

Single image haze removal has been an ill-posed problem in the field of computer vi-

sion, and many remarkable methods have been put forward to solve it in the past decade.

These can be divided into traditional and Machine Learning (ML)-based methods in gen-

eral based on the techniques they use. The traditional ones mostly rely on analysing the

physical model(1.1) and other prior information, while ML-based methods focus on using

machine learning and deep learning techniques to offset the applicability of prior informa-

tion mentioned above or estimate the haze-free images from Equation (1.2).

2.1 Traditional Methods

The early groundbreaking and infuential methods are from Tan (2008) and Fattal (2008).

Tan (2008) exploits contrast of images to be the prior information under three hypothesis:

firstly, hazy images have lower contrast than the clear ones; sencondly, atmosphere light

intensity A only depends on scene depth, it is locally a constant value and the changes in

5
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an image should be smooth; thirdly, the restored image has the same statistical character-

istics with the natural clear image. With the help of Random Markov Field, t(x) can be

modeled and solved by maximizing the potential energy function. However, this image

enhancement based method is not phisically-grounded and the result image may be over-

saturated. Fattal (2008) employs independent component analysis to estimate the R(x) and

l(x) decomposed from the target image J(x) based on locally constant albedo.

He et al. (2011) proposed a significant idea which is called Dark Channel Prior (DCP)

to tackle this problem. It make use of the fact that there is at least one channel of an image

with extremely low intensity at some pixels. Therefore, the dark channel of J(x) can be

defined as:

Jdark(x) = min
c∈r,g,b

( min
y∈Ω(x)

(J c(y))). (2.1)

It is assumed that the transmission map is constant in a local patch and A is given. And the

Jdark(x) of a haze-free image should be 0. Since Ac is always positive, Jdark(x) can be

expressed as:

Jdark(x) = min
c
( min
y∈Ω(x)

(
Ic(y)

Ac
)) (2.2)

As a result, an estimation of t(x) can be derived using Equation (2.1) and (2.2):

t̂(x) = 1−min
c
( min
y∈Ω(x)

(
Ic(y)

Ac
)), (2.3)

where t̂(x) is denoted as the estimation of t(x). In the next step of estimating A, the top

0.1% brightest pixels are chosen and the highest intensity among their corresponding pixel

of the hazy image tend to be atmospheric light A. Thus, the clear image is easily recovered

by Equation (1.2) exploiting the estimation ofA and t(x). To get a better result, soft matting

(Levin et al., 2006) is also adopted to do the refinement of t(x). Obviously, DCP method

6
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sets an excellent benchmark for this problem.

Even though He et al. (2011) obtain good effect on haze removal using DCP in most of

circumstances, there are still some defect that could be improved. For example, the final

image may look dim and DCP has limited performance in large white region like sky and

huge walls in the scene. Zhu et al. (2015) put forward an algorithm based on the prior

information of color attenuation that not only improve the performance on oversaturation

problem and the detail quality of the image, but also speed up the processing time. It

makes use of a new type of prior information and in particular, employs a regression model

to estimate the depth map d(x) of target image as below:

d(x) = θ0 + θ1v(x) + θ2s(x) + ε(x), (2.4)

where v is the brightness component of hazy image, s is the saturation component, θ0, θ1, θ2

are coefficients of this linear model. ε(x) represents the random error of the model. Since

Zhu et al. (2015) observe that the depth of image has inversly proportional relationship with

the gap between brightness and saturation, the regression model is established and through

supervised learning with the help of training data, these coefficients are estimated. Note

that although this method exploits data training to get the optimal estimation, its innovative

point is the type of prior information.

These typical traditional methods mentioned above have pretty good numerical and

visual performance, respectively, however, they all require prior information in order to

estimate the t(x) or A. This process has one weakness that it hard to get most circum-

stances of the target image visual quality, which means there usually are limitations on

some kind of images or just part of them. Furthermore, considering putting the algorithm

into applications, it needs more information and proceedings to deliver the final hazy-free

7
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images.

2.2 Machine Learning Methods

In recent years, Machine Learning and especially Deep Learning techniques have been

making great progress with Convolutional Neural Network (CNN) becoming a powerful

tool in the field of and computer vision. Thus, researchers take the advantage of those

learning based thoughts and techniques to deal with image restoration problems. And many

learning based methods have been proposed over the last few years.

Tang et al. (2014) first leverage machine learning algorithms to solve the image de-

hazing problem. They employ a Random Forest regression model to complete the job of

estimating trasmission map t(x). After doing the analysis of former prior information based

methods, Tang et al. (2014) put forward the idea to let one of these prior information be

others complementary with the help of a regression model. The inputs of their regressor are

features extracted from hazy images and the outputs are their t(x) values. WithA estimated

using the same criterion as He et al. (2011), the haze-free image will be reconstructed by

(1.2). Another contribution of Tang et al. (2014) s’ method is the generation of training

data, which is based on two useful assumptions: (1). the image content is independent of

depth map d(x) or medium transmission map t(x); (2). the depth value is locally constant.

