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Abstract

Decisions such as saving, investing, policymaking, have consequences in multiple time

periods and are called intertemporal. These choices require decision-makers to trade-

off costs and benefits at different points in time. Time preference is the preference

for immediate gratification or utility over delayed gratification. The discount rate is

a tool used to measure this psychological phenomenon.

This thesis considers the problem of an individual maximizing his utility from

consumption and final wealth when his discount rate is not constant. The question

we answer is the following: if we allow the individual to update his decisions, will he

stick to his original strategy or will he switch?

We show that there are cases in which the individual’s strategy keeps changing

thus his behaviour becomes time inconsistent. In Chapter 1, we introduce two no-

tions to solve this inconsistency problem: The agent can pre commit i.e. he does not

change his original optimal strategy. The agent can also plan for his future changes of

strategy and adopt time consistent strategies also known as subgame perfect strate-

gies. We also review the existing literature on time discounting and time consistency.

Chapter 2 considers the time consistency in the expected utility maximization

problem. The risk preference is of the Constant Relative Risk Aversion (CRRA) type,

the time preference is specified by a non constant discount rate and we allow the

iv



volatility of the stock price to be stochastic. We show that the determination of one

quantity: the utility weighted discount rate completely characterizes the individual’s

subgame perfect strategies.

Chapter 3 is about equilibrium pricing in a model populated by several eco-

nomic agents in a complete financial market. These agents are investing, saving

and consuming and want to maximize their expected utility of consumption and fi-

nal wealth. We allow the economic agents to differ in their risk preferences, beliefs

about the future of the economy and in their time preferences (non constant dis-

count rates). Since the optimal strategies are time inconsistent, the equilibrium is

computed by using the time 0 optimal ( precommitment) strategies for the market

clearing conditions.

Chapter 4 considers the same model as chapter 2. We solve the equilibrium

problem when time consistent strategies are used for the market clearing conditions.

We limit the study to two economic agents. The subgame perfect equilibrium is

compared to the optimal equilibrium of Chapter 3.
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Notation and abbreviations

For i, j two integers, denote δi,j the Kronecker symbol:

δi,j =


1 if i = j

0 if i 6= j

(0.1)

T > 0 is the finite time horizon of the agent considered.

f(t, s) will represent the discount function between t and s ≥ t.

ρf (t, s) is the forward discount rate between t and s ≥ t : ρf (t, s) = −
∂f(t,s)
∂s

f(t,s)
.

ρb(t, s) is the backward discount rate between t and s ≥ t : ρb(t, s) =
∂f(t,s)
∂t

f(t,s)
.

Uγ(x) = xγ

γ
defined for γ < 1, γ 6= 0 is the utility function at x.

p = 1
1−γ is the inverse of the relative risk aversion.

{Wt, 0 ≤ t ≤ T} is a Brownian motion.

r is an interest rate, θS is the market price of risk, σS is the volatility of the

stock (in a complete market).

For a process {Ys}t≤s≤T , Y ∗s = supt≤u≤s |Yu| is the maximum process of |Y |.
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Introduction
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The theory of utility dates back from the 18th century. Swiss mathematicians

Cramer and Bernouilli introduced it to model satisfaction. This theory predicts that

an economic agent will base his decisions on the expected utility derived from a

decision and not on the expected value of such a decision. For example, the St-

Petersburg paradox gives an infinite expected value but a finite expected utility. The

paradox is as follows: the St Petersbourg game is played by flipping a fair coin until it

comes up heads, and the total number of flips, n, determines the prize, which equals

2n. The expected value is

EV =
1

2
× 2 +

1

4
× 4 + · · ·+ 1

2n
× 2n + ... =∞

Daniel Bernouilli writes regarding the paradox: The determination of the value

of an item must not be based on the price, but rather on the utility it yields . . . There

is no doubt that a gain of one thousand ducats is more significant to the pauper than

to a rich man though both gain the same amount.

The paradox is solved using a log utility function. The player gets utility log x

from having x dollars so the expected utility

EU =
1

2
× log 2 +

1

4
× log 4 + · · ·+ 1

2n
× log(2n) + ... <∞

Most choices require decision-makers to trade-off costs and benefits at different

points in time. Decisions with consequences in multiple time periods are referred to

as intertemporal choices. Decisions about savings, work effort, education, nutrition,

exercise, and health care are all intertemporal choices.

The theory of discounted utility is the most widely used framework for analysing
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intertemporal choices. This framework has been used to describe actual behaviour

(positive economics) and it has been used to prescribe socially optimal behaviour

(normative economics). Descriptive discounting models capture the property that

most economic agents prefer current rewards to delayed rewards of similar magni-

tude. Such time preferences have been ascribed to a combination of mortality effects,

impatience effects, and salience effects.

However, mortality effects alone cannot explain time preferences, since mortality

rates for young and middle-aged adults are at least 100 times too small to generate

observed discounting patterns.

The most widely used discounting model is the discounted utility model (DU)

and assumes that total utility can be decomposed into a weighted sum - or weighted

integral of utility quantities in each period of time. (Ramsey, 1928) assumes a constant

discount rate; he wrote:

This is the only assumption (the discount rate is constant) we can make, without

contradicting our fundamental hypothesis that successive generations are actuated by

the same system of preferences.

The DU model specifies a decision maker’s intertemporal preferences over con-

sumption profiles (ct, · · · , cT ). A person’s intertemporal utility function can be de-

scribed by the following special functional form:

U t(ct, · · · , cT ) =
T−t∑
k=0

D(k)u(ct+k)

where D(k) = ( 1
1+ρ

)k is the discount function between time k and time k + 1.

As cited in (Samuelson, 1937), u(ct+k) is often interpreted as the person’s cardi-

nal instantaneous utility function - his well-being in period t+ k - and D(k) is often

3
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interpreted as the person’s discount function - the relative weight that he attaches,

in period t, to his well-being in period t + k. ρ represents the individual’s pure rate

of time preference (his discount rate), which is meant to reflect the collective effects

of the ”psychological” motives discussed earlier.

It is well-known that doing away with the assumption that the discount rate is

constant will create time-inconsistency. The constant ρ will now be replaced by a

period dependent constant ρk. We briefly review the concept of time-inconsistency.

Let us begin with a simple example. Suppose time is discrete. An individual

considers entering an activity (for instance, running) which has some cost and benefit:

• If he starts today, she will suffer -1 today (pain), but gain +2 tomorrow (health).

• He has a non-constant discount rate: a stream ut is valued today (t = 0) at

u0 +
1

2

∞∑
t=1

ρtut for some ρ ∈ (
1

2
, 1)

• Starting today yields a utility of −1 + ρ < 0.

• Starting tomorrow yields a utility of (−1+2ρ)
2

> 0.

• So he decides today to start tomorrow. Unfortunately, when tomorrow comes,

it becomes today, and he decides again to start the next day. Thus, the optimal

strategy is time inconsistent and this is due to the fact that the discount rate

of the individual varies (the discount rate equals ρ
2

for the first period and ρ

subsequently.)

By now, there is substantial evidence that people discount the future at a non-

constant rate. More precisely, there is experimental evidence (see (Frederick et al.,

4
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2002) for a review) that people are more sensitive to a given time delay if it occurs

earlier: for instance, I might prefer to get two oranges in 21 days than one orange in

20 days, but also prefer to get one orange right now than two oranges tomorrow. This

is known as the common difference effect, and would not occur if I discounted

future utilities at a constant rate. Individual behaviour is best described by hyperbolic

discounting, where the discount function is h(t) = (1 + at)−
b
a , with a, b > 0. The

corresponding discount rate is ρ(t) = b
1+at

, which starts from ρ(0) = b and decreases

to zero. Because of its empirical support, hyperbolic discounting has received a lot of

attention in the areas of: microeconomics, macroeconomics and behavioural finance.

0 5 10 15 20 25 30 35 40
time t

0

1

2

3

4

5

6

 (t
)

discount rate function (0,t)

k1=3
k1=5
k1=10

(a) Hyperbolic discount rates
ρ(0, t) = ρ(t) = k2

1+k1t

0 5 10 15 20 25 30 35 40
time t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (t
)

discount function f(0,t)

k1=3
k1=5
k1=10
exponential

(b) Discount function as a function of

time f(t) = (1 + k1t)
− k2
k1

Figure 1.1: The parameters are: k1 = 0.2, 5, 10 and k2 is chosen such that the discount
function between time 0 and time t equals 0.3.

5



Ph.D. Thesis - Oumar Soule Mbodji McMaster - Mathematics

(Ebert et al., 2017) introduce the notion of weighted discount functions. They

show that in the presence of many agents, each discounting their utility at a different

rate, the aggregate discount function a weighted average of the individual discount

functions. If the agents have a continuous distribution, we obtain an integral and

if the agents have a discrete distribution, we get a discrete sum. They also show

that hyperbolic discounting and pseudo-exponential discounting are special cases of

weighted discount functions. (Ebert et al., 2017) states: ”greater group diversity

results in a more elevated group discount function so that more diverse groups discount

outcomes at any future time by less.”

When faced with non constant discount rates, a strategy that might be optimal

at time 0 might not be so at a later time: time inconsistency bites in. In that situation,

an agent has 2 choices:

1. He can commit to follow the strategy that is optimal at time 0 all the way to the

horizon (final time) T . This strategy will be called pre commitment or optimal

strategy.

2. He can allow an updating of his future preferences, and follow a time consistent

strategy also known as a subgame perfect strategy.

Review literature on time consistency in financial economics within

a deterministic setting.

We mention here, among other works, (Loewenstein and Prelec, 1992), (Laibson,

1997) and (Barro, 1999).

Time inconsistent behavior was first analyzed by (Strotz, 1955), and this line of

6
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research has been pursued by many others (see (Pollak, 1968), (Phelps and Pollak,

1968), Peleg and (Peleg and Yaari, 1973), (Goldman, 1980), (Laibson, 1997), (Barro,

1999), (Krusell and Smith, 2003)), mostly in the framework of planning a discrete-

time economy with production (Ramsey’s problem). More recently, the problem has

been taken up again by (Karp, 2005), (Karp, 2007), (Karp, 2008), Karp and Lee (Karp

and Lee, 2003). (Luttmer and Mariotti, 2003), (Ekeland and Lazrak, 2008), (Ekeland

and Lazrak, 2010), always within the framework of economic growth planning.

It is by now well established that time-consistent strategies are Stackelberg equi-

libria of a leader-follower game among successive selves (today’s self has divergent

interests from tomorrow’s). Consider an agent whose preferences vary with the time

t. A subgame perfect strategy is constructed as follows: at each infinitesimal interval

of time [t, t + dt], there is an agent At that has the time t preferences of the agent.

Agent At can only act between those two times and chooses an optimal strategy ū(t)

assuming that the agents As, s ≥ t + dt follow the strategy ū(s). Thus, a subgame

perfect strategy is a Stackelberg equilibria in which the decision maker only commits

infinitesimally.

Review literature on time consistency in financial economics within

a stochastic paradigm.

(Merton, 1969) studies the optimal investment/consumption problem over a fi-

nite horizon: the goal is to maximize expected utility of consumption and terminal

wealth. Merton uses a constant (psychological) discount rate. (Ekeland and Pirvu,

2008) has been the first to have considered the Merton problem with non-constant

discount rates, thus introducing time inconsistency to the Merton problem. (Ekeland

et al., 2012) considers the pensioner’s problem where one agent is consuming, paying

7
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an insurance premium and in case of death before maturity, derives a final utility of

bequest. A death rate modelling the probability of death is introduced. They consider

the limiting case when the decision-maker can commit only during an infinitesimal

amount of time. The leader-follower game among successive agents formulation is

used to define subgame perfect strategies (one for each infinitesimal time interval

[t, t+dt] as detailed above). They showed the existence of subgame perfect strategies

in the case of an investor who has a CRRA utility U (c) = 1
γ
cγ, γ < 1 and a general

discount function. They show that this paradigm could explain the consumption puz-

zle. The fraction of consumption to wealth in the economy is humped shaped instead

of being monotonous as explained by the Merton problem. (Bjork et al., 2014) looks

at the mean variance problem which is also time inconsistent. The time inconsistency

in the mean variance problem does not originate from non constant discount rates

but it comes from the non linear expectation.

Khapko (Khapko, 2015) considers a one agent equilibrium problem in a Lucas

type economy and studies the subgame perfect equilibrium interest rate, market price

of risk and stock price parameters.

(Bjork et al., 2016) extends the formulation of (Ekeland et al., 2012) with a more

general criterion. They show that every subgame perfect strategy is the optimal (pre

commitment) strategy for another objective function.

Methodology Review.

Ekeland, Mbodji, Pirvu (Ekeland et al., 2012) solves the Merton problem with

non constant discount rates when the stock price follows a Geometric Brownian Mo-

tion (GBM). The subgame perfect strategies are characterized in terms of a certain

”value function”, which is shown to satisfy a Hamilton Jacobi Bellman equation with

8
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an additional non local integral term. Assuming utilities to be (CARA), they assume

the value function V (t, x) is of the form a(t)Uγ(x) where x represents the wealth of

the agent at time t. They decouple time and space and reduce the problem to solving

a linear ODE on a(t).

(Bjork et al., 2016) considers the more general functional:

J(t, x,u) = Et,x
[ ∫ T

t

C
(
t, x,Xu

s ,u(Xu
s

)
)ds+ F (t, x,Xu

T )

]
+G(t, x,Et,x[Xu

T ]) (1.1)

u is a well behaved control (consumption and investment), x is the value at time

t of the diffusion X that satisfies the SDE

dXu
s = µ(s,us, X

u
s )ds+ σ(s,us, X

u
s )dW (s) , s ≥ t (1.2)

and initial condition Xu
t = x.

(Bjork et al., 2016) show that there are three main sources of time inconsistency.

1. The integral term C
(
t, x,Xu

s ,u(Xu
s )
)

is allowed to depend on the initial point

(t, x).

2. F depends on t, x.

3. The function G depends on t, x and may also be non linear in the last argument

Et,x[Xu
T ].

The Merton problem with non constant discount rates as considered in (Ekeland

et al., 2012) falls in the first category. The mean variance problem as defined in

9
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(Bjork et al., 2014) is supπ J(t, x, π) where

J(t, x, π) = Et[Xπ
T ]− λ

2
(Et[(Xπ

T )2]− (EtXπ
T )2)

for a certain λ > 0. The wealth process Xπ satisfies the SDE

dXπ
t = Xπ

t (r + σθπ(t))dt+ σπ(t)Xπ
t dWt

where π is the fraction of wealth invested in the stock market and σ, θ, r are constants.

It falls into the second and third category.

In (Bjork et al., 2016) and (Ekeland et al., 2012), the value function is shown

to satisfy a Hamilton Jacobi Bellman (HJB) equation with a non-local term called

extended HJB. It can be shown that the existence of a sufficiently regular value

function V satisfying the extended HJB implies the existence of a subgame perfect

strategy : the consumption to wealth ratio and the investment to wealth ratio can

be expressed in terms of V and its first and second spatial derivatives. The difficulty,

of course, is to prove that time-consistent strategies exist or equivalently solve the

extended HJB for the value function. (Yong, 2012) considers the well posedness of

the extended HJB when the diffusion term σ does not depend on the control u and

shows the existence of a subgame perfect (time consistent) strategy.

In the next chapter, we will formally define subgame perfect strategies.

10
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Subgame Perfect Strategies
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2.1 Introduction

The investment/consumption problem in a stochastic context was considered by (Mer-

ton, 1969) and (Merton, 1971). Merton’s model consists in a risk-free asset with

constant rate of return and one or more stocks, the prices of which are driven by a ge-

ometric Brownian motion. The horizon T is prescribed, the portfolio is self-financing,

and the investor seeks to maximize the expected utility of inter-temporal consump-

tion and of final wealth. Merton provides a closed form solution when the utilities are

of constant relative risk aversion (CRRA) or constant absolute risk aversion (CARA)

type. It turns out that for (CRRA) type utilities, the fraction of wealth invested in

the risky asset is constant through time.

(Samuelson, 1937) was the first to introduce the model of constant discounted

utility. This model has been widely accepted as a normative and descriptive model

of intertemporal choice.

The aim of this chapter is to revisit these problems in the case when the psy-

chological time discount rate is not constant.

Our motivation and methodology.

In this chapter, we extend the approach pioneered by (Ekeland et al., 2012) to

allow for a stock price with stochastic volatility. A special case considered is the

constant elasticity of variance (CEV).

Merton, in his pioneering article (Merton, 1971) (constant discount rate) shows

that the investor maximizing its utility chooses to invest a constant portion of its

wealth equal to the Sharpe ratio divided by the relative risk aversion.

Surprisingly, when the stock price follows a GBM as in (Ekeland et al., 2012), the

subgame perfect investment to wealth ratio is the same as the one found by Merton.

12
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The CRRA form of the utility function coupled with the GBM model for the stock

price introduces a myopic behaviour for the investment strategy. In that case, the

investment-wealth ratio for the subgame perfect agent is the same as the one for the

precommitment agent; it is also independent of the discount function.

In this chapter, we have introduced stochastic volatility in the stock dynamics

to study the difference in the investment strategies between a subgame perfect agent

and an optimal agent (that pre commits). Thus, we allow the interest rate, the stock’s

drift and volatility to depend on the current stock price.

The methodology developed in (Ekeland et al., 2012) is employed to characterize

the subgame perfect strategies (also known as the subgame perfect strategies) through

the value function approach. The value function is characterized by an integral equa-

tion with a nonlocal term; given the special form of the utility function (which is of

power type), an ansatz is provided for the value function.

The novelty in this chapter is the utility weighted discount rate Qπ,c
t induced by

(π, c) : it depends on the control strategy, so it is a random (time and state dependent)

quantity. In the case of exponential discounting it equals the constant (psychological)

discount rate. We decouple on one hand time and space, and wealth on the other

hand and show that the utility weighted discount rate induced by the subgame perfect

strategy (π̄, c̄) can be found independently of the subgame perfect strategy. It turns

out to be the fixed point of some operator. We reduce the extended HJB of the

value function to a linear PDE. Moreover, our methodology is amenable to numerical

treatments so one can visualize the subgame perfect strategies arising from different

choices of discounting, interest rate and stock price models. The numerical scheme we

employ is based on a fixed point that is obtained by iterating a contraction map. This

13
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technique will give us a general method of finding subgame perfect strategies when

the interest rate, the market price of risk and the stock volatility are well behaved e.g

adapted to the Brownian filtration, bounded and sufficiently regular.

The novel findings in this chapter are:

1. We prove the existence of a solution to the extended HJB which was an open

question in (Bjork et al., 2016). Our fixed point methodology could be extended

to more general utility functions that are not of the power type.

2. The subgame perfect strategy equals the optimal (pre commitment) strategy for

the optimization criterion in which the utility weighted discount rate (induced

by the subgame perfect strategy) is used as discount rate.

3. The utility weighted discount rate (induced by the subgame perfect strategy)

equals the fixed point of a certain operator that is independent of the strategies.

4. We have found two ways to identify what type of strategy a certain investor

uses. When compared to the economic predictions for the agent that is following

an optimal strategy, the subgame perfect agent has:

• a higher consumption in the short term.

• a lower consumption in the medium to long term.

These are two indications of an agent that is following a subgame perfect strat-

egy.

Organization of the chapter: The remainder of this chapter is organized as

follows. In section 2.2, we describe the model and formulate the objective. Section

2.3 introduces the notion of subgame perfect strategies. Section 2.4 introduces the

14
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value function. Section 2.5 presents the main result. Section 2.6 deals with the utility

weighted discount rate and Section 2.7 compares pre commitment optimal strategies

to sub game perfect strategies . We then wrap up our findings in the Conclusion.

Appendix 1 contains various proofs.

2.2 The Model

2.2.1 The Financial Market

Consider a financial market consisting of a savings account and one stock (the risky

asset). The inclusion of more risky assets can be achieved by notational changes. We

assume a benchmark deterministic time horizon T . The stock price per share follows

an exponential Brownian motion

dSt = St [µS(t, St) dt+ σS(t, St) dW (t)] , 0 ≤ t ≤ T (2.1)

where {W (t)}t≥0 is a 1−dimensional Brownian motion on a filtered probability space,

(Ω, {Ft}0≤t≤T ,P). The filtration {Ft} is the completed filtration generated by {W (t)}.

The savings account accrues interest at the riskless rate r(t, St).

Let us denote

θS ,
µS − r
σS

(2.2)

the market price of risk.

We place ourselves in a Markovian setting. The stock mean rate of return µS

and volatility σS will be functions of the running time t and the stock price S(t). We

make the following assumption on r, θS, σS:
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Assumption 2.1 (Standing Assumption). Suppose that

1. σS, r, θS, S
∂r
∂S
, S ∂θS

∂S
are bounded in [0, T ]× (0,∞) and uniformly Lipschitz con-

tinuous in (t, S) in compact subsets of [0, T ]× (0,∞).

2. t 7→ σS(t, S) is uniformly continuous with respect to (t, S) ∈ [0, T ] × (0,∞),

S 7→ S ∂σS
∂S

is uniformly bounded and continuous with respect to (t, S) in [0, T ]×

(0,∞). And there is a positive constant σ0 such that σS ≥ σ0.

There is one agent who is continuously investing in the stock, is using the money

market, and consuming. At every time t, the agent chooses π(t), the ratio of wealth

invested in the risky asset and c(t) the ratio of wealth consumed. Given an adapted

process {π(t), c(t)}0≤t≤T , the equation describing the dynamics of wealth Xπ,c(t) is

given by :

dXπ,c(t) = [r(t)− c(t) + σS(t)θS(t)π(t)]Xπ,c(t)dt+ π(t)σS(t)Xπ,c(t)dWt (2.3)

Xπ,c(0) = x0

the initial wealth x0 being exogenously specified.

2.2.2 Time preferences and risk preferences

As seen in the introduction, the time preference reflects the economic agent’s prefer-

ence for immediate utility over delayed utility. We now define discount functions and

discount rates.

Definition 2.2. A discount function h : D = {0 ≤ t ≤ s ≤ T} → R is a C1, positive

function satisfying h(t, t) = 1.
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For a discount function h, we define the backward discount rate as

ρb(t, s) =
∂h(t, s)

∂t
× 1

h(t, s)
(2.4)

The forward discount rate is

ρf (t, s) = −∂h(t, s)

∂s
× 1

h(t, s)
(2.5)

In the case h(t, s) = H(s− t) for a certain C1 function H on [0, T ], we get:

ρh(t, s) = ρb(t, s) = −H′(s−t)
H(s−t) . If it is obvious from the context, we just write

ρ(t, s) and call it the discount rate. For any continuous function y : D → (0,∞) ,

denote ||y|| := sup(t,s)∈D |y(t, s)| the norm sup of y.

Remark 2.3. We take a discount form to be of the general form h(t, s) because, as

noted in (Pirvu and Zhang, 2014) and (Ekeland et al., 2012), we have to account

for stochastic time horizons T which could be the time of death of the agent. In

that case, the discount function has to be transformed and will take the general form

h(t, s). We can normalize by dividing h(t, s) by h(t, t).

We define next the agent’s risk preferences. An economic agent will have sat-

isfaction U(C) from consuming an amount C. We assume U belongs to the class of

constant relative risk aversion (CRRA) utilities.

U(x) = Uγ(x) =
xγ

γ
, γ < 1, γ 6= 0, x > 0 (2.6)

2.2.3 The intertemporal utility

Let us now define the admissible strategies.
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Definition 2.4. An R2-valued stochastic process {π(t), c(t)}0≤t≤T is called an admis-

sible strategy process if:

1. it is progressively measurable with respect to the sigma algebra σ({W (t)}0≤t≤T ),

2. it satisfies

c(t) ≥ 0 for all t almost surely and Xπ,c(T ) ≥ 0, almost surely (2.7)

3. moreover, we require that

E sup
0≤s≤T

|c(s)Xπ,c(s)|γ <∞ , E sup
0≤s≤T

|Xπ,c(s)|γ <∞, a.s. (2.8)

The last set of inequalities are purely technical and are satisfied for e.g. bounded

strategies.

In order to evaluate the performance of an investment-consumption strategy

the couple uses an expected utility criterion. For an admissible strategy process

{π(s), c(s)}s≥0 and its corresponding wealth process {Xπ,c(s)}s≥0, we denote the inter-

temporal utility by

J(t, S, x, π, c) = E
[ ∫ T

t

h(t, s)Uγ(c(s)X
π,c(s)) ds+ h(t, T )Uγ(X

π,c(T )) (2.9)∣∣∣∣ S(t) = S;Xπ,c(t) = x

]

A natural objective for the decision maker is to maximize the above expected utility
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criterion. If we define V̂ (t0, t, S, x) as the optimal value function starting at time t0,

V̂ (t0; t0, S, x) = sup
(π,c) admissible

J(t0, S, x, π, c) (2.10)

Then for t ≥ t0 : V̂ (t0; t, S, x) satisfies the HJB

∂V̂

∂t
+ sup

(π,c) admissible

[
Aπ,cV̂ + Uγ(xc(t))

]
− ρh(t0, t)V̂ (t0; t, S, x) = 0

(2.11)

The derivation of (2.11) is standard.

The optimal strategy (π̂, ĉ) is the one realizing the sup in (2.11). However,

because the discount function h is not exponential, the discount rate ρh(t0, t) =

−
∂h(t0,t)
∂s

h(t0,t)
is not constant. Therefore, the solution V̂ of the HJB (2.11) depends on the

starting point t0 and so does the optimal strategy starting at t0. Therefore, every

time we change the starting point t0, we get a different strategy. Time inconsistency

will bite, that is, a strategy that will be considered optimal at time 0 will not be

considered so at later times, so it will not be implemented unless the decision-maker

at time 0 can constrain his successive selves to follow the time 0 - optimal strategy

(the precommitment strategy) at all times 0 ≤ t ≤ T .

The decision-maker could implement two types of strategies. He could precommit

at time t0 = 0 to follow the optimal strategy and stay with it until time T . Or he

could implement a time consistent strategy that takes into account the fact that the

decision maker’s preferences will change in the future. This is the object of the next

section.
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2.3 Subgame perfect strategies

We now introduce a special class of time consistent strategies, which can also be called

a subgame perfect strategy. That is, we consider that the decision-maker at time t

can commit his successors up to time t+ ε, with ε→ 0, and we seek strategies which

are optimal to implement right now conditioned on them being implemented in the

future. This is made precise in the following formal definition.

Definition 2.5. An admissible trading strategy {π̄(s), c̄(s)}0≤s≤T is a subgame perfect

strategy if there exists a map G = (Gπ, Gc) : [0, T ]× R× R+ → R× [0,∞)× R such

that for any t ∈ [0, T ], S, x > 0

lim inf
ε↓0

J(t, S, x, π̄, c̄)− J(t, S, x, πε, cε)

ε
≥ 0, (2.12)

where:

π̄(s) = Gπ(s, S(s), X̄(s)), c̄(s) = Gc(s, S(s), X̄(s)) (2.13)

and the wealth process X̄(s) := X π̄,c̄(s) is a solution of the stochastic differential

equation (SDE):

dX̄(s) = X̄(s)[r(s) + σS(s)θS(s)Gπ(s, S(s), X̄(s))−Gc(s, S(s), X̄(s))]ds

+σS(s)Gπ(s, S(s), X̄(s))X̄(s)dW (s) (2.14)

The process {πε(s), cε(s)}s∈[t,T ] mentioned above is another investment-consumption

20



Ph.D. Thesis - Oumar Soule Mbodji McMaster - Mathematics

strategy defined by

πε(s) =


Gπ(s, S(s), Xε(s)), s ∈ [t, T ]\Eε,t

π(s), s ∈ Eε,t,
(2.15)

cε(s) =


Gc(s, S(s), Xε(s)), s ∈ [t, T ]\Eε,t

c(s), s ∈ Eε,t,
(2.16)

with Eε,t = [t, t+ ε], and {π(s), c(s)}s∈Eε,t is any strategy for which {πε(s), cε(s)}s∈[t,T ]

is an admissible policy. Xε is defined on [t+ ε, T ] by the SDE:

dXε(s) = [r(s)− cε(s) + σS(s)θS(s)πε(s)]Xε(s)ds+ πε(s)σS(s)Xε(s)dW (s)

Xε (t+ ε)=Xπ,c(t+ ε). (2.17)

In other words, time consistent strategies are Markov strategies that penalize

deviations during an infinitesimally small time interval. Note that:

• this does not mean that unilateral deviations during a finite interval of time are

penalized as well: it is possible that deviating from the policy between t1 and

t2 will be to the advantage of all the decision-makers operating between t1 and

t2.

• however, in the absence of a firm commitment, if a Markov strategy is not a

time consistent strategy, then it certainly will not be implemented, for at some

point, a lone decision-maker will deviate, thereby compromising all the plans

laid by his predecessors.

21



Ph.D. Thesis - Oumar Soule Mbodji McMaster - Mathematics

So time-consistency in the sense of Definition 2.5 is a minimal requirement for

rationality: subgame perfect strategies are the only Markov strategies that are likely

to be implemented.

2.4 The Value Function for subgame perfect strate-

gies

Dynamic programming is a very convenient way of writing a large set of dynamic

problems in financial economics. Most properties of this tool are well established

and understood. In dynamic programming, we introduce an object called the value

function that is obtained by evaluating a certain functional at our candidate solutions.

The solutions of the dynamic programming problem are then the solutions of a certain

equation called HJB and can be expressed entirely in terms of the value function and

its derivatives. In optimization problems, the value function is the optimal value an

agent can derive from his maximization process. The paper (Ekeland et al., 2012)

uses the value function methodology to characterize subgame perfect strategies. We

will see that the value function can be written as a function V (t, S, x) of time t,

stock price S and wealth x and this allows us to find subgame perfect strategies in a

feedback form. For fixed t, S, x, the strategy (π̄, c̄) can be expressed as deterministic

functions of V and its derivatives with respect to S and x. We start with a definition.

Definition 2.6. Let V : [0, T ]×(0,∞)2 → R, (t, S, x) 7→ V (t, S, x) be a C1,2,2 function

that is concave in the x variable. Suppose that {π̄(s), c̄(s)}s∈[0,T ] are subgame perfect

strategies with the corresponding map
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π̄(s) = Gπ(s, S(s), X̄(s)) , c̄(s) = Gc(s, S(s), X̄(s)), (2.18)

where

Gπ(t, S, x) = −
θS(t, S)∂V

∂x
(t, S, x) + SσS(t, S) ∂2V

∂S∂x

xσS(t, S)∂
2V
∂x2 (t, S, x)

, Gc(t, S, x) =
1

x

(
∂V

∂x
(t, S, x)

) 1
γ−1

(2.19)

and X̄(s) is the wealth process given by:

dX̄(s) = [r(s) + σS(s)θS(s)Gπ(s, S(s), X̄(s))−Gc(s, S(s), X̄(s))]X̄(s)ds

+σS(s)Gπ(s, S(s), X̄(s))X̄(s)dW (s). (2.20)

We shall say that V is a value function if for all (t, S, x) ∈ [0, T ] × (0,∞)2, we

have:

V (t, S, x) = J(t, S, x, π̄, c̄) (2.21)

The economic interpretation is very natural: if one applies the Markov strategy

associated with V by the relations [(2.18), (2.19), (2.20), (2.21)] and computes the

corresponding value of the investor’s criterion starting from St = S, Xt = x at time

t, one gets precisely V (t, S, x). In other words, this is fundamentally a fixed-point

characterization. However, it is mathematically quite complicated, so we will take

advantage of the special form of the utility function to put the problem in a simpler

light. We begin with the definition of the infinitesimal generator.

