
Graph-Based Solution for Two Scalar Quantization

Problems in Network Systems



GRAPH-BASED SOLUTION FOR TWO SCALAR QUANTIZATION

PROBLEMS IN NETWORK SYSTEMS

BY

QIXUE ZHENG, B.Sc.

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

AND THE SCHOOL OF GRADUATE STUDIES

OF MCMASTER UNIVERSITY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

c© Copyright by Qixue Zheng, July 2018

All Rights Reserved



Master of Applied Science (2018) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: Graph-Based Solution for Two Scalar Quantization Prob-

lems in Network Systems

AUTHOR: Qixue Zheng

B.Eng., (Automation Engineering)

University of Electronic Science and Technology of China,

Chengdu, China

SUPERVISOR: Dr. Sorina Dumitrescu

NUMBER OF PAGES: xv, 88

ii



To my family and friends



Abstract

This thesis addresses the optimal scalar quantizer design for two problems, i.e. the two-

stage Wyner-Ziv coding problem and the multiple description coding problem for finite-

alphabet sources. The optimization problems are formulated as the minimization of a

weighted sum of distortions and rates. The proposed solutions are globally optimal when

the cells in each partition are contiguous. The solution algorithms are both based on solv-

ing the single-source or the all-pairs minimum-weight path (MWP) problems in certain

weighted directed acyclic graphs (WDAG). When the conventional dynamic programming

technique is used to solve the underlying MWP problems the time complexity achieved is

O(N3) for both problems, where N is the size of the source alphabet.

We first present the optimal design of a two-stage Wyner-Ziv scalar quantizer with for-

wardly or reversely degraded side information (SI) for finite-alphabet sources and SI. We

assume that binning is performed optimally and address the design of the quantizer parti-

tions. A solution based on dynamic programming is proposed withO(N3) time complexity.

Further, a so-called partial Monge property is additionally introduced and a faster solution

algorithm exploiting this property is proposed. Experimental results assess the practical

performance of the proposed scheme.

Then we present the optimal design of an improved modified multiple-description scalar

iv



quantizer (MMDSQ). The improvement is achieved by optimizing all the scalar quantiz-

ers. The optimization is based on solving the single-source MWP problem in a coupled

quantizer graph and the all-pairs MWP problem in a WDAG. Another variant design with

the same optimization but enhanced with a better decoding process is also presented to

decrease the gap to theoretical bounds. Both designs for the second problem have close or

even better performances than the literature as shown in experiments.
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List of Notation

X The source alphabet

X̄ The extended source alphabet with x0 = −∞

d The distortion function R× R→ [0,∞)

Q A scalar quantizer

R(Q) The rate of the quantizer Q
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H(A) The entropy of the variable A

V The vertex set {0, ..., N}

E The edge set {(u, v) ∈ V |0 ≤ u < v ≤ N}

G The directed acyclic graph with the vertex set V and the edge set E

G(ω) G with the weight function ω

G The coupled quantizer directed acyclic graph

G(w) The coupled quantizer graph with the weight function w
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Chapter 1

Introduction

This thesis addresses the scalar quantizer design for the two-stage Wyner-Ziv (WZ) cod-

ing problem and for the multiple description coding (MDC) problem. Both problems are

relevant to communication in networks. Due to the instability of the transmission chan-

nels, some parts of the message may be lost when transmitting from one user to another. If

the received message is not complete, the receiver is not able to understand the message.

That can be evidenced by our experience in real life, such as when we surf the Internet

and the required image does not show up, or the online video can not be loaded. One way

to tackle this problem is using multiple channels to send the message in order to increase

the probability of the successful transmission. If we can generate different descriptions for

one message and transmit them over different channels, then the user has a larger chance

to receive the message with acceptable quality. This is called the MDC problem and will

be discussed in Section 1.2.

Another way to adapt to the varying quality of channels is to send a coarser description

of the message over the channel when it is in a bad quality, then additionally send a refine-

ment of the coarse description when the channel is in a good quality. This way the user can
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always recover the source with a tolerable quality. If the receiver already has some side

information (SI) about the message, the transmission can be further accelerated by using

the correlation between the message and SI, even if the transmitter does not have access to

the SI. This is the WZ coding problem and will be presented in Section 1.1.

1.1 Two-stage Wyner-Ziv Coding Problem

Distributed source coding (DSC) refers to the compression of correlated, but isolated sources,

which are jointly decoded. The interest in DSC is motivated by applications in sensor

networks and video coding. One case of DSC is Wyner-Ziv (WZ) coding, which rep-

resents lossy source coding with side information (SI) available only at the decoder[40].

The single-letter characterization of the achievable rate-distortion (RD) region for the WZ

problem was derived by Wyner and Ziv in [40].

Motivated by situations where the SI may be present or absent at the decoder, Heegard

and Berger [12] and Kaspi [14] studied the scenario where the encoder transmits messages

to two decoders, only one of which has SI (depicted in Fig. 1.1(a) with Y1 a constant). They

provided the single-letter characterization of the RD region and explicit expressions for the

quadratic Gaussian case and the binary Hamming case. Heegard and Berger generalized

the problem to the case of more than two decoders, each with its own SI. We will refer

to this general problem as the Heegard-Berger (HB) problem. In contrast, we use the

term traditional HB problem for the two-decoders case where only one has SI. Fig. 1.1(a)

illustrates the two-decoder HB problem, whereX is the source, while Yκ is the SI at decoder

κ, for κ = 1, 2. The characterization of the RD region for the HB problem is known when

the SI is stochastically degraded [12]. Further contributions to the theoretical study of the

HB problem were made in [31] and [32].

2
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(a) Lossy source coding with SI at two decoders. (b) Two-stage WZ coding.

Figure 1.1: System Module.

The problem was further extended to the successive refinement (SR) setting. Fig. 1.1(b)

depicts the SR scenario with two stages. Steinberg and Merhav [27] considered multi-stage

coding with stochastically degraded SI, i.e., where the decoder receiving higher rate has

stronger SI. The authors of [27] characterized the RD region for the two-stage SR problem

with degraded SI, i.e., when the Markov chain X ↔ Y2 ↔ Y1 holds. The characterization

of the RD region for a general number of stages and degraded SI was given by Tian and

Diggavi in [28].

Note that the two decoders in the two-stage scheme of Fig. 1.1(b) could be regarded as

two states of a single server-user network, where we expect a coarser reconstruction when

SI is weaker and a finer reconstruction when SI is stronger. This interpretation motivates

the assumption of degraded SI as in [27]. On the other hand, the two decoders can be

regarded as two different users in a multi-user network, where we expect faster decoding

for the user with stronger SI. This point of view led Tian and Diggavi [29] to investigate the

two-stage coding scenario where the first decoder has stronger SI, i.e., the Markov chain

X ↔ Y1 ↔ Y2 holds. They termed this problem SI-scalable coding. Tian and Diggavi

[29] provided inner and outer bounds to the RD region for general discrete memoryless

sources. Furthermore, they derived the complete RD region for multi-stage source coding

for quadratic Gaussian source with multiple jointly Gaussian SI.

3
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Source
Encoder Binning Joint Source-

Channel Decoding Estimation

Y

X X ̂ Syndrome

DecoderEncoder

Figure 1.2: Block diagram of a one-stage generic WZ coder.

The research on the theoretical aspects of source coding with varying SI at the decoders

was paralleled by the investigation of practical coding schemes. While the information-

theoretical results are non-constructive1 they inspire the practical constructions. The theo-

retical coding schemes for problems with SI only at the decoder(s) use quantization and bin-

ning as building blocks. The diagram of one-encoder one-decoder WZ coding, cited from

[41], is shown in Fig. 1.2. For the practical implementation of binning, cosets of powerful

linear channel codes are generally used, while for the quantization part various scalar or

vector quantizers are employed, including lattice and trellis-based quantizers [21, 24, 41].

Practical schemes for the multiple-decoder WZ problem were proposed in [2, 8, 17,

22, 25, 35, 36, 42]. Cheng and Xiong [2] considered the case when SI is the same at

all decoders. Their scheme is based on uniform nested scalar quantizers in conjunction

with low density parity check (LDPC) codes for binning. Similar approaches are used in

[8, 17, 35, 36, 42] to implement WZ schemes with degraded or identical SI, targeting appli-

cations in robust video coding. Ramanan and Walsh [22] proposed a coding scheme for the

traditional HB problem using successively refinable trellis coded quantization and LDPC-

based codes for binning. Very recently, Shi et. al. [25] have introduced a construction for

the traditional HB problem for binary and Gaussian sources based on nested polar codes,

1Such results are based on random-coding arguments and show that schemes achieving the claimed per-
formance exist, but do not explain how to construct the corresponding codebooks.

4
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respectively nested polar lattices.

As seen from the above discussion most of existing pracatical schemes for the multiple-

decoder WZ problem use uniform quantizer partitions. It is natural to think that better per-

formance can be achieved by employing optimized quantizer partitions. Such an approach

was taken by Rebollo-Monedero et al. [23] and Muresan and Effros [18, 19] who ad-

dressed the design of scalar quantizers for the single-encoder single-decoder WZ problem,

under the assumption that the binning is performed optimally achieving the Slepian-Wolf

(SW) rate[26]. Both works formulate the problem as the minimization of a weighted sum

of the distortion and rate. The algorithm of [23] is an iterative algorithm in the spirit

of Max-Lloyd’s algorithm, which guarantees only a locally optimal solution in general.

The approach of Muresan and Effros [18] is to model the problem as a minimum-weight

path (MWP) problem in a certain weighted directed acyclic graph (WDAG). This ap-

proach ensures globally optimal solution for the case of finite-alphabet sources, subject

to the constraint that the quantizer cells are contiguous2. The authors of [18, 19] also

proposed globally optimal design algorithms for successively refinable scalar quantizers

(SRSQ) (also termed multiresolution scalar quantizers) without SI at the decoders and for

multiple description scalar quantizers (MDSQ), subject to the same constraints as above.

They addressed both the fixed-rate and entropy-constrained cases. Additionally, Muresan

and Effros pointed out that their designs could be easily extended to the case of SRSQ

and MDSQ with SI at the decoders. It is worth emphasizing that an algorithm for the

entropy-constrained SRSQ design similar to the one of [19] was developed independently

by Dumitrescu and Wu in [4]. Additionally, faster globally optimal design algorithms for

fixed-rate SRSQ were developed by Dumitrescu and Wu in [38, 5] and for fixed-rate MDSQ

2A cell is said to be contiguous if it equals the intersection between the source alphabet and an interval of
the real line.

5
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Encoder

Encoder

Decoder 1

Decoder 0

Decoder 2

X

X ̂ 

1

X ̂ 

0

X ̂ 

2

Figure 1.3: Multiple description coding with two channels and three receivers.

in [6, 7], also for finite-alphabet sources under the constraint of cell contiguity. The key

technique in the latter works was to prove that the components of the cost function sat-

isfy the so-called Monge property [1], which was further exploited to accelerate the design

procedure.

1.2 Multiple Description Coding Problem

To guarantee robust communication, two channels are used to transmit the message from

the encoder to the decoder. Transmission failure may occur in either one of both channels.

When only one of both channels has a successful transmission, a coarse reconstruction is

built based on the message from that channel. When the messages from both channels have

been successfully received, a finer reconstruction is generated at the user. This scenario can

be represented as the module in Fig. 1.3, where the source X is encoded to two messages

sent over two channels. Each of the two side decoders only receive the message from one

of the channels, while the central decoder receives messages from both channels. Ozarow

[20] gave the optimal RD region for a memoryless unit-variance Gaussian source with

mean-squared distortion measure. For general independent identically distributed sources

and general distortion measurements, an achievable RD region has been found by Gamal

6
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and Cover [11].

For practical implementation, the multiple description scalar quantizer (MDSQ) design

of [33] and the entropy-constrained MDSQ (ECMDSQ) design of [34] are both based on

a choice of an index assignment and optimization of the central partition. The index as-

signment step is used to generate the side partitions based on the central partition. The

design algorithms of [33], [34] only guarantee local optimality for fixed index assignment.

Another design for the multiple-description problem is proposed in [30]. It has a two-stage

encoding structure based on scalar quantizers, and is termed modified MDSQ (MMDSQ).

The MMDSQ consists of two uniform quantizers with staggered bins at the first stage,

forming the side partitions, and another uniform quantizer inside each joint bin at the sec-

ond stage, forming the central partition. The MMDSQ only finds contiguous intervals at

both central and side quantizers, which avoids complex index assignments leading to sim-

pler implementation. Although the side decoders have no access to the partition at the

second stage, MMDSQ has the same asymptotic performance as ECMDSQ at high rates.

Liu and Zhu [15] further enhanced the MMDSQ scheme by using the refinement message

at the second stage to improve the distortions at the side decoders. Their enhancement re-

duced the asymptotic gap to the theoretical bounds from 3.07 dB to 2.486 dB at high rates.

Another two-stage system based on dithered lattice quantizers can be found in [10].

1.3 Original Contribution

Our contributions are presented in two parts, where the contribution of the two-stage WZ

problem is described in the first subsection and that of the MDC problem is presented in

the Subsection 1.3.2.

7
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1.3.1 Two-Stage Wyner-Ziv Coding Problem

In this thesis we address the design of coding schemes based on scalar quantization for

the two-stage WZ coding problem with either forwardly degraded SI, i.e., when X ↔

Y2 ↔ Y1 holds, or reversely degraded SI, i.e., when X ↔ Y1 ↔ Y2 holds. We address

the case when the source and the SI have finite alphabets. We use the acronyms F-WZ

(respectively, R-WZ) for the two-stage WZ coding problem with forwardly degraded SI

(respectively, reversely degraded SI). Additionally, we utilize the notation F-WZSQ and

R-WZSQ for the proposed schemes based on scalar quantization for the F-WZ and R-

WZ problems, respectively. Our approach is to separate the quantization and the binning

parts and, like [23] and [18], to assume that binning and/or nested binning are performed

optimally achieving the theoretical limits and focus on the optimal design of the scalar

encoder partitions.

The proposed schemes are inspired by the random coding-based schemes used to prove

the achievability of the RD regions proposed in [27] and [29], respectively. Thus, the

encoder of the F-WZSQ scheme consists of two nested partitions (a coarse and a fine

partition), while the encoder of the R-WZSQ scheme is composed of a coarse partition

and two independent refinements, one for each decoder. In each case the optimization

problem is formulated as the minimization of a weighted sum of the distortions and rates.

The proposed solution algorithms are delivered in two stages. First we show how the

problem can be decomposed into solving the all-pairs MWP problem in two WDAGs for

R-WZSQ, respectively in one WDAG for F-WZSQ, followed by solving the MWP prob-

lem in another WDAG. For this we closely follow the approach developed in [19, 4] for

entropy-constrained SRSQ design (without SI at the decoder), which also involves opti-

mizing nested partitions. The main difference versus [19, 4] resides in the expression of

8
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the cost function which has to account for the presence of the SI at the decoder. Another

difference is manifested in the R-WZSQ case and stems from the fact that the coarse par-

tition has two refinements, not just one as in SRSQ. If conventional algorithms are further

used to solve the aforementioned MWP problems then the time complexity of the solution

amounts to O(N3), where N denotes the size of the alphabet of the source X . This claim

holds under the assumption that the sizes of the alphabets of Y1 and Y2 are O(N). Note

that the aforementioned solution algorithm for each problem is globally optimal under the

assumption that the cells in each partition are contiguous.

