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Abstract

This thesis presents a Bayesian approach to incorporate historical data. Usually,

in statistical inference, a large data size is required to establish a strong evidence.

However, in most bioassay experiments, dataset is of limited size. Here, we proposed

a method that is able to incorporate control groups data from historical studies.

The approach is framed in the context of testing whether an increased dosage of

the chemical is associated with increased probability of the adverse event. To test

whether such a relationship exists, the proposed approach compares two logit models

via Bayes factor. In particular, we eliminate the effect of survival time by using

poly-k test. We test the performance of the proposed approach by applying it to six

simulated scenarios.
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Notation and abbreviations

EU Experimental Unit

NTP National Toxicology Program

BF Bayes Factor

BFWO Bayes Factor Without historical information

TIER Type I Error Rate
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Chapter 1

Introduction

The National Toxicology Program (NTP) conducted a two-year bioassay experiment

to determine whether the increased dosage of benzophenone is related to the increased

occurrence of tumour. This bioassay experiment studied both sexes of two rodent

species, and included one control group and three treatment groups. Each group

consisted of 50 randomly chosen animals. For animals which died during the study

period, they were screened for anomalies. At the end of the experiment, all surviving

animals were sacrificed. The experimental unit (EU) ID, study period, survival time,

dosage level and presence of tumour were recorded. However, the results of standard

analyses of presence of tumour in female rats were not satisfactory. The records of

female rats with tumour onset were 0 in the control group, 0 in the low-dose group,

1 in the mid-dose group and 2 in the high-dose group. The number with presence of

tumour was extremely small. According to the report of NTP, the result of standard

trend test shows that the p-value equals 0.074, which does not provide statistically

significant effect at standard 5% level. Due to the high cost and long study period

of bioassay experiments, repeating this experiment with increased number of EU in
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each group is not realistic.

To solve this problem, Peddada et al.[2007] proposed a survival-adjusted test for de-

tecting dose-related trends in tumor rates. This method incorporated data from

historical control groups. These historical data arose from bioassay experiments

conducted under conditions similar to this experiment. In this work, we propose a

Bayesian analysis method comparing two logit models via Bayes factors. The method

adopted is based on León Novelo et al.[2017] and Peddada’s test. The goal of this

method is to test whether an association between benzophenone and tumour rate

exists or not.

Several authors have investigated the problem of incorporating historical data by

Bayesian approach. Hoel and Yanagawa[1986] proposed a linear trend test for bino-

mial reponse data by using beta prior distribution for the historical control informa-

tion. Hobbs et al.[2012] proposed a Bayesian modification of the commensurate prior

model. Unlike non-linear models in our approach, they incorporated patient-level

historical data by using general and generalized linear mixed regression models.

This thesis is divided into six parts. In Chapter 2, we briefly described the datasets

analyzed in this thesis. Chapter 3 outlines poly-k test and Peddada et al.’s test.

We then introduce the Bayesian method and Bayes factors in Chapter 4. Chapter 5

presents results from simulation studies under different scenarios. Some concluding

remarks are made in Chapter 6.
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Chapter 2

Data description

Data that will be analyzed in this thesis are introduced in this chapter. Those data

are arising from bioassay experiments carried out by National Toxicology Program.

Usually, the duration for these experiments are two years, and they are designed to

test whether certain chemical has any effect on the occurrence of tumour or not. All

of the seven studies in our datasets have taken female rats as experimental unit. The

data contain 7 groups altogether: six historical study groups and one current study

group. Each record in the dataset consists of six variables: rat ID, study, dose level,

survival time, study duration, and a dichotomous variable which indicates the exis-

tence of tumour or not. Rat IDs are different for rats in the same group, but it may be

the same for two rats from different groups. The study variable indicates which study

group the record comes from. The current study contains four dose levels: 0, 312, 625

and 1250 ppm(parts per million). The historical studies only have a zero-dose level.

The survival time for each rat is recorded for each group. Due to the impact of some

environmental factors, some rats may die before the end of the study. All died rats

were screened for anomalies. As mentioned earlier, the bioassay experiments typically

3
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run for 2 years. All study groups chosen in this dataset are from 2-year studies. Since

the study duration is recorded in days, it may vary in different study groups.

The data for current study arose from a NTP technical report [2006] on study of

benzophenone. This study is to determine the effects of benzophenone on rats and

mice to identify potential toxics or carcinogenic hazards to humans. In the study,

groups of 50 animals were fed diets containing 0, 312, 625 or 1,250 ppm benzophe-

none for 2 years. Tissues from more than 40 sites were examined for each animal.

The data for six historical groups are from six previous bioassay experiments which

were carried out under the same condition (caging, food, delivery method, etc.) as

the benzophenone study considered now. The records for control groups are chosen.

As the data shows, no rats developed tumour in control groups of historical studies.

For the sake of consistency, only records from female rats are used in this thesis. The

table below shows 7 rows of dataset as an example.

Table 1. Seven rows of the benzophenone dataset

Rat ID Study Dose Survival

time

Study du-

ration

Tumor

No=0,

Yes=1

244 Current 0 288 731 0

288 Current 312 609 731 0

301 Current 625 528 731 1

385 Current 1250 485 731 1

126 H1 0 677 735 0

415 H2 0 728 729 0

144 H6 0 735 735 0

4



Chapter 3

Background

The problem that will be discussed in this thesis is whether the increased level of

certain chemical treatment is associated with the increasing probability of presence

of tumour. In a typical bioassay experiment, EUs are exposed to some chemical until

they die or be sacrificed at the termination of the study period. In addition to the

presence of tumour or not, survival time of EUs were also recorded. Here in our work,

the cause of death is assumed to be unknown.

