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Abstract  

Aim: Several studies have tried to quantify overdiagnosis of prostate cancer 

with Prostate-specific antigen(PSA) screening, but estimates vary widely. This 

study aims to evaluate the degree of overdiagnosis of prostate cancer with 10 

or 14 follow-up years after the stop of screening in Finland. 

Methods: We selected 80379 men aged 55-69 years who were randomized to 

a screening or a control arm, distinguishing four birth cohorts: 1941-44,1937-

40, 1933-36 and 1929-32. The first PSA screening test occurred during1996-

1999. Men without detected as prostate cancer in the previous screening 

would be invited to the next screening 4 years later. The estimate of 

overdiagnosis is the ratio of the cumulative excess incidence to the cumulative 

incidence of prostate cancer in the screened group after the year-specific 

incidence became stable. 

Results: The patterns of all incidences in these four cohorts have not become 

stable yet, and the difference of cumulative incidence in the current longest 

follow- up years is the best estimate of overdiagnosis so far. 

Conclusion: Overdiagnosis rates of prostate cancer in people who received 

screening in Finland was estimated as 2.27%,15.4%, 11.4%, and 10.2% for 

1929-32, 1933-36,1937-40, and 1941-44 cohorts, respectively.
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Chapter 1 

Introduction 

Prostate cancer(PCa) is the third-leading cause of death from cancer in 

males. Different regions have varying incidence and mortality. The risk of PCa 

is 74% higher in blacks than in whites but remains low in Asians. Considering 

the experimental conditions, clinical and biopsy studies mostly focus on the 

people in western countries. 

In the US, the most commonly diagnosed cancer in men is prostate cancer. 

The American Cancer Society (ACS) estimated that during 2017, about 

161,360 new cases of PCa would be diagnosed in the US with an estimated 

17% death rate ("Cancer Facts & Figures 2017", 2018). 

Regarding Canada, it was estimated that 21,300 men would be diagnosed 

with prostates cancer, which represented 21% of all new cancer cases in 

males, and 4100 men which represented 10% of all cancer deaths in men 

would die from prostate cancer in 2017. 

The survival time of PCa has a close relationship with the extent of tumor at 

the time of diagnosis. Therefore, a screening program that could sensitively 

detect aggressive localized tumors in asymptomatic men might lead to a 

dramatic decrease in mortality of PCa. PSA testing revolutionized this 

screening.  
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In 1986, PSA testing was first approved by Food and Drug 

Administration(FDA) to monitor the progression of PCa. In 1994, FDA 

approved the use of PSA to test PCa for asymptomatic men. So, incidence 

rates for PCa had a dramatic increase in the late 1980s and early 1990s led by 

widespread screening with the PSA test. The infrequency of PCa for people 

below 40 implied that men should make an informed decision about PSA test 

(Smith RA, 2018). Moreover, ACS (American Cancer Society) guideline 

updated in 2001 indicated there was still uncertainty about the overall value of 

periodic testing when associated with a reduced risk of death from PCa. 

Comparison of reduction in PCa mortality in the US and Europe found that a 

study conducted in the United States failed to find any mortality benefit 

compared with the European study, where a 21% reduction was 

demonstrated. (Schröder et al., 2009) 

As a result, ACS began to recommend that it was not necessary to take PSA 

testing for asymptomatic men who had less than a 10-year life expectancy, 

and physicians were required to provide detailed information about risk and 

potential harms of early detection. 

Although the benefits of PSA testing remain controversial, people had a long 

concern on the adverse effect of PSA testing mainly because of 

overdiagnosis, which was the detection through screening of cancer that 

would have never been identified in the absence of screening (Etzioni et al., 

2018). Overdiagnosis in cancer screening could result from slow growth of the 

tumor or mortality before cancer would have caused symptoms, in which 
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cases, there would only be harmful effects on people if screening found 

cancer that would have never become clinically detected. Because it is 

impossible to recognize which individual case of cancer is the results of 

overdiagnosis, investigators need to find methods to quantify overdiagnosis 

associated with cancer screening indirectly, but there is a significant variation 

in these estimates.   

In general, there are two main approaches to estimate the overdiagnosis rate: 

modeling of disease transition and the excess-incidence approach. (Etzioni, 

R., & Gulati, R., 2015) 

The first approach models the pattern in which PCa will hypothetically occur 

without screening, and the trend by which cancer occurs with screening, then 

comparing these two models to calculate the rate of overdiagnosis, such as 

MISCAN (Draisma & de Koning, 2003; Draisma et al., 2009), which is a 

microsimulation model that simulates individual life history as a Markov 

process of states and transition to calculate overdetected rate by deriving the 

lead time, UMich model (Tsodikov, Szabo & Wegelin, 2006),where a statistical 

model was used to capture the features of PCa incidence registered for 

prostate cancer then helped us to predict lead time and overdiagnosis of 

prostate cancer, and FHCRC model (Etzioni et al., 2007; Gulati, Inoue, Gore, 

Katcher & Etzioni, 2014) where a microsimulation model linked individual’s 

PSA levels with the progression of prostate cancer. 

In all these simulating models above, investigators need to find the balance 

between the complexity and the transparency of the model. The complexity of 
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the model can be adjusted from simple, involving only a few features of the 

disease to complex, referring to many features and many transitional 

probabilities. Therefore, the disadvantage of simulating method is apparent. If 

the complex model is used to capture as many features of the disease as 

possible, it is difficult to evaluate potential biases of the result due to lacking in 

transparency. Otherwise, the simplicity may be not able to reflect the natures 

of the original data completely.  

The second approach uses the observed excess incidence rates—the 

difference between the screening and the control group. We regard this as the 

“excess-incidence” approach. The difficulty of this approach is to observe the 

counterfactual incidence data in the absence of screening.  

In this study, the second approach was chosen to calculate the overdiagnosis 

rate, and counterfactual incidence data was taken from a randomized clinical 

trial. In this trial, men were randomized into two groups, the one in the 

screened group were offered PSA testing, men in the other group would not 

be screened during the same period. Ideally, it was assumed that there were 

similar underlying risks of PCa in the two groups. 

The estimation of overdiagnosis was assumed to be the difference of 

cumulative differences between the screening and the control group, because 

research suggested that calculating the estimation from cumulative incidence 

with data taken from randomized trials was the most valid method when there 

was a sufficient follow-up after the last screening (Biesheuvel, Barratt, 

Howard, Houssami & Irwig, 2007). In particular, excess incidence in a stop-
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screen trial required using cumulative incidence, whereas a continued-screen 

trial or population setting required using annual incidence. (Gulati, Feuer & 

Etzioni, 2016) Therefore, we used the cumulative incidence to calculate the 

frequency of overdiagnosis for the stop-screen trial of Finland.  