According to this, the training dataset can be composed of small image patches, and this

influences many later ML-based methods.

As deep learning techniques and graphic programming hardware are developing rapidly,

researchers start using convolutional neural network to solve computer vision problems. To

tackle these low-level feature restoration problems like image denoising, super-resolution,

8
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image deblurring and of course, image dehazing, it is proved that the parameters of a net-

work can be learned when extracting features and reconstructing the result image. Cai

et al. (2016) propose a CNN called DehazeNet with three main layers to estimate t(x) of

the input image. The first layer is a feature extraction layer based on Maxout unit; and the

second one is a multi-scale mapping layer, which is achieved by setting different convo-

lution kernel sizes (3 × 3, 5 × 5, and 7 × 7); following is the local extremum layer based

on maxpooling operation. Before generating the result t(x), Cai et al. (2016) employ a

BRelu(Bounded Relu) function to do the nonlinear regression. The loss function of this

network is MSE between output t(x) and the ground truth transmission map calculated by

the mapping relationship from the input RGB image. This method can keep the color of

the sky and can also avoid the saturation problem. Furthermore, compared with former

methods, it reaches the highest PSNR & SSIM value according to the result of Cai et al.

(2016).

Similarly, Ren et al. (2016) also propose a CNN to estimate t(x). However, the pro-

posed network introduces a multi-scale structure which is composed of a coarse-scale net-

work and a fine-scale network. Regarding the structure of those networks, they are very

simillar in general. The coarse-scale network is used for obtaining the coarse transmission

map structure and then the output will be sent after the upsampling layer of fine-scale net-

work. The transmission map of hazy images will be fed to both networks, so the coarse

output is additional information for fine-scale network. According to Ren et al. (2016)s,

this character of their network can be benefit in visual performance of t(x) estimation.

9
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To avoid estimating A and t(x) seperately, Li et al. (2017a) originally employ a trans-

formation on Equation (1.1). Firstly, it can be rewritten as:

J i(x) =
1

t(x)
I i(x)− A 1

t(x)
+ A, i = 1, 2, 3 (2.5)

As shown in Equation (2.5), separate estimation will enlarge the errors in J(x). So Li et al.

(2017a) put forward a Tranformed Formula:

J i(x) = Ki(x)I i(x)−Ki(x) + b, i = 1, 2, 3, (2.6)

where

Ki(x) =

1
t(x)

(I i(x)− A) + (A− b)
I i(x)− 1

, i = 1, 2, 3 (2.7)

b is the constant bias which set to 1 as default. Through estimation of K(x) that depends

on an relationship between I(x) and t(x), the reconstruction errors can be minimized. The

whole model is called AOD-Net (see Fig. 2.1) and it contains two modules: K-estimation

module and clear image generation module. Li et al. (2017a) employ a CNN which also

adapts the multi-scale structure by applying concatenation operation to convolutional layers

with different size kernels. Li et al. (2017a) illustrate that AOD-Net’s joint estimation let

1
t(x)

and A refine each other, thereby the output image has better lighting conditions and

structural details. In terms of end-to-end structure, this method has a thoughtful idea of

conbining transmission map and atmospheric light together, but since t(x) appears as 1
t(x)

inside K(x), the error in t(x) will be amplified. In addition, the clear image generation

module requires the output of network and also input hazy image to derive the haze-free

image, which means it is cannot generate result image in a single step. From Li et al.

(2017a) s’ experimental results, their network has improvement in PSNR and SSIM on the

10



M.A.Sc. Thesis - Zheng Liu McMaster - Electrical Engineering

Figure 2.1: The schematic diagram of AOD-Net (adopted from original paper of Li et al.
(2017a)).

test sets they build.

Ren et al. (2018) propose an end-to-end network called Gate Fusion Network (GFN) for

image dehazing. It is the latest work that ignore the parameter estimation of this problem

and achieve to build an end-to-end model, rather than simple end-to-end training. Unlike

the methods introduced above, Ren et al. (2018) s’ network generates hazy-free image

directly after their fusion step. Firstly, the main structure of GFN is based on encoder-

decoder structure which has 3 layers for each part. Shortcut connections are also employed

to the last layer before the fusion layer. To better learn the pattern of haze and reconstruct

original features, Ren et al. (2018) leverage a different way from our method which will

be introduced later, they adapte multi-scale concept to GFN by applying it to three scales:

coarsest level, finer level and finest level. Also the lower level’s output will be the input of

its upper level through upsampling and concanentation. Obviously, three loss functions are

applied to each level. Another contribution of GFN is that it uses several inputs from the

results of different image correction methods, which can be regarded as prior information,

and this is the main motivation of fusion operation. Ren et al. (2018) derive white balanced,

contrast enhanced and gamma corrected input to their model, and they can be expressed as

11
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following Iwb, Ice and Igc. Iwb is obtained by Reinhard et al. (2001), Ice and Igc are:

Ice = µ(I − Ĩ), (2.8)

where Ĩ is the average luminance value, µ = 2(0.5 + Ĩ), and

Igc = αIγ, (2.9)

where α is set to 1 and decoding gamma correction γ is set to 2.5 in Ren et al. (2018)

s’ experiment. At the end of GFN, outputs of these image enhancements are combined

together and haze-free result is derived by them.