Definition 2.7. For an admissible policy (π, c) with corresponding wealth process

Xπ,c and (t, S, x) 7→ v(t, S, x) a continuous function of 3 variables C1 in t and C2 in
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S, x, define the operator Aπ,c by:

Aπ,cv(t, S, x) = (r + σSθSπ − c)x
∂v

∂x
(t, S, x) +

σ2
SS

2

2

∂2v

∂S2
(t, S, x)+

1

2
σ2
Sx

2π2 ∂
2v

∂x2
(t, S, x) + σ2

SSπx
∂2v

∂S∂x
(t, S, x) + SµS

∂v

∂S
(t, S, x) (2.22)

Basically, by Ito’s lemma, we see that (2.22) is saying that

∂v(t, S, x)

∂t
+Aπ,cv(t, S, x) =

d

dt
Et[dv(t, St, X

π,c(t))]

Thus, Aπ,cv(t, S, x) measures the average variation of v when an infinitesimal time dt

passes and the agent follows the strategy (π, c).

In the next section, we give the main results of this chapter.

2.5 Main Results

2.5.1 The extended HJB

Theorem 2.8 (Extended HJB). Let V : [0, T ]×R× (0,∞)→ R be a C1,2,2 function.

Suppose (π̄, c̄) is an admissible Markovian policy and that

• V solves the extended Hamilton Jacobi Bellman equation :

∂V

∂t
(t, S, x) + sup

(π,c) admissible

{
Aπ,cV (t, S, x) + Uγ(xc(t))

}
= Et

[∫ T

t

∂h(t, s)

∂t
Uγ(c̄(s)X

π̄,c̄(s))ds+
∂h(t, T )

∂t
Uγ(X

π̄,c̄(T ))

]
(2.23)
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along with the boundary condition V (T, S, x) = Uγ(x).

• (π̄, c̄) satisfies:

(π̄, c̄) = arg max{Aπ,cV (t, S, x) + Uγ(xc(t)); (π, c) admissible } (2.24)

Then V is a value function. Moreover (π̄, c̄) given by (Gπ, Gc) of (2.21) is a subgame

perfect strategy (conform Definition 2.5).

The proof of Theorem 2.8 will be given in Appendix 1. The following proposition

gives the subgame perfect strategies in terms of the value function.

Proposition 2.9. If the extended HJB (2.23) has a C1,2,2 solution V , then the sub-

game perfect strategies are given by:

c̄ = Gc(t, S, x) =
V

1
γ−1
x

x
(2.25)

π̄ = Gπ(t, S, x) = −θSVx + σSSVSx
σSxVxx

(2.26)

The proof comes from a simple calculation of the first order conditions for the

quantity

(π̄, c̄) = arg max(π,c) admissible {Aπ,cV + Uγ(xc)}

and will be detailed in Appendix 1. Next, we define a strategy dependent discount

rate that we call utility weighted discount rate.
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2.5.2 The utility weighted discount rate

Definition 2.10 (Utility Weighted Discount Rate). Let (π, c) be an admissible strat-

egy. The utility weighted discount rate corresponding to (π, c) is defined as the process

Qπ,c
t =

EP
t

∫ T
t

∂h(t,s)
∂t

Uγ(c(s)X
π,c(s))ds+ ∂h(t,T )

∂t
Uγ(X

π,c
T )

EP
t

∫ T
t
h(t, s)Uγ(c(s)Xπ,c(s))ds+ h(t, T )Uγ(X

π,c
T )

(2.27)

If (π, c) = (π̄, c̄) then Qπ̄,c̄
t is called the subgame perfect utility weighted discount rate.

When the context is clear, Qπ̄,c̄
t will just be called utility weighted discount rate.

Remark 2.11. The intuition behind Qπ,c
t is as follows:

the right hand side of the extended HJB (2.23) is Qπ̄,c̄
t × V (t, S, x). Our goal is

to compute Qπ̄,c̄
t . If we do so, we will be able to solve the extended HJB as a usual

HJB. In the exponential discounting case h(t, s) = exp(−ρ(s− t)), the quantity Qπ,c
t

simplifies to

Qπ,c
t =

Et[
∫ T
t
ρe−ρ(s−t)U(csX

π,c
s )ds+ ρe−ρ(T−t)U(Xπ,c

T )]]

Et[
∫ T
t
e−ρ(s−t)U(csX

π,c
s )ds+ e−ρ(T−t)U(Xπ,c

T )]
= ρ.

In general, Qπ,c
t behaves like an average discount rate thus the name utility

weighted discount rate. In what follows, we will only be concerned with the quantity

Qπ̄,c̄
t (when π = π̄ and c = c̄).

We have found a way to decouple the extended HJB. We will show that there

is a function Q(t, S) such that Qπ̄,c̄
t = Q(t, St). We can calculate Q as the fixed

point of a certain operator that depends only on the parameters of the model :

γ, h, T, θS, r, σS. Thus, Q(t, S) can be completely determined without calculating

π̄, c̄. Knowing Q is equivalent to knowing the subgame perfect strategy (π̄, c̄). We
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show the two implications in what follows.

First implication Suppose we know Qπ̄,c̄
t = Q(t, St). We see it by rewriting the

extended HJB (2.23) as

∂V

∂t
+ sup

(π,c) admissible

{
Aπ,cV (t, S, x) + Uγ(xc(t))

}
= Qπ̄,c̄

t V (t, S, x) (2.28)

∂V

∂t
+ sup

(π,c) admissible

{
Aπ,cV (t, S, x) + Uγ(xc(t))

}
= Q(t, S)V (t, S, x) (2.29)

We obtain a classical HJB that can be solved through the standard techniques. Having

found V , we use equation (2.26), (2.26). to calculate (π̄, c̄).

Second implication Suppose we know (π̄, c̄). Then we can calculate Qπ̄,c̄
t by using

the equation (2.27). Due to the special form of the utility function Uγ(x), we can see

after some calculations that Qπ̄,c̄
t is a function of t, S and is independent of x. The

following diagram illustrates the point: 

 

 

!"#$%&"	 (.( , +., , (.- ,((.+)
 

!"#$%&"	01%2!3$4	(+.5)
 

 

One to one correspondence between (𝜋, 𝑐) and 𝑄9,:. 

 

 

(𝜋;, 𝑐̅) 𝑄9=,:̅ 

Figure 2.2: range of Q(t, S)
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Define p the inverse of the relative risk aversion:

p :=
1

1− γ
(2.30)

In what follows, unless we specify otherwise, we will write

ρ = ρb : (t, s) ∈ D → R, (t, s) 7→
∂h(t,s)
∂t

h(t, s)
. (2.31)

Next, we define a space of functions in which we want to find the fixed point Q(t, S).

Definition 2.12. For δ > 0, let Bδ be the space of functions y : [0, T ]× (0,∞)→ R

such that (t, S) 7→ y(t, S) and (t, S) 7→ ∂y(t,S)
∂S

are continuous and

for all (t, S) ∈ [0, T ]× (0,∞), |y(t, S)| ≤ ||ρ|| and S
∣∣∂y(t,S)

∂S

∣∣ ≤ δ.

For y ∈ Bδ, define

||y||C([0,T ];C1(0,∞)) := sup
(t,S)∈[0,T ]×(0,∞)

|y(t, S)|+ sup
(t,S)∈[0,T ]×(0,∞)

S
∣∣∂y(t, S)

∂S

∣∣ (2.32)

With this structure, (Bδ, || ||C([0,T ];C1(0,∞))) is a complete set. This allows us

to define an operator F on the elements of Bδ. By solving the fixed point problem

F [y] = y, we will get the utility weighted discount rate and this will allow us to solve

the extended HJB (2.23).

Definition 2.13. For y an element of Bδ, define the operators:

F1[y](t, S) = EP
t

∫ T

t

∂h(t, s)

∂t
exp

(
pγ

∫ s

t

(r +
θ2
S

2
− y)du+ pγ

∫ s

t

θSdWu

)
ds

+
∂h(t, T )

∂t
exp

(
pγ

∫ T

t

(r +
θ2
S

2
− y)du+ pγ

∫ T

t

θSdWu

)
(2.33)
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F0[y](t, S) = EP
t

∫ T

t

h(t, s) exp

(
pγ

∫ s

t

(r +
θ2
S

2
− y)du+ pγ

∫ s

t

θSdWu

)
ds

+h(t, T ) exp

(
pγ

∫ T

t

(r +
θ2
S

2
− y)du+ pγ

∫ T

t

θSdWu

)
(2.34)

and

F [y](t, S) =
F1[y](t, S)

F0[y](t, S)
(2.35)

In order to have existence and uniqueness results for the extended HJB (2.23).

Theorem 2.14. There exists δ > 0 that depends only on γ, T, h, r, θS, σS such that

F (Bδ) ⊂ Bδ. Furthermore, we can choose δ such that F has a unique fixed point

Q ∈ Bδ i.e.

F [Q](t, S) = Q(t, S) for all (t, S) ∈ [0, T ]× (0,∞). (2.36)

The proof will be given in the Appendix 1.

Having defined Q, we can obtain a characterization of V through a linear PDE.

This is the object of the next subsection.
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2.5.3 Characterization of the value function through a linear

PDE

Proposition 2.15. There exists a unique bounded solution v to the linear parabolic

PDE :

0 =
∂v

∂t
(t, S) +

σ2
SS

2

2

∂2v(t, S)

∂S2
+ p

[
γr +

γpθ2
S

2
−Q

]
v(t, S)

+(r + pσSθS)S
∂v(t, S)

∂S
+ 1 (2.37)

v(T, S) = 1

Q is the unique fixed point of F as previously defined and is an element of Bδ. The

function v is in C1,2([0, T ] × (0,∞)) and S ∂v(t,S)
∂S

is also bounded. Moreover, v has

the stochastic representation:

v(t, S) = EP
t

[ ∫ T

t

e
∫ s
t p(γr+

γpθ2S
2
−Q)(u,S̄u)duds+ e

∫ T
t p(γr+

γpθ2S
2
−Q)(u,S̄u)du|S̄t = S

]
(2.38)

where S̄u satisfies the SDE

S̄u = S +

∫ u

t

(r + pσSθS(v, S̄v))S̄vdv +

∫ u

t

σS(v, S̄v)S̄vdW (v) (2.39)

We can rewrite the PDE (2.37) in a form that will remind us of the heat equation

with non constant diffusion coefficient. By changing variables S = ez, we get v(t, S) =

ṽ(t, z) where
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∂v

∂S
(t, S) =

1

S

∂ṽ

∂z
,
∂2v

∂S2
(t, S) = − 1

S2

∂ṽ

∂z
+

1

S2

∂2ṽ

∂z2

Write Q̃(t, z) := Q(t, ez) and define r̃, θ̃S, σ̃S similarly. The PDE (2.34) can be rewrit-

ten as :

0 =
∂ṽ

∂t
(t, z) +

σ̃S
2

2

(∂2ṽ(t, z)

∂z2
− ∂ṽ(t, z)

∂z

)
+ p

[
γr̃ +

γpθ̃S
2

2
− Q̃

]
ṽ(t, z)

+(r̃ + pσ̃S θ̃S)
∂ṽ(t, z)

∂z
+ 1 , ṽ(T, z) = 1

This leads to the following proposition:

Proposition 2.16. Define ṽ(t, z) = v(t, ez) for z ∈ R. ṽ satisfies the PDE:

∂ṽ

∂t
(t, z) +

σ̃S
2

2

∂2ṽ(t, z)

∂z2
+
(
r̃ + pσ̃S θ̃S −

σ̃S
2

2

)∂ṽ(t, z)

∂z

+p

[
γr̃ +

γpθ̃S
2

2
− Q̃

]
ṽ(t, z) + 1 = 0 (2.40)

ṽ(T, z) = 1

For the proof of proposition 2.15, it suffices to apply Friedman (Friedman (1975)

, Chapter 6, Theorem 4.6) to the non degenerate linear parabolic PDE of ṽ. From ṽ

we get v. We now present the most important result of this chapter.

Theorem 2.17. The following holds:

∀ t ∈ [0, T ], Q(t, St) = Qπ̄,c̄
t . (2.41)

• The extended HJB equation (2.23) has a unique C1,2,2 solution V which is a
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value function of the form V (t, S, x) = v(t, S)1−γ xγ
γ

.

• v is the unique bounded solution of the semi linear PDE

0 =
∂v

∂t
(t, S) +

σ2
SS

2

2

∂2v(t, S)

∂S2
+ p

[
γr +

γpθ2
S

2
−Q(t, S)

]
v(t, S) (2.42)

+(r + pσSθS)S
∂v(t, S)

∂S
+ 1, v(T, S) = 1

The wealth process X̄s, consumption-wealth ratio c̄(s), investment-wealth ratio

π̄(s) are given by:

dX̄(s) = (r(s)− c̄(s) + σS(s)π̄(s)θS(s))X̄(s)ds+ σS(s)π̄(s)X̄(s)dW (s) (2.43)

c̄(t, S) =
1

v(t, S)
, π̄(t, S) =

θS
σS(1− γ)

+
S ∂v
∂S

v
(2.44)

Theorem 2.17 will be proved in the appendix 1.

Remark 2.18. (Yong, 2012) shows that there exists a subgame perfect equilibrium

strategy when the diffusion term in dXπ,c(t) does not depend on the control. His

proof uses a fixed point formulation by means of a contraction operator in a Banach

space. Our proof is similar: we establish the existence of a utility weighted discount

rate Q(t, S) by means of a contraction operator. However our result is more general

than Yong’s (Yong, 2012) since the diffusion term σS(t, St)π(t)Xπ,c(t) does depend

on the control.
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2.6 Further interpretation of the utility weighted

discount rate Q(t, S)

We end with a corollary to theorem 2.17 that summarizes our findings about the

utility weighted discount rate.

Corollary 2.19. The subgame perfect strategy is equal to the precommitment strategy

of an agent that discounts all future times t ≤ T with the utility weighted discount

rate Q(t, St) instead of the psychological discount rate ρ(0, t).

Bjork, Khapko, Murgoci (Bjork et al., 2016) have shown that for every subgame

perfect strategy, there is a corresponding time inconsistent strategy that is the optimal

strategy of a modified problem. Corollary 2.19 gives the same kind of interpretation.

We can obtain bounds for Q(t, S) in order to improve our intuition. Let

h(t, s) = f(s− t) for s ≥ t.

and let α(t, s, S) and ρ(t, s) denote the quantities

α(t, s, S) = EP
t

[
exp

(
pγ

∫ s

t

(r +
θ2
S

2
− y)du+ pγ

∫ s

t

θSdWu

)]
ρ(t, s) = −

∂h(t,s)
∂s

h(t, s)
= −f

′(s− t)
f(s− t)

:= R(s− t)
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Q(t, S) can be written as

Q(t, S) =

∫ T
t
ρ(t, s)h(t, s)α(t, s, S)ds+ ρ(t, T )h(t, T )α(t, T, S)∫ T

t
h(t, s)α(t, s, S)ds+ h(t, T )α(t, T, S)

Q(t, S) =

∫ T
t
R(s− t)f(s− t)α(t, s, S)ds+R(T − t)f(T − t)α(t, T, S)∫ T

t
f(s− t)α(t, s, S)ds+ f(T − t)α(t, T, S)

Therefore

inf
x∈[0,T−t]

R(x) ≤ Q(t, S) ≤ sup
x∈[0,T−t]

R(x) (2.45)

In contrast, if the agent was following an optimal policy with pre commitment

starting at t = 0, then its discount rate at time s would be ρ(0, s) = −f ′(s)
f(s)

= R(s).

In the case of the generalized hyperbolic discounting, f(x) = (1 + ax)−
b
a . exp(−ρx)

with positive constants a and b and non negative constant ρ. Then

R(x) = −f
′(x)

f(x)
= ρ+

b

1 + ax
(2.46)

is decreasing in x. Thus

R(T − t) ≤ Q(t, S) ≤ R(0) (2.47)

The following graphs show the bounds for the utility weighted discount rate Q:
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discount rate function (0,t) = -1/f*df/dt = 0.053+ 0.05/(1+0.015*t)

0 10 20 30 40 50 60 70 80 90 100
t

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

di
sc

ou
nt

 ra
te

range of Q(t,S)
R(t)
R(T-t)

Figure 2.3: The range of Q(t, S) for hyperbolic discounting is given by the shaded
area. The decreasing function is the discount rate R(t) = ρ(0, t).

2.7 Comparison between the sub game perfect and

the optimal precommitment strategies .

A rational agent with non constant discount rate has 2 choices:

• He commits to follow the time 0 - optimal strategy also called precommitment

strategy at time 0 all the way to time T .

• He does not make commitments and allows her future self to deviate from the

time 0 - optimal strategy. As noted in the introduction, his strategy should be

subgame perfect.

In this section, we compare the 2 strategies. We consider the same setting where

the agent has relative risk aversion 1− γ. An admissible strategy (π̂, ĉ) is called time

35



Ph.D. Thesis - Oumar Soule Mbodji McMaster - Mathematics

0 - optimal if

J(0, S, x, π̂, ĉ) = sup
(π,c)∈A0

J(0, S, x, π, c). (2.48)

In that case, the value function V̂ is V̂ (t, S, x) = J(t, S, x, π̂, ĉ). As noted before,

(π̂, ĉ) will also be called precommitment strategy.

The subgame perfect strategy is denoted (π̄, c̄) and the corresponding value

function is

V̄ (t, S, x) = J(t, S, x, π̄, c̄). (2.49)

We will see in the following result that V̄ and V̂ have essentially the same form:

Proposition 2.20. For all (t, S, x) ∈ [0, T ]× (0,∞)2 :

V̂ (t, S, x) = v̂(t, S)1−γUγ(x) and V̄ (t, S, x) = v̄(t, S)1−γUγ(x). (2.50)

v̂ and v̄ satisfy the linear parabolic PDEs:

∂v̄(t, S)

∂t
+
σ2
SS

2

2
v̄SS + p

[
γr +

γpθ2
S

2
−Q(t, S)

]
v̄(t, S) + (r+ pσSθS)Sv̄S(t, S) + 1 = 0

(2.51)

∂v̂(t, S)

∂t
+
σ2
SS

2

2
v̂SS + p

[
γr +

γpθ2
S

2
− ρ(0, t)

]
v̂(t, S) + (r + pσSθS)Sv̂S(t, S) + 1 = 0

(2.52)

with final condition v̂(T, S) = v̄(T, S) = 1.

The optimal strategies (π̂, ĉ) and subgame perfect strategies (π̄, c̄) are given by:

ĉ(t, S) =
1

v̂(t, S)
, c̄(t, S) =

1

v̄(t, S)
(2.53)

π̂(t, S) =
θS(t, S)

σS(t, S)
+
pSv̂S(t, S)

v̂(t, S)
, π̄(t, S) =

θS(t, S)

σS(t, S)
+
pSv̄S(t, S)

v̄(t, S)
(2.54)
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We can see that v̂ and v̄ differ only in the discount rate term. The time 0

- optimal strategy agent discounts the future (time t) at the rate ρ(0, t) while the

subgame perfect agent discounts the future at the rate Q(t, St).

Case where there is no intermediate consumption

We now consider an agent that only have utility of final wealth. Let D = {(t, s) ∈

[0, T ] × [0, T ] | t ≤ s} and h : D → (0,∞) be a discount function i.e. positive and

C1 on D. Suppose furthermore that h(t, s) could be written as H(s− t).

We consider two strategies: the first one maximizes utility of final wealth. The

investor pre-commits at time t = 0. The fraction of wealth invested in the risky asset

at time t is π(t) and π̂ denotes the optimal π. The criterion is

J(t, S, x; π) = EP
t

[h(0, T )

h(0, t)
Uγ(X

π
T )
]

= EP
t

[H(T )

H(t)
Uγ(X

π
T )
]
. (2.55)

Note that

sup
π∈At

J(t, S, x, π) =
H(T )

H(t)
sup
π∈At

Et
[
Uγ(X

π
T )
]

(2.56)

The problem is time consistent since the factor H(T )
H(t)

does not affect the optimization.

We conclude that the precommitment strategy coincides with the subgame per-

fect strategy. It is the intermediate consumption that introduces the time inconsis-

tency.

2.8 Numerical analysis

Q is defined as the fixed point of a non linear operator F . We can compute it

numerically and use it to calculate v̄(t, S) by Monte Carlo simulation.
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We consider 2 cases for the parameters of our model.

1. Constant volatility model. It is a model where all the coefficients are suppose

to be constant: σS(s) = σ, θS(s) = θ, r(s) = r. This model is the first one

considered in the paper (Ekeland et al., 2012).

2. Constant elasticity of variance model (CEV).

The CEV model is a model where the instantaneous volatility specified to be a power

function of the underlying spot price σS(S) = αSβ where α > 0 is the volatility scale

parameter and β is the elasticity parameter of the local volatility : β = 1
σS(S)

× ∂σS
∂S

.

For β = 0, we retrieve the Black Scholes Merton model. For β = −1
2
, we retrieve

the square root model of Cox and Ross.

In the remainder, we suppose β < 0. As explained in (Linetsky and Mendoza,

2010), the spot volatility is a decreasing function of the asset price. The stock price

volatility increases as the stock price declines. This shows the leverage effect in

equity markets. When we compute the option prices with this model of volatility,

we also get an implied volatility skew. That is what makes this model attractive in

the finance world. However, (Delbaen and Shirakawa, 2002) shows that there always

exists arbitrage in such markets.

Note that the volatility could go to infinity when the stock price goes to zero.

We want to avoid those anomalies since we are not concerned with defaults. We fix

a minimum σm and a maximum σM for the volatility σS. Suppose the volatility at

time 0 is known equal to σ0 and the stock price is S0. We choose α = σ0S
−β
0 and we

can write σS(S) = σ0( S
S0

)β.

and σS(S) is constant and equals σM if σS(S) ≥ σM and σS(S) is constant and

equals σm if σS(S) ≤ σm. Numerically, we choose the parameters presented in the
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table

Parameters r(t, S) β σS θS(t, S) σm σM

Values 0.05 -0.4 0.3( S
10

)β 6σS(t, S) 0.15 0.45

We take γ = −5 and

h(t, s) = H(s− t) := (1 + α1(s− t))−
β1
α1 exp(−ρ1(s− t))

with α1 = 1.0, β1 = 0.02, ρ1 = 0.02. The superscript ”PC” represents the precom-

mitment optimal strategies while ”TC” represents time consistent (subgame perfect)

strategies.

For the constant volatility model, we have chosen the market parameters (r, θS, σS) =

(0.05, 0.2777, 0.30).
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Figure 2.4: Fraction of consumption c(t, S) for different volatilities and strategies

Remark While the discount rate is typically decreasing (see (Frederick et al.,

2002)) e.g. ρ(0, t) = b
1+at

for hyperbolic discount , the utility weighted discount rate

tends to increase over time. (Frederick et al., 2002) show that there is empirical

evidence for increasing discount rates. However this phenomenon was not fully un-

derstood. Subgame perfect strategies will allow us to have equivalent discount rates

that are increasing. However, the utility weighted discount rate does not have the

same interpretation as the psychological discount rate ρ. It is the discount rate of the

agent if he were to follow an equivalent optimal strategy.
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Figure 2.5: Study of ĉ(t, S), c̄(t, S) for γ = −5
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Figure 2.6: Comparing π for different volatilities and strategies : πPC = π̂ = π̄ = πTC

when the parameters r, θS, σS are all constants. Theoretically, we get π̄ = π̂ = θS
σS(1−γ)

is independent of S.
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Figure 2.9: Q(t, S) for different volatility functions
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Conclusion

We consider an agent who discounts the future utility of consumption and final wealth

at a non constant rate. It is well known that this leads to time inconsistency. A

strategy that might be optimal at time s from the agent’s perspective at time 0

might not be optimal at time t < s. The agent has two choices: The first one is to

pre commit and follow the time 0 optimal strategy all the way to the end. The second

one is to allow his future selves (himself with his future time dependent preferences)

some level of control. We have thus introduced the subgame perfect strategies.

We show that solving the time consistent utility maximization problem is equiv-

alent to solving the extended HJB and this is done in Theorem 2.8. The verification

theorem gives us a way to check easily that a candidate solution is time consistent.

We can show that the variables t, S (the current time and stock price) and x (the

current wealth of the agent ) can be separated and the problem is reduced to solving

a PDE with a non local term. This PDE can be further reduced to a linear PDE by

computing the utility weighted discount rate Q as a fixed point of a certain operator.

The optimal strategy maximizes a criterion with discount rate ρ(0, t) = −1
h(0,t)

∂h(0,t)
∂s

.

The time consistent strategy maximizes a criterion with discount rate Q(t, St). For

the time consistent strategy, the discount rate is Q(t, St) where St is the stock level at

the current time t. As stated in corollary 2.19, the time consistent strategy coincides

with the time inconsistent strategy where the (deterministic) discount rate ρ(0, t) by

a stock price dependent one Q(t, St).

US consumption data has shown that the relative risk aversion should be spec-

ified to a value close to 6.0. When the parameters of the economy are constant

(constant r, θS, σS) and the relative risk aversion is bigger than one, we find that:
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• In the short term ( between 0 and 3 years for the constant volatility graph ;

between 0 and 1 year for the CEV graph), the subgame perfect agent has a

higher consumption.

• In the medium to long term ( between 3 and 10 years for the constant volatility

graph ; between 1 and 10 years for the CEV graph), the subgame perfect agent

has a lower consumption.

The subgame perfect agent discounts the medium term and the long term at a higher

discount rate than the short term. Thus, he consumes more in the short term than

the optimal agent. The subgame perfect agent also consumes less in the medium and

long term than the comparable optimal agent.

These contributions could inspire a statistical analysis of the discount rates (see

Frederick et al. (2002) for a review of discount rates and time preferences). That would

allow us to identify which agents are already following time consistent strategies.

Another study we need to address is the calibration of the stock parameters

µS(t, S), σS(t, S), θS(t, S) and the money market parameters r(t, S) in terms of the

market data.
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Chapter 3

Optimal Equilibrium with

Heterogeneous Agents
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The effects of heterogeneity on the interest rate, stock price and stock volatility

are well understood in the setting of an endowment economy when the agents are

maximizing their individual utilities from consumption and the psychological time

rates of discounting is constant. In this chapter, we study the equilibrium in a Lucas

type of economy when the discount rates of the individual agents are not constant and

depend on the time the optimization starts. We compare our results with the ones

obtained when each agent has a constant discount rate. The heterogeneous economy

with time varying discount rates behaves in the long run as the heterogeneous economy

where each agent uses his/her asymptotic discount rate.

3.1 Introduction

This chapter presents an equilibrium model in a pure exchange economy with hetero-

geneous investors that may differ in their beliefs, risk aversions and time preference

rates.

At the aggregate level, as in (Cvitanic et al., 2012), we analyze properties of the

equilibrium market price of risk, of the risk free rate, of the bond prices, and of the

stock price and volatility. We compare equilibrium characteristics to the character-

istics in the homogeneous economies populated by one class of agents only. We also

consider asymptotic properties of the equilibrium parameters. Heterogeneity implies

that investors value differently the states of the world.

As opposed to (Cvitanic et al., 2012), we do not use a martingale methodology to

solve for equilibrium due to the fact that the discount rates depend on the initial point

t where the optimization starts. Instead, we use a Hamilton Jacobi Bellman (HJB)

approach. (Jouini et al., 2010) considers the case where each agent has a different
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stochastic discount rate (varying with time and state of the world) but each agent

has the same constant relative risk aversion. Thus, our results are a combination of

(Jouini et al., 2010) and (Cvitanic et al., 2012).

The novelty in this chapter is three fold:

• we allow the discount rates to be non constant.

• we allow the psychological discount rate ρi(t, s) of agent i between time t and

time s to depend on the initial point t.

This chapter is organized as follows: section 2 introduces the model, admissi-

bility conditions and discusses complete market properties. In section 3, we solve

the equilibrium problem by maximizing individual criterions. We introduce the value

function separately for each agent and derive an HJB equation. In section 4, we study

the long run behaviour of the economy. In particular, we answer questions such as:

which agent determines the long term yield, which one determines the stock price in

the long run? Proofs are reported in the appendix.

3.2 The Model

We consider a continuous-time Arrow-Debreu economy with a finite horizon T , in

which heterogeneous agents maximize their expected utility from future consumption.

3.2.1 The Market setup

Uncertainty is described by a one-dimensional, standard Brownian motion {Wt, t ∈

[0, T ]}. There is a single consumption good and we denote by ε the aggregate divi-

dend or endowment process. We make the assumption that ε satisfies the following
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stochastic differential equation

dεt = µεtdt+ σεtdWt (3.1)

where the mean growth rate µ and the volatility σ are constants. There are I (types

of) agents indexed by i = 1, · · · , I. Agent i has wealth X i(t) at time t and a given

initial wealth X i(0) = xi.

Agents have different expectations about the future of the economy. More pre-

cisely, agents disagree about the mean growth rate. We denote by µi the mean growth

rate anticipated by agent i. The quantity

δi :=
µi − µ
σ

(3.2)

denotes agent i’s error in her perception of the growth of the economy normalized by

its risk. We introduce the probability measure Pi defined by its density with respect

to P
dPi

dP
= exp(δiWT −

δ2
i T

2
) (3.3)

For 0 ≤ t ≤ s ≤ T , denote

Zi(t, s) = eδi(Ws−Wt)− 1
2
δ2
i (s−t) (3.4)

W i
t = Wt − δit (3.5)
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W i
t is a Brownian motion for Pi. From agent i’s point of view, the aggregate endow-

ment process satisfies the following stochastic differential equation :

dεt = µiεtdt+ σεtdW
i
t (3.6)

Note that agents are persistent in their mistakes: the probability measures Pi may

represent erroneous beliefs as well as behavioural biases like optimism (corresponding

to δi > 0) or pessimism (δi < 0). Taking δi constant may seem incompatible with

learning. However, we consider the case with constant parameters as an approxima-

tion of the situation where all the parameters are stochastic and where learning is

regularly compensated by new shocks on the drift µ (Jouini et al., 2010).

In our setting, there are three possible sources of heterogeneity among agents:

heterogeneity in beliefs, heterogeneity in risk aversion and heterogeneity in time pref-

erence rates.

