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Abstract

This thesis proposes a new class of bivariate autoregressive conditional median du-

ration models for matched high-frequency data and develops some inferential methods

for an existing univariate model as well as the bivariate models introduced here to

facilitate model fitting and forecasting.

During the last two decades, the autoregressive conditional mean duration (ACD)

model has been playing a dominant role in analyzing irregularly spaced high-frequency

financial data. Univariate ACD models have been extensively discussed in the liter-

ature. However, some major challenges remain. The existing ACD models do not

provide a good distributional fit to financial durations, which are right-skewed and

often exhibit unimodal hazard rates. Birnbaum-Saunders (BS) distribution is capable

of modeling a wide variety of positively skewed data. Median is not only a robust

measure of central tendency, but also a natural scale parameter of the BS distribution.

A class of conditional median duration models, the BS-ACD and the scale-mixture

BS ACD models based on the BS, BS power-exponential and Student-t BS (BSt) dis-

tributions, have been suggested in the literature to improve the quality of the model

fit.

The BSt-ACD model is more flexible than the BS-ACD model in terms of kurtosis

and skewness. In Chapter 2, we develop the maximum likelihood estimation method
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for the BSt-ACD model. The estimation is performed by utilizing a hybrid of op-

timization algorithms. The performance of the estimates is then examined through

an extensive Monte Carlo simulation study. We also carry out model discrimination

using both likelihood-based method and information-based criterion. Applications to

real trade durations and comparison with existing alternatives are then made.

The bivariate version of the ACD model has not received attention due to non-

synchronicity. Although some bivariate generalizations of the ACD model have been

introduced, they do not possess enough flexibility in modeling durations since they

are conditional mean-based and do not account for non-monotonic hazard rates.

Recently, the bivariate BS (BVBS) distribution has been developed with many

desirable properties and characteristics. It allows for unimodal shapes of marginal

hazard functions. In Chapter 3, upon using this bivariate BS distribution, we pro-

pose the BVBS-ACD model as a natural bivariate extension of the BS-ACD model.

It enables us to jointly analyze matched duration series, and also capture the de-

pendence between the two series. The maximum likelihood estimation of the model

parameters and associated inferential methods have been developed. A Monte Carlo

simulation study is then carried out to examine the performance of the proposed in-

ferential methods. The goodness-of-fit and predictive performance of the model are

also discussed. A real bivariate duration data analysis is provided to illustrate the

developed methodology.

The bivariate Student-t BS (BVBSt) distribution has been introduced in the lit-

erature as a robust extension of the BVBS distribution. It provides greater flexibility

in terms of the kurtosis and skewness through the inclusion of an additional shape

v



parameter. In Chapter 4, we propose the BVBSt-ACD model as a natural exten-

sion of the BSt-ACD model to the bivariate case. We then discuss the maximum

likelihood estimation of the model parameters. A simulation study is carried out to

investigate the performance of these estimators. Model discrimination is then done

by using information-based criterion. Methods for evaluating the goodness-of-fit and

predictive ability of the model are also discussed. A simulated data example is used

to illustrate the proposed model as compared to the BVBS-ACD model.

Finally, in Chapter 5, some concluding comments are made and also some prob-

lems for future research are mentioned.

Key words: High-frequency financial data; Autoregressive conditional duration

model; Conditional quantile duration; Student-t Birnbaum-Saunders distribution; Bi-

variate Birnbaum-Saunders distribution; Bivariate Student-t Birnbaum-Saunders dis-

tribution; Maximum likelihood estimation; Nelder-Mead algorithm; BFGS method;

Monte Carlo simulation; Density forecast; Goodness-of-fit; Model discrimination;

Information-based criterion.
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Chapter 1

Introduction

1.1 High-frequency financial data

1.1.1 Features of high-frequency financial data

Due to the rapid development of computing power, storage capacity and the adop-

tion of electronic trading systems, a massive amount of financial data has become

widely accessible on a transaction-by-transaction basis, so-called high-frequency fi-

nancial data. High-frequency data are observations taken at a fine time scale (Tsay

(2010)). Here, time is often measured in seconds. Typical examples include trans-

action times, transaction prices, bid and ask quotes and transaction volumes. High-

frequency financial data play an important role in market microstructure theory,

indicating the information with respect to fundamental asset prices and the behavior

of market participants.

The distinctive feature of transaction data is the irregular spacing over time since

the arrival times of market events (such as trades and quotes) are random. Durations
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are the waiting times between market events such as trades, price and volume changes,

which are quite informative and become crucial in understanding market activity and

the underlying microstructure of the financial market.

Trade duration is the time elapsed between two consecutive trades or transactions

of equity. This type of data have some special features. In addition to irregular

spacing mentioned above, trade durations display a cluster effect. Short durations

tend to be followed by short durations, and likewise for long durations, which leads

to positive autocorrelations. Trade durations often exhibit diurnal patterns due to

the intraday periodicity of daily trading activities. Trading activities are heavier in

the beginning and closing of the trading day, and usually thinner in the middle of the

day. Thus, we usually observe short durations during opening and closing hours and

long durations during lunch hour. Another important feature of trade durations is

that they often show unimodal hazard rates; see Section 1.1.3 for details on assessing

the shape of the hazard.

The high-frequency financial data used in this thesis is from the New York Stock

Exchange (NYSE) Trade and Quote (TAQ) database (note: the data sets were gener-

ously provided by Dr. Chad R. Bhatti, V.P., Citizens Bank). Transactions recorded

before 9:30 am and after 4:00 pm were omitted, and simultaneous transactions were

treated as a single transaction.

1.1.2 Diurnal adjustment of durations

Trade durations exhibit strong diurnal patterns or time-of-day effects, which indi-

cates high trading activities during opening and closing hours and less activity around

noon. In the analysis of duration data and ACD framework, it is common to remove

2
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time-of-day effects first and then fit a ACD model to diurnally adjusted data.

The adjusted durations can be obtained by

Xi = X̃i/φ̂ = X̃i/exp(ŝ),

where X̃i is the raw duration and φ is the time-of-day effect. To estimate s, we use

quadratic splines and indicator variables on the thirty-minute intervals from 9:30 am

to 4:00 pm; see Engle and Russell (1998), Engle (2000), Tsay (2010), Bhatti (2010),

Hautsch (2012) and Leiva et al. (2014).

1.1.3 Total Time on Test plot

The Total Time on Test (TTT) plot can be used to identify the shape of the

hazard function (see Aarset (1987) and Azevedo et al. (2012)). Its theoretical coun-

terpart is the scaled TTT transform. If a life distribution F (y) is absolutely con-

tinuous and its survival function is S(y) = 1 − F (y), the scaled TTT transform

is W (u) = H−1(u)/H−1(1) for 0 < u < 1, where H−1(u) =
∫ F−1(u)

0
S(y)dy. If

Y1:n ≤ Y2:n ≤ · · · ≤ Yn:n denote the order statistics with common pdf f(y) and cdf

F (y), the empirical scaled TTT transform is given byWn(r/n) = H−1
n (r/n)/H−1

n (1) =

[
∑r

i=1 yi:n + (n− r)yr:n] /
∑n

i=1 yi:n, for r = 1, . . . , n. The TTT plot is obtained by

plotting (r/n, Wn(r/n)), r = 1, . . . , n. For example, a linear TTT curve, which is ran-

domly around the main diagonal of the unit square (the 45 ◦-line), implies a constant

hazard function, a convex TTT curve indicates a decreasing hazard, and a concave

TTT curve demonstrates an increasing hazard. If a TTT curve is concave (convex)

and then convex (concave), the corresponding hazard is unimodal (bathtub).

3
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1.2 Some ACD models

1.2.1 Standard ACD and Log-ACD

Engle and Russell (1998) introduced the following ACD(p, q) model, which is one

of the primary tools used in modeling durations:

Xi = ψiεi, ψi = ω +

p∑
j=1

αjXi−j +

q∑
j=1

βjψi−j, (1.1)

where Xi denotes the duration, ψi = E(Xi|Fi−1) is the conditional expectation given

Fi−1, the information set available at the ith duration, εi is a series of i.i.d. positive

random variables such that E(εi) = 1, ω > 0, αj ≥ 0 and βj ≥ 0 are the unknown

parameters, and
∑p

j=1 αj +
∑q

j=1 βj < 1. To relax the positivity constraints on the

model parameters, Bauwens and Giot (2000) suggested the Logarithmic ACD model

of the form

Xi = ψiεi, lnψi = ω + αεi−1 + βlnψi−1, |β| < 1. (1.2)

In these models, durations are assumed to follow either exponential or Weibull dis-

tributions. Therefore, the hazard functions are either constant or monotonic.

1.2.2 GG-ACD

It is necessary to briefly introduce the generalized gamma (GG) distribution before

presenting details of the GG-ACD model. The PDF of the GG distribution with shape

4
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parameters v and η and scale parameter ω is given by

fX(x) =
η

ωΓ(v)

(x
ω

)vη−1

exp
[
−
(x
ω

)η]
, x > 0, v, ω, η > 0, (1.3)

where Γ(v) =
∫∞

0
uv−1exp(−u)du is the complete gamma function. The exponen-

tial (v = η = 1), gamma (η = 1), lognormal (v → ∞) and Weibull (v = 1)

distributions are all special cases of the GG distribution, denoted by GG(v, η, ω).

The CDF of the GG distribution can be expressed as FX(x) = Γ((x/ω)η ,v)
Γ(v)

, where

Γ(y, v) =
∫ y

0
uv−1exp(−u)du is the lower incomplete gamma function.

If X ∼ GG(v, η, ω), then E(Xk) = ωkΓ(v+k/η)
Γ(v)

. In particular, E(X) = ωΓ(v+1/η)
Γ(v)

and V (X) = ω2

(
Γ(v+2/η)

Γ(v)
−
(

Γ(v+1/η)
Γ(v)

)2
)

.

The GG distribution can produce all common types of hazard function (see Bhatti

(2010)):

Table 1.1: Hazard function shapes for the GG distribution

vη − 1 < 0 vη − 1 > 0 vη − 1 = 0
η = 1 Decreasing Increasing Constant
η > 1 Bathub Increasing Increasing
η < 1 Decreasing Unimodal Decreasing

To allow for non-monotonic hazards, Lunde (1999) proposed the GG-ACD model.

It is one of the most flexible conditional mean duration models, which can be written

as

Xi = ψiεi, lnψi = α + β lnψi−1 + γ

[
Xi−1

ψi−1

]
, |β| < 1, (1.4)

where Xi ∼ GG(v, η, ψi), εi
iid∼ GG(v, η, 1) and ψi = E(Xi | Fi−1) = ωiΓ(v+1/η)

Γ(v)
. The

pdf of GG-ACD model is given by

5
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f(xi) =
η

ϕ(v, η)ψiΓ(v)

[
xi

ϕ(v, η)ψi

]vη−1

exp

(
−
[

xi
ϕ(v, η)ψi

]η)
, i = 1, . . . n, (1.5)

where ϕ(v, η) = Γ(v)/Γ(v + 1/η). The associated survival function is given by

SGG(xi; v, η, ψi) = 1− Γ(xi
η[ψiϕ(v, η)]−η, v)/Γ(v), xi, v, η, ψi > 0. (1.6)

1.2.3 BS-ACD

Bhatti (2010) introduced the autoregressive conditional median duration model

based on the BS distribution. The primary motivation for the BS-ACD model is to

provide an alternative to existing ACD models and enhance the quality of the model

fit. The BS distribution fits duration data well in terms of the shapes of its density

and hazard functions. The BS-ACD model is specified in terms of a time-varying

conditional median duration σi = FXi
−1(0.5|Fi−1), where F−1

Xi
is the inverse CDF or

quantile function of the model, instead of the conditional mean duration in the usual

ACD model, viz.,

lnσi = α + β lnσi−1 + γ

[
Xi−1

σi−1

]
, |β| < 1. (1.7)

Median is not only a robust measure of central tendency, but also a natural parameter

of the BS distribution. The associated PDF with the BS-ACD model is given by

fXi(xi;κ, σi) =
1

2
√

2πκσi

[(
σi
xi

) 1
2

+

(
σi
xi

) 3
2

]
exp

[
− 1

2κ2

(
xi
σi

+
σi
xi
− 2

)]
, xi, κ, σi > 0.

(1.8)

6
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The corresponding survival function is given by

SBS(xi, κ, σi) = 1− Φ

[
1

κ

(√
xi
σi
−
√
σi
xi

)]
, i = 1, 2, . . . , n. (1.9)

1.3 A brief literature review

The analysis of high-frequency financial data has received increasing attention

recently in the literature. Recent research interest in duration models was largely

spurred by the original work of Engle and Russell (1998), which introduced the au-

toregressive conditional duration (ACD) model to analyze the irregularly spaced trade

durations of single assets. See Hautsch (2012), Pacurar (2008) and Saranjeet and Ra-

manathan (2018) for surveys on this topic.

Univariate ACD models have been well studied in the literature. An important

extension is the logarithmic version of the ACD model, introduced by Bauwens and

Giot (2000), which relaxes the positivity constraints on the model parameters. There

exists different distributional assumptions on the conditional durations in the litera-

ture such as the exponential and Weibull distributions in Engle and Russell (1998),

and the generalized gamma (GG) distribution in Lunde (1999). The first two distri-

butions have either a flat or monotonic hazard rates. However, the last one is quite

flexible and can produce all common types of hazard functions. Thus, the GG-ACD

model is regarded as the status quo in the literature of ACD models. The parametric

formulation of the ACD models determines the dynamics of the conditional mean

duration.

The Birnbaum-Saunders (BS) distribution, introduced by Birnbaum and Saunders

(1969), has been used quite successfully to model a wide variety of positively skewed

7
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data; see also Johnson et al. (1995) for a concise review of the classical BS distribution

and Leiva (2016) for an overview on recent theoretical developments and applications.

All developments on BS and related distributions have recently been thoroughly re-

viewed in the discussion paper by Balakrishnan and Kundu (2018). Due to its good

properties, Jin and Kawczak (2003) claimed that BS distribution deserves more at-

tention in the study of high-frequency financial data, and these authors then utilized

the BS kernel to estimate the probability density function of trade durations. As

illustrated in Kundu et al. (2008), the hazard rate of BS distribution has a unimodal

shape. Considering that the hazard function for duration data is usually unimodal,

Bhatti (2010) suggested the BS-ACD model possessing a realistic distribution and

an ACD specification in terms of conditional median instead of conditional mean in

the orginal ACD model. Median is not only a robust measure of central tendency

but also a natural parameter in the BS distribution. Thus, the model fit can be en-

hanced by modeling the conditional median duration instead of the conditional mean

duration as done in the original ACD model. A recent extension of this conditional

median-type ACD model is due to Leiva et al. (2014), which considered the BS, BS

power-exponential and Student-t BS distributions, so-called scale-mixture BS distri-

bution family (see Balakrishnan et al. (2009) and Dı́az-Garćıa and Leiva (2005) for

details on SBS distributions) and developed corresponding expectation-maximization

(EM) algorithms for SBS-ACD models. Moreover, Saulo and Leão (2017) discussed

the conditional median-type ACD model based on the log-symmetric distributions.

Saulo et al. (2017a) compared the mean-based and median-based BS-ACD models

regarding model-fitting, forecasting and influence analysis. In general, their study

confirmed that the conditional median-type ACD models based on BS and associated

8
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distributions are superior to the existing ACD model (the Generalized Gamma ACD

model, see Lunde (1999)) in terms of model-fitting and forecasting.

1.4 Motivation and objectives

Despite the vast literature on duration series of single assets, a bivariate version

of the ACD model has not received enough attention because of nonsynchronous

trading/asynchronous observations. Only a few papers, with regard to the ACD

model, have focused on jointly analyzing the duration series of trades and quotes of

a single asset. Engle and Lunde (2003) proposed a censored bivariate ACD model

using a semiparametric estimation approach. Mosconi and Olivetti (2005) introduced

bivariate Exponential and Weibull ACD models (see Balakrishnan and Lai (2009) for

detailed discussions on these bivariate distributions) in the same line.

However, both models share some common drawbacks. First, they only take into

account the duration of one stock, and do not include information given by another

stock. New available information to the stock market may affect not only a specific

stock, but also the related stocks in the same industry sector or even the whole stock

market (Simonsen (2007)). As a result, new information may lead to dependence

between trade durations in different stocks. Therefore, modeling the dependence

between two or multiple duration series remains a challenge. Second, durations of-

ten show unimodal hazard rates. The above bivariate ACD models fail to capture

this main feature of duration data. A simulation study in Grammig and Maurer

(2000) showed that the misspecification of the hazard rate can severely deteriorate

the predictive ability of the ACD model. Third, the median is a better measure of

central tendency than the mean in a skewed distribution. Hence, the model fit can

9
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be improved by replacing the conditional mean in the original ACD model with the

conditional median. Furthermore, there is no work till now on the topic of joint

modeling of the the duration series for matched data.

Recently, Kundu et al. (2010) derived the bivariate Birnbaum-Saunders (BVBS)

distribution through a transformation of the bivariate normal distribution (see Kundu

et al. (2013) and Vilca et al. (2014a,b) for generalizations of the BVBS distribution).

Its marginals are univariate BS distributions with unimodal hazard functions and its

conditional distributions can be expressed in terms of normal distribution. Moreover,

it has a correlation parameter which indirectly represents the dependence between

the two BS random variables. The bivariate Student-t BS (BVBSt) distribution was

suggested by Vilca et al. (2014a) as a robust extension of the BVBS distribution,

allowing more flexibility in kurtosis and skewness achieved with the inclusion of an

additional shape parameter.

Our major objective is to jointly model the trade durations of two assets for

matched data, pairs of durations with the same starting time (see Simonsen (2007)).

In this thesis, we construct a bivariate ACD model based on BVBS and Student-t

BVBS distributions, which facilitate the joint analysis and also to detect the depen-

dence between two matched duration series.

10
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1.5 Distributions for high-frequency trade dura-

tion

1.5.1 BS distribution

The CDF of a two-parameter BS random variable X is given by

FX(x;κ, σ) = Φ

[
1

κ

(√
x

σ
−
√
σ

x

)]
, x > 0, (1.10)

where Φ(·) is the standard normal CDF, κ > 0 is the shape parameter and σ > 0 is

the scale parameter which is also the median. The corresponding PDF is

fX(x;κ, σ) =
1

2
√

2πκσ

[(σ
x

) 1
2

+
(σ
x

) 3
2

]
exp

[
− 1

2κ2

(x
σ

+
σ

x
− 2
)]
, x > 0. (1.11)

This distribution is simply denoted by BS(κ, σ).

The BS distribution possesses the scaling property, namely, for c > 0, cX ∼

BS(κ, cσ), and in particular, X
σ
∼ BS(κ, 1), and moreover it has the reciprocal

property, namely, 1
X
∼ BS(κ, 1

σ
). There is a monotone transformation between the

BS and normal distributions given by

Z =
1

κ

(√
X

σ
−
√
σ

X

)
, (1.12)

or equivalently

X = σ

1

2
κZ +

√(
1

2
κZ

)2

+ 1

2

, (1.13)

where Z ∼ N(0, 1). Using the transformation in (1.13), the mean, variance and the

11
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coefficients of of skewness (CS) and kurtosis (CK) can be shown to be

E(X) = σ

(
1 +

1

2
κ2

)
, V (X) = (κσ)2

(
1 +

5

4
κ2

)
, (1.14)

CS =
4κ(11κ2 + 6)

(5κ2 + 4)
3
2

, CK = 3 +
6κ2(93κ2 + 40)

(5κ2 + 4)2
. (1.15)

Kundu et al. (2008) have shown that the hazard function of the BS distribution

hX(x;κ, σ) =
fX(x;κ, σ)

1− FX(x;κ, σ)
(1.16)

has an unimodal shape.

1.5.2 Generalized BS Distribution

A random variable X is said to have a generalized Birnbaum-Saunders distribution

if it allows the stochastic representation

X = σ

1

2
κZ +

√(
1

2
κZ

)2

+ 1

2

∼ GBS(κ, σ; g) (1.17)

and

Z =
1

κ

(√
X

σ
−
√
σ

X

)
∼ S(g), (1.18)

where κ > 0 is the shape parameter, σ > 0 is the scale parameter which is also the

median and Z follows a standard symmetrical distribution, denoted by Z ∼ S(g),

with g being the kernel of the p.d.f. of Z (see Dı́az-Garćıa and Leiva (2005) and

Sanhueza et al. (2008)).

The GBS distribution has many good properties. For example, ifX ∼ GBS(κ, σ; g),

12
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then

(1) cX ∼ GBS(κ, cσ; g) with c > 0, and X−1 ∼ GBS(κ, σ−1; g);

(2) U = Z2 = 1
κ2

(
X
σ

+ σ
X
− 2
)
∼ Gχ2(g), a generalized chi-square distribution

with one degree of freedom. The pdf of U is given by fU(u) = cg(u)u−1/2, with u > 0,

where cg(·) is the pdf of Z ∼ S(g);

(3) The quantile function of X is given by x(q) = F−1
X (p) = σ

4
(κzq+[κ2z2

q +4]1/2)2,

where zq is the qth quantile of Z ∼ S(g). If q = 0.5, then x(0.5) = σ and so σ is the

median;

(4) If E(Zk) exists, then

E(Xk) = σk
k∑
j=0

(
2k

2j

) j∑
i=0

(
j

i

)
E(Uk+i−j)

(κ
2

)2(k+i−j)
(1.19)

(see Sanhueza et al. (2008) and Dı́az-Garćıa and Leiva (2007)).

Thus, the mean, variance and the coefficients of skewness (CS) and kurtosis (CK)

of X are given by

E(X) =
σ

2
(2 + u1κ

2), (1.20)

V ar(X) =
σ2κ2

4
[4u1 + (2u2 − u2

1)κ2], (1.21)

CS =
4κ[(3u2 − 3u2

1) + 1
2
(2u3 − 3u1u2 + u3

1)κ2]

[4u1 + (2u2 − u2
1)κ2]

3
2

, (1.22)

CK =
16u2 + (32u3 − 48u1u2 + 24u3

1)κ2 + (8u4 − 16u1u3 + 12u2
1u2 − 3u4

1)κ4

[4u1 + (2u2 − u2
1)κ2]2

,

(1.23)

where uk = E(Uk) and U ∼ Gχ2(g) (see Sanhueza et al. (2008)).
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Table 1.2: Moment of the Normal and Student-t distribution

Distribution u1(g) u2(g) u3(g) u4(g)
Normal 1 3 15 105

Student-t ν
(ν−2)

3ν2

(ν−2)(ν−4)
15ν3

(ν−2)(ν−4)(ν−6)
105ν4

(ν−2)(ν−4)(ν−6)(ν−8)

ν > 2 ν > 4 ν > 6 ν > 8

(see Saulo et al. (2017b)).