Chapter 2 

Data and Method 

2.1 Data 

In this analysis, all data was taken from Finland section of the European 

Randomized study of Screening for Prostate Cancer (ERSPC). The ERSPC is 

a multi-center, randomized screening trial between an intervention arm offered 

PSA screening and a control arm without any intervention.  

The Finland section of the ERSPC, one of eight participating countries of the 

ERSPC, began in 1996. About 80379 men aged 55-69 years were 

randomized to a screening or a control arm, distinguishing four birth cohorts: 

1941-44,1937-40, 1933-36 and 1929-32. The men in the screening group 

were offered to screen every four years from their first screening time. The 

first round was performed in 1996-99, the second round in 2000-2003. The 

final round occurred in 2004-2007 but excluded men aged >71 years. A PSA 

level 4.0 ng/ml was used as the indication for biopsy. Also, the digital rectal 

examination was offered to the men with serum PSA between 3.0 ng/ml and 

3.99 ng/ml. 
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2.2 Definition of “catch-up” point 

For a randomized screening study, Figures 2.1 and 2.2 display the trend of 

incidence in the presence or absence of overdiagnosis, respectively. 

Each curve (Figures 2.1 or 2.2) of year-specific incidence in screening group 

showed a peak during every screening round. These increases could be 

explained by the fact that cancer which would have been presented clinically 

in later time were diagnosed by PSA screening. After the screening stopped, 

the year-specific incidence of screening group was lower than the incidence of 

control group because cancer that would have been diagnosed in these years 

had already been detected earlier by screening. If there was overdetection 

(Figure 2.1) due to the screening, there would be an excess of incidence of 

PCa in the screened group compared with the unscreened group. Otherwise 

(Figure 2.2), the cumulative incidence in the screened and control group 

would equalize once the lead time was accounted for. 

The frequency of overdetection is all the excess incidence once lead-time is 

accounted for. Lead time is the time interval from screen detection to the time 

of clinical presence. When the lead time has elapsed, the year-specific 

incidence in the screening group is expected to catch up with the incidence in 

the unscreened control group.  

We define the point at which year-specific incidence of PCa in the screening 

group equalizes the rate in the control group as the “catch-up” point. Then, the 

difference of year-specific rate is used to build a spline regression model to 

determine the value of “catch-up” point. Compared to the cumulative one, the 
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independence of year-specific incidence difference offered a prerequisite to 

establishing regression model. Moreover, it was much easier to use the spline 

regression model for defining whether the incidence became stable (slope=0) 

than any time series model, although spline regression model’s loss of smooth 

might lead to the poor performance of fit to data. To give an insightful 

evaluation of the spline regression model and accurate estimation of the 

“catch-up” point, we simulated the original data before we fitted the regression 

model. 

Figure 2.1: Schematic plot for the men offered PSA screening at 60, 66, and 

71 years old (based on the hypothetical data) in the presence of overdiagnosis 
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Figure 2.2: Schematic plot for the men offered PSA screening at 60, 66, and 

71 years old (based on the hypothetical data) in the absence of overdiagnosis 
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2.3 Simulation for finding “catch-up” point 

Simulation is a technique for predicting the performance of experiment on the 

model of the system. The experiments are calculated using a computer model 

rather than on the real system as the latter will be ineffective, expensive and 

time-consuming. In this thesis, a simulation study was conducted to evaluate 

the availability of finding the stabilized point by using the spline regression 

model. 

We obtained a random sample of observed data from the density of the 

normal distribution with pre-specified values of parameters N(µ, σ). The year-

specific rate difference was regarded as the parameter µ, while σ could be 

calculated as follows: 

The year-specific rate of different age cohort was assumed to follow the 

Poisson distribution. So, the estimated sample variance of the year-specific 

rate could be calculated by: 

𝑉𝑎𝑟(µ𝑖𝑗) =
𝑋𝑖𝑗

𝜂𝑖𝑗
2                                            𝑖 =

1,2              (1) 

Where 𝑥1. is the number of PCa cases in the screening group, 𝜂1𝑗 is the total 

number of people in the screening population at the beginning of the j-th visit, 

µ1𝑗 indicates the j-th year-specific incidence of screening group. 𝑥2𝑗  , 𝜂2𝑗  and 

µ2𝑗 are corresponding variables in the control group. 
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Since the control group and the screening group were independent, the 

variance of the rate difference could be calculated by    

𝑉𝑎𝑟(𝜆𝑗) = 𝑉𝑎𝑟(µ1𝑗) + 𝑉𝑎𝑟(µ2𝑗)                    (2) 

Where λ𝑗 represents the j-th year-specific incidence difference. 

According to the central limit theorem, the year-specific rate difference 

followed a normal distribution. 

Since the “catch-up” point could only occur after the last screening, we 

simulated year-specific rate difference data after last screening to follow a 

normal distribution N (µ, σ) for 100 or 500 times with µ equal to the rate 

difference and σ calculated by equations (1) and (2).  

To find the “catch-up” point, spline regression was applied to simulate year-

specific rate difference of different age cohort between screening and control 

group after the last screening. 

Ideally, the spline regression model for the simulated data will approximately 

have the trends presented in Figure 2.3. The sharp decrease at the beginning 

is because cancers that would have been diagnosed for the screening group 

in these years had already been detected earlier by screening and so 

incidence of the screening group appears lower than the control group for a 

few years. Eventually, at some point in time after screening stops, the 

incidence of PCa in the screened and unscreened groups will be equal. 

Catch-up point will be the point after which there is no longer any difference in 

annual incidence between the control group and screening group. 
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Figure 2.3: Schematic plot of spline regression model with four segments for 

year-specific rate difference.  

 

The part of the graph before the blue line displays the model when follow-up 

years are not long enough for rate difference to become stable. 

This model can be achieved if there is enough data point for every segment, 

especially for the second and third segment of this model. 

Otherwise, Figure 2.4 shows a compromise model without enough data points 

for the second and the third segment. “Catch-up” point has the same definition 

as the model with four segments. 

Figure 2.4: Schematic plot of spline regression model with three segments for 

the simulated year-specific rate difference.  

R
at

e 
d

if
fe

re
n

ce
 o

f 
p

ro
st

at
e 

ca
n

ce
r 



MSc. Thesis - Jiarui Hu; McMaster University - Mathematics and 

Statistics 

12 

 

 

The graph before the blue line displays the model when follow-up years are not long 

enough for rate difference become stable. 