3.1 Poly-k test

Consider a bioassay experiment with I treatment groups and one control group.

Animals in the ith group receive dose mi, i = 0, 1, . . . , I − 1. Suppose there are

J studies in the test, j = 0, 1, . . . , J − 1. The first group is the one from current

study. The historical studies are indexed by 1, . . . , J − 1. Let nij denote the number

of individuals with the presence of tumor. In Cochran-Armitage linear trend test

[1955], it is assumed that all EUs are at equal risk of developing the tumour during

5
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the study period. Therefore, the tumour rate in the ith group is estimated as

rij = dij
nij

, (3.1)

where dij denotes the total number of animals that developed a tumour in the ith

treatment group in study j and nij denotes the total number of animals assigned

to the ith treatment group in study j. However, if animals die early in a bioassay

experiment, they are obviously at lower risk of developing a tumour compared to

those EUs who live to the end of experiment. In other words, those animals who die

early and do not developed a tumour make less contribution to the survival count.

One way of correcting this problem has been introduced by Bailer and Portier[1988].

In this method, the total number at risk for test is defined as

n∗ij =
nij∑
l=1

ωijl, (3.2)

where ωijl is a weight assigned to the lth animal in the ith group. The proportion is

modified as

rij = dij
n∗ij

. (3.3)

In poly-k test, the weight is set to be 1 if the corresponding animal dies with tumour

and the weight is equal to the kth power of tijl over tmax,j, where tijl is the survival

time of the lth animal in dose group i in study j and tmax,j is the maximum survival

time in study j. In most cases, tmax,j equals the study duration of study j. The weight

6
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ωijl can then be expressed as

ωijl =


1 if the lth animal in the ith group in study j dies with tumour

( tijl

tmax,j
)k otherwise.

(3.4)

The weights ωijl are all set to 1 for the Cochran-Armitage test. Kupper et al.[1986]

found that most presences of tumour seem to occur at the rate of a third to fifth order

power in time. As recommended by Bailer and Portier[1988], the value of k is set to

3. The method in this thesis is built on such a poly-3 test. Let πij denote the tumour

rate for animals surviving until the end of the jth study in the ith group. The poly-k

test suggests that the probability that a EU develops the tumour in the duration of

the study is proportional to the weight assigned to that EU. Let zijl represent the

quantal response, where it is set to 1 if the lth EU in the ith group in study j develops

the tumour, and it is equal to 0; if it is not the case, that is,

P (zijl = 1) = ωijlπij. (3.5)

The mean of the total number of EU who exhibit tumour is then

E(
∑
l

zijl) =
∑
l

P (zijl = 1)

=
∑
l

ωijlπij

= πij
∑
l

ωijl

= πijn
∗
ij.

(3.6)

7
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Note that di is the observed value of E(∑l zijl), and rij = di

n∗ij
. In other words, rij is

the moment estimate of πij. The survival time is incorporated into the analysis by

modifying nij to n∗ij.

3.2 Incorporating information from historical stud-

ies

In bioassay experiments, the occurrence of tumours is very rare. However, these

bioassay experiments are time-consuming and costly. To increase the power of the

analysis, a rich collection of information is needed. So, to overcome this problem, a

method of incorporating historical data is needed. In the past, several methods have

been proposed to incorporate historical data. However, most of these methods do

not adjust for survival. Peddada’s test [2007] can correct this problem. In Peddada’s

test, poly-3 adjustment has been applied in their analysis. Multiple historical control

groups database are accounted in their analysis. All these historical studies have the

same sort of exposure ( feed, gavage, inhalation, skin painting, etc.) as the study

considered here. A restriction has been placed on these historical study groups: no

genetic drift. The test statistic proposed by Peddada et al.[2007] isW = max(D1, D2),

where D1 represents the distance between the current control group and the current

treatment groups, and D2 represents the distance between historical control groups

and current treatment groups. These statistics are motivated by Bieler-Williams test

and Peddada-Kissling test, and as usual a significance level α is set. The W1−α

quantile is estimated to compare with test statistic W value. If the observed value of

8
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W is greater than W1−α, the null hypothesis would be rejected.
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Chapter 4

Proposed method

The method proposed in this thesis compares two models via Bayesian analysis by

the use of Bayes factors. One model is built under the null hypothesis, while the other

one supports the alternative hypothesis. The model M1 assumes tumour rates are

related to dose levels, while model M0 assumes that different dose levels have no effect

on tumour rates. The Bayes factor is then estimated to compare these two models.

According to the Bayes factor, one model is chosen over the other. For example if

model M1 is chosen, it means the hypothesis corresponding to M0 is rejected. In this

chapter, we will introduce the method of estimating Bayes factors and briefly describe

the two logit models considered.

10
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4.1 Bayesian inference

Suppose there are two random variables, X and Y , having a joint PDF fX,Y (x, y).