1.5.3 BSt Distribution

In (1.17), if g(·) is normal, then X ∼ BS(κ, σ). On the other hand, if g(·) is t

kernel, then X ∼ BSt(κ, σ, ν). When ν goes to infinity, the BSt distribution tends to

be the BS distribution.

If X ∼ BSt(κ, σ, ν), the corresponding PDF of X is given by

fX(x;κ, σ, ν) =
Γ
(
ν+1

2

)
2
√
νπΓ

(
ν
2

)
κσ

[(σ
x

) 1
2

+
(σ
x

) 3
2

][
1 +

(
x
σ

+ σ
x
− 2
)

νκ2

]− ν+1
2

, (1.24)

where κ > 0 and ν > 0 are shape parameters, ν is also known as the degree of

freedom, and σ > 0 is the scale parameter.

The corresponding CDF can be written as

F (x;κ, σ, ν) =
1

2

{
1 + I[a(x)2]/[a(x)2+ν]

(
1

2
,
ν

2

)}
, (1.25)

where a(x) = (
√
x/σ−

√
σ/x)/κ and Ix(a, b) =

∫ x
0
ta−1(1−t)b−1dt/

∫ 1

0
ta−1(1−t)b−1dt

is the incomplete beta function ratio (see Azevedo et al. (2012)).

Similarly, there is a monotone transformation between the BSt and Student-t dis-

tributions. Using the transformation in (1.17), the mean, variance and the coefficients
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of skewness and kurtosis can be shown to be

E(X) =
σ

2

(
2 +

ν

ν − 2
κ2

)
, ν > 2, (1.26)

V ar(X) =
σ2κ2ν

4(ν − 2)

[
4 +

ν(5ν − 8)κ2

(ν − 2)(ν − 4)

]
, ν > 4, (1.27)

CS =

4κ(ν−1)v2

(ν−4)(ν−2)2

[
6 + ν(11ν−18)κ2

(ν−6)(ν−2)

]
[

4ν
(ν−2)

+ ν2(5ν−8)κ2

(ν−4)(ν−2)2

]3/2
, ν > 6, (1.28)

CK =

3ν2

(ν−2)(ν−4)

[
16 + 8ν(15ν2−42ν+32)κ2

(ν−6)(ν−2)2
+ ν2(211ν3−894ν2+1288ν−640)κ4

(ν−8)(ν−6)(ν−2)3

]
[

4ν
(ν−2)

+ ν2(5ν−8)κ2

(ν−4)(ν−2)2

]2 , ν > 8. (1.29)

The BSt distribution also possesses unimodal hazard; see Azevedo et al. (2012)

for a thorough study of hazard functions of this family of distributions.

1.5.4 Bivariate BS distribution

Kundu et al. (2010) introduced the bivariate Birnbaum-Saunders (BVBS) distri-

bution. A bivariate random vector (X1, X2) is said to follow a BVBS distribution

with parameters κ1, σ1, κ2, σ2, ρ, if its joint CDF can be written as

FX1,X2(x1, x2) = Φ2

[
1

κ1

(√
x1

σ1
−
√
σ1

x1

)
,

1

κ2

(√
x2

σ2
−
√
σ2

x2

)
; ρ

]
, x1, x2 > 0, (1.30)

where κ1, σ1, κ2, σ2 > 0, −1 < ρ < 1, and Φ2(z1, z2; ρ) is the joint CDF of a

standard bivariate normal vector (Z1, Z2) with correlation coefficient ρ. We denote

this distribution simply by BV BS(κ1, σ1, κ2, σ2, ρ). The corresponding joint PDF of
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(X1, X2) is given by

fX1,X2(x1, x2) = φ2

[
1

κ1

(√
x1

σ1
−
√
σ1

x1

)
,

1

κ2

(√
x2

σ2
−
√
σ2

x2

)
; ρ

]
× 1

2κ1σ1

[(
σ1

x1

) 1
2

+

(
σ1

x1

) 3
2

]
1

2κ2σ2

[(
σ2

x2

) 1
2

+

(
σ2

x2

) 3
2

]
, (1.31)

where φ2(z1, z2; ρ) is the joint PDF of (Z1, Z2) defined by

φ2(z1, z2; ρ) =
1

2π
√

1− ρ2
exp

{
− 1

2(1− ρ2)
(z2

1 + z2
2 − 2ρz1z2)

}
. (1.32)

If (X1, X2) ∼ BV BS(κ1, σ1, κ2, σ2, ρ), then Xj ∼ BS(κj, σj), j = 1, 2. The

conditional PDF of X1, given X2 = x2, is given by

fX1|X2
(x1|x2) =

1

2κ1σ1

√
2π
√

1− ρ2

[(
σ1

x1

) 1
2

+

(
σ1

x1

) 3
2

]

× exp

{
− 1

2(1− ρ2)

[
1

κ1

(√
x1

σ1
−
√
σ1

x1

)
− ρ

κ2

(√
x2

σ2
−
√
σ2

x2

)]2
}
. (1.33)

The corresponding CDF of X1, given X2 = x2, is

FX1|X2(x1|x2) = Φ


1
κ1

(√
x1
σ1
−
√

σ1
x1

)
− ρ

κ2

(√
x2
σ2
−
√

σ2
x2

)
√

1− ρ2

 . (1.34)

The relationship between the BVBS and bivariate normal distributions can be repre-

sented by Zj = 1
κj

(√
Xj
σj
−
√

σj
Xj

)
, or equivalently Xj = σj

[
1
2κjZj +

√(
1
2κjZj

)2
+ 1

]2

,

for j = 1, 2, where (Z1, Z2) ∼ N(0,Σ), with Σ =
(

1 ρ
ρ 1

)
Thus, random numbers from

the BVBS distribution can be easily generated using bivariate normal distribution

(see Kundu et al. (2010)). Also, ρX1,X2 ≈ ρ (see Balakrishnan and Zhu (2015)).
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1.5.5 Bivariate Student-t BS Distribution

A bivariate random vector (X1, X2) is said to follow a bivariate Student-t BS

distribution with parameters κ1, σ1, κ2, σ2, ρ, ν, if its joint CDF can be written as

FX1,X2(x1, x2) = T 2

[
1

κ1

(√
x1

σ1
−
√
σ1

x1

)
,

1

κ2

(√
x2

σ2
−
√
σ2

x2

)
; ρ, ν

]
, x1, x2 > 0,

(1.35)

where κ1, σ1, κ2, σ2 > 0, −1 < ρ < 1, ν > 2 and T2(z1, z2; ρ, ν) is the joint CDF of a

bivariate t vector (Z1, Z2) with correlation coefficient ρ. We denote this distribution

simply by BVBSt(κ1, σ1, κ2, σ2, ρ, ν).

The corresponding joint PDF of (X1, X2) is given by

fX1,X2(x1, x2) = t2

[
1

κ1

(√
x1

σ1
−
√
σ1

x1

)
,

1

κ2

(√
x2

σ2
−
√
σ2

x2

)
; ρ, ν

]
× 1

2κ1σ1

[(
σ1

x1

) 1
2

+

(
σ1

x1

) 3
2

]
1

2κ2σ2

[(
σ2

x2

) 1
2

+

(
σ2

x2

) 3
2

]
, (1.36)

where t2(z1, z2; ρ, ν) is the joint PDF of (Z1, Z2) defined by

t2(z1, z2; ρ, ν) =
1

2π
√

1− ρ2

[
1 +

z2
1 + z2

2 − 2ρz1z2

ν(1− ρ2)

]− ν+2
2

(1.37)

If (X1, X2) ∼ BVBSt(κ1, σ1, κ2, σ2, ρ, ν), then Xj ∼ BSt(κj, σj, ν), j = 1, 2. The

conditional PDF of X1, given X2 = x2, is given by

fX1|X2
(x1|x2) = fq(x2)

(
[ax1(κ1ρ,σ1)− µ1(x2)]2

)
Ax1(κ1ρ,σ1), (1.38)

where fq(x2)(u) =
Γ( ν+2

2
)

√
πΓ( ν+1

2
)

[ν + q(x2)]
ν+1
2 [ν + q(x2) + u]−

ν+2
2 , u ≥ 0, q(x2) = a2

x2(κ2, σ2),

axj (κj , σj) = 1
κj

(√
xj
σj
−
√

σj
xj

)
, j = 1, 2, κ1ρ =

√
1− ρ2κ1, µ1(x2) = ρax2(κ2, σ2), and

Axj (κj , σj) =
∂axj (κj ,σj)

∂xj
= 1

κjσj

[(
σj
xj

) 1
2

+
(
σj
xj

) 3
2

]
.
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The corresponding joint CDF of (X1, X2) can be written as

P (X1 ≤ x1, X2 ≤ x2) = G2(at(κ,σ); ρ, ν) = G2(ax1(κ1, σ1), ax2(κ2, σ2); ρ, ν), (1.39)

where

G2(ax(κ,σ); ρ, ν) =G2

(√
ν − 1

ν + 1
ax(κ,σ); ρ, ν − 1

)

+Cν

{
ax1(κ1, σ1)

1 + ν + a2
x1(κ1, σ1)

G

(√
ν(ax2(κ2, σ2)− ρax1(κ1, σ1))√
1− ρ2

√
1 + ν + a2

x1(κ1, σ1)
; ν

)

+
ax2(κ2, σ2)

1 + ν + a2
x1(κ2, σ2)

G

(√
ν(ax1(κ1, σ1)− ρax2(κ2, σ2))√
1− ρ2

√
1 + ν + a2

x2(κ2, σ2)
; ν

)}
(1.40)

where Cν =
Γ( ν

2
)(ν+1)(ν−1)/2

2
√
πΓ( ν+1

2 )
and G(.; ν) denotes the cdf of the usual univariate Student-

t distribution with ν degrees of freedom.

1.6 Likelihood inference

1.6.1 Maximum likelihood estimation

Likelihood inference is a procedure of making a statement about a data generating

process (DGP). The DGP can be represented by a statistical model we select. The

goal of likelihood inference is to make a statement about the unknown parameters

θ that governs the model. The likelihood principle states that all the revelent infor-

mation about the parameters is contained in the observed data, represented by the

likelihood function. Therefore, the likelihood function is a function of θ given the

observed data and associated with the probability of the data given the parameters.

The maximum likelihood estimator (MLE) is then obtained by finding the value of θ
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in the parameter space Θ which is ”most likely” to have generated the observed data,

i.e.,

θ̂MLE = argmax
θ∈Θ

L(θ|x) (1.41)

Setting the first derivative (gradient) of the log-likelihood function to zero

∂ lnL

∂ θ
= 0, (1.42)

the MLEs become the solution of the first-order conditions.

In many situations, however, there is no analytical solution or closed-form expres-

sions. Hence, numerical optimization algorithms need to be used. Numerical methods

for nonlinear optimization problems are iterative in nature. These algorithms begin

by assuming starting values for the unknown parameters and then proceed iteratively.

In our estimation method, we implemented a hybrid of numerical optimization algo-

rithms, namely, NM followed by BFGS.

1.6.2 The NM method

Nelder-Mead (NM) simplex algorithm, proposed by Nelder and Mead (1965), is

one of the most widely used direct search methods for nonlinear optimization in a

multidimensional space

x∗ = argmin
x
f(x) (1.43)

which targets finding the minimum of a nonlinear objective function f : Rn → R,

or alternatively the maximum of −f . Here, x∗ is the solution. This algorithm is

derivative-free and only requires the values of f . It preforms simplex search using

heuristic ideas.
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In geometry, a simplex is defined as the convex hull of a set of (n + 1) affinely

independent points, {xj}n+1
j=1 (xj ∈ Rn), called vertices of the simplex. For example, a

two-vertex simplex with one dimension is a line segment and a three-vertex simplex

is a triangle with two dimensions.

The Nelder-Mead algorithm starts with a nondegenerate simplex and then mod-

ifies the simplex at each iteration using the operations of reflection, contraction,

expansion and shrinking respectively. The Nelder-Mead method iteratively gener-

ates a sequence of transformations of the working simplex to approximate an optimal

point of f . At each iteration, the vertices of the simplex are sorted according to the

objective function values

f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1), (1.44)

where x1 is is called the best vertex and xn+1 the worst.

The algorithm attempts to replace the worst vertex xn+1 with a new point of the

form

x(δ) = (1 + δ)x− δxn+1, (1.45)

where x is the centroid of the convex hull of {xj}nj=1 given by

x =
1

n

n∑
i=1

xi.

Here, δ ∈ R is a coefficient associated with a particular step, which can be the

reflection, contraction and expansion, or shrinking step of the Nelder-Mead iteration.

The algorithm terminates if either f(xn+1)−f(x1) is sufficiently small, or the number

of function evaluations has exceeded an user-specified limit.
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1.6.3 The BFGS method

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is one of the most pop-

ular quasi-Newton methods. BFGS not only possesses computational efficiency and

good asymptotic convergence, but also very effective self-correcting properties (see

Wright and Nocedal (1999)).

Suppose the objective function f : Rn → R in (1.43) is convex and twice continu-

ously differentiable. The well-known Newton method is derivative-based. It uses the

quadratic Taylor expansion of f at the current point xk:

f(x) ≈ f(xk) + (x− xk)T 5 f(xk) +
1

2
(x− xk)TH(xk)(x− xk), (1.46)

where H(xk) = 52f(xk) is the Hessian of f(x) at xk. The First-Order Necessary

Condition requires

5f(xk) +H(xk)(x− xk) = 0 (1.47)

which yields

xk+1 = xk −H(xk)−15 f(xk) (1.48)

Newton method computes the Hessian directly and converges quickly. However, the

method assumes H(xk) is nonsingular and positive-definite at each iteration and

there is no guarantee that f(xk+1) ≤ f(xk). For large n, the evaluation of H can be

computationally expensive.

Various modifications of the Newtons method, called quasi-Newton methods, miti-

gate some of these problems. Instead of the exact computation of H, BFGS algorithm
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approximates H at each iteration by the update formula

Hk+1 = Hk −
(Hksk)(Hksk)

T

sTkHksk
+
yky

T
k

yTk sk
, (1.49)

where sk = xk+1 − xk and yk = 5f(xk+1) − 5f(xk). Hk+1 satisfies the secant

equation Hk+1sk = yk and converges to H(x∗).

The BFGS quasi-Newton method with the analytic gradient will be faster, more

stable and lead to more accurate estimates than a numerical gradient (see Bard (1974),

Bolker (2008) and Mayorov (2011)).

1.6.4 Standard errors of MLEs

Under certain regularity conditions, the ML estimator θ̂ is
√
n-consistent and the

asymptotic distribution is

√
n
(
θ̂ − θ0

)
d−→ N

(
0, nI(θ0)−1

)
, (1.50)

where I(θ0) = −E
[
∂2lnL(θ)
∂θ∂θ′

∣∣∣
θ=θ0

]
= −E [H(θ0)] and H = ∂2lnL(θ)

∂θ∂θ′
is the Hessian

matrix. In order to estimate the asymptotic covariance matrix of θ̂, we consider

the well-known consistent estimator −H(θ̂)
−1

, which simply evaluates the second

derivative matrix of the log-likelihood function at the MLEs. The square roots of its

diagonal elements provide the standard errors of the estimates of the parameters.
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1.7 Simulation study

Monte Carlo simulations play an important role in research. Lots of statistical

models and methods are introduced or validated based on evidence from Monte Carlo

simulations. In this thesis, we conduct simulation studies to investigate the perfor-

mance of inferential methods developed here. For the BSt-ACD model, given a true

parameter vector, various settings based on different sample sizes are considered. For

the bivariate BS-ACD and BSt-ACD models, we fix vectors of true parameters. A

number of different scenarios concerning sample sizes and levels of correlation are then

considered. We first generate 1000 simulated datasets from the true models. For each

setting and each estimate, the performance of the MLEs of the models under consid-

eration are then evaluated in terms of the mean, coefficients of skewness and kurtosis,

bias and root mean squared error (RMSE) of the MLEs over 1000 replicates.

1.8 Model discrimination

In this thesis, we use model discrimination to evaluate the performance of the BSt-

ACD and BVBSt-ACD models, respectively. We consider a set of candidate models,

which are the special cases of the concerned general model. Based on the general

model, we are then interested in assessing how often the true model gets selected

in the set of candidate models. such a model discrimination can be done either by

Likelihood-based test or by Information-based criterion.
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1.8.1 Likelihood-based method

We study the performance of the likelihood-ratio test for testing the null hypothesis

that the data generating process (DGP) can be described by one of the simple models

versus an alternative hypothesis that the DGP can be described by a member of

the general model family other than the one specified under the null hypothesis.

The likelihood-ratio test statistic can be expressed as Λ = 2(l̂ − l̂0), where l̂0 and

l̂ are the constrained and unconstrained maximized log-likelihood values. The large

sample null distribution of Λ is simple. According to Wilks’ theorem, under some

regularity conditions, for testing H0 : ν = ν0 versus H1 : ν = ν1, Λ
a∼ χ2

1, where χ2
1

represents a chi-square distribution with one degree of freedom. However, such results

are only valid in the interior of the parameter space. In the case of H0 : ν → ∞,

where the parameter is at the boundary, the asymptotic null distribution of Λ can

be approximated as 1
2
χ2

0 + 1
2
χ2

1, i.e., a mixture of a point mass at zero and a χ2
1

distribution with equal weights and P [Λ ≤ λ] = 1
2

+ 1
2
P [χ2

1 ≤ λ] (See Self and Liang

(1987) and Balakrishnan and Pal (2013)).

1.8.2 Information-based criterion

Two popular model selection criteria, AIC and BIC, are used here. They can be

expressed as follows: AIC= −2l+ 2k and BIC= −2l+ k ln(n), where l stands for the

maximized log-likelihood value, p is the number of model parameters to be estimated,

and n is the sample size. The model with the minimum AIC or BIC is then chosen

to be the working model.
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1.9 Goodness-of-fit test

We can evaluate goodness-of-fit of the models under consideration by using in-

sample density forecasts and the genaralized Cox-Snell (GCS) residuals.

Density forecasts have come to play an important role in both macroeconomics

and finance (see Tay and Wallis (2000)). Diebold et al. (1998) introduced the

density forecast technique, which could be employed to evaluate ACD models (see

Bauwens et al. (2004), Hautsch (2012) and Leiva et al. (2014)). Let {xi}ni=1 denote

a series generated from the series of true predictive densities {fi(xi|Fi−1)}ni=1. Let

{pi(xi|Fi−1))}ni=1 be a series of one-step-ahead density forecasts. The null hypothesis

is that the density forecasts should coincide with the true predictive densities, that is,

{fi(xi|Fi−1)}ni=1 = {pi(xi|Fi−1)}ni=1. Next, a series of probability integral transforms

(PIT) of {xi}ni=1 is obtained by zi =
∫ xi
−∞ pi(u)du. Under the null hypothesis, the

distribution of {zi}ni=1 should be i.i.d. U(0, 1).

Diebold et al. (1999) extended the above idea to the multivariate case. Here, we

are especially interested in the bivariate case. Let {(x1i, x2i)}ni=1 represent a bivariate

series and {pi(x1i, x2i|Fi−1)}ni=1 be a series of joint density forecasts. The forecasts can

be decomposed into pi(x1i, x2i) = pi(x1i)pi(x2i|x1i) and pi(x1i, x2i) = pi(x2i)pi(x1i|x2i),

i = 1, . . . , n. By applying the PIT to pi(x1i), pi(x2i), pi(x1i|x2i) and pi(x2i|x1i),

respectively, the corresponding series we obtain, z1, z2, z1|2 and z2|1, should be i.i.d

U(0, 1) individually under the null hypothesis. According to Diebold et al. (1999),

for good bivariate forecasts, not only the z series but also the pooled series {z1, z2|1}

and {z2, z1|2} should each be i.i.d. U(0, 1).

We can use the Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) tests to
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assess the uniformity of the z series and the Ljung-Box test to examine the indepen-

dence of the z series (see Mitchell and Wallis (2011), Rossi and Sekhposyan (2014)

and Leiva et al. (2014)). The Ljung-Box test here is defined as

H0 : {zi} is independently distributed.

H1 : {zi} is not independently distributed.

The test statistic is

Qm = n(n+ 2)
m∑
h=1

ρ̂2
h

n− h

where ρ̂h =
∑n

i=h+1(zi − z)(zi−h − z)/
∑n

i=1(zi − z)2 and z =
∑n

i=1 zi/n. If {zi} is an

i.i.d. sequence satisfying E(z2
i ) <∞, then

(
√
nρ̂1, . . . ,

√
nρ̂m)

d−→ Nm (0, I)

as n→∞ (see Anderson (1971), Runde (1997), Fan and Yao (2003), Tsay (2010) and

Fan and Yao (2017)), where I is the m ×m identity matrix. Obviously, under H0,∑m
h=1 nρ̂

2
h is then approximately χ2

m distribution. When n is large, (n+2)/(n−h) ≈ 1.

Therefore, under H0, the Ljung-Box test statistics

Qm =
m∑
h=1

n+ 2

n− h
nρ̂2

h ≈
m∑
h=1

nρ̂2
h

d−→ χ2
m

as n→∞.

Bhatti (2010) suggested to use the GCS residuals to assess the goodness-of-fit

of the BS-ACD model. Suppose X is a random variable with survival function
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S(x). Regardless of the form of S(x), the distribution of the random variable

Y = −ln(S(X)) is exp(1) (see Collett (2003)). The GCS residual is then defined as

rGCSi = −ln(Ŝ(xi|Fi−1)), for i = 1, . . . , n, where Ŝ(xi|Fi−1) is the fitted conditional

survival function of the ith trade duration (see Engle and Lunde (2003), Bhatti (2010)

and Leiva et al. (2014)). Under the assumption that the model is correctly specified,

irrespective of the ACD specification, the GCS residuals should be i.i.d. standard

exponential distribution.

1.10 Out-of-sample forecast evaluation

It is important to evaluate the model’s predictive performance on the data not

used in the model estimation. So, we split the full data set into two subsets. We take

the first part of the data set as the training set, or “in-sample” data, for the purpose

of estimation and use the rest of the data as the test set or “out-of-sample” data, for

prediction. The predictive performance of the model can then be assessed by using

density forecasts detailed in Diebold et al. (1998) and Diebold et al. (1999), detailed

above in Section 1.9.

1.11 Scope of the thesis

This thesis considers autoregressive conditional median duration models (ACD) in

both univariate and bivariate settings. We first investigate the univariate BSt-ACD

model and then propose natural bivariate extensions of the BS-ACD and BSt-ACD

models for the analysis of matched durations.
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The rest of this thesis proceeds as follows. In Chapter 2, we show how to imple-

ment the maximum likelihood estimation method to estimate the BSt-ACD model.

Monte Carlo simulation study is conducted to evaluate the proposed method. The

performance of the model is further examined by model discrimination. A real data

example and comparison with two alternative models are finally provided.