Compared with former methods, GFN has better PSNR and SSIM than most of them,

however, there is still weakness and inconvenience of GFN. The first example is it cannot

work well in corrupted images such as those who have severe fog. And the other ones is

that when implementing GFN, there is a limitation in the size of the network’s input. The

Width and Height should be the mutiple of 8 otherwise it cannot be fed into the network,

so the solution is to resize the input image according to the code. Obviously, this could

lead to distortion of input and furthermore, influence the visual quality of desired output.

In addition, the three enhancements are hard to be calculated when dealing with real world

tasks and the processing time will increase, which is a significant cost.

As what I metioned above, our proposed Generic Model-Agnostic convolutional neural

Network (GMAN) has advantages in several aspects over these related methods and the

performance is also better. In the following chapters I will explain GMAN thoroughly and

analyse its performance in details.

12



Chapter 3

The Proposed Algorithm

Since the single image haze removal is an ill-posed problem, a deep neural network based

on convolutional, residual, and deconvolutional blocks is devised and trained to take on a

hazy image and restore its haze-free version. The network globally has an encoder-decoder

structure as the whole structure is shown in Fig. 3.1. To achieve haze removal and output

the desirable clear image, these modules have their specialized function and are combined

in an exquisite structure through experiments. In the following subsections, the network

architecture, its building blocks, and the training loss function are discussed in more detail.

In addition, the efficiency analasis of each parts are also included.

3.1 Network Architecture

The proposed network is a fully convolutional Network (FCN). It is used to restore a clear

image from a hazy input one. Functionally speaking, it is an end-to-end generative network

that uses encoder-decoder structure with down- and up-sampling factor of 2. Its first two

layers are constructed with 64-channel convolutional blocks. Following them are two-step

13
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4 residual blocksdown-sampling up-sampling

Relu

hazy image clear image

128 filters

Figure 3.1: Structure and details of GMAN. The yellow blocks are convolutional layers,
the green blocks are down-sampling layers and deconvolutional layers. We cascade 4

residual blocks shown as blue blocks, and the number of convolutional layers inside are 2,
2, 3, 4.

down-sampling layers that encode the input image into a 56 × 56 × 128 volume. The

encoded image is then fed to a residual layer built with 4 residual blocks, each containing

a shortcut connection, see Fig. 3.3. This layer represents the transition from encoding to

decoding, for it is followed by the deconvolutional layer that up-samples the residual layer

output and reconstructs a new 224 × 224 × 64 volume for another round of convolutions.

The last two layers comprise convolutional blocks. They transform the up-sampled feature

maps into an RGB image, which is finally added to the input image and thresholded with a

ReLU to produce the haze-free version.

3.1.1 Encoder-decoder Structure

Since the proposed GMAN must have the function of exporting haze-free image, the model

should be a generative model. Therefore, I adapt the idea of auto-encoder, which is a

famous generative model, to carry out result image directly, and our model is illustrated in

Fig. 3.2 On the one hand, in the part of encoder, the network employs fully convolutional

layers to generate features of haze and original scene.
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input

1/2X

1/2X

hidden layers

restoration

2X

2X

encoder decoder

Figure 3.2: Encoder-decoder structure

And in order to reduce the dimenssion of feature map, which is important for allowing

the network be deeper and filtering respectively useless information in the image, strides

of convolution operations are set to be 2. Then throught two down-sampling layers, maps

size is encoded to 56 × 56. Compared with max-pooling and average-pooling layer, this

method for down-sampling can improve image quality and avoid decrease in output image

resolution. On the other hand, deconvolutional layers are applied for up-sampling the samll

feature maps and reconstructing missing data of haze-free RGB image. Using this struc-

ture, haze feature are discarded and original scene features are preserved, Furthermore, the

generated image will be more smooth and stable, also, it will have a more steady training

process. In short, GMAN gains several advantages in restoring the clear image through

the compression and decompression of information. Between the encoder and decoder are

hidden layers, I will illustrate how the hidden layers are composed in our GMAN later.
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3.1.2 Residual Learning

As it has been a common consensus, the deeper the CNN is, the better expression ability it

has. And He et al. (2016a) experimentally prove that deeper networks perform better when

the time consuming complexity are the same. However, according to He et al. (2016b),

a 56-layer plain network on CIFAR-10 dataset has higher training and test error than a

20-layer one, which indicates that adding more layers to a CNN cannot improve the perfor-

mance when its depth reaches a certain extent. Instead, more layers could cause significant

degradation of the network in classification task and other experiment results also support

this phenomena. To tackle this problem, He et al. (2016b) propose a method in applying

residual unit, which in GMAN is named residual block. This method is called residual

learning, and it has surprisingly good performance in ImageNet task. He et al. (2016b)

regard one of the former layers as identity layer and add it to a latter layer before the acti-

vation layer through short-cut connection, and through this way He et al. (2016b) hope to

make the network possible to be deeper. Those residual blocks extract high level feature

maps to preserve and transport information that is important for restoration to lower level

ones in training period. From other point of view, the residual block can also be considered

as a fusion operation.