Then, the marginal density of X is

fX(x) =
∫
fX,Y (x, y) dy. (4.1)

Then, the conditional density of Y , given X = x, is

fY |X(y|x) = fX,Y (x, y)
fX(x) . (4.2)

Similarly, the conditional distribution of X, given Y = y, is

fX|Y (x|y) = fX,Y (x, y)
fY (y) . (4.3)

Then, we evidently have

fX,Y (x, y) = fY |X(y|x)fX(x) = fX|Y (x|y)fY (y). (4.4)

In classical Bayesian analysis, all unknown parameters are treated as random vari-

ables. Let θ denote the unknown parameters. Suppose θ has a probability distribution

fΘ(θ). This assumption is based on our previous knowledge about parameter θ. The

distribution fΘ(θ) is called the prior distribution. Let Z denote the data we observed,

and fZ|Θ(z|θ) be the conditional distribution of Z, given Θ = θ. The joint distribution

of Θ and Z is clearly

fZ,Θ(z, θ) = fZ|Θ(z|θ)fΘ(θ). (4.5)

11
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Then, we have the marginal distribution of Z to be

fZ(z) =
∫
fZ,Θ(z, θ)dθ =

∫
fZ|Θ(z|θ)fθ(θ)dθ. (4.6)

The conditional distribution of θ, given Z = z is then

fΘ|Z(θ|z) = fZ,Θ(z, θ)
fZ(z) = fZ|Θ(z|θ)fΘ(θ)∫

fZ|Θ(z|θ)fΘ(θ)dθ . (4.7)

This conditional distribution represents the posterior distribution of Θ, given Z = z.

The Bayesian analysis, attributed originaly by Jeffery [1935], is a statistical method

which combines prior information about parameters with information from data to get

a statistical inference. There are three factors that play important roles in Bayesian

method [2014]. The first one is the prior probability distribution, which represents

all previous knowledge about parameters before seeing the data. The second factor is

the observed data, which represents observed evidence from real life. This evidence

is expressed by the likelihood function of the data. The likelihood function gives the

probability of the data given parameters. The third one combines information from

previous two factors, which is called the posterior distribution. Posterior distribution

combines prior distribution and observed data via Bayes’ theorem.

The conditional distribution of Z, given Θ = θ, is also the likelihood function of

the data. From (4.7), we can find

fΘ|Z ∝ fZ|Θ(z|θ)fθ(θ). (4.8)

12
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Since the marginal distribution fZ(z) is constant with respect to Θ, it is easy to see

that the posterior density is proportional to the product of the likelihood function

and the prior density.

4.2 Bayes factor

The Bayes factor is a ratio of the probability of data under two models. These two

models usually correspond to the null and alternative hypothesis [Good and Hardin,

2012]. Suppose we have a set of observed data D, model M0 corresponding to the

null hypothesis H0, and model M1 corresponding to the alternative hypothesis H1.

The likelihood probability of data under M0 is given by

P (D|M0) = P (M0|D)P (D)
P (M0) . (4.9)

Similarly, the likelihood probability of data under M1 is given by

P (D|M1) = P (M1|D)P (D)
P (M1) . (4.10)

Then, the Bayes factor B01 is estimated as

B01 =P (D|M0)
P (D|M1) = P (M0|D)P (D)

P (M1|D)P (D)
P (M1)
P (M0)

=P (M0|D)P (M1)
P (M1|D)P (M0)

(4.11)

The most common interpretation for Bayes factor has been given by Jeffery [1935].

It is described in the table below:

13
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Table 2: Jefferys’ scale interpretation of the Bayes Factor

Bayes factor B01 Interpretation

10-30 Strong evidence for H0

3-10 Moderate evidence for H0

1-3 Anecdotal evidence for H0

1 No evidence

1/3-1 Anecdotal evidence for H1

1/3-1/10 Moderate evidence for H0

1/10-1/30 Strong evidence for H0

Note, that B10 = 1/B01.

4.3 Logit model

Suppose there are I treatment groups in the current study, i = 0, . . . , I − 1, and the

associated dose levels are d0 < d1 < · · · < dI , with d0 standing for dose level in the

control group and d0 = 0. Recall the dataset described in Chapter 2, where besides

the control group, there are 3 treatment groups in the study: low-dose, middle-dose

and high-dose groups. Thus, for the current study, I = 4. However, in historical

studies, there are only control groups. Let J be the total number of studies in the

dataset, j = 0, . . . , J − 1. In the dataset described in Chapter 2, there is one current

study and six historical studies. Let j = 0 index the current study. Let πij denote

the tumour rate in the ith group in the jth study. The null hypothesis assumes that

14
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the tumour rates are the same among different dose groups; that is

H0 : π00 = π10 = · · · = π(I−1)0. (4.12)

Since historical studies do not contain any information on treatment groups, we only

discuss the case for current study here. The alternative hypothesis states that there

is a positive trend for tumour rates in treatment groups, that is,

H1 : π00 ≤ π10 ≤ · · · ≤ π(I−1)0, (4.13)

where at least one inequality in H1 is strict.