In Chapters 3 and 4, we focus on the bivariate versions of ACD models. In

Chapter 3, by making use of the BVBS distribution, we introduce the BVBS-ACD

model to analyze two matched duration series jointly and measure the strength of

dependence between them. The maximum likelihood estimation of model parameters

and associated inferential methods are then discussed. The proposed model and its

estimation method are then examined via a simulation study. The goodness-of-fit

and predictive performance of the model are evaluated through in-sample and out-

of-sample density forecasts. The methodology is illustrated finally by using a real

high-frequency data.

In Chapter 4, we propose the BVBSt-ACD model and then discuss the maximum

likelihood estimation of the model parameters based on a hybrid of optimization

algorithms. We investigate the performance of the inferential methods developed

here through a Monte Carlo simulation study. The goodness-of-fit and predictive

performance of the model are also discussed. Model discrimination using information-

based method is conducted. We give model fitting and forecasting results using the

modeling procedure on a simulated bivariate dataset. The results show the superiority

of the proposed approach in comparison with the BVBS-ACD model.

In Chapter 5, we give a summary of the thesis and suggest some possible directions

for future research.
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Chapter 2

BSt-ACD model

2.1 Introduction

The generalized Birnbaum-Saunders (GBS) distribution was introduced by Dı́az-

Garćıa and Leiva (2005), which allows great flexibility in terms of the kurtosis and

skewness and can therefore be used as an alternative to the classical BS distribution

in robustness studies (see Barros et al. (2009), Balakrishnan et al. (2007), Leiva et al.

(2008) and Barros et al. (2009)).

Leiva et al. (2014) proposed the BSt-ACD model and developed associated EM

algorithm for the estimation of model parameters. To estimate the BS-ACD model,

Bhatti (2010) developed a maximum likelihood (ML) method based on a mixture

of optimization algorithms, namely NM followed by BFGS. In this Chapter, as an

extension of the ML estimation procedure developed by Bhatti (2010), we suggest a

maximum likelihood method with an extra shape parameter to estimate the BSt-ACD

model.

The rest of this Chapter is organized as follows. The BSt-ACD model and the
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corresponding log-likelihood function is presented in Section 2.2. We derive the first

and second derivatives of lnL(θ) in Sections 2.3 and 2.4. In Section 2.5, we discuss the

maximum likelihood based estimation method and associated inference for the model

parameters. A simulation study is carried out to examine the performance of these es-

timates in Section 2.6. Model discrimination is carried out using the likelihood-based

method and information-based criteria in Section 2.7. In Section 2.8, we illustrate the

proposed methodology using high-frequency data on two stocks from the New York

Stock Exchange. We present the applications of the BSt-ACD model to trade dura-

tions and then a comparison with existing alternatives, the BS-ACD and GG-ACD

models.

2.2 BSt-ACD Model and the log-likelihood func-

tion

The BSt-ACD model allows more flexibility in kurtosis and skewness by including

an extra parameter, the degrees of freedom of the Student-t distribution. This may

potentially facilitate robust parameter estimation.

By working with the density of Xi directly, the BSt-ACD model can be expressed

as

Xi = σiεi, lnσi = α + β lnσi−1 + γ

[
Xi−1

σi−1

]
, |β| < 1, (2.1)

where Xi ∼ BSt(κ, σi, ν) and εi
iid∼ BSt(κ, 1, ν).
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The pdf associated with the BSt-ACD model is given by

fXi(xi;θ) =
Γ
(
ν+1

2

)
2
√
νπΓ

(
ν
2

)
κσi

[(
σi
xi

) 1
2

+

(
σi
xi

) 3
2

]1 +

(
xi
σi

+ σi
xi
− 2
)

νκ2

−
ν+1
2

=
Γ
(
ν+1

2

)
2
√
νπΓ

(
ν
2

)
κxi

[(
xi
σi

) 1
2

+

(
σi
xi

) 1
2

]1 +

(
xi
σi

+ σi
xi
− 2
)

νκ2

−
ν+1
2

, (2.2)

here, θ = (α, β, γ, κ, ν)′ is the model parameter vector. xi > 0, ν > 0, i = 1, . . . , n.

The corresponding survival function can be expressed as

SBSt(xi;κ, σi, ν) = 1− 1

2

{
1 + I[a(xi)2]/[a(xi)2+ν]

(
1

2
,
ν

2

)}
, (2.3)

where a(xi) = (
√
xi/σi −

√
σi/xi)/κ and Ix(a, b) =

∫ x
0
ta−1(1 − t)b−1dt/

∫ 1

0
ta−1(1 −

t)b−1dt is the incomplete beta ratio (see Leiva et al. (2014)).

For i = 1, 2, . . . , n, the individual log-likelihood function can be expressed as

ln li(θ) =− ln 2
√
π − ln(κ)− ln(xi) + ln Γ(

ν + 1

2
)− 1

2
ln(ν)− ln Γ(

ν

2
)

+ ln

[(
xi
σi

) 1
2

+

(
σi
xi

) 1
2

]
− ν + 1

2
ln

1 +

(
xi
σi

+ σi
xi
− 2
)

νκ2


The log-likelihood function is then given by

lnL(θ) =
n∑
i=1

{
− ln 2

√
π − lnκ− lnxi + ln Γ

(
ν + 1

2

)
− ln Γ

(ν
2

)
− 1

2
ln(ν)

+ ln

[(
xi
σi

) 1
2

+

(
σi
xi

) 1
2

]
− ν + 1

2
ln

(
1 +

xi
σi

+ σi
xi
− 2

νκ2

)}
. (2.4)
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2.3 The first derivatives of lnL(θ)

The first derivatives of lnL(θ) with respect to α, β and γ are given by

∂ lnL

∂α
=

n∑
i=1

∂ ln li
∂α

=
n∑
i=1

∂ ln li
∂σi

∂σi
∂α

,

∂ lnL

∂β
=

n∑
i=1

∂ ln li
∂β

=
n∑
i=1

∂ ln li
∂σi

∂σi
∂β

,

∂ lnL

∂γ
=

n∑
i=1

∂ ln li
∂γ

=
n∑
i=1

∂ ln li
∂σi

∂σi
∂γ

,

where

∂ ln li
∂σi

=
xi − σi

2σi

(
(ν + 1)(xi + σi)

κ2xiσiν + (xi − σi)2
− 1

xi + σi

)
, (2.5)

and by Lemma 2.3 in Mayorov (2011),

∂σi
∂α

=σi

(
1 +

1

σi−1

∂σi−1

∂α

(
β − γxi−1

σi−1

))
, (2.6)

∂σi
∂β

=σi

(
lnσi−1 +

1

σi−1

∂σi−1

∂β

(
β − γxi−1

σi−1

))
, (2.7)

∂σi
∂γ

=σi

(
xi−1

σi−1

+
1

σi−1

∂σi−1

∂γ

(
β − γxi−1

σi−1

))
; (2.8)
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also, from by Lemma 2.4 in Mayorov (2011),

∂σi
∂α

=σi

(
1 +

i−1∑
k=1

i−1∏
l=k

(
β − γxl

σl

))
, i ≥ 1, (2.9)

∂σi
∂β

=σi

(
lnσi−1 +

i−2∑
k=0

lnσk

i−1∏
l=k+1

(
β − γxl

σl

))
, i ≥ 2, (2.10)

∂σi
∂γ

=σi

(
xi−1

σi−1

+
i−2∑
k=0

xk
σk

i−1∏
l=k+1

(
β − γxl

σl

))
, i ≥ 2, (2.11)

with ∇σ0 = (0, 0, 0)′ and ∇σ1 = (σ1, σ1 lnσ0, σ1x0/σ0)′.

The first derivatives of lnL(θ) with respect to κ and ν are given by

∂ lnL

∂κ
=

n∑
i=1

∂ ln li
∂κ

,

∂ lnL

∂ν
=

n∑
i=1

∂ ln li
∂ν

,

where

∂ ln li
∂κ

=
1

κ

(
(ν + 1)(xi − σi)2

κ2xiσiν + (xi − σi)2
− 1

)
, (2.12)

∂ ln li
∂ν

=
1

2

{
Ψ

(
ν + 1

2

)
−Ψ

(ν
2

)
+

xi
σi

+ σi
xi
− 2− κ2

xi
σi

+ σi
xi
− 2 + νκ2

− ln

(
1 +

xi
σi

+ σi
xi
− 2

νκ2

)}
. (2.13)

with Ψ(x) = d
dx

ln (Γ(x)) = Γ′(x)
Γ(x)

denoting the digamma function.
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2.4 The second derivatives of lnL(θ)

The second derivatives of lnL(θ) with respect to θ = (α, β, γ, κ, ν)′ are as follows:

∂2 lnL

∂ α2
=

n∑
i=1

∂2 ln li
∂ α2

=
n∑
i=1

∂ ∂ ln li
∂σi

∂σi
∂α

∂α
=

n∑
i=1

[
∂2 ln li
∂σ2

i

(
∂σi
∂α

)2

+
∂ ln li
∂σi

∂2σi
∂α2

]
,

∂2 lnL

∂ β2
=

n∑
i=1

∂2 ln li
∂ β2

=
n∑
i=1

∂ ∂ ln li
∂σi

∂σi
∂β

∂β
=

n∑
i=1

[
∂2 ln li
∂σ2

i

(
∂σi
∂β

)2

+
∂ ln li
∂σi

∂2σi
∂β2

]
,

∂2 lnL

∂ γ2
=

n∑
i=1

∂2 ln li
∂ γ2

=
n∑
i=1
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∂2 lnL

∂ κ2
=

n∑
i=1

∂2 ln li
∂ κ2

,

∂2 lnL

∂ κ ∂ ν
=

n∑
i=1

∂2 ln li
∂ κ ∂ ν

,

∂2 lnL

∂ ν2
=

n∑
i=1

∂2 ln li
∂ ν2

,

where

∂2 ln li
∂ σi2

=
1

2σi

{
(ν + 1) (xi − σi) (xi + σi) (κ2 ν xi − 2 (xi − σi))(

(xi − σi)2 + κ2 σi ν xi
)2

+
(ν + 1) (xi

2 + σi
2)

σi

(
(xi − σi)2 + κ2 σi ν xi

) − xi
2 + 2σi xi − σi2

σi (xi + σi)
2

}
,

(2.14)

∂2 ln li
∂ σi ∂ κ

=
κ ν (ν + 1) xi (σi

2 − xi2)(
(xi − σi)2 + κ2 σi ν xi

)2

(2.15)
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∂2 ln li
∂ σi ∂ ν

=
(σi

2 − xi2)
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κ2 σi ν xi − ν (xi − σi)2)

2σi ν
(
(xi − σi)2 + κ2 σi ν xi

)2 ,

(2.16)

∂2 ln li
∂ κ2

=
1

κ2
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(ν + 1) (xi − σi)2 ((xi − σi)2 + 3κ2 σi ν xi
)(

(xi − σi)2 + κ2 σi ν xi
)2

}
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(2.17)
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(xi − σi)2 (1 + ν − (xi − σi)2 − κ2 σi ν xi

)
κ ν
(
(xi − σi)2 + κ2 σi ν xi

)2 ,

(2.18)

∂2 ln li
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=
1

2
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)
ν2
(
(xi − σi)2 + κ2 σi ν xi

)2 +
Ψ1

(
ν+1

2

)
2

−
Ψ1

(
ν
2

)
2

+
1

ν2

}
,

(2.19)

Ψ1(x) is the second derivative of ln (Γ(x)) function.
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2.5 Estimation and inference

We estimate the parameter θ = (α, β, γ, κ, ν)′ of the BSt-ACD model by maxi-

mizaing the log-likelihood function in equation (2.4). We propose the following two-

step procedure for this purpose of estimation. In the first step, we estimate the ACD

parameters, α, β, and γ, by using the NM algorithm with κ and ν fixed at their ini-

tial values. Then in the second step, we estimate over the whole parameter space by

employing the BFGS algorithm with analytical gradients. We have derived and im-

plemented the analytical gradients (the first derivatives in Section 2.3) in the second

step.

Under certain regularity conditions ( smoothness and boundariness ), the ML

estimator θ̂ is
√
n-consistent and the asymptotic distribution of it is

√
n
(
θ̂ − θ0

)
d−→ N5

(
0, nI(θ0)−1

)
(2.26)

where I(θ0) = −E
[
∂2lnL(θ)
∂θ∂θ′

∣∣∣
θ=θ0

]
= −E [H(θ0)] with H = ∂2lnL(θ)

∂θ∂θ′
being the Hes-

sian matrix. In order to estimate the asymptotic covariance matrix of θ̂, we consider

the well-known consistent estimator −H(θ̂)
−1

, which simply evaluates the second

derivative matrix of the log-likelihood function at the MLEs. The square roots of its

diagonal elements then provide the standard errors of the estimates.
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2.6 Simulation study

In this Section, we present the results of a simulation study carried out for evalu-

ating the performance of the maximum likelihood estimates determined by the pro-

cedure described in Section 2.5.

The simulation scenarios considered are as follows: sample sizes n ∈

{3000, 5000, 10000, 20000} and the vector of parameters θ = (α, β, γ, κ, ν)′ =

(0.1, 0.9, 0.1, 1.0, 12)′. To estimate the BSt-ACD model, we set the starting values

for the ACD parameters to be (α0, β0, γ0)′ = (0.01, 0.80, 0.01)′. κ0 is determined as

κ0 =

√
2
(

X
med(X)

− 1
)
ν−2
ν
. We set ν0 = 3.

For each sample size and each estimate, we computed the mean, coefficients of

skewness and kurtosis, bias and root mean squared error (RMSE) of the MLEs.

Tables 2.1-2.4 summarize the distribution of the MLEs over 1000 simulation trials.

From the simulated values presented in Tables 2.1-2.4, we observe that the bias, MSE

and RMSE are consistently small and tend to 0 as sample size increases from 3000

to 20,000. It reveals that the MLEs are asymptotically unbiased and consistent.

Moreover, the standard errors of the estimates become smaller, and also the sample

skewness and kurtosis tend to 0 and 3, respectively, with increasing sample size. This

reveals that the asymptotic distribution of the MLEs are normal, as suggested by the

asymptotic distribution of the MLEs stated above.
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Table 2.1: Simulation results for BSt-ACD model when n = 3000

α̂ β̂ γ̂ κ̂ v̂
trueparam 0.1000 0.9000 0.1000 1.1000 12.0000
mean 0.0994 0.8972 0.1042 1.0909 10.9443
skew 0.7005 -0.6133 -0.0666 0.1661 3.4636
kurt 3.9595 3.9989 2.9727 3.2400 22.2730
bias -0.0006 -0.0028 0.0042 -0.0091 -1.0557
MSE 0.0031 0.0005 0.0002 0.0016 26.4100
RMSE 0.0558 0.0226 0.0126 0.0399 5.1391
SE 0.0558 0.0225 0.0119 0.0389 5.0320

Table 2.2: Simulation results for BSt-ACD model when n = 5000

α̂ β̂ γ̂ κ̂ v̂
trueparam 0.1000 0.9000 0.1000 1.1000 12.0000
mean 0.1010 0.8991 0.1007 1.0946 11.2733
skew 0.2384 -0.2098 -0.0053 0.1486 1.2490
kurt 2.9921 2.9386 2.9319 2.8445 5.2743
bias 0.0010 -0.0009 0.0007 -0.0054 -0.7267
MSE 0.0006 0.0001 0.0000 0.0004 4.0278
RMSE 0.0238 0.0096 0.0051 0.0193 2.0069
SE 0.0238 0.0096 0.0050 0.0185 1.8717
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Table 2.3: Simulation results for BSt-ACD model when n = 10000

α̂ β̂ γ̂ κ̂ v̂
trueparam 0.1000 0.9000 0.1000 1.1000 12.0000
mean 0.1000 0.8997 0.1003 1.0953 11.3754
skew 0.1613 -0.1726 0.0819 0.1590 0.9950
kurt 3.1191 3.1408 2.8582 2.9853 4.4802
bias 0.0000 -0.0003 0.0003 -0.0047 -0.6246
MSE 0.0003 0.0000 0.0000 0.0002 2.3332
RMSE 0.0168 0.0068 0.0036 0.0141 1.5275
SE 0.0168 0.0068 0.0036 0.0133 1.3947

Table 2.4: Simulation results for BSt-ACD model when n = 20000

α̂ β̂ γ̂ κ̂ v̂
trueparam 0.1000 0.9000 0.1000 1.1000 12.0000
mean 0.0996 0.9001 0.1001 1.0967 11.5472
skew 0.1929 -0.1420 0.1562 -0.0386 0.2609
kurt 3.1248 3.3047 2.9425 2.9998 2.9496
bias -0.0004 0.0001 0.0001 -0.0033 -0.4528
MSE 0.0001 0.0000 0.0000 0.0001 1.4330
RMSE 0.0115 0.0046 0.0025 0.0106 1.1971
SE 0.0115 0.0046 0.0025 0.0100 1.1087
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2.7 Model discrimination

The BSt-ACD model provides more flexibility in terms of kurtosis and skewness

by the inclusion of an additional parameter, namely, the degrees of freedom ν of the

Student-t distribution. The BSt7, BSt9, BSt12 and BS-ACD models are some special

cases, for example. Using the BSt-ACD model, it will then be of great interest to

examine how often the true model gets selected in the set of candidate models and

to choose a simple model that provides an adequate fit to the data. This model

evaluation technique is called model discrimination. One may refer to the book by

McLachlan and Peel (2000), and the recent papers by Balakrishnan and Peng (2006),

Balakrishnan and Pal (2013), Balakrishnan and Pal (2016), and Balakrishnan et al.

(2017) in this direction in different contexts. Two types of common selection criteria

are used in the literature for this purpose, namely, likelihood ratio tests (LRTs) and

information criterion.

2.7.1 Likelihood-based method

We study the performance of the likelihood ratio test (LRT) for testing the null

hypothesis that the data generating process (DGP) can be described by one of the

BSt7 (H0 : ν = 7), BSt9 (H0 : ν = 9), BSt12 (H0 : ν = 12) and BS (H0 : ν → ∞)

ACD models versus an alternative hypothesis that the DGP can be described by a

member of the BSt-ACD family other than the one specified in the null hypothesis.

First, we assume that the true data generating processes (DGP) is the BSt7,

BSt9, BSt12 and BS-ACD models (true models), respectively. Next we simulate

datasets from each true model and fit the BSt7, BSt9, BSt12, BS and BSt-ACD mod-

els to these datasets, respectively. We use 1000 replications of sample sizes of n ∈
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{2000, 3000, 5000} and the same parameter setting (α, β, γ, κ)′ = (0.1, 0.9, 0.1, 1.0)′

for all true models. For each simulated sample, we obtain the LRT statistics of

the fitted BSt7, BSt9, BSt12 and BS-ACD models versus the fitted general BSt-ACD

model. We then evaluate the observed significance levels and powers of the LRT by

calculating the proportion of the 1000 simulation trials that reside in the rejection of

the null hypothesis at a nominal significance level of 0.05.

The results so obtained are reported in Table 2.5. The observed levels lie on the

main diagonal, shown in bold, while other numbers are the observed powers. As the

sample size increases, the observed levels decrease and the observed powers increase,

which show an improvement in performance with sample size.

It is easy to see that the χ2
1 distribution provides only a reasonable approximation

to the null distribution of the LRT when testing for the BSt12-ACD model as the

observed levels are not so close to the nominal level, varying from 8.2% to 9.5%.

But, the χ2
1 distribution provides a good approximation to the null distribution of

the LRT when testing for the BSt7 and BSt9-ACD models as the observed levels are

indeed close to the nominal level. However, when testing for the BS-ACD model,

the mixture chi-square distribution doesn’t provide a good approximation to the null

distribution of the LRT as the observed levels are found to be considerably above the

nominal level ranging from 37.5% to 42.4%. The asymptotic mixture chi-square form

is not sufficient for this result. However, the observed levels decrease as the sample

size increases. For substantially larger sample size, they come down to the nominal

level, 5%.

The observed powers vary in different situations and increase as sample size in-

creases. When the true model is BSt7-ACD, the test has high power to reject BS (the
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observed power is 100% in all cases) and BSt12-ACD (the observed powers are from

89.7% to 99.8%) and moderate power to reject BSt9-ACD (the observed powers take

values from 48.8% to 73.7%). In all cases, the test has high power to reject BSt7,

BSt9 and BSt12-ACD models if the true DGP is BS-ACD. When the true model is the

BSt9-ACD, the test has high power to reject BS-ACD (the observed power is 100%

in all cases), moderate power to reject BSt12-ACD (the observed powers range from

45.7% to 71.0%) and low power to reject BSt7-ACD (the observed powers vary from

22.0% to 56.4%). When the true DGP is the BSt12-ACD, the test has high power to

reject BS-ACD (the observed powers take values from 99.3% to 100%), good power

to reject BSt7-ACD (the observed powers are from 64.8% to 99.0%) and low power

to reject BSt9-ACD (the observed powers range from 14.3% to 42.4%).

Thus, the difference in model fitting between the BSt7, BSt9, BSt12 or BS-ACD

models is significant enough to be detected by the LRT under the BSt-ACD setup.

2.7.2 Information-based criterion

We consider the same parameter settings as mentioned in Section 2.7.1 and gener-

ate data from the true models. For each dataset, we calculate the AIC and BIC values

of the fitted the BSt7, BSt9, BSt12 and BS-ACD models. Then, the performance of

the AIC and BIC can be evaluated by the selection rates for each of the fitted models.

Since all fitted models have the same number of parameters, the AIC and BIC choose

the same model for the same dataset simulated from the true model, and in fact they

correspond to the model with the largest maximized log-likelihood value.

These results are presented in Table 2.6. The selection rates for the correct models

lie on the main diagonal, shown in bold, while other numbers are the selection rates for
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the wrong models. The information criteria can distinguish between the BSt7, BSt9,

BSt12 and BS-ACD models with a relatively high selection rates for the true models.

As the sample size increases, the selection rates for the correct models increase and

the selection rates for the wrong models decrease, which show an improvement in

performance with sample size.

The information criteria perform well when the true DGP is BSt7-ACD and BS-

ACD models. The selection rates of the correct models are from 84.7% to 91.5% if

the true distribution is BSt7 and from 71.3% to 92.2% if the true distribution is BS.

The information criteria perform moderately when the true DGP is BSt9-ACD and

BSt12-ACD models. The selection rates of the right model are from 49.3% to 72.9% if

the true model is BSt9-ACD and from 55.2% to 77.3% if the true DGP is BSt12-ACD.

As expected, when the true models are BSt7-ACD and BSt9-ACD, the selection

rates for BSt9-ACD and BSt7-ACD are higher than those of BSt12-ACD, which implies

that BSt7-ACD is closer to BSt9-ACD than BSt12-ACD, which are consistent with

those results obtained earlier by the LRT.