We assume that markets are complete which means that all Arrow-Debreu se-

curities can be traded. In order to deal with asset pricing issues, we suppose that

agents can continuously trade in a riskless asset and in risky stocks. We let S0 denote

the riskless asset price process with dynamics

dS0
t = rtS

0
t dt (3.7)

the parameter rt denoting the risk free rate at time t. Since there is only one source

of risk, all risky assets have the same instantaneous Sharpe ratio and it suffices to

focus on one specific risky asset. We consider the asset S whose dividend process is

given by the total endowment of the economy εt and we denote respectively by µS
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and σS its drift and volatility.


dSt = St [µSdt+ σSdWt]− εtdt

ST = ε(T )

(3.8)

We let

θS :=
µS − r
σS

(3.9)

denote the asset’s Sharpe ratio or equivalently the market price of risk. The param-

eters r, µS and σS are to be determined endogenously in equilibrium.

It will be useful to introduce the adjusted market price of risk for agent i:

φi := θS + δi (3.10)

3.2.2 Portfolio and Consumption Policies

We will make the following assumptions in order to characterize the equilibrium.

Then we will verify that the assumed hypotheses are true.

Assumption 3.1. 1. The interest rate process (r(t))t∈[0,T ], the market price of risk

process (θS(t))t∈[0,T ] and the stock volatility process (σS(t))t∈[0,T ] are adapted

and bounded, uniformly in (t, ω) ∈ [0, T ]× Ω.

2. For t ∈ [0, T ], r(t), σS(t), θS(t) can be written r(t) = r(t,Wt), θS(t) = θS(t,Wt)

for deterministic functions r(t, w), θS(t, w) of (t, w) ∈ [0, T ] × R. Furthermore,

r, θS are C1 in their domain of definition.

Each agent i may choose a portfolio process πi(t) and a nonnegative consumption

process ci(t), 0 ≤ t ≤ T . For every such pair (πi, ci), the corresponding wealth process
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X i := Xπi,ci has initial value X i(0) = xi and obeys the self-financing equation

dX i(t) = πi(t)X i(t)

(
dSt + εtdt

St

)
+X i(t)(1− πi(t))rtdt− ci(t)X i(t)dt

This can be rewritten as

dX i(t) = πi(t)X i(t)(µSdt+ σSdW (t)) +X i(t)(1− πi(t))rtdt− ci(t)X i(t)dt

dX i(t) = (r(t)− ci(t) + σSπ
i(t)θS(t))X i(t)dt+ σSπ

i(t)X i(t)dWt (3.11)

Let us now define the admissible strategies.

Definition 3.2. An R2-valued process {(πi(t), ci(t))}0≤t≤T is called an admissible

strategy process for agent i with corresponding wealth process X i = Xπi,ci if:

• it is progressively measurable with respect to the sigma algebra σ({Wt}0≤t≤T ).

• ci(t) ≥ 0, Xπi,ci(t) ≥ 0 for all t, a.s. Furthermore, ci(t) and σS(t)πi(t) are

uniformly bounded.

• Moreover, we require that for all t ∈ [0, T ], xi ≥ 0, Et[supt≤s≤T |Ui(ci(s)Xπi,ci(s)|] <

∞ , Et[|Ui(X i(T )|] <∞ where Xπi,ci(t) = xi almost surely.

It is often useful to consider the dynamics of X i = Xπi,ci in the Pi probability

space. Recall that dW i
t = dWt − δidt. In terms of Pi, the wealth dynamics are given

by

dX i(s) = (r(s)− ci(s) + σSπ
i(s)φi(s))X

i(s)ds+ σSπ
i(s)X i(s)dW i

s (3.12)
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Definition 3.3. Agent i has discount function fi and utility function Ui with constant

relative risk aversion 1− γi with γi 6= 0, γi < 1 i.e.

Ui(xi) =
xγii
γi
, ∀xi > 0 (3.13)

We now introduce another source of heterogeneity : the time preferences. As

noted in the Introduction chapter, time preference denotes the preference for imme-

diate utility over delayed utility (see (Frederick et al., 2002)).

Definition 3.4. Agent i’s discount function: fi is a measure of decision-maker i’s

impatience. fi is defined on the domain D := {(t, s), 0 ≤ t ≤ s ≤ T} and satisfies the

following:

1. fi(t, t) = 1.

2. There exists f0 > 0 such that fi(t, s) ≥ f0.

3. fi is continuously differentiable at every point (t, s) ∈ D.

The (forward) discount rate is the quantity

ρi(t, s) = −∂fi(t, s)
∂s

× 1

fi(t, s)
, 0 ≤ t ≤ s ≤ T. (3.14)

We will need the following additional conditions to prove the existence of a pre

commitment optimal equilibrium.

Assumption 3.5. Discount rate variation

For each i ∈ {1, · · · , I}, the discount rate ρi is bounded and has bounded deriva-

tives. ρi(t, s),
∂ρi(t,s)
∂t

and ∂ρi(t,s)
∂s

are bounded by a constant independent of t, s.
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We now study the existence of an equilibrium where the agents trade with each

other and the markets clear.

3.3 The Equilibrium

The endowment of the economy ε(s) is given exogenously. We consider an asset S(s)

that pays a dividend equal to ε(s). In the setting of (Cvitanic et al., 2012), we study

the effects of heterogeneity on a complete economy in which agents trade, consume

and invest.

3.3.1 The optimization problem

In this section and the next, we fix t ∈ [0, T ] as the time where the agents begin to

maximize their utility of consumption and final wealth.

Definition 3.6 (Admissibility). The portfolio/consumption process ratio pair (πi, ci)

for the ith agent is admissible on [t, T ] if the process {(πit+s, cit+s)}0≤s≤T−t is admissible

(see Definition 3.2).

We call Ait the set of admissible strategies on [t, T ] (see definition above) which

satisfy

EPi
[ ∫ T

t

fi(t, u) max(0,−Ui(ci(u)X i(u)))du+ fi(t, T ) max(0,−Ui(X i
T ))

| X i
t = xi , Wt = w

]
<∞ (3.15)
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For every i = 1, · · · , I, agent i wants to maximize the expected utility

EPi
[∫ T

t

fi(t, u)Ui(c
i(u)X i(u))du+ fi(t, T )Ui(X

i
T ) | X i

t = xi , Wt = w

]
(3.16)

The maximization is done over the set of strategies (πi, ci) ∈ Ait.

For s ≥ t, consider the criterion J i that represents the continuation expected

utility on [s, T ]:

J i(t, s, w, xi, π
i, ci) = EPi

[ ∫ T

s

fi(t, u)

fi(t, s)
Ui(c

i(u)X i(u))du

+
fi(t, T )

fi(t, s)
Ui(X

i
T )|X i

s = xi , Ws = w

]
(3.17)

A pair (π̂i, ĉi) that achieves the supremum of (3.17) over such pairs is called an optimal

strategy. Depending on the context, we will also call (π̂i, ĉi) a time t pre commitment

strategy. The time t is the time at which the agent decides to start the optimization.

After committing to a strategy, the agent does not change it over the remaining time

[t, T ].

Remark 3.7. If consumption at time u ≥ s is discounted using the factor

fi(t, u)

fi(t, s)
= exp

(∫ u

s

−ρi(t, v)dv

)
.

then, the criterion becomes:

J i(t, s, w, xi, π
i, ci) = EPi

[∫ T

s

e
∫ u
s −ρi(t,v)dvUi(c

i(u)X i(u))du

+e
∫ T
s −ρi(t,v)dv)Ui(X

i
T )|X i

s = xi , Ws = w

]
(3.18)
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The time t is again the time at which the agent decides to start the optimization.

The value function at time s, state Ws = w and wealth X i
s = xi is

V i(t, s, w, xi) := sup
(πi,ci)∈Ais

J i(t, s, w, xi, π
i, ci) (3.19)

where the sup is taken over the pairs (πi, ci) ∈ Ais. For reasons that will be obvi-

ous later, we adopt the Hamilton-Jacobi-Bellman (HJB) methodology instead of the

martingale one. Notice that

V i(t, t, w, xi) = sup
(πi,ci)∈Ait

EPi
[ ∫ T

t

fi(t, u)Ui(c
i(u)X i(u))du (3.20)

+fi(t, T )Ui(X
i
T )|X i

t = xi,Wt = w

]
= sup

(πi,ci)∈Ait
J i(t, t, w, xi, π

i, ci) (3.21)

which is exactly the criterion we want to maximize.

3.3.2 The Definition of the Equilibrium

We fix the time t which is the time at which the agents start their optimization. We

are concerned with defining an equilibrium on [t, T ].

Definition 3.8 (Equilibrium). An equilibrium (r, θS, σS, π̂
i, ĉi) consists of an interest

rate r, a market price of risk θS, a stock volatility σS, investment and consumption
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processes πis, c
i
s such that markets clear, i.e.

I∑
i=1

ĉi(s)X̂ i(s) = ε(s) (3.22)

X̂ tot(s) :=
∑
i

X̂ i(s) = S(s) (3.23)

X̂π(s) :=
∑
i

π̂i(s)X̂ i(s) = S(s) (3.24)

for all s ∈ [t, T ] and (π̂i, ĉi) maximizes agent i’s inter temporal optimization program

i.e.

(π̂i, ĉi) ∈ arg sup
(πi,ci)∈Ait

J i(t, t, w, xi, π
i, ci) (3.25)

(3.22) states that the aggregate consumption equals the endowment. (3.23)

states that the aggregate wealth equals the stock price. (3.24) states that the aggre-

gate investment in the stock equals the stock price (there is only one unit of stock in

the whole economy).

We can show that (3.24) is equivalent to { (3.23) with the additional initial

condition X̂ tot(t) = S(t)}.

Note that the market clearing conditions imply that the money market clears.

Agent i invests

X̂ i(s)− π̂i(s)X̂ i(s)

in the money market and we have:

∑
i

(X̂ i(s)− π̂i(s)X̂ i(s)) = S(s)− S(s) = 0.
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3.3.3 Solving Agents Optimization Problem

The following theorem is a verification theorem for the HJB. It says that if we find a

candidate solution that satisfies the HJB then it is actually the value function.

Theorem 3.9 (Verification Theorem). Suppose that we have functions yi(t; s, w, xi),

cy(t; s, w, xi) and πy(t; s, w, xi) such that:

• (πy, cy) ∈ Ait.

• If g is one of the functions yi, ∂yi

∂s
, ∂yi

∂w
, xi

∂yi

∂xi
and (πi, ci) is any admissible

strategy then

EPi
s,w,xi

[ sup
s≤u≤T

|g(t;u,Wu, X
πi,ci

u )|2] <∞ (3.26)

and yi satisfies the HJB


supπi,ci

{
yis + xi (r + σSθSπ

i − ci) yix + 1
2
(πiσSxi)

2yixx + 1
2
yiww

+πiσSxiy
i
xw − ρi(t, s)yi + δi(σSπ

ixiy
i
x + yiw) + Ui(c

ixi)
}

= 0

yi(t, T, w, xi) = Ui(xi)

(3.27)

• For each fixed (s, x), the supremum in the expression (3.27) is attained by the

choice πy(t, s, w, xi), cy(t, s, w, xi).

Then, the following holds:

The optimal value function V i to the control problem is given by

yi(t, s, w, xi) = J i(t, s, w, xi, πy, cy) = V i(t, s, w, xi) (3.28)

The proof is given in Appendix 2.
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In what follows, we denote pi the inverse of the relative risk aversion:

pi =
1

1− γi
(3.29)

Because of the CRRA form of the utility function Ui, we can look to separate the

variables w, xi. We look for V i(t, s, w, xi) of the form

V i(t, s, w, xi) = ai(t, s, w)Ui(xi)

This is the content of the following result.

Theorem 3.10. The value function is given by

V i(t, s, w, xi) = ai(t, s, wi)Ui(xi) (3.30)

and a time t optimal strategy (π̂i, ĉi) is :

ĉi(s) = ai(t, s,Ws)
−pi ; σS(s)π̂i(s) = pi

(
φi(t, s,Ws) +

∂ai
∂w

ai
(t, s,Ws)

)
(3.31)

for s ∈ [t, T ]. The wealth process X̂ i associated with the optimal strategy (π̂i, ĉi)

satisfies the SDE:

dX̂ i(s) = (r(s)− ĉi(s) + σS(s)π̂i(s)θS(s))X̂ i(s)ds+ σS(s)π̂i(s)X̂ i(s)dW (s) (3.32)

The function

vi(t, s, w) := ai(t, s, w)pi (3.33)
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satisfies the linear parabolic PDE:

0 =
∂vi
∂s

+
1

2

∂2vi
∂w2

+ (δi + γipiφi)
∂vi
∂w

+ pi(γir +
γipiφ

2
i

2
− ρi(t, s))vi + 1 (3.34)

vi(t, T, w) = 1

and the optimal strategy (π̂i, ĉi) with starting time t is given by

ĉi(t, s,Ws) =
1

vi(t, s,Ws)
; σSπ̂

i(t, s,Ws) = piφi + σS

∂vi
∂w

vi
(t, s,Ws) (3.35)

The proof is given in Appendix 2.

Since ρi(t, s) depends in general on t, we see that the linear PDE (3.34) has a

linear coefficient

pi

[
γir +

γipiφ
2
i

2
− ρi(t, s)

]
vi

that depends on the starting point t. If we fix two starting points t1 < t2 for the opti-

mization, the strategies π̂i(t1, s,Ws), ĉ
i(t1, s,Ws) does not coincide with π̂i(t2, s,Ws),

ĉi(t2, s,Ws) on s ∈ [t2, T ]. Therefore, the strategy is time inconsistent.

In the case of exponential discounting, ρi(t, s) = ρi = constant, the t-dependence

of the PDE disappears and the strategy becomes time consistent.

In what follows, we fix t = 0, i.e. each agent i is optimizing its expected utility

of consumption and final wealth starting at time t = 0. r(0, s, w) will simply be noted

r(s, w), other similar quantities will follow the same simplified notation.

In the sequel, we assume that at time s, the market price of risk θS(s) and the

interest rate r(s) and the stock volatility are given and bounded. Since the criterion J i

is an integral of terms of the form Ui(ĉ
i(s)X̂ i(s)), we want to find a simple expression

for ĉi(s)X̂ i(s). This is the content of the next proposition.
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Proposition 3.11. The following SDE holds:

d log(ĉi(s)X̂ i(s)) = pi

(
r +

φ2
i

2
− δiφi(s,Ws)− ρi(0, s)

)
ds+ piφi(s,Ws)dW (s)

(3.36)

The remarkable thing is that the expression in the right side of (3.36) does not

depend on vi.

3.3.4 Equilibrium in the homogeneous economies

We start by considering the equilibrium characteristics that would prevail in an econ-

omy made of agent i only or that would prevail in our economy if all the initial

endowment was concentrated on agent i.

We denote by Si, ri, µiS, σiS, θiS the equilibrium stock price, interest rate, stock

drift, stock volatility and market price of risk.

θiS(v) :=
µiS(v)− ri(v)

σiS(v)
(3.37)

There is only one agent i so that the commodity clearing condition becomes:

ĉi(s)X̂ i(s) = ε(s)
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Using the SDE (3.36) for d log(ĉi(s)X̂ i(s)) obtained previously, we get

d log εs = d log(ĉi(s)X̂ i(s))

= pi(ri(s) +
(θiS + δi)

2

2
− δi(θiS + δi)− ρi(0, s))ds+ pi(θiS + δi)dW (s)(3.38)

= (µ− σ2

2
)ds+ σdW (s) (3.39)

Comparing the ds terms and the dW (s) terms in equations (3.38), (3.39) yields:

Proposition 3.12. In the homogeneous economy where only agent i is present, the

market price of risk is θiS, the interest rate is ri(s), the stock volatility is σiS . They

are given by the following expressions:

θiS = σ(1− γi)− δi , σiS = σ (3.40)

ri(s) = (1− γi)µi − σ2(1− γi)(1−
γi
2

) + ρi(0, s) (3.41)

Remark 3.13. We note that the equilibrium θiS, σiS, ri are the same as those found

by (Cvitanic et al., 2012), except that we replace the constant discount rate ρi by a

time dependent discount rate ρi(0, s).

Now, we introduce pricing kernels. Recall that the fundamental theorem of asset

pricing in finance suggests that the price of any asset is its discounted expected value

of future payoff specifically under risk-neutral measure or valuation. The present

value of 1$ in t years is

EP[Mt] = EQ[e−
∫ t
0 rudu]

where P is the physical probability measure and Q is the risk-neutral measure. The
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pricing kernel in the homogeneous economy of agent i is defined as

Mi(s) = exp

(∫ s

0

(−ri(u)− θ2
iS

2
)du−

∫ s

0

θiSdW (u)

)
(3.42)

The next proposition gives another expression for Mi(s).

Proposition 3.14. The process Mi(s) can be written as:

Mi(s) = fi(0, s) exp

(
−
(
(1− γi)µi + (1− γi)(1−

γi
2

)σ2 +
θ2
iS

2

)
s− θiSWs

)
(3.43)

3.3.5 Equilibrium in the heterogeneous economy

We are now in an heterogeneous economy (the real one) where all agents are present.

Define the pricing kernel as

M(s) = exp(−
∫ s

0

(ru +
θS(u)2

2
)du−

∫ s

0

θS(u)dWu) (3.44)

where θS(u) and r(u) are the equilibrium market price of risk and interest rate to be

found later.

Proposition 3.15. We have the following:

ĉi(s)X̂ i(s) =
ĉi(0)X̂ i(0)

ε(0)
ε(s)

(
Mi(s)

M(s)

)pi
(3.45)

The proof can be found in Appendix 2.

The clearing condition for the consumption (3.27) becomes:

∑
i

ĉi(0)X̂ i(0)

ε(0)

(
Mi(s)

M(s)

)pi
= 1 (3.46)
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From equation (3.46), we can deduce that M(s) has to be chosen as the solution

y > 0 of the equation

I∑
i=1

(( ĉi(0)X̂ i(0)

ε(0)

) 1
pi
Mi(s)

y

)pi

= 1

We make this result more precise by starting with a definition.

Definition 3.16. For a1, · · · , aI > 0, define F (a1, · · · , aI) as the unique solution y

of
I∑
i=1

(ai
y

)pi = 1. (3.47)

For s ∈ [0, T ] and i ∈ {1, · · · , I} , define

ai(s) :=
( ĉi(0)X̂ i(0)

ε(0)

) 1
piMi(s) (3.48)

and

a(s) = (a1(s), · · · , aI(s)). (3.49)

Recall that the optimal consumption for agent i is ĉi(s)X̂ i(s). Define the risk

weighted fraction of consumption for agent i as

ωi(s) =

piĉ
i(s)X̂i(s)
ε(s)∑

j
pj ĉj(s)X̂j(s)

ε(s)

(3.50)

In (Cvitanic et al., 2012), the quantity ωi is called relative level of absolute risk

tolerance of agent i. The implicit function theorem yield that F is C∞ in its domain

of definition and {F (a(s)), s ∈ [0, T ]} is an adapted stochastic process. This is the

content of the next proposition.
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Proposition 3.17 (Pricing kernel and consumption fractions). The pricing kernel

M(s) in the heterogeneous economy is given by

M(s) = F (a(s)) (3.51)

The risk weighted fraction of consumption for agent i can be written explicitly as:

ωi(s) =

pi

(
ai(s)
F (a(s))

)pi
∑

j pj

(
aj(s)

F (a(s))

)pj (3.52)

Proposition 3.18 (Equilibrium interest rate and market price of risk). The pricing

kernel M(s) satisfies the SDE

dM(s) = −M(s)(r(s)ds+ θS(s)dW (s)) (3.53)

The equilibrium interest rate r and market price of risk θS are given by:

θS(s) =
∑
i

ωi(s)θiS (3.54)

r(s) =
∑
i

ωi(s)ri(s) +
1

2

∑
i

ωi(1− pi)θ2
iS − (

∑
i

ωiθiS)(
∑
j

(1− pj)ωj(s)θjS)

+
1

2
(
∑
i

ωi(s)θiS)2(
∑
j

(1− pj)ωj(s)) (3.55)

The weights ωi(s) are between 0 and 1. Therefore, in the heterogeneous eco-

momy, the equilibrium market price of risk is between the minimum and the maximum
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market prices of risk in the homogeneous economies.

min
i
θiS ≤ θS(s) ≤ max

i
θiS (3.56)

The interest rate is also bounded. However, the aggregate interest rate could be

smaller or bigger than all of the individual interest rates of the homogeneous economies.

3.3.6 Study of the equilibrium stock price

We want to determine the equilibrium stock price S(s) and stock volatility σS(s).

The homogeneous case

The stock price Si in the homogeneous economy where only agent i is given by

Si(s) =
1

Mi(s)
EP
s

[∫ T

s

Mi(v)ε(v)dv +Mi(T )ε(T )

]
. (3.57)

We are just saying that the price of the asset that pays the dividend stream

(εt)0≤s≤T is the discounted sum of the future dividends. Since, at time s, one dollar

that will be received at time u ≥ s is worth Mi(u)
Mi(s)

, we get the formula (3.57).

Proposition 3.19 (Stock Price in the homogeneous economy). The stock price in

the homogeneous economy for agent i is

Si(s) = ε(s)

∫ T

s

fi(0, v)

fi(0, s)
si(u, v)dv + ε(s)

fi(0, T )

fi(0, s)
si(s, T ) (3.58)

where

si(u, v) := exp

(
γi(µi −

σ2(1− γi)
2

)(v − u)

)
. (3.59)

The heterogeneous case
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Using Ito’s Lemma, and the market clearing conditions, it is easy to see that

d(S(t)M(t)) = −M(t)ε(t)dt+M(t)(σS(t)− θS(t))S(t)dW (t)

Thus, S(t)M(t) +
∫ t

0
M(u)ε(u)du is a P martingale. This leads to:

Proposition 3.20 (Stock price in the heterogeneous economy). The stock price in

the heterogeneous economy is given by the discounted dividend

S(s) =
1

M(s)
EP
s

[∫ T

s

M(u)ε(u)du+M(T )ε(T )

]
(3.60)

We have the following inequalities:

min
i
Si(s) ≤ S(s) ≤ max

i
Si(s). (3.61)

The stock volatility is calculated in the following.

Proposition 3.21. Stock price volatility

The stock volatility σS is given by

σS(s) = σ +
EP
s

[∫ T
s

(θS(s)− θS(u))Muεudu+ (θS(s)− θS(T ))MT εT

]
EP
s

[∫ T
s
Muεudu+MT εT

] (3.62)

In particular,

σ + min
i
θiS −max

i
θiS ≤ σS ≤ σ + max

i
θiS −min

i
θiS (3.63)
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The drift of the stock is given by

µS = σSθS + r (3.64)

The proof is based on a straight forward modification of the one found in (Cvi-

tanic et al., 2012).

3.3.7 The existence of the equilibrium

We have seen that the interest rate, market price of risk and stock volatility are

bounded. All that is left is to show that r, θS have bounded derivatives. This is the

content of the next result.

Proposition 3.22. The quantities ∂r
∂w

, ∂θS
∂w

, ∂r
∂s

, ∂θS
∂s

are bounded independently of

(s, w) ∈ [0, T ]× R.

Proposition 3.23. The parabolic PDE (3.34) has a unique bounded solution vi which

is explicitly given by the Feynman Kac formula:

vi(s, w) = EP
s

[ ∫ T

s

e
∫ z
s pi(γir+

γipiφ
2
i

2
−ρi(0,u))dudz + e

∫ T
s pi(γir+

γipiφ
2
i

2
−ρi(0,u))du

]
(3.65)

where r, φi are evaluated at the point (u, Yu) and Yu is the unique solution of the SDE

on [s, T ]:

Yu = Wu +

∫ u

s

(δi + γipiφi(Yv))dv;Ys = Ws = w

In particular, vi is uniformly bounded from below by a positive constant. Furthermore,

∂vi(s,w)
∂w

and ∂2vi(s,w)
∂w2 are uniformly bounded.
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Proof [Proposition 3.23] From proposition 3.22, we know that the coefficients of

PDE (3.34) are continuously differentiable uniformly in s, w and they have bounded

derivatives. Therefore, there is a unique bounded solution vi to the PDE (3.34).

The fact that the first and second derivatives of vi are bounded comes from PDE

theory (see (Friedman, 1975) , Theorem 4.6 ).

�

The following theorem states that an equilibrium exists.

Theorem 3.24. The equilibrium exists. The optimal strategy (π̂i, ĉi) is given by

(3.35) and the value function is V i(s, w, xi) = vi(s, w)1−γiUi(xi) and vi is given by

expression (3.65).

In the next section, we study the behaviour of the economy in the long run.

3.4 Study of the asymptotic behaviour

In this section, we study the long run behaviour of the equilibrium. We find out

which agent dominates the consumption and which determines the long run interest

rate and bond yield.

3.4.1 Asymptotic survival

(Yan, 2008) studied the natural selection phenomenon in a complete market. The

concept is similar to the one found in biology. The rational expectations assumption

is that investors act rationally all the time. So (Yan, 2008) studies a heterogeneous

69



Ph.D. Thesis - Oumar Soule Mbodji McMaster - Mathematics

economy with two investors, one rational and the other one with an incorrect belief.

(Yan, 2008) addresses the following two questions:

• First, which investor will survive in the long run?

• Second, if the investor with incorrect beliefs cannot survive, what is the time-

span of the selection process?

We start with two assumptions. The first one is more general and the second one is

more restrictive.

Assumption 3.25. Suppose

1

T0

∫ T0

0

ρi(0, s)ds→ ρ̄i (3.66)

as T0, T →∞, T0 ≤ T .

Assumption 3.26.

lim
s→∞

ρi(0, s) = ρ̄i (3.67)

Unless explicitly specified, we suppose assumption 3.67 holds. If we can show

that the investor with incorrect beliefs cannot survive that would be a justification

for the rational expectations hypothesis.

We will see that the agent’s survival is dependent on one number: the survival

rate which is a function of risk aversion, long run time preference and belief.

Definition 3.27. We say that agent i survives iff

lim
s→∞

ωi(s) = 1 a.s. (3.68)
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and that it becomes extinct or is driven out of the market iff

lim
s→∞

ωi(s) = 0 a.s. (3.69)

Define the fraction of consumption for agent i

ηi(t) =
ĉi(t)X̂ i(t)

ε(t)
(3.70)

Then ηi(t) = ηi0(Mi(t)
M(t)

)pi . Fix two indices i 6= k and s ∈ [0, T ],

1

s
(log ηk(s)

1
pk − log ηi(s)

1
pi ) =

1

s

(
1

pk
log(pkηk0) +

∫ s

0

(r(u) +
θ2
S

2
− rk(u)− θ2

kS

2
)du

+

∫ s

0

(θS(u)− θkS)dWu

)
− 1

s

(
1

pi
log(piηi0) +

∫ s

0

(r(u) +
θ2
S

2
− ri(u)− θ2

iS

2
)du

+

∫ s

0

(θS(u)− θiS)dWu

)
∼s→∞

1

s

∫ s

0

(ri(u) +
θ2
iS

2
− rk(u)− θ2

kS

2
)du+ (θiS − θkS)

Ws

s

By the Law of Iterated Logarithms, as s→∞,

Ws

s
→ 0 (3.71)

and

1

s
(log ηk(s)

1
pk − log ηi(s)

1
pi )→ ρ̄i +

θ2
iS

2
− ρ̄k −

θ2
kS

2
. (3.72)

Suppose

ρ̄i +
θ2
iS

2
< ρ̄k +

θ2
kS

2
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Then

lim
s→∞

1

s
(log ηk(s)

1
pk − log ηi(s)

1
pi ) < 0

i.e.

lim
s→∞

ηk(s)
1
pk

ηi(s)
1
pi

= 0 (3.73)

This motivates the following definition:

Definition 3.28 (Survival index). The survival index of agent i is defined as

κi = ρ̄i +
θ2
iS

2
(3.74)

We add the following assumption

Assumption 3.29. All the κi are are assumed to be different.

Let iK be the agent with the smallest survival index κi.

iK := arg min
i
κi (3.75)

Then for all j 6= iK ,

lim
s→∞

ωj(s)
1
pj

ωiK (s)
1

piK

= 0

Since ηiK (s) ≤ 1,

ηj(s)
1
pj ≤ ηj(s)

1
pj

ηiK (s)
1

piK

→s→∞ 0 (3.76)

We conclude that

∀j 6= iK , lim
s→∞

ηj(s) = 0 (3.77)
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and since

ηiK = 1−
∑
j 6=iK

ηj

we get

lim
s→∞

ηiK (s) = 1 (3.78)

and since ωi = piηi∑
j pjηj

, the asymptotic behaviour of ωi is the same as the one for ηi.

This is the content of the following proposition.

Proposition 3.30. Agent iK is the only one surviving in the long run s, T → ∞,

while s ≤ T .

∀i ∈ {1, · · · , I}, lim
s→∞

ωi(s) = δiK ,i (3.79)

In the following fi(t, s) := fi(s− t) is a function of one variable τ = s− t.

Proposition 3.31 (exponential discounting). The discount function for agent i is

fi(t, s) = exp(−ρi(s− t)).

κi = ρi +
θ2
iS

2
(3.80)

is agent i’s survival index. This is compatible with the definition in (Cvitanic et al.,

2012). When s → ∞, the agent with the lowest survival index survives and all the

others vanish.

Proposition 3.32 (hyperbolic and generalized hyperbolic discounting). The hyper-

bolic discount function is

fi(t, s) = fi(t, s; ai) :=
1

1 + ai(s− t)
(3.81)
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and the generalized hyperbolic function is

fi(t, s) = fi(t, s; ai, bi) := (1 + ai(s− t))−
bi
ai (3.82)

We only deal with the second family since it generalizes the first.

κi = lim
s→∞
−f

′
i

fi
(s) +

θ2
iS

2
= lim

s→∞

bi
1 + ais

+
θ2
iS

2
=
θ2
iS

2
. (3.83)

Again, only the agent with the lowest asymptotic survival index survives. That

is the agent with the lowest |θiS|. Agent iK is not necessarily the agent with the most

accurate expectation about the future of the economy.

Proposition 3.33 (generalized hyperbolic discounting with exponential rate).

fi(t, s) = fi(t, s; ρi, ai, bi) := (1 + ai(s− t))−
bi
ai exp(−ρi(s− t)). (3.84)

The survival index is :

κi = lim
s→∞

bi
1 + ais

+ ρi +
θ2
iS

2
= ρi +

θ2
iS

2
. (3.85)

Again, only the agent with the lowest asymptotic survival index survives. That

is the agent with the lowest ρi +
θ2
iS

2
.

In all the different discount functions above, the agent iK has the lowest survival

rate.

Next, we want to study the long-term (asymptotic) interest rate.