In the following stage of our exposition we introduce the partial Monge property and

show how the solution developed in the first stage can be accelerated when this property

holds. The Monge property was shown to hold in several design problems for systems

based on fixed-rate scalar quantizers and was leveraged to achieve significant complexity

reduction in comparison with conventional algorithms [39, 38, 5, 6, 7]. It is important

to highlight that the aforementioned works which exploit the Monge property require the

property to hold for all graph edges of the WDAGs in the problem modeling. Unfortunately,

this requirement is not satisfied in the entropy-constrained case, as is ours. However, we

have observed empirically that the Monge property is fulfilled for a certain structured subset

of the edges of the aforementioned WDAG. We refer to this as the partial Monge property

and prove that when it holds it still can be utilized to expedite the solution.

To summarize, our contribution lies in the following aspects.

• We extend the approach of [19, 4] for the design of entropy-constrained SRSQ to

obtain globally optimal solutions for the design of F-WZSQ and R-WZSQ schemes

for finite alphabet sources and SI, under the assumption that binning is performed

optimally using SW coding. The algorithms run in O(N3) time, where N is the size

9



M.A.Sc. Thesis - Qixue Zheng McMaster - Electrical Engineering

of the source alphabet, while the sizes of the alphabets of the SI Y1 and Y2 are also

O(N). The claim of global optimality holds for the class of F-WZSQs/R-WZSQs

with contiguous quantizer cells. This is the first work to address the optimization of

the scalar quantizers for the two-stage WZ problem, up to our knowledge.

• We introduce the partial Monge property in a complete WDAG3 and show how this

can be exploited to speed up the dynamic programming solution algorithm for the

all-pairs MWP problem.

• We prove that if the partial Monge property holds in the underlying WDAGs then the

time complexity of the F-WZSQ and R-WZSQ design algorithms can be significantly

reduced.

• We show empirically, using a discretized Gaussian source with discretized Gaussian

SI, that the partial Monge property holds in many situations of interest, thus allowing

for the fast F-WZSQ/R-WZSQ design algorithm to be employed.

1.3.2 Multiple Description Coding Problem

In the second part of the thesis, we address the design of an improved MMDSQ scheme.

The proposed scheme improves Tian and Hemami’s work [30] by replacing the uniform

partitions with the optimal ones at the two stages. The problem is formulated as a mini-

mization of a weighted sum of rates and distortions. The optimization is resolved by finding

the all-pairs MWP in a WDAG followed by solving the single-source MWP problem in a

coupled quantizer graph.

In the spirit of [15], we also propose the design of improved MMDSQ with enhanced

3A WDAG is called complete if any two nodes are connected by an edge.
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decoders, which has the same optimization process as the improved MMDSQ but the side

distortions are further improved by changing the encoding manner of the messages to be

transmitted and the decoding rule at the side decoders.

The advantages of our improved MMDSQ design over existing works are listed as

follows.

• Our design uses optimal partitions at both stages such that we can achieve a smaller

gap to the theoretical bound than MMDSQ, especially at low rates. Additionally, we

can achieve more trade-offs than MMDSQ as shown by our experimental results.

• Our scheme is more flexible than MDSQ in that different trade-offs are obtained just

by varying the weights in the objective function without loss in performance.

• Our design is capable of handling both the symmetric and asymmetric cases because

there is no constraint on the side partitions, while the MMDSQ only considers the

side quantizers with staggered partitions.

• Finally, our design of improved MMDSQ with enhanced decoders has obtained the

best results among all the considered designs, i.e., ECMDSQ, MMDSQ, enhanced-

MMDSQ [15] and our improved MMDSQ.

1.4 Organization and Related Publications

This thesis consists of five chapters. This chapter presents the introduction and litera-

ture review of the two problems, and points out our contributions. Chapter 2 reviews the

background knowledge related to our problems including of the graph models for the con-

ventional scalar quantizer and the two-description scalar quantizer with convex cells, and

11
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the theoretical results of WZ coding. In Chapter 3, we investigate the optimal design of a

two-stage WZ scalar quantizer in two cases, namely, where the source and the SI form a

forward or reversed Markov chain. As a byproduct, we also give the optimal solution for the

tradition HB problem. In Chapter 4, the proposed MMDSQ [30] design is demonstrated.

Chapter 5 concludes the thesis and presents some directions for future works. Appendix A

presents the proofs of the two statements established in Chapter 3 relevant to the Monge

property.

The content of this thesis is also contained in three papers. The work in Chapter 3 was

first presented in the conference paper [44] in part then extended and summarized in the

journal paper [45] that has been submitted to the IEEE Transactions on Communications.

The content in Chapter 4 is included in [43], which is still in preparation.

12



Chapter 2

Background Knowledge

This section presents the preliminary, definition and notations. We first review the MWP

problem in a WDAG, then describe the graph model for the conventional scalar quantizer

design problem in Section 2.2. The graph-based solution for entropy-constrained two-

description scalar quantizer design problem is presented next, which is closely related to

the fixed-rate design proposed by Dumitrescu and Wu in [6]. Subsection 2.4 presents the

theoretical RD region for both one and two-stage WZ coding problem for the Gaussian

source and jointly Gaussian SI. Finally, Subsection 2.5 concludes this chapter.

2.1 General Notations

Those notations are used throughout this thesis. Let d : R × R → [0,∞) denotes the

distortion function. We will assume that function d(·) is monotone, i.e., for any real x, y1

and y2, if x ≤ y1 < y2 or x ≥ y1 > y2, then d(x, y1) ≤ d(x, y2). Note that the majority of

distortion measures of signal quantization used in practice fall into this category. Let the

alphabet of the source X be X = {x1, · · · , xN} ⊂ R, where the elements are labeled in

13
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increasing order. Denote x0 = −∞ and X̄ = X ∪ {x0}. Let X̂ be the reconstruction al-

phabet of the source X . When the distortion measure is the squared difference we consider

X̂ = R. Otherwise, we take a finite set as X̂ with |X̂ | = O(N), where |S| denotes the car-

dinality of the set S. Further, we say that a set S ⊆ X is contiguous or convex if there exists

xu, xv ∈ X̄ with u < v such that S = (xu, xv], where (xu, xv] , {x ∈ X |xu < x ≤ xu}.

For any integer n ≥ 2, an ascending n-sequence is an n-tuple r = (r0, r1, · · · , rn−1), where

r0 < r1 < · · · < rn−1 and ri ∈ X̄ , for 0 ≤ i ≤ n− 1.

2.2 Graph Model for the Scalar Quantizer Design Prob-

lem

The encoder of a scalar quantizer is given by a set of thresholds partitioning the source to

disjoint cells. For a finite-alphabet source, the partition can be seen as a path in a WDAG

and the entropy-constrained scalar quantizer design problem can be cast as a MWP problem

in this WDAG. This section first reviews the MWP problem in a WDAG, then presents a

brief discussion of the graph model for the entropy-constraint scalar quantizer.

2.2.1 MWP in A WDAG

A DAG (short for directed acyclic graph) consists of a set of vertices (or nodes) V and a

set of directed edges E. In this work we consider V = {0, ..., N} and E = {(u, v) ∈

V 2|0 ≤ u < v ≤ N} where N is the size of the source alphabet. We denote by G this

DAG. Note that G is a “complete” DAG, meaning that any two nodes are connected by an

edge. If we assign a real value, called “weight”, to each edge, the graph becomes a WDAG

(short for weighted DAG). Let G(ω) denote the WDAG obtained from the DAG G with

14
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the weight function ω : E → R. A path in the WDAG is a sequence of connected edges.

Alternatively, a path can be regarded as a sequence of nodes, where any two consecutive

nodes are connected by an edge. The weight of the path is the sum of the weights of its

edges. The MWP problem in the WDAG is the problem of finding the path of minimum

weight from the source node to the final node, where one node is designated as the source

and another as the final node. The solution to this problem essentially finds the MWP

from the source node to any other node in the graph, i.e., it solves what is referred to as

the single-source MWP problem. Let u be the source node. For each u ≤ n ≤ N , let

Ŵu(n) denote the weight of the MWP from node u to node n in the WDAG G(ω). Thus,

Ŵu(u) = 0 and the following recurrence relation holds

Ŵu(n) , min
u≤m<n

(Ŵu(m) + ω(m,n)), (2.1)

for all u < n ≤ N . Thus, the single-source MWP problem can be solved using dynamic

programming based on (2.1) in O(N2) time when all edge weights are given. A related

problem is the all-pairs MWP problem, which refers to finding the MWP between any pair

of nodes of the WDAG. The latter problem can be solved in O(N3) time, when all edge

weights are known, simply by solving the single-source MWP problem N times, each time

a different node being the source.

2.2.2 Mapping of The Scalar Quantizer Design Problem to The MWP

Problem in A WDAG

A scalar quantizer, denoted by Q, consists of an encoder and a decoder. This work only

considers the scalar quantizers with contiguous cells. The encoder is a set of thresholds
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r = (r0, r1, .., rM) dividing the whole source alphabet into M disjoint cells such that i-th

cell is Ci = (ri−1, ri]. The decoder reconstructs the source based on the codebook for

each cell. Let the average distortion and entropy for a quantizer Q be denoted by D(Q),

respectively, R(Q). Any quantizer Q achieving a point on the lower hull of the theoretical

RD region is optimal in the sense that there is no other point that can achieve a smaller

distortion with the same or lower entropy. As it is well-known, Lagrangian multiplier can

help to find the points on the lower convex hull of a region. Consequently, finding an

optimal scalar quantizer is equivalent to minimizing the function:

O(Q) = D(Q) + λR(Q), (2.2)

for any fixed λ > 0. A major observation is that D(Q) and R(Q) are additive over code-

cells. Let x̂(C) and p(C) =
∑

x∈C p(x) denote the codeword, respectively, the probability

for a cell C ⊆ X . We can write the entropy and the expected distortion as

R(Q) =
M∑
i=1

h(Ci), D(Q) =
M∑
i=1

d(Ci),

where h(C) and d(C) for any cell C ⊆ X are defined as

h(C) = −p(C) log p(C), d(C) =
∑
x∈C

p(x)d(x, x̂(C)). (2.3)

The mapping between an optimal scalar quantizer and a MWP in a WDAG is performed as

following. First, a DAG G can be constructed with vertex set V = {0, 1, ..., N} represent-

ing the index of N + 1 symbols in the set X̄ . Any edge (u, v) with u < v in the edge set E

corresponds to a cell (xu, xv]. Then a path from the source node 0 to the final node N has
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0 1 2 3

Figure 2.1: The DAG for a source alphabet with N = 3. All possible edges are shown.
One possible path from node 0 to node 3 appears in dashed arcs, which correspond to the
partition {{x1, x2}, {x3}}.

a one-to-one correspondence to a partition r where the i-th edge of the path corresponds

to the i-th cell of the partition. An example is illustrated in Fig. 2.1 for N = 3. Now

define the weight function ω for each edge (u, v) as ω(u, v) = d((xu, xv]) + λh((xu, xv]).

Clearly, the weight of a path equals the cost of the function in (2.2). Therefore, finding

the optimal entropy-constrained scalar quantizer is equivalent to solving the single-source

MWP problem in the WDAG G(ω).

In the WDAG G(ω), the N + 1 nodes are already in topological order, finding the

shortest path takes O(|V | + |E|) time. The solution algorithm based on (2.1) is shown in

Algorithm 1. In conclusion, finding the optimal scalar quantizer for a source with alpha-

bet of size N takes O(N2) time relying on solving the single-source MWP problem in a

WDAG.

This technique of mapping the scalar quantizer problem to a graph problem can also be

extended to other lossy source coding scenarios, like multiple resolution coding, multiple

description coding and Wyner-Ziv coding as will shown in the next two chapters.
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Algorithm 1: Solve the single source MWP problem in G(ω)

1 Let s be an array of size N + 1, which will hold the cost of the MWP from node 0.
Initialize s[0] = 0, all other s[v] =∞.

2 Let t be an array of size N + 1 with all the elements initialized to 0, which will
hold the last visited node of the MWP from node 0 to all the other nodes.

3 for v = 1 to N do
4 for u = 0 to v − 1 do
5 Let w be the weight of the edge from u to v.
6 Find the MWP to v:
7 if s[v] > s[u] + w then
8 s[v]← s[u] + w;
9 t[v]← u.

2.3 Graph Model for the Two-Description Scalar Quan-

tizer Design Problem with Convex Cells

This section introduces the way of using a graph model to solve the two-description scalar

quantizer (2DSQ) design problem under the entropy constraint. We restrict the 2DSQ

to have convex cells at side quantizers. We will use the coupled quantizer graph model

proposed in [6], where it is employed to find the optimal fixed-rate 2DSQ with convex cells.

In this section, we will present the entropy-constrained 2DSQ. As a result, the coupled

quantizer graph used here is different from the one in [6] in that the weight for an edge

in our case contains not only the distortion term but also the entropy term. An algorithm

is further proposed based on dynamic programming. The time complexity is O(N3) for a

source with alphabet size of N .

A 2DSQ consists of three quantizers Q = (Q1, Q2, Q12) where Q1 and Q2 are two

side quantizers, Q0 is the central quantizer obtained by intersecting two side partitions. An

illustration of the partitions for three quantizers is shown in Fig. 2.2, where the thresholds
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xv1 xv2

xu1

Q1

Q2

Q0

xu2

xv3 xv4

x0 xN

x0 xN

x0 xv1 xv2 xv3 xv4 xNxu1 xu2

Figure 2.2: Example of partitions of two-description scalar quantizer. Q1 and Q2 are two
side quantizers, Q0 is the central quantizer obtained by intersecting two side partitions.

of Q1 are specified by the variable xui , those of Q2 by xvj , those of Q0 by all the xui and

xvj , for i = 1, 2 and j = {1, ..., 4}.

Let the distortions at two side decoders denoted by D1(Q), D2(Q) and the distortion at

the central decoder by D0(Q). Let R1(Q) and R2(Q) denote the rate of each description.

i.e. the rate of Q1 and Q2. Then the RD performance of the 2DSQ can be characterized by

the quintuple (R1(Q), R2(Q), D0(Q), D1(Q), D2(Q)). An optimal entropy-constrained

2DSQ minimizes a weighted sum of the distortions and rates as follows.

O(Q) =
2∑
i=0

µiDi(Q) +
2∑
i=1

λiRi(Q), (2.4)

for any µ0, µ1, µ2, λ1, λ2 > 0. Any quintuple on the lower convex hull of the theoretical

region can be found by minimizing function (2.4) for some positive weights.