In general, the BSt7-ACD and BS-ACD models are quite different in terms of

skewness and kurtosis. For a small sample size, n = 2000, the information criteria

can distinguish between the BSt7 and BS-ACD models with a high selection rates

for the true models. The BSt9-ACD and BSt12-ACD models are very close to each

other. Thus, the corresponding selection rates of the correct models are low. But for

a larger sample size, n = 5000, the information criteria can distinguish between them

with a relatively high selection rates for the true models.
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Table 2.5: Model Discrimination by LR test

True BSt-ACD Model
n=2000

Fitted ACD Model BSt7 BSt9 BSt12 BS
BSt7 0.071 0.202 0.648 1.000
BSt9 0.488 0.064 0.143 0.995
BSt12 0.897 0.457 0.095 0.883
BS 1.000 1.000 0.993 0.424

n=3000
Fitted ACD Model BSt7 BSt9 BSt12 BS
BSt7 0.052 0.296 0.885 1.000
BSt9 0.576 0.053 0.234 1.000
BSt12 0.967 0.554 0.082 0.987
BS 1.000 1.000 1.000 0.399

n=5000
Fitted ACD Model BSt7 BSt9 BSt12 BS
BSt7 0.056 0.564 0.990 1.000
BSt9 0.737 0.054 0.424 1.000
BSt12 0.998 0.710 0.083 1.000
BS 1.000 1.000 1.000 0.375
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Table 2.6: Model Discrimination by AIC and BIC

True BSt-ACD Model
n=2000

Fitted ACD Model BSt7 BSt9 BSt12 BS
BSt7 0.847 0.353 0.050 0.000
BSt9 0.142 0.493 0.389 0.001
BSt12 0.010 0.154 0.552 0.286
BS 0.001 0.000 0.009 0.713

n=3000
Fitted ACD Model BSt7 BSt9 BSt12 BS
BSt7 0.866 0.263 0.012 0.000
BSt9 0.132 0.611 0.337 0.000
BSt12 0.002 0.126 0.650 0.190
BS 0.000 0.000 0.001 0.810

n=5000
Fitted ACD Model BSt7 BSt9 BSt12 BS
BSt7 0.915 0.181 0.002 0.000
BSt9 0.085 0.729 0.225 0.000
BSt12 0.000 0.090 0.773 0.078
BS 0.000 0.000 0.000 0.922
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2.8 Application to trade duration data

In this section, we present the applications of the BSt-ACD model to some trade

durations and a comparison with existing alternatives, namely, the BS-ACD and

GG-ACD models.

2.8.1 Data description

We consider the trade durations of International Business Machines (IBM) and

Johnson & Johnson (JNJ) stocks in the period of 28 consecutive trading days from

January 2, 2002 to February 11, 2002. There are 91,819 (IBM) and 61,188 (JNJ)

observations for each asset. The original data sets were studied in detail by Bhatti

(2010) and Leiva et al. (2014).

After restricting the adjusted durations between 10:00 am and 4:00 pm, we obtain

89,171 (IBM) and 59,390 (JNJ) observations for each asset. The initial values σ0 for

each day were set to be the median trade duration from 9:50 to 10:00 am for BSt-ACD

model, and ψ0 to be the mean trade duration from 9:50 to 10:00 am for GG-ACD

model.

As seen in Table 2.7, the two adjusted duration series are positive and right-skewed

with high degree of kurtosis indicating heavy tails.

Table 2.7: Summary statistics for the adjusted durations

Data Min Median Mean Max SD skew kurt
IBM 0.170 1.034 1.394 27.480 1.279 3.018 21.543
JNJ 0.131 0.979 1.532 27.930 1.616 3.042 20.083
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Figure 2.1: TTT plots for IBM (left) and JNJ (right)
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Figure 2.2: ACF plots for IBM (left) and JNJ (right)

50



Ph.D. Thesis - Tao Tan McMaster - Mathematics & Statistics

In Figure 2.1, the empirical scaled TTT transforms are plotted, from which they

are seen to be first concave and then convex, revealing that both marginals may have

unimodal shaped hazard rates. Therefore, the BSt distribution could be a good fit to

the duration data due to these shapes of its marginal density functions and hazard

rates.

The Autocorrelation Function (ACF) plots in Figure 2.2 indicate that there are

significant positive autocorrelations up to long lags in both series, which suggests that

a ACD specification may be a reasonable choice ( see Tsay (2010), Hautsch (2012)

and Leiva et al. (2014)). Note: the plots are trimmed to be in the interval up to

0.1 even though the value should be 1 at 0. The ACF of the series represents the

strength of linear dependence between Xi and Xi−h for 0 ≤ h < n. Here, the lag-h

autocorrelation of Xi is defined as

ρh =
Cov(Xi, Xi−h)√
V ar(Xi)V ar(Xi−h)

=
Cov(Xi, Xi−h)

V ar(Xi)
. (2.27)

Let X =
∑n

i=1Xi/n. Then the lag-h sample autocorrelation of Xi is

ρ̂h =

∑n
i=h+1(Xi −X)(Xi−h −X)∑n

i=1(Xi −X)2
. (2.28)

2.8.2 Estimation results

We employ the method described earlier in Section 2.5 to estimate the BSt-ACD

model for the IBM an JNJ duration series, respectively. For comparison purpose, we

also consider two alternatives, namely, the BS-ACD and GG-ACD models, using the

two-step estimation procedures as detailed in Bhatti (2010). The obtained results are
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shown in Table 2.8. All estimates are statistically significant at 1% level. Overall,

the BS-ACD and BSt-ACD models perform much better than the GG-ACD model in

terms of AIC and BIC values. The BSt-ACD model outperforms all the considered

models and the BS-ACD model provides close values according to AIC values for both

series.

Table 2.8: Estimation results for three ACD models

BSt-ACD model

Data α̂ β̂ γ̂ κ̂ ν̂ maxlnL AIC BIC
IBM -0.041 0.950 0.029 0.871 81.069 -108306.40 216622.80 216669.80

(0.0020) (0.0044) (0.0014) (0.0021) (0.1664)
JNJ -0.016 0.979 0.011 1.012 142.443 -79467.52 158945.00 158990.00

(0.0015) (0.0032) (0.0010) (0.0030) (0.4033)
BS-ACD model

Data α̂ β̂ γ̂ κ̂ maxlnL AIC BIC
IBM -0.040 0.950 0.029 0.882 -108314.50 216637.00 216674.60

(0.0020) (0.0044) (0.0014) (0.0021)
JNJ -0.016 0.978 0.011 1.019 -79468.83 158945.70 158981.60

(0.0015) (0.0032) (0.0010) (0.0030)
GG-ACD model

Data α̂ β̂ γ̂ v̂ η̂ maxlnL AIC BIC
IBM -0.029 0.949 0.045 45.377 0.182 -108531.00 217072.00 217119.00

(0.0014) (0.0043) (0.0021) (0.1520) (0.0005)
JNJ -0.009 0.984 0.016 48.251 0.155 -79939.19 159888.40 159933.30

(0.0009) (0.0025) (0.0015) (0.4665) (0.0009)

The in-sample predictive model for the IBM series based on BSt-ACD model is

given by

σ̂i = exp

(
−0.041 + 0.950 ln σ̂i−1 + 0.029

[
Xi−1

σ̂i−1

])
,

and for the JNJ series it is given by

σ̂i = exp

(
−0.016 + 0.979 ln σ̂i−1 + 0.011

[
Xi−1

σ̂i−1

])
.
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2.8.3 Goodness-of-fit

We examine the distribution of GCS residuals for all the considered models through

QQ plots. In general, QQ plots in Figure 2.3 indicate that GCS residual of BSs and

BSt-ACD models seem to follow exp(1) distribution, considering that the 95th and

99th percentiles of this distribution are around 3.0 and 4.6, respectively. Furthermore,

the BSt-ACD model seems to provide a slightly better fit to the data than the BS-

ACD model. However, based on the GCS residuals, the GG-ACD model does not fit

the JNJ series well although it provides a fairly good fit to the IBM series.
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Figure 2.3: GCS plots for IBM (left) and JNJ (right) stocks

2.8.4 Out-of-sample forecast evaluation

We use the first nine tenth of the JNJ series, “in-sample” observations 1 to 53,451,

for estimating the model parameters and then employ the resulting predictive model

to the rest of the data, “out-of-sample” observations 53,452 to 59,390, to form density
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forecasts. The corresponding evaluation results are shown in Table 2.9. For the BS-

ACD and BSt-ACD models, at 1% significance level, the null hypothesis that the

z series is i.i.d. U(0, 1) can not be rejected according to the KS, AD and LB tests.

The KS and AD tests show that the z series is from the uniform distribution, U(0,

1). The LB tests indicate no serial correlation in the associated z and z2 series.

Overall, the BSt-ACD model yields best forecasts, and the BS-ACD model provides

close values, but the GG-ACD model is the worst one with regard to out-of-sample

forecast evaluation.

Table 2.9: P -values for out-of-sample tests

JNJ
Model AD KS LB(10) LB(15) LB(20) LB2(10) LB2(15) LB2(20)
BSt-ACD 0.037 0.056 0.495 0.774 0.720 0.755 0.815 0.743
BS-ACD 0.035 0.044 0.490 0.771 0.717 0.753 0.814 0.741
GG-ACD < 0.001 < 0.001 0.531 0.788 0.742 0.762 0.786 0.725

Note: KS represents Kolmogorov-Smirnov test, AD represents Anderson-Darling
test, LB(l) represents Ljung-Box test for z series over l lags. LB2(l) represents
Ljung-Box test for z2 series over l lags.

For point-wise forecasts, one can also use measures like mean absolute error

(MAE), mean absolute percentage error (MAPE) or mean squared error (MSE) to

compare models based on out-of-sample forecast accuracy. We assess the predictive

performance of the models by evaluating out-of-sample density forecasts of the models

since density forecasts are popular in both macroeconomics and finance.
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Chapter 3

Bivariate BS-ACD model

3.1 Introduction

Kundu et al. (2010) derived the bivariate Birnbaum-Saunders (BVBS) distribution

through a transformation of the bivariate normal distribution (see Kundu et al. (2013)

and Vilca et al. (2014a,b) for generalizations of the BVBS distribution). Its marginals

are univariate BS distributions and its conditional distributions can be expressed

in terms of normal distribution. Moreover, it has a correlation parameter which

indirectly represents the dependence between the two BS random variables.

Our goal now is to construct a bivariate autoregressive conditional duration model

based on the bivariate BS distribution, which would then facilitate us to jointly

analyze and measure the strength of dependence between two matched duration series,

pairs of durations with the same starting time (see Simonsen (2007)).

The rest of this Chapter is organized as follows. In Section 3.2, we present the

BVBS-ACD model and the corresponding log-likelihood function. We derive the first

and second derivatives of lnL(θ) in Sections 3.3 and 3.4. In Section 3.5, we discuss the

55



Ph.D. Thesis - Tao Tan McMaster - Mathematics & Statistics

maximum likelihood estimation and associated inference for the model parameters. A

Monte Carlo simulation study is carried out in Section 3.6 to examine the properties

of the MLEs. In Section 3.7, we provide an application of the BVBS-ACD model to

a trade duration data set.

3.2 Bivariate BS-ACD model and the log-

likelihood function

By working with the joint density of (X1i, X2i) directly, we propose the following

BVBS-ACD model:

X1i = σ1iε1i, lnσ1i = α1 + β1 lnσ1,i−1 + γ1

[
X1,i−1

σ1,i−1

]
, |β1| < 1, (3.1)

X2i = σ2iε2i, lnσ2i = α2 + β2 lnσ2,i−1 + γ2

[
X2,i−1

σ2,i−1

]
, |β2| < 1, (3.2)

where (X1i, X2i) ∼ BV BS(κ1, σ1i, κ2, σ2i, ρ), ε1i
iid∼ BS(κ1, 1) and ε2i

iid∼ BS(κ2, 1).

The associated joint PDF of the BVBS-ACD model is given by

fX1i,X2i
(x1i, x2i;θ)

=
1

2κ1σ1i

[(
σ1i

x1i

) 1
2

+

(
σ1i

x1i

) 3
2

]
1

2κ2σ2i

[(
σ2i

x2i

) 1
2

+

(
σ2i

x2i

) 3
2

]

×φ2

[
1

κ1

(√
x1i

σ1i

−
√
σ1i

x1i

)
,

1

κ2

(√
x2i

σ2i

−
√
σ2i

x2i

)
; ρ

]
=

1

2κ1x1i

[(
x1i

σ1i

) 1
2

+

(
σ1i

x1i

) 1
2

]
1

2κ2x2i

[(
x2i

σ2i

) 1
2

+

(
σ2i

x2i

) 1
2

]
(3.3)
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×
1

2π
√

1− ρ2
exp

{
−

1

2(1− ρ2)

[
1

κ21

(
x1i

σ1i
+
σ1i

x1i
− 2

)
+

1

κ22

(
x2i

σ2i
+
σ2i

x2i
− 2

)
−

2ρ

κ1κ2

(√
x1i

σ1i
−
√
σ1i

x1i

)(√
x2i

σ2i
−
√
σ2i

x2i

)]}
,

here, θ = (α1, β1, γ1, α2, β2, γ2, κ1, κ2, ρ)′ is the model parameter. φ2 denotes the

standard bivariate normal density function.

For i = 1, 2, . . . , n, the individual log-likelihood function can be expressed as

ln li(θ) =− ln(κ1)− ln(κ2)− 1

2
ln(1− ρ2)

+ ln

[(
x1i

σ1i

) 1
2

+

(
σ1i

x1i

) 1
2

]
− 1

2(1− ρ2)κ2
1

(
x1i

σ1i

+
σ1i

x1i

− 2

)

+ ln

[(
x2i

σ2i

) 1
2

+

(
σ2i

x2i

) 1
2

]
− 1

2(1− ρ2)κ2
2

(
x2i

σ2i

+
σ2i

x2i

− 2

)
+

ρ

(1− ρ2)κ1κ2

(√
x1i

σ1i

−
√
σ1i

x1i

)(√
x2i

σ2i

−
√
σ2i

x2i

)
. (3.4)

The log-likelihood function, without additive constant, is then given by

lnL(θ) =
n∑
i=1

ln li(θ) =
n∑
i=1

{
− ln(κ1)− ln(κ2)− 1

2
ln(1− ρ2)

+ ln

[(
x1i

σ1i

) 1
2

+

(
σ1i

x1i

) 1
2

]
− 1

2(1− ρ2)κ2
1

(
x1i

σ1i

+
σ1i

x1i

− 2

)

+ ln

[(
x2i

σ2i

) 1
2

+

(
σ2i

x2i

) 1
2

]
− 1

2(1− ρ2)κ2
2

(
x2i

σ2i

+
σ2i

x2i

− 2

)
+

ρ

(1− ρ2)κ1κ2

(√
x1i

σ1i

−
√
σ1i

x1i

)(√
x2i

σ2i

−
√
σ2i

x2i

)}
. (3.5)
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3.3 The first derivatives of lnL(θ)

The first derivatives of lnL(θ) with respect to αj, βj and γj are given by

∂ lnL

∂αj
=

n∑
i=1

∂ ln li
∂αj

=
n∑
i=1

∂ ln li
∂σji

∂σji
∂αj

,

∂ lnL

∂βj
=

n∑
i=1

∂ ln li
∂βj

=
n∑
i=1

∂ ln li
∂σji

∂σji
∂βj

,

∂ lnL

∂γj
=

n∑
i=1

∂ ln li
∂γj

=
n∑
i=1

∂ ln li
∂σji

∂σji
∂γj

,

where

∂ ln li
∂σji

=− xji − σji
2σji(xji + σji)

+
(xji − σji)(xji + σji)

2xjiσji2(j − ρ2)κ2
j

− ρ

2σji(j − ρ2)κjκj′

(√
xji
σji

+

√
σji
xji

)(√
xj′i
σj′i
−
√
σj′i
xj′i

)
; (3.6)

here j = 1, 2, j′ = {1, 2} − {j} and

∂σji
∂αj

=σji

(
1 +

i−1∑
k=1

i−1∏
l=k

(
βj − γj

xjl
σjl

))
, i ≥ 1, (3.7)

∂σji
∂βj

=σji

(
lnσj,i−1 +

i−2∑
k=0

lnσjk

i−1∏
l=k+1

(
βj − γj

xjl
σjl

))
, i ≥ 2, (3.8)

∂σji
∂γj

=σji

(
xj,i−1

σj,i−1

+
i−2∑
k=0

xjk
σjk

i−1∏
l=k+1

(
βj − γj

xjl
σjl

))
, i ≥ 2, (3.9)

with ∇σj0 = (0, 0, 0)′ and ∇σj1 = (σj1, σj1 lnσj0, σj1xj0/σj0)′.
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The first derivatives of lnL(θ) with respect to κj, j = 1, 2 and ρ are given by

∂ lnL

∂κj
=

n∑
i=1

∂ ln li
∂κj

,

∂ lnL

∂ρ
=

n∑
i=1

∂ ln li
∂ρ

,

where

∂ ln li
∂κj

=− 1

κj
+

1

(1− ρ2)κ3
j

(
xji
σji

+
σji
xji
− 2

)
− ρ

(1− ρ2)κ2
jκj′

(√
x1i

σ1i

−
√
σ1i

x1i

)(√
x2i

σ2i

−
√
σ2i

x2i

)
, (3.10)

∂ ln li
∂ρ

=
ρ

1− ρ2
− ρ

(1− ρ2)2

[
1

κ2
1

(
x1i

σ1i

+
σ1i

x1i

− 2

)
+

1

κ2
2

(
x2i

σ2i

+
σ2i

x2i

− 2

)]
+

1 + ρ2

(1− ρ2)2κ1κ2

(√
x1i

σ1i

−
√
σ1i

x1i

)(√
x2i

σ2i

−
√
σ2i

x2i

)
. (3.11)

3.4 The second derivatives of lnL(θ)

The second derivatives of lnL(θ) with respect to θ = (α1, β1, γ1, α2, β2, γ2, κ1, κ2, ρ)′

are given by
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∂2 lnL
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where j = 1, 2, j′ = {1, 2} − {j} and

∂2 ln li
∂σ2
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(3.12)
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∂2 ln li
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∂2 ln li
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i ≥ 2, (3.22)
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3.5 Estimation and inference

We estimate the parameter θ = (α1, β1, γ1, α2, β2, γ2, κ1, κ2, ρ)′ of the BVBS-ACD

model by maximizing the log-likelihood function (without the additive constant) in

equation (3.5). We do the estimation by using a hybrid of optimization algorithms,

namely, Nelder-Meade (NM) followed by Broyden-Fletcher-Goldfarb-Shanno (BFGS)

(see Bhatti (2010) and Leiva et al. (2014) for recent details). First, we apply the NM

algorithm to estimate the ACD parameters αj, βj, and γj, j = 1, 2 by fixing κ1, κ2

and ρ at their initial values. Next, we use BFGS algorithm to estimate over the entire

parameter space. We have derived and implemented the analytical gradient (the first

derivatives in Section 3.3) in the second step. The BFGS quasi-Newton method with

the analytic gradients will be faster, more stable and lead to more accurate estimates

than a numerical gradient method (see Bard (1974), Bolker (2008) and Mayorov

(2011)).

The standard errors (SEs) of the MLEs of the model parameters can then be

calculated as the square root of the diagonal elements of the negative of the inverse

Hessian matrix, which is an estimator of the asymptotic covariance matrix.

Leiva et al. (2014) discussed the Wald test to check the statistical significance of

individual model parameters. Let θ denote a parameter of the BVBS-ACD model.

The Wald statistic W = θ̂−θ0
SE(θ̂)

can be used to test the hypotheses H0 : θ = θ0 versus

H1 : θ 6= θ0. Then, under H0, W is asymptotically N(0, 1), under the usual regularity

conditions.
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3.6 Simulation study

We examine the properties of the MLEs of the parameters of the BVBS-ACD

model through a Monte Carlo simulation study. We use 1000 simulated samples of

sample sizes n =500, 1000, 3000 and 5000 from the BVBS-ACD model with the vector

of true parameters

θ = (α1, β1, γ1, α2, β2, γ2, κ1, κ2, ρ)′ = (0.1, 0.9, 0.1,−0.1, 0.95, 0.1, 1.1, 1.2, ρ)′.

Here, we choose ρ =0, 0.25, 0.5, 0.95. To estimate the BVBS-ACD model, we set the

starting values for the ACD parameters

(α10, β10, γ10, α20, β20, γ20)′ = (0.01, 0.70, 0.01,−0.01, 0.8, 0.01)′.

(κ10, κ20, ρ0) then have well-defined initial values obtained by

κj0 =

√
2

(
Xj

med(Xj)
− 1

)
, j = 1, 2

(see (1.14)) and

ρ0 = Corr

(
1

κ10

(√
X1

σ̂1

−
√
σ̂1

X1

)
,

1

κ20

(√
X2

σ̂2

−
√
σ̂2

X2

))
,

where σ̂j is estimated by

σ̂ji = exp

(
αj0 + βj0 ln σ̂j,i−1 + γj0

[
Xj,i−1

σ̂j,i−1

])
,

67



Ph.D. Thesis - Tao Tan McMaster - Mathematics & Statistics

j = 1, 2, i = 1, 2, . . . , n. For each setting of the parameter values and each sample

size, we calculate the mean, coefficients of skewness and kurtosis, bias and root mean

squared error (RMSE) of the MLEs over 1000 replications. These results are presented

in Tables 3.1-3.4. For different correlation coefficients, all the estimates possess lowe

Bias and RMSE which decrease with increased sample size, tending towards 0. This

empirically displays the asymptotic unbiasedness, consistency and efficiency of the

MLEs. Moreover, as n increases, the empirical distributions of all the estimators

become close to normal distribution, which may be seen from the values of skewness

and kurtosis, for example.

3.7 Application to trade duration data

In this section, we present the application of BVBS-ACD model to a high-frequency

trade duration data.

3.7.1 Data description

We consider the trade durations of Johnson & Johnson (JNJ) and Procter & Gam-

ble Company (PG) stocks in the period of 30 consecutive trading days from January

2, 2002 to February 13, 2002. There are 65,127 (JNJ) and 57,335 (PG) observations

for each asset. The original data sets were studied in detail by Bhatti (2010) and

Leiva et al. (2014).