The model M1 is built on the hypothesis H1. The model M1 is specified as

M1 : zijl ∼ Bernoulli(ωijlπij), (4.14)

where

logit(πij) = log( πij
1− πij

) = α +X
′

iγ + Y
′

j β, (4.15)

zijl stands for the binary response which indicates the existence of tumour in the lth

animal in the ith treatment group in the jth study, and ωijl is the weight assigned by

the poly-3 test. The details about ωijl was discussed earlier in Chapter 3. Since zijl

is a binary quantity, it is common to assume that it has a Bernoulli distribution as in

(4.14). In the link function in (4.15), α denotes the environmental effect on tumour

rate, γ denotes the dose effect, and β denotes the difference across studies, and γ and

β are vectors, given by

15
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γ =
[
γ1 γ2 . . . γI−1

]
, β =

[
β1 β2 . . . βj−1

]
, (4.16)

Xi is a I−1 dimensional vector with its first i entries equal to 1, and all the following

entries are equal to 0. For the case in Chapter 2, with I = 4, we have

X1 =
[
1 0 0

]
, X2 =

[
1 1 0

]
, X3 =

[
1 1 1

]
(4.17)

Thus, we have X ′1γ = γ1 representing the effect of low dose, X ′2γ = γ1+γ2 representing

the effect of medium dose, and X ′3γ = γ1 +γ2 +γ3 representing the effect of high dose.

This model incorporates the same assumptions as in Peddada’s method. Peddada’s

model assumes there is a positive trend in the effects of dose groups on tumour rates.

under this assumption, we have γ1 ≤ γ1 +γ2 ≤ γ1 +γ2 +γ3. In other words, all entries

in the vector γ must be non-negative. The vector Uj indicates the corresponding

study. The product of Uj and β represents the small deviations of the tumour rate

for historical control groups from the current control group. In vector Uj, all entries

are set to 0, except the (j − 1)th entry. For example, U2=
[
0 1 0 0 0 0

]
for

J = 6.

In contrast, to the alternative model M1, the null model assumes that the chemical

dose does not have an impact on tumour rates; that is,

M0 : zijl ∼ Bernoulli(ωijlπij) with logit(πij) = α + U
′

jβ. (4.18)
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4.4 The logit function

In a linear probability model, the probability of an event will be a linear function of

covariates, of the form

πij = x
′

iβ, (4.19)

where β is a vector of regression coefficients and xi is a vector of observed covsriates.

The left hand side of this equation is a probability, and so its value must be in the

range (0,1). The right hand side of this equation can take any value on the real

line, and so, the prediction value may be out of the range (0,1). For this reason, we

consider logit model of the form

logit(πij) = log( πij
1− πij

) = x
′

iβ. (4.20)

The logit function maps πij from the range (0,1) to (−∞,∞), and so we get

πij = exp (x′iβ)
1 + exp (x′iβ) , (4.21)

which can guarantee πij to stay in the range (0,1).

4.5 Prior distributions

The parameter α stands for the environment effect on tumour rates. We assume it

is the same for all groups in all studies. α is set to have a normal prior distribution

with mean µα = 0 and variance σα = 1. The vector β stands for difference due to

17
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study groups. Since the environment and units in experiment are different for dif-

ferent studies, these factors may cause a variation in the tumour rate. The vector β

is assumed to have a multivariate normal distribution with mean µβ equaling 0 and

variance-covariance matrix σ2
βIJ−1. We assume no relations exists between different

studies. It is reasonable to set all covariates to be 0. The parameter σβ measures the

difference of effect due to studies. If the value of σβ is close to 0, we can say historical

studies do not effect the prediction of tumour rate. In contrast, if σβ has a nonzero

value, it indicates there is a difference between tumour rates in current study and

historical study groups. We assume that the effect due to environment factor and

study groups are not significant, so that their effect can be ignored. So, we set the

mean of α and elements in β to be 0.

In the alternative hypothesis, we assume the higher the dose level, the greater the

chance of the animal developing a tumour. The vector γ is assumed to have a trun-

cated normal distribution. Due to their positive effect on tumour rate, all entries in

γ has to be non-negative. Thus, we have the following prior set-up:

α ∼ N1(α|µα = 0, σ2
α = 1),

β ∼ NJ−1(β|µβ = 0, σ2
βIJ−1),

σβ ∼ TN+
j−1(0, λ2

β = 1),

γ ∼ TN+
I−1(µγ = 0, σ2

γII−1),

σγ ∼ TN+(0, λ2
γ = I).

(4.22)

Here, Nm denotes a m-dimensional multivariate normal distribution, and when m = 1,

N1 simply denotes a uni-variate normal distribution; TN+ denotes the truncated

normal distribution with all entries have been restricted to be positive.

18
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4.6 Bayes factor

In this approach, the Bayes factor will be estimated by using MCMC methods, as

follows:

BF01 =
∫
P0(z|θ1)dθ1∫

P1(z|θ1, θ0)P (θ0)P (θ1)dθ0dθ1

= E(P0(z|θ1))
E(P1(z|θ1, θ0))

= 1
T

T∑
t=1

P0(z|θ1)
P1(z|θ0, θ1) .

(4.23)

Here, θ1 = (γ, σgamma) and θ0 = (α, β),and

P0(z|θ1) =
∏
ijl

Bernoulli(zijl|ωijlπ0
ij) (4.24)

with π0
ij =logit(α + U

′
jβ),

P1(z|θ1, θ0) =
∏
ijl

Bernoulli(zijl|ωijlπ1
ij) (4.25)

with π1
ij =logit(α +X

′
iγ + U

′
jβ).

The values of θ1 and θ0 will be estimated by Gibbs sampler. Gibbs sampler is a

method which simulates from the posterior distribution of θ [Albert and Chib, 1993].