The effect of residual learning, according to He et al. (2016b)’s result, avoid network

performance’s degradation and furthermore increase the accuracy in classification. The loss

function converges fast and has lower error, at the mean time, it doesn’t occur excessive

overfitting. In the field of image classification problem, residual learning structure shows

the ability of improving network’s performance as its depth increase with and the network

has smaller response variance. Another contribution of this method is offsetting gradient

vanishing problem in deep neural networks.
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convolutional layer

non-activated conv layer

Relu

+

Figure 3.3: A residual block used in the middle layer of the proposed GMAN. In each
block, the number of convolutional layers can be different. Relu is used as the activation

function after the addition operator of every block.

CNN for image prediction

residual image rinput x output y 

Figure 3.4: Global residual block: input x, residual image r and output y are all RGB
images; blue block represents the proposed CNN; and after the addition of x and r, Relu is

applied to get desired output.
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The proposed GMAN employs residual learning on two levels, local and global level.

In the hidden layers between encoder and decoder module, just right after down-sampling,

the residual blocks are used to build the local residual layers. It takes advantage of the

hypothesized and empirically proven Kim et al. (2016); Zhang et al. (2017); Szegedy et al.

(2017); Ren et al. (2017) easy-to-train property of residual blocks (see He et al. (2016b)),

and learns to recognize haze structures. Residual learning also appears in the overall archi-

tecture (see 3.4) of the proposed GMAN. Specifically, the input image is fed along with the

output of the final convolutional layer to a sum operator, creating one global residual block.

According to 3.4, the output can be expressed as y = r+x, so r = x− y. It is obvious that

by adding input and output map together, residual image r is easy to be optimized because

the prediction target of loss function is transformed to be residual image r and r is learned

and the most of the value are close to zero. The main advantage of this global residual

block is that it helps the proposed network better capture the boundary details of objects

with different depths in the scene.

3.1.3 Loss Function: MSE and Perceptual Loss

To train the proposed GMAN, a two-component loss function is defined. The first com-

ponent measures the similarity between the output and the ground truth, and the second

helps produce a visually meaningful image. The following three subsections provide more

information on each component and the total loss:

MSE Loss

Using PSNR to measure the difference between the output image and the ground truth is

the most common way to show the effectiveness of an algorithm. Thus, MSE is chosen
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to be the first component of the loss function, namely LMSE . The optimal value of PSNR

could be reached by minimizing MSE at pixel level, which is expressed as:

LMSE =
1

N

N∑
x=1

3∑
i=1

‖ Ĵ(xi)− J(xi) ‖2, (3.1)

where Ĵ(xi) is the output of the network, J(xi) is the ground truth, i is the channel index,

and N is the total number of pixels. Through MSE loss, the network learned to produce

result image with maxmum similarity of ground truth image.

Perceptual Loss

In many classic image restoration problems, the quality of the output image is measured

solely by the MSE loss. However, the MSE loss is not necessarily a good indicator of the

visual effect. As Johnson et al. demonstrate in Johnson et al. (2016), extracting high level

features from specific layers of a pre-trained neural network can be of benefit to content

reconstruction. The perceptual loss obtained from high-level features can describe the dif-

ference between two images more robustly than pixel-level losses. In our experiments, it is

proved that opimizing the perceptual loss can get slightly gain on SSIM value.

Adding a perceptual loss component enables the decoder part of GMAN to acquire an

improved ability to generate fine details of target images using features that have been ex-

tracted (see 3.5). In the present work, the network output and the ground truth are both fed

to pre-trained VGG16 network from Simonyan and Zisserman (2014); following Johnson

et al. (2016), we use the feature maps extracted from layers conv11, conv22, conv33 (which

will be simply referred to as layers 1, 2, 3) of VGG16 to define the perceptual loss Lp as
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GMAN

input output

pretrained VGG16

ϕ

Lp

ground
truth

Figure 3.5: The flow chart of how perceptual loss Lp is calculated.
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follows:

Lp =
3∑
j=1

1

CjHjWj

‖ φj(Ĵ)− φj(J) ‖2
2, (3.2)

where φj(Ĵ) and φj(J) are the feature maps of layer j of VGG16 induced by the network

output and the ground truth, respectively, and Cj , Hj , and Wj are the dimensions of the

feature volume of layer j of VGG16.