After restricting two adjusted duration series for JNJ and PG stocks between

10:00 am and 4:00 pm, we obtain two matched series with 6,222 pairs of durations

with the same starting time.
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Table 3.1: Simulation results for BVBS-ACD model when ρ = 0.95

Parameter Statistics n
500 1000 3000 5000

α1 = 0.1 Mean 0.0979 0.0988 0.0995 0.0994
Skew 0.2000 0.3171 0.1825 0.1627
Kurt 6.4886 3.1753 2.9457 2.8743
Bias -0.0021 -0.0012 -0.0005 -0.0006
RMSE 0.0498 0.0329 0.0189 0.0146

β1 = 0.9 Mean 0.8923 0.8961 0.8986 0.8993
Skew -0.3145 -0.3093 -0.2455 -0.1321
Kurt 4.0404 3.0194 3.0778 2.9054
Bias -0.0077 -0.0039 -0.0014 -0.0007
RMSE 0.0206 0.0137 0.0077 0.0058

γ1 = 0.1 Mean 0.1112 0.1057 0.1020 0.1012
Skew 0.0839 0.2243 0.0684 -0.0216
Kurt 3.0643 3.0290 2.9507 2.9264
Bias 0.0112 0.0057 0.0020 0.0012
RMSE 0.0173 0.0107 0.0054 0.0040

α2 = −0.1 Mean -0.1065 -0.1036 -0.1011 -0.1008
Skew -0.0990 0.1592 0.0814 0.0995
Kurt 6.2791 3.4112 3.1276 3.1182
Bias -0.0065 -0.0036 -0.0011 -0.0008
RMSE 0.0218 0.0139 0.0077 0.0058

β2 = 0.95 Mean 0.9456 0.9481 0.9492 0.9496
Skew -0.5418 -0.5210 -0.2765 -0.2595
Kurt 4.5363 3.6419 3.0362 3.0692
Bias -0.0044 -0.0019 -0.0008 -0.0004
RMSE 0.0117 0.0073 0.0040 0.0029

γ2 = 0.1 Mean 0.1058 0.1030 0.1009 0.1006
Skew 0.1677 0.2066 0.1627 -0.0288
Kurt 3.3693 3.2666 3.1211 3.1027
Bias 0.0058 0.0030 0.0009 0.0006
RMSE 0.0127 0.0082 0.0045 0.0033

κ1 = 1.1 Mean 1.1270 1.1151 1.1048 1.1032
Skew 0.4710 0.2482 0.0683 -0.0002
Kurt 4.0018 3.3397 3.0630 2.8358
Bias 0.0270 0.0151 0.0048 0.0032
RMSE 0.0514 0.0318 0.0154 0.0116

κ2 = 1.2 Mean 1.2059 1.2037 1.2007 1.2006
Skew 0.2258 0.2272 0.1380 0.1175
Kurt 3.7508 3.3847 3.0840 2.8101
Bias 0.0059 0.0037 0.0007 0.0006
RMSE 0.0419 0.0283 0.0159 0.0120

ρ = 0.95 Mean 0.9460 0.9479 0.9493 0.9496
Skew -0.4434 -0.3525 -0.1592 -0.1344
Kurt 3.3355 3.4547 2.9353 2.8687
Bias -0.0040 -0.0021 -0.0007 -0.0004
RMSE 0.0067 0.0041 0.0020 0.0015
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Table 3.2: Simulation results for BVBS-ACD model when ρ = 0.5

Parameter Statistics n
500 1000 3000 5000

α1 = 0.1 Mean 0.1138 0.1077 0.1025 0.1009
Skew 1.1298 0.6483 0.3646 0.2623
Kurt 5.4679 3.3928 3.0443 3.0993
Bias 0.0138 0.0077 0.0025 0.0009
RMSE 0.0836 0.0552 0.0309 0.0232

β1 = 0.9 Mean 0.8880 0.8936 0.8978 0.8989
Skew -0.8633 -0.5516 -0.4102 -0.2501
Kurt 4.4549 3.2770 3.1868 2.9495
Bias -0.0120 -0.0064 -0.0022 -0.0011
RMSE 0.0359 0.0237 0.0131 0.0097

γ1 = 0.1 Mean 0.1090 0.1047 0.1017 0.1011
Skew 0.1115 0.2722 0.0996 -0.0113
Kurt 3.0447 3.1798 2.9707 2.8346
Bias 0.0090 0.0047 0.0017 0.0011
RMSE 0.0199 0.0130 0.0070 0.0053

α2 = −0.1 Mean -0.0966 -0.0989 -0.0991 -0.0996
Skew 0.5843 0.3731 0.2382 0.1851
Kurt 4.1691 3.6212 3.0768 3.2444
Bias 0.0034 0.0011 0.0009 0.0004
RMSE 0.0278 0.0189 0.0106 0.0078

β2 = 0.95 Mean 0.9436 0.9472 0.9487 0.9493
Skew -1.0474 -0.6883 -0.4069 -0.3821
Kurt 5.6827 3.8742 3.1820 3.3638
Bias -0.0064 -0.0028 -0.0013 -0.0007
RMSE 0.0195 0.0124 0.0068 0.0050

γ2 = 0.1 Mean 0.1027 0.1014 0.1004 0.1003
Skew 0.2234 0.2921 0.2723 0.0024
Kurt 3.2393 3.4492 3.1149 2.9713
Bias 0.0027 0.0014 0.0004 0.0003
RMSE 0.0149 0.0099 0.0056 0.0041

κ1 = 1.1 Mean 1.1257 1.1144 1.1049 1.1033
Skew 0.3089 0.1493 0.0360 -0.0686
Kurt 3.3437 3.1565 2.9667 3.0989
Bias 0.0257 0.0144 0.0049 0.0033
RMSE 0.0503 0.0313 0.0153 0.0115

κ2 = 1.2 Mean 1.2042 1.2027 1.2002 1.2003
Skew 0.0982 0.2395 0.0876 0.1018
Kurt 3.3152 3.4159 3.0412 2.9583
Bias 0.0042 0.0027 0.0002 0.0003
RMSE 0.0411 0.0284 0.0164 0.0121

ρ = 0.5 Mean 0.5089 0.5054 0.5014 0.5009
Skew 0.0150 -0.0573 -0.0271 -0.1053
Kurt 2.9122 3.0392 2.7894 2.8607
Bias 0.0089 0.0054 0.0014 0.0009
RMSE 0.0357 0.0249 0.0133 0.0104
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Table 3.3: Simulation results for BVBS-ACD model when ρ = 0.25

Parameter Statistics n
500 1000 3000 5000

α1 = 0.1 Mean 0.1128 0.1074 0.1025 0.1011
Skew 1.3299 0.7418 0.4268 0.2879
Kurt 6.4049 3.5942 3.1606 3.1271
Bias 0.0128 0.0074 0.0025 0.0011
RMSE 0.0928 0.0606 0.0343 0.0255

β1 = 0.9 Mean 0.8877 0.8933 0.8977 0.8988
Skew -1.0251 -0.6212 -0.4544 -0.2828
Kurt 5.1294 3.4056 3.2236 2.9648
Bias -0.0123 -0.0067 -0.0023 -0.0012
RMSE 0.0397 0.0259 0.0145 0.0106

γ1 = 0.1 Mean 0.1102 0.1054 0.1019 0.1012
Skew 0.1325 0.2836 0.1095 0.0027
Kurt 3.0767 3.1226 2.9154 2.8908
Bias 0.0102 0.0054 0.0019 0.0012
RMSE 0.0220 0.0143 0.0077 0.0057

α2 = −0.1 Mean -0.0966 -0.0990 -0.0991 -0.0997
Skew 0.6223 0.3911 0.2302 0.1596
Kurt 4.1643 3.6524 3.0860 3.2282
Bias 0.0034 0.0010 0.0009 0.0003
RMSE 0.0310 0.0210 0.0117 0.0085

β2 = 0.95 Mean 0.9428 0.9470 0.9486 0.9492
Skew -1.2030 -0.6811 -0.4479 -0.3517
Kurt 6.3884 3.7265 3.2563 3.2519
Bias -0.0072 -0.0030 -0.0014 -0.0008
RMSE 0.0218 0.0136 0.0075 0.0054

γ2 = 0.1 Mean 0.1034 0.1017 0.1005 0.1004
Skew 0.2714 0.2902 0.2840 -0.0007
Kurt 3.2682 3.3968 3.0376 2.8688
Bias 0.0034 0.0017 0.0005 0.0004
RMSE 0.0164 0.0108 0.0060 0.0045

κ1 = 1.1 Mean 1.1253 1.1140 1.1049 1.1034
Skew 0.3513 0.1474 0.0373 -0.0764
Kurt 3.3813 3.1881 2.9441 3.1389
Bias 0.0253 0.0140 0.0049 0.0034
RMSE 0.0505 0.0313 0.0153 0.0114

κ2 = 1.2 Mean 1.2040 1.2022 1.2001 1.2002
Skew 0.2705 0.1860 0.0394 0.0589
Kurt 4.3483 3.3121 2.9944 2.9714
Bias 0.0040 0.0022 0.0001 0.0002
RMSE 0.0416 0.0282 0.0164 0.0121

ρ = 0.25 Mean 0.2656 0.2592 0.2526 0.2516
Skew 0.0799 -0.0045 -0.0007 -0.0876
Kurt 2.9182 3.0210 2.7867 2.8551
Bias 0.0156 0.0092 0.0026 0.0016
RMSE 0.0462 0.0319 0.0167 0.0130
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Table 3.4: Simulation results for BVBS-ACD model when ρ = 0

Parameter Statistics n
500 1000 3000 5000

α1 = 0.1 Mean 0.1189 0.1072 0.1015 0.1005
Skew 1.9843 1.0356 0.5140 0.3007
Kurt 12.4607 5.4310 3.3849 2.8156
Bias 0.0189 0.0072 0.0015 0.0005
RMSE 0.1074 0.0651 0.0345 0.0254

β1 = 0.9 Mean 0.8841 0.8930 0.8980 0.8991
Skew -1.7870 -0.8688 -0.4545 -0.1977
Kurt 10.5058 4.9659 3.3610 2.7907
Bias -0.0159 -0.0070 -0.0020 -0.0009
RMSE 0.0465 0.0279 0.0148 0.0108

γ1 = 0.1 Mean 0.1123 0.1060 0.1021 0.1011
Skew 0.4415 0.1910 0.2933 0.1809
Kurt 3.8432 3.5541 3.3634 3.2788
Bias 0.0123 0.0060 0.0021 0.0011
RMSE 0.0244 0.0152 0.0079 0.0060

α2 = −0.1 Mean -0.0953 -0.0979 -0.0993 -0.0995
Skew 0.6719 0.3909 0.3022 0.0918
Kurt 5.2592 3.3247 3.2052 2.8505
Bias 0.0047 0.0021 0.0007 0.0005
RMSE 0.0345 0.0218 0.0119 0.0088

β2 = 0.95 Mean 0.9411 0.9456 0.9484 0.9492
Skew -1.3671 -0.6772 -0.4254 -0.2484
Kurt 6.8392 3.7528 3.4520 3.0809
Bias -0.0089 -0.0044 -0.0016 -0.0008
RMSE 0.0241 0.0142 0.0077 0.0057

γ2 = 0.1 Mean 0.1038 0.1022 0.1009 0.1004
Skew 0.1192 0.1136 -0.0729 -0.0438
Kurt 3.3123 2.7931 2.9934 2.8415
Bias 0.0038 0.0022 0.0009 0.0004
RMSE 0.0169 0.0108 0.0060 0.0047

κ1 = 1.1 Mean 1.1260 1.1123 1.1046 1.1030
Skew 0.2113 -0.0531 0.0977 0.2128
Kurt 3.4990 3.2449 2.9873 2.8949
Bias 0.0260 0.0123 0.0046 0.0030
RMSE 0.0509 0.0297 0.0154 0.0119

κ2 = 1.2 Mean 1.2058 1.2043 1.2017 1.2010
Skew 0.3055 0.0370 0.0812 0.0353
Kurt 4.3661 2.8992 2.8667 2.8285
Bias 0.0058 0.0043 0.0017 0.0010
RMSE 0.0434 0.0283 0.0156 0.0120

ρ = 0 Mean 0.0186 0.0102 0.0048 0.0028
Skew 0.0696 0.0890 0.1807 -0.0745
Kurt 3.0213 3.0437 3.0644 3.1268
Bias 0.0186 0.0102 0.0048 0.0028
RMSE 0.0493 0.0335 0.0187 0.0144
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As seen in Figure 3.1 and Table 3.5, the two matched duration series are positive

and right-skewed with high degree of kurtosis indicating heavy tails.
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Figure 3.1: Histograms for matched duration series of JNJ (left) and PG (right)

Table 3.5: Summary statistics for matched data

Data Min Median Mean Max SD skew kurt
JNJ 0.131 0.973 1.499 18.248 1.594 2.886 15.699
PG 0.113 0.963 1.522 14.967 1.624 2.603 12.840

In Figure 3.2, the empirical scaled TTT transforms are presented first concave

and then convex, revealing that both marginals may have unimodal hazard rates.

Hence, the BVBS distribution could be a good fit for the duration data due to

the shape of its marginal density functions and hazard rates.

The ACF plots in Figure 3.3 indicate that there is a positive autocorrelation in

both series, which suggests that a ACD specification is a reasonable choice, as well.
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Figure 3.2: TTT plots for matched duration series of JNJ (left) and PG (right)
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Figure 3.3: ACF plots for matched duration series of JNJ (left) and PG (right)
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3.7.2 Estimation results

Table 3.6: Estimation results for the BVBS-ACD model.

α̂1 β̂1 γ̂1 α̂2 β̂2 γ̂2 κ̂1 κ̂2 ρ̂

MLE -0.007 0.991 0.004 -0.010 0.991 0.006 1.024 1.077 0.041
SE 0.002 0.005 0.001 0.002 0.004 0.001 0.009 0.010 0.013

We employ the method described earlier in Section 3.5 to estimate the BVBS-ACD

model with the matched duration data. The obtained results are shown in Table 3.6.

All estimates are statistically significant at 1% level according to the Wald test. The

estimated correlation coefficient is 0.041, which implies a weak positive correlation

between the two matched duration series. The in-sample predictive model is given by

σ̂1i = exp

(
−0.007 + 0.991 ln σ̂1,i−1 + 0.004

[
X1,i−1

σ̂1,i−1

])
,

σ̂2i = exp

(
−0.010 + 0.991 ln σ̂2,i−1 + 0.006

[
X2,i−1

σ̂2,i−1

])
.

3.7.3 Model Comparison

To verify whether it is necessary to include the correlation parameter ρ in the

model, we conduct model comparison by using likelihood ratio test and Akaike infor-

mation criterion (AIC).

We re-estimate the BVBS-ACD model by taking ρ = 0. Under H0 : ρ = 0, the

likelihood ratio test statistic is defined by 2(lnL1− lnL0). AIC is given by −2lnL+2k,

where lnL is the maximized log-likelihood value of the model of interest and k is the

corresponding number of estimated parameters. As seen in Table 3.7, the p-value of
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the likelihood ratio test is 0.001, which does not provide sufficient evidence towards

the restricted model. The difference in AIC values between the two models is 8.502,

which indicates that the AIC value of the restricted model is substantially larger than

that of the unrestricted model. Both these findings suggest that the proposed BVBS-

ACD model is a better choice than the restricted model in terms of overall model fit.

Table 3.7: LR test and AICs.

Maximized log-likelihood AIC

Restricted model 3098.554 -6181.108
Unrestricted model 3103.805 -6189.610
Difference 5.251 -8.502
p-value of LR test 0.001 —

3.7.4 Goodness-of-fit

To evaluate the goodness-of-fit of the BVBS-ACD model, we investigate the in-

sample one-step-ahead density forecasts implied by the predictive model. We examine

the uniformity of the z series by Kolmogorov-Smirnov (KS) and Anderson-Darling

(AD) tests along with histogram plots, and also check the independence of the z

series by Ljung-Box (LB) test along with ACF plots. Results for these tests are

shown in Table 3.8. At 1% significance level, the null hypothesis that the series z1,

z2, z1|2 and z2|1 are all i.i.d. U(0, 1) can not be rejected. The KS and AD tests, along

with the histograms in Figures 3.4 and 3.5 seem to coincide with uniformity of the

corresponding z series. The LB tests,along with the ACF plots in Figures 3.6 and

3.7, show the absence of serial correlation in the associated z and z2 series.
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Table 3.8: P -values for in-sample goodness of fit tests for the BVBS-ACD model
based on density forecasts

z series KS AD LB(10) LB(15) LB(20) LB2(10) LB2(15) LB2(20)
z1 0.012 0.017 0.119 0.177 0.195 0.435 0.616 0.730
z2 0.032 0.037 0.682 0.747 0.480 0.421 0.561 0.422
z1|2 0.011 0.019 0.111 0.174 0.185 0.404 0.597 0.705
z2|1 0.025 0.033 0.701 0.782 0.481 0.431 0.590 0.413

Note: LB(l) represents LB test for z series over l lags, where l = 10, 15 and 20. LB2(l)
represents LB test for z2 series over l lags.

We also investigate the estimated GCS residuals obtained by (1.9). We examine

the distribution and independence of the GCS residuals by QQ and ACF plots, re-

spectively. The QQ plots in Figure 3.8 show that the GCS residuals seem to follow

the exp(1) distribution considering that the 95th and 99th percentiles of this distri-

bution are around 3.0 and 4.6, respectively. The ACF plots in Figure 3.9 demonstrate

a lack of serial correlation in the GCS residuals. We can, therefore, conclude that the

BVBS-ACD model may provide a good fit for these data.

3.7.5 Out-of-sample forecast evaluation

We use the first six seventh of the matched data, i.e., “in-sample” observations 1

to 5333, to estimate the model parameters, and then employ the resulting predictive

model to the rest of the data, i.e., “out-of-sample” observations 5334 to 6222, to

form density forecasts. These evaluation results are presented in Table 3.9. At 10%

significance level, the null hypothesis that the series z1, z2, z1|2 and z2|1 are all i.i.d.

U(0, 1) can not be rejected. The KS and AD tests both seem to support the uniformity

of the corresponding z series. The LB tests indicate no serial correlation is presented
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Figure 3.4: Histograms for z1 (left) and z2 (right)
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Figure 3.5: Histograms for z1|2 (left) and z2|1 (right)
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Figure 3.6: ACF plots for z1 (left) and z2 (right)
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Figure 3.7: ACF plots for z1|2 (left) and z2|1 (right)
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Figure 3.8: QQ plots for GCS residuals of JNJ (left) and PG (right) stocks
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Figure 3.9: ACF plots for GCS residuals of JNJ (left) and PG (right) stocks
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in the associated z and z2 series.

Furthermore, the p-values from the KS, AD, LB(15) and LB2(15) tests for {z1, z2|1}

are 0.400, 0.230, 0.229 and 0.425. The corresponding values for {z2, z1|2} are 0.452,

0.222, 0.215 and 0.418. Consequently, the null hypothesis that the pooled series

{z1, z2|1} and {z2, z1|2} are i.i.d. U(0, 1) can not be rejected at level 10%. These

results all reveal that the BVBS-ACD model may provide good bivariate forecasts.

Table 3.9: P -values for out-of-sample tests for the BVBS-ACD model based on density
forecasts

z series KS AD LB(10) LB(15) LB(20) LB2(10) LB2(15) LB2(20)
z1 0.179 0.106 0.529 0.300 0.258 0.816 0.433 0.561
z2 0.478 0.278 0.400 0.361 0.303 0.152 0.170 0.160
z1|2 0.185 0.102 0.567 0.316 0.238 0.839 0.453 0.559
z2|1 0.508 0.267 0.401 0.390 0.297 0.139 0.174 0.149

Note: LB(l) represents LB test for z series over l lags, where l = 10, 15 and 20. LB2(l)
represents LB test for z2 series over l lags.
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Chapter 4

Bivariate BSt-ACD model

4.1 Introduction

Kundu et al. (2010) extended the BS distribution to the bivariate case and proposed

the bivariate Birnbaum-Saunders (BVBS) distribution. The bivariate Student-t BS

(BVBSt) distribution was suggested by Vilca et al. (2014a) as a robust extension of the

BVBS distribution; see Kundu et al. (2013) for generalized multivariate Birnbaum-

Saunders distributions. Saulo et al. (2017b) studied the moment estimation of the

parameters of the BVBSt distribution within the generalized bivariate Birnbaum-

Saunders family.

Our goal here is to jointly model the trade durations of two assets based on

matched data, pairs of durations with the same starting time (see Simonsen (2007)).

In the last Chapter, we constructed a bivariate ACD model based on BVBS distribu-

tion which allowed us to jointly analyze and measure the strength of the dependence

of two matched duration series. In the present Chapter, we propose a bivariate ACD

model based on BVBSt distribution which is quite flexible and accounts for higher
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kurtosis with the inclusion of an additional parameter, namely, the degrees of free-

dom of the Student-t distribution. This can potentially facilitate robust parameter

estimation of the model parameters.

The rest of this Chapter is organized as follows. In Section 4.2, we propose the

BVBSt-ACD model and the corresponding log-likelihood function. We derive the first

and second derivatives of lnL(θ) in Sections 4.3 and 4.4. In Section 4.5, we discuss the

maximum likelihood estimation and associated inference for the model parameters. A

Monte Carlo simulation study is carried out in Section 4.6 to examine the properties

of the MLEs. Model discrimination is discussed in Section 4.7. In Section 4.8 and

4.9, we provide an application of the BVBSt-ACD model to bivariate datasets, and

then compare the results with those of the BVBS-ACD model.

4.2 Bivariate BSt-ACD model and the log-

likelihood function

By working with the joint density of (X1i, X2i) directly, we propose the following

BVBSt-ACD model:

X1i = σ1iε1i, lnσ1i = α1 + β1 lnσ1,i−1 + γ1

[
X1,i−1

σ1,i−1

]
, |β1| < 1, (4.1)

X2i = σ2iε2i, lnσ2i = α2 + β2 lnσ2,i−1 + γ2

[
X2,i−1

σ2,i−1

]
, |β2| < 1, (4.2)

where (X1i, X2i) ∼ BVBSt(κ1, σ1i, κ2, σ2i, ρ, ν), ε1i
iid∼ BSt(κ1, 1, ν) and ε2i

iid∼

BSt(κ2, 1, ν).
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The associated joint PDF of the BVBSt-ACD model is given by

fX1i,X2i
(x1i, x2i;θ)

=
1
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[(
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) 1
2
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(
σ1i
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×
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2π
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1
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,

here, θ = (α1, β1, γ1, α2, β2, γ2, κ1, κ2, ρ, ν)′ is the model parameters; in the above, t2

denotes the bivariate t density function.