Each side quantizer is a partition for the N + 1 symbols in X̄ . Two side quantizers

together determine the central quantizer. Let u denote the index of a threshold in Q1 and v

denote the index of a threshold in Q2. Then a coupled quantizer DAG, denoted by G can

be constructed with the vertex set V = {uv|0 ≤ u, v ≤ N} and the edge set V. The edge

set E consists of two types of edges where the edge from uv to u′v, denoted by (uv, u′v),
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v3 Nv4

Q0

0 v1 v2

u1Q1

Q2

u20 N

x0 xv1 xv2 xv3 xv4 xNxu1 xu2

I I I

IIII II IIII

Figure 2.3: A path from 00 to NN in the coupled quantizer graph for the quantizers in Fig.
2.2. Dashed lines connecting a pair of thresholds of two partitions represent a node in the
graph. Two types of edges are labeled in I and II. Each edge generates one side cell and
no more than one central cells in Q0.

with u < u′ and u ≤ v is called type I edge, while the edge from uv to uv′, denoted by

(uv, uv′), with v < u and v < v′ is called type II edge. Only these two types of edges exist

in V. In other words, for a node uv, if u ≤ v then only type I edge exist, otherwise only

type II edge exists. Note that the coupled quantizer DAG G here is not a complete graph

in that not any two nodes are connected by an edge. The weight for each type I edge is

defined as

w(uv, u′v) = µ1d((xu, xu′ ]) + λ1h((xu, xu′ ]) + µ0d((xu, xmin(v,u′)]).

where d(C) and h(C) are the expected distortion and the entropy for cell C ⊆ X as defined

in (2.3). The weight for type II edge is defined as

w(uv, uv′) = µ2d((xv, xv′ ]) + λ2h((xv, xv′ ]) + µ0d(xv, xmin(u,v′)].

Now the coupled quantizer graph can be represented by G(w). The number of type I

edges equals the number of cells in Q1, respectively, the number of type II edges equals the
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Algorithm 2: Solve the single-source MWP problem in G(w)

1 for u = 0 to N do
2 for v = 0 to N do
3 Find the best type I edge to current node uv: for k = 0 to min(u, v) do
4 Let w1 be the weight of the edge from kv to uv.
5 Find the MWP to uv:
6 if s[uv] > s[kv] + w1 then
7 s[uv]← s[kv] + w1;
8 t[uv]← kv.

9 Find the best type II edge to current node uv: for k = 0 to min(u, v) do
10 Let w2 be the weight of the edge from uk to uv.
11 Find the MWP to uv:
12 if s[uv] > s[uk] + w2 then
13 s[uv]← s[uk] + w2;
14 t[uv]← uk.

number of cells in Q2. This way a 2DSQ can be mapped to a unique path form the source

node 00 to the final node NN in G(w). Additionally, the weight of a path from 00 to NN

equals the cost of the function in (2.4). Consequently, finding the optimal 2DSQ is equiv-

alent to solve the single-source MWP problem in the coupled quantizer graph G(w). Fig.

2.3, adapted form [6], depicts an example of the coupled quantizer graph G(w) constructed

based on the quantizers in Fig. 2.2. A unique path from the source node to the final node,

consisting of both type I and type II edges, corresponds to the partitions in Fig. 2.2. Each

edge in G(w) generates no more than one central cells in Q0.

The algorithm to solve the single-source MWP problem in G(w) is shown in Algorithm

2, where s is an array of size (N + 1)2, which will hold the weight of the MWP from node

00 to any other nodes. Initialize s[00] = 0, all other s[uv] = ∞. t is an array of size

(N + 1)2 with all the elements initialized to 00, which will hold the last visited node of the

MWP from node 00 to all the other nodes. The search of the MWP for all nodes proceeds
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in the lexicographical order, then for a given node uv, the MWPs from the source node to

all the nodes prior to uv have been found. Therefore, the searches in Line 6 − 8 and Line

12-14 requireO(N) time. Since there areO(N2) nodes, the total time complexity becomes

O(N3).

2.4 Theoretical Perspective of Wyner-Ziv coding

The one-stage WZ coding with multiple decoders was first addressed by Heegard and

Berger [12]. They presented the least rate to satisfy both distortion requirements in the

two-decoder WZ coding system in Fig. 1.1(a). They also extended RD results to more than

two decoders with degraded SI, i.e. X ↔ Ym ↔ ... ↔ Y1. We use RHB to denote their

results. Assume the source is a standard Gaussian X ∼ N (0, σ2
x) and the side informations

is Y = X +Z, where Z ∼ N (0, σ2
z) and Z is independent from each other and the source.

The theoretical RD region for the two-decoder case is defined as follows.

RHB(D1, D2) =



1
2

log2( σ2
xσ

2
z

D1(D2+σ2
z)

), if D1 ≤ D2σ2
z

D2+σ2
z
, D2 ≤ σ2

x,

1
2

log2( σ
2
x

D2
), if D1 >

D2σ2
z

D2+σ2
z
, D2 ≤ σ2

x,

1
2

log2( σ2
xσ

2
z

D1(σ2
x+σ2

z)
), if D1 ≤ D2σ2

z

D2+σ2
z
, D2 > σ2

x,

0, if D1 >
D2σ2

z

D2+σ2
z
, D2 > σ2

x.

For the two-stage WZ coding problem, we only consider the cases when either X ↔

Y2 ↔ Y1 or X ↔ Y1 ↔ Y2 holds. The theoretical RD region is known only for the

Gaussian source with jointly Gaussian SI in both cases. The former case with forwardly

degraded SI is relatively easier to handle for the reason that the syndrome encoded based

on the worse SI Y1 is decodable for the stronger SI Y2, then the task focuses on refining
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the cell partitions. The explicit RD region for jointly Gaussian source given by Tian and

Diggavi [28] is presented as follows.

Assume the source is a standard Gaussian X ∼ N (0, σ2
x) and two side informations are

Y1 = X + N1 + N2, Y2 = X + N2 where N1 ∼ N (0, σ2
1), N2 ∼ N (0, σ2

2) and N1, N2 are

independent from each other and the source. The achievable RD region is characterized as:
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By contrast, the theoretical region of the latter case with reversely degraded SI is derived

based on a special binning strategy, i.e. nested binning [29]. This binning structure is

depicted in Fig. 2.4. The general idea of nested binning is that if a common partition is

used at both decoders, then the binning proceeds in two steps. The cells are first distributed

into coarse bins based on the stronger SI Y1 such that decoder with the stronger SI can

identify a cell without ambiguity based on the bin index and Y1. However, the decoder with

the weaker SI may detect multiple codecells with the coarse bin index. As a result, at the

second step, each coarse bin is further divided into several finer bins depending on Y2 such

that the decoder with the worse SI can identify a cell with both coarse and fine bin indexes

such that both binning can be performed without rate loss.

The achievable RD region with X ↔ Y1 ↔ Y2 is symmetric with the former case.

Since the decoder with the weaker SI receives more bit-stream, a smaller distortion at the

second decoder is achievable. Thus when X ↔ Y1 ↔ Y2 holds, the theoretical RD region
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A finer bin for weaker SI

A coarser bin for stronger SI Y1

Y2

Figure 2.4: An illustration of the nested binning structure when the Markov chain X ↔
Y1 ↔ Y2 holds. Each coarse bin based on stronger SI Y1 is further divided into multiple
finer bins based on weaker SI Y2.

is as follows.
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2.5 Conclusion

To conclude this chapter, we first reviewed the MWP problem in a WDAG, then presented

how to find the optimal scalar quantizer by solving the single-source minimum-weight path

problem in the weighted directed acyclic graph, which is the basic and essential technique

that will be used in the solutions in following two chapters. Next, we use the graph model

to solve the entropy-constrained 2DSQ design problem with convex cells. The theoretical
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bounds in Section 2.4 provides the RD guidance for the numerical performance of our

solution in Chapter 3. In next chapter, we will present our solution for the two-stage Wyner-

Ziv coding problem when the SI is either forwardly or reversely degraded.
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Chapter 3

Optimal Design of A Two-stage

Wyner-Ziv Scalar Quantizer

3.1 Overview

This chapter provides our solution to the first problem two-stage Wyner-Ziv coding with

forwardly/reversely degraded SI, i.e. when X ↔ Y2 ↔ Y1 or X ↔ Y1 ↔ Y2 holds.

Both cases will be formulated as minimizing a weighted sum of the rates and distortions.

The solutions for both cases are termed the F-WZSQ scheme and the R-WZSQ scheme,

respectively. Further, our optimization is based on solving the single-source or all-pairs

MWP problems in several WDAGs. Our schemes can guarantee global optimality for

finite-alphabet source and SI. The time complexity is O(N3) if the cardinalities for the

source and the SI alphabets are O(N). Although the Monge property does not hold all the

time, we exploit empirical conditions to supply the optimization with the partial Monge

property, which efficiently reduces the complexity to a inter-point between O(N3) and
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O(N2 logN). The effectiveness of both schemes and the partial Monge property are ex-

amined by considerable experiments.

This chapter is organized as follows. The following section introduces the notations

and the problem formulation. Section 3.3 presents the proposed dynamic programming

solution based on the graph model for the optimal R-WZSQ/F-WZSQ design problems.

Section 3.4 introduces the partial Monge property and shows how this can be exploited to

further reduce the time complexity. Details about the proposed technique, which relies on

a modification of an algorithm of Hirschberg and Larmore [13], are given in Section 3.5.

Section 3.6 presents extensive experimental results and comparison with the theoretical

bounds for a Gaussian source with jointly Gaussian SI. Additionally, the satisfaction of

the partial Monge property is empirically investigated. Finally, Section 3.7 concludes this

chapter.

3.2 Notations and Problem Formulation

This section starts by presenting notations. Subsection 3.2.2 introduces the R-WZSQ archi-

tecture and formulates the problem of optimal R-WZSQ design. The following subsection

formulates the problem of optimal F-WZSQ design.

3.2.1 Notations

Let Y1 and Y2 denote the alphabets of the SI Y1 and Y2, respectively. For discrete random

variables A and B, H(A) denotes the entropy of A and H(A|B) denotes the conditional

entropy of A given B. For any positive integer k, let Ik , {1, 2, ..., k}. Recall that for any

integer n ≥ 2, an ascending n-sequence is an n-tuple r = (r0, r1, · · · , rn−1), with ri ∈ X̄ ,
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for 0 ≤ i ≤ n− 1, where r0 < r1 < · · · < rn−1. For any xu, xv ∈ X̄ with u < v, let Txu,xv

denote the set of all ascending n-sequences such that r0 = xu and rn−1 = xv, for all n ≥ 2.

3.2.2 Optimal R-WZSQ Design Problem

The configuration of the proposed R-WZSQ scheme is inspired by Tian and Diggavi’s work

[29]. The R-WZSQ is specified by the encoding functions ft, t ∈ {0, 1, 2}, and decoding

functions gt, t ∈ {1, 2}, where

f0 : X → IM0 , f1 : X → IM1 , f2 : X → IM2 ,

g1 : IM0 × IM1 × Y1 → X̂ , g2 : IM0 × IM2 × Y2 → X̂ ,
(3.1)

andM0,M1,M2 are positive integers and f0, f1, f2 are surjective. Function f0 generates the

coarse partition, while f1 and f2 separately refine the partition f0. The pair (f0, ft) together

with gt forms the quantizer Qt, for t = 1, 2. We will denote by i, respectively j and k, the

indexes output by encoder f0, f1 and f2, respectively. We use the notation Ci, 1 ≤ i ≤M0,

for the cells in the coarse partition, i.e., Ci , f−1
0 (i). As shown in Figure 3.1, each Ci is

further divided into M1,i and M2,i non-empty sub-cells by the encoding functions f1 and

f2, respectively, for some M1,i, 0 < M1,i ≤ M1, and some M2,i, 0 < M2,i ≤ M1. Let

Cij , {x ∈ R|f0(x) = i and f1(x) = j} and C ′ik , {x ∈ R|f0(x) = i and f2(x) = k}, for

i ∈ IM0 , j ∈ IM1,i
, k ∈ IM2,i

.

We will assume that the cells in each partition, i.e., cells Ci, Cij and C ′ik are contiguous.

It follows that there is a unique ascending (M0 + 1)-sequence r ∈ Tx0,xN such that Ci =

(ri−1, ri] for 1 ≤ i ≤M0. Thus, the partition generated by f0 is completely specified by the

sequence r. Likewise, for each 1 ≤ i ≤M0, the partition of Ci into cells Cij is specified by

the ascending (M1,i + 1)-sequence si , (si,0, si,1, · · · , si,M1,i
) ∈ Tri−1,ri , satisfying Cij =
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Ci

Cij

C
′

ik

Figure 3.1: Illustration of the three partitions f0, f1 and f2.

(si,j−1, si,j] for 1 ≤ j ≤M1,i. Similarly, for each 1 ≤ i ≤M0, the partition of Ci into cells

C ′ik is specified by the ascending (M2,i + 1)-sequence ti , (ti,0, ti,1, · · · , ti,M2,i
) ∈ Tri−1,ri ,

where C ′ik = (ti,k−1, ti,k] for 1 ≤ k ≤ M2,i. Further, let us denote by s̄ the M0-tuple

(s1, · · · , sM0), and by t̄ the M0-tuple (t1, · · · , tM0).

Let I, J and K denote the random variables representing the outputs of f0, f1 and f2,

respectively. Decoder g1 uses I, J and Y1 to reconstruct the source, while decoder g2 uses

I,K and Y2 for the source reconstruction. We will assume that the reconstruction at each

decoder is optimal, i.e., it minimizes the distortion. Then the decoding functions are defined

as follows

g1(i, j, y1) , x̂1(Cij|y1), g2(i, k, y2) , x̂2(C ′ik|y2),

for 1 ≤ i ≤ M0, 1 ≤ j ≤ M1,i, 1 ≤ k ≤ M2,i, y1 ∈ Y1 and y2 ∈ Y2, where x̂κ(C|yκ) is

defined for any set C ⊆ X and any yκ ∈ Yκ, κ ∈ {1, 2} as

x̂κ(C|yκ) , arg min
x̂∈X̂

E[d(X, x̂)|X ∈ C, Yκ = yκ].

Since the decoders are determined given the encoders, it follows that the coding scheme is

fully specified by the triple of encoding functions (f0, f1, f2), which we denote by f .

The total message to be transmitted to the two decoders can be split into four parts
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M0,1,M1,M0,2, andM2. MessageM0,1 represents the information needed by decoder

1 to recover the index I with the help of the SI Y1, whileM1 is the additional information

needed at decoder 1 to recover index J based on I and Y1. Further, M0,2 denotes the

message needed at decoder 2 in order to recover the index I with the help ofM0,1 and the SI

Y2. Finally,M2 is the information needed at decoder 2 to recover the index K based on the

index I and Y2. The aforementioned messages are obtained by using SW (short for Slepian-

Wolf) coding. Specifically, we assume that the SW coding is performed on blocks of length

approaching∞, so that the limits in the SW theorem [26] are achieved. Thus, the rates of

the messagesM0,1,M1,M0,2, andM2 are H(I|Y1), H(J |I, Y1), H(I|Y2)−H(I|Y1) and

H(K|I, Y2), respectively. Note that, since the Markov chain X ↔ Y1 ↔ Y2 holds, the

aforementioned rates forM0,1 andM0,2 can be achieved by using nested binning, where

M0,1 is the index of the coarse bin, whileM0,2 is the index of the fine bin inside the coarse

bin [29].