Total Loss

Combining both MSE and perceptual loss components results in the total loss of GMAN.

In order to provide some sort of balance between the two components, the perceptual loss

is pre-multiplied with λ, yielding the following expression:

L = LMSE + λLp. (3.3)

Therefore, in the training process, L is optimized when its components are obtained re-

spectively and the optimization unified since GMAN has end-to-end structure. Details of

training and test process will be explained in the following chapter.
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Chapter 4

Implementation and Experimental

Result

This chapter first discribes the datasets GMAN uses for training and testing, including some

pre-processing of input images. Then details of training process, for example parameter

setting and hardware information, will be illustrated. After that, quantitative result of our

method are provided, as well as visual quality comparison with other methods.

4.1 Dataset for Training and Testing

According to the atmosphere scattering model, the transmission map t(x) and atmosphere

light intensity A control the haze level of an image. Therefore, setting these two factors

properly is important for building a dataset of hazy images. We use the OTS dataset from

RESIDE (Li et al., 2017b), which is built using collected real-world outdoor scenes. The

whole dataset contains 313,950 synthetic hazy images, generated from 8970 ground-truth
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images by varying the values of A and β (the depth information is estimated using algo-

rithm from Liu et al. (2016)). Thus, for each ground-truth image, there are 35 correspond-

ing hazy images.

We notice that the testing set of RESIDE, the SOTS, has 1000 ground-truth images,

each with 35 synthetic hazy counterparts, that are all contained in the training data. This

certainly can lead to some inaccuracies in testing results. Thus, the testing images were all

removed from the training data (including their hazy counterparts), leading to a reduced-

size training dataset of 278,950 hazy images (generated from 7970 ground-truth images).

4.2 Training Details

The proposed GMAN is trained end-to-end by minimizing the loss L given by Equation

(3.3). All layers in GMAN have 64 filters (kernels), except for the down-sampling ones

which have 128 filters, with spatial size of 3 × 3. The network requires an input with size

224 × 224, so every image in the training dataset is randomly cropped in order to fit the

input size. This restriction is only for the training phase, because the trained network can be

applied to images of arbitrary size since it is a fully convolutional network. During training

period, images in training dataset are randomly shuffled for every epoch in order to get

better ability of generalization. The batch size is set to 35 to balance the training speed

and the memory consumption on the GPU. For accelerated training, the Adam optimizer

(Kingma and Ba, 2014) is used with the following settings: the initial learning rate of 0.001,

β1 = 0.9, and β2 = 0.999. The network and its training process have been implemented

using TensorFlow software framework and carried out on an NVIDIA Titan Xp GPU. After

20 epochs of training, the loss function drops to a value of 0.0004, which is considered a

good stopping point.
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(a) Hazy (b) DCP

(c) DehazeNet (d) MSCNN
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(e) AOD-Net (f) GFN

(g) GMAN (h) Ground truth

Figure 4.1: Visual quality comparison of different dehaze methods. Examples are from
synthetic hazy images
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(a) Hazy (b) DCP

(c) DehazeNet (d) MSCNN
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(e) AOD-Net (f) GFN

(g) GMAN

Figure 4.2: Visual quality comparison of different dehaze methods. Examples are from
natural hazy images
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4.3 Experimental Results

The proposed GMAN achieves superior performance relative to many state-of-the-art meth-

ods. According to Table 4.1 1 below, it clearly outperforms all other competing methods

under consideration on the SOTS outdoor dataset (He et al., 2011; Cai et al., 2016; Ren

et al., 2016; Li et al., 2017a). Moreover, as shown in Fig. 4.1 and 4.2, GMAN avoids

darkening the image color as well as the excessive sharpening of object edges. In contrast,

it can be seen from Fig. 4.1 and 4.2 that the DCP method (He et al., 2011) dims the light

intensity of the dehazed image, and causes color distortions in high-depth-value regions

(e.g., sky); though MSCNN (Ren et al., 2016) does well in these high-depth-value regions,

its performance degrades in medium-depth areas of the target image. Hence, the proposed

GMAN can overcome many of these issues and generate a better haze-free image.

DCP DehazeNet MSCNN AOD-Net GFN GMAN
PSNR 18.54 26.84 21.73 24.08 21.67 28.19
SSIM 0.7100 0.8264 0.8313 0.8726 0.8524 0.9638

Table 4.1: Performance comparison on the SOTS outdoor dataset.

DCP DehazeNet MSCNN AOD-Net GFN GMAN
PSNR 18.87 22.66 20.01 21.01 22.44 20.53
SSIM 0.7935 0.8325 0.7907 0.8372 0.8844 0.8081

Table 4.2: Performance comparison on the SOTS indoor dataset.