For i = 1, 2, . . . , n, the individual log-likelihood function can be expressed as

ln li(θ) =− ln(κ1)− ln(κ2)−
1

2
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[(
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The log-likelihood function, without the additive constant, is then given by

lnL(θ)=

n∑
i=1

{
− ln(κ1)− ln(κ2)−

1

2
ln(1− ρ2) + ln
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(4.4)
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4.3 The first derivatives of lnL(θ)

The first derivatives of lnL(θ) with respect to αj, βj and γj are given by

∂ lnL

∂αj
=

n∑
i=1

∂ ln li
∂αj

=
n∑
i=1

∂ ln li
∂σji

∂σji
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x1i
σ1i

+ σ1i
x1i
− 2

κ1
2

+ ν
(
1− ρ2

)
;

(4.6)
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also,

∂σji
∂αj

=σji

(
1 +

i−1∑
k=1

i−1∏
l=k

(
βj − γj

xjl
σjl

))
, i ≥ 1, (4.7)

∂σji
∂βj

=σji

(
lnσj,i−1 +

i−2∑
k=0

lnσjk

i−1∏
l=k+1

(
βj − γj

xjl
σjl

))
, i ≥ 2, (4.8)

∂σji
∂γj

=σji

(
xj,i−1

σj,i−1

+
i−2∑
k=0

xjk
σjk

i−1∏
l=k+1

(
βj − γj

xjl
σjl

))
, i ≥ 2, (4.9)

with ∇σj0 = (0, 0, 0)′ and ∇σj1 = (σj1, σj1 lnσj0, σj1xj0/σj0)′.

The first derivatives of lnL(θ) with respect to κj, j = 1, 2, ρ and ν are given by

∂ lnL

∂κj
=

n∑
i=1

∂ ln li
∂κj

,

∂ lnL

∂ρ
=

n∑
i=1

∂ ln li
∂ρ

,

∂ lnL

∂ν
=

n∑
i=1

∂ ln li
∂ν

,

where

∂ ln li
∂ κj

=−
(ν + 2)

(
ρ
(√

x1i
σ1i
−
√
σ1i
x1i

)(√
x2i
σ2i
−
√
σ2i
x2i

)
κj2 κj′

−
xji
σji

+
σji
xji
−2

κj3

)
Q(x1i, x2i;κ1, κ2, ρ, ν)

− 1

κj
,

∂ ln li
∂ ρ

=− ρ (ν + 2) (Q(x1i, x2i;κ1, κ2, ρ, ν)− (1− ρ2)ν)

(1− ρ2) Q(x1i, x2i;κ1, κ2, ρ, ν)

+
(ν + 2)

(√
x1i
σ1i
−
√

σ1i
x1i

) (√
x2i
σ2i
−
√

σ2i
x2i

)
κ1 κ2Q(x1i, x2i;κ1, κ2, ρ, ν)

+
ρ

1− ρ2
,

∂ ln li
∂ ν

=
(ν + 2) (Q(x1i, x2i;κ1, κ2, ρ, ν)− (1− ρ2)ν)

2ν Q(x1i, x2i;κ1, κ2, ρ, ν)

− 1

2
log

(
Q(x1i, x2i;κ1, κ2, ρ, ν)

(1− ρ2)ν

)
; (4.10)
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in the above, Q(x1i, x2i;κ1, κ2, ρ, ν) is defined as (4.6).

4.4 The second derivatives of lnL(θ)

The second derivatives of lnL(θ) with respect to θ =

(α1, β1, γ1, α2, β2, γ2, κ1, κ2, ρ, ν)′ are as follows:

∂2 lnL

∂ αj2
=

n∑
i=1

∂2 ln li
∂ αj2

=
n∑
i=1

∂ ∂ ln li
∂σji

∂σji
∂αj

∂αj
=

n∑
i=1

[
∂2 ln li
∂σ2

ji

(
∂σji
∂αj

)2

+
∂ ln li
∂σji

∂2σji
∂α2

j

]
,

∂2 lnL

∂ βj
2 =

n∑
i=1

∂2 ln li

∂ βj
2 =

n∑
i=1

∂ ∂ ln li
∂σji

∂σji
∂βj

∂βj
=

n∑
i=1

[
∂2 ln li
∂σ2

ji

(
∂σji
∂βj

)2

+
∂ ln li
∂σji

∂2σji
∂β2

j

]
,

∂2 lnL

∂ γj2
=

n∑
i=1

∂2 ln li
∂ γj2

=
n∑
i=1

∂ ∂ ln li
∂σji

∂σji
∂γj

∂γj
=

n∑
i=1

[
∂2 ln li
∂σ2

ji

(
∂σji
∂γj

)2

+
∂ ln li
∂σji

∂2σji
∂γ2

j

]
,

∂2 lnL

∂ αj ∂ βj
=

n∑
i=1

∂2 ln li
∂ αj ∂ βj

=
n∑
i=1

∂ ∂ ln li
∂σji

∂σji
∂αj

∂βj
=

n∑
i=1

[
∂2 ln li
∂σ2

ji

∂σji
∂βj

∂σji
∂αj

+
∂ ln li
∂σji

∂2σji
∂ αj ∂ βj

]
,

∂2 lnL

∂ αj ∂ γj
=

n∑
i=1

∂2 ln li
∂ αj ∂ γj

=
n∑
i=1

∂ ∂ ln li
∂σji

∂σji
∂αj

∂γj
=

n∑
i=1

[
∂2 ln li
∂σ2

ji

∂σji
∂γj

∂σji
∂αj

+
∂ ln li
∂σji

∂2σji
∂ αj ∂ γj

]
,

∂2 lnL

∂ βj ∂ γj
=

n∑
i=1

∂2 ln li
∂ βj ∂ γj

=
n∑
i=1

∂ ∂ ln li
∂σji

∂σji
∂βj

∂γj
=

n∑
i=1

[
∂2 ln li
∂σ2

ji

∂σji
∂γj

∂σji
∂βj

+
∂ ln li
∂σji

∂2σji
∂ βj ∂ γj

]
,

∂2 lnL

∂ α1 ∂ α2

=
n∑
i=1

∂2 ln li
∂ α1 ∂ α2

=
n∑
i=1

∂ ∂ ln li
∂σ1i

∂σ1i
∂α1

∂α2

=
n∑
i=1

∂2 ln li
∂ σ1i ∂ σ2i

∂σ2i

∂α2

∂σ1i

∂α1

,

∂2 lnL

∂ β1 ∂ β2

=
n∑
i=1

∂2 ln li
∂ β1 ∂ β2

=
n∑
i=1

∂ ∂ ln li
∂σ1i

∂σ1i
∂β1

∂β2

=
n∑
i=1

∂2 ln li
∂ σ1i ∂ σ2i

∂σ2i

∂β2

∂σ1i

∂β1

,

∂2 lnL

∂ γ1 ∂ γ2

=
n∑
i=1

∂2 ln li
∂ γ1 ∂ γ2

=
n∑
i=1

∂ ∂ ln li
∂σ1i

∂σ1i
∂γ1

∂γ2

=
n∑
i=1

∂2 ln li
∂ σ1i ∂ σ2i

∂σ2i

∂γ2

∂σ1i

∂γ1

,
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∂2 lnL

∂ αj ∂ βj′
=

n∑
i=1

∂2 ln li
∂ αj ∂ βj′

=
n∑
i=1

∂ ∂ ln li
∂σji

∂σji
∂αj

∂βj′
=

n∑
i=1

∂2 ln li
∂ σji ∂ σj′i

∂σj′i
∂βj′

∂σji
∂αj

,

∂2 lnL

∂ αj ∂ γj′
=

n∑
i=1

∂2 ln li
∂ αj ∂ γj′

=
n∑
i=1

∂ ∂ ln li
∂σji

∂σji
∂αj

∂γj′
=

n∑
i=1

∂2 ln li
∂ σji ∂ σj′i

∂σj′i
∂γj′

∂σji
∂αj

,

∂2 lnL

∂ βj ∂ γj′
=

n∑
i=1

∂2 ln li
∂ βj ∂ γj′

=
n∑
i=1

∂ ∂ ln li
∂σji

∂σji
∂βj

∂γj′
=

n∑
i=1

∂2 ln li
∂ σji ∂ σj′i

∂σj′i
∂γj′

∂σji
∂βj

,

∂2 lnL

∂ αj ∂ κj
=

n∑
i=1

∂2 ln li
∂ αj ∂ κj

=
n∑
i=1

∂ ∂ ln li
∂σji

∂σji
∂αj

∂κj
=

n∑
i=1

∂2 ln li
∂ σji ∂ κj

∂σji
∂αj

,

∂2 lnL

∂ βj ∂ κj
=

n∑
i=1

∂2 ln li
∂ βj ∂ κj

=
n∑
i=1

∂ ∂ ln li
∂σji

∂σji
∂βj

∂κj
=

n∑
i=1

∂2 ln li
∂ σji ∂ κj

∂σji
∂βj

,

∂2 lnL

∂ γj ∂ κj
=

n∑
i=1

∂2 ln li
∂ γj ∂ κj

=
n∑
i=1

∂ ∂ ln li
∂σji

∂σji
∂γj

∂κj
=

n∑
i=1

∂2 ln li
∂ σji ∂ κj

∂σji
∂γj

,

∂2 lnL

∂ αj ∂ κj′
=

n∑
i=1

∂2 ln li
∂ αj ∂ κj′

=
n∑
i=1

∂ ∂ ln li
∂σji

∂σji
∂αj

∂κj′
=

n∑
i=1

∂2 ln li
∂ σji ∂ κj′

∂σji
∂αj

,

∂2 lnL

∂ βj ∂ κj′
=

n∑
i=1

∂2 ln li
∂ βj ∂ κj′

=
n∑
i=1

∂ ∂ ln li
∂σji

∂σji
∂βj

∂κj′
=

n∑
i=1

∂2 ln li
∂ σji ∂ κj′

∂σji
∂βj

,

∂2 lnL

∂ γj ∂ κj′
=

n∑
i=1

∂2 ln li
∂ γj ∂ κj′

=
n∑
i=1

∂ ∂ ln li
∂σji

∂σji
∂γj

∂κj′
=

n∑
i=1

∂2 ln li
∂ σji ∂ κj′

∂σji
∂γj

,
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∂2 lnL

∂ αj ∂ ρ
=

n∑
i=1

∂2 ln li
∂ αj ∂ ρ

=
n∑
i=1

∂ ∂ ln li
∂σji

∂σji
∂αj

∂ρ
=

n∑
i=1

∂2 ln li
∂ σji ∂ ρ

∂σji
∂αj

,

∂2 lnL

∂ βj ∂ ρ
=

n∑
i=1

∂2 ln li
∂ βj ∂ ρ

=
n∑
i=1

∂ ∂ ln li
∂σji

∂σji
∂βj

∂ρ
=

n∑
i=1

∂2 ln li
∂ σji ∂ ρ

∂σji
∂βj

,

∂2 lnL

∂ γj ∂ ρ
=

n∑
i=1

∂2 ln li
∂ γj ∂ ρ

=
n∑
i=1

∂ ∂ ln li
∂σji

∂σji
∂γj

∂ρ
=

n∑
i=1

∂2 ln li
∂ σji ∂ ρ

∂σji
∂γj

,

∂2 lnL

∂ αj ∂ ν
=

n∑
i=1

∂2 ln li
∂ αj ∂ ν

=
n∑
i=1

∂ ∂ ln li
∂σji

∂σji
∂αj

∂ν
=

n∑
i=1

∂2 ln li
∂ σji ∂ ν

∂σji
∂αj

,

∂2 lnL

∂ βj ∂ ν
=

n∑
i=1

∂2 ln li
∂ βj ∂ ν

=
n∑
i=1

∂ ∂ ln li
∂σji

∂σji
∂βj

∂ν
=

n∑
i=1

∂2 ln li
∂ σji ∂ ν

∂σji
∂βj

,

∂2 lnL

∂ γj ∂ ν
=

n∑
i=1

∂2 ln li
∂ γj ∂ ν

=
n∑
i=1

∂ ∂ ln li
∂σji

∂σji
∂γj

∂ν
=

n∑
i=1

∂2 ln li
∂ σji ∂ ν

∂σji
∂γj

,

∂2 lnL

∂ κj2
=

n∑
i=1

∂2 ln li
∂ κj2

,

∂2 lnL

∂ κ1 ∂ κ2

=
n∑
i=1

∂2 ln li
∂ κ1 ∂ κ2

,

∂2 lnL

∂ κj ∂ ρ
=

n∑
i=1

∂2 ln li
∂ κj ∂ ρ

,

∂2 lnL

∂ κj ∂ ν
=

n∑
i=1

∂2 ln li
∂ κj ∂ ν

,

∂2 lnL

∂ ρ ∂ ν
=

n∑
i=1

∂2 ln li
∂ ρ ∂ ν

,

∂2 lnL

∂ ρ2
=

n∑
i=1

∂2 ln li
∂ ρ2

,

∂2 lnL

∂ ν2
=

n∑
i=1

∂2 ln li
∂ ν2

,
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where Q(x1i, x2i;κ1, κ2, ρ, ν) is defined as (4.6); also,

∂2 ln li
∂ σji2

=
(ν + 2)

2Q(x1i, x2i;κ1, κ2, ρ, ν)



 1
xji
−

xji

σji
2

κj2
+

ρ

(√
xji
σji

+

√
σji
xji

)(√
xj′i
σj′i
−
√
σj′i
xj′i

)
κ1 κ2 σji

2

Q(x1i, x2i;κ1, κ2, ρ, ν)

−
ρ
(

3
√

xji
σji

+
√

σji
xji

) (√
xj′i
σj′i
−
√

σj′i
xj′i

)
2κ1 κ2 σji2

− 2xji
κj2 σji3


−

(√
xji
σji
−
√

σji
xji

)2

4σji4
(√

xji
σji

+
√

σji
xji

)2 +
3
√

xji
σji
−
√

σji
xji

4σji2
(√

xji
σji

+
√

σji
xji

) ,
(4.11)

∂2 ln li
∂ σ1i ∂ σ2i

=
(ν + 2)

2Q(x1i, x2i;κ1, κ2, ρ, ν)


ρ
(√

x1i
σ1i

+
√

σ1i
x1i

) (√
x2i
σ2i

+
√

σ2i
x2i

)
2κ1 κ2 σ1i σ2i

+

(
ρ
(√

x1i
σ1i

+
√
σ1i
x1i

)(√
x2i
σ2i
−
√
σ2i
x2i

)
2κ1 κ2 σ1i

+
1
x1i
− x1i
σ1i

2

κ12

) (
ρ
(√

x1i
σ1i
−
√
σ1i
x1i

)(√
x2i
σ2i

+
√
σ2i
x2i

)
2κ1 κ2 σ2i

+
1
x2i
− x2i
σ2i

2

κ22

)
Q(x1i, x2i;κ1, κ2, ρ, ν)

 ,

(4.12)
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∂2 ln li
∂ σji ∂ κj

=
(ν + 2)

Q(x1i, x2i;κ1, κ2, ρ, ν)


ρ
(√

xji
σji

+
√

σji
xji

) (√
xj′i
σj′i
−
√

σj′i
xj′i

)
2κj

2 κj′ σji
+

(
1
xji
− xji

σji2

)
κj3

+

(
ρ
(√

x1i
σ1i
−
√
σ1i
x1i

)(√
x2i
σ2i
−
√
σ2i
x2i

)
κj2 κj′

−

(
xji
σji

+
σji
xji
−2

)
κj3

) ρ

(√
xji
σji

+

√
σji
xji

)(√
xj′i
σj′i
−
√
σj′i
xj′i

)
κ1 κ2 σji

+
1
xji
−

xji

σji
2

κj2


Q(x1i, x2i;κ1, κ2, ρ, ν)


,

(4.13)

∂2 ln li
∂ σji ∂ κj′

=
(ν + 2)

Q(x1i, x2i;κ1, κ2, ρ, ν)


ρ
(√

xji
σji

+
√

σji
xji

) (√
xj′i
σj′i
−
√

σj′i
xj′i

)
2κj κ2

j′ σji

+

(
ρ
(√

x1i
σ1i
−
√
σ1i
x1i

)(√
x2i
σ2i
−
√
σ2i
x2i

)
κj κ2j′

−

(
xj′i
σj′i

+
σj′i
xj′i
−2

)
κj′

3

) ρ

(√
xji
σji

+

√
σji
xji

)(√
xj′i
σj′i
−
√
σj′i
xj′i

)
κ1 κ2 σji

+
1
xji
−

xji

σji
2

κj2


Q(x1i, x2i;κ1, κ2, ρ, ν)


,

(4.14)
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∂2 ln li
∂ σji ∂ ρ

=
(ν + 2)

Q(x1i, x2i;κ1, κ2, ρ, ν)


ρ
(√

xji
σji

+
√

σji
xji

) (√
xj′i
σj′i
−
√

σj′i
xj′i

)
2κ1 κ2 σji

−

(√
x1i
σ1i
−
√

σ1i
x1i

) (√
x2i
σ2i
−
√

σ2i
x2i

) ρ

(√
xji
σji

+

√
σji
xji

)(√
xj′i
σj′i
−
√
σj′i
xj′i

)
κ1 κ2 σji

+
1
xji
−

xji

σji
2

κj2


κ1 κ2Q(x1i, x2i;κ1, κ2, ρ, ν)

+

ρ (Q(x1i, x2i;κ1, κ2, ρ, ν)− (1− ρ2)ν))

ρ

(√
xji
σji

+

√
σji
xji

)(√
xj′i
σj′i
−
√
σj′i
xj′i

)
κ1 κ2 σji

+
1
xji
−

xji

σji
2

κj2


(1− ρ2)Q(x1i, x2i;κ1, κ2, ρ, ν)

−

ρ

ρ

(√
xji
σji

+

√
σji
xji

)(√
xj′i
σj′i
−
√
σj′i
xj′i

)
κ1 κ2 σji

+
1
xji
−

xji

σji
2

κj2


(1− ρ2)


,

(4.15)

∂2 ln li
∂ σji ∂ ν

=

ρ

(√
xji
σji

+

√
σji
xji

)(√
xj′i
σj′i
−
√
σj′i
xj′i

)
κ1 κ2 σji

+
1
xji
−

xji

σji
2

κj2


νQ(x1i, x2i;κ1, κ2, ρ, ν)

{1

− (ν + 2) (Q(x1i, x2i;κ1, κ2, ρ, ν)− (1− ρ2)ν)

2Q(x1i, x2i;κ1, κ2, ρ, ν)

}
,

(4.16)
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∂2 ln li
∂ κ2

j

=
(ν + 2)

Q(x1i, x2i;κ1, κ2, ρ, ν)


2

(
ρ
(√

x1i
σ1i
−
√
σ1i
x1i

)(√
x2i
σ2i
−
√
σ2i
x2i

)
κj2 κj′

−
xji
σji

+
σji
xji
−2

κj3

)2

Q(x1i, x2i;κ1, κ2, ρ, ν)

−
2 ρ
(√

x1i
σ1i
−
√

σ1i
x1i

) (√
x2i
σ2i
−
√

σ2i
x2i

)
κj3 κj′

−
3
(
xji
σji

+
σji
xji
− 2
)

κj4

+
1

κj2
,

(4.17)

∂2 ln li
∂ κ1 ∂ κ2

=
(ν + 2)

Q(x1i, x2i;κ1, κ2, ρ, ν)


ρ
(√

x1i
σ1i
−
√

σ1i
x1i

) (√
x2i
σ2i
−
√

σ2i
x2i

)
κ1

2 κ2
2

+

2

(
ρ
(√

x1i
σ1i
−
√
σ1i
x1i

)(√
x2i
σ2i
−
√
σ2i
x2i

)
κ1 κ22

−
x2i
σ2i

+
σ2i
x2i
−2

κ23

) (
ρ
(√

x1i
σ1i
−
√
σ1i
x1i

)(√
x2i
σ2i
−
√
σ2i
x2i

)
κ12 κ2

−
x1i
σ1i

+
σ1i
x1i
−2

κ13

)
Q(x1i, x2i;κ1, κ2, ρ, ν)

 ,

(4.18)

∂2 ln li
∂ κj ∂ ρ

=
(ν + 2)

Q(x1i, x2i;κ1, κ2, ρ, ν)

−
(√

x1i
σ1i
−
√

σ1i
x1i

) (√
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−
√

σ2i
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)
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+

2
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−
(√
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σ1i
−
√
σ1i
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)(√
x2i
σ2i
−
√
σ2i
x2i

)
κ1 κ2

− ρ ν
) (

ρ
(√

x1i
σ1i
−
√
σ1i
x1i

)(√
x2i
σ2i
−
√
σ2i
x2i

)
κj2 κj′

−
xji
σji

+
σji
xji
−2

κj3

)
Q(x1i, x2i;κ1, κ2, ρ, ν)

 ,

(4.19)
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∂2 ln li
∂ κj ∂ ν

=
1

Q(x1i, x2i;κ1, κ2, ρ, ν)

−
ρ
(√

x1i
σ1i
−
√

σ1i
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) (√
x2i
σ2i
−
√

σ2i
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)
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+

xji
σji

+
σji
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+
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(
ρ
(√
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−
√
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x1i

)(√
x2i
σ2i
−
√
σ2i
x2i

)
κj2 κj′

−
xji
σji

+
σji
xji
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)
Q(x1i, x2i;κ1, κ2, ρ, ν)

 ,

(4.20)

∂2 ln li
∂ ρ ∂ ν

=
1

Q(x1i, x2i;κ1, κ2, ρ, ν)ν

{
(ν + 2) (Q(x1i, x2i;κ1, κ2, ρ, ν)− (1− ρ2) ν)

Q(x1i, x2i;κ1, κ2, ρ, ν)
− 2

}

×
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σ1i
−
√

σ1i
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) (√
x2i
σ2i
−
√

σ2i
x2i

)
κ1 κ2

− ρ (Q(x1i, x2i;κ1, κ2, ρ, ν)− (1− ρ2) ν)
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(4.21)

∂2 ln li
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−
√
σ2i
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κ1 κ2
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(1− ρ2)2

}
+

1

1− ρ2
+
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(4.22)
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∂2 ln li
∂ ν2

=
(Q(x1i, x2i;κ1, κ2, ρ, ν)− (1− ρ2)ν)

νQ(x1i, x2i;κ1, κ2, ρ, ν)

{
−(ν + 2)

2ν
+ 1− (ν + 2) (1− ρ2)

2Q(x1i, x2i;κ1, κ2, ρ, ν)

}
,

(4.23)

∂2σji
∂α2

j

=
∂σji
∂αj

(
1 +

i−1∑
k=1
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l=k
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βj − γj

xjl
σjl

))
+σjiγ
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(
βj − γj

xjl
σjl

) i−1∑
l=k

xl
∂σjl
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σ2
jl

(
βj − γj xjl

σjl

) ,
i ≥ 1, (4.24)

∂2σji
∂β2

j

=
∂σji
∂γj
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lnσj,i−1 +

i−2∑
k=0
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(
βj − γj

xjl
σjl

)}

+σji
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lnσjk
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(
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βj − γj xjlσjl

+
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∂γj
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(
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)
σjk

+
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∂γj
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 ,

i ≥ 2, (4.25)
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∂2σji
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4.5 Estimation and inference

We estimate the parameter θ = (α1, β1, γ1, α2, β2, γ2, κ1, κ2, ρ, ν)′ of the BVBSt-

ACD model by maximizing the log-likelihood function (without the additive constant)

in equation (4.4). We maximize the above log-likelihood function by a two-step

procedure. In the first step, we fix κ1, κ2, ρ and ν at their initial values and maximize

lnL(θ) with respect to the ACD parameters αj, βj, and γj, j = 1, 2, by utilizing the

NM algorithm. Then, in the second step, we estimate over the full parameter space

by employing the BFGS algorithm. We have derived and implemented the analytical

gradients (the first derivatives in Section 4.3) in the second step. The BFGS quasi-

Newton method with the analytic gradient will be faster, more stable and lead to

more accurate estimates than a numerical gradient (see Bard (1974), Bolker (2008)

and Mayorov (2011)).

