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Abstract 

In this thesis we develop a model which allows us to evaluate 

Modified Dorfman's and Modified Sterrett's group testing 

procedures in the presence of false positive classification 

error that can be used for screening blood for HIV. 

Performance measures derived are the expected number of tests 

per sample and the corresponding coefficient of variation. The 

procedures differ from the original ones by the fact that 

groups and samples are retested certain number of times before 

they are classified as positive. Modified Individual testing 

procedure and the procedure currently used by Canadian Red 

Cross are also evaluated and all four testing strategies are 

compared. Numerical analysis illustrates that group testing is 

more efficient than alternatives. 
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Chapter 1 

INTRODUCTION 

Minimizing risk of deadly infections like HIV, Hepatitis-B 

and HTLV (human T-cell lymphotropic virus), from blood and 

blood products is a major preoccupation of the Canadian Red 

Cross. This agency is solely responsible for collection, 

testing and distribution of blood and its products in Canada. 

So important is the question of safety that a Commission of 

Inquiry, headed by Honourable Mr. Justice Horace Kreaver, is 

presently examining all facets of the Canadian Blood System 

in an attempt to make it safer. Whereas the risk of infection 

cannot be eliminated entirely (due to the limitations of the 

existing testing technology) Justice Kreaver in his interim 

report [4] strongly recommends that the controllable part of 

the risk be reduced as much as possible. In Recommendation 8 

of his report, he underscores the need for research which 

includes " evaluation of strategies, procedures and 

policies aimed at improving safety and efficiency of the blood 
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system" ( 4, Vol. 2, Annex 1, page 11] . Responding to this call 

to arms, we present testing strategies suitable for screening 

blood samples for presence of HIV antibodies which reduce both 

testing cost and risk of testing errors. We also provide a 

comparative evaluation of some existing protocols, including 

the one currently used by Canadian Red Cross. 

The testing strategies we propose involve the group testing 

approach. Unlike individual testing, this approach results in 

pooling samples together and testing them as a group. If a 

group is classified as negative, then all of its members are 

classified as negative in a single test. Otherwise, a 

specified procedure is employed to identify samples from the 

group which should be classified as positive. Some such 

procedures are shown schematically in Figure 1. 

The standard test for HIV antibodies is called ELISA which 

stands for Enzyme Linked Immune Sorbent Assay. A more precise 

but expensive confirmatory test, called the Western Blot, is 

performed on samples which are found to be positive on initial 

screening with ELISA (see schematic in Figure 2). Since both 

tests detect antibodies, neither can detect infected samples 

during the "window period" - a period of up to 12 weeks during 

which the infected individual does not develop sufficient 

quantities of the antibodies to be detected by these tests. 

To combat this problem, Canadian Red Cross administers a 

questionnaire {Figure 3) as well as a personal interview to 
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all donors to filter out individuals who might belong to the 

"high risk" category. The donors can also anonymously indicate 

whether for some reason they consider the use of their blood 

to be risky. These steps have two additional benefits. First, 

they reduce the effective prevalence rate among the eligible 

pool of donors, thereby minimizing risk. Second, they also 

create a situation favourable for implementing group testing 

since group testing strategies are most effective when 

prevalence rate is small. The "Window Period" problem might be 

avoided if PCR (Polymerase Chain Reaction) assay was used 

instead of ELISA, since this method is based on the detection 

of antigens (predecessors of antibodies) rather than 

antibodies. The use of PCR for HIV testing is currently being 

researched (14]. 

While much work has been reported in the medical literature 

on the feasibility of testing in groups using ELISA technique 

[1,3,6], and in the statistical literature on group testing 

strategies and their benefits (see Chapter 2 for a summary of 

relevant literature), Canadian Red Cross and other agencies 

around the world are not currently using a group testing 

approach. This fact is particularly unfortunate in light of 

the fact that the group testing strategies, when feasible, are 

particularly beneficial when prevalence rates are low. We 

believe that part of the reason for this lies in the need for 

testing strategies to be user friendly. The procedure must be 
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made simple to avoid a possibility of human error, for 

example, during labelling and handling. Furthermore, the 

maximum number of tests to be performed on each sample must be 

small. 

The accuracy of any testing procedure can be described by 

two measures: sensitivity and specificity. The sensitivity 

of the test is the proportion of truly positive samples which 

are identified as positive by the test. Specificity, on the 

other hand, is the proportion of negative tests which are 

truly negative. When a test fails to return a positive result 

for an infected sample, the error is known as a false 

negative. On the other hand, when the test returns a positive 

result for a sample which is not infected, the error is known 

as a false positive. In ELISA and other tests, the threshold 

which separates a negative test result from a positive one, 

can be set so as to achieve some desired level of sensitivity. 

Unfortunately, just as a more sensitive burglar alarm system 

is more likely to be triggered inadvertently, greater 

sensitivity is achieved at the cost of loss of specificity or 

greater incidence of false positives. Given a high cost of a 

false negative, Canadian Red Cross takes a conservative 

approach and rejects all blood samples that show initial 

positive results, even when subsequent confirmatory testing 

produces negative outcomes [11]. This increases the incidence 

of false positives and decreases the effective "yield" of good 
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blood from the samples collected from donors. As the Canadian 

supply of blood is dependent upon volunteer donors only, yield 

losses can also be a serious problem. 

The test parameter which is used by the Canadian Red Cross 

staff for negative and positive blood classification is a 

quantity called optical density (OD) . OD is determined by the 

number of antibodies in a blood sample. OD readings which 

exceed some threshold value result in blood samples being 

classified as infected. A good description of the chemistry of 

the ELISA testing procedure is given by Weinand Zenios [15]. 

The cut-off value is set equal to the mean of negative 

controls used in the testing procedure plus 0.25 [6]. Clearly 

the cut-off is kept small in an attempt to avoid false 

negative classifications. It is nevertheless possible to make 

this threshold value even smaller so that test sensitivity is 

very close to 1 and the probability of a false negative 

outcome is almost zero. In this case we will inevitably 

observe more positive classifications or, to be more specific, 

more false positive classifications. Therefore, this situation 

would also require a mechanism for retesting samples which 

produce a positive outcome on the first test so that the final 

classification does not include a large number of false 

positive samples. We employ such a retesting scheme in our 

analysis. It first assumes that probability of a false 

negative outcome is zero. Then the number of retests necessary 
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to classify a sample or a group of samples as positive is 

obtained so that the probability that an individual sample or 

a group is classified accurately is very close to 1. 

We develop expressions for two performance measures which 

we have chosen to be the expected number of tests per sample 

and the corresponding coefficient of variation. These 

performance measures were chosen since they reflect two 

features important for blood screening application: cost in 

terms of the number of tests and variability of outcomes. Next 

we compare modifications of two procedures originally proposed 

by Dorfman and Sterrett, and the method for screening blood 

for HIV currently used by Canadian Red Cross, in terms of 

these measures. The modified procedures include a retesting 

component as explained above. 

Our numerical analysis illustrate that Modified Dorfman's 

(MD) and Sterrett's (MS) procedures perform much better than 

the alternatives: Modified Individual (MI) testing and the 

procedure currently used by Canadian Red Cross (CP). MS is 

slightly better than MD but, due to the fact that MS is harder 

to implement, we recommend that MD be used unless even small 

savings are deemed important. 

Even though our discussion is concerned specifically with 

the application of screening blood for HIV, it should be 

noted that the problem of complete classification of items 

which form a large population also arises in a variety of 
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business applications. In a number of such applications it is 

possible to test groups of items in a single test at costs 

comparable to those necessary for testing an individual item. 

For example, testing containers for leakage consists of 

putting containers filled with spreadable material in a device 

which can register the presence of that material outside of 

the containers. Connecting light bulbs or other electric 

devices in series produces another example of group testing 

which leads to identification of defective components. For 

certain cost structures, and low rates of incidence of 

defectives, a group testing strategy turns out to be a cost 

effective alternative. 

Next chapter gives review of relevant literature. Chapter 

3 contains the mathematical description of the model as well 

as derivations of main results. rhe blood screening procedure 

currently used by canadian Red Cross is discussed in Chapter 

4. Our numerical analysis and conclusions can be found in 

Chapter 5. 



Chapter 2 

REVIEW OF RELEVANT 

LITERATURE 

The idea of group testing was initially put forward by 

R. Dorfman in 1943 [5]. He considered an application of 

screening men called up for induction in the army for 

syphilitic antigen and proposed pooling blood samples together 

and testing them as a group. If the group test was found 

positive, samples were then tested individually. On the other 

hand, if the group test was negative, group members were 

classified as negative in a single test. The goal of Dorfman's 

analysis was to determine under what conditions and for what 

group sizes the grouping technique would require a smaller 

number of tests on average than the individual testing. 

Defining p as prevalence rate, n as sample size and N as 

population size, Dorfman derived an expression for the 

expected number of tests: 

8 
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N + N ( 1- ( 1-p) n) • ( 1 ) 
n 

Here TN is a random variable which denotes the total number 

of tests needed to classify all items of a population of size 

N. The performance measure used by Dorfman is the expected 

relative cost, C, which is the expected total number of tests 

required to classify each blood sample: 

n+1 1 nc = --( -p) • ( 2)
n 

Optimal group sizes are found by locating the minimum of c 

with respect to n for fixed values of p. Dorfman concludes 

that his group testing procedure is more efficient than 

individual testing if prevalence rate is sufficiently small. 

Smaller p values are associated with larger savings. In this 

thesis we discuss a modified version of Dorfman's procedure 

(MD) which explicitly models the presence of false positive 

outcomes. 

The group testing procedure described by Dorfman has been 

generalized in several ways by different researchers. For 

instance, Sterrett [13] proposes that individual testing be 

performed on a defective group only until first defective 

sample is located. Then the remaining samples are tested as a 

group and this procedure continues until all samples of the 

original group are classified. Employing the same notation as 
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Dorfman, but denoting group size by k, Sterrett derived the 

expression for the total expected number of tests necessary to 

classify all samples in the population if his procedure is 

applied, which is denoted by E(N,k,p). Conditioning on the 

number of defective samples in the group, and denoting the 

probability that a group of size k has exactly i defective 

members by Prk(i) and the expected number of tests needed to 

isolate these i members by Ek(i), the expected total number of 

tests can be written as follows: 

( 3) 


Using a recursive relationship among Ek(i)'s Sterrett derives 

the general formula: 

i . i 2i
Ek(i) = --k+~+l+----. ( 4)

i+l i+l k 

Using the fact that Prk(i)~O for i close to k, and assuming 

that p is small, a simple approximation for E(N,k,p) can be 

obtained. Let E' (N,k,p) denote this approximate value. Optimal 

group sizes are determined by minimizing E' (N,k,p) /N with 

respect to k for fixed values of p. Sterrett's numerical 

analysis shows that his procedure is more efficient than 

Dorfman's by about 6% if prevalence rate is small. We develop 

a new model which modifies Sterrett's procedure to include the 

presence of false positives. Also, we evaluate both the 
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expected value and the coefficient of variation of the total 

number of tests needed to classify each sample. This procedure 

is called the Modified Sterrett's procedure {MS). Figure 1 

shows a schematic description of Dorfman's and sterrett's 

procedures. 

One way to extend Dorfman's analysis to take into account 

testing errors was proposed by Graff and Roeloffs (7]. They 

have used retesting in their method to reduce the possibility 

of wrong classification. Four parameters which correspond to 

the number of retests were defined as follows: "If a group of 

size x>1 yields rl defective readings before it yields r2 

good readings, it is classified as defective and each item is 

tested individually. Otherwise, it is classified as good. A 

single item is classified as defective if it yields sl 

defective readings before it yields s2 good readings. 

Otherwise, it is classified as good." 

The authors introduce two costs of misclassification and 

derive the expression for the expected cost of classifying all 

items in the group of size x, C(x,rl,sl,r2,s2). The cost of a 

single test (group or individual} is treated as the unit of 

cost. The expected cost per sample is minimized over the 

values of the parameters. The optimal values are found as 

relative minima by comparing the values of the considered 

expression at the points adjacent to some arbitrarily chosen 

initial point. 
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In this thesis we take a different approach and use a 

different model to incorporate testing errors in the analysis 

of the group testing procedures because the true costs of 

misclassification are difficult to estimate. False negatives 

may cost lives of people who receive blood transfusions and 

may result in lawsuits. False positive classification, on the 

other hand, leads to retesting using expensive Western Blot 

test, reduces yield of good blood from samples collected and 

leads to further testing due to the fact that healthy people 

whose blood is rejected seek confirmation. It may also cause 

anxiety and emotional trauma in the person whose blood is 

rejected [2]. Whereas it is difficult to evaluate cost of 

potential loss of life and emotional trauma in dollar terms, 

managers are often comfortable with the idea of an acceptable 

level of incorrect classification, such as we use in our 

model. 

Sobel and Groll [ 12] have proposed yet another 

generalization of Dorfman's procedure. They suggested that 

once a positive group is obtained, it may be more efficient to 

take a subgroup from it and treat it as the new group rather 

than do individual testing. In their analysis a population of 

N unclassified items is assumed to be binomial with respect to 

the characteristic of interest, i.e., items are either good or 

defective. At each point in time the population is divided 

into three sets: defective (at least one item in the set is 
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defective), binomial (a set of unclassified items which are 

treated as if they were never tested) and a set of classified 

items. Sizes of these sets are m, n-m and N-n, respectively. 

Sobel and Groll proposed to take a group of samples of size x 

from a defective set and test it. If the result of this test 

is positive the rest of the defective set, i.e., the set of m-

x samples, is joined with the binomial members and a new group 

of i terns is drawn from the defective group of size x. 