In this study, Akaike Information Criterion (AIC) was chosen to select the 

number of breakpoints and the best fitted spline regression model among 100 

models created by simulating. AIC could estimate the relative loss-information 

by dealing with the trade-off between the goodness of fit of spline regression 

model and the complexity of the model. The established model could then 

give an estimate of the value of breakpoints and slopes in each segment.  

For every breakpoint, an initial value was required to input to build the spline 

regression model. The initial value of each breakpoint was determined by the 

trend of year-specific rate difference of PCa. Figure 2.3 and 2.4 explicitly 

displayed that the first break point occurred when year specific rate reached 

the lowest point. Regarding Figure 2.3, the second breakpoint is exactly the 

“catch-up” point when the rate difference started becoming stable. For a 

model like Figure 2.4 with four segments, the second breakpoint is the point 

when the rate difference began to increase, and the third one is the “catch-up” 
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point. Therefore, the first original breakpoints value was set at 9th and 17th 

follow-up years for the 1941-44,1937-40, and 1933-36 cohort, 7th and 12th 

follow-up years for the 1929-32 cohort.  

The prerequisites for the complete model with “catch-up” point (as Figures 2.3 

and 2.4) is enough follow-up years as long as the longest lead time for 

screening being fully adopted. (Gulati, Feuer & Etzioni, 2016).  

However, the estimation of duration of the detectable preclinical phase 

(DPCP), which is the upper limit of lead time, is 10-14 years (Auvinen A, 2018) 

longer than our current longest follow-up years for the Finland data. So, the 

problem about how to verify the availability of finding catch-up point by using 

spline regression need to be resolved when follow-up years of original data 

are not long enough. In such condition, artificial data was applied to prove 

whether spline regression could determine the catch-up point when the follow-

up years of real data are not long enough. 

First, we set up a segmented inputting function (as Figures 2.3 and 2.4) based 

on the model fitted by the original Finland data but allowing for a long period of 

follow-up years for the year-specific rate difference to come back to zero and 

to become stable. Secondly, we simulated inputting function to follow a normal 

distribution, the sample variance of which was taken from the variance of real 

data. Finally, spline regression was used to fit these artificial data to verify 

whether we could estimate the value of “catch-up” point when its existence 

was surely confirmed. 
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2.4 Estimation of Overdiagnosis  

The definition of overdiagnosis used in this analysis was screening-detected 

cancer that wouldn’t have been clinically significant for the remainder of the 

patient’s life in the absence of screening. Therefore, the frequency of 

overdetection was all the excess incidence once “catch-up” point was 

confirmed. Then the measure of overdiagnosis rate could be calculated as 

follows: 

 

(

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑜𝑓 𝑝𝑟𝑜𝑠𝑡𝑎𝑡𝑒  
𝑐𝑎𝑛𝑐𝑒𝑒𝑟 𝑖𝑛 𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

−
𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑜𝑓 𝑝𝑟𝑜𝑠𝑡𝑎𝑡𝑒 

𝑐𝑎𝑛𝑐𝑒𝑟 𝑖𝑛 𝑢𝑛𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑 𝑔𝑟𝑜𝑢𝑝
  

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑜𝑓 𝑝𝑟𝑜𝑠𝑡𝑎𝑡𝑒 𝑐𝑎𝑛𝑐𝑒𝑟
𝑖𝑛 𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑 𝑔𝑟𝑜𝑢𝑝

) × 100% (3) 

 

The 95% confidence interval for the frequency of overdiagnosis could be 

calculated as follows: 

     𝐼𝑠 − 𝐼𝑐 ± 1.96√𝑠𝑠
2 + 𝑠𝑐

2                         (4) 

 

Where 𝐼𝑠, 𝐼𝑐, and 𝑠𝑠, 𝑠𝑐 are cumulative incidence and standard error of the 

screened population and unscreened population, respectively. 

Chapter 3 

Results 
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3.1 Prostate cancer Incidence 

Data used in this study was taken from the Finland data, consisting of 80,458 

men born from 1929 to1944, which was part of European Randomized Study 

of Screening for Prostate Cancer (ERSPC).  

Figures 3.1,3.2,3.3, and 3.4 displayed the prostate cancer incidence for 1929-

32, 1933-36, 1937-1940, and 1941-1944 cohorts. 

A preliminary glance at the plot of prostate cancer incidence showed there 

were apparent differences among the different birth cohorts. The final 

cumulative incidence value in Figures 3.1, 3.2, 3.3, and 3.4 demonstrated the 

fact that the prevalence had a close relationship with age. (Bell, Del Mar, 

Wright, Dickinson & Glasziou, 2015). Based on above fact, all the analysis 

and results were decided to be displayed by different birth cohorts. 

The trend of all these plots verified our assumption set in Figure 2.1. 

Specifically, the difference of cumulative incidence for the 1929-32 cohort 

seemed to trend closely towards zero-difference between the screening group 

and the control group, whereas the other cohorts still retained a non-zero 

difference. 

For Figure 3.1, the two peaks in incidence of screening corresponded to the 

two screening rounds required by the study protocol. The first screening 

occurred during 1996-1999, the second was 2000-2003 (corresponding to the 

X-axis 1 and 5). When participants in the screening group stopped undergoing 

screening at year 5, its year-specific incidence fell below control-arm 
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incidence because of lead-time effect. The year-specific incidence in the 

screening group then gradually rose back to incidence of control group. The 

annual incidences of two groups seemed to tend closely to zero-difference, 

which implied that excess cumulative incidence first might be equal to the 

number of overdiagnosed cancer at about 18 years.  

Three humps in the incidence of screening group (Figures 3.2, 3.3, and 3.4) 

corresponded to the three screening rounds required by the study protocol. 

The first screening occurred in 1996-99, the second was 2000-03, and the 

third was 2004-07. (corresponding to the X-axis 1, 5 and 9). After screening 

stopped at 9 years, the year-specific incidence of screening group was less 

than the incidence of the control group for several years because of lead-time 

effect. The year-specific incidence of screening group then began to come 

back to control-arm incidence gradually. 