Suppose there are k components in the parameter vector θ,

θ = (θ1, θ2, . . . , θk). (4.26)

To implement Gibbs sampler, the initial values for θ are necessary. Usually, the initial

value is set based on previous experience. Let θi denote values after ith iteration and

19



M.Sc. Thesis - Chenxi Yu McMaster - Statistics

θ0 denote initial values. Then, θi values are simulated according to their conditional

distributions:

θ
(1)
1 from P ( θ1| θ(0)

j , j 6= 1),

θ
(1)
2 from P ( θ2| θ(1)

1 , θ
(0)
j , j > 2),

...

θ
(1)
k from P ( θk| θ(1)

j , j < k).

(4.27)

After t iterations, the sample θt = (θ(t)
1 , . . . , θ

(t)
k ) is obtained. As t approaches to

infinity, the joint distribution of θt approaches the joint distribution of θ. In the

simulation study of this thesis, JAGS was used to implement this sampling process.
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Chapter 5

Simulation and illustrative example

5.1 Simulation study

In the simulation study, six sets of data were created by pseudo-random sampling

from known probability distributions. In the simulated datasets, all covariate values

were taken to be the same as in the dataset described in Chapter 2. These datasets

have one control group and three treatment groups in current study, and one control

group for each historical study. Each dataset corresponds to one scenario. There are

six scenarios in the simulation study. As in the benzophenone dataset described in

Chapter 2, the tumour rates are set to be low in all scenarios.

For the cases discussed in the first three scenarios, H0 is the true hypothesis. In

Scenario 1, tumour rates are set to be 0.05 for all dose groups and studies. In Scenario

2, tumour rates are set to be 0.05 plus a study effect. This study effect has a uniform

distribution with lower endpoint -0.03 and upper endpoint 0.03. Thus, in this scenario,

the study effect has a mean of 0. Scenario 3 is similar to Scenario 2, except that the

study has a uniform distribution with lower endpoint 0 and upper endpoint 0.05. In
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Scenario 3, the study effect is always non-negative.

In contrast, the last three scenarios support hypothesis H1. For treatment groups in

the current study, the tumour rate is increasing with the dose level. Thus, we have

the following:

Scenario 1: πij = 0.05 for all treatment groups and studies,

Scenario 2: πij = 0.05 + uj with uj ∼ Uniform(-0.03,0.03), for j = 2,. . . ,J ,

Scenario 3: πij = 0.05 + uj with uj ∼ Uniform(0, 0.05), for j = 2, . . . , J ,

Scenario 4: πij = 0.05 + i(0.04),

Scenario 5: πij = 0.05 + i(0.04) + uj, with uj ∼ Uniform(-0.03,0.03), for j = 2, . . . , J ,

Scenario 6: πij = 0.05 + i(0.04) + uj, with uj ∼ Uniform(0, 0.05), for j = 2, . . . , J .

1000 datasets were generated from each scenario. The Gibbs-sampling method was

used to compute the Bayes factors. Here, both the Bayes factor with the historical

study groups data and Bayes factor without the historical study group data were

calculated. T = 103 set of imputed parameters were generated for each model. The

imputed parameter values were saved every ten iterations after a burn-in period of

103 iteration.

According to Jefferys’ table presented in Section 4.2, we select model M1 over M0

when the Bayes factor BF10 is greater than 3, and we select model M0 over M1 when

the Bayes factor BF10 is less than 3. The criterion is 3. Figures 1-6 show the plots of

the Bayes factors for each scenario. BF10 stands for the Bayes factors which incor-

porate historical studies’ data. BFWO10 stands for the Bayes factors which do not

include historical studies’ data in the model. For visual convenience, we have used

the log scale and the solid line on the plot corresponds to the value log(3).
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Figure 5.1: Bayes Factors BF10 and BFWO10 for Scenario 1 wherein H0 is true

Figure 5.2: Bayes Factors BF10 and BFWO10 for Scenario 2 wherein H0 is true
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Figure 5.3: Bayes Factors BF10 and BFWO10 for Scenario 3 wherein H0 is true

Figure 5.4: Bayes Factors BF10 and BFWO10 for Scenario 4 wherein H1 is true
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Figure 5.5: Bayes Factors BF10 and BFWO10 for Scenario 5 wherein H1 is true

Figure 5.6: Bayes Factors BF10 and BFWO10 for Scenario 6 wherein H1 is true
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The table below shows the performance of the proposed method. We calculated

Type I error rates (TIER) for the first three scenarios and powers for the last three

scenarios. Here again, BF stands for Bayes factors which incorporate historical control

data in the analysis, while BFWO stands for Byes factors which do not incorporate

historical control data in the analysis.

Table 3: TIER & Power for Proposed Bayesian approach

Scenario # TIER for BF TIER for BFWO Power for BF Power for BFWO

1 0.004 0.026 - -

2 0.016 0.012 - -

3 0.011 0.008 - -

4 - - 0.820 0.735

5 - - 0.807 0.724

6 - - 0.750 0.653

As we can be seen from Table 3, in the first three scenarios, the proposed approach

controls type I error at the nominal level (which is 0.05). For scenario 1, the results

show less TIER upon incorporating historical control data. For scenarios 2 and 3,

TIERs for BF is a little bit higher than TIER for BFWO. Thus, TIERS for Scenarios

2 and 3 are higher than TIER for Scenario 1. In Scenarios 2 and 3, historical studies

are assumed to have an effect on tumour rates. Powers for the last three scenarios are

calculated. We can note that in all these three scenarios, the method incorporating

historical control data is more powerful than the one which does not. The power in

Scenario 4 is higher than in Scenario 5, which in turn is higher than in Scenario 6.