Definition 3.34. The long term interest rate of agent i in its homogeneous economy
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is

r̄i = lim
s→∞

ri(s) = (1− γi)µi − σ2(1− γi)(1−
γi
2

) + ρ̄i. (3.86)

If we assume all the r̄i are different, let

r̄ir := inf
i
r̄i. (3.87)

The index ir is constant and determined by the agent with the smallest long-run

interest rate i.e.

ir := arg mini∈{1,··· ,I}(1− γi)µi − σ2(1− γi)(1−
γi
2

) + ρ̄i. (3.88)

Proposition 3.35. Under assumption 3.29

lim
s→∞

ĉi(s)X̂ i(s)

ε(s)
= δi,iK a.s. (3.89)

lim
s→∞

1

s

∫ s

0

r(u)du = lim
s→∞

1

s

∫ s

0

riK (u)du = r̄iK (3.90)

Under the more restrictive assumption 3.67:

The equilibrium long term interest rate is equal to the long term interest rate of

the individual agent iK in its homogeneous economy.

lim
s→∞

r(s) = lim
s→∞

riK (s) = r̄iK a.s. (3.91)

Note that this is not necessarily equal to the lowest long term interest rate of each
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agent. The indices ir and iK could be different.

Next, we want to study the long term yield and the bond price for long maturi-

ties.

3.4.2 Determination of the bond price and the long yield

Most cash flows are calculated using interest rates from liquid debt instruments such

as Treasury bonds. The graphic that depicts the relationship between bond yields of

the same credit quality and their maturities is called a yield curve. We consider a

bond in this market that matures at time T0 ∈ [t, T ].

The bond price at time t with maturity T0 ≥ t is given by

B(t, T0) = EQ
t

[
exp(−

∫ T0

t

r(s)ds)

]
:= exp(−Y (t, T0)(T0 − t)) = EP

t

[
MT0

Mt

]
(3.92)

where Q is the risk neutral measure Y (t, T0) is the yield between time t and T0. Let

Yi(t, T0) be the yield in the homogeneous economy populated by agent i between time

t and time T0. ri is deterministic thus, the bond price in the homogeneous economy

is

Bi(t, T0) = EQ
t

[
exp(−

∫ T0

t

ri(s)ds)

]
:= exp(−Yi(t, T0)(T0 − t)) (3.93)

and the yield is

Yi(t, T0) =
1

T0 − t

∫ T0

t

ri(s)ds (3.94)
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We want to study the behaviour of the yield curve as t → ∞. We will see that the

long term yield is determined by the agent ir with the lowest long term rate.

Proposition 3.36. The long term yield is determined by the agent ir with the lowest

asymptotic (long term) average interest rate r̄i. Fix t > 0. We have the following

asymptotic result for T0 ≤ T, T0, T →∞:

Y (t, T0) ∼ 1

T0

∫ T0

0

rir(u)du ∼ r̄ir (3.95)

The agent ir that determines the long term yield could be different from the one

that survives and dominates the long term consumption (i.e. iK).

These results show that the asymptotic behaviour of the equilibrium with non

constant discount rates is the same as the one with constant discount rates when the

constant discount rates are set to equal the asymptotic average discount rate ρ̄i of

each agent. We can therefore give the same results as in (Cvitanic et al., 2012). The

proofs can be found in that paper.

3.5 Conclusion

The equilibrium can be completely solved by studying the individual agent’s HJB.

We get the equilibrium interest rate, market price of risk, stock volatility by writing

the clearing conditions for the consumption and the stock.

Shreve, Karatzas have solved the equilibrium problem completely by considering

the dual problem. In this chapter, I show that the equilibrium can be solved directly

via the HJB equations. (Cvitanic et al., 2012) follow the martingale approach as well.

77



Ph.D. Thesis - Oumar Soule Mbodji McMaster - Mathematics

If s is the current time and T ≥ s is the horizon, we can give the long term

behaviour of the economy by taking T → ∞ and s → ∞ while maintaining s ≤ T .

We assume that ρi(0, s) the discount rate of agent i between time 0 and time s ∈ [0, T ]

converges as s grows to infinity to a constant called the asymptotic average discount

rate of agent i. There is only one surviving agent and it is not necessarily the agent

who has, at all times, the lowest discount rate. It is the agent with the lowest survival

index as defined in this chapter. The survival index is a function of the long term

discount rate, the risk aversion and the belief (optimism or pessimism) of the agent.
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Chapter 4

Subgame Perfect Equilibrium with

Two Heterogeneous Agents
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4.1 Introduction

In Chapter 2, we have seen that non constant discount rates introduce time inconsis-

tent behaviour. This dilemma could be solved by supposing each agent precommits to

follow the optimal strategy set at time t = 0. In Chapter 3, we solved the equilibrium

when the agents have different risk aversions, discount rates and beliefs about the

future of the economy. We then characterized the equilibrium in terms of the homo-

geneous equilibria in which a given agent is the only one present in the economy.

However, this approach requires some mechanism to enforce that precommit-

ment. Left to themselves, the agents will keep changing their strategies. In this

chapter, we study the subgame perfect equilibrium also known as time consistent

equilibrium in presence of heterogeneity. The agents differ in their time preferences,

relative risk aversion and beliefs about the future of the economy. To simplify the

study, we consider an economy with only two agents (or two types of agents). We

show that the equilibrium characteristics for the subgame perfect strategies are the

same as the ones obtained in the equilibrium for the pre commitment optimal strate-

gies of Chapter 3, except that the time dependent discount rate of agent i, ρi(0, s) is

replaced by the utility weighted discount rate Qi(s) of agent i.

4.2 The Model

As in chapter 3 , we are given a heterogeneous economy with I = 2 agents that have

the following characteristics:

Exogenous parameters: There is only one source of uncertainty represented by
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the Brownian motion W (t). The endowment (dividend) is ε(t) and satisfies the SDE

dεt = εt(µdt+ σdWt) (4.1)

For i ∈ {1, 2}, agent i has initial wealth xi, discount function fi(t, s) which is the

discounting between time t and time s. She believes the growth rate of the dividend

is µi instead of µ. Call δi the quantity

δi :=
µi − µ
σ

(4.2)

as introduced by Yan (2008).

Endogenous parameters

Agent i’s utility for a given consumption stream (cis) starting at time t is then

given by

EPi
t

[∫ T

t

fi(t, s)Ui(c
i
s)ds+ fi(t, T )Ui(X

i
T )

]
(4.3)

where EPi denotes the expectation operator from agent i’s perspective, X i
T is the final

wealth of agent i, Ui(x) is the utility function of agent i:

Ui(x) =
xγi

γi
, x > 0, γi < 1, γi 6= 0. (4.4)

Pi is the probability whose Radon-Nikodym derivative with respect to P is

dPi

dP
= exp

(
δiWT −

δ2
i

2
T
)

(4.5)
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For 0 ≤ t ≤ s ≤ T , define the two quantities

Zi(t, s) = exp(δi(Ws −Wt)−
δ2
i

2
(s− t)) (4.6)

W i is the Brownian motion corresponding to Pi.

W i
t = Wt − δit (4.7)

We assume that markets are complete which means that all Arrow-Debreu securities

can be traded. In order to deal with asset pricing issues, we suppose that agents can

continuously trade in a riskless asset and in risky stocks. We let S0 denote the riskless

asset price process with dynamics

dS0
t = rtS

0
t dt (4.8)

the parameter r denoting the risk free rate at time t . Since there is only one source

of risk, all risky assets have the same instantaneous Sharpe ratio and it suffices to

focus on one specific risky asset. We consider the asset S whose dividend process is

given by the total endowment of the economy and we denote respectively by µS and

σS its drift and volatility.

dSt = St [µSdt+ σSdWt]− εtdt (4.9)

We let

θS :=
µS − r
σS

(4.10)
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denote the asset’s Sharpe ratio or equivalently the market price of risk. The param-

eters r, µS and σS are to be determined endogenously in equilibrium.

It will be useful to introduce the adjusted market price of risk for agent i:

φi := θS + δi. (4.11)

Denote by πi(t), ci(t) the fraction of wealth invested in the risky asset and the fraction

of wealth consumed at time t. Define the wealth process X i := Xπi,ci by the SDE:

dX i(s) = (r(s)− ci(s) + σS(s)πi(s)θS(s))X i(s)ds+ σS(s)πi(s)X i(s)dW (s) (4.12)

or in terms of W i:

dX i(s) = (r(s)− ci(s) + σS(s)πi(s)φi(s))X
i(s)ds+ σS(s)πi(s)X i(s)dW i(s) (4.13)

The notion of admissible strategies is similar to the one given in chapter 2. We

give the definition here:

Definition 4.1. An R2-valued process {(πi(t), ci(t))}0≤t≤T is called an admissible

strategy process if

• it is progressively measurable with respect to the sigma algebra σ({Wt}t≥0).

• ci(t) ≥ 0, X i(t) ≥ 0 for all t, a.s.
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• Moreover, we require that for all t ∈ [0, T ], xi ≥ 0,

EPi
t [ sup

t≤s≤T
|Ui(ci(s)X i(s)|] <∞ , EPi

t [|Ui(X i(T )|] <∞

where X i(t) = xi almost surely.

Let Ai be the set of all admissible strategies (πi, ci).

Question: If each agent follows a subgame perfect strategy, is there an equilib-

rium?

Response: Under fairly general conditions, there is an equilibrium. Next, we

make precise the definition of an equilibrium.

4.3 The Equilibrium Problem

Subgame perfect strategies are defined as in Chapter 2.

4.3.1 The Definition of the Equilibrium

Definition 4.2. An equilibrium (r(s), θS(s), σS(s), π̄i(s), c̄i(s)) consists of an interest

rate r, a market price of risk θS, a stock volatility σS, investment and consumption

processes π̄i(s), c̄i(s) such that markets clear, i.e. :

• (i) Each agent i chooses a subgame perfect strategy (π̄i, c̄i) (as defined in Chap-

ter 2) with wealth process X̄ i.

• (ii) The commodity market clears :

2∑
i=1

c̄i(s)X̄ i(s) = ε(s). (4.14)
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• (iii) The stock market clears:

X̄1(s) + X̄2(s) = S(s) (4.15)

• (iv) The money market clears:

π̄1(s)X̄1(s) + π̄2(s)X̄2(s) = S(s) (4.16)

where X̄ i(s) := X π̄i,c̄i(s) is the wealth process associated to the subgame perfect

strategy (π̄i, c̄i).

We will begin with some definitions.

Definition 4.3. In what follows,

pi :=
1

1− γi
(4.17)

is the inverse of the relative risk aversion. Define ω2 as the risk weighted fraction of

consumption of agent 2. It is defined as:

ω2(s) =
p2c̄

2(s)X̄2(s)

p1c̄1(s)X̄1(s) + p2c̄2(s)X̄2(s)
(4.18)

ω2 is stochastic, and hence, the resulting allocation of aggregate consumption

between investors is, in general, not Pareto-optimal. (Basak and Cuoco, 1998) have

solved the equilibrium problem of 2 agents that maximize their utility of inter tempo-

ral consumption and final wealth. One of the best treatment on the subject is found

in (Chabakauri, 2013) . He demonstrates that the process ω2 serves as a convenient
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state variable in terms of which the equilibrium parameters can be expressed.

In what follows, we look for strategies that have a feedback form. In the spirit

of (Ekeland et al., 2012), we restrict our search to Markovian strategies. πi and ci are

deterministic functions of the current wealth xi, current time t and current agent 2’s

risk weighted fraction of consumption ω2. The indirect utility for strategy (πi, ci) is

J i(t, ω2, xi, π
i, ci) = EPi

t

[ ∫ T

t

fi(t, s)Ui(c
i(s)X i(s))ds+ fi(t, T )Ui(X

i
T )

]
(4.19)

where the expectation is conditioned on X i(t) = xi and ω2(t) = ω2.

The value function V i corresponding to the subgame perfect strategy of agent i

will be denoted V i(t, ω2, xi). For fixed t ∈ [0, T ], ω2 ∈ [0, 1] and xi > 0

V i(t, ω2, xi) = EPi
[∫ T

t

fi(t, s)Ui(c̄
i(s)X̄ i(s))ds (4.20)

+fi(t, T )Ui(X̄
i
T )|ω2(t) = ω2, X

i
t = xi

]

We assume that ω2 is given by:

dω2(s) = −ω2(s)(µω2ds+ σω2dWs) = −ω2(s)(µω2ids+ σω2dW
i
s) (4.21)

with the parameters µω2 , σω2 to be determined at equilibrium and

µω2i = µω2 + δiσω2 (4.22)
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4.3.2 The Agents Subgame Perfect Strategies

The extended HJB was derived in Chapter 2. We give the equation directly without

going through the proof again.

∂V i

∂t
+ sup

(πi,ci) admissible

{Aπi,ciV i + Ui(c
ixi)} (4.23)

= EPi
t

[ ∫ T

t

∂fi(t, s)

∂t
Ui(c̄

i(s)X̄ i(s))ds+
∂fi(t, T )

∂t
Ui(X̄

i(T ))

]

and

Aπi,ciV i = (r(t)− ci(t) + σS(t)πi(t)φi(t))xiV
i
x +

1

2
(σSπ

ixi)
2V i

xx − ω2µω2iV
i
ω2

+
1

2
(ω2σω2)2V i

ω2ω2
− σSπiω2σω2xiV

i
ω2x

(4.24)

Definition 4.4. Define the utility weighted discount rate Qi at time t as:

Qi(t) =
EPi
t

[∫ T
t

∂fi(t,s)
∂t

Ui(c̄
i(s)X̄ i(s))ds+ ∂fi(t,T )

∂t
Ui(X̄

i(T ))
]

EPi
t

[∫ T
t
fi(t, s)Ui(c̄i(s)X̄ i(s))ds+ fi(t, T )Ui(X̄ i(T ))

] (4.25)

In what follows, we make the following assumption:

Assumption 4.5. Qi is known and is a deterministic function of t, ω2(t). Furthermore,

the map 
[0, T ]× [0, 1]→ R

(t, ω2) 7→ Qi(t, ω2) is C1.
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The extended HJB becomes:

∂V i

∂t
+ sup

πi,ci
{Aπi,ciV i + Ui(c

ixi)} = Qi(t, ω2)V i. (4.26)

Taking the first order conditions in the extended HJB, we get:

c̄i =
(xiV

i
x)

1
γi−1

xi
; σSπ̄

i =
1

xiV i
xx

(ω2σω2V
i
ω2x
− φiV i

x) (4.27)

We want to find V i of a certain form, and, as in Chapter 3, we can apply a

verification theorem to conclude that we have found the value function for agent i.

This is the content of the next subsection.

4.3.3 A Degenerate Linear Parabolic PDE

Suppose an equilibrium r, θs, σS have been found.

Ansatz: We look for V i of the form:

V i(t, ω2, xi) = vi(t, ω2)1−γiUi(xi) (4.28)

where vi ∈ C1,2([0, T ]× [0, 1]).

We get the following expressions for the subgame perfect strategies in terms of

vi :

σSπ̄
i = −ω2σω2

∂vi
∂ω2

vi
+ piφi ; c̄i =

1

vi
(4.29)

Note that a parabola of the form y(x) = 1
2
ax2 + bx with a < 0 has a maximum
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at x0 = − b
a

and the maximum is y(x0) = − b2

2a
. Thus:

∂V i

∂t
+

1

2
(xiσSπ̄

i)2V i
xx + (r − c̄i)xiV i

x +
(c̄ixi)

γi

γi
− 1

2V i
xx

(ω2σω2V
i
ω2x
− φiV i

x)2

−ω2µω2iV
i
ω2

+
1

2
(ω2σω2)2V i

ω2ω2
= QiV

i (4.30)

Plugging the expressions (4.29) back into (4.30), we get after lengthy calculations

that can be found in the appendix, the following proposition:

Proposition 4.6. vi is solution of a second order parabolic PDE:

∂vi
∂t

+
1

2
ω2

2σ
2
ω2

∂2vi
∂ω2

2

− ω2(µω2i + γipiφiσω2)
∂vi
∂ω2

(4.31)

+pi(γir +
γipiφ

2
i

2
−Qi)vi + 1 = 0

Note that the above PDE is degenerate : the second order matrix is non negative

but is not positive. Thus, a fine study near the points of degeneracy is necessary. We

will show later that by a change of variables we can eliminate the degeneracy.

Proposition 4.7. The dynamics of the subgame perfect consumption of agent i are

given by the SDE

d log(c̄i(t)X̄ i(t)) = pi(r +
θ2
S − δ2

i

2
−Qi)dt+ piφidWt (4.32)

Again, we see that vi does not appear explicitly in the expression of the subgame

perfect consumption. The proof is given in Appendix 3.

Next, we give the dynamics of ω2(t).
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Proposition 4.8. The process ω2(t) defined in equation (4.18) satisfies the SDE:

dω2(t) = ω1(t)ω2(t)(p1ω2 + p2ω1)
(
(Q(t, ω2) + Φ0(ω2))dt+ (θ1S − θ2S)dWt

)
(4.33)

where ω1 = 1− ω2 and Φ0 is a polynomial in ω2 explicity given by

Φ0(x) = δ2
1−δ1δ2+(µ−σ

2

2
)(γ2−γ1)+

(θ1S − θ2S)2

2

[
p1(2x(1−x)−x2)+p2((1−x)2−2x(1−x))

]
(4.34)

i.e.

µω2 = −ω1(t)(p1ω2 + p2ω1)
(
Q(t, ω2) + Φ0(ω2)

)
(4.35)

σω2 = −ω1(t)(p1ω2 + p2ω1)(θ1S − θ2S) (4.36)

The proof appears in Appendix 3.

In the next section, we study the homogeneous economy where only agent i is

present.

4.3.4 Equilibrium in the homogeneous economies

Just as in Chapter 3, we start by considering the equilibrium characteristics that

would prevail in an economy made of agent i only or that would prevail in the economy

if all the initial endowment was concentrated on agent i.

We denote by Si, ri, µiS, σiS, θiS the equilibrium stock price, interest rate, stock

drift, stock volatility and market price of risk in the homogeneous economy.

θiS(v) :=
µiS(v)− ri(v)

σiS(v)
(4.37)
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There is only one agent i so that the commodity clearing condition becomes:

c̄i(s)X̄ i(s) = ε(s) (4.38)

Using the SDE (4.32) for d log(c̄i(s)X̄ i(s)) obtained previously, we get

d log εs = d log(c̄i(s)X̄ i(s))

= pi(ri(s) +
θ2
iS − δ2

i

2
− qi(s))ds+ pi(θiS + δi)dW (s) (4.39)

= (µ− σ2

2
)ds+ σdW (s) (4.40)

Comparing the ds terms and the dW (s) terms in equations (4.39), (4.40) yields:


pi(ri(s) +

θ2
iS−δ

2
i

2
− qi(s)) = µ− σ2

2

pi(θiS + δi) = σ

Thus, we have the following proposition:

Proposition 4.9. In the homogeneous economy where only agent i is present, the

market price of risk is θiS, the interest rate is ri(s), the stock volatility is σiS . They

are given by the following expressions:

θiS = σ(1− γi)− δi , σiS = σ (4.41)

ri(s) = (1− γi)µi − σ2(1− γi)(1−
γi
2

) + qi(s) (4.42)

Remark 4.10. We note that the equilibrium θiS, σiS, ri are the same as those found by

(Cvitanic et al., 2012), except that we replace the constant discount rate ρi by qi(t):
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the utility weighted discount rate of the homogeneous economy of agent i.

The pricing kernel in the homogeneous economy of agent i is defined as

Mi(s) = exp

(∫ s

0

(−ri(u)− θ2
iS

2
)du−

∫ s

0

θiSdW (u)

)
(4.43)

Qi(t, ω2) is replaced by qi(t) if there is only one agent i in the economy i.e.

Q1(t, 0) = q1(t) and Q2(t, 1) = q2(t).

Proposition 4.11. The utility weighted discount rate in the homogeneous economy

of agent i is given by

qi(t) =

∫ T
t

∂fi(t,s)
∂t

exp(γiki(s− t))ds+ ∂fi(t,T )
∂t

exp(γiki(T − t))∫ T
t
fi(t, s) exp(γiki(s− t))ds+ fi(t, T ) exp(γiki(T − t))

(4.44)

where

ki := µi +
σ2(γi − 1)

2
(4.45)

The stock price Si in the homogeneous economy where only agent i is present is

given by:

Si(t) =
1

Mi(t)
Et
[∫ T

t

Mi(v)ε(v)dv +Mi(T )ε(T )

]
(4.46)

The next proposition computes Si(t) explicitly:

Proposition 4.12 (Stock Price in the homogeneous economy). The stock price in

the homogeneous economy for agent i is

Si(t) = ε(t)

∫ T

t

si(t, v)dv + ε(t)si(t, T ) (4.47)
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where

si(t, v) := exp

(∫ v

t

γi
(
µi −

σ2(1− γi)
2

)
− qi(u)du

)
(4.48)

Furthermore, we have the relations:

S1(t) = ε(t)v1(t, 0) ; S2(t) = ε(t)v2(t, 1) (4.49)

The proof is in Appendix 3.

We can compare the subgame perfect and optimal equilibria parameters in the

homogeneous economy.

4.3.5 Comparison between the subgame perfect and optimal

homogeneous economy equilibria

We are back into the homogeneous economy of agent i. We see that the equilibrium

market price of risk θiS is the same for both the subgame perfect and the optimal

equilibrium.

The interest rate for the subgame perfect equilibrium is obtained by replacing the

discount rate ρi(0, s) by qi(s). The keyword ”opt” will denote the optimal equilibrium

and ”sub” will denote the subgame perfect equilibrium. We choose the following

parameters:

k1 = 0.3 , k2 = −k1 log(0.3)
log(1+k1)

, fi(t, s) = (1 + k1(s − t))−
k2
k1 , δi = 0.25, T = 40. We

see that away from the time horizon T , qi(t) is almost constant. The subgame perfect

agent behaves approximately as if he was someone optimizing his total utility but

with a constant discount rate.

In figure a), we plot the price dividend ratioR(t) for subgame perfect and optimal
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Figure 4.11: qi(t) and ρi(0, t). The discount function ρi(0, t) is a decreasing function
of time t however the utility weighted discount rate qi(t) tends to increase with time.
We notice that for the subgame perfect equilibrium, away from the final time T , the
utility weighted discount rate qi(t) is almost constant.
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Figure 4.12: Price dividend ratio R(t) as a function of time t.
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Figure 4.13: Consumption to wealth ratio c̄i(t) and ĉi(t) as a function of time t.
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strategies. We compare the results to the case when the discount function is of the

form exp(−ρ̄t with ρ̄ = ρaverage = 1
T

∫ T
0
ρi(0, t)dt being the average discount rate of

agent i.

In figure b) we see that the consumption rates are not monotonous. However,

we notice that for the subgame perfect equilibrium, away from the final time T , the

price dividend ratio and the consumption rate are almost constant.

97



Ph.D. Thesis - Oumar Soule Mbodji McMaster - Mathematics

4.3.6 Equilibrium in the heterogeneous economy

We now return to the real heterogeneous economy.

d log(c̄i(t)X̄ i(t)− d log εt = d log(c̄i(t)X̄ i(t))− (pi(ri +
θ2
iS − δ2

i

2
− qi)dt− pi(θiS + δi)dWt

= pi(r − ri +
θ2
S − θ2

iS

2
+ qi −Qi)dt+ pi(θS − θiS)dWt

Recall Qi is the utility weighted discount rate of agent i. Integrating between 0 and

t , we get:

c̄i(t)X̄ i(t)

c̄i(0)X̄ i(0)
=
εt
ε0

(
Mi(t)

M(t)
exp(

∫ t

0

(qi(u)−Qi(u))du

)pi
(4.50)

where

M(t) = exp(

∫ t

0

(
− r(u)− θS(u)2

2

)
du−

∫ t

0

−θS(u)dW (u)) (4.51)

is the pricing kernel in the heterogeneous economy.

The market clearing condition

∑
i

c̄i(t)X̄ i(t) = εt

becomes
2∑
i=1

c̄i(0)X̄ i(0)

ε(0)

(
Mi(t)

M(t)
exp(

∫ t

0

(qi(u)−Qi(u))du)

)pi
= 1 (4.52)

or in the notation of Chapter 3,

M(t) = F

(
(
c̄1(0)X̄1(0)

ε(0)
)

1
p1M1(t)e

∫ t
0 q1(u)−Q1(u)du, (

c̄2(0)X̄2(0)

ε(0)
)

1
p2M2(t)e

∫ t
0 q2(u)−Q2(u)du

)
(4.53)
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Next, we characterize the equilibrium interest rate and market price of risk.

Proposition 4.13. The equilibrium interest rate r and market price of risk θS are

given by:

θS(t) =
2∑
i=1

ωi(t)θiS (4.54)

r(t) =
∑
i

ωi(t)
(
µ(1− γi)−

(1 + pi)θ
2
S(t)

2
− δipiθS(t) +

(1− pi)δ2
i

2
+ Qi(t, ω2(t))

)
(4.55)

The proof will be given in Appendix 3. Notice that

ri(s) = ri0 + qi(s) (4.56)

where

ri0 := (1− γi)µi − σ2(1− γi)(1−
γi
2

), (4.57)

In the subgame perfect equilibrium, all we are doing is replacing the discount rate

ρi(0, s) = −
∂fi(0,s)

∂s

fi(0,s)
with the term Qi(s). Again, the subgame perfect equilibrium is

the same as the optimal equilibrium when we replace the discount rate of each agent

by the utility weighted discount rate of that agent.

We can rewrite r as

r(s) =
2∑
i=1

ωi(s)(ri0 +
θ2
iS − θ2

S − pi(θS − θiS)2

2
+ Qi) (4.58)

We see that the equilibrium parameters r, θS are completely determined in terms

of t, ω2 once Q1,Q2 are known and have sufficient regularity. We will show later that
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St the equilibrium stock price depends on those quantities as well.

4.4 The Main Result

The first theorem establishes the existence of agent i’s utility weighted discount rate

Qi. We start with a definition.

Definition 4.14. Let

||ρ|| := max(||ρ1||, ||ρ2||) (4.59)

where

||ρi|| := max
0≤t≤s≤T

|ρi(t, s)| = max
0≤t≤s≤T

∣∣∣∣ ∂fi(t,s)∂t

fi(t, s)

∣∣∣∣ (4.60)

Define B the space of functions ψ(t, x) from [0, T ] × [0, 1] → R that are C1 in

t, x and such that ψ and ∂ψ
∂x

are bounded.

For ν > 0, define the subset Bν of B :

Bν = {ψ ∈ B s.t. ||ψ|| ≤ 2||ρ|| and ||∂ψ
∂x
|| ≤ ν} (4.61)

where || || denotes the sup norm over all (t, ω2) ∈ [0, T ]× [0, 1].

For y ∈ B, we define the process ωy2(s) by the SDE

dωy2(s) = ωy2ω
y
1

(
p1ω

y
2+p2ω

y
1(s)

)[
(y(s, ωy2(s))+Φ0(ωy2(s))ds+(θ1S−θ2S)dW (s)

]
(4.62)

100



Ph.D. Thesis - Oumar Soule Mbodji McMaster - Mathematics

where

ωy1(s) = 1− ωy2(s) (4.63)

Φ0(x) = δ2
1 − δ1δ2 + µ(γ2 − γ1) (4.64)

+
(θ1S − θ2S)2

2
[p1(2x(1− x)− x2) + p2((1− x)2 − 2x(1− x))]

Call

θ(x) = (1− x)θ1S + xθ2S (4.65)

α(x) := (1− x)

(
µ

p1

− p1θ(x)2

2
− δ1p1θ(x) +

(1− p1)δ2
1

2

)
(4.66)

+x

(
µ

p2

− p2θ(x)2

2
− δ2p2θ(x) +

(1− p2)δ2
2

2

)

α is a polynomial of degree 3 in x with constant coefficients. Define



ay1(u) =
p1δ2

1

2
+ p1γ1(α(ωy2(u))− y(u, ωy2(u))ωy2(u))

by1(u) = γ1p1θ(ω
y
2(u)) + p1δ1

ay2(u) =
p2δ2

2

2
+ p2γ2(α(ωy2(u)) + y(u, ωy2(u))ωy1(u))

by2(u) = γ2p2θ(ω
y
2(u)) + p2δ2

(4.67)

Now, for i = 1, 2 : consider the operators F1i, F2i, Fi acting on y ∈ B in the

following way:

∀t ∈ [0, T ], ω2 ∈ [0, 1] : Fi[y](t, ω2) =
F1i[y](t, ω2)

F0i[y](t, ω2)
(4.68)
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where

F1i[y](t, ω2) := EP
t

[ ∫ T

t

∂fi(t, s)

∂t
e
∫ s
t a

y
i (u)du+

∫ s
t b

y
i (u)dWuds+

∂fi(t, T )

∂t
e
∫ T
t ayi (u)du+

∫ T
t byi (u)dWu

]
(4.69)

F0i[y](t, ω2) := EP
t

[ ∫ T

t

fi(t, s)e
∫ s
t a

y
i (u)du+

∫ s
t b

y
i (u)dWuds+ fi(t, T )e

∫ T
t ayi (u)du+

∫ s
t b

y
i (u)dWu

]
(4.70)

with the conditional expectation calculated with ωy2(t) = ω2. Finally, define the

operator

F [y](t, ω2) = F1[y](t, ω2)− F2[y](t, ω2) (4.71)

We start with an assumption:

Assumption 4.15. Suppose θ1S 6= θ2S.

Proposition 4.16. For y ∈ B, the process {ωy2(s), s ≥ t} of (4.62) is well defined:

dωy2(s) = ωy2ω
y
1(s)

(
p1ω

y
2 + p2ω

y
1(s)

)[
(y(s, ωy2(s)) + Φ0(ωy2(s))ds+ (θ1S − θ2S)dW (s)

]
(4.72)

and ωy2(s) ∈ [0, 1] for all s ≥ t.

We are now ready to give the main theorem.

Theorem 4.17. There exists ν > 0 that depends only on σ, γi, δi, T, fi such that the

operator F has a fixed point Q ∈ Bν i.e.

∀(t, ω2) ∈ [0, T ]× [0, 1] : F [Q](t, ω2) = Q(t, ω2) (4.73)

Theorem 4.17 will be proved in appendix 3.
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Theorem 4.18. The function Qi : (t, ω2) 7→ Fi[Q](t, ω2) is an element of B. Fur-

thermore, for any initial value ω20 ∈ [0, 1], the SDE

ω2(0) = ω20 (4.74)

dω2(s) = ω1ω2(p1ω2(s) + p2(1−ω2(s)))[Q(s, ω2(s)) + Φ0(ω2(s))ds+ (θ1S− θ2S)dW (s)]

(4.75)

has a unique solution defined for s ∈ [0, T ]. The function Φ0(x) above represents a

polynomial of degree 3 with constant coefficients given by (4.64) . Furthermore,

ω2(s) ∈ [0, 1] ∀s ∈ [0, T ] a.s.