In Figures 3.1B, 3.2B, 3.3B, and 3.4B the cumulative excess rates of prostate 

cancer were shown for different age during the study years. The excess 

incidence got the highest point during the last screening round. At the end of 

the follow-up, the cumulative excess rate was about 4.0e-03 for men enrolled 

in the program when they were 67-70 years old. For men aged 55-58 and 59-

62 years at the enrolment, the excess cumulative incidence decreased over 

time to 1.5e-02 and 1.0e-02 after the last screening, respectively. Unlike other 

cohorts, the excess incidence of men aged 63-66 years at the enrolment 

fluctuated and finally dropped to 2.5e-02 at the end of follow-up years. 
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Figure 3.1: Prostate cancer incidence of cohort 1929-32.  

 

Figure 3.2: Prostate cancer incidence of 1933-36 cohort.
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Figure 3.3: Prostate cancer incidence of 1937-40 cohort. 

 

Figure 3.4: Prostate cancer incidence of 1941-44 cohort. 
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Figures all showed an obvious increase in incidence in the screened group 

during their first screening round. This increase still happened in the following 

screening rounds, because it was difficult to get the perfect sensitivity level of 

screening and there were still new cases that had developed since previous 

screening. After screening stopped, the year-specific incidence of screening 

group continued decreasing until reaching the lowest point. Then the year-

specific rate difference maintained the same level for several years and then 

reverted to 0. 

According to the trend of the year-specific rate difference, the lowest point and 

the point at which rate difference began to increase and after which rate 

difference was equal to 0 were decided to be the initial value of breakpoints to 

fit the spline regression model iteratively. So, the 11, 15 and 17 follow-up 

years were set to be the original joint points for 1933-36,1937-40 and 1941-44 

cohort. For 1929-33 cohort, the original breakpoints were chosen to be 7, 12 

and 14 follow-up years.    

3.2 Goodness of fit of Spline regression model   

AIC was chosen to be the criterion to assess the fit of the predicted model with 

various numbers of breakpoints. 
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Table 3.1: Summary of the AIC value of spline regression model with different 

number of breakpoints.  

AIC 1929-32 1933-36 1937-40 1941-44 

1 break point  -135.2 -84.6 -100.4 -94.4 

2 break point  -132.7 -81.1 -104.8 -104.8 

3 break point  -129.1 NA NA NA 

NA: Not converged when fitting the initial data to spline regression model. 

The smallest AIC value suggested that this model had the best fit and lost 

minimum information compared to the model with larger AIC value. According 

to Table 3.1, appropriate number of breakpoints for the different cohort was 

chosen for the next simulating process: 1 joint point for 1929-32 cohort and 

1933-36, 2 for 1937-40 and 1941-44 cohort.  

Given the proper number of breakpoints we need to estimate for different age 

cohort, the model also required an initial inputted value for every breakpoint to 

fit model. 

For cohort 1929-32: First, we calculated the sample variance of rate 

difference, then simulated the real rate difference 100 times by assuming they 

followed a normal distribution. Secondly, we fitted the simulated data to a 

spline regression model. Table 3.1 implied that the model with only one break 

point was the best spline regression model. Figure 2.3 displayed that the 

breakpoint of the model with two segments was exactly the point when rate 
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difference attained its lowest value. We preliminary assumed this happened at 

7 follow-up years, so we set 3 (corresponding to 7 follow-up years, since we 

only simulated data after 5 follow-up years, the last screening time point) as 

the initial value of break points to fit spline regression model. Finally, we 

estimated the value of breakpoint and slope3 by analyzing statistics after 

fitting the simulated data.  

Among the 100 times simulated data, 98% percentage of simulated data 

succeeded in fitting to the spline regression model with 1 joint point. All 

statistics of parameters were reported in Table 3.2. Mean value was selected 

to estimate the value of breakpoint and slope for the second segment because 

the histogram plot denoted that they roughly followed a normal distribution 

when excluding two outliers in the boxplot of joint point 1 (Figure 3.5). 

Therefore, the estimated value of breakpoint (the point when year-specific rate 

difference reached to the minimum value) in the model was 2.29 years. In 

terms of slope2, the estimated value was 5.9e-4. The histogram plot (Figure 

3.5) of slope2 illustrated that 0 is not contained in the whisker range of slope2. 

This phenomenon told us that the slope of the second segment was 

significantly larger than 0. 

To verify the goodness of fit of this model to real data, we made a plot (Figure 

3.6) of models with the smallest AIC (-140.2) value among 100 spline 

regression models for simulated data. The line chart reached trough at around 

the second follow-up year since last screening stopped and then began to rise 
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to 0. The estimated value and whisker range (Figure 3.5) of slope for the 

second segment implied that the last segment had not become stable yet. 

Figure 3.5: The histogram plot and the box plot of the first break point and the 

slope for the second segment for fitted spline regression model after 100 

times simulation for 1929-32 cohort. Box plots include median and 

interquartile range; there are two points beyond the whiskers range of joint 

point 1 and three outliers in the distribution of parameter slope2.  
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Table 3.2: Summary of statistics data for parameters of spline regression by 

cohort 1929-32. 

para Joint point 1 Slope1 Slope2 

mean 2.29 -0.018 0.0006 

sd 0.140 0.00302 0.00019 

NA 2% 

NA: Percentage of cases that are not converged among 100 times simulation.  

SD: Standard deviation for every parameter we estimated 

Joint point 1: the value of joint points 
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Slope 1 and 2: slopes for the corresponding segments. 

 

Figure 3.6: Year-specific prostate cancer rate difference for 1929-32 cohort in 

the Finland section of the ERSPC trial as original observed data (OBS), and 

as predicted by the spline regression model (MOD). The model has the fewest 

loss information chosen by AIC value. 

 

For cohort 1933-36: We repeated the same procedure to obtain simulated 

data for fitting spline regression model as cohort 1929-32. Similarly, the spline 

regression model had the smallest AIC value. By Figure 3D, a rate difference 

of prostate cancer fell to the lowest point at 11 follow-up years, so we also set 

3 (corresponding to 11 follow-up years) as the first original breakpoint to fit 

regression model. There was 99% percentage of simulated data that 

converged to the spline regression model. All statistics of parameters were 

reported in table 3.3. Mean value was selected to estimate the joint point and 

slopes because the distributions of breakpoint and slope2 were 

roughly symmetric and unimodal when not considering outliers. Therefore, we 
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estimated rate difference of prostate cancer for people born from 1933-36 

attained the minimum value at around 2.41 follow-up years after the last 

screening visit and then began to increase at the slope of 1.01e-3  

Figure 3.8 plotted the best spline regression model with the smallest AIC (-

101.4) value. In this plot, the lowest point occurred at around 2.5 follow-up 

years, which corresponded to the estimation above. After that, the rate 

difference appeared to become stable. However, the box plot showing that 0 

was not contained in the whisker range of slope2 indicated the estimated 

value of slope was significantly larger than 0.    