When hypothesis H1 is correct, study effect affects the performance of the proposed
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method. When average tumour rates are more similar across different study groups,

the method demonstrates higher power.

5.2 Illustrative example

With the simulated data, we also examine the data from the benzophenone study

which has been discussed earlier in Chapter 2. We applied the same method as in

the simulation study. We built two logit models and generated T = 10, 000 posterior

samples for each model. We saved the parameter values every 10 iterations after a

1,000 iteration burn-in. We obtained the value of BF10 = 13.01. This provides a

strong evidence for hypothesis H1. Therefore, we choose model M1 to estimate the

tumour rate for benzophenone study and the table below shows the estimated tumour

rates.
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Table 4: Estimated tumour rates for benzophenone study

Study Tumour counts Estimated tumour rate 2.5% quantile 97.5% quantile

C0 0/50 0.016 0.006 0.041

C1 0/50 0.020 0.008 0.047

C2 1/50 0.026 0.011 0.060

C3 2/50 0.035 0.013 0.095

H1 0/50 0.004 0 0.036

H2 0/50 0.006 0 0.040

H3 0/50 0.006 0 0.036

H4 0/50 0.006 0 0.027

H5 0/50 0.006 0 0.035

H6 0/50 0.008 0 0.034

In the benzophenone study data, there is one rat in the middle dose group and two

rats in the high dose group who developed tumour. The tumour rate is approximate

by 0.02 for middle dose group and 0.04 for the high dose group, and 0 for all other

groups. Our estimated results show 0.026 for middle dose group and 0.035 for the

high dose group, which is close to the observed estimates. However, estimation for

the control group and the low dose group are relatively high. The estimated tumour

rate is 0.016 for the control group and 0.020 for the low dose group. The estimation

for historical control groups are small, which are in conformance with the fact that

there is no rats developed tumour in these groups.
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Chapter 6

Concluding Remarks

In this thesis, we have proposed a Bayesian approach to analyze data from bioassay

experiments via Bayes factors. In this method, we compare two logit models corre-

sponding to two hypothesis. In Chapter 2, we have described data which has been

used to examine our proposed method. Chapter 3 briefly introduces poly-k test and

Peddada’s test which are used in our method. In Chapter 4, we have described our

method in detail. We have demonstrated the proposed approach via a simulation

study. We have examined the performance of our approach through six pseudo sce-

narios and also applied the method to a real data from benzophenone study. As the

result demonstrates in simulation study, our method exhibits low type I error rate

compared to the nominal level of 5%, and also demonstrates high power to reject the

null hypothesis. In the application of the proposed method on data from Benzophe-

none study, we find our method to yield good estimates for tumour rates in different

study groups.

In our analysis, we have taken k = 3 in the estimation of weights in the poly-k test.

To extend this model, we can treat k as an unknown parameter, and determine a
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suitable k for a given data. Due to the time constraint, we ran two chains for each

scenario in our simulation, and so the result may not reveal the effect of initial values.

It is possible to get more accurate result by running multiple chains. Furthermore,

in our logit model, we only take into account the effects of historical studies, and

ignored the impact of other factors. Future work could focus on the inclusion of all

factors.
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Appendix 1 A

R codes

# a l l packages r equ i r ed

l i b r a r y ( R2jags )

l i b r a r y ( readr )

l i b r a r y ( t i d y v e r s e )

l i b r a r y ( r eadx l )

l i b r a r y ( dplyr )

l i b r a r y (MCPAN)

# i n i t i a t e two empty vec to r s to s t o r e output

bfa <− c ( )

b fc <− c ( )

f o r ( i t e r in 1 :1000){

n i t e r <− 11000 # number o f i t e r a t i o n f o r Gibbs sampling
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nburnin <− 1000 # number o f burn in

nthin <− 10 # save every 10 va lues

# s imu la t ing data

ID <− seq (1 , 500 , by=1) # s imulate ra t ID

# s imulate study group

Study <− c ( rep (” Current ” , 200) , rep (”H1” , 50) , rep (”H2” , 50) , rep (”H3” , 50) , rep (”H4” , 50) , rep (”H5” , 50) , rep (”H6” , 50) )

x1 <− as . f a c t o r ( Study )

x2 <− as . numeric ( x1 )

# s imulate dose l e v e l

c dose <− c ( rep (0 , 50) , rep (312 , 50) , rep (625 , 50) , rep (1250 , 50) )

Dose <− c ( c dose , rep (0 , 300))

y1 <− as . f a c t o r ( Dose )

y2 <− as . numeric ( y1 )

y3 <− y2−1 #e f f e c t o f Dose

# s imulate rats ’ s u r v i v a l time

s <− r u n i f (500 , min=305 , max=737)

Surv iva l t ime <− c e i l i n g ( s )

# s e t study durat ion to 737 days f o r a l l s t u d i e s

Study durat ion <− c ( rep (737 , 500)

# s e t tumour ra t e

tumor rate <− 0 .05 + y3 ∗ ( 0 . 0 4 )

# the binary response obse rvat i on i s generated accord ing to tumour ra t e

Tumor <− rep (1 , 500)

f o r (m in 1 :500){
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Tumor [m] <− rbinom (1 , 1 , tumor rate [m] )