Under the regularity conditions, the ML estimator θ̂ is consistent and θ̂
a∼

N10 (θ0, I(θ0)−1), where I(θ0) = −E
[
∂2lnL(θ)
∂θ∂θ′

∣∣∣
θ=θ0

]
= −E [H(θ0)]; H = ∂2lnL(θ)

∂θ∂θ′

is the Hessian matrix. In order to estimate the asymptotic covariance matrix of θ̂,

we consider the consistent estimator −H(θ̂)
−1

. The standard errors can then be

approximated by the square roots of the diagonal elements of this matrix.

4.6 Simulation study

In order to assess the performance of the maximum likelihood estimators of the

parameters of the BVBSt-ACD model, we carry out a simulation study for different

sample sizes and correlation parameter ρ, based on the method detailed in Section

4.5. For sample sizes n=1000, 3000, 5000 and 10000, we simulate 1000 samples from
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the BVBSt-ACD model with the vector of true parameters

θ = (α1, β1, γ1, α2, β2, γ2, κ1, κ2, ρ, ν)′ = (0.1, 0.9, 0.1,−0.1, 0.95, 0.1, 1.0, 1.05, ρ, 12)′.

Here, the value of ρ are chosen as 0.0, 0.2, 0.5 and 0.9. We choose the starting value

for ACD parameters to be

(α10, β10, γ10, α20, β20, γ20)′ = (0.01, 0.80, 0.01,−0.01, 0.80, 0.01)′.

The initial values of shape parameters κj0, j = 1, 2, and the correlation parameter ρ0

are given by

κj0 =

√
2

(
Xj

med(Xj)
− 1

)
ν − 2

ν
, j = 1, 2,

and

ρ0 = Corr

(
1

κ10

(√
X1

σ̂1

−
√
σ̂1

X1

)
,

1

κ20

(√
X2

σ̂2

−
√
σ̂2

X2

))
,

where σ̂j is obtained as

σ̂ji = exp

(
αj0 + βj0 ln σ̂j,i−1 + γj0

[
Xj,i−1

σ̂j,i−1

])
,

j = 1, 2, i = 1, 2, . . . , n. We set ν0 = 3.

The performance of the MLEs are examined in terms of the mean, coefficients of

skewness and kurtosis, bias and root mean squared error (RMSE) of the MLEs we

computed over 1000 replications for each sample size and for each level of correlation.

These results are presented in Tables 4.1-4.16. From these tables, we see that

all estimators perform well across different levels of correlation. The bias, MSE and
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RMSE decrease toward 0 quickly as sample size increases, which demonstrates the

asymptotic unbiasedness and consistency properties of the MLEs. An increase in

the sample size shrinks the standard errors of the mean. The skewness and kurtosis

obtained from the estimators are close to their limiting values of 0 and 3 for a reason-

able sample size. Clearly, the asymptotic normal approximation for the estimators

improves with increasing sample size.

4.7 Model discrimination

As mentioned earlier, the BVBSt-ACD model allows more flexibility in terms of the

kurtosis through an extra parameter, namely, the degrees of freedom of the Student-t

distribution. For the purpose of model discrimination, we consider a collection of its

special cases, BVBSt7, BVBSt9, BVBSt12 and BVBS-ACD models. From the general

BVBSt-ACD model, we are interested in investigating how often the true model gets

selected in the set of candidate models and select a parsimonious model that fits

the data adequately. This model evaluation technique is called model discrimination.

One may refer to the book by McLachlan and Peel (2000), and the recent papers by

Balakrishnan and Peng (2006), Balakrishnan and Pal (2013), Balakrishnan and Pal

(2016), and Balakrishnan et al. (2017).

Two well-known model selection criteria, AIC and BIC, are utilized here. They are

given by AIC = −2l+2k and BIC = −2l+klog(n), where l stands for the maximized

log-likelihood value, p is the number of model parameters to be estimated, and n is

the sample size. The model with the lowest AIC or BIC will be selected. Given that

the true data generating process (DGP) are the BVBSt7, BVBSt9, BVBSt12 and BV-
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Table 4.1: Simulation results for BVBSt-ACD model when n = 1000 and ρ = 0.0

α̂1 β̂1 γ̂1 α̂2 β̂2 γ̂2 κ̂1 κ̂2 ρ̂ ν̂

Mean 0.1047 0.8952 0.1044 -0.0998 0.9468 0.1021 1.0020 1.0437 0.0093 11.4213
Skew 1.1843 -1.0812 0.1918 0.3639 -0.6107 0.0669 0.0534 -0.0130 -0.1307 1.6467
Kurt 7.4287 7.3898 3.3430 3.3304 3.6136 3.3713 3.1052 2.8840 3.1350 6.8536
Bias 0.0047 -0.0048 0.0044 0.0002 -0.0032 0.0021 0.0020 -0.0063 0.0093 -0.5787
MSE 0.0034 0.0006 0.0002 0.0004 0.0002 0.0001 0.0009 0.0010 0.0012 8.8907
RMSE 0.0586 0.0249 0.0132 0.0196 0.0130 0.0116 0.0307 0.0320 0.0345 2.9817
SE 0.0584 0.0244 0.0124 0.0196 0.0126 0.0114 0.0306 0.0314 0.0332 2.9265

Table 4.2: Simulation results for BVBSt-ACD model when n = 1000 and ρ = 0.2

α̂1 β̂1 γ̂1 α̂2 β̂2 γ̂2 κ̂1 κ̂2 ρ̂ ν̂

Mean 0.1014 0.8964 0.1044 -0.0974 0.9468 0.1007 1.0029 1.0452 0.2052 11.6583
Skew 0.6768 -0.5418 0.1008 0.7212 -1.0215 0.0819 0.0092 0.0513 -0.0403 1.6153
Kurt 4.1275 3.8341 3.1454 4.2014 5.3795 2.9682 2.8602 3.2408 2.8969 8.1023
Bias 0.0014 -0.0036 0.0044 0.0026 -0.0032 0.0007 0.0029 -0.0048 0.0052 -0.3417
MSE 0.0027 0.0005 0.0002 0.0004 0.0002 0.0001 0.0009 0.0010 0.0011 8.8651
RMSE 0.0521 0.0221 0.0131 0.0198 0.0138 0.0106 0.0297 0.0314 0.0332 2.9774
SE 0.0521 0.0218 0.0124 0.0196 0.0134 0.0106 0.0295 0.0310 0.0328 2.9592
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Table 4.3: Simulation results for BVBSt-ACD model when n = 1000 and ρ = 0.5

α̂1 β̂1 γ̂1 α̂2 β̂2 γ̂2 κ̂1 κ̂2 ρ̂ ν̂

Mean 0.1052 0.8956 0.1034 -0.0991 0.9474 0.1012 1.0034 1.0446 0.5038 11.5242
Skew 0.6547 -0.5637 0.1934 0.3029 -0.5333 0.0845 0.0651 0.0091 -0.2359 1.9076
Kurt 3.8604 3.8578 3.1611 3.2348 3.5331 3.3936 3.1519 2.9583 3.2381 8.7965
Bias 0.0052 -0.0044 0.0034 0.0009 -0.0026 0.0012 0.0034 -0.0054 0.0038 -0.4758
MSE 0.0026 0.0005 0.0001 0.0003 0.0001 0.0001 0.0009 0.0010 0.0006 9.3740
RMSE 0.0514 0.0219 0.0116 0.0171 0.0113 0.0100 0.0304 0.0320 0.0253 3.0617
SE 0.0511 0.0214 0.0111 0.0171 0.0110 0.0100 0.0302 0.0315 0.0250 3.0260

Table 4.4: Simulation results for BVBSt-ACD model when n = 1000 and ρ = 0.9

α̂1 β̂1 γ̂1 α̂2 β̂2 γ̂2 κ̂1 κ̂2 ρ̂ ν̂

Mean 0.1004 0.8974 0.1032 -0.1010 0.9484 0.1014 0.9941 1.0372 0.8989 10.4064
Skew 0.0467 0.1223 -0.0223 0.0741 -0.0413 0.0024 0.0872 0.3339 -0.3515 1.8263
Kurt 4.3680 4.9159 3.7957 3.3658 4.7117 3.8622 3.2550 5.2337 3.3913 8.9198
Bias 0.0004 -0.0026 0.0032 -0.0010 -0.0016 0.0014 -0.0059 -0.0128 -0.0011 -1.5936
MSE 0.0013 0.0002 0.0001 0.0002 0.0001 0.0001 0.0009 0.0012 0.0000 8.9736
RMSE 0.0361 0.0150 0.0093 0.0131 0.0079 0.0079 0.0306 0.0349 0.0066 2.9956
SE 0.0361 0.0148 0.0087 0.0130 0.0078 0.0078 0.0300 0.0324 0.0065 2.5378
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Table 4.5: Simulation results for BVBSt-ACD model when n = 3000 and ρ = 0.0

α̂1 β̂1 γ̂1 α̂2 β̂2 γ̂2 κ̂1 κ̂2 ρ̂ ν̂

Mean 0.1002 0.8988 0.1015 -0.0990 0.9487 0.1004 0.9998 1.0474 0.0030 11.6888
Skew 0.4678 -0.3376 0.1518 0.2680 -0.4674 0.2388 0.0792 0.1310 0.1439 0.8277
Kurt 3.2923 3.0950 2.9312 3.1852 3.3588 2.9981 2.8968 3.0442 2.8641 3.9152
Bias 0.0002 -0.0012 0.0015 0.0010 -0.0013 0.0004 -0.0002 -0.0026 0.0030 -0.3112
MSE 0.0010 0.0002 0.0001 0.0001 0.0001 0.0000 0.0003 0.0004 0.0004 2.4541
RMSE 0.0316 0.0136 0.0073 0.0111 0.0075 0.0061 0.0171 0.0188 0.0192 1.5666
SE 0.0316 0.0136 0.0071 0.0111 0.0074 0.0061 0.0171 0.0186 0.0190 1.5361

Table 4.6: Simulation results for BVBSt-ACD model when n = 3000 and ρ = 0.2

α̂1 β̂1 γ̂1 α̂2 β̂2 γ̂2 κ̂1 κ̂2 ρ̂ ν̂

Mean 0.1015 0.8985 0.1014 -0.0989 0.9488 0.1002 0.9999 1.0469 0.2026 11.7139
Skew 0.3924 -0.3209 -0.0016 0.2728 -0.4342 -0.0300 -0.0064 -0.0297 0.1409 0.7954
Kurt 3.0132 3.0105 3.4154 3.4049 3.2703 3.1339 3.1564 2.9972 3.0141 3.8202
Bias 0.0015 -0.0015 0.0014 0.0011 -0.0012 0.0002 -0.0001 -0.0031 0.0026 -0.2861
MSE 0.0009 0.0002 0.0001 0.0001 0.0000 0.0000 0.0003 0.0003 0.0004 2.5165
RMSE 0.0306 0.0129 0.0076 0.0105 0.0068 0.0059 0.0177 0.0185 0.0195 1.5864
SE 0.0305 0.0128 0.0074 0.0104 0.0067 0.0059 0.0177 0.0183 0.0193 1.5611
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Table 4.7: Simulation results for BVBSt-ACD model when n = 3000 and ρ = 0.5

α̂1 β̂1 γ̂1 α̂2 β̂2 γ̂2 κ̂1 κ̂2 ρ̂ ν̂

Mean 0.1017 0.8985 0.1012 -0.0989 0.9489 0.1001 1.0001 1.0471 0.5014 11.7283
Skew 0.3472 -0.3114 0.0211 0.2399 -0.3930 -0.0215 -0.0215 -0.0344 0.1039 0.8159
Kurt 2.9604 3.0222 3.3860 3.3000 3.3349 3.0297 3.1442 3.0421 3.0008 3.9104
Bias 0.0017 -0.0015 0.0012 0.0011 -0.0011 0.0001 0.0001 -0.0029 0.0014 -0.2717
MSE 0.0008 0.0001 0.0000 0.0001 0.0000 0.0000 0.0003 0.0003 0.0002 2.5618
RMSE 0.0277 0.0117 0.0068 0.0095 0.0062 0.0054 0.0176 0.0186 0.0151 1.6006
SE 0.0276 0.0116 0.0067 0.0094 0.0061 0.0054 0.0176 0.0184 0.0151 1.5781

Table 4.8: Simulation results for BVBSt-ACD model when n = 3000 and ρ = 0.9

α̂1 β̂1 γ̂1 α̂2 β̂2 γ̂2 κ̂1 κ̂2 ρ̂ ν̂

Mean 0.1006 0.8990 0.1011 -0.0999 0.9494 0.1003 0.9964 1.0439 0.8996 11.2408
Skew 0.2912 -0.2795 0.0928 0.1622 -0.3255 0.0311 -0.0189 0.0220 0.0609 0.7550
Kurt 2.9438 2.9762 3.2166 3.0037 3.3401 2.9659 3.1098 3.1162 2.9959 3.6387
Bias 0.0006 -0.0010 0.0011 0.0001 -0.0006 0.0003 -0.0036 -0.0061 -0.0004 -0.7592
MSE 0.0004 0.0001 0.0000 0.0001 0.0000 0.0000 0.0003 0.0004 0.0000 2.7348
RMSE 0.0201 0.0082 0.0052 0.0074 0.0043 0.0044 0.0179 0.0194 0.0039 1.6537
SE 0.0201 0.0082 0.0051 0.0074 0.0043 0.0044 0.0175 0.0184 0.0038 1.4699
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Table 4.9: Simulation results for BVBSt-ACD model when n = 5000 and ρ = 0.0

α̂1 β̂1 γ̂1 α̂2 β̂2 γ̂2 κ̂1 κ̂2 ρ̂ ν̂

Mean 0.1004 0.8994 0.1007 -0.0995 0.9492 0.1002 0.9995 1.0477 0.0019 11.7867
Skew 0.3106 -0.3392 0.0134 0.1315 -0.2489 0.1334 0.0488 -0.0035 0.0406 0.5259
Kurt 3.1250 3.1619 3.0099 2.9958 3.1815 3.0125 2.9455 2.9299 3.3382 3.0521
Bias 0.0004 -0.0006 0.0007 0.0005 -0.0008 0.0002 -0.0005 -0.0023 0.0019 -0.2133
MSE 0.0006 0.0001 0.0000 0.0001 0.0000 0.0000 0.0002 0.0002 0.0002 1.3949
RMSE 0.0242 0.0101 0.0055 0.0082 0.0054 0.0046 0.0137 0.0136 0.0156 1.1811
SE 0.0242 0.0101 0.0055 0.0082 0.0054 0.0046 0.0137 0.0134 0.0155 1.1622

Table 4.10: Simulation results for BVBSt-ACD model when n = 5000 and ρ = 0.2

α̂1 β̂1 γ̂1 α̂2 β̂2 γ̂2 κ̂1 κ̂2 ρ̂ ν̂

Mean 0.1005 0.8994 0.1006 -0.0995 0.9492 0.1002 0.9998 1.0479 0.2015 11.8201
Skew 0.2878 -0.3073 0.0163 0.1145 -0.2483 0.1261 0.0415 -0.0242 0.0179 0.5267
Kurt 3.1018 3.1005 2.9518 2.9385 3.2203 3.0140 2.9628 2.9244 3.3238 3.0966
Bias 0.0005 -0.0006 0.0006 0.0005 -0.0008 0.0002 -0.0002 -0.0021 0.0015 -0.1799
MSE 0.0006 0.0001 0.0000 0.0001 0.0000 0.0000 0.0002 0.0002 0.0002 1.3950
RMSE 0.0235 0.0098 0.0054 0.0080 0.0053 0.0045 0.0137 0.0136 0.0150 1.1811
SE 0.0235 0.0097 0.0053 0.0080 0.0053 0.0045 0.0137 0.0135 0.0149 1.1679
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Table 4.11: Simulation results for BVBSt-ACD model when n = 5000 and ρ = 0.5

α̂1 β̂1 γ̂1 α̂2 β̂2 γ̂2 κ̂1 κ̂2 ρ̂ ν̂

Mean 0.1006 0.8994 0.1005 -0.0996 0.9494 0.1001 0.9994 1.0475 0.5007 11.7411
Skew 0.2462 -0.2660 0.0434 0.1069 -0.2151 0.0791 0.0179 -0.0691 -0.0148 0.5491
Kurt 3.0779 3.0373 2.8908 2.8677 3.2043 3.0117 3.0171 2.9668 3.3108 3.2238
Bias 0.0006 -0.0006 0.0005 0.0004 -0.0006 0.0001 -0.0006 -0.0025 0.0007 -0.2589
MSE 0.0004 0.0001 0.0000 0.0001 0.0000 0.0000 0.0002 0.0002 0.0001 1.3561
RMSE 0.0209 0.0087 0.0048 0.0072 0.0048 0.0040 0.0135 0.0137 0.0117 1.1645
SE 0.0209 0.0087 0.0047 0.0071 0.0047 0.0040 0.0135 0.0135 0.0116 1.1359

Table 4.12: Simulation results for BVBSt-ACD model when n = 5000 and ρ = 0.9

α̂1 β̂1 γ̂1 α̂2 β̂2 γ̂2 κ̂1 κ̂2 ρ̂ ν̂

Mean 0.0999 0.8996 0.1005 -0.1001 0.9497 0.1002 0.9970 1.0454 0.8997 11.4350
Skew 0.1434 -0.1861 0.1117 0.0959 -0.1760 0.0386 -0.0659 -0.1003 -0.0624 0.6420
Kurt 3.0144 2.9651 3.0163 2.6881 3.1966 2.9702 3.0726 3.1128 3.2961 3.5677
Bias -0.0001 -0.0004 0.0005 -0.0001 -0.0003 0.0002 -0.0030 -0.0046 -0.0003 -0.5650
MSE 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0002 0.0000 1.6033
RMSE 0.0149 0.0060 0.0036 0.0054 0.0033 0.0032 0.0136 0.0144 0.0030 1.2662
SE 0.0149 0.0060 0.0036 0.0054 0.0033 0.0032 0.0133 0.0136 0.0030 1.1337
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Table 4.13: Simulation results for BVBSt-ACD model when n = 10000 and ρ = 0.0

α̂1 β̂1 γ̂1 α̂2 β̂2 γ̂2 κ̂1 κ̂2 ρ̂ ν̂

Mean 0.1004 0.8996 0.1003 -0.1000 0.9498 0.1002 0.9993 1.0486 0.0008 11.8615
Skew 0.1088 -0.1241 -0.0315 0.1266 -0.1636 0.0570 -0.0760 -0.0029 0.1040 0.3358
Kurt 2.7984 2.8015 3.1167 2.9711 3.0264 2.9084 3.0068 2.7009 3.0058 3.2362
Bias 0.0004 -0.0004 0.0003 0.0000 -0.0002 0.0002 -0.0007 -0.0014 0.0008 -0.1385
MSE 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.6708
RMSE 0.0170 0.0072 0.0038 0.0055 0.0036 0.0033 0.0096 0.0099 0.0107 0.8190
SE 0.0170 0.0072 0.0037 0.0055 0.0036 0.0033 0.0095 0.0098 0.0107 0.8076

Table 4.14: Simulation results for BVBSt-ACD model when n = 10000 and ρ = 0.2

α̂1 β̂1 γ̂1 α̂2 β̂2 γ̂2 κ̂1 κ̂2 ρ̂ ν̂

Mean 0.1006 0.8995 0.1003 -0.1000 0.9498 0.1002 0.9994 1.0487 0.2006 11.8732
Skew 0.1258 -0.1388 -0.0411 0.1137 -0.1852 0.0540 -0.0768 0.0053 0.0893 0.3892
Kurt 2.8940 2.8965 3.0904 2.9903 3.1591 2.9323 3.0054 2.7508 3.0131 3.3732
Bias 0.0006 -0.0005 0.0003 0.0000 -0.0002 0.0002 -0.0006 -0.0013 0.0006 -0.1268
MSE 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.6929
RMSE 0.0168 0.0071 0.0037 0.0054 0.0035 0.0032 0.0096 0.0099 0.0103 0.8324
SE 0.0168 0.0071 0.0037 0.0054 0.0035 0.0032 0.0096 0.0098 0.0103 0.8231
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Table 4.15: Simulation results for BVBSt-ACD model when n = 10000 and ρ = 0.5

α̂1 β̂1 γ̂1 α̂2 β̂2 γ̂2 κ̂1 κ̂2 ρ̂ ν̂

Mean 0.1007 0.8995 0.1002 -0.1000 0.9499 0.1001 0.9996 1.0488 0.5002 11.9009
Skew 0.1474 -0.1495 -0.0162 0.0890 -0.1908 0.0513 -0.0747 0.0340 0.0718 0.3706
Kurt 3.0963 3.0914 3.0280 3.0979 3.3308 2.9971 3.0099 2.8639 3.0212 3.3272
Bias 0.0007 -0.0005 0.0002 0.0000 -0.0001 0.0001 -0.0004 -0.0012 0.0002 -0.0991
MSE 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.6768
RMSE 0.0152 0.0064 0.0034 0.0048 0.0032 0.0029 0.0095 0.0099 0.0080 0.8227
SE 0.0152 0.0064 0.0034 0.0049 0.0032 0.0029 0.0095 0.0098 0.0080 0.8171

Table 4.16: Simulation results for BVBSt-ACD model when n = 10000 and ρ = 0.9

α̂1 β̂1 γ̂1 α̂2 β̂2 γ̂2 κ̂1 κ̂2 ρ̂ ν̂

Mean 0.1001 0.8998 0.1003 -0.1001 0.9499 0.1002 0.9982 1.0475 0.8998 11.7047
Skew 0.0573 -0.0204 0.0619 -0.0404 -0.0449 0.0759 -0.0337 0.0265 0.0353 0.3554
Kurt 3.2270 3.1912 2.8567 3.1645 3.1138 2.9806 3.0160 3.0525 3.0439 3.2162
Bias 0.0001 -0.0002 0.0003 -0.0001 -0.0001 0.0002 -0.0018 -0.0025 -0.0002 -0.2953
MSE 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.7371
RMSE 0.0109 0.0045 0.0026 0.0038 0.0023 0.0023 0.0096 0.0102 0.0020 0.8586
SE 0.0109 0.0045 0.0026 0.0038 0.0023 0.0023 0.0094 0.0099 0.0020 0.8066
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BS-ACD models (true models), respectively, we fit the BVBSt7, BVBSt9, BVBSt12

and BVBS-ACD models to the simulated datasets generated from each true model,

respectively.