Table 3.3: Summary of statistics for parameters of spline regression by cohort 

1933-36. 

para Joint point 1 Slope1 Slope2 

mean 2.41 -1.61e-02 1.01e-03 

sd 0.240 3.366e-03 2.506e-04 

NA                  1% 

NA: Percentage of cases that are not converged among 100 times simulation.  

SD: Standard deviation for every parameter we estimated 

Joint point 1: the value of joint points 

Slope 1 and 2: slopes for the corresponding segments. 
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Figure 3.7: The histogram plot and box plot of the first break point the slope 

for the second segment for fitted spline regression model after 100 times 

simulation for 1933-36 cohort.  
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Box plots include median and interquartile range; there are three points 

beyond the whiskers range of joint point 1 and two suspected outliers in the 

distribution of parameter slope2. 

Figure 3.8: Year-specific prostate cancer rate difference for cohort 1933-36 in 

the Finland of the ERSPC trial as original observed data (OBS), and as 

predicted by the spline regression model (MOD). The model has the fewest 

loss information chosen by AIC value. 
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Unlike 1929-32 and 1933-36 cohorts, spline regression model with two break 

points was the best choice for the 1937-40 cohort according to table 3.1. The 

plot of incidence of prostate cancer displayed that year-specific rate difference 

fell to the lowest point at the 11th follow-up year and maintained the same level 

until the 17th follow-up year, at which rate difference began to increase, so we 

set 3 (corresponding to 11 follow-up years) and 8 (corresponding to 17 follow-

up years) as initial value of breakpoints to fit spline regression model. First, we 

simulated real data 100 times. Among the 100 spline regression models, there 

was about 40% of simulated data that converged to the spline regression 

model with three segments. For the other 60% instances, there was only one 

data point in some segments. Therefore, to acquire enough number of data 

that converged to this spline regression model, we expanded the sample size 

for simulation from 100 to 200. All statistics results of parameters were 

reported in Table 3.4. The histogram plot (Figure 3.9) of breakpoint 1 and 

breakpoint 2 displayed that distributions of these two parameters were 

asymmetric. This fact implied that mean value would overestimate or 

underestimate the value of these two break points. So, the median would be a 

more appropriate statistic to estimate these two breakpoints. We estimated 

that year-specific rate difference reached the bottom at around the 2nd follow-

up year. Afterward, rate difference started reverting to 0. Since the histogram 

plot of slope3 was roughly symmetric, it was reasonable to estimate this 

parameter by using mean value.  

Figure 3.10 plotted the best model with the minimum AIC value (-104.70). 

There were three segments of year-specific rate difference in this model as 
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displayed in Figure 3.10. Rate difference dropped sharply to the lowest point 

in the 2nd follow-up year (since last screening time), then almost leveled-off for 

7 years. Afterward, rate difference continued increasing until the end of the 

trial. Obviously, year-specific rate difference had not become stable yet. Under 

this condition without enough follow-up years, “catch-up” point was unable to 

be confirmed.    

Table 3.4: Summary of statistics for parameters of spline regression by cohort 

1937-40. 

Para Joint point 1 Joint point 2 Slope1 Slope2 Slope3 

mean 2.14 7.78 -0.016 1.02e-04 2.41e-03 

Median 2.10 8.42 -0.016 7.59e-05 2.51e-03 

SD 0.119 1.413 0.0025 5.49e-04 1.642e-03 

NA                         60% 

NA: Percentage of cases that are not converged among 200 times simulation.  

SD: Standard deviation for every parameter we estimated 

Joint point 1,2: the value of joint points 

Slope 1, 2 and 3: slopes for the corresponding segments. 
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Figure 3.9: The histogram plot of breakpoints and slopes for second and third 

segments of fitted spline regression model after 200 times simulation by 

cohort 1937-40.  
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Histogram of Joint point 1 is right skewed, while Joint point 2 is left-skewed. 

Distributions of parameters are roughly symmetric.  

Figure 3.10: Year-specific prostate cancer rate difference for 1937-40 cohort 

in the Finland of the ERSPC trial as original observed data (OBS), and as 

predicted by the spline regression model (MOD). The model has the fewest 

loss information chosen by AIC value 
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Similarly, spline regression model with two break points made the best 

balance between the good of fit and simplicity for 1941-44 cohort by table 3.1. 

Since the trend of year-specific rate difference for 1941-44 cohort was similar 

to the trend of 1937-40 cohort, we set the same initial value of breakpoint to fit 

the model. There was about 55.5% of simulated data that converged to the 

spline regression model with 2 joint points because for the other 44.5% of the 

instances, there was only one data point in some segments. Therefore, we 

expanded the sample size of simulation from 100 to 200 to acquire more 

converged regression models with required number of segments. 

Table 3.5 summarized the statistical results of the fitted spline regression 

model. Histogram plot of these two breakpoints displayed that their distribution 

(Figure 3.11) were all asymmetric but unimodal, which indicated that it was 

more reliable to measure joint points by using median rather than mean value. 

As the distributions of slopes were roughly symmetric, we used mean value to 

estimate slope. 

Fitted model with the minimum AIC value (-139.00) was displayed in Figure 

3.12. The small difference between slope2 and slope3 denoted the difficulty of 

predicting the value for the second break point. That is why the standard 

deviation of joint point 2 is so large compared to joint point 1. Like other three 

cohorts, we could not confirm whether catch-up point occurred or not 

according to the plot of fitted model (Figure 3.12). 
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Table 3.5: Summary of statistics for parameters of spline regression by 1941-

44 cohort. 

Para Joint point 1 Joint point 2 Slope1 Slope2 Slope3 

mean 2.32 7.50 -0.01 -1.68e-04 1.31e-03 

Median 2.28 8.00 -0.01 -2.84e-04 1.10e-03 

SD 0.224 1.285 0.0019 6.36e-04 1.385e-03 

NA                         44.5% 

NA: Percentage of cases that are not converged among 200 times simulation.  

SD: Standard deviation for every parameter we estimated 

Joint point 1,2: the value of joint points 

Slope 1,2, and 3: slopes for the corresponding segments. 

Figure 3.11: The histogram plot of breakpoints and slopes for second and third 

segments of fitted spline regression model after 200 times simulation by 1941-

44 cohort. Distributions of all these five parameters are asymmetric.  
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Figure 3.12: Year-specific prostate cancer rate difference for 1941-44 cohort 

in the Finland of the ERSPC trial as original observed data (OBS), and as 

predicted by the spline regression model (MOD). The model has the fewest 

loss information chosen by AIC value. 