Let us denote by R1(f) the rate for the portion of the message needed by decoder 1

and by R2(f) the rate for the message portion that only decoder 2 will use. In other words,

R1(f) is the rate forM0,1 andM1, while R2(f) is the rate forM0,2 andM2. Additionally,

let R(f) , R1(f) + R2(f). Finally, for κ = 1, 2, let Dκ(f) denote the distortion at decoder

κ.

We conclude that the RD performance of an R-WZSQ can be characterized by the

quadruple
(
R1(f), R(f), D1(f), D2(f)

)
. The optimum such quadruple is not unique, rather

any such quadruple (we will call them RD quadruples) situated on the lower boundary of

the convex hull of the set of all possible RD quadruples is optimal in some sense. Any RD

quadruple on the lower convex hull can be obtained by minimizing a weighted sum of the

distortions and rates with positive weights [16]. Clearly, if the weights are normalized so

30



M.A.Sc. Thesis - Qixue Zheng McMaster - Electrical Engineering

that the weights of the distortion terms add up to 1, the result of the minimization remains

the same. Therefore, we will consider as our cost function the following

O(r, s̄, t̄) , ρD1(f) + (1− ρ)D2(f) + λ1R1(f) + λ2R(f), (3.2)

for some 0 < ρ < 1 and λ1, λ2 > 0. Further, we formulate the problem of optimal

R-WZSQ design as follows

min
r,s̄,t̄

O(r, s̄, t̄). (3.3)

Note that the weights ρ, 1 − ρ, λ1, λ2 in (3.2) could be interpreted as the priorities that

code designers place on the minimization of D1(f), D2(f), R1(f), R(f), respectively. We

emphasize that the approach of formulating the optimal design problem as the problem of

minimizing a weighted sum of distortions and rates was also adopted in [3, 9, 18, 23].

3.2.3 Optimal F-WZSQ Design Problem

In the case of F-WZSQ the encoders generate only two partitions, a coarse partition to be

used at decoder 1 and a fine partition, to be used at decoder 2. Thus, the difference versus

the coding scheme in (3.1) is that the encoding function f1 disappears, or equivalently,

M1 = 1. Additionally, out of the four parts constituting the total message to be transmitted

to the decoders, only two remain, namely M0,1 and M2. Message M0,1 is needed at

decoder 1 in order to recover index I based on the SI Y1. Thus it can be transmitted at a

rate equal toH(I|Y1). Since SI Y2 is stronger than Y1, the second decoder is able to recover

I as well fromM0,1. Additionally, the second decoder usesM2 to recover the refinement

index K based on I and Y2. Therefore, the rate forM2 equals H(K|I, Y2). In other words,
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R1(f) = H(I|Y1), while R2(f) = H(K|I, Y2).

The cost function is also defined as in (3.2), but is only a function of r and t̄, i.e.,

O(r, t̄) , ρD1(f) + (1− ρ)D2(f) + (λ1 + λ2)R1(f) + λ2R2(f). (3.4)

The optimization problem is formulated as

min
r,t̄

O(r, t̄). (3.5)

For the traditional HB problem with degraded SI, it was shown in [12] that the optimal

scheme consists of a two-layer code such that the bad user can decode using the first layer

and the good user can decode with both layers, i.e., the scheme for the F-WZ problem.

The situations when either Y1 or Y2 is stronger are symmetric. When the Markov chain

X ↔ Y2 ↔ Y1 holds the SQ-based scheme for the HB problem consists of the same

encoding and decoding functions as for F-WZSQ. The distortions Dκ(f) and rates R(f),

Rκ(f), κ = 1, 2 are defined in the same way. The only difference versus F-WZSQ is that

the two messagesM0,1 andM2 are not split between two stages. Thus, the cost function

is as in (3.4), but with λ1 = 0.

3.3 Solution Algorithm

In this section we present the proposed solution algorithms based on the MWP model. We

first describe the solution to the optimal R-WZSQ design problem in subsection 3.3.1. The

following subsection presents the preprocessing step whose aim is to make possible the

computation of each edge weight in constant time. Then we present the solution to the
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optimal F-WZSQ design problem in subsection 3.3.3.

3.3.1 Solution to the Optimal R-WZSQ Design Problem

For C ⊆ X , yκ ∈ Yκ, κ = 1, 2, denote

Pκ(C, yκ) , P[X ∈ C, Yκ = yκ],

v1,κ(C) ,
∑
yκ∈Yκ

Pκ(C, yκ)E[d(X, x̂κ(C|yκ))|X ∈ C, Yκ = yκ],

v2,κ(C) , −
∑
yκ∈Yκ

Pκ(C, yκ) log2(Pκ(C, yκ)).

Since D1(f) = E[d(X, g1(I, J, Y1))] and D2(f) = E[d(X, g2(I,K, Y2))] we obtain

D1(f) =

M0∑
i=1

M1,i∑
j=1

v1,1(Cij), D2(f) =

M0∑
i=1

M2,i∑
k=1

v1,2(C ′ik). (3.6)

The rates R1(f) and R2(f) can be written as follows

R1(f) = H(I|Y1) +H(J |I, Y1) = H(I, J |Y1) (3.7)

= H(J, I, Y1)−H(Y1) =

M0∑
i=1

M1,i∑
j=1

v2,1(Cij)−H(Y1),

R2(f) = H(I|Y2)−H(I|Y1) +H(K|I, Y2) = H(I,K|Y2)−H(I|Y1) (3.8)

= H(K, I, Y2)−H(Y2)−H(I, Y1) +H(Y1)

=

M0∑
i=1

M2,i∑
k=1

v2,2(C ′ik)−H(Y2)−
M0∑
i=1

v2,1(Ci) +H(Y1).
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By plugging (3.6)-(3.8) in (3.2) we obtain

O(r, s̄, t̄) =

ρ

M0∑
i=1

M1,i∑
j=1

v1,1(Cij) + (1− ρ)

M0∑
i=1

M2,i∑
k=1

v1,2(C ′ik) + (λ1 + λ2)

M0∑
i=1

M1,i∑
j=1

v2,1(Cij)

− (λ1 + λ2)H(Y1) + λ2

 M0∑
i=1

M2,i∑
k=1

v2,2(C ′ik)−
M0∑
i=1

v2,1(Ci)

+ λ2(H(Y1)−H(Y2)).

Since the quantity−λ1H(Y1)−λ2H(Y2) is a constant, it can be subtracted from the objec-

tive function O(r, s̄, t̄). After doing so and rearranging the terms the new cost becomes

O′(r, s̄, t̄) =

M0∑
i=1

(
− λ2v2,1(Ci) +

M1,i∑
j=1

(
ρv1,1(Cij) + (λ1 + λ2)v2,1(Cij)

)
︸ ︷︷ ︸

w1(Ci,si)

(3.9)

+

M2,i∑
k=1

(
(1− ρ)v1,2(C ′ik) + λ2v2,2(C ′ik)

)
︸ ︷︷ ︸

w2(Ci,ti)

)
.

We notice from (3.9) that, if Ci is fixed, then the partition si of Ci can be optimized by

minimizing the subcost w1(Ci, si). Likewise, the partition ti can be optimized by minimiz-

ing w2(Ci, ti). Therefore, for each xu, xv ∈ X̄ , with u < v, let s∗(xu, xv) and t∗(xu, xv)

denote the corresponding optimal partitions of Ci if Ci = (xu, xv], i.e.,

s∗(xu, xv) , arg min
s∈Txu,xv

w1((xu, xv], s), (3.10)

t∗(xu, xv) , arg min
t∈Txu,xv

w2((xu, xv], t). (3.11)
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where Txu,xv was defined in Subsection 3.2.1. Further, for each xu, xv ∈ X̄ , with u < v,

denote

w0(u, v) , −λ2v2,1((xu, xv]) + w1((xu, xv], s
∗(xu, xv)) + w2((xu, xv], t

∗(xu, xv)).(3.12)

It follows that, if the optimal partitions s∗(ri−1, ri) and t∗(ri−1, ri) are known for each

possible pair (ri−1, ri) (i.e., for each possible coarse cell Ci), then problem (3.3) reduces to

solving the following

min
M0,r

Ō(r) ,
M0∑
i=1

w0(ai−1, ai). (3.13)

where ai ∈ V such that xai = ri for 0 ≤ i ≤M0.

The above discussion suggests the following strategy to solve problem (3.3).

• 1) Determine s∗(xu, xv) for all pairs xu, xv of elements in X̄ , with u < v.

• 2) Determine t∗(xu, xv) for all pairs xu, xv of elements in X̄ , with u < v.

• 3) Solve problem (3.13).

Next we will discuss how to solve the problem at each step. The key idea is to model

each component problem as an MWP in a WDAG based on the DAG G. Note that any

contiguous cell (xm, xn] can be associated to the edge (m,n) in the DAG G. Then any

partition of some cell (xu, xv] into contiguous cells can be regarded as a path in G between

the vertices u and v. Furthermore, the cost of the partition can be written as the sum of

the costs of the individual cells. Thus, if we define the weight of an edge as the cost of the

associated cell, then the cost of the partition becomes equal to the cost of the associated

path.

Specifically, consider the partition s = (s0, · · · , sM) of (xu, xv] into M cells, for some
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M > 0, i.e., s ∈ Txu,xv . For each j, 0 ≤ j ≤ M , let qj ∈ V such that sj = xqj . Then

the sequence q = (q0, · · · , qM) is an M -edge path from node u to node v in G. For each

i, 1 ≤ i ≤M , the ith edge on this path, namely (qi−1, qi), corresponds to the ith cell in the

partition, namely (si−1, si]. Consider now the weight function ω1 defined as follows.

ω1(m,n) , ρv1,1((xm, xn]) + (λ1 + λ2)v2,1((xm, xn]). (3.14)

Then the cost of the partition s is equal to the weight of the associated path q in the WDAG

G(ω1), i.e., w1((xu, xv], s) =
∑M

j=1 ω1(qj−1, qj). Clearly, the aforementioned correspon-

dence between contiguous-cell partitions of (xu, xv] and paths from u to v in G(ω1) is one-

to-one. Therefore, solving problem (3.10), i.e., finding the optimal partition s∗(xu, xv), is

equivalent to finding the MWP between the nodes u and v in G(ω1). Since in Step 1 we

need to find s∗(xu, xv) for all pairs (u, v) ∈ E, it follows that the problem of Step 1 is

equivalent to the all-pairs MWP problem in G(ω1), which can be solved in O(N3) time if

each edge weight can be evaluated in O(1) time.

Similarly, the problem at Step 2 is equivalent to the all-pairs MWP problem in G(ω2),

where

ω2(m,n) , (1− ρ)v1,2((xm, xn]) + λ2v2,2((xm, xn]), (3.15)

for each (m,n) ∈ E. Thus, the problem at Step 2 problem can also be solved in O(N3)

time if each edge weight can be evaluated in O(1) time.

Finally, problem (3.13) can be modeled as the MWP problem in the WDAG G(w0),

where the source node is 0, the final node is N and the weighting function w0 is defined

in (3.12). After having solved the problems at Steps 1 and 2 each weight w0(u, v) can be
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determined in constant time and problem (3.13) can be solved in O(N2) operations.

3.3.2 Preprocessing Step

To make sure that each quantity ω1(m,n) and ω2(m,n) can be computed in constant time,

we include a preprocessing step which evaluates and stores all values v1,κ((xm, xn]) and

v2,κ((xm, xn]) for κ = 1, 2 and all (m,n) with 0 ≤ m < n ≤ N . In order to compute

the values v2,κ((xm, xn]), we first evaluate for each κ = 1, 2 and yκ ∈ Yκ, the cumulative

probabilitiesCumP (yκ, n) , P[X ∈ (x0, xn], Yκ = yκ]. This process requiresO(N(|Y1|+

|Y2|)) time. Then each v2,κ((xm, xn]) is calculated by first computing Pκ((xm, xn], yκ)

= CumP (yκ, n)− CumP (yκ,m) and then performing the summation over yκ. It follows

that the computation of all values v2,κ((xm, xn]) for κ = 1, 2 and (xm, xn) ∈ X̄ × X̄ , takes

O(N2(|Y1|+ |Y2|)) time. The amount of memory needed to store all these values is clearly

O(N2).

To explain how the quantities v1,κ((xm, xn]) are evaluated, first denote for each (m,n)

as above, each κ = 1, 2, and each yκ ∈ Yκ,

γκ(m,n, yκ) , Pκ(C, yκ)E[d(X, x̂κ(C|yκ))|X ∈ C, Yκ = yκ],

where C = (xm, xn]. Then the following holds

v1,κ((xm, xn]) =
∑
yκ∈Yκ

γκ(m,n, yκ).

Now let us consider the case when the distortion measure is not the squared distance. Recall

that in this case X̂ is finite. As shown in [39], since the distortion measure is monotone,

for fixed κ and yκ, all values γκ(m,n, yκ) can be computed in O(|X̄ ||X̄ ∪ X̂ |) = O(N2)
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operations. A simpler technique with the same time complexity was proposed in [5]. It

follows that all values v1,κ((xm, xn]) for κ = 1, 2 and (xm, xn) ∈ X̄ × X̄ , can be evaluated

with O(N2(|Y1|+ |Y2|)) time complexity.

When the distortion measure is the squared distance we have X̂ = R. Then the follow-

ing relations hold

x̂κ(C|yκ) = E[X|X ∈ C, Yκ = yκ],

E[d(X, x̂κ(C|yκ)|X ∈ C, Yκ = yκ] = E[X2|X ∈ C, Yκ = yκ]− (x̂κ(C|yκ))2 .

We first compute and store the cumulative first and second moments Cumi(yκ, n) ,∑
x≤xn x

ipXYκ(x, yκ) for i = 1, 2. Their computation takes O(N(|Y1|+ |Y2|)) time. Based

on these values, each γκ(m,n, yκ) can be computed in constant time. Thus, the evaluation

of all v1,κ((xm, xn]) takes O(N2(|Y1|+ |Y2|)) operations.

To summarize, the time complexity of the preprocessing step amounts to O(N2(|Y1|+

|Y2|)) = O(N3) according to our assumption that |Y1|+ |Y2| = O(N). Thus, the inclusion

of this step does not change the asymptotical time complexity of O(N3) for the solution

algorithm.

3.3.3 F-WZSQ Design Algorithm

In the F-WZSQ case D2(f) remains as in (3.6), while D1(f) becomes

D1(f) =

M0∑
i=1

v1,1(Ci).
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Additionally, we have

R1(f) = H(I|Y1) = H(I, Y1)−H(Y1) =

M0∑
i=1

v2,1(Ci)−H(Y1),

R2(f) = H(K|I, Y2) = H(I,K, Y2)−H(I, Y2) =

M0∑
i=1

M2,i∑
k=1

v2,2(C ′ik)−
M0∑
i=1

v2,2(Ci).