Otherwise, the remaining portion of a defective set becomes 

the source of the next subgroup to be tested, i.e., it becomes 

the next defective set. This process continues until all N 

samples are classified. For various prevalence rates and 

several N values optimal group sizes are found for each of the 

situations described above. Group sizes are optimal in the 

sense that they minimize the total expected number of tests 

necessary to classify all items. The recursive formulae which 

define the above procedure are: 

(5)H ( n ) = 1 +min ( g xH ( n -x) + ( 1 - g x )G ( x, n ) ) , 1 1 1
1:5x:5n 

X m 1 X 

Gdm,n) =1+ min ( g -g G (m-x,n-x) + -g G (x,m)), 
l:5x:5m-1 1-gm 1 1-gm 1 

with boundary conditions H1 (0)=0, (l,n) = H (n-1) • TheG1 1 

parameter g denotes the probability of a sample being 
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uninfected, G1 (m,n) denotes the expected number of tests 

remaining to be done when defective and binomial sets are of 

sizes m and n-m, respectively, and (n) denotes the sameH1 

quantity when m=O. One of the important differences between 

this procedure and the protocols previously discussed is that 

it allows unclassified subsets of a defective set to return to 

the binomial population while other procedures concentrate 

solely on the defective set until all of its items are 

classified. This procedure also requires the knowledge of the 

population size in order to choose initial group and this 

information might not always be available. It is obvious that 

Sobel and Groll's procedure is more difficult to apply than 

procedures previously discussed due to the fact that the test 

group size is not fixed, even when prevalence rate and test 

accuracy do not change. In an attempt to avoid this difficulty 

Sobel and Groll consider a simplified version of their 

protocol which involves halving the defective set at each 

decision stage until every sample is classified. Sobel and 

Groll concluded that their procedure is more efficient than 

Dorfman's and Sterrett's and that the halving procedure is 

nearly as good as their more complicated method (Table 1). 

Procedures discussed above can also be extended to include 

false positive and false negative outcomes but, since they are 

quite complicated to implement even without such 

considerations and user-friendliness is important in blood 
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screening and many other applications, we chose not to do so. 

A modified version of Sobel and Groll's halving procedure 

was proposed by Litvak, Tu and Pagano [10]. They recommended 

splitting positive groups in various subgroups of almost equal 

sizes rather than concentrating on a single subgroup of a 

positive group. These subgroups are then tested and split 

further if outcomes are positive. Whenever a group produces a 

negative result it is retested at most r-1 times. If all r-1 

results are negative the group is classified as negative. 

Otherwise, it is classified as positive. Each procedure of 

TABLE 1 * EXPECTED NUMBER OF TESTS PER ITEM 


FOR VARIOUS GROUP TESTING PROCEDURES 


PREVALENCE 

RATE 

DORFMAN'S STERRETT'S SOBEL and 

GROLL'S 

HALVING 

0.01 0.20 0.14 0.13 0.13 

0.02 0.27 0.22 0.17 0.17 

0.05 0.43 0.35 0.30 0.30 

0.10 0.59 0.51 0.48 0.50 

0.25 0.91 0.84 0.83 1. 03 
*Th1s table 1s from Sobel and Groll [2,page 1227]. 

this type is specified by the number of negative tests 

necessary to declare groups or samples negative, the initial 

group size and a vector of divisors. The authors compared 
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FPPV(T} 

several such procedures with respect to the expected number of 

tests, and the false positive and false negative predictive 

values. The latter are denoted by FPPV (T) and FNPV (T) and 

defined as follows: 

FNPV(T} 
p(1-Se(T} }+(1-p}Sp(T} 

1 

(7}
(1-p) (1-Sp(T}} 

Here SP(T) and Se(T) denote specificity and sensitivity of a 

procedure T used to classify all samples. These quantities 

depend on T, prevalence rate and the specificity and 

sensitivity of the test kit used. All procedures discussed 

were applied to a sample of size 15, with sensitivity and 

specificity equal to 0.995, and r=2, and a comparative 

evaluation was performed for various values of the prevalence 

rate. Numerical analysis has shown that for small prevalence 

rates Dorfman's procedure requires smaller expected number of 

tests but results in higher false positive and false negative 

predictive values. The authors, therefore, conclude that their 

procedure should be used since the quality of results is an 

important issue, especially in a blood screening application. 

Weinand Zenios (15] consider the problem of classification 

from a different angle. In an attempt to capture the dilution 

effect (failure of a test to detect an infection due to the 
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positive blood sample being mixed with a large number of 

negative samples) Wein and Zenios develop a generalized linear 

model which connects optical density levels {OD, or the ELISA 

test outcome) with the antibody concentration in the grouped 

sample and then use it in their dynamic programming algorithm 

to produce a group testing policy for which expected cost due 

to false negatives, false positives and testing is minimized. 

It should also be noted that, unlike previous studies, these 

authors allow three possibilities at each stage of testing: to 

declare all group members negative, require further testing as 

prescribed by their model, and to declare all group members 

positive. Using a large data set Wein and Zenios have 

investigated the distribution of the logit transformation of 

normalized OD readings (x-ln(x/{1-x})) and determined that it 

is normally distributed for both positive and negative 

individuals. Values of suitable thresholds (one for each of 

the three decision outcomes) could then be found from these 

results (see Figure 4) . Wein and Zenios conclude that the 

policy they consider, which also uses different threshold 

values at different stages of testing is a good way to control 

false classifications. 

Johnson, Kotz and Wu [9] survey group testing strategies 

for their applications in quality control. They analyze 

Dorfman's, sterrett's and some other procedures by replacing 
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simple probabilities involving only prevalence rate and group 

size with probabilities which allow the probabilities of false 

negative and false positive outcomes. The authors have also 

applied Graff and Roeloff's approach [7] to what they call 

hierarchical screening which is the same procedure that 

Litvak, Tu and Pagano [10] have proposed. 

Other researchers have considered various other extensions 

of group testing method (see Johnson, Kotz and Wu [9] for 

additional references). For example, Hwang [8] discusses 

several group testing procedures under the assumption that 

different non-conforming rates may be present. 

Misclassification errors are set to zero. This author also 

defines a general class of two-stage procedures which is 

described by the following two properties: a) once optimal 

group size is determined it is used until all items of a large 

population are classified, b) once a group is classified as 

positive it is dealt with until all of its members are 

classified. Notice that these principles are present in all of 

the procedures we have discussed previously except for the 

procedure of Sobel and Groll. 



Chapter 3 

THE MODEL 

3.1 	 ASSUMPTIONS 

As mentioned earlier it is our intent to incorporate the 

classification errors in the model for evaluation of group 

testing strategies. It is clear from Figure 4 that a threshold 

can be chosen to control either the risk of false negatives or 

the risk of false positives. Rather than dealing with two 

misclassification errors by explicitly incorporating both of 

them in the model, we propose to eliminate the possibility of 

a false negative outcome (which is by far much more 

undesirable) by setting the threshold in such a way that 

samples classified as negative will have very low OD reading 

that can only correspond to an uninfected blood. Under the 

system described above the only way we can get a false 

negative sample is if the blood comes from an individual in 

the "window period". This phenomenon is very rare in the 
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general population and it occurs even more seldom in the 

population of donors due to several layers of screening 

procedures that potential donors must undergo. It is also 

important to add that PCR, a test currently being considered 

as a substitute of ELISA, does not have the drawback of not 

detecting infection in a sample from a person in the "window 

period". These reasons lead us to the first assumption for our 

model: 

(1) 	pf_= Probability (Sample produces a negative 

result!Sample is infected)=O. 

Setting the threshold to an extreme (small) value will 

result in larger number of false positive outcomes. This 

problem can be dealt with by retesting samples and groups 

which produce positive reading on the first test. Once the 

number of retests is set to a specific value, say r, the 

following rule will be followed: if a sample or group of 

samples produces a positive outcome on the first test then 

retest it r-1 times or until the first, if any, negative 

reading is obtained. If all r-1 tests are positive 

classification should be positive. Otherwise, classification 

is negative. It was suggested by Litvak, Tu and Pagano [10, 

page 141] that usually the retesting of positives leads to 

higher number of false negatives. When both of the testing 

errors are present this claim is valid but if the situation 

corresponds to the case when pf_=O, as it is under our model, 
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retesting of positives will lead to the reduction of false 

positive classifications only. 

In all of the derivations for our model the following was 

assumed: 

(2) Blood samples are statistically independent. 

3.2 	NOTATION AND ABBREVIATIONS 

Before any of the results can be proved it is necessary to 

introduce the notation used throughout the thesis. 

p -prevalence rate; 

-sample size; 

-probability of a false positive outcome 

(Probability (Sample produces a positive 

resultiSample is uninfected)); 

-minimum tolerable probability of a sample or a 

group of samples being infected given that this 

sample or a group is classified as positive; 

-number of consecutive positive test outcomes 

necessary to classify a sample as positive; 

r -number of consecutive positive test outcomes 

necessary to classify a group of samples as 

positive; 

-probability of getting a positive result on the i­

th test given that all previous i-1 test results 
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were 	positive when a group of size n is considered; 

pi (n) 	 -probability of a group of size n being infected 

given that i-1 consecutive tests on this group were 

positive. 

The set of the random variables employed in our derivations 

is defined next: 

X; -number of tests necessary to classify a sample (i-th 

sample) as positive given that this sample is eventually 

classified as positive; 

Z; -number of tests necessary to classify a sample (i-th 

sample) as negative given that this sample is eventually 

classified as negative; 

Y 	 -number of samples classified at the moment we stop 

individual testing on samples from the group 

classified as positive during sterrett's procedure; 

Vi -number of tests necessary to classify a sample (i-th 

sample); 

T" -number of tests necessary to classify all 

samples in a group of size n; 

Tn+ -number of tests necessary to classify all 

samples in a group of size n which has been classified 

as positive. 

Due to the fact that formulas derived in this thesis are 

sometimes lengthy, the following abbreviations are used to 

simplify them: 
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(2) D = 1+pf. ;( 1 ) F = 1-pf. ; 

( 4) Bn = (pf+) r ;( 3 ) B = (pf+) rl ; 

( 5) C = p + (pf+) rl (1-p) = 1- ( 1-p) ( 1-B) ; 

(6) A= 1-(pf.)rl(r1+1)+r1(pf.)rl•l; 

(8) H = [DA-rl(r1+1)BF2](1-p) 
F2 i 

( 11 ) 51 
= _!!_ + 2r1A ( 1-p) • 

1-C F( 1-C) I 

= [ A ( 1-p) ] 2 • 


F( 1-C) I 


( 14 ) S = Cr 1 ( 1 - r 1 ) + H ( 1 -c )n -ln +n (n -1 )S 3 ( 1 -c )n + 
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s 3 [ ( 2 -c )s 2 - n (n + 1 ) c 2 (1 -c )n ] 

c2 

Using the notation presented above important results are 

derived in the next section. 

3.3 GENERAL RESULTS 

Results presented in this section are going to be useful in 

the derivations of expressions of the expected number of tests 

and the variance of the total number of tests for individual 

testing strategy and group testing procedures. Since retesting 

is performed if the first test is positive it is necessary to 

find the formula for the probability of a positive test 

outcome at every stage of retesting. This is done in Result 1. 

RESULT 1: 

1- ( 1-p} n + (pf+) i ( 1-p) n 

1-(1-p)n+(pf+}i-1(1-p)n 

Proof: We start with the formula which connects pi+ (n) and 

pi(n): 

pi+ (n) = pi (n) + (pf.) (1-pi (n)) • (7) 

When a group of samples is tested for the first time the 

following is true: p1(n)=1-(1-p)" and p1.(n)=1-(1-p)"+(pf.) (1­

p)". For the second test, using the formula for the 
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conditional probabilities and the fact that false negative 

outcomes can not occur, it easily follows that 

pl(n)p2(n) 
pl (n)+(pf ..) (1-pl (n)) • 

Combining the above expression with (7) yields: 

pl (n) + (pf+) 2 (1-pl (n) ) 

pl (n) + (pf+) ( 1-pl (n) ) 

For the third test the probabilities are derived in a similar 


manner: 


p3{n)=Pr(Sample is infected! Two test results were positive)= 


pl(n) 
= 

Pr(Two test results are positive) 

pl(n) 
Pr(Second test is positive/First test is positive) 

1 pl(n) 
Pr(First test is positive) 

pl(n) 
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and, using (7), 

pl (n) + (pf .. )3 (1 - pl (n) )
p3 .. (n) 

pl (n) + (pf .. )2 (1 - pl (n) ) 

Recognizing the pattern demonstrated above, it becomes clear 

that the following general formula is true: 

pl(n) (8)pi(n) 
pl(n) + (pf .. )i -1 (1 -pl(n)) 

Formulas (7) and (8) can be combined to obtain the general 

expression for pi.(n). The final result is obtained by 

replacing p1(n) by 1-(1-p)" and simplifying.• 

A few comments can be made with regard to Result 1. As 

expected, pi(n) approaches 1 as i increases. Secondly, smaller 

values of pf+ will result in pi(n) getting closer to 1 faster. 

This is reasonable since when the probability of a false 

positive classification is close to 0 then even one positive 

test outcome indicates that a group or a sample is probably 

infected. It should also be noted that, as i increases, pi(n) 

increases from 1-(1-p}" to the value close to one. 

As expectations and variances are derived in later sections 

a few expressions come up several times. They are simplified 

and presented in Results 2, 3, 4 and 5 . Result 2 simplifies 

the probability of getting positive test outcomes r times or 
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classifying a group of size n as positive. 