 

3.3 Spline regression for artificial data 

Follow-up years for all cohorts were not long enough to confirm the place of 

“catch-up” point we defined. To verify the possibility of finding the “catch-up” 

point by using spline regression model, inputting function was established to 

build artificial data for simulation. All slopes and breakpoints especially “catch-

up” point were predetermined in inputting function.  

In the inputting function, we assumed that “catch-up” point occurred at 18th 

follow-up years for all cohorts and then added extra 5 years for which year-

specific rate difference maintained the value of 0. Since the “catch-up” point in 

the inputting function occurred after 18 study years. The pattern of the 

inputting function from 1st study year to 18th year could refer to the estimated 
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value in our previous simulating analysis combined with the ideal models as 

Figures 2.3 and 2.4.  

According to the different number of breakpoints, inputting function was 

approximately similar to Figure 2.4 for 1929-32 and 1933-36 cohorts; and to 

Figure 2.3 for 1937-40 and 1941-44 cohorts, respectively. 

After dealing with the inputting function, we needed to acquire the sample 

variance of rate difference for extra 5 follow-up years. Since we did not have 

any information about new-added follow-up years, the most straightforward 

way was to regard the variance of last 5 years of real data as the sample 

variance of new data. 

Then we got the artificial data by simulating the inputting function to follow a 

normal distribution 100 times. Finally, artificial data was used to fit the spline 

regression model to find “catch-up” point. By comparing the difference 

between the estimated value of “catch-up” point and the predetermined value 

of “catch-up” point, we could assess the reliability of our method to estimate 

overdiagnosis. 

Figure 3.13 showed the inputting function of year-specific rate difference for 

each cohort, with fitted spline regression model of simulated artificial data 

painted by the purple line.  

For 1929-32 and 1933-36 cohorts, apparent deviation of the third segment 

(3.13A or 3.13B) between fitted spline regression model and inputting function 
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could be explained by the significant sample variance we set for artificial data, 

which was almost as 1.5 times large as other two cohorts.    

In each predetermined function, the “catch-up” point was determined to occur 

in 18th years. Since there are only two screenings for 1929-32 cohort, “catch-

up” point was assumed to occur in 14th follow-up year after last screening 

time. Otherwise, catch-up point was set at 10th follow-up year after the last 

screening round. 

Figure 3.13: Inputting function(SFUN) and as fitted spline regression model 

(FMOD) after simulating the inputting function.3.13A, 3.13B, 3.13C and 3.13D 

were corresponding to 1929-32, 1933-36, 1937-40, and 1941-44 cohort, 

respectively.  

 

   

3.13A 3.13B 

3.13C 3.13D 
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For 1929-32 cohort, estimated slope of the last segment was -1.54e-04 which 

was roughly equal to 0. So, we could confirm that the second joint point was 

exactly the “catch-up” point. Moreover, the histogram plot of parameter joint 

point 2 (catch-up point) displayed that the distribution is asymmetric, which 

implied that median value was more precise to estimate the place of joint point 

2 than the mean value. So, the error of the estimation for “catch-up” point 

would be (14-13.07)/14*100%=6.64% 

Table 3.6: Summary of statistics for parameters of spline regression by 1929-

32 cohort. 

Para Joint point 1 Joint point 2 Slope1 Slope2 Slope3 

mean 2.36 12.61 -1.84e-02 6.67e-04 -1.54e-04 

Median 2.35 13.07 -1.79e-02 6.44e-04 1.10e-03 

True  2.30 14.00 -0.018 5.95e-04 0 

SD 0.195 3.945 3.156e-03 5.20e-04 -5.684e-05 

NA                         20% 

NA: Percentage of cases that are not converged among 100 times simulation.  

SD: Standard deviation for every parameter we estimated 

Joint point 1,2: the value of joint points 

Slope 1,2, and 3: slopes for the corresponding segments. 

True Value: the value we predetermined for the inputting function 
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Figure 3.14: The histogram and box plots of breakpoints and slopes of fitted 

spline regression model after 100 times simulation for artificial data by 1929-

32 cohort. Distribution of slope for the last segment was symmetric, and 0 was 

contained in its whisker box range. 

 

 



MSc. Thesis - Jiarui Hu; McMaster University - Mathematics and 

Statistics 

40 

 

 

For 1933-36 cohort, asymmetric distribution of slope3 indicated that median 

value (-0.0009407) is a reasonable choice to estimate this parameter. As the 

estimated value for the slope of the last segment was almost 0, we could infer 

that Joint point 2 was the “catch-up” point, and its estimated result was 12.91 

since the histogram plot of joint point 2 showed its distribution was 

asymmetric. So, the error of estimation for “catch-up” point would be (12.91-

10)/10*100%=29.1% 

 



MSc. Thesis - Jiarui Hu; McMaster University - Mathematics and 

Statistics 

41 

 

Table 3.7: Summary of statistics for parameters of spline regression by 1933-

36 cohort. 

Para Joint point 1 Joint point 2 Slope1 Slope2 Slope3 

mean 2.58 11.71 -1.63e-02 1.30e-03 -1.48e-03 

Median 2.53 12.91 -1.64e-02 1.16e-03 -9.41e-04 

True  2.41 10 -1.61e-02 1.01e-03 0 

SD 0.264 2.739 3.613e-03 6.651e-04 1.925e-03 

NA                         39% 

NA: Percentage of cases that are not converged among 100 times simulation.  

SD: Standard deviation for every parameter we estimated 

Joint point 1,2: the value of joint points 

Slope 1,2, and 3: slopes for the corresponding segments. 

True Value: the value we predetermined for the inputting function 

Figure 3.15: The histogram and box plots of breakpoints and slopes of fitted 

spline regression model after 100 times simulation for artificial data by 1933-

36 cohort. In the box plot of slope3, 0 was contained in the whisker range. 