The cost function O(r, t̄) is given by

O(r, t̄) = ρ

M0∑
i=1

v1,1(Ci) + (1− ρ)

M0∑
i=1

M2,i∑
k=1

v1,2(C ′ik) + (λ1 + λ2)

M0∑
i=1

v2,1(Ci)

− (λ1 + λ2)H(Y1) + λ2

 M0∑
i=1

M2,i∑
k=1

v2,2(C ′ik)−
M0∑
i=1

v2,2(Ci)

 .

After removing the constant term −(λ1 + λ2)H(Y1) and rearranging the remaining terms,

the cost becomes

O′(r, t̄) =

M0∑
i=1

(
ρv1,1(Ci) + (λ1 + λ2)v2,1(Ci)− λ2v2,2(Ci)

+

M2,i∑
k=1

(
(1− ρ)v1,2(C ′ik) + λ2v2,2(C ′ik)

)
︸ ︷︷ ︸

w2(Ci,ti)

)
.

Notice that the quantity w2(Ci, ti) is the same as for R-WZSQ. Thus, the optimal partition

ti, for a given Ci, can be found as in the previous section. Thus, problem (3.5) reduces to

solving (3.13) with w0(u, v), for u < v defined as follows

w0(u, v) , ρv1,1((xu, xu]) + (λ1 + λ2)v2,1((xu, xv])− λ2v2,2((xu, xv]) (3.16)

+ w2((xu, xv], t
∗(xu, xv]).
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In conclusion, problem (3.5) can be solved using the following two steps.

• 1) Determine t∗(xu, xv) for all pairs xu, xv of elements in X , with u < v.

• 2) Solve problem (3.13) with the definition of w0 given in (3.16).

The problem at Step 1 is equivalent to the all-pairs MWP problem in G(ω2), while the

problem at Step 2 is equivalent to the MWP problem in G(w0). Thus, using conventional

algorithms for the aforementioned MWP problems, the time complexity of the solution

becomes O(N3).

3.4 Time Complexity Reduction Using the Partial Monge

Property

Notice that the most computationally demanding parts in the solutions to the optimal R-

WZSQ and F-WZSQ design problems is solving the all-pairs MWP problem in G(ω1)

and G(ω2), requiring O(N3) operations. In this section we introduce the partial Monge

property and propose a method for reducing the time complexity for this task when the

weighting functions ω1 and ω2 satisfy it.

If the weight function ω satisfies the Monge property [1] the dynamic programming

solution to the single-source MWP problem in G(ω) can be accelerated by a factor of

N/ logN [13] or of N [37], thus leading to the acceleration by the same factor of the all-

pairs MWP solution algorithm. The general idea behind this complexity reduction is the

following. The dynamic programming single-source MWP problem algorithm needs to

examine each graph edge in order to determine if that edge is part of an optimal path or not.

If all edge weights satisfy the Monge property, after examining a single edge a conclusion
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can be drawn about a higher number of edges. Thus, the set of edges which need to be

examined is significantly decreased.

Unfortunately, the Monge condition is not fulfilled by our weight functions ω1 and ω2.

However, we have observed empirically that the Monge property may hold for a structured

subset E ′ of edges. We prove that this partial satisfaction of the Monge property can still

be exploited to decrease the running time of the all-pairs MWP algorithm. The basic idea

is to exploit the partial Monge property to reduce the number of edges from E ′ which have

to be examined. This idea is used in conjunction with a simple test to determine another

set E ′′ of edges which cannot be in any optimal path and thus need not be examined either.

Note that determining each of the sets E ′ and E ′′ requires a scan through the whole set of

edges E, i.e., O(N2) operations. Thus, this technique cannot expedite the single-source

MWP solution algorithm. However, as we will show shortly, it can effectively speed up the

algorithm for the all-pairs MWP problem.

Let V and E be defined as in Subsection 2.2.1.

Definition 1. We say that the real-valued weight function ω : E → R satisfies the Monge

property [1]1 if for all 0 ≤ m ≤ m′ < n ≤ n′ ≤ N the following holds

ω(m,n) + ω(m′, n′) ≤ ω(m,n′) + ω(m′, n).

As pointed out in [1] the Monge property can be extended to weight functions taking

values in R ∪ {∞}. In this case the addition operation and the order ≤ are extended to

R ∪ {∞} in a natural way by requiring that a+∞ =∞ for all a ∈ R ∪ {∞}, and a <∞

for all a ∈ R.
1This property has received various denominations in the literature. For instance, the authors of [13],

work which we rely upon in this section, refer to this as the concavity property. We prefer to use here the
term “Monge property”, which has been more widely adopted in the newer literature [1].
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Further, for any real-valued weight function ω : E → R denote

∆ω(m,n) , ω(m,n+ 1) + ω(m+ 1, n)− ω(m,n)− ω(m+ 1, n+ 1),

for all 0 ≤ m < n− 1 ≤ N − 2.

Definition 2. For any real-valued weight function ω : E → R, let (T1(ω), T2(ω)) denote

the pair of integers (T1, T2), 2 ≤ T1 ≤ T2 ≤ N , with maximum T2 − T1 for which the

following holds

∆ω(m,n) ≥ 0 for all 0 ≤ m,n ≤ N − 1, T1 ≤ n−m ≤ T2. (3.17)

If more such pairs exist, the one with the smallest T1 is chosen.

Definition 3. We say that the real-valued weight function ω : E → R satisfies the partial

Monge property if T1(ω) < T2(ω).

Remark 1. It is easy to see that the pair (T1(ω), T2(ω)) can be determined in one pass

through the edge set E in O(N2) time.

Definition 4. For any a real-valued weight function ω : E → R, let T3(ω) be the smallest

positive integer T3, smaller than N , satisfying

ω(m,n) ≥ ω

(
m,

⌊
m+ n

2

⌋)
+ ω

(⌈
m+ n

2

⌉
, n

)
(3.18)

for all 0 ≤ m < n ≤ N, n−m ≥ T3. If such an integer does not exist we set T3(ω) = N .

Notice that (3.18) implies that the edge (m,n) can be replaced in any path by other two

edges, without increasing the weight of the path. Therefore, we can safely remove all edges
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(m,n) with n −m ≥ T3(ω) when calculating the all-pairs MWPs in G(ω). Note that the

value T3(ω) can also be determined in one scan through the edge set E in O(N2) time.

Consider the single-source MWP problem in G(ω) with node 0 as the source node.

Recall that, for each 0 ≤ n ≤ N , Ŵ0(n) denotes the weight of the MWP from node 0 to

node n in the WDAG G(ω). Further define E ′ , {(m,n) ∈ E|T1(ω) − 1 ≤ n − m ≤

T2(ω) + 1} and E ′′ , {(m,n) ∈ E|n −m ≥ T3(ω)}. Relation (2.1) and the discussion

below equation (3.18) imply that

Ŵ0(n) = min(Ŵ ′(n), Ŵ ′′(n)), (3.19)

where

Ŵ ′(n) , min
(m,n)∈E′

(Ŵ0(m) + ω(m,n)), (3.20)

Ŵ ′′(n) , min
(m,n)∈E\(E′∪E′′)

(Ŵ0(m) + ω(m,n)). (3.21)

Consider now the weight function ω′ : E → R ∪ {∞}, where ω′(m,n) = ω(m,n) if

(m,n) ∈ E, and ω′(m,n) = ∞ otherwise. The following result, which is proved in the

appendix, is essential for our development.

Proposition 1. The weight function ω′ satisfies the Monge property.

Further, note that equation (3.20) implies that

Ŵ ′(n) , min
0≤m<n

(Ŵ0(m) + ω′(m,n)). (3.22)

We will achieve the complexity reduction by exploiting the Monge property of ω′ to expe-

dite the computations in (3.22). For this we will use a modification of the basic algorithm
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of Hirschberg and Larmore [13] for solving the single-source MWP problem in a WDAG

with Monge weights. More specifically, the algorithm of [13] determines all values F (n),

for 1 ≤ n ≤ N , where

F (n) , min
0≤m<n

(F (m) + ω′(m,n)), (3.23)

where F (0) = 0 and the weights ω′(m,n), which are given, satisfy the Monge property.

Consider now the upper triangular matrix G, with elements g(m,n), 0 ≤ m < n ≤ N ,

defined as

g(m,n) , F (m) + ω′(m,n). (3.24)

Then the problem of solving (3.23) for all n can be regarded as the problem of finding

the minimum element on each column in the upper triangular matrix G, i.e., finding, for

1 ≤ n ≤ N ,

F (n) = min
0≤m<n

g(m,n). (3.25)

The fact that the weights ω′(m,n) satisfy the Monge property implies that the values

g(m,n) also satisfy this property, fact which is straightforward to verify. The authors

of [13] exploit the Monge property of the function g to reduce the time complexity from

O(N2) to O(N logN). Their Basic Algorithm iterates over m from 1 to N − 1. For each

m, at the end of the (m − 1)th iteration the value of F (m) is computed. The algorithm is

based on comparing elements of the matrix. Note that, while the weights ω′ are all avail-

able at the beginning, the matrix elements are not. Specifically, an element g(m,n) can be

accessed only after the (m − 1)th iteration, i.e., after F (m) was computed. We will refer

to the Basic Algorithm of [13] as algorithm A.
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Now consider a modification of problem (3.23) as follows

F (n) , min
0≤m<n

(L(m) + ω′(m,n)), (3.26)

where L(1) = 0 and L(m) is computed based on F (m), for each 1 ≤ m ≤ n−1 according

to a specified procedure. Further, modify the definition of g(m,n) in (3.24) as follows

g(m,n) , L(m) + ω′(m,n), (3.27)

for 0 ≤ m < n ≤ N . Then problem (3.26) remains equivalent to problem (3.25) of finding

all column minima in the modified matrix G. Relation (3.27) implies that the elements

g(m,n) of the modified upper triangular matrix G still satisfy the Monge property Then

problem (3.25) can be solved by using algorithm A enhanced with a procedure which

evaluates L(m) based on F (m), immediately after the latter was computed. We will refer

to this algorithm as EA (short for Enhanced A). Clearly, the running time of EA will

be equal to the running time of A augmented by the time needed to evaluate L(m) from

F (m), for all m.

To solve problem (3.22) for all n we will use algorithm EA with Ŵ0(m) in place of

L(m) and Ŵ ′(n) in place of F (n). The enhancement procedure computes each Ŵ0(n)

based on Ŵ ′(n) using the computations in (3.21) and (3.19). The running time to solve the

minimization in (3.21) for given n is O(T (ω)) operations and doing so for all n requires

O(T (ω)N) operations, where T (ω) , T1(ω) − 2 + max(0, T3(ω) − T2(ω) − 2). Thus,

by employing the enhanced algorithm to solve the single-source MWP problem in G(ω)

leads to a time complexity of O(N(T (ω) + logN)). Further, by using EA repeatedly to

solve the all-pairs MWP problem in G(ω) the time complexity achieved is O(N2(T (ω) +
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logN)). We point out that for this technique to be applied we first must determine the

values T1(ω), T2(ω), T3(ω). This process takes O(N2) operations and thus it does not

contribute to increasing the overall asymptotical time complexity.

It is important to point out that in [13] it is assumed that the weights ω′(m,n) are real-

valued. This implies that all values g(m,n) are finite, while in our case some of them are

∞. For this reason we need to perform some slight adjustments to algorithm A. These are

explained in detail in the following section, where we also show that they do not impact the

algorithm correctness.

Let us discuss now the impact in terms of running time of using the above development

to solve the all-pairs MWP problem in our WDAG of interest, namely G(ω1) and G(ω2).

According to (3.14) and (3.15) the weight function ω1 and ω2 comply to the following

general form

ω(m,n) = µv1,κ((xm, xn]) + λv2,κ((xm, xn]), (3.28)

for some positive µ and λ. For simplicity we use the notation T1, T2, T3, T instead of

T1(ω), T2(ω), T3(ω), T (ω), respectively, in the rest of the paper. Notice that the values

T1, T2 and T3 depend on the joint probability distribution of X and Yκ, denoted by pXYκ ,

and on the ratio λ/µ. In our experiments, where we used discretized Gaussian sources with

discretized Gaussian SI, we found that there exist two thresholds τ1(pXYκ) ≤ τ2(pXYκ)

such that when λ/µ < τ1(pXYκ), we have T3 ≤ T2, while for λ/µ > τ2(pXYκ) we have

T3 = N . Thus, when λ/µ < τ1(pXYκ) the running time of EA is O(N(T1 + logN)). We

have observed empirically that T1 could be lower than N/10 when λ/µ < τ1(pXYκ), which

leads to the conclusion that applying EA may lead to significant savings in running time.

On the other hand, when λ/µ > τ2(pXYκ) we have T > N/2 thus, the proposed complexity

reduction is not sufficient to reduce the asymptotical time complexity.
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We have observed in our experiments that in the F-WZSQ case, the condition λ/µ <

τ1(pXYκ) holds in many cases of interest. Thus, in such cases, by using EA the running

time to solve the F-WZSQ design problem (excluding the preprocessing stage) decreases

to O(N2(T1 + logN)).

In the R-WZSQ case the condition λ/µ < τ1(pXYκ) is also satisfied in at least one

of the two graphs G(ω1) and G(ω2) in most cases of interest, but rarely in both of them.

However, even if the solution to the all-pairs MWP problem is accelerated in only one of

the two WDAGs, this contributes signficantly to the reduction of the actual running time,

even if the asymptotical value still remains O(N3). More specifically, the constant hidden

in the big-O notation is reduced in half.

3.5 Algorithm EA

This section presents algorithm EA in detail. The following notations will be used

g(m,n) , Ŵ0(m) + ω′(m,n),

g2(m,n) , Ŵ0(m) + ω(m,n),

for 0 ≤ m < n ≤ N . Further, denote S , {k|0 ≤ k < T1 − 1 or T2 + 1 < k < T3}.

For each 1 ≤ n ≤ N , let bestleft(n) denote the value of m achieving the minimum in

(3.22) (which also achieves the minimum in (3.20)), and let bestleft2(n) be the value of

m achieving the minimum in (3.21). Further, let bestleft0(n) denote the node before n

in the optimum path from 0 to n in G(ω). In virtue of (3.19) bestleft0(n) is the best of

bestleft(n) and bestleft2(n).

The pseudocode of algorithm EA is presented on the next page. The algorithm exploits
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the fact that the function g satisfies the Monge property, fact which follows easily based

on Proposition 1. Algorithm EA uses a deque (i.e., a double-ended queue) D. At all times

D will contain a sequence of increasing integers in the range between 0 and N − 1. The

element at the front, which is the smallest in the deque, will be denoted f , and the next

element f2. The element at the rear, which is the largest, will be denote r, and the previous

element r2. Note that f2 and r2 are defined only when the deque has at least two elements.

The update operations allowed on D are RemoveFront, which deletes f , RemoveRear,

which deletes r and InsertAtRear(m), which appends m at the rear. The access of f , f2,

r and r2 is also allowed on D.