RESULT 2: 


II
r 

pi.- { n ) = 1 - ( 1 -p) n + (pf .- ) r {1 -p) n • 
i=1 

Proof: When pi+ (n) 's are multiplied a lot of cancelations 

occur since numerators and denominators of each pair 

[pi.(n))[p(i-l)+(n)] are the same. In the end we will be left 

with the numerator of the last term in the product, namely, 

pr+ (n) 	. • 

Result 3 and 4 deal with the part of expectations which 


corresponds to the negative classification of a group of size 


n. 

RESULT 3: 

r i - 1 	 1{ 1-p) n [ 1- ( r+ 1 ) (pf .- ) r + r (pf .- ) r <- ]L i [II pj + ( n) ] ( 1-pi .. (n) ) +1-pl .. (n) 
i =2 j =1 1-pf.. 

Proof: We start by applying Results 1 and 2 to the left hand 

side (LHS) of the expression above and simplifying: 

r 

LHS 	 L i (P f.- ) i - 1 {1 -p )n {1 -p f.- ) 
i =1 

Result 3 follows once expression (1-p)"(l-pf.) is taken out of 

the summation and the following formula is applied: 
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k 
1-(k+1)qk+kqk+1.L iqi-1 

( 1-q)2i=1 (O::;q::;l). (9) 

Formula (9) can be verified by first noting that iqi-1= 

arqi) ta(i) and interchanging the order of summing and taking 

derivative. Final result is obtained after geometric series 

formula is applied and the expression is simplified.• 

RESULT 4: 

r i-1 

_Li 2[ITpj+(n)] (1-pi+(n)) + 1 - pl+(n) 
i =2 j =1 

(1-p)n{(1+pf+) [1-(r+1) (pf+)r+r(pf+)r+1] -r(r+1) (pf+)r(l-p£+) 2} 

(1-p£+)2 

Proof: We start by applying Results 1 and 2 to the left hand 

side (LHS) of the expression above and simplifying: 

r 

LHS = Li 2(pf+)i-1(1-p)n(1-pf+). 
i=1 

Result 4 follows once expression (1-p)"(l-pf+) is taken out of 

the summation and the following formula is applied: 

k 
( 1 +q) [ 1 - ( k + 1 ) q k +kq k+1 ] -k (k + 1 ) qk (1-q) 2 (O::;q::;l).(lO).L i 2qi-1 = 

i=1 ( 1-q) 3 
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Formula (10) can be verified as follows: 

First summation is evaluated by interchanging the order of the 

operations of summing and taking second derivative and 

applying the geometric series formula, while second sum is 

obtained from formula (9). Algebraic simplification of the 

resulting expression leads to the final result.• 

RESULT 5: 

r i-1

L [IJpj+(n)] (1-pi+(n)) = (1-p)n[pf+-(pf+)r] • 
i=2 j=1 

Proof: We start by applying Results 1 and 2 to the left hand 

side (LHS) of the expression above and simplifying: 

r 

LHS = (1-p)n(l-pf+) [L (pf+)i-1 - 1] 
i=1 

The final result can be obtained by applying the geometric 

series formula to the summation in the expression above and 

simplifying.• 

RESULT 6: 

r = rln{[1-(1-p)n](1-cq}-ln{(1-p)na}l. 

ln (pf+) 


Proof: As defined in section 3.2 r is the number of retests 
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or the number of times a sample or a group has to produce a 

positive result in order to be classified as positive. The 

criteria for selecting the number of retests is the following: 

a group or a sample has to be classified as positive in such 

number of tests that the probability of an infection in the 

considered blood given that this group or a sample is 

classified as positive is at least a(some number, usually, 

close to 1). The probability, mentioned above, is equal to 

p(r+l) (n). Therefore, r should be chosen in such a way that: 

p(r+l) (n)~a. We apply formula (8) to the left hand side of 

this inequality and use the fact that pl(n)=l-(1-p)" to arrive 

to the following expression: 

1- { 1-p) n 
~·a. 

Solving this inequality for r yields: 

ln{ [ 1- { 1-p)n] ( 1-a)}-ln{ {1-p)na} 
ln(pf+) 

since r is the number of retests it has to be a positive 

integer and should be as small as possible. This suggests that 

the ceiling of the right hand side of the above expression 

will serve as an appropriate r.• 
It is expected to observe the decrease in the value of r 

when n(the group size) is increased since, as n gets larger, 
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the probability of a grouped sample containing an infected 

blood increases and, therefore less retests should be required 

to classify this group as positive. It can be easily verified 

that this is indeed the case by taking derivative of the 

expression for r with respect to n and observing that it is 

always negative. 

In section 3.2 several random variables were defined, 

namely Xi, Y, zi and Vi. These variables are important because 

for MS it is possible to express the total number of tests 

needed to classify all considered samples in terms of these 

variables. This will be done in section 3.6. Next some useful 

results concerning these variables are derived. 

RESULT 7: 

E(X/J=(r1) 2 
• 


Proof: First we have to recall that rl is the number of times 


a sample must produce a positive result to be classified as 


positive. Therefore, a sample can be classified as positive in 


rl tests only. This implies that 
 and, 


consequently, result 7 follows.• 


RESULT 8: 


C(l-C)k-1 , k=1,2, ••• ,n-1.
Pr(Y=k) {= (1-C)n-1, k=n. 

Proof: In section 3.2 Y was defined as the random variable 

which denotes the number of blood samples classified at the 



32 

moment we stop individual testing during MS. According to the 

definition of Sterrett's procedure individual testing is 

terminated when one of the samples is classified as positive. 

During this process of testing individual samples one after 

another the following fact is true: when each sample is tested 

individually for the first time the probability of it being 

infected varies from sample to sample, because this 

probability is being updated as new information becomes 

available. By the new information we mean such facts as the 

group containing all of the samples being classified as 

positive and certain number of samples from this group already 

being classified as negative. The modelling of this updated 

probability is not an easy task and it seems that it does not 

change in a systematic way. This lead us to the decision to 

approximate that probability by prevalence rate, p, in all of 

our derivations. In the light of the above discussion the 

following expression can be written for k=1,2, ... ,n-1: 

Pr(Y=k) = Pr(k-1 samples are classified as negative and 

one is classified as positive) [ ( 1 -pl + ( 1 ) ) + 

rl i-1 rl

+:E <IJpj+(1)) (1-pi+(l)) ]k-liJpi+(l) • 
i=2 j=l i=l 

This expression can be simplified by applying Result 5 to the 
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first term in the product and Result 2 to the second. Further 

algebraic simplification leads to the expression which can be 

written as the following using c, defined in section 3.2: 

Pr(Y=k)=C(1-C)k- 1 , k=1,2, ... ,n-1. 

Expression for Pr(Y=n) is found in the similar manner: Pr(Y=n) 

= Pr(n-1 samples are classified as negative and one sample is 

classified as positive)+Pr(n samples are classified as 

negative). It follows that: 

Pr(Y=n) = (1-C)n-1 • 

The probability function of Y obtained above is easily 

verified to be valid since: 

n n-1 1 
LPr(Y=k) = LC(l-C)k-1 +(1-C)n-1 = C 1 -(1-C)n- +(1-C)n-1 = 1 • 
k=1 k=1 1-(1-C) 

The formula for the geometric series can be used in the above 

expression. This concludes the proof of Result 8.• 

RESULT 9: 

A ( 1-p) H
E(Z]) = 

F( 1-C) 1-C 

k-1 
H(k -1 ) + ( k -1 ) ( k-2 ) [A ( 1 -p) ] 2 

E((LZi)2) = 
i=1 1 -c [F ( 1 -c )12 

Proof: Random variable zi was defined in section 3.2 to be the 

number tests needed to classify a sample as negative given 

that it is eventually classified as negative. 
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Pr( a sample is classified as negative in z tests) 
Pr( a sample is classified as negative) 

= Pr(a sample is classified as negative in z tests) 
1-C 

The last expression was obtained by applying Result 5 and 

simplifying. The probability function of zi can now be 

written: 

z-1 

~c [J] pj + ( 1) ] ( 1-pz + ( 1) ) when z =2, 3, ••• , rl
1 

when z=1 • 

Expectation of Zi is found using Result 3 and the simplifying 

expressions from section 3.2. Result 5 along with the 

definition of H leads to the desired form of the expected 

value of Z; 2 • The last part of the Result 9 can be verified as 

following: 

k-1 k-1 k-1 k-1 

E ( ( L zi) 2 
) =E (L zj) +E (2L L ziz j) = ( k-1 )E ( zj) + (k-1) (k-2 )E 2 

( zi) • 
i=1 i=1 i=1 j=1

f ..i 

Substitution of E(Z;) and E(Z; 2) in the above expression yields 

the final result.• 

RESULT 10: 

E(Vi) = rlC+ ( 1 -p)A 

F 
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Proof: Since V i is the random variable which denotes the 

number of tests needed to classify a sample (i-th sample) its 

expected value can be written follows: 

rl rl i - 1 

E (vi) = rl rr pi +( 1) +L i [ rr pj + ( 1) ] ( 1-pi + ( 1) ) + 1-pl + ( 1) • 
i =1 i=2 j =1 

Application of Results 2 and 3 to the above formula as well as 

use of the simplifying expressions from section 3.2 leads to 

the desired result. Expectation of vi 2 can be obtained in the 

similar fashion except for the fact that Result 4 should be 

used instead of Result 3.• 

For each of the procedures discussed in the following 

sections (MS, MD and MI) the expected value and variance of 

the total number of tests needed to classify n items if a 

group of size n is tested are derived. For modified group 

testing procedures the following formula connects E(Tn) and 

E(Tn+): 

(11) 
r r i - 1 

E ( Tn) = [ r+E ( T;) ] rr pi+ ( n) + L i [ rr pj + ( n) ] ( 1-pi + ( n) ) + 1-pl + ( n) • 
i=1 i=2 j =1 

Results 2 and 3 lead to the simplified form: 

(12) 

Formula similar to (11) connects E(Tn2), E(Tn+) and E((Tn+) 2) and 

after simplification using results 2 and 4 and abbreviations 

from section 3.2 it looks as follows: 
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(13) 

Both of the two above formulas are used in the derivation of 

variance. The form of E (Tn+) and E ( (Tn+) 2) depends on what 

group testing procedure we use. 

Last three sections of this chapter present formulas for 

the performance measures for MI, MD and MS: expected number 

and variance of the total number of tests per sample. In the 

numerical analysis we also use the coefficient of variation 

(CV) as a quantity which reflects variability in units of 

average number of tests needed: 

CV= ..;variance • (14) 
mean 

3.4 	MODIFIED INDIVIDUAL TESTING (MI) 

For MI we require each sample to be retested so that a 

sample is classified as positive only if it produces a 

positive result rl times. If a negative result is obtained at 

any stage of retesting a sample is treated as a negative. If 

n samples are tested according to MI the following is clearly 

true: 



37 

Results 2 and 3 lead to simplification: 

(16) 


The expression for the variance can be derived in the similar 

manner and simplified using Results 2 and 4 to the following: 

T 
var( 2) =(rl ) 2C + H • (17) 

n 

Formulas (15) and (17) are used to calculate numerical 

values of the corresponding quantities and the results of 

these calculations are discussed in Chapter 5. Note that since 

MI is not a group testing procedure only three parameters are 

present in the formulas: p, pf+ and rl. One more remark can be 

made with regard to the results in this section: if the 

probability of a false positive outcome is set to zero formula 

(16) simplifies to one, as expected. 

3.5 MODIFIED DORFMAN'S PROCEDURE (MD) 

In Dorfman's procedure a positive group test outcome 

results in individual testing of each sample. According to 
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MD positive classification of a group or a sample takes place 

when r (n~2) or rl (n=1) tests produce a positive result. 

After using Results 2 and 3 it follows that: 

(18) 

The expression in (18) is actually an approximation since 

original prevalence rate is used in the derivation of E(~} 

rather than the probability of an infected sample given that 

this sample came from a group classified as positive. It is 

explained at the beginning of the proof of Result 8 why we are 

forced to make this approximation for MS and since MS and MD 

are going to be compared we have to consistently make this 

approximation. 

Combining formulas (12) and (18) leads to the expression 

(19) 

Next E(Tn2) is obtained which is then used to find the 

variance. In order to use formula (13) to find this quantity 

we have to first derive the expression for E((Tn+) 2). The 

following derivation uses Results 2 and 4 in the last step: 

(20) 
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Substitution of formulas (18) and (20) in (13) yields the 

final result: 

E(T;)={r 2 +2rn(rl C+A(~-p) )+ 

(21)n 2 [(r1) 2C+H]}[l-(l-p)n(l-Bn)]+ Hn • 

Results (19) and (21) are used to find the expression for 

variance since: Var(Tn)=E(Tn2)-E2 (Tn)· CV can be obtained using 

formula (14). 

Formulas derived in this section are used in Chapter 5 to 

calculate the reciprocal of the expected number of tests per 

sample, which is referred to as the expected number of samples 

classified by a single test, and corresponding coefficient of 

variation. 

Expectation for MD, derived in formula (19), divided by the 

group size simplifies to the corresponding expression obtained 

by Dorfman (formula (2) in Chapter 2) if pf+ is set to zero 

since then A=F=r=rl=l, C=p and B=O. 