 =  
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For the 1937-40 cohort, unlike the former two cohorts, there were in total four 

segments in the inputting function and fitted model (as Figure 3.13C). Not 

considering the outliers, distribution of slope4 was primarily symmetric (as 

Figure 20). As the estimated value (-1.95e-04) of slope3 was almost 0, it could 

be believed that joint point 3 was the “catch-up” point, and its estimated result 

was 10.15 (median value) since the histogram plot of joint point 3 showed that 

its distribution was asymmetric. So, the error of estimation for “catch-up” point 

was 1.5% 



MSc. Thesis - Jiarui Hu; McMaster University - Mathematics and 

Statistics 

44 

 

Table 3.8: Summary of statistics for parameters of spline regression by the 

1937-40 cohort. 

para Joint point 1 Joint point 2 Joint point 3 

mean 2.13 7.76 10.44 

Median 2.10 8 10.15 

True value 2.10 8.42 10 

sd 0.135 1.234 1.233 

NA                         60% 

 

 

para Slope1 Slope2 Slope3 Slope4 

mean -1.54e-02 -1.14e-04 2.12e-03 -1.95e-04 

Median -1.55e-02 -1.66e-04 2.02e-03 -1.59e-04 

True value -1.60e-02 0 2.41e-03 0 

sd 2.288e-03 5.121e-04 1.129e-03 5.861e-04 

NA                         60% 

NA: Percentage of cases that are not converged among 100 times simulation.  

SD: Standard deviation for every parameter we estimated 

Joint point 1,2: the value of joint points 

Slope 1,2, 3 and 4: slopes for the corresponding segment. 

True Value: the value we predetermined for the inputting function 

Figure 3.16: The histogram and the box plot of breakpoints and slopes of fitted 

spline regression model after 100 times simulation for artificial data by the 

1937-40 cohort.  
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In the box plot of slope4, 0 was contained in the whisker range. 

For the 1941-44 cohort, there were also four segments in the inputting 

function and fitted model (as Figure 3.13D). Distribution of slope4 was 

basically symmetric. As the estimated value (-1.90e-04) for the slope of the 

last segment was almost 0, it seemed that Joint point 3 was the “catch-up” 

point, and its estimated result was 10.69(median value) since the histogram 

plot of joint point 3 showed its distribution was asymmetric. So, the error of 

estimation for “catch-up” point would be 6.9%. 
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Table 3.9: Summary of statistics for parameters of spline regression by the 

1941-44 cohort. 

para Joint point 1 Joint point 2 Joint point 3 

mean 2.33 7.058 11.01 

Median 2.29 7.11 10.69 

True value 2.28 8.00 10 

sd 0.237 1.563 1.725 

NA                         60% 

 

para Slope1 Slope2 Slope3 Slope4 

mean -9.92e-03 -2.22e-04 9.77e-4 -1.90e-04 

Median -1.01e-02 -1.57e-04 8.64e-04 -1.29e-04 

True value -1.00e-02 0 1.10e-03 0 

sd 2.032e-03 6.805e-04 7.54e-04 9.36e-04 

NA                         60% 

NA: Percentage of cases that are not converged among 100 times simulation.  

SD: Standard deviation for every parameter we estimated 

Joint point 1,2: the value of joint points 

Slope 1,2, 3 and 4:  slopes for the corresponding segment. 

True Value: the value we predetermined for the inputting function 
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Figure 3.17: The histogram and the box plots of breakpoints and slopes of 

fitted spline regression model after 100 times simulation for artificial data by 

cohort 1941-44. In the box plot of slope4, 0 was contained in the whisker 

range. 
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3.4 Spline regression model for Netherlands section 

Excess-incidence approach was also tried to apply to the Netherlands data.  

For the Netherlands section, men in the age group 54–74 years were 

randomized to either a screening group or a control group. Men randomized to 

the control group were not offered PSA testing. Men in the screening group 

were invited for PSA testing. A PSA level 3.0 ng/ml was used as the indication 

for biopsy. Men were invited for next screening every 4 years if no PCa was 

detected at previous screening or during the preceding interval. 

Figure 3.18: Year-specific rate difference of the Netherlands data between the 

control arm and screening group who only received screening once only. 
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Figure 3.18 showed the pattern of the year specific-rate difference for the 

Netherlands data. The annual incidence acquired its highest value at the very 

first screening round, then dropped sharply to 0 and finally maintained this 

level until the end of follow-up years.   

Figure 3.19 plotted the best model with the minimum AIC value (-199.5264). 

There were two segments of year-specific rate difference in this model. Rate 

difference dropped sharply to the bottom after 2 follow-up years (after the last 

screening time), then almost leveled-off all the time. It seemed the “catch-up” 

point was the joint point. The estimate value of slope2 also verified this. 

According to our definition of “catch-up” point, the year-specific incidence 

became stable once the screening stopped. However, this trend of year-

specific rate in this screening group was unable to follow the normal pattern of 

annual incidence in a screening group for a randomized trial. 

Table 3.10: Summary of statistics for parameters of spline regression for the 

Netherland data 

Para Joint point  Slope1 Slope2 

mean 2.059 -0.1373 -8.134e-05 

SD 0.0123 0.0046 8.6114e-05 

NA 0% 

NA: Percentage of cases that are not converged among 100 times simulation.  

SD: Standard deviation for every parameter we estimated 

Joint point 1: the value of joint points 
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Figure 3.19: Observed year-specific incidence difference of Netherlands (OD) 

and as fitted spline regression model (FMOD) after simulating the Netherlands 

data. 
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Chapter 4 

Discussion 

In the method section, we verified the reliability of this spline regression model 

to confirm the value of “catch-up” point. The error of the estimation of “catch-

up” point was 6.24%, 29.1%, 1.5%, and 6.9% for these different four cohorts, 

respectively. The acceptable error for the spline regression mode indicated 

that sufficient follow-up years as long as the longest preclinical period for 

screening stabilizing should be provided to acquire an unbiased empirical 

estimate of the case of overdiagnosis. Based on our results, we could 

conclude that current 8 or 10 follow-up years were not long enough for us to 

confirm whether the incidence stabilized or not. The conclusion, it took as long 

as 10-14 years for the change of the incidence caused by PSA screening 

becoming stable (Auvinen A, 2018) acquired from a study about the estimate 

of lead-time in prostate cancer verified our result. Therefore, it was believed 

that the difference of cumulative incidence for prostate cancer between the 

screening group and control group still tended to narrow. Under this 

circumstance, the estimation of overdiagnosis could be calculated from the 

difference of cumulative incidence in the last year after screening stopped, 

nevertheless it would be overestimated.  

Regarding the data from Netherlands section, the different pattern of year-

specific rate indicated it was not available for the Netherlands data to use 

spline regression model to find “catch-up” point due to the extremely high 
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incidence of prostate cancer during their first screening time. This 

phenomenon could be partly explained by the fact that the cut-off value (3 

ng/nl) used as biopsy indication in the Netherland center was lower than cut-

off value (4 ng/nl) in the Finland data. Therefore, more people would be 

detected as prostate cancer during their screening. This unusual high 

incidence in the first point pattern (Figure 22B) made the slope for the second 

segment almost equal to 0 when fitting the Dutch data after simulation to 

spline regression model. The result may lead to a wrong conclusion that the 

“catch-up” point occurred after the first screening. Then the overdiagnosis rate 

calculated by the cumulative rate difference according to the catch-up point 

would be overestimated. 