}

# save data as a dataframe

dat <− data . frame ( ID , Study , Dose , Surv iva l t ime , Study durat ion , Tumor)

#us ing Poly−3 method to compute weight omega

weight <− rep (1 , l ength (Tumor ) )

n <− l ength (Tumor)

Y <− sum(Tumor)

f o r ( i in which ( ! Tumor ) ) {

weight [ i ] <− ( Surv iva l t ime [ i ] / Study durat ion [ i ] ) ˆ 3

}

my omega <− weight

# omega current i s the weight f o r cur rent study groups

omega current <− weight [ 1 : 2 0 0 ] # omega va lues f o r cur r ent study groups

# omega other i s the weight f o r h i s t o r i c a l s t u d i e s

omega other <− weight [ 2 0 1 : 5 0 0 ] # omega va lue s f o r h i s t o r i c a l study groups

j ag s d a t a <− l i s t ( cur r ent = dat\$Tumor [ 1 : 2 0 0 ]

, other = dat\$Tumor [ 2 0 1 : 5 0 0 ]

, omega current = omega current

, omega other = omega other

, ze ro = 0

, one = 1
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)

# get p o s t e r i o r samples f o r H1 , in which gamma !=0

getSamplesModelH1 <− f unc t i on ( data ) {

model <− ”

model{

# p r i o r s

alpha ˜ dnorm( zero , one )

## only use gamma f o r cur rent study group

sigma gamma ˜ dnorm( zero , 1 )T(0 , 1 ) # s e t sigma gamma to have a truncated normal d i s t r i b u t i o n

sigma gamma sq <− exp (2∗ l og ( sigma gamma ) )

f o r (b in 1 : 3 ){

gamma[ b ] ˜ dnorm( zero , 1/ sigma gamma sq ) T( zero , )

}

gamma prime [ 1 ] <− zero

gamma prime [ 2 ] <− gamma [ 1 ]

gamma prime [ 3 ] <− gamma [ 1 ] + gamma [ 2 ]

gamma prime [ 4 ] <− gamma [ 1 ] + gamma [ 2 ] + gamma [ 3 ]

f o r ( dose in 1 : 4 ){
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d cur r ent [ dose ] <− exp ( alpha + gamma prime [ dose ] )

}

f o r ( dose in 1 : 4 ){

y cur r en t [ dose ] <− d cur r ent [ dose ] / ( 1 + d cur r ent [ dose ] ) #compute y by i n v e r s e o f l o g i t f unc t i on

f o r ( obs in 1 :50 ){

prob cur rent [ ( dose−1)∗50+obs ] <− omega current [ ( dose−1)∗50+obs ]∗ y cur r en t [ dose ]

cur r ent [ ( dose−1)∗50+obs ] ˜ dbern ( prob cur rent [ ( dose−1)∗50+obs ] )

}

}

## only use beta=study group , f o r study group , they do not have does e f f e c t

s igma beta ˜ dnorm( zero , one )T( zero , )

s i gma beta sq <− exp (2∗ l og ( s igma beta ) )

f o r ( study in 1 : 6 ){

beta [ study ] ˜ dnorm( zero , 1/ s igma beta sq )

d other [ study ] <− exp ( alpha + beta [ study ] )

}

f o r ( study in 1 : 6 ){

y other [ study ] <− d other [ study ] / ( 1 + d other [ study ] )

f o r ( obs in 1 :50 ){

prob other [ ( study−1)∗50+obs ] <− omega other [ ( study−1)∗50+obs ]∗ y other [ study ]
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other [ ( study−1)∗50+obs ] ˜ dbern ( prob other [ ( study−1)∗50+obs ] )

}

}

} ”

j a g s i n i t <− l i s t ( l i s t ( alpha = 0

, sigma gamma = 0.001

, gamma = c ( 0 . 0 0 1 , 0 . 0 0 1 , 0 . 0 0 1 )

, s igma beta = 0.001

, beta = c ( 0 . 0 0 1 , 0 . 0 0 1 , 0 . 0 0 1 , 0 . 0 0 1 , 0 . 0 0 1 , 0 . 0 0 1 ) )

, l i s t ( alpha = 0

, sigma gamma = 0.001

, gamma = c ( 0 , 0 . 2 , 0 . 3 )

, s igma beta = 0.001

, beta = c ( 0 . 0 0 1 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 ) )

)

s <− j a g s ( data

, i n i t s = j a g s i n i t

, parameters = c (” prob cur rent ”

, ” prob other ”

, ” alpha ”

, ”gamma” , ”sigma gamma”

, ” beta ” , ” s igma beta ”
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)

, model . f i l e = textConnect ion ( model )

, n . cha ins = 2

, n . i t e r = n i t e r

, n . burnin= nburnin

, n . th in = nthin

)

re turn ( s )

#summary( s )

}

# get p o s t e r i o r samples f o r H0 , in which gamma = 0

getSamplesModelH0 <− f unc t i on ( data ) {

model <− ”

model{

# p r i o r s

alpha ˜ dnorm( zero , one )

f o r ( dose in 1 : 4 ){

d cur r ent [ dose ] <− exp ( alpha )
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y cur r en t [ dose ] <− d cur r ent [ dose ] / ( 1 + d cur r ent [ dose ] ) #compute y by i n v e r s e o f l o g i t f unc t i on

f o r ( obs in 1 :50 ){

prob cur rent [ ( dose−1)∗50+obs ] <− omega current [ ( dose−1)∗50+obs ]∗ y cur r en t [ dose ]

cur r ent [ ( dose−1)∗50+obs ] ˜ dbern ( prob cur rent [ ( dose−1)∗50+obs ] )