Table 4.17: Model Discrimination by AIC and BIC

True BVBSt-ACD Model
n=5000

Fitted ACD Model BVBSt7 BVBSt9 BVBSt12 BVBS
BVBSt7 0.963 0.084 0.000 0.000
BVBSt9 0.037 0.878 0.120 0.001
BVBSt12 0.000 0.038 0.880 0.032
BVBS 0.000 0.000 0.000 0.967

For sample sizes n = 5000, we simulated 1000 samples from the BVBSt-ACD

model with the vector of true parameters

θ = (α1, β1, γ1, α2, β2, γ2, κ1, κ2, ρ, ν)′ = (0.1, 0.9, 0.1,−0.1, 0.95, 0.1, 1.0, 1.05, 0.5, ν)′.

Here, we chose the degree of freedom ν to be 7, 9, 12 and +∞. We then assess the

performance of the AIC and BIC by the selection rates for each of the fitted model.

As seen in Table 4.17, AIC/BIC can distinguish between the BVBSt7, BVBSt9,

BVBSt12 and BVBS-ACD models with a relatively high selection rates for the true

models. AIC/BIC perform best when the true models are BVBSt7-ACD and BVBS-

ACD. The selection rate of the correct model is 96.3% if the true DGP is BVBSt7-

ACD and 96.7% if the true DGP is BVBS-ACD. AIC/BIC perform well when the true

models are BVBSt9-ACD and BVBSt12-ACD. The selection rate of the right model is

87.8% if the true DGP is BVBSt9-ACD and 88.0% if the true DGP is BVBSt12-ACD.
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As expected, when the true models are BVBSt7-ACD and BVBSt9-ACD, the selection

rates for BVBSt7-ACD are higher than those of BVBSt12-ACD, which implies that

BVBSt7-ACD is closer to BVBSt9-ACD than BVBSt12-ACD.

4.8 Illustrative example 1: Example revisited

Does the BVBS-ACD model provide the best fit for the real data in Chapter 3

or can we improve the fit using the BVBSt-ACD model? In this section, we fit the

BVBSt-ACD model with different degree of freedom to the matched data. we choose

ν =7, 9, 12 and +∞. The corresponding maximized log-likelihood and AIC values, for

different choices of ν, are presented in Table 4.18. As ν increases, the maximized log-

likelihood value monotonically increases and the AIC value monotonically decreases.

Thus, the BVBS-ACD model gives the best fit.

Table 4.18: The maximized log-likelihood value and AIC versus degrees of freedom
ν.

ν Maximized log-likelihood AIC

7 2962.930 -5907.859
9 3009.919 -6001.838
12 3045.486 -6072.972
+∞ 3103.805 -6189.610

4.9 Illustrative example 2: Simulated data

In this section, we provide an example based on a simulated dataset to illustrate

the BVBSt-ACD model developed here. We compare the results of the BVBSt-ACD
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model with those of the BVBS-ACD model.

4.9.1 Data description

For sample size n = 5000, we generated a bivariate dataset from a BVBSt9-ACD

model with the vector of true parameters

θ = (α1, β1, γ1, α2, β2, γ2, κ1, κ2, ρ, ν)′

= (−0.007, 0.991, 0.004,−0.010, 0.991, 0.008, 1.024, 1.077, 0.2, 9)′.

(4.30)

As seen in Figure 4.1 and Table 4.19, the two simulated series are positive and

right-skewed with higher degree of kurtosis indicating heavy tails.

Table 4.19: Summary statistics for the simulated bivariate dataset

Data Min Median Mean Max SD skew kurt
Series 1 0.025 1.019 1.708 28.140 2.202 4.212 31.134
Series 2 0.018 1.505 2.692 57.880 3.590 4.206 33.626

In Figure 4.2, the empirical scaled TTT transforms are first concave and then

convex, revealing that both marginals may possess unimodal shaped hazard rates.

So, the BVBSt distribution could be a good fit to the duration data due to the

shape of its marginal density functions and hazard rates.

The ACF plots in Figure 4.3 indicate that there is a positive autocorrelation in

both series, which suggests that a ACD specification may be a reasonable choice.
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Figure 4.1: Histograms for the simulated bivariate dataset of Series 1 (left) and Series
2 (right)
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Figure 4.2: TTT plots for the simulated bivariate dataset of Series 1 (left) and Series
2 (right)
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Figure 4.3: ACF plots for the simulated bivariate dataset of Series 1 (left) and Series
2 (right)

4.9.2 Estimation results

We employ the method described earlier in Section 4.5 to estimate the BVBSt-

ACD model with the simulated bivariate dataset. The estimation results of both

BVBS-ACD and BVBSt-ACD models are presented in Table 4.20. All estimates

are statistically significant at 1% level. The BVBSt-ACD model is seen to provide

much better fit to the data. The difference in AIC and BIC values between the two

models are −265.57 and −250.535, respectively, which indicates that the AIC and

BIC values of the BVBSt-ACD model are substantially smaller than those of the

BVBS-ACD model.
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Table 4.20: Estimation results for two bivariate ACD models

BVBSt-ACD model

α̂1 β̂1 γ̂1 α̂2 β̂2 γ̂2 κ̂1 κ̂2 ρ̂ ν̂ maxlnL AIC BIC

MLE -0.004 0.997 0.003 -0.009 0.990 0.007 1.036 1.097 0.213 9.107 1560.22 -3100.44 -2950.096
SE 0.001 0.002 0.001 0.002 0.004 0.002 0.014 0.015 0.015 0.720

BVBS-ACD model

α̂1 β̂1 γ̂1 α̂2 β̂2 γ̂2 κ̂1 κ̂2 ρ̂ maxlnL AIC BIC

MLE -0.005 0.998 0.003 -0.010 0.991 0.008 1.173 1.240 0.215 1426.435 -2834.87 -2699.561
SE 0.001 0.002 0.001 0.002 0.003 0.001 0.012 0.012 0.013

Then, the in-sample predictive model of the BVBSt-ACD model is given by

σ̂1i = exp

(
−0.004 + 0.997 ln σ̂1,i−1 + 0.003

[
X1,i−1

σ̂1,i−1

])
,

σ̂2i = exp

(
−0.009 + 0.990 ln σ̂2,i−1 + 0.007

[
X2,i−1

σ̂2,i−1

])
while that of the BVBS-ACD model is given by

σ̂1i = exp

(
−0.005 + 0.998 ln σ̂1,i−1 + 0.003

[
X1,i−1

σ̂1,i−1

])
,

σ̂2i = exp

(
−0.010 + 0.991 ln σ̂2,i−1 + 0.008

[
X2,i−1

σ̂2,i−1

])
.

4.9.3 Goodness-of-fit

To evaluate the goodness-of-fit of the BVBSt and BVBS-ACD models, we in-

vestigate the in-sample one-step-ahead density forecasts implied by the predictive

models. We examine the uniformity of the z series by Kolmogorov-Smirnov (KS)

and Anderson-Darling (AD) tests and also check the independence of the z series by

Ljung-Box (LB) tests. Results of these tests are presented in Tables 4.21 and 4.22.
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As seen in Table 4.21, at 10% significance level, the null hypothesises that the

series z1, z2, z1|2, z2|1 and the pooled series {z1, z2|1} and {z2, z1|2} are i.i.d. U(0, 1)

can not be rejected. The LB tests show the absence of serial correlation in the

associated z and z2 series. Hence the BVBSt-ACD model provides a good fit to the

data. As expected, the BVBS-ACD model doesn’t fit data well. the null hypothesis

that the z series should each be i.i.d. U(0, 1) are rejected.

4.9.4 Out-of-sample forecast evaluation

We use the first three fifth of the simulated data, “in-sample” observations 1 to

3000, to estimate the model parameters and then employ the resulting predictive

model to the rest of the data, “out-of-sample” observations 3001 to 5000, to form

density forecasts. These evaluation results are presented in Tables 4.23 and 4.24.

A seen in Table 4.23, at 10% significance level, the null hypothesis that the series

z1, z2, z1|2, z2|1 and the pooled series {z1, z2|1} and {z2, z1|2} are i.i.d. U(0, 1) can

not be rejected. The KS and AD tests both seem to support the uniformity of the

corresponding z series. The LB tests indicate no serial correlation in the associated

z and z2 series. As shown in Table 4.24, at roughly 1% significance level, the null

hypothesis that the series z1, z2, z1|2, z2|1 and the pooled series {z1, z2|1} and {z2, z1|2}

are i.i.d. U(0, 1) can not be rejected. Therefore, these results all reveal that the

BVBSt-ACD model yields better bivariate forecasts than the BVBS-ACD model.
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Table 4.21: P -values for in-sample goodness-of-fit tests for the BVBSt-ACD model
based on density forecasts

z series KS AD LB(10) LB(15) LB(20) LB2(10) LB2(15) LB2(20)
z1 0.938 0.993 0.798 0.688 0.787 0.808 0.756 0.768
z2 0.914 0.894 0.522 0.602 0.546 0.610 0.781 0.680
z1|2 0.957 0.987 0.683 0.561 0.698 0.709 0.653 0.685
z2|1 0.824 0.962 0.741 0.718 0.657 0.782 0.858 0.808
z1, z2|1 0.913 0.975 0.918 0.560 0.693 0.918 0.560 0.693
z2, z1|2 0.935 0.960 0.778 0.477 0.637 0.760 0.610 0.748

Note: LB(l) represents LB test for z series over l lags, where l = 10, 15 and 20. LB2(l)
represents LB test for z2 series over l lags.

Table 4.22: P -values for in-sample goodness-of-fit tests for the BVBS-ACD model
based on density forecasts

z series KS AD LB(10) LB(15) LB(20) LB2(10) LB2(15) LB2(20)
z1 0.007 0.001 0.819 0.715 0.791 0.828 0.782 0.772
z2 0.052 0.004 0.524 0.597 0.517 0.590 0.763 0.647
z1|2 0.006 0.001 0.725 0.601 0.737 0.739 0.667 0.734
z2|1 0.022 0.005 0.749 0.724 0.655 0.758 0.858 0.811
z1, z2|1 0.001 < 0.001 0.925 0.573 0.699 0.936 0.766 0.863
z2, z1|2 0.002 < 0.001 0.813 0.492 0.633 0.809 0.631 0.762

Note: LB(l) represents LB test for z series over l lags, where l = 10, 15 and 20. LB2(l) represents
LB test for z2 series over l lags.

115



Ph.D. Thesis - Tao Tan McMaster - Mathematics & Statistics

Table 4.23: P -values for out-of-sample tests for the of BVBSt-ACD model based on
density forecasts

z series KS AD LB(10) LB(15) LB(20) LB2(10) LB2(15) LB2(20)
z1 0.560 0.435 0.400 0.562 0.315 0.411 0.556 0.289
z2 0.164 0.145 0.773 0.757 0.535 0.938 0.857 0.690
z1|2 0.609 0.357 0.260 0.468 0.281 0.273 0.470 0.257
z2|1 0.055 0.096 0.759 0.853 0.670 0.889 0.942 0.842
z1, z2|1 0.444 0.572 0.562 0.698 0.313 0.560 0.669 0.396
z2, z1|2 0.971 0.985 0.540 0.662 0.364 0.632 0.630 0.387

Note: LB(l) represents LB test for z series over l lags, where l = 10, 15 and 20. LB2(l)
represents LB test for z2 series over l lags.

Table 4.24: P -values for out-of-sample tests for the of BVBS-ACD model based on
density forecasts

z series KS AD LB(10) LB(15) LB(20) LB2(10) LB2(15) LB2(20)
z1 0.064 0.028 0.633 0.746 0.632 0.750 0.835 0.706
z2 0.195 0.062 0.767 0.763 0.547 0.944 0.865 0.706
z1|2 0.035 0.037 0.445 0.699 0.675 0.568 0.833 0.774
z2|1 0.082 0.035 0.700 0.825 0.661 0.857 0.936 0.857
z1, z2|1 0.013 0.002 0.594 0.729 0.407 0.725 0.796 0.592
z2, z1|2 0.016 0.007 0.573 0.721 0.466 0.573 0.721 0.466

Note: LB(l) represents LB test for z series over l lags, where l = 10, 15 and 20. LB2(l)
represents LB test for z2 series over l lags.
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Chapter 5

Concluding Remarks

In this chapter, we first review the research contributions of this dissertation, and

then point out some directions for future research.

5.1 Summary of Research

Replacing the conditional mean in the original ACD model with the conditional

median, Bhatti (2010) developed the BS-ACD model which allows an unimodal hazard

rate. A recent extension of this conditional median-type ACD model has been given

by Leiva et al. (2014), which considered the BS, BS power-exponential and Student-t

BS distributions, so called the scale-mixture BS distribution family; see Balakrishnan

et al. (2009) and Dı́az-Garćıa and Leiva (2005) for details on SBS distributions. Saulo

and Leão (2017) discussed the conditional median-type ACD model based on log-

symmetric distributions. Saulo et al. (2017a) compared the mean-based and median-

based BS-ACD models for model-fitting, forecasting and influence analysis. Moreover,

their study confirmed that the conditional median-type ACD models based on BS
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and associated distributions are superior to the existing ACD model (the Generalized

Gamma ACD model, see Lunde (1999)) in terms of model-fitting and forecasting.

In this thesis, we have first considered the univariate BSt-ACD model and then in-

troduced bivariate ACD models based on BVBS and BVBSt distributions. The main

contributions include three parts. First, we have developed the maximum likelihood

estimation method for the BSt-ACD model. Next, in spite of the vast literature on

duration series of single assets, the modeling of bivariate duration series has not yet

received much attention due to non-synchronosity. With the univariate ACD model,

we only can analyze one stock at a time and the other stock at another time. We can

not do the analysis jointly. So, the natural question is how to model them together.

For this purpose, we proposed the BVBS-ACD and BVBSt-ACD models based on

matched trade durations. The maximum likelihood estimation of model parameters

based on a two-step procedure, NM followed by BFGS, and associated inferential

methods have been developed. The goodness-of-fit and predictive performance of the

models have been discussed.

In Chapter 2, we have developed the maximum likelihood estimation method for

the BSt autoregressive conditional duration model. We have proposed the following

two-step approach for the parameter estimation. In the first step, we estimate the

ACD parameters by using the NM Algorithm with κ and ν fixed at their initial val-

ues. In the second step, we estimate over the whole parameter space by the BFGS

algorithm. We have derived and implemented analytical gradients in the second step.

The standard errors of the MLEs of the model parameters have been calculated by

inverting the observed information matrix evaluated at the MLEs. We have exam-

ined the properties of the MLEs of the BSt-ACD model parameters through a Monte
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Carlo simulation study. The bias, MSE and RMSE are found to be consistently small

and tend to 0 as sample size increases, showing that the MLEs are asymptotically

unbiased and consistent. The standard errors of the means become smaller, and the

sample skewness and kurtosis are found to close to 0 and 3, respectively, with increas-

ing sample size. This suggests the asymptotic normal distribution-sample theory of

MLEs. We have also evaluated the performance of the model by model discrimina-

tion using both likelihood-based and information-based method. The results of the

likelihood-ratio test show that the chi-square distribution provides only a reasonable

approximation to the null distribution of the likelihood-ratio test when testing for the

BSt12-ACD model. But, the chi-square distribution provides a good approximation

to the null distribution of the likelihood ratio test when testing for the BSt7-ACD

and BSt9-ACD models. However, when testing for the BS-ACD model, the mixture

chi-square distribution didn’t provide a good approximation to the null distribution

of the likelihood ratio test. Furthermore, we have seen that when the true model is

BSt7-ACD and BS-ACD, the test has reasonable power to reject the other candidate

models. However, when the true model is BSt9-ACD and BSt12-ACD, the test have

low powers to reject BSt7-ACD and BSt9-ACD, respectively. When investigating the

performance of AIC and BIC, we first note that both of them result in the same

selection rates. Hence, in this case, inference can be based on either AIC or BIC.

The results show that the information-based criteria perform well in discriminating

between the BSt7, BSt9, BSt12 and BS-ACD models and show an improvement in

performance with sample size. Finally, we have illustrated the proposed methodology

using real high frequency data on two stocks from the New York Stock Exchange. In

general, the BSt-ACD model outperform all the considered models and the BS-ACD
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model provides close values, but the GG-ACD model turns out to be worse in terms

of AIC values, goodness-of-fit and out-of-sample density forecasts.

In Chapter3, we have proposed a bivariate autoregressive conditional duration

model based on the bivariate BS distribution, allowing us to jointly analyze the de-

pendence of two matched duration series. The maximum likelihood estimation of

model parameters and associated inferential methods have been developed. We have

done the estimation by using a hybrid of optimization algorithms, NM followed by

BFGS. First, we have applied the NM Algorithm to estimate the ACD parameters by

fixing κ1, κ2 and ρ at their initial values. We have then used the BFGS algorithm to

estimate over the entire parameter space. We have derived and implemented analyt-

ical gradients in the second step. The standard errors have been estimated from the

negative of the inverse Hessian matrix evaluated at the MLEs. We have conducted a

simulation study to evaluate the properties of the model as well as the performance

of the inferential methods developed here. For different correlation coefficients, all

the estimators exhibit lower Bias and RMSEs which decrease with increased sam-

ple size, tending towards 0. This empirically supports the asymptotic unbiasedness,

consistency and efficiency of the MLEs. Moreover, as n increases, the empirical distri-

butions of all the estimators become close to normal distribution in terms of skewness

and kurtosis. Finally, we have illustrated the proposed methodology using real high

frequency data on two stocks from the New York Stock Exchange. The estimation

results reveal a weak positive correlation between the two matched duration series.

To justify that it is necessary to include the correlation parameter in the model,

we conduct model comparison between the restricted model (ρ = 0) and the full

model by using likelihood ratio test and AIC. The results suggest that the proposed
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BVBS-ACD model is a much better choice than the restricted model. In-sample and

out-of-sample density forecasts have been employed to assess the goodness-of-fit and

predictive ability of the model, which supports the performance of the BVBS-ACD

model developed here.

In Chapter 4, we have proposed a bivariate autoregressive conditional duration

model based on the bivariate Student-t BS distribution, which facilitates the joint

modeling of trade durations and detect the dependence of two matched duration se-

ries. A further advantage of the proposed model is that it allows more flexibility

in terms of the kurtosis and skewness through the inclusion of an additional shape

parameter. The maximum likelihood estimation of model parameters and associated

inferential methods have been developed. We have proposed a two-step estimation

procedure. First, we fixed the distribution parameters, κ1, κ2, ρ and ν, at their initial

values and maximized the log-likelihood function with respect to the ACD parame-

ters through the NM Algorithm. Next, we estimated over the full parameter space

by employing the BFGS algorithm. We have derived and implemented the analytical

gradients in the second step. The standard errors have been obtained by inverting

the negative Hessian evaluated at the MLEs. We have conducted a simulation study

to evaluate the properties of the model as well as the performance of the inferen-

tial methods developed here. A number of different scenarios have been taken into

account concerning the values of correlation coefficient and sample size. All estima-

tors perform well across different levels of correlation, demonstrating the asymptotic

unbiasedness and consistency properties of the MLEs. The closeness normal approx-

imation for the estimates is seen through skewness and kurtosis when the sample size

increases. Furthermore, we have evaluated the performance of the model by model
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discrimination based on information-based method. AIC/BIC can distinguish be-

tween the BVBSt7, BVBSt9,BVBSt12 and BVBS-ACD models with a relatively high

selection rates for the true models. Finally, we have illustrated the proposed method-

ology by a simulated bivariate dataset and compared the results of the BVBSt-ACD

model with those of the BVBS-ACD model. The suggested model provides better fit

to the data in terms of AIC/BIC and in-sample density forecasts, and yields better

bivariate forecast according to out-of-sample density forecasts. These show the main

advantages of the BVBSt-ACD model developed here.

5.2 Future work

We now describe some research topics, that would be of interest to investigate

further. First, as continuation of this work, one may develop Bayesian inference of

univariate and bivariate ACD models based on BS and associated distributions, such

as BS-ACD, BSt-ACD, BVBS-ACD and BVBSt-ACD models, discussed in this thesis.

In Chapter 4, we proposed the BVBSt-ACD model and a two-step procedure to obtain

the MLEs of model parameters. One may consider developing an EM algorithm, for

this maximum likelihood estimation of model parameters.

Rahul et al. (2018) have proposed an univariate autoregressive moving average

(ARMA) model based on BS distribution. One may further consider constructing

a bivariate ARMA model based on BVBS and BVBSt distributions. It will then

be of great interest to investigate model misspecification between ACD and ARMA

models. Instead of modeling conditional expected duration in the ACD model, for

bivariate or multivariate duration data, we may consider constructing the autoregres-

sive conditional intensity Model based on BVBS, BVBSt and even multivariate BS
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distributions.

Another direction is could be to construct copula-based ACD Models based on

BVBS, BVBSt and multivariate BS distributions.

In Chapter 3 and 4, we have proposed bivariate ACD models with a constant

covariance structure. One may introduce a time-varying covariance/correlation into

the current models and develop corresponding inferential methods.

Instead of modeling matched duration data, one may construct bivariate ACD

model for the two full duration series by treating one of the duration series as censored.

In this thesis, our research focuses on ACD (1,1) instead of ACD (p, q) allowing

p > 1 and q > 1. The general model can be defined and the structure of the model can

be explained. However, the numbers of model parameters will increase. The model

estimation and fitting to a given dataset will be more complicated. For example, if

we take p = 2 and q = 2, i.e., BVBS-ACD (2,2), we will have 4 more ACD parameters

due to the second order, in addition to 9 parameters in the BVBS-ACD (1,1) model.

That is 13 model parameters in total. We need to consider how to come up with

initial values and how stable the estimation procedure is, etc. Besides, we tried to

apply the BVBS-ACD (2,2) model to real data. The model fitting did not improve

substantially. That is why we concentrated on the BVBS-ACD (1,1) model.

Finally, the multivariate extension of the work in this thesis would pose a chal-

lenging task and would be of great interest as it would be of great practical value.

When we move from a BVBS-ACD to MVBS-ACD (see Kundu, Balakrishnan, and

Jamalizadeh ( 2013 )), the model definition is not a problem. Suppose we take p

variate. We have to take x1i, x2i, ..., xpi. But now the number of model parameters

would have exponentially increased. What would be the trivariate case? We will
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have 3 more ACD parameters from σ3i, α3,β3 and γ3. We will have 3 more distri-

bution parameters, 1 shape parameter κ3 and 2 correlation parameters ρ13 and ρ23.

6 more parameters have been introduced simply because we went one dimension up.

That is 15 model parameters in total. One can imagine what will happen if we go to

higher dimensions. We need to come up with good initial values, a stable estimation

procedure and appropriate tools to validate the model.
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