3.6 MODIFIED STERRETT'S PROCEDURE (MS) 

In order to apply formula (12) to find the expected number 

of tests per sample for MS we have to derive the expression 

for E (Tn+> first. To do this we make use of the random 

variables defined in section 3.2. Careful examination of the 

original Sterrett's process (Figure 1) with modification of 
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retesting for positive classification and definitions of 

these random variables lead to the following: 

X1 +Tn-1 'if y = 1 ' 
Y-1 

L Zi+Xy+Tn-Y ,if Y = 2,3, ••• ,n-1 , 
i=1 
n-1 (22}
"- Z .+V , if Y = n •L....t ~ n
i=1 

Consequently, we can write the expression for E(T;}: 

n-1 k-1 
E(Tn+) = E(X1+Tn_dPr(Y=1) +LE(L Zi+Xk+Tn-k)Pr(Y=k) + 

k=2 i=1 (23}
n-1 

+ E(LZi+Vn)Pr(Y=n) • 
i=1 

Substitution of Results 7, 8, 9 and 10 in the above formula 

yields the following expression: 

n-1 
E(Tn+) = [rl + E(Tn-d ]C+L [ (k-1) A( 1 -P) + rl + 


k=2 F( 1-C) 


E(Tn-k) ]C(1-C)k-1+[ (n-1) ;g=~~ + rlC+ ( 1 -:)A] (1-C)n-1. (24} 

This expression can be simplified by first separating constant 

terms from the terms which involve expectations and then 

simplifying the constant part. After several steps of 

algebraic manipulation the following expression is obtained: 

n-1 
E(Tn+) = P+LE(Tn-k)C(1-C)k-l. ( 25)

k=l 
The formula for E(Tn) can then be found using formula (12) and 

simplifying: 
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E(Tn) == (r+P)[l-(1-p)n(l-Bn)]+An(~-p)n + 

n-1 	 ( 26) 
+ 	C[1-(1-p)n(1-Bn)lLE(Tn_k)(1-C)k-1 • 

k=1 

The derivation of the variance of the total number of tests 

requires the expression for E ((Tn) 2) • Following procedure which 

led to formulas (11) and (12), applying Results 2 and 4 and 

making use of the simplifying expressions from section 3.2 

lead to the formula: 

Using the independence of random variables X;, Z;, V; and T; it 

follows that: 

E( (Tn+) 2
) == [E(Xd +2E(X1 )E(Tn_1 ) + E(T;_I) ]Pr( Y==1) + 

n-1 k-1 

L {E( ( L zi) 2 ) +2 (k-1 )E ( zi) [E(Xk) + 
k=2 i=1 (28) 

E ( T n -k ) ] + E (X; ) + 2E (Xk) E ( T n -k ) + E ( T;;-k ) }pr ( Y ==k ) + 
n-1 

+[E( (L Zi) 2 
) +2 (n-1)E(Zi)E(Vn) +E(V;) ]Pr(Y==n) • 

i=1 

Formula (28) can be simplified by applying Results 7,8,9 and 

10 to it and separating constant terms from terms which 

involve expectations. Extensive algebraic manipulation will 

lead to the following expression: 
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Substituting formulas (25) and (29) in (27) and simplifying 

bring us to the final result: 

( 3 0)E(T_;) = Hn+[l-(1-p)n(1-Bn)](r 2 +2rP+ S)+ 
n-1 

+L [1-(1-p)n(l-Bn} ]C(l-C)k-1 E(T_;_k)+ 
k=1 

The variance is obtained by subtracting the square of 

expression {26) from expression (30). 

It can be illustrated that the approach which is taken here 

to derive the formula for the expected number of samples per 

test can be applied to the situation when pf.=O and the 

resulting numerical values will be the same as those obtained 

by Sterrett [ 13] . In order to verify this, the formula 

presented by Sterrett is evaluated first. Numbers reported in 

his thesis can not be used since Sterrett employed an 

approximation to evaluate his procedure. The exact formula for 

the expected number of samples per test is the following: 

E(n,p) 
n 

( 31} 

In order to obtain our equivalent of this formula some 

modifications have to be made. We can not simply let pf.=O and 

simplify in this case for the following reason: when tests are 

considered to be flawless and individual testing is performed 
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on the defective group of size n the last sample is not tested 

if n-1 samples turned out to be negative, on the other hand, 

if there is a chance of a false positive classification and 

the same situation occurs last sample must be tested. 

Therefore, in order to make our procedure compatible with 

Sterrett's derivations we have to account for this difference. 

First of all the distribution of Y will change and, secondly, 

E (Vn) will not appear in the expression for E (Tn) • The 

distribution of Y can now be derived as follows. 

For k=1,2, ••• ,n-1 Pr(Y=k)=Pr(k-1 samples are classified as 

negative and one is classified as positive! Group is 

classified as positive) =Pr(k-1 samples are classified as 

negative and one is classified as positive) (Pr(Group is 

classified as positive)) -1 since when classification errors are 

not present every group containing a positive sample produces 

a positive test outcome. Consequently, 

p(1-p)k-l
Pr(Y=k) k=1,2, ••• ,n-1. (32) 

1- ( 1-p) n ' 

Similarly, Pr(Y=n)=Pr(n-1 samples are classified as negative! 

Group is classified as positive)=pPr(n-1 samples are 

classified as negative) (Pr(Group is classified as positive)) "1 

since group of size n which contains n-1 negative samples is 

positive only if its n-th member is positive when pf.=pf_=O. 

This implies the following: 
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p(1-p)n-1
Pr(Y=n) (33}

1- ( 1-p} n 

By combining formulas (32) and(33} we get the following new 

distribution of Y: 

p ( 1-p )k-1
Pr(Y=k) ,k=1,2, ..• ,n. (34}

1-(1-p)n 

New expression for E(Tn) can now be derived just like at 

the beginning of this section but with pf. and Vn set to zero 

and with the distribution of Y presented in (34). It was 

verified numerically that the resulting expression divided by 

n produces the same results as formula (31). For example, 

p=O. 25 produces n*=3 and E (Tn*!n*) =0. 839; 

p=0.10 produces n*=5 and E (Tn*!n*) =0. 523; 

p=0.01 produces n*=15 and E (Tn*!n*) =0 .152. 

It was mentioned earlier that the expression we derived 

for the expected number of tests per sample (formula (26}) is 

actually an approximation due to the fact that distribution of 

Y used in this expression is not exact. An obvious question 

arises: how good is our approximation? Since for the situation 

when pf.=O we know the exact results it seems reasonable to 

approximate them in a way similar to the one used for MS and 

observe the difference in numerical outcomes. Ignoring the 

information about the group being positive and setting pf+ to 
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zero results in the following distribution of Y: 

1 ,if k=l,2, ••• ,n-1.Pr(Y=k) = {p(l-p)k- (35)
{1-p)n-1 ,if k=n. 

This distribution of Y was used to calculate approximate 

expected values and the following result were obtained: 

p=O. 25: Exact (E (Tn*ln*)) =0. 839 and Approx. (E (Tn*ln*)) =0. 773; 

p=O .10: Exact (E (Tn*ln*)) =0. 523 and Approx. (E (Tn*ln*)) =0. 513; 

p=0.01: Exact(E(Tn*ln*) )=0.152 and Approx. (E(Tn*ln*) )=0.183. 

The fact that the values presented above are quite close 

suggests that our approximation is probably a good one. 

Results derived in this section are used to obtain 

numerical values which are presented and discussed in Chapter 

5. In the next chapter the procedure for screening blood for 

HIV currently used by Canadian Red Cross is discussed. 



Chapter 4 

HIV BLOOD SCREENING 

PROCEDURE USED BY CANADIAN 

RED CROSS 

As mentioned in Chapter 1 the Canadian Red Cross attempts 

to reduce the probability of collecting an infected sample of 

blood by requesting each donor to fill out a questionnaire 

which is designed to identify people who come from a 'high 

risk' pool (Figure 3). Each of the potential donors is then 

interviewed by a staff member of the Red Cross. Once the blood 

is collected, it is transferred to one of the Red Cross 

testing laboratories, where extensive screening of blood for 

various infections is carried out. HIV screening is a critical 

component of this procedure. The testing procedure used for 

HIV screening is described next. 

46 
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During screening for HIV, blood samples are tested 

individually but simultaneously, eighty nine at one time. 

Ninety six samples, four of which are positive controls and 

three are negative controls, are put in separate wells on a 

single platform and simultaneous testing is performed using 

ELISA. A nontechnical description of ELISA is given by Wein 

and Zenios [9, pages 4-5]. The cut-off value for positive and 

negative classification is determined using the mean of the 

normalized OD readings of negative controls plus o. 25. OD 

stands for the optical density level (ELISA outcome) which is 

normalized as follows: 

NORMALIZED(OD)= OD-Mi~ , 
Max-M~n 

where Min and Max are the smallest and the largest OD levels 

in the data. A sample that produces a positive result on the 

first test is classified as "initially reactive" and it is 

then retested in duplicate. If at least one of the retests is 

positive the blood sample is classified as "repeatedly 

reactive" and is sent for confirmatory retesting to a 

laboratory in ottawa where an expensive and more accurate 

Western Blot test is used to determine whether the blood is 

indeed infected. Regardless of the outcome of the Western 

Blot, repeatedly reactive blood samples are never used. 

Initially reactive samples which produce negative outcomes for 

both retests are considered uninfected and are passed on to 
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the hospitals for use. Figure 2 gives a graphical description 

of the procedure just discussed. In what follows this 

procedure is denoted by CP. 

CP is intuitively reasonable but from a statistical view 

point it defies logic because it gives the first negative 

outcome much more credibility than the second and the third. 

We have not been able to find any statistical basis for CP in 

published literature. Our evaluation of the performance of CP 

is presented next. It is compared with performances of MS and 

MD in Section 5.1. 

We will derive expressions for E (TN) and var (TN) • In order 

to find these expressions we define the following quantities: 

0, if a sample produces negative result on 
I = first ELISA test. 

{ 1, otherwise. 

Pr(I=l) = Pr(first ELISA test on a sample is positive) and 

Pr(I=O) = 1-Pr(I=l). 

Consequently, E(TN/N) and var(TN/N) are obtained: 

N+ 2~(I) = 1+2Pr(I=1) = 1+2[p+(pf+) (1-p)] 

T 
var ( 2)

N 

number of samples out of N 
var(N+ 2 <which are initially positive)) 

N2 

4var(I) 
N 

4Pr(I=1)(1-Pr(I=1)) 
N 

4[p+(pf+) (1-p)] [1-p-(pf+) (1-p)] 

N 
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Now performance of CP can be evaluated for any given pair 

of parameters (p, pf.) and different values of N for variance. 

The following values were reported by Ontario Hospitals 

Association: p=0.00009, Pr(repeatedly reactive sample)=0.002 

(11]. Using the latter value we can find the corresponding 

probability of a false positive outcome: 

Pr(repeatedly reactive sample) = 2Pr(initially reactive 

sample)Pr(second ELISA test is positivejfirst ELISA test was 

positive) Pr(second ELISA test is negative I first ELISA test was 

positive)+ Pr(initially reactive sample) (Pr(second ELISA test 

is positive! first ELISA test was positive)) 2 • 

In the expression above we used the fact that retesting is 

done simultaneously rather than sequentially. Using the 

formula for probabilities derived earlier in Result 1 and 

simplifying the resulted expression produces an equation which 

can be solved using Newton's method. If Pr(repeatedly reactive 

sample)=0.002 [11] it can be found using MAPLE that pf+ = 

0.031. Values of performance measures for CP for several other 

parameter pairs are given and discussed in section 5.1. 

Chapter 5, which follows next, contains numerical results 

and final conclusions. 



Chapter 5 

DISCUSSION OF RESULTS 

5.1 	 NUMERICAL RESULTS 

In this section MI, MD and MS are compared in terms of 

expected number of samples classified by a single test 

(1./E(Tnfn)) and the coefficient of variation (CV). These 

quantities are calculated for various parameter pairs (p, 

pf+) Table 2 illustrates some results. The first pair ofo 

values comes from reports of the Ontario Hospitals Association 

[11]o The second pair results when threshold is moved to an 

extreme value and as a consequence pf+ is very high. The 

remaining pairs illustrate some instances for which 

circumstances are not favourable for group testing due to a 

high prevalence rate. It is clear from the results that both 

MD and MS are superior to MI and that there is not much 

difference in performance of MD and MS o Coefficients of 

variation are much lower for MI which is to be expected since 
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greater variability is naturally present when group testing is 

used. 

Table 2 PERFORMANCE MEASURES AND OPTIMAL GROUP 
SIZES FOR MI, MD AND MS 

p 
pf+ 

MI MD MS 

1/E(T"/n) cv 1/E(Tnfn) cv n* 1/E(T"/n) cv n* 

0.00009 
0.032 

0.97 0.18 50.65 5.23 106 50.77 4.92 106 

0.00009 
0.98 

0.02 0.10 1. 01 7.24 105 1. 01 5.32 105 

0.01 
0.0005 

0.99 0.10 5.07 1. 52 10 5.18 1.56 11 

0.1 
0.006 

0.90 0.28 1.57 0.88 4 1.62 0.83 4 

0.1 
0.01 

0.89 0.30 1.57 0.88 4 1. 60 0.83 4 

The similarities of the shapes and values of the expected 

number of samples classified by a test become apparent from 

Figures 5 and 6. For fixed parameter pairs, the plots 

corresponding to MD and MS look almost identical. All graphs 

of 1/E(Tn/n) versus n follow the pattern of first increasing, 

reaching the maximum and then decreasing except for a few of 

instances of small increases. The n* reported in Table 2 is 

a value of n from the range (0,300) which yields the maximum 

value of 1/E(Tn/n). Although we can not strictly rule out the 

possibility that even larger 1/E(Tn/n) values exist for some 

n>300, we have strong reasons for not considering such large 

group sizes. In most geographical regions of Canada, the 
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number of blood samples collected per day is less than 300. 

Since blood has limited shelf life, there is a great urgency 

to test it immediately and, if found safe, to make it 

available for use by hospitals. Thus, waiting a day or more to 

form an appropriate group size is not an acceptable option. 

Equally important is the fact that group testing is not likely 

to be feasible for very large group sizes owing to dilution 

effect. 