This theorem will be proved in Appendix 3. The following proposition gives an

explicit PDE for vi in terms of t, ω2, Q1 and Q2:

Proposition 4.19. There exists a unique bounded solution of the PDE:

∂vi
∂t

+
1

2
((ω1ω2(p1ω2 + p2ω1)(θ1S − θ2S))2∂

2vi
∂ω2

2

+ω1ω2(p1ω2 + p2ω1)(k0i + Q(t, ω2))
∂vi
∂ω2

+K1ivi + 1 = 0 (4.76)

vi(T, ω2) = 1 (4.77)

where ω1 = 1− ω2 and

k0i(ω2) =
1

2
(θ2S(p2ω

2
1 − p1ω

2
2 + 2(p1 − p2)ω1ω2)(θ2S − θ1S)2 (4.78)

+γipiφi(θ1S − θ2S) + (γ2 − γ1)(µi −
σ2

2
) +

δ2
1 − δ2

2

2
+ δi(δ2 − δ1)
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K11(t, ω2) = p1γ1(α(ω2) +
ω2

2
β(ω2))− p1γ1ω2Q(t, ω2)−Q1(t, ω2) (4.79)

K12(t, ω2) = p2γ2(α(ω2)− ω1

2
β(ω2)) + p2γ2ω1Q(t, ω2)−Q2(t, ω2) (4.80)

where and θ, α , β are three polynomials on q ∈ R given by:

θ(q) = (1− q)θ1S + qθ2S

α(q) = q(
µ

p2

+
δ2

2 − (θ(q))2

2
) + (1− q)( µ

p1

+
δ2

1 − θ(ω2)2

2
)

β(q) = p1(θ(q) + δ1)2 − p2(θ(q) + δ2)2

Theorem 4.20. Make the assumption 4.15. Then the subgame perfect equilibrium

exists. The utility weighted discount rate of agent i is given by

Qi := Fi[Q] (4.81)

The value function for agent i is given by

V i(t, ω2, xi) = vi(t, ω2)1−γi x
γi
i

γi
(4.82)

where vi is given in Proposition 4.19. The risk weighted consumption fraction of

agent 2 is ω2(t) given in equations (4.74), (4.75) of Theorem 4.18. The risk weighted

consumption fraction of agent 1 is

ω1(t) = 1− ω2(t)
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The subgame perfect consumption of agent i is given by

c̄2(t)X̄2(t) =
p1ω2(t)εt

p2ω1(t) + p1ω2(t)
, c̄1(t)X̄1(t) =

p2ω1(t)εt
p2ω1(t) + p1ω2(t)

(4.83)

Furthermore, Q, Q1, Q2 , r and θS are deterministic functions of the parameters

(t, ω2). The equilibrium interest rate is r(t), the market price of risk θS(t) are given

by:

θS(t) =
2∑
i=1

ωi(t)θiS (4.84)

r(t) =
2∑
i=1

ωi(t)

(
µ

pi
− 1 + pi

2
θ2
S − δipiθS +

1− pi
2

δ2
i + Qi

)
(4.85)

The consumption - wealth ratio is

c̄i(t) =
1

vi(t, ω2(t))
(4.86)

the investment - wealth ratio is

π̄i(t) = ω1ω2(p1ω2 + p2ω1)(θ1S − θ2S)

∂vi(t,ω2(t))
∂ω2

vi
+ piφi(t) (4.87)

where φi(t) := θS(t) + δi . The subgame perfect wealth process X̄ i(t), stock price-

dividend ratio R(t) are given by:

X̄1(t) =
p2ω1(t)v1(t, ω2)

p2ω1(t) + p1ω2(t)
εt , X̄2(t) =

p1ω2(t)v2(t, ω2)

p2ω1(t) + p1ω2(t)
εt (4.88)

R(t) :=
S(t)

ε(t)
=

p2ω1(t)v1(t, ω2)

p2ω1(t) + p1ω2(t)
+

p1ω2(t)v2(t, ω2)

p2ω1(t) + p1ω2(t)
(4.89)
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The volatility of the stock price σS is

σS(t) = σ + ω1(t)ω2(t)(p2ω1(t) + p1ω2(t))

∂R(t,ω2(t))
∂ω2

R
(θ1S − θ2S) (4.90)

The theorem above will be proved in Appendix 3.

Motivation behind the definition of the operator F

Note that since

d log(c̄i(t)X̄ i(t)) = pi(r +
φ2
i

2
− δiφi −Qi)dt+ piφidWt,

A simple integration between 0 and t leads to:

c̄i(t)X̄ i(t) = c̄i(0)X̄ i(0) exp

(∫ t

0

pi(r +
φ2
i

2
− δiφi −Qi)du+

∫ t

0

piφidWu

)
(4.91)

We can write

EP
t

[
Zi(t, s)Ui(

c̄i(s)X̄ i(s)

c̄i(t)X̄ i(t)
)

]
= EP

t

[
e
∫ s
t (− δ

2
i
2

+piγi(r+
φ2
i
2
−δiφi−Qi))du+(piγiφi(u)−δi)dWu

]

So

Qi(t, ω2) =

∫ T
t

∂fi(t,s)
∂t

EP
t

[
Zi(t, s)Ui(

c̄i(s)X̄i(s)

c̄i(t)X̄i(t)
)

]
ds+ ∂fi(t,T )

∂t
EP
t

[
Zi(t, T )Ui(

c̄i(T )X̄i(T )

c̄i(t)X̄i(t)
)

]
∫ T
t
fi(t, s)EP

t

[
Zi(t, s)Ui(

c̄i(s)X̄i(s)

c̄i(t)X̄i(t)
)

]
ds+ fi(t, T )EP

t

[
Zi(t, T )Ui(

c̄i(T )X̄i(T )

c̄i(t)X̄i(t)
)

]

Qi(t, ω2) =

∫ T
t

∂fi(t,s)
∂t

e
∫ s
t ai(u)du+

∫ s
t bi(u)dWuds+ ∂fi(t,T )

∂t
e
∫ T
t ai(u)du+

∫ T
t bi(u)dWu

]
∫ T
t
fi(t, s)e

∫ s
t ai(u)du+

∫ s
t bi(u)dWuds+ fi(t, T )e

∫ T
t ai(u)du+

∫ s
t bi(u)dWu

]
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where:

a1(u) = −δ
2
1

2
+ p1γ1(r +

φ2
1

2
− δ1φ1 −Q1) ; a2(u) = −δ

2
2

2
+ p2γ2(r +

φ2
2

2
− δ2φ2 −Q2)

b1(u) = δ1 + p1γ1φ1 ; b2(u) = δ2 + p2γ2φ2

Noting that δiφi − 1+pi
2
φ2
i = 1−pi

2
δ2
i −

1+pi
2
θ2
S − δipiθS, we get

r +
θ2
S

2
−Q1 =

∑
i

ωi(µ(1− γi)−
piθ

2
S

2
− δipiθS +

(1− pi)δ2
i

2
) + ω2(Q2 −Q1)

r +
θ2
S

2
−Q2 =

∑
i

ωi(µ(1− γi)−
piθ

2
S

2
− δipiθS +

(1− pi)δ2
i

2
) + ω1(Q1 −Q2)

Thus, since Q = Q1 −Q2, we get:

a1(u) = −δ
2
1

2
+ p1γ1

∑
i

ωi(µ(1− γi)−
piθ

2
S

2
− δipiθS +

(1− pi)δ2
i

2
)− p1γ1ω2Q

a2(u) = −δ
2
2

2
+ p2γ2

∑
i

ωi(µ(1− γi)−
piθ

2
S

2
− δipiθS +

(1− pi)δ2
i

2
) + p2γ2ω1Q

b1(u) = δ1 + p1γ1(θS + δ1) ; b2(u) = δ2 + p2γ2(θS + δ2)

We see that the knowledge of the function Q will allow us to compute Q1 and Q2

and thus all the parameters of the equilibrium. We get the expressions for ayi , b
y
i by

replacing Q by y ∈ Bν in the expression above.
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4.5 Conclusion

We have shown that there is an equilibrium in an heterogeneous economy with 2

agents where each agent follows a subgame perfect strategy. This result is the most

important result of this thesis.

In her paper, Asset Pricing with Dynamically Inconsistent Agents Khapko (2015),

Mariana Khapko shows that there exists an equilibrium interest rate, market price

of risk and stock price in an economy with one agent: a representative agent that

follows rather general dynamics and utility function.

Our result shows the existence of a 2 agents equilibrium without resorting to a

representative agent. We see that solving the subgame perfect problem is equivalent

to determining the utility weighted discount rate.
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Summary and Future work

In Chapter 2, we have introduced the time consistent / time inconsistent problem. Sub

game perfect strategies are discussed and we show how they are more relevant than

optimal strategies in certain situations. This chapter establishes a general framework

for the later chapters.

In Chapter 3, we study the effects of heterogeneity on the equilibrium. We

determine the interest rate and long term yield in function of the parameters of the

problem. We show that in the long run (investment horizon T →∞), only the agent

with the lowest survival index survives.

In Chapter 4, we study the effects of heterogeneity in an economy in which

each agent follows a subgame perfect strategy. We have limited the study to two

agents. We showed the importance of the utility weighted discount rate for solving the

problem. We finished by providing a detailed comparison between optimal strategies

and subgame perfect strategies. A numerical scheme was provided in Appendix 1.

In future work, we could study the asymptotic behaviour of the utility weighted

discount rate Q. Another line of work would be to use such a representation to create

a martingale theory similar to the one that exists for optimal strategies. Finally, we

could study the existence of time consistent strategies when the utility function has

a more general form.
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Appendices

Appendix 0: Preliminary results

Stochastic Integration Results

Consider the following N dimensional SDE:

dX t,x(s) = µ(s,X t,x(s))ds+ σ(s,X t,x(s))dW (s); t ≤ s ≤ T (5.1)

X t,x(t) = x

with X t,x(s) = (X t,x
1 (s), · · · , X t,x

N (s)) an N dimensional process, W is an Ft adapted

Brownian motion and µ = (µ1, · · · , µN), σ = (σ1, · · · , σN) are continuous functions

of t, x with bounded first derivatives ∂µ
∂xi

, ∂σ
∂xi

.

Proposition 5.21. The SDE (5.99) has a unique solution X t,x(s). Furthermore, the

derivative processes Dk,i(s) :=
∂Xt,x

i (s)

∂xk
exist and satisfy the SDE:

Dk,i(s) = δi,k +

∫ s

t

N∑
j=1

∂µi
∂xj

(X t,x
u )Dk,j(u)du+

∫ s

t

N∑
j=1

∂σi
∂xj

(X t,x
u )Dk,j(u)dW (u)

(5.2)
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Proposition 5.22. Fix t such that 0 ≤ t ≤ T and let p ≥ 2. For a process Ys defined

for s ∈ [t, T ], let

Y ∗s := sup
t≤u≤s

|Yu|. (5.3)

Suppose that a process X with values in Rn is defined on (Ω, {Ft},P) via the

equation

Xs = ζ + Js +

∫ s

t

µudu+

∫ s

t

σudWu (5.4)

with initial condition Xt = ζ ∈ Lp independent of F , Js is Fs adapted and Jt = 0.

Then, there is a constant K1 = K1(p, T ) such that

Et[(X∗)ps] ≤ K1

(
E[|ζ|p] + Et[(J∗)ps] + Et

[∫ s

t

(|µu|p + |σu|p)du
])

(5.5)

If we also have Xt = x for a deterministic x and µu = µ(u,Xu) and σu =

σ(u,Xu) for two Lipschitz functions in the x variable, i.e.

|µ(u, x2)− µ(u, x1)| ≤ Cµ|x2 − x1| ; |σ(u, x2)− σ(u, x1)| ≤ Cσ|x2 − x1| (5.6)

Suppose also µ(u, 0) and σ(u, 0) are bounded uniformly, then there is a constant K > 0

independent of t, s,X such that: then we get the estimate

Et[(X∗)ps] ≤ K

(
|x|p + Et[(J∗)ps] + sup

t≤u≤s
(|µ(u, 0)|p + |σ(u, 0)|p)(s− t)

)
e2p−1(Cpµ+Cpσ)(s−t)

(5.7)
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Proof We write

X∗ps ≤ 4p−1(|ζ|p + J∗ps + sup
t≤u≤s

{|
∫ u

t

µvdv|p + |
∫ u

t

σvdW (v)|p})

By Jensen’s inequality:

sup
t≤u≤s

|
∫ u

t

µvdv|p ≤ (

∫ s

t

|µv|dv)p ≤ (s− t)p−1

∫ s

t

|µv|pdv

and using the Burkholder-Davis-Gundy inequality followed by Jensen’s inequality:

EP
t [ sup
t≤u≤s

{|
∫ u

t

σvdW (v)|p} ≤ CpEP
t [

∫ s

t

σ2
vdv])

p
2 ≤ Cp(s− t)

p
2
−1EP

t [

∫ s

t

|σv|pdv]

This ends the proof of the first inequality. If σ and µ are Lipschitz in the x variable,

we write |σu|p ≤ (|σ(u, 0)| + Cσ|Xu|)p ≤ 2p−1(|σ(u, 0)|p + Cp
σ|Xu|)p and a similar

inequality : |µu|p ≤ 2p−1(|µ(u, 0)|p + Cp
µ|Xu|)p we see that

Et[(X∗)ps] ≤ K1EP
t

(
|x|p + (J∗)ps + 2p−1

∫ s

t

|µ(u, 0)|p + |σ(u, 0)|pdu+ 2p−1

∫ s

t

(Cp
µ + Cp

σ)|Xu|pdu
)

And by Gronwall’s inequality, we conclude:

Et[(X∗)ps] ≤ K1

(
|x|p + Et[(J∗)ps] + 2p−1 sup

t≤u≤s
{|µ(u, 0)|p + |σ(u, 0)|p}(s− t)

)
e2p−1(Cpµ+Cpσ)(s−t)

Appendix 1: Subgame Perfect Strategies

Proof (Proposition 2.9)

Let (π̄, c̄) = arg maxπ,c{Aπ,cV + Uγ(xc)}. We recall that since V is a value
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function, V is concave in the variable x. By studying the convexity of the expression

Aπ,cV + Uγ(xc) as a function of 2 variables π, c, we can see that the critical points

realize the maximum of the expression. The first order conditions for c give: xU ′γ(cx)−

xVx = 0, therefore

c̄ =
V

1
γ−1
x

x

Similarly, the first order condition for π gives:

π̄ = −θSVx + SσSVSx
σSxVxx

This ends the proof. �

Proof (Theorem 2.8) Suppose that V ∈ C1,2,2 is concave in x, satisfies (2.23) and

(π̄, c̄) satisfies (2.26). We want to show that V is a value function and (π̄, c̄) is a sub

game perfect strategy. First, we have to show that V (t, S, x) = J(t, S, x, π̄, c̄). As

before, X̄ represents the process X π̄,c̄. Dynkin’s theorem states that the process

V (s, Ss, X̄s)−
∫ s

0

(∂V
∂t

(u, Su, X̄u) +Aπ̄,c̄V (u, Su, X̄u)
)
du is a P-martingale.

Therefore

Et[V (T, ST , X̄T )] = V (t, S, x) + Et
[ ∫ T

t

∂V

∂t
(u, Su, X̄u) +Aπ̄,c̄V (u, Su, X̄u)du

]
(5.8)
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Let the function δ be defined by

δ(t, s, S, x) =


EP
t [Uγ(c̄(s)X̄(s))|X̄(t) = x, St = S] if t ≤ s < T

EP
t [Uγ(X̄(T ))|X̄(t) = x, St = S] if s = T

(5.9)

By using (2.23) in the RHS of expression (5.99), we get:

RHS = V (t, S, x) + Et
[ ∫ T

t

∂V

∂t
(s, Ss, X̄s) +Aπ̄,c̄V (s, Ss, X̄s)ds

]
= V (t, S, x) + Et

[ ∫ T

t

−Uγ((xFc)(s, Ss, X̄s) + Es
[ ∫ T

s

∂h

∂t
(s, u)Uγ(xFc(u, Su, X̄u)du

+
∂h

∂t
(s, T )Uγ(X̄T )

]
ds
]

(5.10)

= V (t, S, x) +

∫ T

t

(−δ(t, s, S, x) +

∫ T

s

∂h

∂t
(s, u)δ(t, u, S, x)du+

∂h

∂t
(s, T )δ(t, T, S, x)

)
ds

(5.11)

The last equality comes from the law of iterated conditional expectations. We then

use the relation :

∂

∂s

( ∫ T

s

h(s, u)δ(t, u, S, x)du+ h(s, T )δ(t, T, S, x)
)

= −δ(t, s, S, x) +

∫ T

s

∂h

∂t
(s, u)δ(t, u, S, x)du+

∂h

∂t
(s, T )δ(t, T, S, x)
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so that

V (t, S, x) +

∫ T

t

∂

∂s

( ∫ T

s

h(s, u)δ(t, u, S, x)du+ h(s, T )δ(t, T, S, x)
)
ds

= V (t, S, x) + h(T, T )δ(T, T, S, x)−
∫ T

t

h(t, u)δ(t, u, S, x)du− h(t, T )δ(t, T, S, x)

= V (t, S, x) + Uγ(x)−
∫ T

t

h(t, u)δ(t, u, S, x)du− h(t, T )δ(t, T, S, x)

Since

Et[V (T, ST , X̄T )] = Et[Uγ(X̄T )] ,

V (t, S, x) =

∫ T

t

h(t, u)δ(t, u, S, x)du+ h(t, T )δ(t, T, S, x) = J(t, S, x, π̄, c̄)(5.12)

This shows that V satisfies V (t, S, x) = J(t, S, x, π̄, c̄). The next step is to show that

(π̄, c̄) is a sub game perfect strategy. For this, we study the lim inf of the quotient

J(t,S,x,π̄,c̄)−J(t,S,x,πε,cε)
ε

.

J(t, S, x, π̄, c̄)− J(t, S, x, πε, cε)

ε

=
1

ε
EP
t,S,x

[ ∫ T

t

h(t, u)
(
Uγ(X̄(u)c̄(u))− Uγ(Xε(u)cε(u))

)
du

]
(5.13)

+
1

ε
EP
t,S,x[h(t, T )(Uγ(X̄(T ))− Uγ(Xε(T )))]

J(t, S, x, π̄, c̄)− J(t, S, x, πε, cε)

ε
= K1(ε) +K2(ε) +K3(ε) (5.14)

where theK1, K2, K3 are obtained by introducing intermediate terms in the expression
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above.

K1(ε) =
1

ε
EP
t,S,x

[∫ t+ε

t

h(t, u)
(
Uγ(X̄(u)c̄(u))− Uγ(Xε(u)cε(u))

)
du

]
K2(ε) =

1

ε
EP
t,S,x

[∫ T

t+ε

(h(t+ ε, u)− h(t, u))(Uγ(Xε(u)cε(u))− Uγ(X̄(u)c̄(u))du

]
+

1

ε
EP
t,S,x

[
(h(t+ ε, T )− h(t, T ))(−Uγ(Xε(T )) + Uγ(X̄T ))

]
K3(ε) =

1

ε
EP
t,S,x

[∫ T

t+ε

h(t+ ε, u)
(
Uγ(X̄(u)c̄(u))− Uγ(Xε(u)cε(u))

)
du

]
+

1

ε
EP
t,S,x

[
h(t, T )(Uγ(X̄(T ))− Uγ(Xε(T )))

]

It is easy to see that

lim
ε→0

K1(ε) = h(t, t)(Uγ(c̄(t)x)− Uγ(c(t)x)) = Uγ(c̄(t)x)− Uγ(c(t)x). (5.15)

K2(ε) =
1

ε

∫ T

t+ε

(h(t+ ε, u)− h(t, u))EP
t,S,x

[
(Uγ(Xε(u)cε(u))− Uγ(X̄(u)c̄(u))du

]
+

1

ε
EP
t,S,x

[
(h(t+ ε, T )− h(t, T ))(Uγ(X̄(T ))− Uγ(Xε(T )))

]
(5.16)

:= I1(ε) + I2(ε)

where I1 = I1(ε) and I2 = I2(ε) are given by:

I1 =
1

ε

∫ T

t+ε

(h(t+ ε, u)− h(t, u))Et
[((

Xε(t+ ε)cε(t+ ε)

X̄(t+ ε)c̄(t+ ε)

)γ
− 1

)
Uγ(c̄(u)X̄(u))du

]
(5.17)
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I2 =
1

ε
(h(t+ ε, T )− h(t, T ))× Et

[((
Xε(t+ ε)

X̄(t+ ε)

)γ
− 1

)
Uγ(X̄(T ))

]
(5.18)

We can calculate an upper bound for the integral term I1:

|I1(ε)| ≤ ε

∫ T

t+ε

∣∣∣∣∂h(tεu, u)

∂t

∣∣∣∣× EP
t,S,x

[∣∣∣∣(Xε(t+ ε)cε(t+ ε)

X̄(t+ ε)c̄(t+ ε)

)γ
− 1

∣∣∣∣ |Uγ(c̄(u)X̄(u))|
]
du

where tεu ∈ [t, t + ε] and by hypothesis g(t, u) := supt0∈[t,t+1]

∣∣∂h(t0,u)
∂t

∣∣ is integrable on

[t, T ]. Therefore

|I1(ε)| ≤ ε

∫ T

t+ε

g(t, u)× EP
t,S,x

[∣∣∣∣(Xε(t+ ε)cε(t+ ε)

X̄(t+ ε)c̄(t+ ε)

)γ
− 1

∣∣∣∣ |Uγ(c̄(u)X̄(u))|
]
du

Since Xε(t+ ε)→ x and X̄(t+ ε)→ x, the integrand goes to

g(t, u)EP
t,S,x

[∣∣∣∣(c(t)c̄(t)

)γ
− 1

∣∣∣∣ |Uγ(c̄(u)X̄(u))|
]

and by the dominated convergence theorem,

I1(ε)→ 0 when ε→ 0. (5.19)

For the same reasons, I2 → 0 when ε→ 0. Thus,

K2(ε)→ 0 as ε→ 0. (5.20)
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K3(ε) =
1

ε
EP
t

[
V (t+ ε, S(t+ ε), X̄(t+ ε))− V (t+ ε, S(t+ ε), Xε(t+ ε))

]
=

1

ε
EP
t

[
V (t+ ε, S(t+ ε), X̄(t+ ε))− V (t, S, x)

+V (t, S, x)− V (t+ ε, S(t+ ε), Xε(t+ ε))
]

=
1

ε
EP
t

[ ∫ t+ε

t

dV (u, S(u), X̄(u))− 1

ε
EP
t,S,x

∫ t+ε

t

dV (u, S(u), Xε(u)))

]
=

1

ε
EP
t

[ ∫ t+ε

t

(Vt +Aπ̄,c̄V (u, Su, X̄u))du−
∫ t+ε

t

(Vt +Aπ,cV (u, Su, Xu))du

]

K3(ε)→ε→0 [Vt +Aπ̄,c̄V (t, S, x)]− [Vt +Aπ,cV (t, S, x)] (5.21)

Combining the limits, we get

lim inf
ε→0

J(t, S, x, π̄, c̄)− J(t, S, x, πε, cε)

ε

= (Uγ(c̄(t)x) +Aπ̄,c̄V (t, S, x))− (Uγ(c(t)x) +Aπ,cV (t, S, x)) ≥ 0 (5.22)

This ends the proof. �

Proof [ Theorem 2.14]

We want to show the following: There exists δ > 0 such that the operator F

defines a contraction on the space Bδ.

In the following, K will be a positive constant that could vary from line to line.

Call ρ(t, s) = ∂h(t,s)
∂t

/h(t, s) for t, s ∈ [0, T ]. ρ is the (backward) discount rate

and is bounded by ||ρ||. Recall that

Bδ := {y ∈ C([0, T ];C1(0,∞)) | ∀t, S ∈ [0, T ]×(0,∞), |y(t, S)| ≤ ||ρ|| & S|∂y(t, S)

∂S
| ≤ δ}.

(5.23)
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The proof will be structured in 6 Steps. In Step 1, we fix δ an arbitrary positive

constant. We show that there is ε0 > 0 such that for (t, S) ∈ [T − ε0, T ] × (0,∞),

|F [y](t, S)| ≤ ||ρ|| and S
∣∣∣∂F [y](t,S)

∂S

∣∣∣ ≤ δ.

In Step 2, we show there exists ε1 ∈ (0, ε0) such that for (t, S) ∈ [T − ε1, T ] ×

(0,∞):

|F [y2](t, S)− F [y1](t, S)| ≤ 1

2
|y2(t, S)− y1(t, S)| (5.24)

In Step 3, we show there exists ε2 ∈ (0, ε1) such that for (t, S) ∈ [T − ε2, T ]× (0,∞):

∣∣∣∣S∂F [y2](t, S)

∂S
− S∂F [y1](t, S)

∂S

∣∣∣∣ ≤ 1

2

∣∣∣∣S∂y2(t, S)

∂S
− S∂y1(t, S)

∂S

∣∣∣∣ (5.25)

In Step 4, we conclude that the restriction of F to the functions y : [T − ε2, T ] ×

(0,∞) → R is a contraction. We invoke Theorem 5 in Suzuki and Takahashi (1996)

to conclude that F has a fixed point Q1 defined on [T − ε2, T ]× (0,∞).

In Step 5, we show that if ε2 is small enough, we could find a fixed point Qk on

domains of the form [T − kε2, T − (k − 1)ε2]× (0,∞).

In Step 6, we specify a value for the constant δ. We construct a fixed point Q

for the operator F defined over the whole interval [0, T ] × (0,∞) by using the fixed

points Qk of Step 5.

Let us start with the first step.

Step 1

Recall that for y ∈ Bδ :

F0[y](t, S) = Et
[ ∫ T

t

h(t, s)e
∫ s
t pγ(r+

θ2S
2
−y)du+

∫ s
t pγθSdWuds (5.26)

+h(t, T )e
∫ T
t pγ(r+

θ2S
2
−y)du+

∫ T
t pγθSdWu

]
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F1[y](t, S) = Et
[ ∫ T

t

∂h(t, s)

∂t
e
∫ s
t pγ(r+

θ2S
2
−y)du+

∫ s
t pγθSdWuds (5.27)

+
∂h(t, T )

∂t
e
∫ T
t pγ(r+

θ2S
2
−y)du+

∫ T
t pγθSdWu

]

If y ∈ Bδ:

|F1[y](t, S)| ≤ Et
[∫ T

t

|∂h(t, s)

∂t
|e

∫ s
t pγ(r+

θ2S
2
−y)du+

∫ s
t pγθSdWuds

+|∂h(t, T )

∂t
|e

∫ T
t pγ(r+

θ2S
2
−y)du+

∫ T
t pγθSdWu

]
(5.28)

The integrand is smaller than

||ρ||h(t, s)e
∫ s
t pγ(r+

θ2S
2
−y)du+

∫ s
t pγθSdWu

and the second term in (5.120) is smaller than

||ρ||h(t, T )e
∫ T
t pγ(r+

θ2S
2
−y)du+

∫ T
t pγθSdWu

Adding the two upper bounds, we get:

|F1[y](t, S)| ≤ ||ρ||F0[y](t, S) (5.29)

So |F [y](t, S)| ≤ ||ρ|| ∀ t, S. Now, we show that F [y] ∈ C([0, T ];C1((0,∞)) and

get a bound of its S derivative. Define a(t, S) and b(t, S) as the du and dWu terms

appearing inside the exponent in the expressions (5.117), (5.118).

a := γp(r +
θ2
S

2
) ; b := γpθS (5.30)
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By using (Friedman, 1975), Chapter 5, Theorem 5.5 ,

Dt,S(u) :=
∂St,S(u)

∂S
(5.31)

satisfies

dDt,S
u = Dt,S

u (αudu+ βudWu) (5.32)

where α(t, S) =
∂(SµS(t, S))

∂S
; β(t, S) =

∂(SσS(t, S))

∂S
(5.33)

are two bounded functions in t, S. Dt,S has the closed form:

Dt,S(s) = exp

(∫ s

t

(
αu −

β2
u

2

)
du+

∫ s

t

βudWu

)
(5.34)

∂F0[y](t, S)

∂S
= EP

t

[∫ T

t

h(t, s)
(∫ s

t

(
∂a

∂S
− γp ∂y

∂S
)Dt,S

u du+

∫ s

t

∂bu
∂S

Dt,S
u dWu

)
eZ

y;t,S(s)ds

+h(t, T )
( ∫ T

t

(
∂a

∂S
− γp ∂y

∂S
)Dt,S

u du+

∫ T

t

∂bu
∂S

Dt,S
u dWu

)
eZ

y;t,S(T )

]

where for s ≥ t,

Zy;t,S(s) :=

∫ s

t

(a(u, Su)− γpy(u, Su))du+

∫ s

t

b(u, Su)dWu. (5.35)

Recall that p = 1
1−γ ,

∂F0[y](t, S)

∂S
= EP

t

[ ∫ T

t

h(t, s)
(∫ s

t

(
∂a

∂S
− γp ∂y

∂S
)Dt,S

u du+

∫ s

t

∂bu
∂S

Dt,S
u dWu

)
eZ

y;t,S(s)ds

+h(t, T )
( ∫ T

t

(
∂a

∂S
− γp ∂y

∂S
)Dt,S

u du+

∫ T

t

∂bu
∂S

Dt,S
u dWu

)
eZ

y;t,S(T )

]
(5.36)

126



Ph.D. Thesis - Oumar Soule Mbodji McMaster - Mathematics

For the same reasons as inequality (5.120), we have the inequality

|∂F1[y]

∂S
| ≤ ||ρ|||∂F0[y]

∂S
| (5.37)

We can now get an upper bound for S
∣∣∣∂F [y](t,S)

∂S

∣∣∣:
S

∣∣∣∣∂F [y](t, S)

∂S

∣∣∣∣ = S

∣∣∣∣∣ ∂F1[y]
∂S

F0[y]
−

∂F0[y]
∂S

F1[y]

F 2
0 [y]

∣∣∣∣∣ = S

∣∣∣∣∣ ∂F1[y]
∂S

F0[y]
− F [y]

∂F0[y]
∂S

F0[y]

∣∣∣∣∣
S

∣∣∣∣∂F [y](t, S)

∂S

∣∣∣∣ ≤ 2||ρ||S
|∂F0[y]
∂S
|

F0[y]
(5.38)

and by the Cauchy Schwarz inequality:

EP
t

∣∣∣∣ ∫ s

t

Dt,S
u (

∂au
∂S
− γp∂yu

∂S
)du+

∫ s

t

∂bu
∂S

Dt,S
u dWu)× exp(Zy;t,S(s))

∣∣∣∣
≤

√
EP
t

(∫ s

t

Dt,S
u (

∂au
∂S
− γp∂yu

∂S
)du+

∫ s

t

∂bu
∂S

Dt,S
u dWu

)2√
EP
t [exp(2Zy;t,S(s))]

Note that Su|∂au∂S |, Su|
∂yu
∂S
| and Su|∂bu∂S | are bounded independently of t, S, u. For

example, Su|∂bu∂S | = |γ|pSu|
∂θS(u,Su)

∂S
| ≤ |γ|p||S ∂θS

∂S
|| and Su|∂yu∂S | ≤ δ. We get:

S|∂F0[y](t, S)

∂S
| ≤ K(1 + ||S ∂y

∂S
||)

√
EP
t

(∫ s

t

S

Su
Dt,S
u du+

∫ s

t

S

Su
Dt,S
u dWu

)2

×e|γ|p||y||(s−t)

≤ K(1 + ||S ∂y
∂S
||)

√
(EP

t

[
2
( ∫ s

t

S

Su
Dt,S
u du

)2
+ 2
( ∫ s

t

S

Su
Dt,S
u dWu

)2
]
e|γ|p||y||(s−t)

≤ K(1 + ||S ∂y
∂S
||)

√
EP
t

[
(s− t)

∫ s

t

(
S

Su
Dt,S
u )2du+

∫ s

t

(
S

Su
Dt,S
u )2du

]
× e|γ|p||y||(s−t)

127



Ph.D. Thesis - Oumar Soule Mbodji McMaster - Mathematics

S|∂F0[y](t, S)

∂S
| ≤ c(1 + ||S ∂y

∂S
||)
√
s− t× e|γ|p||y||(s−t) (5.39)

where K is a positive constant independent of t, S. We can also have a lower bound

for F0[y]: We assume that ||y|| ≤ ||ρ|| and ||S ∂y
∂S
|| ≤ δ for a certain δ > 0 to be fixed

below.