Algorithm EA: Solution to the single source MWP problem in G(ω).
1 begin
2 Ŵ0(0)← 0, D ← {0}
3 for m = 1 to N − 1 do
4 Ŵ ′(m)← g(f,m), bestleft(m)← f

5 Ŵ ′′(m)← min
k,m−k∈S

g2(k,m)

6 bestleft2(m)← arg min
k,m−k∈S

g2(k,m)

7 Ŵ0(m)← min(Ŵ ′(m), Ŵ ′′(m)); Compute bestleft0(m)
8 while |D| > 1 and g(f2,m+ 1) ≤ g(f,m+ 1) do
9 RemoveFront

10 while |D| > 1 and Bridge(r2, r,m) do
11 RemoveRear

12 InsertAtRear(m)

13 Ŵ ′(N)← g(f,N), bestleft(N)← f

14 Ŵ ′′(N)← min
k,N−k∈S

g2(k,N)

15 bestleft2(N)← arg min
k,N−k∈S

g2(k,N)

16 Ŵ0(N)← min(Ŵ ′(N), Ŵ ′′(N)); Compute bestleft0(N)

The deque contains all current candidates for bestleft(m), for all m which are yet to
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be considered. The algorithm uses the procedure Bridge(r2, r,m), where r2 < r < m,

which returns true if and only if g(r, k) ≥ min(g(r2, k), g(m, k)), for all m < k ≤ N .

We point out that in the Basic Algorithm of [13] operation InsertAtRear(m) is per-

formed only if g(m,N) < g(r,N). However, a careful examination of the proof of cor-

rectness given in [13] reveals that the algorithm is still correct if that condition is removed.

Bridge(a, b, c)

1 begin
2 max← min(N, b+ T2 + 1);
3 if c=max then return true;
4 min← max(c+ 1, b+ T1 − 1);
5 low ← min; high← max;
6 if g(a,max) ≤ g(b,max) then return true;
7 while high− low ≥ 2 do
8 mid← b(low + high)/2c;
9 if g(a,mid) ≤ g(b,mid) then

10 low ← mid
11 else
12 high← mid

13 if g(c, high) ≤ g(b, high) then
14 return true
15 else
16 return false

The fact that function g satisfies the Monge property implies that the following property

holds. Its proof is deferred to the appendix.

The Forward Property (FP): Let 0 ≤ a < b < c < d ≤ N .

FP1) If g(b, c) < g(a, c) then g(b, d) ≤ g(a, d).

FP2) If g(b, c) < g(a, c) and g(b, d) 6=∞ then g(b, d) < g(a, d).

Note that in the case when the weights have only finite values (as in [13]) a stronger
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variant of FP holds, where the inequality g(b, d) ≤ g(a, d) in FP1 is always strict. The

proof of correctness of algorithmA given in [13] relies on the strong FP. However, a careful

examination of their proof leads to the conclusion that only the weaker FP1 and FP2 are

sufficient. Specifically, FP is invoked in the proof in four places and in each of them FP1 is

actually used. The Monge condition (referred to as the concavity condition in [13]) is also

invoked at the end of the proof, where actually FP2 suffices.

The subroutine Bridge(a, b, c) proposed in [13] relies on the stronger FP and uses a

binary search over the set of integers from c to N to determine whether some k, c < k ≤

N exists such that g(b, k) < min(g(a, k), g(c, k)). Specifically, the procedure finds the

smallest such value if it exists. Clearly, for such a k we have g(b, k) 6=∞. Thus, it is safe to

restrict the search range to the range for which g(b, k) 6=∞, i.e., from max(c+1, b+T1−1)

to min(N, b+T2 + 1). Then the stronger FP holds for this range and no further adjustment

is needed. The pseudocode of the subroutine Bridge(a, b, c) is shown in the previous page.

3.6 Experimental Results

This section assesses the practical performance of the proposed design algorithms for

the two scenarios considered in this work. In our experiments the source X is obtained

by discretizing a continuous Gaussian variable X̃ with mean 0 and variance 1. Specif-

ically, N = 1000 and the source alphabet X is formed of the centroids of the intervals

(−∞,−6), (6,∞) and of the sets obtained by partitioning (−6, 6) into 998 equal-size in-

tervals. The distortion measure is the squared distance and X̂ = R. For κ = 1, 2, the

SI Yκ is obtained by discretizing the random variable X̃ + Zκ, where Zκ is Gaussian and

independent of X̃ . Specifically, for κ = 1, 2, the alphabet Yκ consists of 300 values, which
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are the centroids of the intervals (−∞,−6), (6,∞) and of the sets obtained by partition-

ing (−6, 6) into 298 equal-size intervals. More details about each Zκ will be given when

discussing each scenario.

Since we will compare our results with the theoretical bounds for the continuous Gaus-

sian source, we will evaluate the performance of our schemes for the continuous case, i.e.,

when the source is X̃ and the SI is X̃ + Zκ. Note that there is no difference between the

continuous case and the discretized version in terms of rate, but only in terms of distortion.

Namely, when evaluating the distortion D̃κ(f) for the continuous case we need to account

for the distortion due to the discretization as well. Throughout this section we use the

notations Dκ, R and Rκ instead of D̃κ(f), R(f) and Rκ(f), respectively, for κ = 1, 2. We

first present the results for the F-WZSQ problem in subsection 3.6.2. We continue with the

experimental results for the R-WZSQ scenario in subsection 3.6.3. We end the section with

a discussion of our empirical observations regarding the satisfaction of the partial Monge

property and its impact on the running time in subsection 3.6.4.

3.6.1 Discussion of Traditional HB Problem Results

In this subsection we present experimental results for the traditional HB problem, i.e.,

when the SI at the first decoder Y1 is a constant. We have Z2 = N2, where N2 ∼

N (0, 1/
√

10), and N2 is independent of X̃ . Recall that for the HB problem we have

λ1 = 0 in the cost function (3.4). We solve the optimization problem (3.5) for ρ ∈

{0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.11, 0.12, 0.13, 0.14, 0.2, 0.3, 0.4, 0.5, 0.6}. The values

of λ2 range from 0.0001 to 0.2 in increments of 0.0005.
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Figure 3.2: Traditional HB problem where SI may be absent. (a) shows the achieved
distortion region. Theoretical distortion outline is marked in blue. (b) shows corresponding
achieved rate region. (c) shows the rate difference of achieved rate pair (R1(D1), R1 +
R2(D1, D2)) to the theoretical rate pair (R∗1(D1)), (R1 +R2)∗(D1, D2). Circles in all three
figures marker the points with a gap higher than 0.265 in R1.
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In Fig. 3.2(a) we plot the distortion pairs (D1, D2) achieved in our experiments, while

in Fig. 3.2(b) we show the rate pairs (R1, R1 + R2). We point out that even though in the

HB problem only the total rate is of interest we find instructive to analyze how the total rate

is split between the two virtual stages of the encoder.

We emphasize that the convex closure of the set of distortion pairs achieved in our

experiments closely matches the theoretical achievable region specified in [12]. The upper

boundary of the distortion region corresponds to the case when D1 is maximum and, hence

R1 = 0. The right-side boundary contains the points achieved when R2 = 0. On the other

hand, the leftmost boundary is approached when the total rate R1 + R2 is high enough.

We point out that in our experiments when ρ ≥ 0.15 the distortion pairs are on the right

boundary, i.e., R2 = 0.

Fig. 3.2(c) plots the difference between the practical rate pairs (R1, R1 + R2) and

the theoretical lower bounds in rate for the corresponding distortion pair (D1, D2), i.e.,

(RWZ(D1), RHB(D1, D2)) [12]. Note that RWZ(·) and RHB(·) denote the rate-distortion

function in the WZ and HB scenarios, respectively. We see that the gap in the total rate is

within 0.275 bits/sample. This result is very encouraging since it shows that the gap is very

close to that predicted by the high rate quantization theory between scalar quantization and

infinite dimension vector quantization, namely of 0.25 bits/sample.

On the other hand we see that the gap in the first-stage rate can be higher than 0.25

bits, reaching up to 0.42 bits. The rate pairs and distortion pairs for which this happens

are marked in circles in 3.2(a) and Fig. 3.2(b). We notice that this points have a higher

concentration in the region where D1 is relatively small, which agrees with the intuition

that it is more difficult to achieve small distortions. This result indicates that when D1 is

small, beside the expected rate loss of 0.25 bits attributed to the use of SQ versus infinite

53



M.A.Sc. Thesis - Qixue Zheng McMaster - Electrical Engineering

dimension VQ, there is some extra loss at the first stage virtual encoder. It is important to

point out that this extra loss at the first virtual stage is completely canceled out after the

second virtual stage, so that the difference in total rate versus the theoretical limit remains

0.25 bits, as shown in Fig. 3.2(c).

The parameters ρ, λ2 have a strong correlation with achieved quadruples. Since the

first decoder does not have a SI, but the second decoder has a strong SI, it’s rewarding to

have a big R1 reducing D1 for some fixed rate sum to minimize weighted distortion. In our

experiments we have obtained R2 > 0 only when ρ < 0.15. otherwise R1 = rate sum. For

a fixed ρ, as the decreasing of λ2, R1 is increasing in a slope approximately parallel to the

upper boundary. The smaller ρ, the further away from the upper boundary achieved points

will be. For a smaller ρ, it is also possible to have R2 = 0 when λ2 is relatively small.

3.6.2 Discussion of F-WZSQ Results

In the F-WZSQ case we have Z1 = N1 +N2 and Z2 = N2, where N1 ∼ N (0, 1√
10

), N2 ∼

N (0, 1√
10

), and N1 and N2 are independent of each other and of X̃ . The value of ρ used

in our experiments are 0.05, 0.1, 0.102, 0.105, 0.11, 0.12, 0.13, 0.15, 0.2, 0.3, 0.5, 0.8, 0.95.

The values of λ1 are in the range of (10−5, 0.9), and values of λ2 are in the range of

(10−5, 0.3).

The distortion pairs (D1, D2) and the rate pairs (R1, R) are plotted in Fig. 3.3(a) and

Fig. 3.3(b), respectively. Fig. 3.3(a) also shows the boundary of the theoretically achievable

distortion region given in [28] (in blue). Fig. 3.3(c) plots the difference between the prac-

tical rate pairs (R1, R) and the pair of theoretical lower bounds (RWZ(D1), RHB(D1, D2))

[28]. We see that in most of our experiments the gap in both R1 and R is within 0.263. The

corresponding points are marked using black dots in all three subfigures of Fig. 3.3.
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Figure 3.3: F-WZSQ results. (a) Practical and theoretical (blue line) distortion region. (b)
Practical rate region. (c) Difference between R1, respectively R, and the corresponding
theoretical rate bounds for all the distortion pairs in (a). Circle markers are for the cases
when the gap in R1 is higher than 0.261, square markers are for the cases when the gap in
R is higher than 0.263.
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Figure 3.4: (a) Plot of λ1
ρ

versus R1 when R ≥ 2.2; (b) Plot of λ2
1−ρ versus R when R2 >

0.001.

The points which do not fit in the aforementioned category (termed “extra loss points”)

exhibit an additional loss in either R1 (points marked using circles) or in R (points marked

using squares). The cases with extra loss in R1 appear for relatively small D1 and R2.

The cases with extra loss in R are mostly occurring when D2 is very small, hence R is

large. Note that the rate gap between scalar quantization and infinite dimension vector

quantization, predicted by the high rate quantization theory for the single encoder-decoder

pair problem is 0.254 bits/sample [46]. The existence of additional rate loss on top of these

0.254 bits can be attributed to the additional tension introduced in the optimization problem

because of the need to meet the quality requirements at two decoders instead of one, while

preserving rate constraints at two encoders as opposed to one.

It is instructive to analyze how the choice of the parameters ρ, λ1 and λ2 influences the

algorithm outcome. In our experiments we have obtained R1 > 0 only when λ1
ρ
< 0.4,

while R2 > 0 was obtained only when λ2
1−ρ < 0.9. We point out that for λ2

1−ρ > 0.2, R2

is very small, namely R2 ≤ 0.001. Our results show a strong correlation between R1 and
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the value of λ1
ρ

when R is higher than 2.2 bits, and between R and λ2
1−ρ when R2 > 0.001.

Specifically, Fig. 3.4(a), where we plot the value of λ1
ρ

versus R1, for the cases when

R ≥ 2.2, shows that R1 tends to increase with the decrease of λ1
ρ

. Further, Fig. 3.4(b),

containing the plot of λ2
1−ρ versus R when R2 > 0.001, shows that R increases as λ2

1−ρ

becomes smaller. Additionally, notice that we have R2 > 0.001 and R1 + R2 ≥ 0.57 only

if λ2
1−ρ ≤ 0.16. This observation will be useful in the last subsection where we discuss the

satisfaction of the partial Monge property.

3.6.3 Discussion of R-WZSQ Results

In the R-WZSQ case we have Z1 = N1 and Z2 = N1 +N2, where N1 ∼ N (0, 1√
10

), N2 ∼

N (0, 1√
10

), and N1 and N2 are independent of each other and of X̃ . The values of ρ used in

our experiments are 0.1, 0.12, 0.15, 0.2, 0.85, 0.9, 0.95, 0.96, 0.97. The values of λ1 range

between 0.01 and 0.1. The values of λ2 range between 10−5 and 0.4.

Tian and Diggavi [29] showed that the achievable RD region they proposed for the

RDSI-WZ problem is exact in the quadratic Gaussian case with jointly Gaussian SI. More-

over, they showed that any rate pair on the lower boundary of the rate region for given

(D1, D2) can be achieved with only two codebooks, a coarse codebook to be used at one

decoder, and a finer codebook, to be used at the other decoder. Which decoder recovers

the finer codebook depends on the particular distortion pair (D1, D2). Our experimental

results confirm this property since all the time at most one of the two quantizers Q1 and

Q2 has a more refined partition than the coarse partition f0. Fig. 3.5(a) and Fig. 3.5(b)

plot the achieved distortion pairs and rate pairs, respectively. Unlike the case with for-

wardly degraded SI the theoretical distortion region is a filled rectangle. Its boundaries are

shown in blue in Fig. 3.5(a). The curve connecting the bottom left corner with the top
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right corner corresponds to the case when both decoders use the coarse partition, i.e. there

is no-refinement in either of Q1 and Q2. We will refer to this case as the ”no refinement”

case. Note that the blue curve contains the theoretical no-refinement distortion pairs, while

the black points situated close to this curve represent the practical no-refinement pairs. The

no-refinement rate pairs are marked using crosses in Fig. 3.5(b).

The no-refinement distortion curve separates the distortion region into two sub-regions:

lower and upper. The upper distortion sub-region represents the case when only quantizer

Q2 has a refined partition. The corresponding rate pairs appear below the no-refinement

curve in Fig. 3.5(b). The lower distortion sub-region contains the distortion pairs achieved

when only Q1 has a refinement. The corresponding rate pairs are above the no-refinement

curve in Fig. 3.5(b). Notice that the rate sub-region for the latter case is much smaller than

the other sub-region. This is because for a fixed sum rate, once R2 is big enough, Q2 gets

refinements.