Figures 7 and 8 illustrate the behaviour of the maximum 

value of 1/E(Tn/n) as p and pf+ vary. Once again the patterns 

are similar for MD and MS. The nature of the relationship 

seems to be linear when pf+ is changing and hyperbolic when p 

is changing but in both cases increase in p or pf+ results in 

decrease in the expected number of samples classified by a 

single test. This negative relationship is expected since 

higher prevalence rate and the probability of a false positive 

outcome inevitably results in larger number of positive groups 

and hence a greater number of retests. The plots also indicate 

that most of the time small changes in the values of p and pf+ 

do not effect the value of 1/E(Tn*/n*) by much. Only exception 

is the case when p is very small. Absence of drastic changes 

in the value of 1/E(Tn*!n*) in response to small shifts in p 

and pf+ is important since in practice the exact values of 

parameters are seldom known. The behaviour of the optimal 

group size, n*, asp and pf+ vary is explored in Figure 11. The 
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patterns observed are not monotonic and we have not been able 

to explain the reason behind these patterns. 

It was suggested by Litvak, Tu and Pagano [10] that a 

sample size of fifteen is often convenient to use in group 

testing. Suppose it is not possible to use optimal group 

sizes shown in Table 2 because they are too large and that a 

group size of fifteen is used instead. Table 3 shows that even 

in this case group testing is more efficient and MD and MS 

produce similar results. It would have been interesting to see 

how our results compare with those obtained by Litvak, Tu and 

Pagano. Unfortunately, their paper does not contain any 

tables. Only plots are used for illustrations and as a result 

any comparisons are subject to reading inaccuracies. 

Furthermore, Litvak, Tu and Pagano use pairs: pf+=pf_=0.005, 

while in our model pf_=O. Due to these factors our comparisons 

may not be precise but it seems that MS, MD and procedures 

considered by Litvak, Tu and Pagano have similar performances. 

Table 3 EXPECTED NUMBER OF SAMPLES CLASSIFIED BY A SINGLE 
TEST IF GROUP SIZE OF FIFTEEN IS USED 

p 
pf+ 

MI MD MS 

0.00009 
0.031 

0.97 14.18 14.20 

0.01 
0.0005 

0.99 4.80 4.97 

0.00009 
0.98 

0.02 0.29 0.29 
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An important feature in the procedures discussed here is 

the number of retests that are performed on a group or on a 

sample. Figures 9 and 10 illustrate the effect of changing p, 

pf+ and n on the value of r. As the first two parameters 

gradually increase, the number of retests changes in a 

stepwise manner. It stays unaffected for awhile and then jumps 

one unit up (if pf+ is increasing) or down (if p is 

increasing) . This behaviour of r is expected since higher 

probability of a false positive outcome requires more 

extensive retesting, while higher prevalence rate suggests 

that the positively tested group is likely to be a true 

positive and, therefore, the number of retests should 

decrease. The effect of group size on the number of retests 

is illustrated for the cases when p is very small (p=0.00009) 

and pf+ is 0.032 and 0.8. In both these situations r 

decreases as n increases. The value of r seems to stay 

constant when pf+=0.032. 

In an application like ours, it may be desirable to avoid 

higher variability even at some cost. Our analysis show that 

coefficient of variation increases as n increases (Figures 

12a,12b,12c and 12d). If accuracy is very important, group 

sizes used can be smaller than the optimal values which will 

result in lower CV and higher E(Tn/n). 
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Table 4 PERFORMANCE MEASURES FOR CP, MD, AND MS 

p CP MD MS 

pf 1/E(T,,/n) CV 1/E(Tn/n) cv 1/E(Tn/n) CV 

0.00009 

0.031 

0.94 0.04 50.77 4.92 50.65 5.23 

0.00009 

0.3 

1. 06 0.06 36.15 4.97 36.06 5.93 

0.00009 

0.8 

2.60 0.03 10.17 5.05 10.15 6.95 

It was discussed in Chapter 4 how CP can be evaluated for 

given parameter values. Table 4 illustrates the numerical 

results. First set of parameters reflects the current 

situation while two other parameter pairs correspond to 

situations in which we want to be sure that the probability 

of a false negative outcome is nearly zero. Therefore , we 

have set pf+ quite large. Numerical results show that the 

expected number of samples classified by a single test is much 

higher for MS and MD in comparison with CP. The coefficient of 

variation , however, is smaller for CP. 

5.2 	RECOMMENDATIONS 

Based on the results obtained in this thesis, it is our 

conclusion that group testing is a more efficient than the 

procedure currently used by the Canadian Red Cross. Since MD 
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and MS produce similar results, it is recommended that 

Modified Dorfman's procedure be used. It is easier to 

implement and, therefore, reduces the possibility of human 

error. If blood screening can be performed using robots or 

other mechanized devices and even small savings are important 

MS, may be considered instead of MD. 

5.3 	 FUTURE DIRECTIONS 

In these thesis we have discussed and compared several 

procedures suitable for screening blood for HIV. From 

managerial and statistical point of view the goal of future 

research is to develop an even more efficient group testing 

procedure. It may be possible to combine the strategies, 

discussed in these thesis, to produce a more efficient 

protocol. For example, every time we have a positively 

classified group we may want to consider several ways of 

action: 1)test all samples individually (Dorfman's approach 

(5]); 2)perform individual testing only until one of the group 

members is classified as positive (Sterrett's approach [13]}; 

3) draw a subgroup from this group and test it (Sobel and 

Groll's approach (12]) . Modelling of such procedure will 

probably make use of the dynamic programming approach and will 

have to address the problem of classification errors. 

Biological research is necessary to establish the 

feasibility and possible effects of pooling blood samples when 
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newly developed tests are considered for HIV screening (for 

example, PCR). 

And finally, it is imperative that Canadian Red Cross uses 

the most efficient and safest methods when screening blood for 

various diseases, in particular for HIV. Consequently, 

difficulties surrounding implementation of group testing 

strategies need to be researched and alleviated. Senior 

managers as well as technicians need to participate in 

suitably modifying these procedures to reduce the risk of 

human/handling errors. Only then can the full potential of 

this research be realized. 
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Table 5 Performance measures for MD for various group 
sizes whe~ ~revalence r~te is 0.00009 and probability of a 
false pos~t1ve outcome 1s 0.031. (* denotes the optimal 
group size.) 

n ·I 1/E(Tn/n) VAR(Tnln) CV\fnln) 
2 I 1.936 0.009 0.188 

n I 1/E(Tn/n) IVAR(Tn/n) CV(Tnln) 

5J 40.666 I 0.006 3.049 
3 I 2.902 I 0.005 I 0.201 54 I ".114 0.006 3.11 
4 I 3.866 I 0.003 0 .219 55 41.55 0.006 3.169 
5 I 4.828 I 0.003 0.243 56 I >l1.973 0.006 3.228 
6 I 5.786 I 0.002 0.271 57 .t2.384 I 0.006 3.286 
7 I 6.741 0.002 i 0.304 58 42.782 I 0.006 3.344 
8 I 7.692 0.002 I 0.34 59 43.168 I 0.006 3.4 
9 I 8.638 0.002 I 0.38 
10 I 9.579 0.002 I 0.423 

60 I 43.543 I 0.006 3.457 
61 43.905 I 0.006 I 3.512 

11 I 10.515 0.002 I 0.468 62 .t4.256 I 0.007 I 3.567 
12 I 11.444 0.002 0.516 63 44.595 I 0.007 I 3.621 
1:l I 12.367 0.002 0.566 64 44.922 I 0.007 I 3.674 
14 I 13.283 I 0.002 I 0.617 65 45.239 I 0.007 I 3.727 
15 I 14.192 I 0.002 0.671 66 45.544 I 0.007 3.779 
16 I 15.094 0.002 0.725I 67 45.839 I 0.007 3.83 
17 I 16.003 0 .002 0.753 68 46.122 I 0.007 3.88 
18 I 16.889 0.002 0.81 69 46.395 0.007 3.929 
19 I 17.767 0.002 0.868 70 46.658 0.007 3.978 
20 I 18.635 0.002 I 0.927 71 46.911 0.007 4.026 
21 I 19.494 I 0.003 0.987 72 47.153 0.007 4.074 
22 I 20.343 I 0.003 1.049 73 47.385 I 0.008 4.12 
23 I 21.182 0.003 1.11 74 47.608 0.008 4.166 
24 I 22.01 0.003 1.173 75 47.821 0.008 4.211 
25 I 22.828 0.003 1.236 76 48.025 0.008 4.255 
26 I 23.634 0.003 1.3 77 48.22 0.008 4.299 
27 I 24.43 0.003 1.365 78 48.406 0.008 4.341 
28 I 25.213 0.003 1.43 79 48.583• 0.008 4.383 
29 I 25.985 0.003 1.495 80 48.751 0.008 4.425 
30 I 26.745 0.003 1.561 81 48.911. 0.008 4.465 
31 I 27.493 I 0.004 1.627 82 49.062 0.008 4.505 
J2 I 28.229 0.004 I 1.693 83 49.206 0.009 4.544 
33 I 28.952 I 0.004 I 1.759 84 49.341 0.009 4.582 
34 I 29.662 I 0.004 I 1.826 85 .t9.469 I. 0.009 4.62 
35 I 30.359 1 0.004 1.892 86 49.589 ; 0.009 4.656 
36 I 31.044 I 0.004 1.958 87 49.702 0.009 4.692 
37 I 31.716 0.004 2.025 88 49 .807 0.009 4.7215 
38 I :!2.3 74 0.004 I 2.091 89 I 49 ,906 I 0.009 I 4.762 
39 I 33.02 0.004 i 2.157 90 I 49.997 0.009 4.796 
40 I 33.652 0.004 I 2.223 91 I 50.082 0.009 4.829 
41 I 34.271 0.004 I 2.289 92 I 50.16 0.009 4.862 
42 I 34.876 I 0.005 I 2.355 93 I 50.232 0.009 4.894 
43 I 35.469 I 0.005 2.42 94 I 50 .298 0.01 4.925 
44 I 36.048 1 0.005 2.485 95 I 50 .3.57 0.01 4.956 
45 I 36 .614 1 0.005 2.549 96 I SC.411 0.01 4.985 
46 I 37.166 I 0.005 2.614 97 I 50.458 I 0.01 5.015 
47 I 37.7os 1 0.005 I 2.677 98 I 50.5 0.01 5.043 
48 I 38.231 I 0.005 I 2.741 g9 I 50.537 I 0.01 5.071 
49 ! 38 .744 I 0.005 I 2.804 100 I 50.568 I O.Ql 5.098 
50 I 39.244 I 0 .005 I 2.866 101 I 50.594 I O.Ql 5.125 
51 I 39.731 1 0.005 I 2.928 102 I 50 .614 I 0.01 5.151 
52 I 40.205 I 0.006 I 2.989 103 I 50.63 ·r 0.01 I 5.177 
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cont'd Table 5 

n 1/E(Tnin) VAR(Tn/n) CV(Tn/n) 
104 50.641 0.011 5.201 
105 50.648 0.011 5.226 
106. 50.649 I 0.011 5.249 
107 50 .647 0.011 5.273 
108 50.64 0.011 5.295 
109 50.629 0.011 5.317 
110 I 50.614 0.011 5.339 
111 50 .594 0.011 5.36 
112 I 50.572 0.011 5.38 
113 50.545 0 .011 5.4 
114 I 50.515 I 0.012 5.419 
115 50.481 I 0.012 I 5.438 
116 50.444 I 0.012 5.457 
117 50.403 I 0.012 5.475 
118 50.36 0.012 5.492 
119 50.313 0.012 5.509 
120 50.263 0.012 5.525 
121 50.211 0.012 5.541 
122 50.156 0.012 5.557 
123 50.097 I 0.012 5.572 
124 50.037 0.012 I 5.587 
125 . 49.974 0.013 5.601 
126 49.908 O.Q13 5.615 
127 49.84 I 0.013 5.629 
128 49.77 0.013 5.642 
129 49.697 I 0.013 5.654 
130 49.622 0.013 5.667 
131 49.546 0.013 5.678 
132 49.467 0.013 5.69 
133 49.386 0.013 ; 5.701 
134 49.304 I 0.013 5.712 
135 49.219 0.014 5.722 
136 49.133 0.014 5.733 
137 49.046 0.014 5.742 
138 48.956 0.014 5.752 
139 I 48.866 0.014 5.761 
140 I 48.773 0.014 5.77 
141 I 48.68 I 0.014 5.778 
142 I 48.585 I 0.014 5.786 
143 I 48.488 0.014 5.794 
144 48.391 I 0.014 5.802 
145 I 48.292 0.014 5.809 
146 48.192 O.Q15 I 5.816 
147 I 48 .091 I 0.015 I 5.823 
148 I 47.989 t 0.015 I 5.829 
149 I 47.886 I 0.015 I 5.835 
150 I 47.782 I 0.015 I 5.841 



63 

Table 6 Performance measures for MS for various group 
sizes when prevalence rate is 0.00009 and probability of a 
false positive outcome is 0.031. (* denotes the optimal 
group size.) 

n 
2 
3 
4 
5 
6 
7 
8 
g 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

I 1/E(Tn/n) IVAR(Tn/n)l CV(Tnln)J 
I 1.937 0.009 I 0.186 I 
I 2.904 I 0.005 I 0.199 I 
I 3.869 I 0.003 I 0.217 I 
I 4.831 I 0.002 0.241 I 
I 5.79 I 0.002 I 0.269 I
I 6.745 0.002 0.302 I 
I 7.596 I 0.002 0.338 I
I 3.643 I 0.002 I 0.377 I
I 9.584 I 0.002 0.419 I

l 10.521 I 0.002 0.464 I
I 11.451 I 0.002 0.511 I 
I 12.374 ! 0.002 I 0.56 I
I 13.291 I 0.002 0.611 I
I 14.201 0.002 I 0.664 I
I 15.117 I 0.002 0.689 J
I 1s.012 1 0.002 I 0.744 I
I 16.899 I 0.002 0.8 I 
I 17.778 I 0.002 0.857 _I
I 18.547 I 0.002 0.915 I