F0[y](t, S) = EP
t

[ ∫ T

t

h(t, s)e
∫ s
t (au−γpy(u))du+

∫ s
t budWuds (5.40)

+h(t, T )e
∫ T
t (au−γpy(u))du+

∫ T
t budWu

]
≥ EP

t

[ ∫ T

t

h(t, s)e
∫ s
t −|γ|p||ρ||−||a||+

b2u
2
duds+ h(t, T )e

∫ T
t (−|γ|p||ρ||−||a||+ b2u

2
)du

]
(5.41)

F0[y](t, S) ≥ m(t)

where

m(t) =

∫ T

t

h(t, s)e
∫ s
t −|γ|p||ρ||−||a||duds+ h(t, T )e

∫ T
t (−|γ|p||ρ||−||a||)du (5.42)

This shows that

∣∣∣∣∂F [y](t, S)

∂S

∣∣∣∣ ≤ 2||ρ||
|∂F0[y]
∂S
|

F0[y]
≤

2||ρ||K(1 + || ∂y
∂S
||)
√
T − t× e|γ|p||y||(T−t)

m(t)

If we choose 0 < ε0 < T such that

√
ε0

2||ρ||K(1 + |δ)× e|γ|p||ρ||T

inf{m(t), 0 ≤ t ≤ T}
≤ δ. (5.43)

Then for (t, S) ∈ [T − ε0, T ]× (0,∞), |F [y](t, S)| ≤ ||ρ|| and S
∣∣∣∂F [y](t,S)

∂S

∣∣∣ ≤ δ.
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This ends the proof of Step 1.

Step 2 We want to find an upper bound for the quantity |F [y2](t, S)−F [y1](t, S)|.

Let y1, y2 ∈ Bδ :

|F [y2](t, S)− F [y1](t, S)| =
∣∣∣∣F1[y2](t, S)

F0[y2](t, S)
− F1[y1](t, S)

F0[y1](t, S)

∣∣∣∣
≤

∣∣∣∣F1[y2](t, S)− F1[y1](t, S)

F0[y2](t, S)
+
F1[y1](t, S)(F0[y2]− F0[y1])

F0[y1](t, S)F0[y2](t, S)

∣∣∣∣
≤ 2||ρ|||F0[y2]− F0[y1]|(t, S)

F0[y2](t, S)

We can now get an upper bound for |F0[y2](t, S)− F0[y1](t, S)|

|F0[y2](t, S)− F0[y1](t, S)| = Et
∫ T

t

h(t, s)e
∫ s
t audu+budWu ×

|e
∫ s
t −γpy2(u)du − e

∫ s
t −γpy1(u)du|ds

+h(t, T )e
∫ T
t audu+budWu × |e

∫ T
t −γpy2(u)du − e

∫ T
t −γpy1(u)du| (5.44)

The mean value theorem, applied to the exponential gives

∣∣∣e∫ st −γpy2(u)du − e
∫ s
t −γpy1(u)du

∣∣∣ ≤ |γ|pe|γ|p||ρ||T ∫ s

t

|y2(u)− y1(u)|du (5.45)

|F [y2](t, S)− F [y1](t, S)| ≤ 1

m(t)
Et
[ ∫ T

t

h(t, s)eγp
∫ s
t audu+budWu × |γ|pe|γ|p||ρ||T (5.46)∫ s

t

|y2(u)− y1(u)|duds+ h(t, T )eγp
∫ s
t audu+budWu × |γ|pe|γ|p||ρ||T

∫ T

t

|y2(u)− y1(u)|du
]

≤ K(T − t) max
u,x∈[t,T ]×(0,∞)

|y2(u, x)− y1(u, x)|
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where K is a constant that is independent of t, S. We can choose ε1 ∈ (0, ε0]

such that Kε1 ≤ 1
2
. Call F 1 the operator F |C([T−ε1,T ]×(0,∞)).

Then for all (t, S) ∈ [T − ε1, T ]× (0,∞):

||F 1[y2]− F 1[y1]||C([T−ε1,T ]×(0,∞)) ≤
1

2
||z − y||C([T−ε1,T ]×(0,∞)) (5.47)

This ends the proof of Step 2.

Step 3

We want to find an upper bound for the quantity |∂F0[y2](t,S)
∂S

− ∂F0[y1](t,S)
∂S

|.

∣∣∣∣∂F [y2](t, S)

∂S
− ∂F [y1](t, S)

∂S

∣∣∣∣ =

∣∣∣∣∣ ∂F1[y2]
∂S

F0[y2]
−

∂F0[y2]
∂S

F1[y2]

F 2
0 [y2]

−
∂F1[y1]
∂S

F0[y1]
+

∂F0[y1]
∂S

F1[y1]

F0[y1]2

∣∣∣∣∣
≤

∣∣∣∣∣ ∂F1[y2]
∂S
− F [y2]∂F0[y2]

∂S

F0[y2]
−

∂F1[y1]
∂S
− F [y1]∂F0[y1]

∂S

F0[y1]

∣∣∣∣∣
≤ ||ρ|| |F0[y2]− F0[y1]|

F0[y2]
+

1

F0[y2]
(|∂F1[y2]

∂S
− ∂F1[y1]

∂S
|+ |F [y2]− F [y1]|∂F0[y2]

∂S
|

+|F [y1]||∂F0[y2]

∂S
− ∂F0[y1]

∂S
|)

S

∣∣∣∣∂F0[y2](t, S)

∂S
− ∂F0[y1](t, S)

∂S

∣∣∣∣ ≤ ∫ T

t

h(t, s)∆(t, s, S)ds+ h(t, T )∆(t, T, S)

S

∣∣∣∣∂F1[y2](t, S)

∂S
− ∂F1[y1](t, S)

∂S

∣∣∣∣ ≤ ∫ T

t

|∂h(t, s)

∂t
|∆(t, s, S)ds+ |∂h(t, T )

∂t
|∆(t, T, S)

S

∣∣∣∣∂F1[y2](t, S)

∂S
− ∂F1[y1](t, S)

∂S

∣∣∣∣ ≤ ||ρ||S ∣∣∣∣∂F0[y2](t, S)

∂S
− ∂F0[y1](t, S)

∂S

∣∣∣∣ (5.48)
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where

∆(t, s, S) :=

∣∣∣∣Et[(∫ s

t

SDt,S
u

(∂a(u)

∂S
− γp∂y2

∂S
(u)
)
du+

∫ s

t

S
∂bu
∂S

Dt,S
u dWu

)
eZ

y2;t,S(s)

−
(∫ s

t

SDt,S
u (

∂a

∂S
− γp∂y1

∂S
(u))du+ S

∫ s

t

∂bu
∂S

Dt,S
u dWu

)
eZ

y1;t,S(s)

]∣∣∣∣
≤ ∆1(t, s, S) + ∆2(t, s, S)

∆1(t, s, S) :=

∣∣∣∣Et[ ∫ s

t

−γp S
Su

(Su
∂y2

∂S
− Su

∂y1

∂S
)(u))Dt,S

u dueZ
y2;t,S(s)

]∣∣∣∣
≤ |γ|p max

(u,x)∈(t,T )×(0,∞)
|x∂y2(u, x)

∂S
− x∂y1(u, x)

∂S
| × EP

t

[ ∫ s

t

S

Su
Dt,S
u du× eZy2;t,S(s)

]
≤ |γ|p max

(u,x)∈(t,T )×(0,∞)
|∂y2(u, x)

∂S
− ∂y1(u, x)

∂S
|√

EP
t

[(∫ s

t

S

Su
Dt,S
u du

)2 ]√
Et
[

exp(2Zy2;t,S(s))

]
∆1(t, s, S) ≤ c(s− t) max

(u,x)∈(t,T )×(0,∞)
x|∂y2(u, x)

∂S
− ∂y1(u, x)

∂S
|

Similarly,

∆2(t, s, S) := S

∣∣∣∣Et[(∫ s

t

(
∂a

∂S
− γp∂y1

∂S
)Dt,S

u du+

∫ s

t

∂bu
∂S

Dt,S
u dWu

)(
eZ

y2;t,S
s − eZ

y1;t,S
s

)]∣∣∣∣
Noting that by the mean value theorem applied to the exponential function:

∣∣eZy2;t,S
s − eZ

y1;t,S
s

∣∣ = e
∫ s
t audu+budWu

∣∣e−γp ∫ st y2(u)du − e−γp
∫ s
t y1(u)du

∣∣
≤ e

∫ s
t audu+budWu × |γ|pe|γ|p||ρ||T

∫ s

t

|y2(u)− y1(u)|du

≤ K(s− t) max
(u,x)∈(t,T )×(0,∞)

|y2(u, x)− y1(u, x)|e
∫ s
t budWu
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and

∆2(t, s, S) ≤ K(1 + δ)(s− t) max
(u,x)∈(t,T )×(0,∞)

|y2(u, x)− y1(u, x)| (5.49)

S

∣∣∣∣∂F [y2](t, S)

∂S
− ∂F [y1](t, S)

∂S

∣∣∣∣ ≤ c(1 + δ)
√
T − t

(
max

(u,x)∈[t,T ]×(0,∞)
|y2(u, x)− y1(u, x)|

+ max
(u,x)∈[t,T ]×(0,∞)

x|∂y2

∂S
(u, x)− ∂y1

∂S
(u, x)|

)
(5.50)

We can choose ε2 ∈ (0, ε1) such that K(1 + δ)
√
ε2 ≤ 1

2
. Since

Et
[ ∫ T

t

eγp
∫ s
t audu+budWu

]
≤ e|γ|p

(||a||+ ||b||
2

2 )(s−t)
2

and m(t) is bounded below by a positive constant, we can further choose ε2 such that

ε2 sup
t∈[0,T ]

|γ|pe|γ|p||ρ||T

m(t)
Et
[ ∫ T

t

h(t, s)eγp
∫ s
t audu+budWuds+ h(t, T )eγp

∫ T
t audu+budWu

]
≤ 1

2

(5.51)

Then for all (t, S) ∈ [T − ε2, T ]× (0,∞):

||F [y2]− F [y1]||C([T−ε2,T ];C1(0,∞)) ≤
1

2
||y2 − y1||C([T−ε2,T ];C1(0,∞)) (5.52)

This ends the proof of Step 3.

Step 4

If we call B1
δ := {y|[T−ε2,T ]×(0,∞) | y ∈ Bδ} the restriction of Bδ to [T − ε2, T ]×
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(0,∞), then we can conclude that F (B1
δ) ⊂ B1

δ .

Since the space of functions C([T − ε, T ];C1(0,∞)) is complete and B1
δ is a

closed subset of that space, B1
δ is a complete set. We use theorem 5 in (Suzuki and

Takahashi, 1996) that we repeat below:

Theorem 5.23. Let X be a linear normed space and let D be a convex subset of X.

Then D is complete if and only if every contractive mapping from D into itself has a

fixed point in D.

B1
δ is both convex and complete, so we can apply the theorem. The operator

y 7→ F [y] has a unique fixed point Q1 in B1
δ . This ends the proof of Step 4. We

can repeat the argument on [T − 2ε2, T − ε2]. So on, until we reach 0. So we get

Q : [0, T ] × (0,∞) → R that coincides with the constructed fixed points on each

interval [T − kε2, T − (k− 1)ε2] and the problem is well posed. Let us do it in detail.

Step 5 Define

B2
δ = {y ∈ C([T − 2ε2, T − ε2];C1(0,∞)) such that

y(T − ε2, S) = Q1(T − ε2, S);
∂y

∂S
(T − ε2, S) =

∂Q
∂S

(T − ε2, S) and

∀ (t, S) ∈ [T − 2ε2, T − ε2]× (0,∞), |y(t, S)| ≤ ||ρ|| & S| ∂y
∂S

(t, S)| ≤ δ}

We will see below that δ can be chosen such that F 2(B2
δ) ⊂ B2

δ and that F 2 has

a unique fixed point Q2 in B2
δ .

Let us define the operator F 2 on the space C([T − 2ε2, T − ε2];C1(0,∞)) by:

F 2[y](t, S) =
F 2

1 [y](t, S)

F 2
0 [y](t, S)
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and

F 2
0 [y](t, S) =


F0[Q](t, S), if T − ε2 < t ≤ T

F0[y](t, S), if T − ε2 ≤ t ≤ T

(5.53)

F 2
1 [y](t, S) =


F1[Q](t, S), if T − ε2 < t ≤ T

F1[y](t, S), if T − ε2 ≤ t ≤ T

(5.54)

For y ∈ C([T − 2ε2, T − ε2];C1(0,∞)) and t ∈ [T − 2ε2, T ], define the function

y2(t, S) by

y2(t, S) =


Q(t, S), if T − ε2 < t ≤ T

y(t, S), if T − 2ε2 ≤ t ≤ T − ε2
(5.55)

Now, as before, fix two functions y1, y2 ∈ B2
δ , we have by the same kind of estimates

as 5.137:

|F 2[y2](t, S)− F 2[y1](t, S)| ≤ |γ|pe|γ|p||ρ||T

m(t)
Et
[∫ T

t

h(t, s)eγp
∫ s
t audu+budWu×∫ s

t

|y2
2(u)− y2

1(u)|duds + h(t, T )eγp
∫ T
t audu+budWu ×

∫ T

t

|y2
2(u)− y2

1(u)|du
]

Noticing that
∫ s
t
|y2(u)−y1(u)|du =


0 if t > T − ε2∫ T−ε2
t

|y2
2(u)− y2

1(u)|du if T − 2ε2 ≤ t ≤ T − ε2
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We get the estimate for T − 2ε2 ≤ t ≤ T − ε2:

|F 2[y2](t, S)− F 2[y1](t, S)| ≤ |γ|pe
|γ|p||ρ||T

m(t)
Et
[ ∫ T

t

h(t, s)eγp
∫ s
t audu+budWu×∫ T−ε2

t

|y2
2(u)− y2

1(u)|duds+ h(t, T )eγp
∫ T
t audu+budWu ×

∫ T−ε2

t

|y2
2(u)− y2

1(u)|du
]

≤ |γ|pe
|γ|p||ρ||T

m(t)
Et
[ ∫ T

t

h(t, s)eγp
∫ s
t audu+budWuds+ h(t, T )eγp

∫ T
t audu+budWu

]
×ε2 max

(u,x)∈[T−2ε2,T−ε2]×(0,∞)
|y2(u, x)− y1(u, x)|

And since ε2 was chosen so that

|γ|pe|γ|p||ρ||T
m(t)

Et
[ ∫ T

t
h(t, s)eγp

∫ s
t audu+budWuds+h(t, T )eγp

∫ T
t audu+budWu

]
× ε2 ≤ 1

2
, we

get:

|F 2[y2](t, S)− F 2[y1](t, S)| ≤ 1

2
max

(u,x)∈[T−2ε2,T−ε2]×(0,∞)
|y2(u, x)− y1(u, x)| (5.56)

and a similar estimate for the derivative:

S
∣∣∂F 2[y2](t, S)

∂S
− ∂F 2[y1](t, S)

∂S

∣∣ ≤ 1

2
max

(u,x)∈[T−2ε2,T−ε2]×(0,∞)
x|∂y2

∂S
(u, x)− ∂y1

∂S
(u, x)|

(5.57)

Since the space of functions C([T−ε, T ];C1(0,∞)) is complete and B2
δ is a closed

subset of that space, B2
δ is a complete set. B2

δ is also convex.

By using theorem 5 (Suzuki and Takahashi, 1996), F 2 has a unique fixed point

Q2 ∈ B2
δ .

We can keep doing the same in [T − 3ε2, T − 2ε2] until 0 and define F i and Qi

(we suppose N0 = T
ε2

is an integer. This ends the proof of Step 5.
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Step 6

We define Q(t, S) = Qi(t, S) if T − iε ≤ t ≤ T − (i− 1)ε2.

Then Q(t, S) = F [Q](t, S) for all (t, S) ∈ [0, T ]× (0,∞).

All that is left is to choose δ > 0 that works. We define the sequence

φ0 = 0, φn+1 = F [φn]

We can take

δ = 2||φ1||C([0,T ],C1(0,∞)). (5.58)

For y ∈ B2
δ , we have by the triangle inequality:

||F 2[y]||C([T−2ε2,T ],C1(0,∞)) ≤ ||F 2[y]− F 2[0]||C([T−2ε2,T ],C1(0,∞)) + ||F 2[0]||C([T−2ε2,T ],C1(0,∞))

≤ 1

2
||y||C([T−2ε2,T ],C1(0,∞)) + ||F 2[0]||C([T−2ε2,T ],C1(0,∞))

≤ δ

2
+ ||F 2[0]||C([T−2ε2,T ],C1(0,∞)) =

δ

2
+
δ

2
= δ

Thus, this choice of δ insures that the set B2
δ is stable under the operator F 2. The

successive operators F k, k ≥ 3 will also leave the set Bkδ stable. We conclude that

∀n ≥ 0, φn ∈ Bδ.

This ends the proof that Q is in C([0, T ];C1(0,∞)) and looking at the form of

the t-derivative, we see that it is continuous in t, S. Q is C1 in (t, S).

Proof [Theorem 2.17]

We want to prove the following: ∀t ∈ [0, T ], Qπ̄,c̄
t = Q(t, St) . We proceed in

4 Steps. In Step 1, we define the function v that solves the PDE (2.42). Then we
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define the strategy

(π̄, c̄) =

(
pθS
σS

+
Svs
v

,
1

v(t, S)

)
and X̄ := X π̄,c̄.

In Step 2, we calculate the quantity c̄(s)X̄(s) in a simple form.

In Step 3, we show that Q(t, St) = Qπ̄,c̄
t .

In Step 4, we show that

V̄ (t, S, x) = Et
[ ∫ T

t

h(t, s)Uγ(c̄(s)X̄(s))ds+ h(t, T )Uγ(c̄(T )X̄(T ))

]

coincides with V (t, S, x) = v(t, S)1−γUγ(x).

In Step 5, we show that V̄ satisfies the extended HJB equation (2.23). We

conclude that (π̄, c̄) is a subgame perfect strategy with corresponding value function

V̄ .

We start with the proof of the first step.

Step 1

We remind that

F [y](t, S) =
F1[y](t, S)

F0[y](t, S)
, Q(t, S) = F [Q](t, S)

We define the function v as the unique bounded C1,2 solution of the PDE (2.42):

0 =
∂v

∂t
+
σ2
SS

2

2

∂2v

∂S2
+ p

[
γr +

γpθ2
S

2
−Q

]
v + (r + pσSθS)S

∂v

∂S
+ 1

v(T, S) = 1

The existence of v as the bounded solution of the PDE (2.42) is a direct consequence
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of Friedman (Friedman (1975) , Chapter 6, Theorem 4.6).

Define the strategy (π̄, c̄) by:

c̄(t, S) =
1

v(t, S)
, π̄(t, S) = p

θS
σS

+
Svs
v

(5.59)

and the corresponding wealth process X̄(s) = X π̄,c̄(s).

dX̄(t)

X̄(t)
= (r + σSθSπ̄ − c̄)(t, St)dt+ σSπ̄(t, St)dWt (5.60)

Step 2

We find a nicer expression for the consumption c̄(s)X̄(s):

d log(c̄(t)X̄(t)) = d log(
1

v
) + d log(X̄(t)) = −dv

v
+

1

2

(dv
v

)2
+
dX̄

X̄
− 1

2

(
dX̄

X̄

)2

=

[
r − v−1 + σSθS

(pθS
σS

+
S

v

∂v

∂S

)
− σ2

S

2
(
pθS
σS

+
S

v

∂v

∂S
)2

−1

v

∂v

∂t
− σ2

SS
2

2v

∂2v

∂2S
− SµSS

v

∂v

∂S
+

1

2
(
σSS

v

∂v

∂S
)2

]
dt+ pθSdW (t)

=

[
− 1

v

∂v

∂t
− σ2

SS
2

2v

∂2v

∂2S
+
S

v

∂v

∂S
(σSθS −

pθSσ
2
S

σS
− µS)

+r − v−1 + σSθS
pθS
σS
− σ2

S

2
(
pθS
σS

)2

]
dt+ pθSdWt

= −1

v

[
∂v

∂t
+
σ2
SS

2

2

∂2v

∂2S
− S ∂v

∂S
(σSθS −

pθSσ
2
S

σS
− µS)− rv + 1

−σSθS
pθS
σS

v + v
σ2
S

2
(
pθS
σS

)2

]
dt+ pθSdWt

And since ∂v
∂t

+
σ2
SS

2

2
∂2v
∂S2 + 1 = −p

(
γr +

γpθ2
S

2
−Q

)
v − (r + pσSθS)S ∂v

∂S
,
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we get:

d log(c̄(t)X̄(t)) = −1

v

[
− p

(
γr +

γpθ2
S

2
−Q

)
v − (r + pσSθS)S

∂v

∂S

−S ∂v
∂S

(σSθS −
pθSσ

2
S

σS
− µS)− rv − σSθS

pθS
σS

v + v
σ2
S

2
(
pθS
σS

)2

]
dt+ pθSdWt

The coefficient of ∂v
∂S

inside the square bracket is :

−(r + pσSθS)S − S(σSθS −
pθSσ

2
S

σS
− µS) = S(µS − r − σSθS) = 0

since µS − r = σSθS.

The coefficient of v inside the square bracket is:

−p
(
γr +

γpθ2
S

2
−Q

)
− r − σSθS

pθS
σS

+
σ2
S

2
(
pθS
σS

)2

= −p(γr +
γpθ2

S

2
−Q)− r − pθ2

S +
p2θ2

S

2
) = −p

(
γr +

γpθ2
S

2
−Q

)

Thus

d log(c̄(t)X̄(t)) = p(r +
θ2
S

2
−Q)dt+ pθSdW (t) (5.61)

Therefore:

c̄(s)X̄(s) = c̄(t)X̄(t) exp

(∫ s

t

p(ru +
θ2
S(u)

2
−Qu)du+

∫ s

t

pθSdW (u)

)
(5.62)
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This ends the proof of Step 2.

Step 3 We get from Step 2,

Q(t, St) = F [Q](t, St) =

Et
[ ∫ T

t
∂h(t,s)
∂t

Uγ(c̄(s)X̄(s))ds+ ∂h(t,T )
∂t

Uγ(c̄(T )X̄(T ))

]
Et
[ ∫ T

t
h(t, s)Uγ(c̄(s)X̄(s))ds+ h(t, T )Uγ(c̄(T )X̄(T ))

]
Q(t, St) = Qπ̄,c̄

t

Remark 5.24. Note that c̄(T ) = 1
v(T,S)

= 1. Intuitively, the agent consumes everything

at the final time T since the utility of final wealth is the same as that for consumption.

Step 4 Define

V̄ (t, S, x) = Et
[ ∫ T

t

h(t, s)Uγ(c̄(s)X̄(s))ds+ h(t, T )Uγ(c̄(T )X̄(T ))

]
(5.63)

V̄ (t, S, x) = Et
[ ∫ T

t

h(t, s)Uγ
( x

v(t, S)
e
∫ s
t p(r+

θ2S
2
−Q)du+pθSdWu

)
ds

+h(t, T )Uγ

(
x

v(t, S)
e
∫ T
t p(r+

θ2S
2
−Q)du+pθSdWu

)]
= Z(t, S)Uγ

( x

v(t, S)

)
with Z(t, S) = Et

[ ∫ T

t

h(t, s)e
∫ s
t pγ(r+

θ2S
2
−Q)du+pγθSdW (u)ds

+h(t, T )e
∫ T
t pγ(r+

θ2S
2
−Q)du+pγθSdW (u)

]

From the expression of Z(t, S), we notice that its exponential term has a bounded

coefficient in du and in dW (u) so Z(t, S) is uniformly bounded on [0, T ] × (0,∞).

Furthermore, Z(t, S)1−γ is exactly the denominator F0[Q] in the expression of F [Q].
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We prove next that Z = v. Let

α(t, s, S) = Et
[
e
∫ s
t pγ(r+

θ2S
2
−Q)du+pγθSdW (u)

]
(5.64)

e
∫ t
0 pγ(r+

θ2S
2
−Q)du+pγθSdW (u)δ(t, s, St) is a P-martingale

By Ito’s lemma

αt +
σ2
SS

2

2
αSS + (SµS + γpSσSθS)αS + γp(r +

pθ2
S

2
−Q)α(t, s, S) = 0 (5.65)

Using the fact that µS − r = σSθS, we get

αt +
σ2
SS

2

2
αSS + (r + pθSσS)SαS + γp(r +

pθ2
S

2
−Q)α = 0. (5.66)

Since Z(t, S) =

∫ T

t

h(t, s)α(t, s, S)ds+ h(t, T )α(t, T, S) we get:

Zt = −α(t, t, S) +

∫ T

t

∂h(t, s)

∂t
α(t, s, S)ds+

∫ T

t

h(t, s)αt(t, s, S)ds+
∂h(t, T )

∂t
α(t, T, S)

+h(t, T )αt(t, T, S)

ZS =

∫ T

t

h(t, s)αS(t, s, S)ds+ h(t, T )αS(t, T, S)

ZSS =

∫ T

t

h(t, s)αSS(t, s, S)ds+ h(t, T )αSS(t, T, S)
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Therefore

∂Z

∂t
+
σ2
SS

2

2

∂2Z

∂S2
+ p

[
γr +

γpθ2
S

2
−Q

]
Z + (r + pσSθS)S

∂Z

∂S
+ 1

=

∫ T

t

∂h(t, s)

∂t
α(t, s, S)ds+

∂h(t, T )

∂t
α(t, T, S)

+

∫ T

t

h(t, s)

[
αt +

σ2
SS

2

2
αSS + (r + pσSθS)SαS + p(γr +

γpθ2
S

2
−Q)α(t, s, S)

]
ds

+h(t, T )

[
αt +

σ2
SS

2

2
αSS + (r + pσSθS)SαS + p(γr +

γpθ2
S

2
−Q)α(t, T, S)

]
=

∫ T

t

∂h(t, s)

∂t
α(t, s, S)ds+

∂h(t, T )

∂t
α(t, T, S)

+

∫ T

t

−α(t, s, S)Q(t, S)ds− α(t, T, S)Q(t, S)

= 0

Thus

∂Z

∂t
+
σ2
SS

2

2

∂2Z

∂S2
+ p

[
γr +

γpθ2
S

2
−Q

]
Z + (r + pσSθS)S

∂Z

∂S
+ 1 = 0

and Z(T, S) = 1

By uniqueness of a bounded solution of the above linear parabolic PDE, Z = v and

V̄ (t, S, x) = Z(t, S)Uγ

(
x

v(t, S)

)
= v(t, S)1−γUγ(x). (5.67)

Step 5 :

We want to show that V̄ satisfies the extended HJB.
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Aπ,cV̄ = (5.68)

(r + σSθSπ − c)x
∂V̄

∂x
(t, S, x) +

σ2
SS

2

2

∂2V̄

∂S2
(t, S, x)

+
1

2
σ2
Sx

2π2∂
2V̄

∂x2
(t, S, x) + σ2

SSπx
∂2V̄

∂S∂x
(t, S, x) + (µS + γpθS)S

∂V̄

∂S
(t, S, x)

A direct calculation gives: V̄t +Aπ̄,c̄V̄ + Uγ(xc̄) = Qπ̄,c̄
t V̄ (t, S, x) and V̄ satisfies

V̄t + sup
π,c
{Aπ,cV̄ + Uγ(xc)} = Qπ̄,c̄

t V̄ (t, S, x) (5.69)

(π̄, c̄) is an admissible Markovian policy and V̄ solves the extended Hamilton

Jacobi Bellman equation (2.23). Therefore, (π̄, c̄) is a sub game perfect strategy (by

Theorem 2.8 ). This ends the proof of the theorem.

�

Remark 5.25. We can prove that v(t, S) is bounded by invoking Feynman Kac’s

formula. This yields equation (2.38):

v(t, S) = EP
t

[ ∫ T

t

e
∫ s
t p(γr+

γpθ2S
2
−Q)(u,S̄u)duds

+e
∫ T
t p(γr+

γpθ2S
2
−Q)(u,S̄u)du|S̄t = S

]

where S̄u satisfies the SDE

S̄u = S +

∫ u

t

(r + pσSθS(v, S̄v))S̄vdv +

∫ u

t

σS(v, S̄v)S̄vdW (v) (5.70)
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Proof [ Proposition 2.20 ] HJB for optimal strategies with non constant discount

rate:

The proof is similar to the HJB for vi in Chapter 3 where we take γi = γ and

δi = 0. For the sake of completion, we are giving it here. Consider the criterion:

J(t, S, x, π, c) = Et
[∫ T

t

f(0, s)

f(0, t)
Uγ(csX

π,c
s )ds+

f(0, T )

f(0, t)
Uγ(X

π,c
T )

]
(5.71)

for (π, c) an admissible policy. For v = v(t, S, x) with enough regularity,

Aπ,cv(t, S, x) := SµSvS +
σ2
SS

2

2
vSS + (r + σSθSπ − c)xvx +

(σSπx)2

2
vxx + Sxσ2

SπvSx.

(5.72)

Define the optimal value function as

V̂ (t, S, x) = sup
(π,c) admissible

J(t, S, x, π, c) (5.73)

We give an outline of the proof, it is similar to the proof when the discount rate is

constant.

Fix (π, c) another admissible strategy. Fix a small time h > 0 such that t+h ≤ T .