Table 4.1 verified our assumption that the excess incidence still tended to 

decrease for the catch-up point did not occur yet. Under this circumstance, the 

cumulative incidence difference in the current longest follow-up year was the 

best estimation of overdiagnosis frequency. Therefore, the best estimation of 

prostate cancer overdiagnosis frequency for men who were born in 1929-32 

was 0.004. Corresponding standard error for cumulative incidence in screened 

group and control group were 0.0061 and 0.005. By equation (4), the 

confidence interval was (-0.011,0.019). The corresponding overdiagnosis rate 

was 
0.004

0.176
 × 100% = 2.27% by equation (3). 

In theory, overdiagnosis rate increased with age because of the combined 

effect of a higher detection rate and of a higher mortality rate resulting from 

other causes for elder people (Zappa, Ciatto, Bonardi & Mazzotta, 1998). 
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However, the irregularly small overdiagnosis rate (2.27%) for the oldest men 

could be explained by the fact that there were only two screening rounds and 

longer follow-up years for the 1929-32 cohort.  

Table 4.1: Incidence excess and estimate of overdiagnosis by birth cohorts. 

AGE AT THE START 
OF 
SERVICE 
SCREENING 

YEARS 
AFTER 
SCREENING 
STOPPED 

NO. OF 
OVERDIAGNOSIS 
(95%CI) 

OVERDIAGNOSIS  
RATE (%) 

67-70 10 0.005(-0.010,0.020) 3.03 
 11 0.002(-0.012,0.016) 1.18 
 12 0.004 (-0.011,0.019) 2.27 
63-66 7 0.021(9.12e-03,0.033) 13.4 
 8 0.026(0.013,0.039) 15.7 
 9 0.026(0.013,0.039) 15.4 
59-62 7 0.016(6.51e-03,0.025) 13.2 
 8 0.013(2.96e-03,0.023) 10.2 
 9 0.015(4.38e-03,0.026) 11.4 
56-58 7 0.0122(5.07e-03,0.019) 14.0 
 8 0.0100(2.47e-03,0.17) 11.1 
 9 0.0099(1.67e-03,0.018) 10.2 

  

Table 4.2 summarized the estimation of overdiagnosis in other studies. The 

table suggested that 2.9–88.1% could be regarded as an overdetection. Such 

a substantial variation was led by the fact that estimates of overdiagnosis are 

generally presented as a ratio, with the numerator being the estimated number 

of cases overdiagnosed and with many options for the denominator (Etzioni, 

R. et al., 2013). Studies conducted by Etzioni, Telesca and us reported 

overdiagnosis as a fraction of screening-detected cases. Others presented the 

number overdiagnosed as a fraction of the total number of cases detected, or 

the total number invited to screening. In addition to the definition, the different 
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methodologic approach also attributed to the wide range of the estimation. We 

made the point that each method had its limitations. 

In most modeling studies, investigators used disease incidence under 

screening to make the distribution of the lead time or the natural history of the 

disease and estimated the corresponding frequency of overdiagnosis. The 

strength of this method was not constrained by time and resource, whereas 

the limitations were the lack of transparency and the difficulty in evaluating a 

model like a black box critically.  

Unlike modeling studies, excess of incidence approach provides a direct 

estimate of overdiagnosis. For excess incidence studies, there are two 

challenges for investigators; one is requirement of sufficient follow-up years, 

the other is how to observe the incidence without screening. Investigators 

utilized a different method to impute incidence data without screening. Zappa 

and Ciatto calculated incidence data without screening from prescreening 

trend, while the data in Schröder studies were taken from the randomized 

clinical trial. Sufficient follow-up years may seem to resolve the timing 

problem, but long-term studies mean it is more challenging to stop men in the 

control arm from being screened by PSA testing during the study years. 

Therefore, contamination rate of control group should be considered to 

calculate final overdiagnosis rate, especially for our case, the Finland data. A 

report about contamination rate in ERSPC studies showed that 10% of men in 

the screening group had a PSA testing before their first screening of the trial. 

More recently, it has been estimated that 50% of the men in the control arm in 

Finland have been tested at least once in the first eight years of follow-up 
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(Nevalainen, J et al.,2017). Such a high contamination rate in the control arm 

was bound to reduce the excess incidence between the two groups and led to 

an underestimated result of overdiagnosis rate even the follow-up years were 

long enough for the incidence becoming stable. 

Table 4.2: Summary of 6 modeling studies and 3 excess-incidence studies 

quantifying overdiagnosis rate from PSA testing. 

Approach Researcher Study Years Data 

 

Estimation of 
overdiagnosis  

 

 

 

 

Modeling 
Study 

 

Draisma, 

2003 

2003 ERSPC 
Rotterdam 

48% 

Etzioni, 

2002 

1988-1998 U.S. SEER9 29% in white 
persons, 44% in 
black persons 

Roman 
Gulati,2014 

1975-2005 U.S. SEER9 2.9-88.1% 
depending on age, 
Gleason score, and 
PSA level 

Telesca 
2007 

1975–2000 U.S. SEER9 22.7% in white 
persons, 34.4% in 
black persons 

Wu 2012 1996-2005 ERSPC 
Finland 

3.4% 

 

 

 

Excess 
Incidence 

 

Zappa 1998 1992-1995 Italy 51% for constant 
incidence; 
25% for 2% annual 
incremental 
incidence 

Schröder et 
al., 2009 

1991-2006 ERSPC 48 cases of 1410 
screened men 

Ciatto.S 
2006 

1991-1994 Italy 66% 

U.S. SEER9：core 9 catchment areas of the Surveillance, Epidemiology, and 

End Results program. 
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In conclusion, we proved the feasibility of spline regression model to find the 

“catch-up” point in which incidence become stable. Given sufficient follow-up 

years, we could calculate how long it takes to elapse before the excess 

cumulative incidence calculation would produce an unbiased estimation. 

Based on current data, the cumulative difference in the longest follow-up year 

overestimated but was close to the overdiagnosis rate under the assumption 

there was no contamination in the control arm. Not considering the 

contamination rate, the estimate of overdiagnosis rate was 2.27%,15.4%, 

11.4%, and 10.2% for 1929-32, 1933-36,1937-40, and 1941-44 cohorts, 

respectively. 
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