We have also tested our network on the SOTS indoor dataset (see Table 4.2, Fig. 4.3 and

4.4). In this case, the performance is not as impressive, and comes fourth after DehazeNet,

GFN, and AOD-Net. Nevertheless, one can still see the great promise of the model-agnostic

dehaze methods even on the indoor dataset. Indeed, also as a member of the family of
1In Tables 4.1 and 4.2, the performance results of other methods except GFN are quoted from Li et al.

(2017b).

28



M.A.Sc. Thesis - Zheng Liu McMaster - Electrical Engineering

(a) light (b) thick

(c) GMAN (light) (d) GMAN (thick)

(e) ground truth

Figure 4.3: Dehazing results from SOTS indoor subset, example with high light intensity
area.
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(a) light (b) thick

(c) GMAN (light) (d) GMAN (thick)

(e) ground truth

Figure 4.4: Dehazing results from SOTS indoor subset, example with low light intensity.

30



M.A.Sc. Thesis - Zheng Liu McMaster - Electrical Engineering

model-agnostic networks, GFN is ranked second in terms of PSNR and ranked first (almost

tied with the top-ranked DehazeNet) in terms of SSIM. Our preliminary results indicate

that it is possible to design a more powerful model-agnostic network that dominates all the

existing ones (especially those based on the plug-in principle) on both SOTS outdoor and

indoor datasets by integrating and generalizing the ideas underlying GMAN and GFN. This

line of research will be reported in a followup work.
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Chapter 5

A Parallel Network

GMAN, the proposed convolutional neural network has the ability of learning to generate

haze-free images in an end-to-end manner as I demonstrate in the above Chapters. As it

is shown in Figures 4.1, 4.3 and 4.4 as well as Tables 4.1 and 4.2, although GMAN has

achieved significant performance in outdoor images and ranked first considering PSNR

and SSIM among these competing methods, as for indoor test set, GMAN doesn’t has the

effectiveness as it does on outdoor set. It can be observed that there are some kinds of

artifact occurs in indoor images, which result in distortion of object contour details and

color accuracy. And in regions near boundary line between different scene depth, block

effect (see Fig. 5.1) may also occur.

Hence, we hope to make an advancement towards better performance on indoor images

in the extended work. In the following sections, I will introduce the proposed network

structure and demonstrate the improvement through experimental result.
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Figure 5.1: Example of block effect that occurs in indoor image.

5.1 Motivation

The main criterion of quantitative performance comparison is the value of PSNR between

output image of a model and ground truth image. According to Table 4.2, GMAN is in

the fourth place behind DehazeNet, GFN and AOD-Net. And in examples of indoor per-

formance, it can be found that block effect and not being sensitive to similar depth regions

are main defects of our network. These effects that weaken the visual quality also result

in cutting down PSNR and SSIM. In my opinion, this is due to the fixed kernel size of

our network to some extent, which leads to smaller reception field. Hence, finding a way

to give more complementary information from larger reception kernel is the most intuitive

idea. Moreover, the latest method GFN (Ren et al., 2018) employ a gate fusion structure

to make corrections in the quality of image, so as I mentioned in Chapter 4, integrating

fusion idea and model-agnostic network together have the potential of making progress.

So another parallel lightweight network is built using different convolution strategy, and

the refined output image will be the combination of two streams.
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GMAN

hazy input dehazed result

α1

α2

PN

Figure 5.2: Example of block effect that occurs in indoor image.

5.2 Parallel Network

In this section, details and principle of the parallel network is explained. First of all, GMAN

performs well on outdoor images and this advantage should be maintained. Thus, main

structure of GMAN is still the principal part of the network. Beside GMAN is the parallel

network (PN), it can be seen as another branch coming out from input hazy image, and this

architecture is shown in Fig. 5.2. According to Fig. 5.2, it is a respectively shallow network

compared with GMAN. Similarly, the PN also has an encoder-decoder structure because of

that convolutional layers could down-size these feature maps and haze structure still need

to be filtered. Regarding the convolutional layers, another type of them is employed. So I

am introducing the dilated (atrous) convolution first, whose characters are main purpose of

building PN, and details of PN are illustrated afterwards.

5.2.1 Dilated Convolution

Dilated convolution can also be called as ’convolution with holes’, which is easier to un-

derstand that its core idea is inserting 0s into normal convolution kernels. Traditional
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Figure 5.3: Dilated convolution: kernel size 3× 3, dilation rate 2.

convolution exploits fixed kernel size and the parameters inside kernel are initialized by

specific distribution. Since pooling layers and other down-sampling layers have been put

into use for reducing map dimenssion and integrating relation between maps widely, the

way to avoid loss in resolution and texture details of images appears to be more important.

Also, pooling layer and convolutional layer with larger reception field are not learnable to

generate a generalizable feature map. Yu and Koltun (2015) propose dilated convolution

originally (see Fig. 5.3), it allows the exponential increase of reception field without spa-

tial dimmensions loss in pixel level. Dilated convolution not only works well in pixel-level

image predictions, but also shows surprisingly good effect in tasks that require global or

sequence-to-sequence information reliability like: semantic segmentation, speech synthesis

and machine translation.