We consider two strategies:

1. Follow (π̂, ĉ) on the time interval [t, T ].

2. Follow (π, c) on the interval [t, t+ h] and (π̂, ĉ) on the interval [t+ h, T ]

Note that if we follow strategy two, at time t+h, the stock price is St+h and the wealth

is Xπ,c
t+h. The first strategy yields the optimal criterion J(t, S, x, π̂, ĉ) = V̂ (t, S, x). The
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second strategy yields a criterion equals to

Et
[∫ t+h

t

f(0, s)

f(0, t)
Uγ(csX

π,c
s )ds+

∫ T

t+h

f(0, s)

f(0, t)
Uγ(ĉsX

π̂,ĉ
s )ds+

f(0, T )

f(0, t)
Uγ(X

π̂,ĉ
T )

]
= Et

[∫ t+h

t

f(0, s)

f(0, t)
Uγ(csX

π,c
s )ds+

f(0, t+ h)

f(0, t)
V̂ (t+ h, St+h, X

π,c
t+h)

]

Since the first strategy is optimal, it is better than the second one. Therefore,

the following inequality holds:

V̂ (t, S, x) ≥ Et
[∫ t+h

t

f(0, s)

f(0, t)
Uγ(csX

π,c
s )ds+

f(0, t+ h)

f(0, t)
V̂ (t+ h, St+h, X

π,c
t+h)

]
(5.74)

We can apply Ito’s lemma to get:

V̂ (t+ h, St+h, X
π,c
t+h) = V̂ (t, S, x) +

∫ t+h

t

(V̂t +Aπ,cV̂ (u, Su, X
π,c
u ))du

+(σSπxV̂x + SσSV̂S)dW (u) (5.75)

And assuming enough integrability for the dW (u) term, its expectation is zero and :

Et[V̂ (t+ h, St+h, X
π,c
t+h)] = V̂ (t, S, x) + Et

[∫ t+h

t

(V̂t +Aπ,cV̂ (u, Su, X
π,c
u ))du

]
(5.76)

V̂ (t, S, x) ≥ Et
[∫ t+h

t

f(0, s)

f(0, t)
Uγ(csX

π,c
s )ds+

f(0, t+ h)

f(0, t)
V̂ (t, S, x)

+

∫ t+h

t

(V̂t +Aπ,cV̂ (u, Su, X
π,c
u ))du

]
(5.77)
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Dividing by h, we obtain

Et
[

1

h

∫ t+h

t

f(0, s)

f(0, t)
Uγ(csX

π,c
s ) +

f(0, t+ h)

f(0, t)
(V̂t +Aπ,cV̂ (s, Ss, X

π,c
s ))ds

+
f(0,t+h)−f(0,t)

h

f(0, t)
V̂ (t, S, x)

]
≤ 0 (5.78)

Assuming enough regularity to allow us to take the limit within the expectation

and using the fundamental theorem of integral calculus:

Uγ(c(t)x) + V̂t +Aπ,cV̂ (t, S, x) +
∂f(0,t)
∂s

f(0, t)
V̂ (t, S, x) ≤ 0 (5.79)

The last inequality becomes an equality when c = ĉ and π = π̂. Thus,

V̂t + sup
(π,c) admissible

{Uγ(c(t)x) +Aπ,cV̂ (t, S, x)}+
∂f(0,t)
∂s

f(0, t)
V̂ (t, S, x) = 0 (5.80)

This is the Hamilton Jacobi Bellman equation for the optimal value function.

We have looked for V̂ (t, S, x) of the form

V̂ (t, S, x) = v̂(t, S)1−γUγ(x) (5.81)

All that is left is to check if ĉ, π̂, V̂ satisfy the integrability conditions assumed in the

derivation of the HJB equation. We refer the reader to (Zariphopoulou, 1999) for a

full proof of those facts. Note that

V̂ (0, S, x) = E0

[∫ T

0

f(0, s)Uγ(ĉsX̂s)ds+ f(0, T )Uγ(X̂T )

]
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and

V̄ (0, S, x) = E0

[∫ T

0

f(0, s)Uγ(c̄sX̄s)ds+ f(0, T )Uγ(X̄T )

]
,

so in order to compare sub game perfect and optimal strategies we must compare

V̂ (0, S, x) and V̄ (0, S, x).

�
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Numerical Scheme

Consider the probability P̄ with density dP̄
dP = exp

(∫ T
0
pγθS(u)dWu−1

2

∫ T
0

(pγθS(u))2du

)

µ1 = r +
pθ2

S

2
(5.82)

µ2 =
∂

∂S
(SµS(t, S)) , σ2 =

∂

∂S
(SσS(t, S)) (5.83)

The stock has the dynamics

dSu = Su(r + pσSθS(u, Su)du+ σS(u, Su)dW̄u) (5.84)

The derivative of the stock Dt,S
s := ∂Ss

∂St
satisfies

Dt,S
s = exp

(∫ s

t

(µ2 −
σ2

2

2
)du+

∫ s

t

σ2(u, Su)dW̄u

)
(5.85)

Define the two expected values appearing in the expressions of Q and ∂Q
∂S

.

α(t, s, S) = EP̄
t

[
e
∫ s
t pγ(µ1−Q(u,Su))du

]
(5.86)

δ(t, s, S) = EP̄
t

[∫ s

t

(
∂µ1

∂S
− ∂Q
∂S

)Dt,S
u du× e

∫ s
t pγ(µ1−Q(u,Su))du

]
(5.87)

We discretize time and space at the points

{tn = T − n dt , n = 0, · · · , N} ; {Si = i dS , i = 0, · · · ,M}.

Let Qn,i and Rn,i be an approximation for Q(tn, Si) and ∂Q
∂S

(tn, Si) : Qn,i ∼

Q(tn, Si) , Rn,i ∼ ∂Q
∂S

(tn, Si). vn,i ∼ v(tn, Si). Finally αn,j,i ∼ α(tn, tj, Si) , δn,j,i ∼

δ(tn, tj, Si).
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We start with t0 = T and the conditions Q0,i =
∂h
∂t

(T,T )

h(T,T )
, R0,i = 0.

We use the relations

Q(t, S) =

∫ T
t

∂h
∂t

(t, s)α(t, s, S)ds+ ∂h
∂t

(t, T )α(t, T, S)∫ T
t
h(t, s)α(t, s, S)ds+ h(t, T )α(t, T, S)

(5.88)

∂Q
∂S

(t, S) =

∫ T
t

(∂h
∂t

(t, s)− h(t, s)Q(t, S))δ(t, s, S)ds+ (∂h
∂t

(t, T )− h(t, T )Q(t, S))δ(t, T, S)∫ T
t
h(t, s)α(t, s, S)ds+ h(t, T )α(t, T, S)

(5.89)

We approximate the integrals using a Riemann approximation and the conditional

expectations are calculated using Monte Carlo simulations.

For example, we get

Qn,i =
dt
∑n

j=0
∂h
∂t

(tn, tj)αn,j,i + ∂h
∂t

(tn, t0)αn,0,i

dt
∑n

j=0 h(tn, tj)αn,j,i + h(tn, t0)αn,0,i
(5.90)

This fixed point equation is calculated by getting an initial guess for Qn,i , then we

iterate the right hand side until the error is small enough.

Appendix 2: Optimal Equilibrium with Heteroge-

neous Agents
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Proof [Theorem 3.9]

Let y be given as in Theorem 3.9. We want to prove equality (3.28).

If z(t; ., .) is in C1,2,2([t, T ]× (0,∞)×R) and (π, c) is an admissible strategy, then

Aπ,cz(t, s, x) := x (r + σSφiπ − c) zx +
1

2
(πσSx)2zxx + zww + πσSxzxw. (5.91)

Let (πi, ci) be an admissible strategy and let X i := Xπi,ci be the associated wealth

process. We know that by Itô’s formula

d(fi(t, s)Zi(t, s)y
i(t; s,Ws, X

i
s)) = fiZi(δiy

i + πiσSX
i
sy
i
x + yiw)dWs

+fiZi

(
yis +Aπi,ciyi(t, s,X i

s) +
∂fi(t,s)
∂s

fi(t, s)
yi + δi(σSπ

ixiy
i
x + yiw)

)
ds

Integrating this equation between s and T , we get:

fi(t, T )Zi(t, T )yi(t;T,WT , X
i
T )− fi(t, s)Zi(t, s)yi(t; s,Ws, X

i
s)

=

∫ T

s

fiZi

(
yis + xi

(
r + σSφiπ

i − ci
)
yix +

1

2
(πiσSxi)

2yixx +
1

2
yiww + πiσSxiy

i
xw

+
∂fi(t,s)
∂s

fi(t, s)
yi + δi(σSπ

ixiy
i
x + yiw)

)
(t;u,Wu, X

i
u)du

+

∫ T

s

fiZi
[
δiy

i + πiσSX
i
sy
i
x + yiw

]
(t;u,Wu, X

i
u)dWu

In light of the HJB equation (3.27), we get
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fi(t, T )Zi(t, T )yi(t;T,WT , X
i
T )− fi(t, s)Zi(t, s)yi(t; s,Ws, X

i
s) ≤ −

∫ T

s

fi(t, u)Zi(t, u)

Ui(c
i(u)X i(u))du+

∫ T

s

fi(t, u)Zi(t, u)(δiy
i + πiσSxiy

i
x + yiw)(t;u,Wu, X

i
u)dWu

Taking expectations and using the integrability assumptions, we get:

EP
s,w,xi

[
fi(t, T )Zi(t, T )yi(t;T,W i

T , X
i
T )− fi(t, s)Zi(t, s)yi(t; s,Ws, X

i
s)
]

≤ EP
s,w,xi

[∫ T

s

−fi(t, u)Zi(t, u)Ui(c
i(u)X i(u))du

]

Since the policy (πi, ci) is admissible,

EP
s,w,xi

∫ T

s

Zi(t, u)
∣∣fi(t, u)Ui(c

i(u)X i(u))
∣∣du <∞

and by hypothesis, yi(t;T,W i
T , X

i
T ) = Ui(X

i
T ),

fi(t, s)Zi(t, s)y
i(t; s, w, xi) ≥ EP

s,w,xi

[ ∫ T

s

fi(t, u)Zi(t, u)Ui(c
i(u)X i(u))du(5.92)

+ fi(t, T )Zi(t, T )Ui(X
i
T )

]

We get the reverse inequality by considering the admissible policy (πy, cy) defined
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in Theorem 3.9 and the corresponding wealth process Xy.

EP
s,w,xi

[
fi(t, T )Zi(t, T )yi(t;T,WT , X

πy ,cy
T )− fi(t, s)Zi(t, s)yi(t; s, w, xi)

]
= EPi

s,w,xi

[∫ T

s

−fi(t, u)Ui(cy(u)Xy
u)du

]

fi(t, s)y
i(t; s, wi, xi) = EPi

s,wi,xi

[∫ T

s

fi(t, u)Ui(cy(u)Xy
u)du+ fi(t, T )Ui(X

y
T )

]
= fi(t, s)J

i(t, s, w, xi, πy, cy)

≤ sup
πi,ci

fi(t, s)J
i(t, s, w, xi, π

i, ci) = fi(t, s)V
i(t; s, w, xi)

Therefore,

yi(t; s, x) = J i(t, s, w, xi, πy, cy) = V i(t, s, w, xi)

�

Proof [Theorem 3.10]

We search for a value function V i of the form:

V i(t, s, wi, xi) = ai(t, s, wi)Ui(xi)

for a function ai to be determined.

The first order conditions of the HJB equation (3.27) give the optimal consump-

tion and portfolio fraction invested in the stock:
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ĉi =
(V i

x)
1

γi−1

xi
= ai(t, s, wi)

−pi (5.93)

π̂i = −σSφixiV
i
x + σSxiV

i
xw

σ2
Sx

2
iV

i
xx

=
φi

σS(1− γi)
+

∂ai
∂w

ai(1− γi)σS
(5.94)

By plugging ĉi and π̂i in the SDE (3.32):

dX̂ i(s) =
(
r(s)− a−pii + piσS(φi +

∂ai
∂w

ai
)
)
X̂ i(s)ds+ pi(φi +

∂ai
∂w

ai
)X̂ i(s)dW (s) (5.95)

Noticing that the function

x 7→ y(x) = αx2 + βx

where α < 0 has a maximum equal to −β
2

2α
, we find that the sup in the HJB equation

(3.27) is equal to:

0 = V i
s +

(
r + piσS(φi +

∂ai
∂w

ai
)− a−pii

)
xiV

i
x +

p2
i

2
(φi +

∂ai
∂w

ai
)2x2

iV
i
xx +

1

2
V i
ww

+pi(φi +
∂ai
∂w

ai
)xiV

i
wx +

∂fi(t,s)
∂s

fi(t, s)
V i + Ui

(
a−pii xi

)
+ δiV

i
w

If we plug in the expression

V i(t, s, wi, xi) = ai(t, s, wi)
xγii
γi

we get PDE for ai:
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0 =
∂ai
∂s

+

(
r + piσS(φi +

∂ai
∂w

ai
)− a−pii

)
γiai +

p2
i (φi +

∂ai
∂w

ai
)2

2
γi(γi − 1)ai +

1

2

∂2ai
∂w2

+γipi(φi +
∂ai
∂w

ai
)
∂ai
∂w

+
∂fi(t,s)
∂s

fi(t, s)
ai + a−γipii + δi

∂ai
∂w

This PDE simplifies to

0 =
∂ai
∂s

+
1

2

∂2ai
∂w2

+

[
γir +

γipiφ
2
i

2
+

∂fi(t,s)
∂s

fi(t, s)

]
ai

+
γipiai

2
(
∂ai
∂w

ai
)2 + (δi + γipiφi)

∂ai
∂w

+
a−γipii

pi

Plugging the expression ai = vpii in the preceding PDE, we get after some calculations

PDE (3.34). Note that the calculations are similar to the ones in (Zariphopoulou,

1999).

�

Proof [Proposition 3.11]

The wealth process of agent i satisfies

dX̂ i(s) =
(
r(s) + φi(piφi +

∂vi
∂w

vi
)− v−1

i

)
X̂ i(s)ds+

(
piφi +

∂vi
∂w

vi

)
X̂ i(s)dW i

s .
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Thus,

d log(ĉi(s)X̂ i(s)) = d log(vi(s)
−1X̂ i(s)) = d log(X̂ i(s))− d log(vi(s))

=

(
r − v−1

i + σS

(
piφi +

∂vi
∂w

vi

)
− 1

2

(
piφi +

∂vi
∂w

vi

)2)
ds

+
(
piφi +

∂vi
∂w

vi

)
dWs +

(
1

2

( ∂vi
∂w

vi

)2

−
∂vi
∂s

+ 1
2
∂2vi
∂w2

vi

)
ds−

∂vi
∂w

vi
dWs

The terms in (
∂vi
∂w

vi
)2 cancel out. Using the identity γipi + 1− pi = 0 and the PDE for

vi, the ds term becomes

pi

(
r +

φ2
i

2
− δiφi − ρi(0, s)

)

The dWs term is equal to piφi(s). We conclude that :

d log(ĉi(s)X̂ i(s)) = pi

(
r +

φ2
i

2
− δiφi(s,Ws)− ρi(0, s)

)
ds+ piφi(s,Ws)dW (s)

�

Proof [Proposition 3.12] We have:

0 = d log(ĉi(s)X̂ i(s))− d log ε(s) = pi

(
ri +

(θiS + δi)
2

2
− δi(θiS + δi) +

∂fi(0,s)
∂s

fi(0, s)

)
ds

+pi(θiS + δi)dW (s)− (µ− σ2

2
)ds− σdW (s)

The drift and volatility of the right hand side of the previous equality should
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therefore be zero. We obtain:

θiS = σ(1− γi)− δi

ri(s) = (1− γi)(µ−
σ2

2
)−

∂fi(0,s)
∂s

fi(0, s)
− (θiS + δi)

2

2
+ (1− γi)(µi − µ)

ri(s) = (1− γi)µi − σ2(1− γi)(1−
γi
2

)−
∂fi(0,s)
∂s

fi(0, s)

This is the same result as (Cvitanic et al., 2012) with the specification fi(t, s) =

exp(−ρi(s− t)). �

Proof [Proposition 3.14]

The pricing kernel is

Mi(s) = exp

(∫ s

0

(−ri(v)− θ2
iS

2
)dv −

∫ s

t

θiSdW (v)

)
= exp

(∫ s

0

( ∂fi(0,v)
∂s

fi(0, v)
− (1− γi)µi − σ2(1− γi)(1−

γi
2

)− θ2
iS

2

)
dv

−
∫ s

0

θiSdW (v)

)
Mi(s) = fi(0, s) exp

((
− (1− γi)µi − (1− γi)(1−

γi
2

)σ2 − θ2
iS

2

)
s+ θiSWs

)

�

Proof [Proposition 3.17]
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d log

(
ε(s)

(
Mi(s)

M(s)

)pi)
= (µ− σ2

2
)ds+ σdWs + pi(−rids− θiSdWs −

θ2
iS

2
ds)

+pi(rds+ θSdWs +
θ2
S

2
ds) (5.96)

d log

(
ε(s)

(
Mi(s)

M(s)

)pi)
=

(
pi(r − ri) +

pi(θ
2
S − θ2

iS)

2
+ µ− σ2

2

)
ds

+

(
σ + pi(θS − θiS)

)
dW (s) (5.97)

Using (3.36) and (5.187), we get

d log(ĉi(s)X̂ i(s))− d log

(
ε(s)

(
Mi(s)

M(s)

)pi)
=

(
pi
(
r +

φ2
i

2
− δiφi(s,Ws)− ρi(0, s)

)
−pi(r − ri)−

pi
2

(θ2
S − θ2

iS)− (µ− σ2

2
)

)
ds+ (piφi − σ − pi(θS − θiS))dWs

Recall that

φi = θS + δi

so the dW term is

pi(θS + δi)− σ − piθS + piθiS = 0

The ds term is equal to

pi
(
r +

φ2
i

2
− δiφi(s,Ws)− ρi(0, s)

)
− pi(r − ri)−

pi
2

(θ2
S − θ2

iS)− (µ− σ2

2
)

= pi

[
r +

φ2
i

2
− δiφi − ρi(0, s)− (r − ri) +

θ2
iS − θ2

S

2
− (1− γi)(µ−

σ2

2
)

]

and using the expression
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φ2
i

2
− δiφi =

(φi − δi)2 − δ2
i

2
=
θ2
S − δ2

i

2

the ds term equals

ri(s) +
θ2
iS − δ2

i

2
− ρi(0, s)− (1− γi)(µ−

σ2

2
) = 0

by the definition of ri(s), the above term is zero. Thus

d log(ĉi(s)X̂ i(s))− d log

(
ε(s)

(
Mi(s)

M(s)

)pi)
= 0

In other words, by integrating between 0 and s, we get (3.46). �

Proof [Proposition 3.17]

For a = (a1, . . . , aI) ∈ (0,∞)I and y > 0, call φ(a, y) the quantity

φ(a, y) =
∑
i

(
ai
y

)pi − 1. (5.98)

For fixed a ∈ (0,∞)I ,

φ(a, .) : y 7→
I∑
i=1

(ai
y

)pi − 1

is strictly decreasing and goes to∞ at 0 and goes to -1 at y →∞ so there is a unique

y such that φ(a, y) = 0.

We call F (a) the unique y such that φ(a, y) = 0.

φ(a, F (a)) = 0. (5.99)
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Note that

φy = −
∑
i

pia
pi
i y
−pi−1 < 0 (5.100)

The implicit function theorem proves that F is smooth in a = (a1, · · · , aI).

M(s) = F

(( ĉ1(0)X̂1(0)

ε(0)

) 1
p1M1(s), · · · ,

( ĉI(0)X̂I(0)

ε(0)

) 1
pIMI(s)

)
is well defined. �

Proof [Proposition 3.18]

We can differentiate the previous equality with respect to ai to get:

φai + φyFai |y=F (a) = 0 (5.101)

so

Fai = − φai
φy(a, F (a))

= −(
∂φ

∂y
)−1 ∂φ

∂ai
= (
∑
j

pja
pj
j y
−pj−1)−1pia

pi−1
i y−pi

Fai(a1, · · · , aI) = (
∑
j

pj(a
pj
j F

−pj−1)−1pia
pi−1
i F−pi =

pia
pi
i F

−piF

ai
∑

j pja
pj
j F

−pj

Recall

ai(s) =
( ĉi(0)X̂ i(0)

ε(0)

) 1
piMi(s) (5.102)

a(s) = (a1(s), · · · , aI(s)) (5.103)
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and M(s) = F (a(s)). Finally, recall ωi(s) the quantity

ωi(s) =

pi

(
ai(s)
F (a(s))

)pi
∑

j pj

(
aj(s)

F (a(s))

)pj . (5.104)

We can see that

Fai(a) =
F (a)

ai

pi

(
ai
F (a)

)pi
∑

j pj

(
aj
F (a)

)pj (5.105)

so, taking

∂

∂aj
logFai

Faiaj
Fai

=
Faj
F
− δi,j

ai
+ pi(

δi,j
ai
−
Faj
F

)−

∑
k

∂
∂aj

(
∑

k pk

(
ak
F (a)

)pk
)

∑
k pk

(
ak
F (a)

)pk (5.106)

∂
∂aj

(
ak
F (a)

)pk
(

ak
F (a)

)pk =
∂

∂aj
(pk log ak − pk logF (a)) = pk(

δj,k
ak
−

Faj
F (a)

) (5.107)

Faiaj
Fai

= −−δi,j
ai

+(1−pi)
Faj
F

+
piδi,j
ai
−

∑
k p

2
k(
δj,k
ak
−
Fak
F (a)

)

(
ak
F (a)

)pk

)

∑
k pk

(
ak
F (a)

)pk

)

= (1−pi)ωjaj +
piδi,j
ai
−
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p2
j

aj

(
aj
F (a)

)pj

∑
k pk

(
ak
F (a)

)pk +

Faj
F

∑
k p

2
k

(
ak
F (a)

)pk

∑
k pk

(
ak
F (a)

)pk − δi,j
ai

aiajFaiaj = aiajFai

[
(1− pi)

ωj
aj

+
piδi,j
ai
− pjωj

aj
− δi,j

ai
+
ωj
aj

∑
k

pkωk

]
= Fωi[(1− pj)ωj +

piδi,jaj
ai

− pjωj + ωj
∑
k

pkωk]

timeconsistent

By Itô’s lemma,

dM(s) = dF (a(s)) =
∑
i

Faidai +
1

2

∑
i,j

Faiajdaidaj

Remembering that ai(s) is a multiple of Mi(s) so

dai(s) = ai(s)(−ri(s)ds− θiSdWs)

Thus

dM(s) =
∑
i

Faidai +
1

2

∑
i,j

Faiajdaidaj

=
∑
i

aiFai(−ri(s)ds− θiSdWs) +
1

2

∑
i,j

aiajFaiajθiSθjSds

=
∑
i

Fωi(−ri(s)ds− θiSdWs)

+
1

2

∑
i,j

θiSθjSFωi[(1− pj)ωj +
piδi,jaj
ai

− pjωj + ωj
∑
k

pkωk]ds

161



Ph.D. Thesis - Oumar Soule Mbodji McMaster - Mathematics

The dW (s) term is ∑
i

Fωi(−θiS)

and the ds - term is∑
i Fωi(−ri) + 1

2

∑
i,j θiSθjSFωi[(1− pj)ωj +

piδi,jaj
ai
− pjωj + ωj

∑
k pkωk]

= F
2

∑
i ωi(pi − 1)θ2

iS + F
2

∑
i,j θiSθjSωiωj(1− pi − pj +

∑
k pkωk)− F

∑
k ωkrk

= −F
∑

k ωkrk + F
2

∑
i ωi(pi − 1)θ2

iS −
∑

k ωkθk
∑

i(1− pi)ωiθiS +
(
∑
k ωkθkS)2

2
(1−∑

k pkωk)

Remembering that ∑
k

ωk = 1

and

F (a(s)) = M(s),

dM(s) becomes:

dM(s) = −M(s)
∑
k

ωk(s)θkSdW (s)−M(s)

[∑
k

ωkrk +
1

2

∑
k

ωk(pk − 1)θ2
kS

+
∑
k

ωkθk
∑
i

(1− pk)ωkθkS +
(
∑

k ωkθkS)2

2
(
∑
k

(1− pk)ωk)
]
ds (5.108)

and since

dM(s) = M(s)(−r(s)ds− θS(s)dW (s)) (5.109)

we get the expressions for r and θS by equating the ds and dW terms . �

Proof [Proposition 3.22]

Since θS is linear in the ωi’s and r is a polynomial of degree 3 in the ωi’s,
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i = 1, · · · , I, it suffices to find a uniform bound for ∂ωi(s)
∂w

and ∂ωi(s)
∂s

.

Note that

ωi(s) =

pi

(
ai(s)
F (a(s))

)pi
∑

j pj

(
aj(s)

F (a(s))

)pj
and taking the derivative, we get:

∂ωi
∂aj

= ωi

[
pi
(δi,j
aj
− ωj
aj

)
−
∑
k

pk(δj,k − ωj)
ωk
aj

]

∂ωi
∂w

=
∑
j

∂ωi
∂aj

∂aj
∂w

=
∑
j

ωi(−θjSaj)

[
pi
(δi,j
aj
− ωj
aj

)
−
∑
k

pk(δj,k − ωj)
ωk
aj

]

= ωi

[
pi(θS − θiS)−

∑
j

pjωj(θS − θjS)

]
(5.110)

∂ωi
∂s

=
∑
j

∂ωi
∂aj

∂aj
∂s

=
∑
j

ωi(−rj −
θ2
jS

2
)aj

[
pi
(δi,j
aj
− ωj
aj

)
−
∑
k

pk(δj,k − ωj)
ωk
aj

]

=
∑
j

ωi(−rj −
θ2
jS

2
)

[
pi
(
δi,j − ωj

)
−
∑
k

pk(δj,k − ωj)ωk

]
(5.111)

Since ωj ∈ [0, 1] for all j, ∂ωi
∂w

and ∂ωi
∂s

are bounded. This ends the proof. �

Proof [Theorem 3.24]
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From the expression

ĉi(s)X̂ i(s) =
ĉi(0)X̂ i(0)

ε(0)
ε(s)

(
Mi(s)

M(s)

)pi
= ĉi(0)X̂ i(0)e

∫ s
0 (µ−σ

2

2
+r(u)−ri(u)+

θ2S−θ
2
iS

2
)du+

∫ s
0 (σ+θS(u)−θiS)dWu

and the fact that all the terms in the exponent are uniformly bounded, we conclude

that

EPi
t sup
t≤s≤T

[|Ui(ĉi(s)X̂ i(s))|] (5.112)

=
|ĉi(t)X̂ i(t)|γi
|γi|

EP
t

[
sup
t≤s≤T

e
∫ s
t −

δ2i
2

+γi(µ−σ
2

2
+r(u)−ri(u)+

θ2S−θ
2
iS

2
)du+

∫ s
t (δi+γi(σ+θS(u)−θiS)dWu

]
=
|ĉi(t)X̂ i(t)|γi
|γi|

EP
t

[
sup
t≤s≤T

e
∫ s
t

(
− δ

2
i
2

+γi(µ−σ
2

2
+r(u)−ri(u)+

θ2S−θ
2
iS

2
)+

(δi+γi(σ+θS(u)−θiS))2

2

)
du

×Ei(t, s)
]

where

Ei(t, s) := exp(

∫ s

t

(δi + γi(σ + θS(u)− θiS))dWu −
1

2

∫ s

t

(δi + γi(σ + θS(u)− θiS))2du)

(5.113)

The term in the exponential in equation (5.184) is bounded by a constant K ≥ 0

independent of u.

∣∣− δ2
i

2
+γi(µ−

σ2

2
+r(u)−ri(u)+

θ2
S − θ2

iS

2
)+

(δi + γi(σ + θS(u)− θiS))2

2

∣∣ ≤ K (5.114)
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Note that EP
t [Ei(t, s)] = 1 , thus

EPi
t sup
t≤s≤T

[|Ui(ĉi(s)X̂ i(s))|] ≤ 1

|γi|

(
xi

vi(t, w)

)γi
eK(T−t) <∞. (5.115)

From the expression

X̂ i(T ) = ĉi(T )X̂ i(T ) = ĉi(t)X̂ i(t)e
∫ T
t (µ−σ

2

2
+r(u)−ri(u)+

θ2S−θ
2
iS

2
)du+

∫ T
t (σ+θS(u)−θiS)dWu

we conclude similarly that EPi
t [|Ui(X̂ i(T ))|] <∞.

By the preceding proposition,

ĉi(t, w) =
1

vi(t, w)

is positive and uniformly bounded.

σSπ̂
i(t, w) = piφi + σS

∂vi
∂w

vi
(t, w)

is also uniformly bounded. Therefore the dt term and the dWt term in the expression

of dX̂i(t)

X̂i(t)
are all bounded. The same is true for the coefficients of dS(t)

S(t)
, so both SDEs

have strong solutions with continuous paths. We end by verifying the hypotheses of

the HJB verification theorem 3.9.

xiV
i
x = vpii x

γi
i , V i

s = vpi−1
i xγii

pi
γi

∂vi
∂s

, V i
w = vpi−1

i xγii
pi
γi

∂vi
∂w

Simce vi and its time and space derivatives are uniformly bounded, we see that all

the integrability conditions are satisfied. V i is indeed the value function for agent i
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and this ends the proof of the existence of the equilibrium. �

Proof [Proposition 3.19]

We have:

Si(u) =
1

Mi(u)
Eu
[∫ T

u

Mi(v)ε(v)dv +Mi(T )ε(T )

]

To simplify, we omit the final term in the calculations.

Si(u) = ε(u)Eu
[∫ T

u

exp

(∫ v

u

(
−ri(y)− θ2

iS

2
+ µ− σ2

2

)
dy +

∫ v

u

(σ − θiS)dW (y)

)
dv

]
Si(u) = ε(u)

∫ T

u

exp

(∫ v

u

(
−ri(y)− θ2

iS

2
+ µ− σ2

2
+

(σγi + δi)
2

2

)
dy

)
dv

And the argument in the integrand is

−ri(y)− θ2
iS

2
+ µ− σ2

2
+

(σγi + δi)
2

2
= −(−γi(µ−

σ2

2
)− (σγi + δi)

2 + δ2
i

2
−

∂fi(t,s)
∂s

fi(t, s)
)

= −ρi(t, s) + γi(µi −
σ2

2
)

Therefore, we have

Si(u) = ε(u)

∫ T

u

exp

(∫ v

u

(
∂fi(t,s)
∂s

fi(t, s)
+ γi(µi −

σ2

2
)

)
ds

)
dv

Si(u) = ε(u)

∫ T

u

fi(t, v)

fi(t, u)
exp

(
γi(µi −

σ2

2
)(v − u)

)
dv

�

Proof [Proposition 3.21]
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Let

R(t) =
S(t)

ε(t)

be the price-dividend ratio.