Fig. 3.5(c) plots the difference between the practical rate pairs (R1, R) and the pair of

theoretical lower bounds [29]. We observe that in most of our experiments the gap in both

R1 and rate-sum is within 0.26. The remaining points exhibit an extra loss either only inR1

(points marked with circles) or only in rate-sum (points marked with squares). Similarly,

to the case with FDSI-WZ, the cases with extra loss in R1 appear for relatively small D1

and R2. The cases with extra loss in R are mostly occurring when D2 is very small, hence

R is large.

In our experiments we found that when Q1 has a refinement we have λ1+λ2
ρ

< 0.255

and λ2
1−ρ >= 0.9. On the other hand, when Q2 has a refinement we have λ1

ρ
< 0.84 and

λ2
1−ρ < 0.44, with λ2

1−ρ > 0.26 only when R < 0.44.
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Figure 3.5: R-WZSQ results. (a) Practical and theoretical (blue line) distortion region. (b)
Practical rate region. (c) Difference between R1, respectively R, and the corresponding
theoretical rate bounds for all the distortion pairs in (a). Circle markers are for the cases
when the gap in R1 is higher than 0.256, square markers are for the cases when the gap in
R is higher than 0.26.
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Figure 3.6: (a) Relation between λ1+λ2
ρ

and R1 when Q1 has a refinement. (b) Relation
between λ2

1−ρ and R2 when Q1 has a refinement. (c) Relation between λ1
ρ

and R1 when Q2

has a refinement. (d) Relation between λ2
1−ρ and R when Q2 has a refinement. The points

which deviate significantly from the main curve correspond to very small refinement inQ2.
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When Q1 has a refinement we found that R1 increases as λ1+λ2
ρ

decreases, as seen in

Fig. 3.6(a), while R2 increases as λ2
1−ρ decreases, as seen in Fig. 3.6(b). When Q2 has a

refinement we notice from Fig. 3.6(c) that R1 tends to increase as λ1
ρ

decreases. Addition-

ally, the sum-rate R generally increases as λ2
1−ρ decreases, except when the refinement in

Q2 is very small as seen in Fig. 3.6(d).

3.6.4 Fulfillment of the Partial Monge Property

In this subsection we first evaluate T1, T2 and T3 for the graph G(ω) with the edge weight

function given in (3.28). We consider the SI Yκ obtained by discretizing X̃ + Z, where Z

is Gaussian and independent of X̃ . We consider three cases with the following variances

σ2
Z = 1√

10
, 2√

10
and 0.8.

In Table 3.1 we show the values of T1, T2 and T3 for the aforementioned cases of SI for

several values of λ/µ ranging from 0.05 to 0.5. We observe that as the ratio λ/µ increases

T1 and T3 are nondecreasing, while T2 is nonincreasing at a very slow rate. Another inter-

esting observation is that, for fixed λ/µ, T1 and T2 are nondecreasing as the SI becomes

weaker (T1 changing at a very slow rate), while T3 is nonincreasing.

For the strongest SI, we have τ1(pXYκ) ≈ 0.16 and τ2(pXYκ) ≈ 0.1635. For the second

strongest SI we have τ1(pXYκ) ≈ τ2(pXYκ) ≈ 0.26.

Recall that for the F-WZSQ design the all-pairs MWP problem has to be solved only

in G(ω2). The edge weights are given in (3.15), which corresponds to equation (3.28) with

κ = 2, λ = λ2 and µ = 1 − ρ. Recall that SI Y2 used in our experiments for F-WZSQ

design has σ2
Z = 1√

10
, hence it is the strongest among the three cases considered in this

subsection. Thus, when λ2
1−ρ < 0.16 a significant complexity reduction can be achieved.

As seen in Fig. 3.4(b) all of the cases corresponding to a sum-rate larger than 0.57 and
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R2 > 0.001 are obtained when this condition holds.

The R-WZSQ design algorithm has to solve the all-pairs MWP problem in both G(ω1)

and G(ω2). For G(ω1) we have κ = 1, λ = λ1 + λ2 and µ = ρ. The SI Y1 used in the

experiments for R-WZSQ is the strongest among the three considered in this subsection.

Thus, a significant complexity reduction can be achieved when λ1+λ2
ρ

< 0.16. On the other

hand, for G(ω2) we have κ = 2, λ = λ2 and µ = 1 − ρ. The SI Y2 has σ2
Z = 2√

10
. A

considerable complexity reduction can be obtained when λ2
1−ρ < 0.26. As seen from Fig.

3.6, in order to achieve R1 > 0.57 or R > 0.44 at least one of conditions λ1+λ2
ρ

< 0.16 and

λ2
1−ρ < 0.26 must hold. In such a case, the all-pairs MWP problem in at least one of the two

WDAGs will run considerably faster. However, cases when both conditions λ1+λ2
ρ

< 0.16

and λ2
1−ρ < 0.26 are satisfied are more rare. Thus, the asymptotical time complexity will

be reduced only in a smaller number of cases, however, in many cases the constant hidden

in the big-Oh notation will be reduced in half, effectively decreasing the practical running

time.

Table 3.1: T1, T2, T3 Experimental Data
σ2
Z = 1√

10
σ2
Z = 2√

10
σ2
Z = 0.8

λ/µ T1 T2 T3 T1 T2 T3 T1 T2 T3

0.05 34 363 98 34 496 96 34 531 95
0.1 50 363 166 51 489 156 51 526 155
0.16 66 363 285 67 482 221 68 510 218

0.1635 66 363 424 68 482 225 69 510 222
0.2 74 363 1000 77 476 262 78 510 257
0.26 86 358 1000 90 473 448 92 508 314
0.3 93 358 1000 98 473 1000 100 508 1000
0.4 107 358 1000 116 471 1000 119 506 1000
0.5 120 357 1000 131 465 1000 135 496 1000
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3.7 Conclusion

In this work, we address the design of a two-stage Wyner-Ziv scalar quantizer with for-

wardly or reversely degraded side information (SI) for finite-alphabet sources and SI. We

assume that the binning is performed perfectly so that the theoretical limits are achieved

and focus on the optimization of the quantizer partitions. The optimization problem aims

to minimize a weighted sum of distortions and rates. The proposed solution is based on

solving the single-source or the all-pairs minimum-weight path problem in some weighted

directed acyclic graphs. By employing dynamic programming, which is the conventional

solution for the underlying MWP problem, the time complexity achieved is O(N3), where

N denotes the size of the source alphabet. Further, we introduce a so-called partial Monge

property and propose a technique to exploit it in order to expedite the solution algorithm.

The proposed solution algorithm is globally optimal when the quantizer cells are contigu-

ous. Experimental results using a discretized Gaussian source with discretized Gaussian SI

assess the practical performance of the proposed scheme and show that the partial Monge

property holds in many situations of interest.

In next chapter, we will present how to utilize graphs to solve the multiple description

coding problem.
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Chapter 4

Improved Two-Stage Multiple

Description Scalar Quantizer

4.1 Overview

In this chapter, we present an improved MMDSQ design with optimized encoder partitions.

Recall that the MMDSQ [30] has two scalar quantizers with staggered thresholds at the first

stage as side quantizers. Then each joint cell formed by intersecting two side cells is further

divided into a fixed number of finer cells forming the central quantizer at the second stage.

The MMDSQ of [30] is attractive in comparison with the ECMDSQ of [34] because of its

simplicity. However, its performance is comparable with that of [34] only at high rates.

The proposed improved MMDSQ has performance very close to ECMDSQ at low rates as

well.

In our improved MMDSQ scheme, the optimization is achieved by solving the all-

pairs MWP problem in a WDAG G(ω) followed by solving another single-source MWP

problem in a coupled quantizer graph G(w). We also discuss a variant of the improved
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MMDSQ with enhanced decoders, like in [15], where the side decoders use the refinement

information at the second stage. The aim of the variant design is to decrease the gap to the

theoretical bound.

This chapter is organized as follows. Section 4.2 introduces the notations and the prob-

lem formulation. The structure of our improved MMDSQ is presented. The problem is

formulated as a minimization of weighted sum of all distortions and rates. We present our

improved MMDSQ design in Section 4.3 and the variant design with enhanced decoders in

the following section. Both designs have the same optimization process, but the enhanced

design has a different decoding rule. Some numerical results are exhibited in Section 4.5

for a Gaussian source in the symmetric case. Finally, Section 4.6 concludes this chapter.

4.2 Problem Formulation

First we review the MMDSQ design proposed in [30]. The MMDSQ system operates in

two stages: at the first stage, two staggered uniform quantizers with bin size ∆ generate two

side partitions and produce a joint uniform quantizer with bin size ∆/2, i.e., the intersection

of two side partitions; at the second stage, each bin in the joint quantizer is further divided

into a fixed number of uniform finer bins forming the central partition as shown in Fig.

4.1. The messages from the first stage are entropy encoded into each description, and

the refinement from the second stage is entropy encoded and evenly split between two

descriptions. The two side decoders recover the source using the information at the first

stage based on each side partition, whereas the central decoder uses the information at both

stages to reconstruct the source. Notice that the MMDSQ can be regarded as consisting of

four quantizers Q = (Q1, Q2, Q12, Q0), where Q1 and Q2 are two side quantizers, Q12 is

the joint quantizer, and Q0 is the central quantizer as shown in Fig. 4.1.
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Figure 4.1: Structure of MMDSQ.

The improvement we propose resides in optimizing the encoder partitions rather than

considering uniform partitions for Q1, Q2 and Q0. One difference comparing to the design

in [6] resides in the addition of the central quantizer Q0 which is actually a refinement of

Q12.

Let Ci, Cj denote a cell in Q1, respectively, Q2, let Cij denote the intersection of cell

Ci and Cj , and Cijk denote a cell in Q0 obtained by partitioning Cij for 1 ≤ i ≤ M1, 1 ≤

j ≤ M2, 1 ≤ k ≤ M0,ij , as shown in Fig. 4.2. Denote the number of cells in quantizer Qi

by Mi for i = 0, 1, 2, and let M0 = maxijM0,ij , where M0,ij is the number of finer bins

within each Cij . Let Dl(Q) and Rl(Q) represent the distortion, respectively, the rate of Ql

for l = {0, 1, 2}. The RD region of our improved MMDSQ can be characterized by the

tuple (R1(Q), R2(Q), R0(Q), D0(Q), D1(Q), D2(Q)).

Let an ascending sequence s = (s0, s1, ..., sM1) denote the thresholds of Q1 such that

Ci = (si−1, si], and another ascending sequence t = (t0, t1, ..., tM2) denote the thresh-

olds of Q2 such that Cj = (tj−1, tj], for 1 ≤ i ≤ M1, 1 ≤ j ≤ M2. Let rij =

(rij,0, rij,1, ..., rij,M0,ij
) denote the finer partition of cell Cij , for 1 ≤ i ≤ M1, 1 ≤ j ≤ M2.

Note that if Cij is empty, rij is empty. Further denote r̄ = (r11, r12, ..., rM1M2), which
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Figure 4.2: Structure of the improved MMDSQ.

represents the full partition at the central quantizer. Define

L(s, t, r̄) , (1− µ1 − µ2)D0(Q) + µ1D1(Q) + µ2D2(Q) (4.1)

+ λ0R(Q) + λ1R1(Q) + λ2R2(Q)

for some µ1, µ2, λ0, λ1, λ2 > 0 and µ1 +µ2 < 1, where R(Q) , R0(Q)+R1(Q)+R2(Q).

Then the problem of finding the optimal improved-MMDSQ is to minimize the weighted

sum of distortions and rates over s, t, r̄ as follows,

min
s,t,r̄
L(s, t, r̄). (4.2)

Any tuple
(
R1(Q), R2(Q), R(Q), D0(Q), D1(Q), D2(Q)

)
on the convex hull of the set of

all possible tuples can be found by solving problem (4.2) for some µ1, µ2, λ0, λ1, λ2 > 0

and µ1 + µ2 < 1.
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4.3 Improved MMDSQ Design

For any given interval (a, b], the best decoder has to choose the reconstruction value x̂(a, b]

minimizing the distortion for cell (a, b], i.e.,

x̂(a, b] = arg min
x̂i∈X̂

E[d(X, x̂i)|X ∈ (a, b]].

The distortions can be represented as

D1(Q) =

M1∑
i=1

d(Ci), D2(Q) =

M2∑
j=1

d(Cj), D0(Q) =
∑

ij∈M1×M2

M0,ij∑
k=1

d(Cijk). (4.3)

where d(C), for any C ⊆ X , is defined as

d(C) , E[d(X, x̂(C))|X ∈ C] (4.4)

Denote by I, J,K the random variable taking as value i, j and k, respectively. Using en-

tropy coding, the rates can be written as:

R1(Q) = H(I) =

M1∑
i=1

h(Ci), R2(Q) = H(J) =

M2∑
j=1

h(Cj), (4.5)

R0(Q) = H(IJK)−H(IJ) =
∑

ij∈M1×M2

(M0,ij∑
k=1

h(Cijk)− h(Cij)
)
,

where for any cell C ⊆ X , P (C) and h(C) are defined as

P (C) , P (x ∈ C), h(C) , −P (C) log2 P (C). (4.6)
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By plugging (4.3) and (4.5) into (4.1), we have the complete objective function as

L(s, t, r̄) ,
M1∑
i=1

(
µ1d(Ci) + (λ0 + λ1)h(Ci)

)
+

M2∑
j=1

(
µ2d(Cj) + (λ0 + λ2)h(Cj)

)
(4.7)

+
∑

ij∈M1×M2

(
− λ0h(Cij) +

M0,ij∑
k=1

(1− µ1 − µ2)d(Cijk) + λ0h(Cijk)︸ ︷︷ ︸
π(Cij ,rij)

)
.

For fixed Ci, Cj , the intersection set Cij is fixed, then the partition rij of Cij can be opti-

mized by minimizing the sub-cost π(Cij, rij). Notice that the sub-cost π(Cij, rij) depends

on the cell Cij , not on the index ij. Therefore, for any given cell (xu, xv] with u < v, let

r∗xu,xv denote the optimal partition of cell (xu, xv] as

r∗xu,xv , arg min
rxu,xv∈Txu,xv

π
(
(xu, xv], rxu,xv

)
. (4.8)

where Txu,xv is defined in Section 3.2.1 as the set of all ascending n-sequence r with r0 =

xu, rn−1 = xv for all n ≥ 2. The optimization problem (4.8) can be formulated as an all-

pairs MWP problem in the WDAG G(ω) based on the DAG G, while the weight of each

edge (m,n) is

ω(m,n) , (1− µ1 − µ2)d((xm, xn]) + λ0h((xm, xn]). (4.9)

Any partition r = (r0, r1, ..., rM) of (xu, xv] for any integer M > 1, corresponds to a

path from source node u to final node v. This correspondence is one-to-one. The weight

of the path equals the cost in (4.8), i.e.,
∑M

i=1 ω(ri−1, ri) = π((xu, xv], rxu,xv). It follows
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that finding the optimal r∗xu,xv is equivalent to finding the MWP from node u to node v in

WDAG G(ω). Recall that Ŵu(v) denotes the weight of the MWP from u to v. We have

Ŵu(v) = min
u<v′<v

{Ŵu(v
′) + ω(v′, v)}, (4.10)

where ω(v′, v) is defined in (4.9). Solving the MWP problem for all possible (u, v) takes

O(N3) times if the weight for each edge in G(ω) can be accessed in constant time.