A simple example of dilated convolution operation is shown in Fig. 5.3. the kernel

size is 3 × 3 and dilation rate is set as 2. In the software Tensorflow, the dilation rate can

be changed like a hyper-parameter. Except these 9 pixel points, value of the rest points
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ReLu

parallel output

hazy input
+

4 2 1

Figure 5.4: Structure details of PN. The dilation rate of these blocks are green: 4, blue: 2
and purple: 1, reception fields are accordingly: 9, 5 and 3. The last convoltional layer uses

normal convolution with kernel size 3× 3.

are filled with 0. Unlike padding blank pixels into a map, dilated convolution intends to

skip some pixels and keep structures and global information. As a result of this action, the

reception field then comes to 5× 5 if padding method is ’SAME’ in Tensorflow. Moreover,

if padding set to ’VALID’, the reception size can become larger. During implementation,

the stride of dilated convolution in Tensorflow has the default value 1 and it cannot be

changed. Compared with normal convolution, if the network needs a specific reception

field, the number of parameters that dilated convolution exploits is respectively smaller.

5.2.2 Structure Details

Inside our parallel network, whose detail is shown in Fig. 5.4, almost all convolutional lay-

ers (except the last one that generate RGB image) employ the dilated convolution to extract

features using larger reception fields and reconstruct a RGB image that is complementary to

the output of GMAN. The first layer of PN has the dilation rate 4 and this reduce the size of

the input image. Following are two layers with dilation rate 2, and then they are connected
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with three layers with dilation rate 1. These 3 different rates lead to different effective ker-

nel size as: 9× 9, 5× 5 and 3× 3 since input kernel size of dilated convolution layers are

unified to 3 × 3. To transfer the feature maps back to original size, a dilated deconvolu-

tional layer which has dilation rate 4 is employed and the output size is 224 × 224. After

deconvolution layer, I also use a normal convolutional layers to obtain the RGB image and

also regard this layer as refinement operation. Although the PN is a shallow network with

less than 10 layers, I still drag the input image to the last layer and do addition operation

before ReLu function in order to calculate residual image which makes the network easier

to be trained and optimized (same as global residual learning in GMAN). Until now, all

layers except the last convolutional layer have 64 channels (number of filters), and along

with GMAN’s output, two haze-free images are generated from the two streams. Since

these two outputs are very similar, I set two dynamic weights α1 and α2 to those images

(see Equation 5.1) for balancing the contribution from two streams of our entire network.

Then final estimation of the original haze-free image is the combination of two globally

weighted map, and this process can be seem as a fusion module where shortcomings of

GMAN are corrected and refined by PN’s complementary output.

Ĵoverall = α1ĴGMAN + α2ĴPN (5.1)

And through training GMAN and PN by minimizing the similarity between Ĵoverall and

ground truth image, α1 and α2 can learn to reach the optimal value automatically.

5.2.3 Experimental Result

In Chapter 4, the performance of GMAN on both outdoor and indoor test dataset are pre-

sented and discussed. From quantitative and visual comparison above it can be learned that

37



M.A.Sc. Thesis - Zheng Liu McMaster - Electrical Engineering

(a) ground truth (b) hazy

(c) GMAN
(22.31 / 0.8579)

(d) GMAN+PN
(23.35 / 0.9013)

Figure 5.5: Dehazing comparison example of SOTS between GMAN and GMAN+PN,
also with (PSNR /SSIM).

GMAN has weakness on indoor dataset. Hence, this section will focus on improvement

and characteristic that PN have on indoor training and test dataset specifically. First of

all, during training process, obviousely the time consumption increases because the whole

network has more parameters due to additional branch. Then as for the datasets used for

training and testing, I employ the same datasets as those in GMAN’s experiment in order

to maintain the fairness of the performance comparison.
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(a) ground truth (b) hazy

(c) GMAN
(21.70 / 0.7330)

(d) GMAN+PN
(23.69 / 0.8617)

Figure 5.6: Another dehazing comparison example between GMAN and GMAN+PN, also
with (PSNR /SSIM).
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During training period, Adam optimizer (Kingma and Ba, 2014) is used for minimiz-

ing the loss function with initialized learning rate 0.001. The training and testing process

are conducted on Tensorflow framework and NVIDIA Titan Xp GPU. However, the stop-

ing time in the training of this experiment appears to be later than GMAN, the network

converges at around 30 epochs and the loss value decrease to 0.001.

In Fig. 5.5 and 5.6, the quality of the two stream network (GMAN with PN) is shown

and compared with single GMAN result image. The advantage of PN can be seen espe-

cially in the first example, compared with ground truth image, details like reflection on the

floor and light scene near the window can be restored properly in both results. However, on

the one hand according to subfigure (c) of first example, GMAN does not remove the haze

structure around the vase region, where GMAN+PN could achieve a better work. More-

over, the parallel network also restrains the light overexposure phenomenon that occurs in

(c) and preserves better coler effect. On the other hand, in the second example, it keeps

the advantages of PN, but it seems that the block effect has not been overcame completely.