J 19.506 I 0.003 I 0.974 I 
I 20.356 I 0.003 I 1.035 i 
I 21 .195 I 0.003 I 1.095 I 
I 22.025 I 0.003 I 1.157 l
I 22.843 I 0.003 1.219 I 
I 23.65 i 0.003 1.282 I 
I 24.446 0.003 I 1.346 I 
I 25.231 0.003 1.41 I 
I 26.003 0.003 1.474 I
I 26.764 I 0.003 I 1.538 I 
I 27.513 I 0.003 I 1.603 I
I 28.249 I 0.003 1.668 I 
I 28.973 I 0.004 I 1.734 I 
I 29.684 I 0.004 I 1.799 l 

r 
4 
4 

4 

4 

4 

4 
4 
4 

4 

4 
4 
4 
4 
4 
4 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

35 
36 

I 30.382 I 0.004 I 1.864 I 
I 31.068 I 0.004 I 1.93 i 

3 
3

37 
38 

I 31.741 1 0.004 I 1.995 I 
I 32.4 I 0.004 I 2.06 i 

3 
3

39 I 33.046 I 0.004 I 2.125 I 3
40 I 33.68 I 0.004 I 2.19 I 3 

42 
43 
44 
45 

41 I 34.3 I 0.004 I 2.255 I 
I 34.906 I 0.004 I 2.319 I 
I 35.5 ! 0.005 I 2.383 I 
I 36.08 I 0.005 I 2.447 I 
I 36.647 I 0.005 : 2.511 I 

3 
3 
3 
3 
3

46 I 37.201 I 0.005 I 2.574 ! 3 

48 
47 I I 0.005 l 2.637 j_

I 38.259 I 0.005 I 2.699 : 
37.741 3 

3 

so 
5 I 

49 I 38 .733 I 0.005 I 2.751 I 
I 39 .284 I 0.005 I 2.822 I 
I 39.772 I 0.005 I 2.883 I 

3 
3 
3 

52 I 40.24 7 I 0.005 I 2.943 i 3 

n 1 1/E(Tn/n) VAR(Tnlnli CV(Tn/n) I 

353 i 40.11 1 o.oos l 3.002 l 
54 1 41.16 1 o.oo6 _l 3.061 I 3 
55 1 41 .597 1 0.006 I 3.12 I 3 
56 1 42.021 I 0.006 I 3.178 I 3 
57 31 42.434 o.oos J 3.235 I 

sa 1 42.834 o.oos I 3.291 I 3 
59 1 43.222 o.oo6 I 3.347 I 3 

360 1 43.598 I 0.006 i 3.403 I 

61 1 43.962 I 0.006 I 3.457 I 

362 1 44.314 1 0.006 I 3.511 I 

363 1 44.655 I 0.006 I 3.564 I 
364 1 44.984 1 0.006 I 3.616 I 

365 1 45.302 I o.oo7 I 3.668 I 

366 I 45.61 I 0.007 I 3.719 1 
3 
3 

57 1 45.906 1 0.007 I 3.769 I 

58 

3 

1 46.191 o.oo7 l 3.819 I 

69 1 46.466 o.oo7 I 3.867 I 

3 
70 1 46.7:31 0.007 3.915 I 

3 
71 1 46.985 I o.007 3.963 I 

3 
72 1 47.229 1 0.007 4.009 I 

3 
1 47.464 1 0.007 4.055 I 

74 ! 47.689 1 o.oo7 I 4.1 I 
375 1 47.904 0.007 _l 4.144 I 

376 1 48.11 I 0.008 I 4.188 I 
377 1 48.307 0.008 I 4.231 l 
378 1 48.49-' 0.008 _l 4.273 l 
379 1 48.673 I 0.008 I 4.314 I 
380 1 48.84-' 1 o.oo8 I 4.354 I 

381 1 49.006 I 0.008 I 4.394 I 
382 
3 

1 49.159 0.008 I 4.433 I 

83 1 49.305 0.008 I 4.472 I 
384 49.442 . o.oo8 I 4.509 I 
3as 49.5';2 1 o.oo8 1 4.546 .l 
386 49.695 1 o.oog I 4.582 I 
387 49 .81 ! o.oo9 I 4.618 I 
388 49 .917 1 0.009 l 4.652 I 
389 50.ot3 I 0.009 I 4.687 I 
390 50.112 I 0.009 I 4.72 I 

91 50.199 I 0.009 I 4. 753 I 3 
392 50.279 1 0.009 I 4.785 ! 
393 50.353 I o.oo9 I 4.816 I 
3 
3 

94 50.421 I 0.009 l 4.847 I 
95 50.482 1 0.009 ! 4.877 I 

96 1 50.538 I 0.009 I 4.906 I 

3 
3 

97 1 50.538 I o.o1 I 4.935 I 

3 

98 1 50 .632 I 0.01 I 4.963 I 
99 I 50.671 1 0.01 _l 4.991 I 

100 1 50.704 I O.ot i 5.018 I 
101 I 50.732 I O.Q1 i S.O•U I 
102 1 SO .755 I 0.01 I 5.069 I 
103 : 50 .773 I 0.01 I 5.095 I 

3 
3 
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cont'd Table 6 

n 1/E(Tn/n) VAR(Tnln) CV(Tn/n) r 
104 50.787 0.01 5.119 3 
105 50.795 0.01 5.143 3 
106. 50.799 0.01 5.166 3 
107 50.799 0.01 5.189 3 
108 50.794 0.011 5.211 3 
109 50.785 0.011 5.233 3 
110 50.772 I 0.011 5.254 3 
111 50.755 I 0.011 5.275 I 3 
112 50.735 I 0.011 5.295 3 
113 50.71 I 0.011 5.315 3 
114 50.682 I 0.011 5.334 3 
115 50.651 O.Q11 5.353 3 
116 50.616 0.011 5.371 3 
117 50.577 0.011 5.388 3 
118 50.536 0.011 5.406 3 
119 50.491 0.012 5.422 3 
120 50.444 0.012 5.439 3 
121 50.394 0.012 5.454 3 
122 50.34 0.012 5.47 3 
123 50.284 0.012 5.485 3I 
124 50.226 0.012 5.499 3 
125 50.165 0.012 5.514 3 
126 50.101 0.012 5.527 3 
127 50.035 0.012 5.541 3 
128 49.967 0.012 5.554 3 
129 49.896 0.012 5.566 3 
130 49.824 0.013 5.578 3 
131 49.749 0.013 5.59 3 
132 49.672 0.013 5.601 3 
133 49.594 0.013 5.613 3 
134 49.513 0.013 5.623 3 
135 49.431 I 0.013 5.634 3 
136 49.347 0.013 5.644 3 
137 49.261 0.013 5.653 3 
138 49.174 0.013 5.663 3 
139 49.085 0.013 5.672 3 
140 48.995 0.013 5.681 3 
141 48.903 0.014 5.689 3 
142 48.81 0.014 5.697 3 
143 48.716 0.014 5.705 3 
144 48.62 I 0.014 5.712 I 3 
145 48.523 0.014 5.72 3 
146 48.425 0.014 5.727 3 
147 48.326 0.014 5.733 3 
148 48.226 0.014 5.74 3 
149 48.124 0.014 5.746 3 
150 48.022 0.014 5.752 3 
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Figure 1 
applied to 

Individual and group testing procedures when 
a group of samples of size n. 

In samples! 

I 
1 

Individual Testing 1 Group Testing J 
I 

1 1 
1Positive lnN~eeigtaalfitiViveel----, 

I 
1 

I Dorfman's Procedure I .1 Sterrett's Procedure j 

n samples are classifiec 
in accordance with 
individual test results 

Perform Individual Testing 
until either all samples 
are classified as negative or 
a sample is classified as 
positive 

Test the rest of the 
samples as a group 

...-----l and continue applying 
Sterrett's procedure 
until all samples are 
classified 

n sample are classified n samples are classified 
as negative +--­in accordance with test 

results 
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Figure 2 Procedure for screening blood for HIV currently 
used by the Canadian Red Cross. 

1st ELISA 

I 

l. 

Positive I l Negative J 
1 

I 
1 1 

At least one test Both tests produce 
produces a positive result a negative result 

I WESTERN BLOT J 
I 

1 
Positive I Negative I 

Patient is 
notified of 
an infection 

Blood is not used Blood is used 
for transfusion for transfusion 

2nd and 3rd 
ELISA 
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Figure 3 Questionnaire used by the Canadian Red cross. 

Thank you for attending today's blood donor dinic. Before you can donate, we must make sure that you are in good health. 
This is for your protection and for lhe protection of those who will receive your blood. 

ANSWER All QUESTIONS YES OR NO 
Yes No Noy.. 

1o. In the last 12 months. to your knowledge, have 
medicine or drugs (pills, needles), except birth 

1. a) In the last 3 days, have you taken any type of 
you come in close (intimate) contact with someone DOwith yellow jaundice or hepatitis?control pills or vrtamins? DO 

DO 11. In the last 12 months, have you received blood, 
disorder or growth hormone (human pituitary)? 

b) Have you taken Accutane or Tegison for a skin 
plasma, clotting factors or Immune globulin? DO 

2. Are you free from a cold, ftu, infection or active 12. The following activities· put you at risk for AIDS. 

allergy today? 
 DO 

if male, having sex with another male, 
even once 

3. Have you had a vaccination in the last 3 months or 0 0
a rabies shot in the last year? 
 sharing needles or taking street drugs 
by needle 

DO receiving regular treatment with blood or 4. Have you had surgery in the last 6 months? blood products 

accepting money or drugs in exchange for sex 
5. Have you had any of the following: being the sexual parlher of someone who has 


a) epilepsy, coma. stroke, repeated seizures 
 taken part in any of the above activities or who has 
or fainting? 

DO 
contracted AIDS or has tested positive for AIDS. 

Since 1977, have you participated in any of the 
DO 

b) heart or blood pressure p<Oblems or DOabove activities? heart surgery? 

c) cancer, diabetes. uloetaiMI colitis or 13. In the past 12 manU.,. have you:

Ctohn's disease? 
 DO 

DO - had sex for which you paid money or drugs? DO
d) kidney, lung or blood condition? 

had sex with someone who may have 

DO participated in high risk activities (sexual 
background uncertain)? 

6. Have you been pregnant in the last 6 months or DO 
- had an episode of syphilis or gonormea? DO 

have you breast-fed in the last 3 months? 

7. a) Have you had malaria? DO 
14. Have you had an AIDS test elsewhere (other than

b) In the last 3 years, have you lived or for donating blood)? DOvisited an area where malaria is common? DO 
1 5. The symptoms of AIDS include: 

- weight loss, night sweats. fever, diarrhea 

earpiercing, acupuncture, eleclrolysis, needle 


8. In the last 12 months, have you had a tattoo, 
or cough 


stick injury or graft? 
 DO lumps in the armpits, neck or groin 
coloured patches on skin or inside mouth 

DO In the last 12 montns, have you had any of these D9. Have you ever had yellow jaundice (other than at 0symptoms which are continuous and une!!ll!ain!!!t?'birth), hepatitis or liver disease? 

t have read, understood and completed the above questions. The medical history I have given Is true. I understand the procedure and 
any side effects and complications associated with my (whole blood), (plasmapheresis), (cytapheresls) donation. I understand that my 
blood will be tested lor signs of Hepatitis, Syphilis, AIDS and other lntectious diseases transmitted by blood and that positive results 
will be reported to the Public Health Department where required by provincial law. I understand that my blood may not be used 
because of these tests and that I may be contacted, In confidence, about the results. 

Date Donor Name: Oonor Signature: 
. ...._ ..... 
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cont'd Figure 3 

(optional) My results c.on be rel..sed to my Family Doctor whose name Is: -------------------- ­
address 

r ­
1 Donor deferred 0 

r-----------~ 

I 438717 : l ~w---------------------------------------------­
~--~---------------------------------------­I I 

L---·--------1 ~ ----------==::=:==:=:=::=~=:-~N~~~~~~-------------===:=::=:===~== 

r------------, BLOOD SAFETY FORM 
Some people feel pressured to give blood ahhough H Is not sate for their blood to be usec:l for transfusion.l 

I 

438717 l 
I 

I • If none of the risk factors listed below apply to you, you must PLACE A "USE MY BLOOD"'------------·I STICKER ON THE SPACE BELOW. 

• If any of the risk factors listed below apply to you, PLACE A "DON'T USE MY BLOOD" STICKER
ON THE SPACE BELOW. 

Your lnfonna1lon Will be kept confidential. 

High Risk for AID§ 

1. If male, having sex with another man, even once since 1977. 

2. Sharing needles or laking street drugs by needle since 1977. 

3. Receiving regular lreatment with blood or blood products since 1977. 

4. Having sex in exchange for money or drugs, since 1977. 

5. Having a test that confirms lhat ~ haw been e>qlOSed 10 lhe 
AIDS virus (or have the AIDS virus now). 

6. Being the sexual partner o1 someone who has taken part In any ol 
lhe above activilies, or who has conlracled AIDS or has tested positive
for AIDS. 