}

}

## only use beta f o r h i s t o r i c a l study group , f o r study group , they do not have does e f f e c t

s igma beta ˜ dnorm( zero , one )T( zero , )

s i gma beta sq <− exp (2∗ l og ( s igma beta ) )

f o r ( study in 1 : 6 ){

beta [ study ] ˜ dnorm( zero , 1/ s igma beta sq )

d other [ study ] <− exp ( alpha + beta [ study ] )

}

f o r ( study in 1 : 6 ){

y other [ study ] <− d other [ study ] / ( 1 + d other [ study ] )

f o r ( obs in 1 :50 ){

prob other [ ( study−1)∗50+obs ] <− omega other [ ( study−1)∗50+obs ]∗ y other [ study ]

other [ ( study−1)∗50+obs ] ˜ dbern ( prob other [ ( study−1)∗50+obs ] )

}

}
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} ”

j a g s i n i t <− l i s t ( l i s t ( alpha = 0

, s igma beta = 0.001

, beta = c ( 0 . 0 0 1 , 0 . 0 0 1 , 0 . 0 0 1 , 0 . 0 0 1 , 0 . 0 0 1 , 0 . 0 0 1 ) )

, l i s t ( alpha = 0

, s igma beta = 0.001

, beta = c ( 0 . 0 0 1 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 ) )

)

s <− j a g s ( data

#, i n i t s = j a g s i n i t

, parameters = c (” prob cur rent ”

, ” prob other ”

, ” alpha ”

, ” beta ” , ” s igma beta ”

)

, model . f i l e = textConnect ion ( model )

, n . cha ins = 2

, n . i t e r = n i t e r

, n . burnin=nburnin

, n . th in = nthin

)

re turn ( s )
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#summary( s )

}

a <− getSamplesModelH1 ( j a g s d a t a )

b <− getSamplesModelH0 ( j a g s d a t a )

# c a l c u l a t i n g BF by us ing median o f samples

probc H1 <− a$BUGSoutput$sims . l i s t $ p r o b c u r r e n t

probo H1 <− a$BUGSoutput$sims . l i s t $ p r o b o t h e r

probc H0 <− b$BUGSoutput$sims . l i s t $ p r o b c u r r e n t

probo H0 <− b$BUGSoutput$sims . l i s t $ p r o b o t h e r

f o r ( i in 1 : 200 ) {

probc H1 [ , i ] <− (1−probc H1 [ , i ])∗(1−Tumor [ i ])+ probc H1 [ , i ]∗Tumor [ i ]

}

f o r ( i in 1 : 200 ) {

probc H0 [ , i ] <− (1−probc H0 [ , i ])∗(1−Tumor [ i ])+ probc H0 [ , i ]∗Tumor [ i ]

}

f o r ( i in 1 : 300 ) {

probo H1 [ , i ] <− (1−probo H1 [ , i ])∗(1−Tumor [ i +200])+probo H1 [ , i ]∗Tumor [ i +200]
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}

f o r ( i in 1 : 300 ) {

probo H0 [ , i ] <− (1−probo H0 [ , i ])∗(1−Tumor [ i +200])+probo H0 [ , i ]∗Tumor [ i +200]

}

rowProds ( probc H1 )

rowProds ( probc H1 )

BFWO <− rowProds ( probc H1 )/ rowProds ( probc H0 )

bfn <− rowProds ( probc H1 )∗ rowProds ( probo H1 )

bfd <− rowProds ( probc H0 )∗ rowProds ( probo H0 )

BF <− bfn / bfd

summary ( (BFWO) )

bfa [ i t e r ] <− median (BF) #BayesFactor with a l l in fo rmat ion

bfc [ i t e r ] <− median (BFWO)# BayesFactor without h i s t o r i c a l groups in fo rmat ion

}

medi4 <− data . frame ( bfa , b fc )

# pr in t ( l s t )

# s ink ( )

## plo t

l i b r a r y ( ggp lot2 )
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gg <− ( ggp lo t ( medi , aes ( x=log ( bfa ) , y=log ( b fc ) ) )

+ theme bw ( )

+ labs ( x=expr e s s i on ( l og (BF[ 1 0 ] ) ) )

+ labs ( y=expr e s s i on ( l og (BFWO[ 1 0 ] ) ) )

+ geom hl ine ( y i n t e r c e p t = log ( 3 ) )

+ geom vl ine ( x i n t e r c e p t = log ( 3 ) )

+ g e o m j i t t e r ( )

)

wr i t e . t ab l e ( medi4 , ” / Users /yuc6/Desktop/ simdata /medi . txt ”)
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Appendix 2 A

Scenario 7

Besides the six scenarios discussed in Chapter 5, we simulate one more scenario to

mimic the benzophenone example. That is,

Scenario 7: πij = 0.02 + i(0.02).
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Figure A.1: Bayes Factors BF10 and BFWO10 for Scenario 7 wherein H0 is true

The result are shown in Figure A.1. Under scenario 7, the power is 0.574 for BF

and 0.439 for BFWO. If we change the criterion value from log(3) to log(1), the power

becomes 0.919 for BF and 0.871 for BFWO.
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