To better demonstrate the improvement of PN, PSNR and SSIM value of the two structure

have also been displayed below images. Both examples show the apparent rising in these

two criterion (increase more than 1.0 in PSNR and 0.05 in SSIM).

DCP DehazeNet MSCNN AOD-Net GFN GMAN GMAN+PN
PSNR 18.87 22.66 20.01 21.01 22.44 20.53 23.03
SSIM 0.7935 0.8325 0.7907 0.8372 0.8844 0.8081 0.8890

Table 5.1: GMAN+PN performance comparison with existing methods.

With the new network structure, performance on test subset of SOTS can also be cal-

culated. After applying GMAN with PN to it, Table. 5.1 shows the PSNR and SSIM

testing result among 500 indoor images. According to Table. 5.1, without parallel network,

GMAN stands in the fourth place both in PSNR and SSIM on indoor subset of SOTS. And

40



M.A.Sc. Thesis - Zheng Liu McMaster - Electrical Engineering

with the proposed PN, the PSNR comes to 23.03 while SSIM value reaches 0.8890, which

is a big step moving forwards and the quantitative performance surpasses the DehazeNet

(Cai et al., 2016) to rank the first.

Hence, the visual example and the quantitative result prove that another parallel network

using different type of convolutional operation could expand the reception field and achieve

the concept of multi-scale refinement, thereby improve the quality of haze-free output. And

with only less than 10 layers network branch, it can generate the complementary image

without affecting the implementation efficiency.

41



Chapter 6

Conclusion and Discussion

In this thesis paper, I propose an end-to-end convolutional neural network called Generic

Model-Agnostic Convolutional Neural Network (GMAN) to tackle the single image de-

hazing problem. And the proposed method explores a new direction. Firstly, according

to its general structure, GMAN learns to capture haze structures in images and restore

the clear ones without referring to the atmosphere scattering model through the encoder-

decoder fully convolutional architecture. Unlike previous methods, GMAN also avoids the

deemed-unnecessary estimation of parameters A and t(x). Secondly, the proposed net-

work also benefits from the residual learning strategy, locally and globally, which not only

helps preserve more texture and detail information of original image, but help improve the

efficiency of the network during training process. Finally, from the visual quality of exper-

iment result, it can be proved that GMAN has the potential in generating haze-free images

with better quality and the result images also show that it is capable of overcoming some

of the common pitfalls of state-of-the-art methods, like color darkening and excessive edge

sharpening. These advantages can also be reflected quantitatively, like Table. 4.1 and 4.2,
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and the improvment over other methods verify another feature of our method: the per-

ceptual loss jointly increase the similarity between desired image and ground truth when

training the GMAN. Hence, the techniques in our method are effective and indespensable.

As I have mentioned in Chapter 1 above, solving the image dehazing problem can be

benefit in several real world applications: intelligent surveillance, target tracking, viechle

plate detection, etc. It is really important for algorithms to be light in memory usage,

portable and easy to be applied, because there are many limitations in real world tasks like

hardware capability and time or funds investment. GMAN, as an end-to-end network, has

the property of being applied easily and has better generalization ability, which means there

is no need to do other pre-adjustment about input image for a trained network. Furthermore,

the software framework Tensorflow we use is suitble for large scale engineering project and

tasks need multithreading computing. With high performance GPUs, it is also possible to

fine tune the model with new data set in order to be adapted to the application’s goal.

However, from the performance comparison with other methods, it can be revealed that

our network has deficiency on indoor dataset. The cause of GMAN’s shortcoming of deal-

ing with indoor hazy has already been discussed in Chapter 5, and inspired by the analysis

and existing model-agnostic idea, a parallel network is built to improve the performance.

The parallel network exploits a new convolutional strategy to enlarge the reception field,

which can provide more information of neiboring pixels in order to reduce block effect and

improve PSNR and SSIM performance. Note that the parallel structure does not simply

add layers (more parameters) to learn the features, with less than 10 layers, it can get a

complementary image that assist GMAN refine the final output through training. Through

the results of experiments, the ability of PN is proved because it reaches higher PSNR and

SSIM value than other methods on indoor test set and keeps the visual quality at the mean
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time. This improvement can also be seen in the examples (Fig. 5.5 and 5.6) I display.

Therefore, GMAN with the help of a parallel network is believed to make progress on the

basis of GMAN in image dehazing problem.

Moreover, due to the generic architecture of GMAN, it could lay the groundwork for

further research on general-purposed image restoration. Indeed, we expect that through

training and some design tweaks, our network could be generalized to capture various

types of image noise and distortions. In this sense, the present work not only suggests an

improved solution to the dehaze problem, but also represents a progressive move towards

developing a universal image restoration method.
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