PLACE BAR..CODEO 

LABEL HERE 


0 
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Figure 4 Distribution of HIV negative and HIV positive LOD
readings. (This figure is from (15].) 
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Figure 5a Expected number of sample classified by a single test versus group 
size for MS when prevalence rate is 0.00009 and probability of a false positive 
outcome is 0.031. 
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Figure 5b Expected number of sample classified by a single test versus group 
size for MS when prevalence rate is 0.01 and probability of a false positive 
outcome is 0.0005. · 
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Figure 5c Expected number of sample classified by a single test versus group 
size for MS when prevalence rate is 0.00009 and probability of a false positive 
outcome is 0.98. 
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Figure 5d Expected number of sample classified by a single test versus group 
size forMS when prevalence rate is 0.1 and probability of a false positive 
outcome is 0.00001. 
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Figure 6a Expected number of sample classified by a single test versus group 
size for MD when prevalence rate is 0.00009 and probability of a false positive 
outcome is 0.031. 

60 

50 

40 

-c-~ 30-w-.... 
20 

10 

0 
0 50 100 150 200 250 300 


n 

....] 

01 



Figure 6b Expected number of sample classified by a single test versus group 
size for MD when prevalence rate is 0.01 and probability of a false positive 
outcome is 0.0005. 
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Figure 6c Expected number of sample classified by a single test versus group 
size for MD when prevalence rate is 0.00009 and probability of a false positive 
outcome is 0.98. 
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Figure 6d Expected number of sample classified by a single test versus group 
size for MD when prevalence rate is 0.1 and probability of a false positive 
outcome is 0.00001. 
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Figure 7a Expected number of samples classified by a single test which 
corresponds to the optimal group size versus probability of a false positive 
outcome forMS when prevalence rate is 0.05. 
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Figure 7b Expected number of samples classified by a single test which 
corresponds to the optimal group size versus prevalence rate for MS when 
probability of a false positive outcome is 0.5. 
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Figure 7c Expected number of samples classified by a single test which 
corresponds to the optimal group size versus probability of a false positive 
outcome for MS when prevalence rate is 0.001. 
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Figure 7d Expected number of samples classified by a single test which 
corresponds to the optimal group size versus prevalence rate for MS when 
probability of a false positive outcome is 0.05. 
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Figure Sa Expected number of samples classified by a single test which 
corresponds to the optimal group size versus probability of a false positive 
outcome for MD when prevalence rate is 0.05. 
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Figure 8b Expected number of samples classified by a single test which 
corresponds to the optimal group size versus prevalence rate for MD when 
probability of a false positive outcome is 0.5. 
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Figure 8c Expected number of samples classified by a single test which 
corresponds to the optimal group size versus probability of a false positive 
outcome for MD when prevalence rate is 0.001. 
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Figure 8d Expected number of samples classified by a single test which 
corresponds to the optimal group size versus prevalence rate for MD when 
probability of a false positive outcome is 0.05. 
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Fiqure 9a Number of positive tests necessary to classify a group of size 60 as 
positive versus probability of a false positive outcome when prevalence rate is 
0.00009. 
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Figure 9b Number of positive tests necessary to classify a group of size 60 as 
positive versus prevalence rate when probability of a false positive outcome is 
0.3. 
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Fiaure lOa Number of positive tests necessary to make a positive 
classification versus group size when prevalence rate is 0.00009 and probability 
of a false positive outcome is 0.031. 
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Fiqure lOb Number of positive tests necessary to make a positive 
classification versus group size when prevalence rate is 0.00009 and probability 
of a false positive outcome is 0.8. 
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Figure lla Optimal group size versus probability of a false positive outcome 
for MS when prevalence rate is 0.05. 
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Figure llb Optimal group size versus prevalence rate for MS when 
probability of a false positive outcome is 0.5. 
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Figure llc Optimal group size versus probability of a false positive outcome 
for MD when prevalence rate is 0.05. 
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Figure lld Optimal group size versus prevalence rate for MD when 
probability of a false positive outcome is 0.5. 
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Figure 12a Coefficient of variation of the number of tests per sample versus 
sample size for MS when prevalence rate is 0.00009 and probability of a false 
positive outcome is 0.031. 
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Figure 12b Coefficient of variation of the number of tests per sample versus 
sample size forMS when prevalence rate is 0.00009 and probability of a false 
positive outcome is 0.98. 
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Figure 12c Coefficient of variation of the number of tests per sample versus 
sample size for MD when prevalence rate is 0.00009 and probability of a false 
positive outcome is 0.031. 
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Figure 12d Coefficient of variation of the number of tests per sample versus 
sample size for MD when prevalence rate is 0.00009 and probability of a false 
positive outcome is 0.98. 
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Programs 
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NOTE: • All programs are written in Borland C++ 
(Version 3.1 by Borland International Inc.). 

• 	 Comments within programs are written in 
italics. Other comments are written in italics 
and are surrounded by asterisks. 

• 	 Expressions A,B,C,D,F,H,P,An,Bn,Hn,S,Sl,S2 and 
S3 are defined on page 23. Expression for r is 
stated on page 29 and rl is this expression for 
n=1. Definitions of r and rl are given on page 
21. Random variable Tn is defined on page 22. 

Program 1 Calculates expected number of tests per 

sample and corresponding variance for MS. 


#include <stdio.h> 

#include <math.h> 

#define ALFA . 98 

#define N LIMIT 600 


double p,pf,r,r1; 

double A,B,C,D,F,H,P,An,Bn,Hn,S,S1,S2,S3,V; 


double sum1{int n); 

double sum2{int n); 

double get t(int n); 

double get-m(int n); 

double tn (N LIMIT] ; 

double mn[N=LIMIT]; 


main () 

{ 

int n; 

double Tn,Mn; 

FILE *fp; 


fp = fopen("Drive:Filename", "w"); 

p=Prevalence Rate; 

pf=Probability of a False Positive Outcome; 


for(n = 2; n <= N_LIMIT; n++) 
{ 
Tn = get_t(n); *E (T J * 
Mn =get m(n); *E (T~~) * 
tn[n] = Tn; 
mn(n] = Mn; 
V=Mnlpow((double)n,2.0)­

pow(Tnln,2.0); *Var(Tn/n)* 
fprintf(fp, "n:%d E(Tnln) :%.10f 

1 I (E ( TnIn) ) : % . 5 f 
var:%.5f cv:%.5f\n", 
n,Tnln,niTn,V, 

http:var:%.5f
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sqrt(V)/(Tn/n)); 
} 


fclose(fp); 

return(O); 


} 

double get_t(int n) 

{ 

double res1; 

r=ceil(log((1-ALFA)*(1-pow(1-p,(double)n)) 


/(ALFA*pow(1-p, (double)n)))/log(pf)); 
r1=ceil(log(p*(1-ALFA)/((1-p)*ALFA))/log(pf)); 
A=1-(r1+1)*pow(pf,r1)+r1*pow(pf,(double) (r1+1)); 
C=p+(1-p)*pow(pf,(double)r1); 
D=1+pf; 
F=1-pf; 
An=1-(r+1)*pow(pf,(double)r)+r*pow(pf, (double) (r+1)); 
Bn=pow(pf, (double)r); 
P=r1*(1-pow(1-C,(double)n))+A*(1-p)*(1+pow(1-C,(double) 

(n-1))*(C*(1-n)-1))/(F*C)+A*(1-p)*n* 
pow(1-C,(double) (n-1))/F; 

res1 =sum1(n)+(r+P)*(1-(1-Bn)*pow(1-p,(double)n))+ 
An*pow(1-p, (double)n)/F; 

return(res1); 
}
double get_m(int n) 
{ 
double res2; 
r=ceil(log((1-ALFA)*(1-pow(1-p,(double)n)) 

/(ALFA*pow(1-p,(double)n)))/log(pf)); 
r1=ceil(log(p*(1-ALFA)/((1-p)*ALFA))/log(pf)); 
A=1-(r1+1)*pow(pf, (double)r1)+r1* 

pow(pf, (double) (r1+1}); 
C=p+(1-p)*pow(pf, (double)r1); 
D=1+pf; 
F=1-pf; 
B=pow(pf,(double)r1); 
H=(D*A-r1*(r1+1)*B*pow(F,2.0))*(1-p)fpow(F,2.0); 
An=1-(r+1}*pow(pf, (double)r)+r*pow(pf, (double) (r+1)); 
Bn=pow(pf, (double)r); 
Hn=(D*An-r*(r+l)*Bn*pow(F,2.0))*pow(1-p, (double)n)/ 

pow(F,2.0); 
P=r1*(1-pow(1-C, (double)n))+A*(1-p)*(1+pow(1-C,(double) 

(n-1})*(C*(1-n}-1))/(F*C)+A*(1-p}*n*pow(1-C, (double) 
(n-1))/F; 

S1=H/(1-C)+2*r1*A*(l-p}/(F*(1-C)}; 
S2=1-(n+l)*pow(1-C,(double)n)+n*pow(1-C,(double) (n+1}}; 
S3=pow(A*(1-p)/(F*(1-C)),2.0}; 
S=C*r1*(1-r1)+H*n*pow(1-C, (double) (n-l}}+(n-l)*n*S3* 



102 

pow(1-C,(double)n)+(1-pow(1-C, (double)n))* 

(2*S3-S1+pow(r1,2.0))+S3*(S2*(2-C)-n*(n+1)* 

pow(1-C, (double)n)*pow(C,2.0))/pow(C,2.0)+ 

S2*(S1-3*S3)/C; 


res2=Hn+(1-pow(1-p, (double)n)*(1-Bn))* 
(pow(r,2.0)+2*r*P+S)+sum2(n); 

return (res2); 
} 
double sum1(int n) 
{ 
double t; 
int j; 

t = o; 

tn[1] =r1*C+(1-p)*A/F; 

for(j = 1; j <= n-1; j++) 


t=t + (1-(1-Bn)*pow(1-p,(double)n))*C* 
pow(1-C, (double) (j-1))*tn[n-j]; 

return(t); 
} 
double sum2(int n) 
{ 
double x; 
int Yi 

x=O; 

tn[1] =r1*C+(1-p)*A/F; 

mn[1] =pow(r1,2.0)*C+H; 

for(y=1;y<=n-1;y++) 


x=x+2*(1-pow(1-p, (double)n)*(1-Bn))*(r+r1+(y-1)*A* 
(1-p)/(F*(1-C)))*C*pow(1-C,(double) (y-1))*tn[n-y]+ 
(1-pow(1-p, (double)n)*(1-Bn))*C* 
pow(1-C,(double) (y-1))*mn[n-y]; 

return (x); 
} 

Program 2 Calculates minimum expected number of tests 
per sample and corresponding variance and group size 
for MS. (In this program parameters are set to the 
following values: 
p=O.OOl. • • 0.02, pf.=0.05 •• • 0.5, n=2 •• • 150.) 

#include <stdio.h> 
#include <math.h> 
#define ALFA . 98 
#define N LIMIT 150 
#define P-LIMIT 0.02 
#define PF LIMIT 0.5 

double p,pf,r,r1; 

http:pf.=0.05
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double A,B,C,D,F,H,P,An,Bn,Hn,S,S1,S2,S3; 


double sum1(int n); 

double sum2(int n); 

double get t(int n); 

double get-m(int n); 

double tn(N_LIMIT]; 

double mn[N_LIMIT]; 


main() 

{ 

int n,i,k; 

double Tn,Mn,min,smin,V; 

FILE *fp; 


fp = fopen ("Drive :Filename", "w") ; 
for (p=0.001;p<=P LIMIT;p=p+0.001) 

for(pf=O.OS7pf<=PF LIMIT;pf=pf+O.OS)
{ ­

for(n = 2; n <= N_LIMIT; n++) 
{ 

Tn =get t(n); *E(Tn~* 
Mn = get-m(n); *E(Tn) * 
tn[n] = Tn; 
mn[n] = Mn; 

} 
min = 2; 
for(i = 2; i <= N_LIMIT; i++) 

{ 
if(tn[i]/i <= min) 

{ 
min = tn[i]/i; 
k = i; 
smin = mn[i]; 
V = sminfpow({double) k, 2. 0) 

-pow(min,2.0); *Var(Tnjn)* 
} 

} 
fprintf(fp, "p:%.3f pf:%.3f n*:%d 

E(Tn*fn*):%.10f 
1/(E(Tn*/n*)) :%.Sf 
var:%.5f cv:%.5f\n",p,pf, 
k,min,1/min,v, 
sqrt(V)/(Tn/n)); 

} 

fclose(fp); 

return(O); 


} 
double get_t(int n) 
{ 

http:var:%.5f
http:LIMIT;pf=pf+O.OS
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double res1; 
r=ceil(log((l-ALFA)*(1-pow(l-p,(double)n))/ 

(ALFA*pow(1-p, (double)n)))/log(pf));; 
rl=ceil(log(p*(1-ALFA)/((1-p)*ALFA})/log(pf}); 
A=1-(r1+1)*pow(pf,r1)+r1*pow(pf, (double) (r1+1}); 
C=p+(1-p)*pow(pf, (double)r1); 
D=1+pf; 
F=1-pf; 
An=1-(r+1}*pow(pf, (double)r)+r*pow(pf, (double) (r+1)}; 
Bn=pow(pf,(double)r); 
P=r1*(1-pow(1-C, (double)n))+A*(1-p)*(1+pow(1-C, 

(double) (n-1))*(C*(1-n}-1)}/(F*C}+A*(1-p}* 
n*pow(l-C, (double) (n-1}}/F; 

res1 =sum1(n)+(r+P)*(1-(1-Bn)*pow(1-p,(double)n))+ 
An*pow(1-p,(double)n)/F; 

return(res1}; 
} 
double get_m(int n) 
{
double res2; 
r=ceil(log((1-ALFA)*(1-pow(1-p, (double)n))/ 