Since π
(
(xu, xv], r

∗
xu,xv

)
can be pre-calculated for any cell (xu, xv], the optimization

problem (4.2) reduces to solving the minimization over all sequences s and t. Notice

that the cost function (4.7) becomes a function of only s and t. To optimize Q1, Q2, Q12

simultaneously, we will convert the problem to the MWP problem in a coupled quantizer

graph.

Consider the coupled quantizer graph G(w) based on the DAG G, defined in Chapter

2.3, with the weight function w for two types of edges defined as follows,

w(uv, u′v) = µ1d(u, u′] + (λ0 + λ1)h(u, u′] (4.11)

− λ0h(u,min(u′, v)] + π((u,min(u′, v)], r∗u,min(u′,v)),

w(uv, uv′) = µ2d(v, v′] + (λ0 + λ2)h(v, v′] (4.12)

− λ0h(v,min(v′, u)] + π((v,min(v′, u)], r∗v,min(v′,u)).

Note that the coupled quantizer graph is used to solve the fixed-rate 2DSQ problem in [6],

while we use it to find the optimal partitions in order to improve the MMDSQ design. The

differences reside in that the weight function is different from the weight functions of [6],

which further results in different time complexities.
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The MWP in G(w) from 00 to NN corresponds to the optimal partitions for quantiz-

ers Q1, Q2, Q12 minimizing (4.7). Note that the way to map (Q1, Q2, Q12) to the WDAG

G(w) and the algorithm to find the single-source MWP have been presented in Section 2.3.

Therefore, the MWP in G(w) from the source node to the final node corresponds to the

sequence s, t, r̄ minimizing (4.7).

To make sure the weight for each edge in graphG(ω) and G(w) can be accessed in con-

stant time, a pre-processing procedure is needed like the one in Section 3.3.2. Assuming the

distortion measure takes mean square error, the cumulative moments
∑c

i=1 x
j
ip(xi) for j =

0, 1, 2 is computed and stored for all 1 ≤ c ≤ N . Then for any possible cell (xc, xc′ ] with

c′ > c, relevant cumulative moments can be computed using
∑c′

i=1 x
j
ip(xi)−

∑c
i=1 x

j
ip(xi)

for all j = 0, 1, 2 such that d(C) (4.4) and h(C) (4.6) can be computed in constant time for

any cell C ⊆ X . To summarize, there are two steps in the optimization process:

• Solve the all-pairs MWP problem in WDAG G(ω) using the recursion in (4.10) with

the weight function defined in (4.9). Store the minimum cost and last cutting point

for each pair (u, v) with 0 ≤ u < v ≤ N . The time complexity in this step is O(N3).

• Find the MWP from node 00 to NN in WDAG G(w) using the algorithm in Al-

gorithm 2 with the weight defined in (4.11) and (4.12). This step requires O(N3)

time.

The total time complexity is O(N3). Back-tracking is used when reconstructing the whole

paths in graph G(ω) and G(w).
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Figure 4.3: The improved MMDSQ with enhanced decoders.

4.4 Improved MMDSQ Design with Enhanced Decoders

In this section, we present a variant of the improved MMDSQ, which uses the refinement

from the second stage to improve the reconstruction at the side decoders. This idea is

inspired by Liu and Zhu [15]. Instead of applying first entropy coding conditioned on the

joint partition for the second stage followed by splitting the bitstream evenly between the

two descriptions, we first split the refinement to both side partitions then use entropy coding

conditioned on the corresponding side partitions. This way finer reconstruction values can

be computed at the side decoders.

Fig. 4.3 depicts an example of the cell partitions where Ci in Q1 contains two joint

cells. Each joint cell Cij is further divided into three or two finer cells Cijk by Q0. In the

improved MMDSQ design, the side decoders are only able to decode the coarse cell Ci or

Cj because the refinement information K is encoded conditioned on the joint cell Cij . In

the variant design, we encode all the refinement conditioned on the first partition Ci and

sent all the refinement to the first decoder one half of the time. During the other half of

time, we encode all the refinement conditioned on the second partition Cj and send all of

them to the second decoder. This way the side decoder receiving the refinement is able to

identify finer cells Cik (Cjk) as shown in Fig. 4.3, which are unions of the cells Cijk with
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the same index ik (jk). Then the average distortion at each side decoder equals the mean

of the distortions with and without refinement.

Although the modification in the entropy coding of the refinement message will increase

the total rate, this rate loss will be compensated by the improvement in the side distortions.

Note that this procedure is applied to the improved MMDSQ method optimized as in the

previous section. Thus, we can narrow the gap to the theoretical bound without changing

the optimization process.

Let the modified rate of the first and the second description be denoted by R′1(Q)

respectively, R′2(Q). Let R̄1(Q) and R̄2(Q) represent the average rate of each descrip-

tion. Denote the improved distortion at two decoders by D′1(Q), respectively, D′2(Q). Let

D̄1(Q) and D̄2(Q) denote the average distortion at each side decoder. Note that R0 is

not needed in the variant design, since all the refinement has been encoded with the side

partitions. Then the rates can be written as follows,

R′1(Q) = H(IK) =

M1∑
i=1

M0,i∑
k=1

h(Cik), (4.13)

R′2(Q) = H(JK) =

M2∑
j=1

M0,j∑
k=1

h(Cjk),

R̄1(Q) =
(
R1(Q) +R′1(Q)

)
/2,

R̄2(Q) =
(
R2(Q) +R′2(Q)

)
/2,

where the R1(Q) and R2(Q) are defined in (4.5), and h(C) any C ⊆ X is defined in (4.6).

M0,i is the number of cell Cik within each cell Ci, andM0,j is the number of cell Cjk within

each cell Cj .
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Correspondingly, the distortions can be written as

D′1(Q) =

Ml∑
i=1

M0,i∑
k=1

d(Cik), (4.14)

D′2(Q) =

Ml∑
j=1

M0,j∑
k=1

d(Cjk),

D̄1(Q) =
(
D1(Q) +D′1(Q)

)
/2,

D̄2(Q) =
(
D2(Q) +D′2(Q)

)
/2,

where d(C) for any C ⊆ X is defined in (4.4).

4.5 Experimental Result

In this section, we assess the performance of the improved MMDSQ in the symmetric case

where both side quantizers have the same weights, i.e., µ1 = µ2, λ1 = λ2 in (4.1). In our

experiments the source X is obtained in the same way as in Section 3.6, i.e. by discretizing

a continuous Gaussian variable X̃ with mean 0 and variance 1. The size of source alphabet

X is 1000. The distortion measure is the squared distance and X̂ = R. We compared our

two methods with the results of ECMDSQ [34], MMDSQ [30] and enhanced MMDSQ

[15].

Each triple of parameters (µ1, λ0, λ1) corresponds to one RD tuple (R1, R2, R,D0, D1,

D2). The results shown in Fig. 4.4 and Fig. 4.5 have the average rate per description

equals 1, 2 and 3 bits, respectively. It can be observed that our method achieves more

points than the MMDSQ especially at low rates, specifically, only two trade-off points can

be obtained by MMDSQ at 1 or 2 bits/description. In addition, our method always achieves
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Figure 4.4: Performance at rate 1 bit/description (top) and 2 bits/description (bottom). The
index assignment matrix size in ECMDSQ is

√
M = 4 and 8, respectively.

a performance no worse than MMDSQ. At low rates, i.e., 1 or 2 bits/description, the im-

proved MMDSQ achieves significantly lower central distortion D0 for the same average

side distortion (D1+D2)
2

. At high rate, i.e., 3 bits/description, the difference is smaller but

still noticeable.

Comparing to ECMDSQ, the improved MMDSQ shows a competitive performance.

The points achieved by our improved MMDSQ situate closely to the points achieved by

ECMDSQ at all rates. Similar to ECMDSQ, the central distortionD0 achieved by improved

MMDSQ gradually decrease from the biggest to the smallest value at all rates. ECMDSQ

has a slight advantage in the case with small D1 and big D0 because our side decoders do

not use the message from the second stage, while in ECMDSQ the side decoders use all

the available messages. However, our improved MMDSQ has a tendency to achieve better
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Figure 4.5: Performance at 3 bits/description. ECMDSQ has the index assignment matrix
size
√
M = 16.

results when D0 is really small and D1 is relatively big. This may be attributed to the index

assignment procedure used in ECMDSQ, which restricts the achievable final partitions.

Finding the optimal index assignment for ECMDSQ is still a open problem.

The variant of our method always achieves the best performance among all the five

methods, although the difference is small at low rates as shown in Fig. 4.4 and 4.5. At high

rate, it is clear to see all the circles representing our variant design situate below all the

other points when D0 is small. However, the number of achieved tradeoff points is limited

when the rate is low. Therefore, our improved MMDSQ with enhanced decoders is more

suitable to be used at high rates where the effect of rate loss is negligible compared to the

effect of improvement in the side distortions.
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4.6 Conclusion

This chapter proposes the improved MMDSQ design. The improvement resides in using

optimized encoder partitions. The optimization problem is formulated as a minimization

of a weighted sum of the rates and distortions aiming at those RD tuples on the lower

convex hull of the achievable RD region. The improved MMDSQ can guarantee global

optimality for finite-alphabet source when all involved scalar quantizers have contiguous

cells. The optimization is based on solving the MWP problem in a WDAG and the single-

source MWP problem in a coupled quantizer graph. The continuum tradeoffs are achieved

by varying the weights in the objective function. We also present a variant of the improved

MMDSQ with enhanced decoders, which uses the refinement information at the second

stage to improve the distortion at side decoders. This variant design effectively narrows the

gap to the theoretical bound at high rates as shown in the experimental results.

77



Chapter 5

Conclusion and Future Work

This work proposes graph-based solutions for two scalar quantization problems in network

systems, namely, two-stage Wyner-Ziv coding problem and multiple description coding

problem. Both problems are formulated as the minimization of rates and distortions such

that all points lying on the lower convex hull of the theoretical rate-distortion region can be

found.

The first design is for the two-stage Wyner-Ziv problem with forwardly/reversely de-

graded side information (SI). We assume that the binning is performed on blocks of infinite

length such that the limit in Slepian-Wolf theorem can be achieved. We present two kinds

of encoding structures based on scalar quantization for each SI degrading scenario and

focus on finding the optimal partitions. The proposed solution is based on solving the

single-source and all-pairs minimum-weight path (MWP) problem in some weighted di-

rected acyclic graphs (WDAG). The time complexity achieved by conventional dynamic

programming is O(N3), where N is the size of the source alphabet. Furthermore, a partial

Monge property is proposed to expedite the solution of the all-pairs MWP problem in a

WDAG. A thorough algorithm exploiting this property is presented. Through our extensive
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experimental results, it is clear to see that the partial Monge property holds in many situa-

tions of interest and that our coding scheme can achieve expected performance compared

to the rate-distortion (RD) bound. As a byproduct, we also obtain a solution for the tradi-

tional Heegard-Berger problem. The proposed design guarantees global optimality when

the quantizer cells are contiguous.

The other design for multiple description coding problem is an improved scheme for the

modified multiple description scalar quantizer (MMDSQ) [30], termed improved MMDSQ.

The improvement consists in that we replace the uniform partitions by the optimal ones

which minimize a weighted sum of the rates and distortions. The solution algorithm is

based on solving the all-pairs MWP problem in a WDAG and a single-source MWP prob-

lem in a coupled quantizer graph. We also propose a variant of the improved MMDSQ

with enhanced decoders, which uses the refinement message at the second stage to im-

prove distortions at side decoders. The improved MMDSQ achieves a performance close to

ECMDSQ at all rates. Meanwhile, it has a significantly better performance than MMDSQ

at low rates, while at high rates both designs achieve similar results. The variant design

obtains the smallest gap to the theoretical bounds among all the other considered designs

at all rates.

Although the work shows good performances of the graph-based solutions for both

problems, there are still some aspects that can be further explored.

• An interesting direction for future work is to investigate theoretically if the partial

Monge property holds for general sources and SI or to derive sufficient conditions

under which it is satisfied.

• It is also interesting to consider extending the WZ encoding scheme to more than two

stages.
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• Our variant of the improved MMDSQ design just simply modifies the decoding rule

after the partitions are obtained. It is interesting to incorporate the modified dis-

tortions in the optimization to generate the optimal quantizers under the modified

decoding rule.
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Appendix A

Proof of Proposition 1. We have to show that the following holds for all 1 ≤ m ≤ m′ <

n ≤ n′ ≤ N ,

ω′(m,n) + ω′(m′, n′) ≤ ω′(m,n′) + ω′(m′, n). (A.1)

If n−m′ < T1− 1 then ω′(m′, n) =∞, while if n′−m > T2 + 1 then ω′(m,n′) =∞. In

either case the right hand side of (A.1) equals∞, thus the relation is satisfied. It remains

to consider the case when n−m′ ≥ T1− 1 and n′−m ≤ T2 + 1. In this case all quantities

in (A.1) are real values. Note that if m = m′ or n = n′ the relation is trivially satisfied.

Therefore, let us assume that m < m′ and n < n′. For any k such that m ≤ k < m′, denote

∆(k, n, n′) , ω′(k, n′) + ω′(k + 1, n)− ω′(k, n)− ω′(k + 1, n′).

The quantities appearing on the right hand side of the above equation are all real values,

therefore, the expression is well defined. Further, we have

∆(k, n, n′) = ω(k, n′) + ω(k + 1, n)− ω(k, n)− ω(k + 1, n′) =
n′−1∑
j=n

∆ω(k, j).
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For m ≤ k ≤ m′ − 1 and n ≤ j ≤ n′ − 1, we have

T1 ≤ n−m′ + 1 ≤ j − k ≤ n′ −m− 1 ≤ T2.

Then we have ∆ω(k, j) ≥ 0 in virtue of (3.17). It follows that ∆(k, n, n′) ≥ 0 and further,

that

ω′(m,n′) + ω′(m′, n)− ω′(m,n)− ω′(m,n′) =
m′−1∑
k=m

∆(k, n, n′) ≥ 0.

This observation completes the proof.

Proof of FP. When g(a, d) =∞ the claim holds trivially. Let us assume now that g(a, d) 6=

∞. Since the inequality g(b, c) < g(a, c) is strict, we have g(b, c) 6=∞. The Monge prop-

erty

g(a, c) + g(b, d) ≤ g(b, c) + g(a, d) (A.2)

further implies that g(a, c) 6=∞ and g(b, d) 6=∞. Then (A.2) is equivalent to

g(a, c)− g(b, c) ≤ g(a, d)− g(b, d).

The expression on the left hand side is strictly positive according to the hypothesis, thus

g(a, d)− g(b, d) > 0, proving the claim.
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