(ALFA*pow(1-p, (double)n)))/log(pf)); 
r1=ceil(log(p*(1-ALFA)/((1-p)*ALFA))/log(pf)); 
A=1-(r1+1)*pow(pf, (double)r1)+r1* 

pow(pf,(double) (r1+1)}; 
C=p+(1-p)*pow(pf,(double)r1); 
D=1+pf; 
F=1-pf; 
B=pow(pf,(double)r1); 
H=(D*A-r1*(r1+1)*B*pow(F,2.0))*(1-p)fpow(F,2.0); 
An=1-(r+1}*pow(pf,(double)r)+r*pow(pf,(double) (r+1)); 
Bn=pow(pf,(double)r); 
Hn=(D*An-r*(r+1)*Bn*pow(F,2.0))*pow(l-p,(double)n)/ 

pow(F,2.0); 
P=r1*(1-pow(1-C,(double)n))+A*(1-p}*(1+pow(1-C, 

(double} (n-1))*(C*(1-n}-1})/(F*C)+A*(1-p)* 
n*pow(1-C, (double) (n-1})/F; 

S1=H/(1-C)+2*r1*A*(1-p}/(F*(1-C}); 
S2=1-(n+1}*pow(1-C, (double)n)+n*pow(1-C, (double) (n+1}); 
S3=pow(A*(1-p)/(F*(1-C)},2.0}; 
S=C*r1*(1-r1)+H*n*pow(1-C, (double) (n-1))+(n-1)* 

n*S3*pow(1-C, (double)n)+(1-pow(1-C,(double)n))* 

(2*S3-S1+pow(r1,2.0))+S3*(S2*(2-C}-n*(n+1}* 

pow(1-C, (double)n)*pow(C,2.0})/pow(C,2.0)+ 

S2*(S1-3*S3}/C; 


res2=Hn+(1-pow(1-p, (double)n)*(1-Bn))*(pow(r,2.0}+2* 
r*P+S)+sum2(n); 

return (res2); 
} 
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double sum1(int n) 

{ 

double t· 

int j;' 


t = o; 

tn(1] =r1*C+(1-p}*A/F; 

for(j = 1; j <= n-1; j++} 


t=t + (1-(1-Bn)*pow(1-p,(double)n)}*C* 
pow(1-C, (double) (j-1}}*tn(n-j]; 

return(t); 
} 
double sum2(int n) 
{ 
double x; 
int y; 

x=O; 

tn(1] =r1*C+(1-p}*A/F; 

mn[1] =pow(r1,2.0)*C+H; 

for(y=1;y<=n-1;y++) 


x=x+2*(1-pow(1-p,(double)n)*(1-Bn))* 
(r+r1+(y-1)*A*(1-p)/ 
(F* (1-C})) *C*pow(1-C, (double) (y-1)) *tn(n-y]+ 
(1-pow(1-p, (double)n}*(1-Bn)}*C*pow(1-C, (double) 
(y-1)}*mn[n-y]; 

return (x); 

} 


Program 3 Calculates expected number of tests per 

sampl and corresponding variance for MD. 


#include <stdio.h> 

#include <math.h> 

#define ALFA . 98 

#define N LIMIT 150 


double p,pf; 

double r,r1; 

double A,B,C,D,F,H,An,Bn,Hn,K,V; 


main () 

{ 

int n; 

double T; 

FILE *fp; 


fp = fopen("Drive:Filename", "w"); 

p=Prevalence Rate; 

pf=Probability of a False Positive Outcome; 


for{n=2; n<= N_LIMIT; n=n+1) 

{ 
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r1=ceil(log(p*(1-ALFA)/ 
((1-p)*ALFA))/log(pf)); 

r=ceil(log((1-ALFA)* 
(1-pow(1-p, (double)n))/(ALFA* 
pow(1-p,(double)n)))/log(pf)); 

A=1-pow(pf, (double)r1)*(1+r1)+r1* 
pow(pf, (double) (r1+1)); 

An=1-pow(pf,(double)r)*(1+r)+r* 
pow(pf, (double) (r+1)); 

B=pow(pf, (double)r1); 
Bn=pow(pf, (double)r); 
C=p+(1-p)*pow(pf, (double)r1); 
D=pf+1; 
F=1-pf; 
H=(D*A-r1*(r1+1)*B*pow(F,2.0)) 

*(1-p)/pow(F,2.0); 
Hn=(D*An-r*(1+r)*Bn*pow(F,2.0))* 

pow(1-p,(double)n)/ 
pow(F,2.0); 

K=pow(n,2.0)*(pow(r1,2.0)*C+H); 
T =(1-(1-Bn)*pow{1-p, (double)n))* *E(Tn)* 

(r+n*(A*(1-p)/F+r1*C))+ 
An*pow(1-p,(double)n)/F; 

V=(Hn+(1-(1-Bn)*pow(1-p,(double)n))* 
(pow(r,2.0)+K+2*r*n* *Var(Tnfn)* 
(r1*C+(1-p)*A/F)))/pow(n,2.0) 
-pow(T/n,2.0); 

fprintf(fp, "n:%d E(Tn/n):%.5f 
1/(E(Tn/n)) :%.5f var:%.5f 
cv:%.5f\n",n,T/n,n/T,V, 
sqrt(V)/(T/n)); 

} 
fclose(fp); 
return(O); 

} 

Program 4 Calculates minimum expected number of tests 
per sample and corresponding variance and group size 
for MD. (In this program parameters are set to the 
following values: 
p=o.oo1 ... 0.02, pf+=0.05 ... o.5, n=2 ... 150.) 

#include <stdio.h> 
#include <math.h> 
#define ALFA . 98 
#define N LIMIT 150 
#define P-LIMIT (double} .02 
#define PF LIMIT (double) .5 

http:pf+=0.05
http:var:%.5f
http:E(Tn/n):%.5f
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double 
double 
double 

p; 
pf; 
r,r1; 

double A,B,C,D,F,H,An,Bn,Hn,K,V; 
double tn[N_LIMIT],mn[N_LIMIT]; 

main () 
{ 
int i,n,k; 
double T,min,smin; 
FILE 

fp 
*fp; 
= fopen("Drive:Filename", "w"); 

for(p = .001; p <= P LIMIT; p = p + .001) 
for(pf = .05; pf <= PF LIMIT; pf = pf + .05)

{ ­
for(n=2; n<= N LIMIT; n=n+1)

{ ­
r1=ceil(log(p*(1-ALFA)/((1-p)* 

ALFA))flog(pf)); 
r=ceil(log((1-ALFA)*(1-pow(1-p, 

(double)n))/(ALFA*pow(1-p, 
(double)n)))/log(pf)); 

A=1-pow(pf, (double)r1)*(1+r1) 
+r1*pow(pf, (double) (r1+1)); 

B=pow(pf,(double)r1); 
Bn=pow(pf,(double)r); 
An=1-pow(pf,(double)r)* 

(r+1)+r*pow(pf, (double) (r+1)); 
C=p+(1-p)*pow(pf,(double)r1); 
D=1+pf; 
F=1-pf; 
H=(D*A-r1*(r1+1)*B*pow(F,2.0)) 

*(1-p)fpow(F,2.0); 
Hn=(D*An-r*(r+1)*Bn*pow(F,2.0))* 

pow(1-p,(double)n)/pow(F,2.0); 
K=pow(n,2.0)*(pow(r1,2.0}*C+H); 
T =(1-(1-Bn)*pow(1-p,(double)n))* 

(r+n*(A*(1-p)/F+r1*C))+An* 
pow(1-p,(double)n)/F; 

V=(Hn+(1-(1-Bn)*pow(l-p, (double)n))* 
(pow(r,2.0)+K+2*r*n*(rl*C+(l-p)* 
A/F)))fpow(n,2.0)-pow(T/n,2.0); 

tn[n]=T; 
mn[n)=V; 

} 
min=100; 
for (i=2;i<=N_LIMIT;i=i+1) 
{ 
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if(tn[i]/i<=min) 
{ 

min=tn[i]/i; 
k=i; 
smin=mn[i]; 

} 
} 
fprintf(fp, "p:%.3f pf+:%.3f n*:%d 

E(Tn*/n*) :%.Sf 

1/(E(Tn*/n*)) :%.Sf cv:%.Sf\n", 

p, pf,k,min,1jmin, 

sqrt(smin)jmin); 


} 
fclose(fp); 
return(O); 
} 

Program S Calculates expected number of tests per 
sample and corresponding variance for MI. (In this 
program parameters are set to the following values: 
p=o.oo1 .•• o.o2, pf+=o.os ... o.s.) 

#include 
#include 
#define 
#define 
#define 

<stdio.h> 
<math.h> 
ALFA • 98 
P LIMIT (double) 
PF LIMIT (double) 

0.02 
O.S 

double 
double 
double 

Pi 
pf; 
r1; 

double A,B,C,D,F,H; 


main() 

{ 

double T,V; 

FILE *fp; 


fp = fopen("Drive:Filename", "w"); 
for(p = 0.001; p <= P LIMIT; p = p + .001) 

for(pf = O.OS; pf <= PF_LIMIT; pf = pf + .OS) 
{ 

r1=ceil(log(p*(1-ALFA)/ 
((1-p)*ALFA))flog(pf)); 

A=1-pow(pf, (double)r1)*(1+r1) 
+r1*pow(pf, (double) (r1+1)); 

C=p+(1-p)*pow(pf, (double)r1); 
F=l-pf; 
D=1+pf; 
B=pow(pf,(double)r1); 

http:pf+=o.os
http:pf+:%.3f
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H=(D*A-r1*(r1+1)*B* 
pow(F,2.0))*(1-p)fpow(F,2.0); 

*E (T1) * T =(1-p)*A/F+r1*C; 
*Var(T1) * V=pow(r1,2.0)*C+H-pow(T,2.0); 

fprintf(fp, "p:%.5f pf+:%.5f 
E(Tn/n) :%.5f 
1/(E(Tn/n)):%.5f var:%.5f 
cv:%.5f\n",p, pf,T, 
1.0/T,V,sqrt(V)/T); 

} 
fclose(fp); 
return(O); 

} 

Program 6 Calculates the number of retests. 

#include <stdio.h> 

#include <math.h> 

#define ALFA . 98 

#define N LIMIT 300 


double p; 
double pf; 

main() 

{ 

int n,r; 

FILE *fp; 


fp = fopen("Drive:Filename", "w"); 
p = Prevalence Rate; 
pf = Probability of a False Positive Outcome; 
for(n=1; n<= N LIMIT; n=n+1)

{ ­
r=ceil(log((1-ALFA)*(l­


pow{l-p,(double)n))/(ALFA* 

pow(l-p, (double)n)))flog(pf)); 


fprintf(fp, "%d %d\n",n,r); 

} 


fclose(fp); 

return(O); 

} 


Program 7 Calculates minimum expected number of tests 
per sample and corresponding group s1ze for the 
original sterrett's procedure using the model described 
in this thesis. 

http:var:%.5f
http:1/(E(Tn/n)):%.5f
http:pf+:%.5f
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#include <stdio.h> 
#include <math.h> 
#define N LIMIT 30 

double p; 

double suml(int n); 

double get t(int n); 

double tn[N_LIMIT]; 


main() 

{ 

int n; 

double Tn; 

int i ; 

int k; 

double min; 

FILE *fp; 


fp = fopen ("Drive :Filename", "w") ; 
p=Prevalence Rate; 

for(n = 2; n <= N_LIMIT; n++) 
{ 
Tn = get t(n); 
tn[n] = Tn; 

} 

min= 2; 

k = 2; 

for(i = 2; i <= N_LIMIT; i++) 


{ 
if(tn[i]/i <= min) 

{ 
min = tn[i]/i; 
k = i; 

} 
} 

fprintf(fp, " n*:%d 
E(Tn*/n*):%.10f\n",k, min); 

fclose(fp); 

return(O); 


} 

double get_t(int n) 

{ 

double res1; 


res1 =sum1(n)+(p-pow(p,2.0)*pow(1-p, 
(double) (n-1))+1-(n+1)* 
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pow(1-p, (double) (n))+n* 
pow(1-p,(double) (n+1)))/p; 

return(res1); 
} 

double 
{ 
double 
int 

t 

sum1(int n) 

t; 
j; 

= o; 
tn[1] =1; 

for(j = 1; j <= n-1; j++) 

t = t + p*pow(1-p,(double) (j-1))*tn[n-j); 

return(t); 


} 

Program 8 Calculates minimum expected number of tests 
per sample and corresponding group size for original 
Sterrett's procedure using Sterrett's formula. 

#include <stdio.h> 
#include <math.h> 
#define K LIMIT 20 

double p; 
double get t(int); 
double get-B(int); 
double tk[K_LIMIT); 

main() 
{ 
int k,i,m; 
double min,Tk; 
FILE *fp; 

fp=fopen("Drive:Filename", "w"}; 
p=Prevalence Rate; 

for(k=2; k <= K_LIMIT; k++) 
{ 
tk[k]=get_t(k); *E(Tn)* 

} 
min=2; 
m=2; 
for(i=2; i <= K_LIMIT; i++) 

{ 
if(tk[i]/i <=min} 
{ 
min=tk[i]/i; 
m=i; 
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} 

} 


fprintf(fp,"k*:%d E(k*,p)/k*:%.10f \n",m,min); 
fclose(fp); 
return(O); 

} 

double get_t(int k) 
{ 

double t,A,B,k1; 
int j; 
k1={double)k; 
t=pow{1-p,k1)+k1*p*pow{1-p,k1-1)*(2+(k1+1)/2-2/k1); 
for(j=2;j<=k;j++) 

{ 

A=get B(k); 

B=get-B(j)*get B(k-j); 

t=t+pow(p, (double)j)*pow{1-p,k1-j) 

*(j*(k1+1)/(j+1)+j+1-2*j/k1)*A/B; 


} 
return(t); 

} 

double get_B(int j) 
{ 

int v; 
double 1; 

1=1. 0 i 

for(v=1;v<j;v++) 


{ 

l=l*{1+v); 


} 
return(l); 
} 
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