R(t) =
1

M(t)ε(t)
Et
[∫ T

t

Muεudu+MT εT

]
(5.116)

Write R(t) = R(t,Wt). Then, taking the differentiable in the expression

S(t) = R(t)ε(t)

and equating the dW terms, we get

σS(t)S(t) =
∂R(t)

∂w
εt + σR(t)εt (5.117)

So

σS(t) = σ +
∂R(t)
∂w

R(t)
(5.118)

Recall that

ai(s) = (
ĉi(0)X̂ i(0)

ε(0)
)1−γiMi(s)

and

M(s) = F (M1(s), · · · ,MI(s))
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by the Chain Rule:

∂M

∂w
=

∑
i

∂F

∂ai
(a)× ∂ai

∂w
=
∑
i

Fωi
ai

(−θiSai) (5.119)

= −
∑
i

θiSωiF (a) = −M(u)θS(u) (5.120)

∂ε(u)

∂w
= σε(u) (5.121)

so that

∂(Muεu)

∂w
= (σ − θS(u))M(u)ε(u) (5.122)

Taking the derivative under the expectation sign, we get:

∂

∂w
Et
[∫ T

t

Muεudu+MT εT

]
= Et

[∫ T

t

Muεu(σ − θS(u))du+MT εT (σ − θS(T ))

]
(5.123)

On the other hand:

∂

∂w
Et
[∫ T

t

Muεuds+MT εT

]
= R(t)M(t)ε(t)

(
− θS(t) + σ +

∂R(t)
∂w

R(t)

)
= R(t)M(t)ε(t)(−θS(t) + σS(t)) (5.124)

Thus

σS(t)− θS(t) =
1

R(t)M(t)ε(t)
Et
[∫ T

t

Muεu(σ − θS(u))du+MT εT (σ − θS(T ))

]
(5.125)
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σS(t) = σ +
Et
[∫ T

t
(θS(t)− θS(u))Muεudu+ (θS(t)− θS(T ))MT εT

]
Et
[∫ T

t
M(u)εudu+M(T )εT

] (5.126)

�

Proof [Proposition 3.35] We use

lim
s→∞

ωi(s) = δi,iK

in the expression

r(s) =
∑
i

ωi(s)ri(s) +
1

2

∑
i

ωi(1− pi)θ2
iS − (

∑
i

ωiθiS)(
∑
j

(1− pj)ωj(s)θjS)

+
1

2
(
∑
i

ωi(s)θiS)2(
∑
j

(1− pj)ωj(s))

The limit of the expression in the right hand side is

lim
s→∞

riK (s) +
(1− piK )θ2

iKS

2
− θ2

iKS
(1− piK ) +

θ2
iKS

2
(1− piK )

= lim
s→∞

riK (s)

For the consumption ratio, we use the fact that for all j,

ωj(s) =
pj ĉ

j(s)X̂j(s)∑
k pkĉ

k(s)X̂k(s)

Thus

piĉ
i(s)X̂ i(s)

ε(s)
=

(1− γi)ωi(s)∑
j(1− γj)ωj(s)

(5.127)
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And passing to the limit, yields (5.184) �

The following lemma gives tight bounds for the pricing kernel M in terms of the

homogenous pricing kernels Mi.

Lemma 5.26. Let Γ ≥ 1 be such that Γpi > 1 for all i and γ ≤ 1 be such that γpi ≤ 1

for all i. Let

ηi0 :=
ĉi(0)X̂ i(0)

ε0
(5.128)

Let M(s) be defined by (3.53), then:

(
∑
i

η
1−γi
γ

i0 Mi(s)
1
γ )γ ≤M(s) ≤ (

∑
i

η
1−γi

Γ
i0 Mi(s)

1
Γ )Γ (5.129)

We also have

min
i
Mi(s) ≤M(s) ≤ max

i
Mi(s) (5.130)

A simple proof can be found in Cvitanic et al. (2012).

Proof [Proposition 3.36]

To simplify we take T0 = T = maturity of the bond.

Note that

Et[MiT ] = Et[exp(

∫ T

0

(−ri(u)− θ2
iS

2
du−

∫ T

0

θiSdW (u))]

= exp
( ∫ t

0

−ri(u)du− θiSWt

)
exp

( ∫ T

t

−ri(u)du
)

And using the inequality for MT in the lemma,
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(
∑
i

η
1−γi
γ

i0 [MiT ]
1
γ )γ ≤MT ≤ (

∑
i

η
1−γi

Γ
i0 M

1
Γ
iT )Γ

Jensen’s inequality implies that

(
∑
i

η
1−γi
γ

i0 Et[MiT ]
1
γ )γ ≤ Et[MT ] ≤ (

∑
i

η
1−γi

Γ
i0 Et[MiT ]

1
Γ )Γ

γ

T
log(

∑
i

η
1−γi
γ

i0 (exp(

∫ t

0

−ri(u)du− θiSWt) exp(

∫ T

t

−ri(u)du))
1
γ ) ≤ 1

T
logEt[MT ]

≤ Γ

T
Et log(

∑
i

η
1−γi

Γ
i0 (exp(

∫ t

0

−ri(u)du− θiSWt) exp(

∫ T

t

−ri(u)du))
1
Γ )

and taking the equivalents of the two bounds when T →∞, we get:

1

T
logEt[MT ] ∼ − 1

T

∫ T

0

rir(u)

where rir := infi ri.

B(t, T ) =
1

Mt

Et[MT ] = exp(−Y (t, T )(T − t))

and

Y (t, T ) = − 1

T − t
(log(Et[MT ]− log(Mt)) ∼

1

T

∫ T

0

rir(u)du

as T →∞, t remaining fixed.

If in addition, we suppose that

lim
s→∞

ρi(0, s) = ρ̄i
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then it is clear that the above limit is

lim
T→∞

Y (t, T ) = lim
s→∞

rir(s) := rir(∞)
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Appendix 3: Subgame Perfect Equilibrium with Het-

erogeneous Agents

Proof [Proposition 4.6]

Using equation (4.30), we get:

∂V i

∂t
+

1

2
(xiσSπ̄

i)2V i
xx + (r − c̄i)xiV i

x +
(c̄ixi)

γi

γi
− 1

2V i
xx

(ω2σω2V
i
ω2x
− φiV i

x)2

−ω2µω2iV
i
ω2

+
1

2
(ω2σω2)2V i

ω2ω2
= QiV

i (5.131)

We use the ansatz:

V i(t, ω2, xi) = vi(t, ω2)1−γi x
γi
i

γi

and the equations (4.29) to get:

σSπ̄
i = −ω2σω2

∂vi
∂ω2

vi
+ piφi ; c̄i =

1

vi
(5.132)

This leads to

∂vi
∂t
vi(t, ω2)−γi

(1− γi)xγii
γi

+
1

2
(−ω2σω2

∂vi
∂ω2

vi
+ piφi)

2v1−γi
i (γi − 1)xγii + (r − 1

vi
)v1−γi
i xγii

+
xγii
γi
v−γii − 1

2v1−γi
i (γi − 1)xγii

((1− γi)ω2σω2v
−γi
i xγii

∂vi
∂ω2

− φixγii v
1−γi
i )2

−ω2µω2i(1− γi)v
−γi
i

xγii
γi

∂vi
∂ω2

+
1

2
(ω2σω2)2[(γi − 1)v−γi−1

i xγii (
∂vi
∂ω2

)2 + (1− γi)v−γii

∂2vi
∂ω2

2

xγii
γi

]

= Qiv
1−γi
i

xγii
γi

By multiplying the expression above by vi(t, ω2)γix−γii
γi

1−γi , we get:
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∂vi
∂t

+
1

2
(−ω2σω2

∂vi
∂ω2

vi
+ piφi)

2vi(−γi) + (r − 1

vi
)vi

γi
1− γi

(1− γi) +
1

2(1− γi)2v1−2ωi
i

((1− γi)ω2σω2

∂vi
∂ω2

vi
− φi)2v2−2γi

i

−ω2µω2i
∂vi
∂ω2

+
1

2
(ω2σω2)2[−γi

( ∂vi
∂ω2

)2

vi
+
∂2vi
∂ω2

2

] = Qivi
1

1− γi

The terms in
(
∂vi
∂ω2

)2

vi
add up to zero. Rearranging everything, we get (4.31) i.e. :

∂vi
∂t

+
1

2
ω2

2σ
2
ω2

∂2vi
∂ω2

2

− ω2(µω2i + γipiφiσω2)
∂vi
∂ω2

+pi(γir +
γipiφ

2
i

2
−Qi)vi + 1 = 0

�

Proof [Proposition 4.7]

We prove that d log(c̄i(t)X̄ i(t)) = pi(r +
φ2
i

2
− δiφi −Qi)dt+ piφidWt

By use of the Itô formula on vi(t, ω2(t)):

dvi = (
∂vi
∂t
− ω2µω2i

∂vi
∂ω2

+
1

2
ω2

2σ
2
ω2

∂2vi
∂ω2

2

)dt− ω2σω2

∂vi
∂ω2

dW i
t

and

dX̄ i(t)

X̄ i(t)
=

(
r − 1

vi
+ φi(piφi − ω2σω2

∂vi
∂ω2

vi
)

)
dt+ (piφi − ω2σω2

∂vi
∂ω2

)dW i
t
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Therefore,

d log(c̄i(t)X̄ i(t)) = d log(
X̄ i(t)

vi(t)
) = d log X̄ i(t)− d log(vi(t))

= −dvi
vi

+
1

2
(
dvi
vi

)2 +
dX̄ i

X̄ i
− 1

2
(
dX̄ i

X̄ i
)2

=

(
r − 1

vi
+ φi(piφi − ω2σω2

∂vi
∂ω2

vi
)−

(piφi − ω2σω2

∂vi
∂ω2

vi
)2

2
+

(ω2σω2

∂vi
∂ω2

vi
)2

2

−
∂vi
∂t
− ω2µω2i

∂vi
∂ω2

+ 1
2
ω2

2σ
2
ω2

∂2vi
∂ω2

2

vi

)
dt+ (piφi − ω2σω2

∂vi
∂ω2

vi
)dW i

t +
ω2σω2

∂vi
∂ω2

vi
dW i

t

And using the PDE for vi in the expression above, we obtain after some calculations:

d log(c̄i(t)X̄ i(t)) = pi(r +
φ2
i

2
−Qi)dt+ piφidW

i
t

or in terms of the Brownian motion W :

d log(c̄i(t)X̄ i(t)) = pi(r +
θ2
S − δ2

i

2
−Qi)dt+ piφidWt

�

Proof [Proposition 4.8]

We have

ω2(t) =
p2c̄

2(t)X̄2(t)

p1c̄1(t)X̄1(t) + p2c̄2(t)X̄2(t)
=

p2yt
p1(1− yt) + p2yt

:= g(yt)

Solving for yt, we get:

yt =
p1ω2

p1ω2 + p2ω1

(5.133)

Since g′(yt) = p2p1

(p1(1−yt)+p2yt)2 = p2p1(ω2(t)
p2yt

)2 and g′′(yt) = − 2p1p2(p2−p1)
(p1(1−yt)+p2yt)3 = 2p1p2(p2−
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p1)((ω2(t)
p2yt

)3)

An application of Ito’s lemma gives:

dω2(t) = g′(yt)dyt +
1

2
g′′(yt)(dyt)

2

=
p1

p2

(
ω2(t)

yt
)2p2yt(α2dt+ (θS − θ2S)dWt) +

p1(p2 − p1)

p2
2

(
ω2(t)

yt
)3p2

2y
2
t (θS − θ2S)2dt

Noting that θS − θ2S = ω1(θ1S − θ2S)

dω2(t) =
p1

p2

(
p1ω2 + p2ω1

p1

)2p2yt(α2dt+ ω1(θ1S − θ2S)dWt)

+
p1(p2 − p1)

p2
2

(
p1ω2 + p2ω1

p1

)3p2
2y

2
tω

2
1(θ1S − θ2S)2dt

dω2(t) = (p1ω2 + p2ω1)ω2(α2dt+ ω1(θ1S − θ2S)dWt)

+(p1ω2 + p2ω1)(p2 − p1)ω2
2ω

2
1(θ1S − θ2S)2dt

Note that r is of the form r =
∑

i ωi(βi(ω2) +Qi) where βi is a polynomial in ω2 with

constant coefficients.

We also note that

α2 = r −Q2 − β2 = ω1(β1 + Q1) + ω2(β2 + Q2)−Q2 − β2 = ω1(β1 − β2 + Q).

α2 = ω1

(
Q+

(1− p2)φ2
2 − (1− p1)φ2

1

2
+(γ2−γ1)(µ−σ

2

2
)+
p2(θS − θ2S)2 − p1(θS − θ1S)2

2

)
(5.134)

Thus ω2 has an SDE of the form

dω2(s) = (p1ω2 + p2ω1)ω1ω2[(Q(s, ω2(s)) + Φ0(ω2))ds+ (θ1S − θ2S)dWs] (5.135)
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where Φ0 is a polynomial with constant coefficients and of degree at most 2.

Φ0(ω2) = δ2
1 − δ1δ2 + µ(γ2 − γ1)

+
(θ1S − θ2S)2

2
[p1(2ω1ω2 − ω2

2) + p2(ω2
1 − 2ω1ω2)]

�

Proof [Proposition 4.11]

Noticing that in the homogenous economy of agent i: c̄i(s)X̄ i(s) = ε(s) and

replacing it in the expression (4.25) for Qi, we get

qi(t) =
EP
t

∫ T
t

∂fi(t,s)
∂t

Zi(s)ε(s)
γids+ ∂fi(t,T )

∂t
Zi(T )ε(T )γi

EP
t

∫ T
t
fi(t, s)Zi(s)ε(s)γids+ fi(t, T )Zi(T )ε(T )γi

Using the fact that

ε(s)γiZi(s) = ε(t)γiZi(t)e
(γi(µ−σ

2

2
)− δ

2
i
2

)(s−t)+(δi+γiσ)(Ws−Wt)

we get

EP
t [ε(s)

γiZi(s)] = ε(t)γiZi(t)e
(γi(µ−σ

2

2
)− δ

2
i
2

)(s−t)+ (δi+γiσ)2

2
(s−t) = ε(t)γiZi(t)e

ki(s−t)

and this yields the result. �

Proof [Proposition 4.12]

We write

Mi(v)ε(v)

Mi(t)ε(t)
= exp

(∫ v

t

−ri(u)− θ2
iS

2
+ µ− σ2

2
du+

∫ v

t

(σ − θiS)dW (u)

)
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And using (4.49), we get

EP
t

[
Mi(v)ε(v)

Mi(t)ε(t)

]
= exp

(∫ v

t

γi(µi −
σ2(1− γi)

2
− qi(u))du

)
:= si(t, v)

Equation (4.49) comes from the clearing conditions for the commodity and stock:

For example in agent 1’s homogenous economy

c̄1(t)X̄1(t) = ε(t)

and

S1(t) = X̄1(t) =
c̄1(t)X̄1(t)

c̄1(t)
= ε(t)v1(t, 0)

Similarly

S2(t) = ε(t)v2(t, 1)

�

Proof [Proposition 4.13] Let

yt :=
c̄2(t)X̄2(t)

ε(t)
; Yt =

c̄1(t)X̄1(t)

ε(t)
= 1− yt (5.136)

Since

c̄2(t)X̄2(t) = c̄2(0)X̄2(0) exp

(∫ t

0

p2(r +
(1− p2)

2
φ2

2 −Q2)du+

∫ t

0

p2φ2(u)dW (u)

)
(5.137)

178



Ph.D. Thesis - Oumar Soule Mbodji McMaster - Mathematics

we get:

y(t) = y(0) exp

(∫ t

0

p2(r +
1− p2

2
φ2

2 −Q2 − (µ− σ2

2
))du+

∫ t

0

(p2φ2(u)− σ)dW (u)

)
(5.138)

Noting that

p2φ2(u)− σ = p2(θ2 + δ2 − σ(1− γ2)) = p2(θS(u)− θ2S)

This implies that

dyt = p2yt

[(
r +

(1− p2)φ2
2

2
−Q2 − (1− γ2)(µ− σ2

2
) +

p2(θS − θ2S)2

2

)
dt+ (θS(t)− θ2S)dW (t)

]
dyt = p2yt[α2(t)dt+ (θS − θ2S)dW (t)]

Similarly

dYt = p1Yt

[(
r +

(1− p1)φ2
1

2
−Q1 − (1− γ1)(µ− σ2

2
) +

p1(θS − θ1S)2

2

)
dt+ (θS(t)− θ1S)dW (t)

]
dYt = p1Yt[α1(t)dt+ (θS − θ1S)dW (t)]

Adding the two expressions yt + Yt = 1, we get

p1Ytα1(t) + p2ytα2(t) = 0

p1Yt(θS − θ1S) + p2yt(θS − θ2S) = 0
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Thus

θS(t) =
p1Yt

p1Yt + p2yt
θ1S +

p2yt
p1Yt + p2yt

θ2S = ω1(t)θ1S + ω2(t)θ2S

We also have

0 = p1Yt
p1Yt+p2yt

α1(t)+ p2yt
p1Yt+p2yt

α2(t) = ω1(t)α1(t)+ω2(t)α2(t) =
∑

i ωi
(
r+

(1−pi)φ2
i

2
−

Qi − (1− γi)(µ− σ2

2
) + pi(θS−θiS)2

2

)
And solving for r yields:

r =
∑
i

ωi
((pi − 1)φ2

i

2
+ Qi + (1− γi)(µ−

σ2

2
)− pi(θS − θiS)2

2

)
(5.139)

�

Proof [Proposition 4.16]

Consider the SDE (5.231) defined for s ≥ t by:

dωy2(s) = ωy2ω
y
1(s)

(
p1ω

y
2 + p2ω

y
1(s)

)[
(y(s, ωy2(s)) + Φ0(ωy2(s))ds+ (θ1S − θ2S)dW (s)

]
(5.140)

with initial condition ωy2(t) = ω2 and call

xys := log

(
ωy2(s)

1− ωy2(s)

)
(5.141)

we get by Ito’s lemma:

dxys = d logωy2(s)−d logωy1(s) =
dωy2 (s)

ωy2 (s)
− 1

2
(
dωy2 (s)

ωy2 (s)
)2− dωy1 (s)

ωy1 (s)
+ 1

2
(
dωy1 (s)

ωy1 (s)
)2 = (p1ω

y
2 +

p2ω
y
1)

[(
y(s, ωy2(s))+Φ0(ωy2(s))+(ωy2−ω

y
1)(p1ω

y
2 +p2ω

y
1) (θ1S−θ2S)2

2

)
ds+(θ1S−θ2S)dWs

]
Let

q2(x) :=
1

1 + e−x
and q1(x) := 1− q2(x) (5.142)
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Equation (5.232) implies

ωyi (s) = qi(x
y
s)

Thus,

dxys = (p1q2+p2q1)

[(
y(s, q2(xys))+Φ0(q2)+(q2−q1)(p1q2+p2q1)

(θ1S − θ2S)2

2

)
ds+(θ1S−θ2S)dWs

]

where all the expressions are evaluated at the point (s, xys). Noting that

q′2(x) = −q′1(x) = q1(x)q2(x)

it is clear that the coefficients of the SDE have a bounded x derivative and are

continuous with respect to t. This shows that the SDE for xys has a unique solution

for t ≤ s ≤ T . Furthermore ωy2(s) = q2(xys) ∈ [0, 1]. �

Proof [Theorem 4.18]

The process ω2(s) = ωQ
2 (s) satisfies the conditions of Proposition 4.16. There-

fore, ω2(s) exists for s ∈ [0, T ] and stays in the interval [0, 1].

An examination of the proof of Theorem 4.17 reveals that Qi := Fi[Q] ∈ B.

This ends the proof. �

Proof [Proposition 4.19]

To obtain the PDE (4.76), we start with equation (4.31):

∂vi
∂t

+
1

2
ω2

2σ
2
ω2

∂2vi
∂ω2

2

− ω2(µω2i + γipiφiσω2)
∂vi
∂ω2

+pi(γir +
γipiφ

2
i

2
−Qi)vi + 1 = 0
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Recall the equations (4.35), (4.36)

µω2 = −ω1(t)(p1ω2 + p2ω1)
(
Q(t, ω2) + Φ0(ω2)

)
σω2 = −ω1(t)(p1ω2 + p2ω1)(θ1S − θ2S)

and that µω2i = µω2 + δiσω2 . We replace r and θS obtained in Proposition 4.13. We

get after rearranging:

∂vi
∂t

+
1

2
((ω1ω2(p1ω2 + p2ω1)(θ1S − θ2S))2∂

2vi
∂ω2

2

+ω1ω2(p1ω2 + p2ω1)(k0i + Q(t, ω2))
∂vi
∂ω2

+K1ivi + 1 = 0

vi(T, ω2) = 1

We first prove the existence and uniqueness of a bounded solution to the PDE



∂vi
∂t

+ 1
2
((ω1ω2(p1ω2 + p2ω1)(θ1S − θ2S))2 ∂2vi

∂ω2
2

+ω1ω2(p1ω2 + p2ω1)(k0i + Q(t, ω2)) ∂vi
∂ω2

+K1ivi + 1 = 0

vi(T, ω2) = 1

(5.143)

where ω1 = 1− ω2 and (in terms of the equilibrium parameters):

K1i(t, ω2) = pi(γir(t, ω2) +
γipiφ

2
i

2
−Qi(t, ω2)) (5.144)
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k0i(ω2) =
1

2
(θ2S(p2ω

2
1 − p1ω

2
2 + 2(p1 − p2)ω1ω2)(θ2S − θ1S)2 (5.145)

+γipiφi(θ1S − θ2S) + (γ2 − γ1)(µi −
σ2

2
) +

δ2
1 − δ2

2

2
+ δi(δ2 − δ1)

K1i(t, ω2) = k1i(ω2) + piγi(ω1Q1 + ω2Q2(t, ω2))− piQi (5.146)

and

k11 = p1γ1

∑
j ωj(

µ
pj

+
δ2
j−θ2

S

2
)+ ω2

2
(p1(θ1Sω1+θ2Sω2+δ2)2−p2(θ1Sω1+θ2Sω2+δ1)2)

k12 = p2γ2

∑
j ωj(

µ
pj

+
δ2
j−θ2

S

2
)− ω1

2
(p1(θ1Sω1 + θ2Sω2 + δ2)2 − p2(θ1Sω1 + θ2Sω2 + δ1)2)

The above PDE is parabolic, however it has a degeneracy at ω2 = 0 and ω2 = 1.

Consider the change of variables:

x = log

(
ω2

1− ω2

)
(5.147)

Thus

ω1 =
e−x

1 + e−x
:= q1(x) ; ω2 =

1

1 + e−x
:= q2(x) (5.148)

Take

v̄i(t, x) := vi(t, q2(x)) (5.149)

We get:

∂v̄i(t, x)

∂x
= q1(x)q2(x)

∂vi(t, ω2)

∂ω2

∂2v̄i(t, ω2)

∂x2
= q1(x)q2(x)

[
q1q2

∂2vi(t, ω2)

∂ω2
2

+ (1− 2q2)
∂vi(t, ω2)

∂ω2

]

The PDE for v̄i is a uniformly parabolic PDE with bounded coefficients that are

uniformly Lipschitz continuous in (t, x) thus it has a unique bounded solution. The
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PDE for v̄i is given by:

0 =
∂v̄i
∂t

+
1

2
(p1q2(x) + p2q1(x))2(θ1S − θ2S)2∂

2v̄i
∂x2

+K1i(t, q2(x))v̄i + 1 (5.150)

+

[
(p1ω2 + p2ω1)(k0i + Q(t, q2(x)))− 1− 2q2(x)

2
(p1q2 + p2q1(x))2(θ1S − θ2S)2

]
∂v̄i
∂x

v̄i(T, x) = 1 (5.151)

�

Proof [Theorem 4.20]

From Proposition 4.19, we see that vi(t, ω2)1−γiUi(xi) is a value function solution

of the extended HJB (4.23). The consumption to wealth ratio c̄i and the investment

to wealth ratio π̄i are given by:

c̄i =
1

vi
; π̄i = piφi − ω2σω2

∂vi
∂ω2

vi

And since

σω2 = −(p1ω2 + p2ω1)ω1(θ1S − θ2S),

π̄i = piφi − ω2σω2

∂vi
∂ω2

vi
= piφi + (p1ω2 + p2ω1)ω1ω2(θ1S − θ2S)

∂vi
∂ω2

vi

From the definition of ω1(t), we have

ω1(t) =
p1c̄

1(t)X̄1(t)

p1c̄1(t)X̄1(t) + p2c̄2(t)X̄2(t)
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so c̄1(t)X̄1(t)(p1 − p1ω1(t)) = p2ω1(t)c̄2(t)X̄2(t). Thus

c̄1(t)X̄1(t) =
p2ω1(t)

p1ω2(t)
c̄2(t)X̄2(t)

and by the commodity clearing condition

c̄1(t)X̄1(t) + c̄1(t)X̄1(t) = ε(t)

we get

p2ω1(t) + p1ω2(t)

p1ω2(t)
c̄2(t)X̄2(t) = ε(t).

This proves (5.200).

The expressions for X̄ i(t) are obtained by writing X̄ i(t) = vi(t, ω2(t))c̄i(t)X̄ i(t).

To obtain S(t), we write the clearing condition S(t) = X̄1(t) + X̄2(t).

The price dividend ratio is R(t) = S(t)
ε(t)

. We notice that R(t) is a deterministic

function of t, ω2(t). We can

dS(t) = d(R(t, ω2(t))ε(t)) (5.152)

and identifying the dW (t) terms in the expression above:

σS(t) = σ +
∂R
∂ω2

R

�

Proof [Theorem 4.17 : There exists ν > 0 such that the operator y 7→ F [y] defines

a contraction on the space Bν . ]

185



Ph.D. Thesis - Oumar Soule Mbodji McMaster - Mathematics

Recall

ρi(t, s) =
∂fi(t,s)
∂t

fi(t, s)
∀ 0 ≤ t ≤ s ≤ T.

Recall that for ν > 0 :

Bν := {y ∈ C([0, T ]×[0, 1]) | y is C1 in t, ω2 and ∀(t, ω2) ∈ [0, T ]×[0, 1] , |y(t, ω2)| ≤

2||ρ|| & |∂y(t,ω2)
∂ω2
| ≤ ν}.

Define the polynomials

G0(x) = x(1− x)(p1x+ p2(1− x)) ; g0(x) = G′0(x) (5.153)

Φ0(x) = δ2
1−δ1δ2+µ(γ2−γ1)+

(θ1S − θ2S)2

2
[p1(2x(1−x)−x2)+p2((1−x)2−2x(1−x))

(5.154)

φ0(x) = Φ′0(x) (5.155)

Recall that ωy2(s) is given by the SDE

dωy2(s) = G0(ωy2)(y(s, ωy2) + Φ0(ωy2))ds+G0(ωy2)(θ1S − θ2S)dWs (5.156)

Let Dt,y(s) be the derivative process
∂ωt,y2 (s)

∂ω2(t)
. It satisfies the SDE

dDt,y(s) = [G0.(
∂y

∂ω2

+φ0)+g0.(y+Φ0)(s, ωt,y2 (s))]Dt,y(s)ds+(θ1S−θ2S)g0(ωt,y2 (s))Dt,y(s)dWs

(5.157)

Dt,y(s) is given by the explicit formula

Dt,y(s) = exp

(∫ s

t

G0.(
∂y

∂ω2

+φ0)+g0.(y+Φ0)−(θ1S − θ2S)2g2
0

2
du+

∫ s

t

(θ1S−θ2S)g0 dWu

)
(5.158)
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We can also write the second derivative process

Et,y(s) =
∂Dt,y(s)

∂ω2

(5.159)

It is given by the linear SDE

dEt,y(s) = [
∂α(s)

∂ω2

Dt,y(s)2+α(s)Et,y(s)]ds+(θ1S−θ2S)[g′0(ωt,y2 (s))Dt,y(s)2+g0(ωt,y2 (s))Et,y(s)]dWs

(5.160)

where Et,y(t) = 0 and

α := G0(ω2).(
∂y(t, ω2)

∂ω2

+ φ0(ω2)) + g0(ω2).(y(t, ω2) + Φ0(ω2))

is the drift of the SDE defining Dt,y(s).

We can write

ay1(u) = −p1γ1y(u)ωy2(u) + c1(ωy2(u))

ay2(u) = p2γ2y(u)(1− ωy2(u)) + c2(ωy2(u))

byi (u) = γipiθ
y(u) + piδi = piδi + γipiθ1S + γipi(θ2S − θ1S)ωy2(u)

where ci is a polynomial in ωy2 of degree 3 and constant coefficients and is independent

of y. Define

Zt,y
i (s) :=

∫ s

t

ayi (u)du+

∫ s

t

byi (u)dWu (5.161)

Lt,yi (s) :=

∫ s

t

(
∂ayi (u)

∂ω2

Dt,y(u)du+

∫ s

t

∂byi (u)

∂ω2

Dt,y(u)dWu (5.162)
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Et,y
i (s) :=

∂Lt,yi (s)

∂ω2

=

∫ s

t

∂2ayi (u)

∂ω2
2

(Dt,y(u))2+
∂ayi (u)

∂ω2

Et,y(u)du+

∫ s

t

p1γ1(θ1S−θ2S)Et,y(u)dWu

(5.163)

F0i[y](t, ω2) = EP
t

[∫ T

t

fi(t, s)e
Zt,yi (s)ds+ fi(t, T )eZ

t,y
i (T )

]
(5.164)

F1i[y](t, ω2) = EP
t

[∫ T

t

∂fi(t, s)

∂t
eZ

t,y
i (s)ds+

∂fi(t, T )

∂t
eZ

t,y
i (T )

]
(5.165)

In what follows, we omit the terms fi(t, T )eZ
t,y
i (T ), ∂fi(t,T )

∂t
eZ

t,y
i (T ) in order to simplify

the exposition. We have:

∂F0i[y](t, ω2)

∂ω2

= EP
t

[∫ T

t

fi(t, s)e
Zt,yi (s)Lt,yi (s)ds

]
(5.166)

∂2F0i[y](t, ω2)

∂ω2
2

= EP
t

[∫ T

t

fi(t, s)e
Zt,yi (s)

(
(Lt,yi (s))2 + Et,y

i (s)
)
ds

]
(5.167)

Preliminary inequalities

For a, b, c three non negative numbers and p ≥ 1, we have (Jensen):

(a+ b+ c)p ≤ 3p−1(ap + bp + cp) (5.168)

Lemma 5.27. For p ≥ 1, there is K2 > K1 > 0 independent of t, s, y but dependent

on p such that:

EP
t

[
sup
t≤u≤s

epZ
t,z
i (u)

]
≤ K2 (5.169)

EP
t

[
inf
t≤u≤s

epZ
t,z
i (u)

]
≥ K1 (5.170)

For p ≥ 2: There is K > 0 independent of t, s, y such that

EP
t

[
(Dt,y)∗ps

]
≤ eK(1+ν)(s−t) (5.171)
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EP
t

[
(Lt,yi )∗ps

]
≤ K(1 + ν)peK(1+ν)p(s−t)(s− t) (5.172)

EP
t [(E

t,y
i )∗p(s)] ≤ K(1 + ν)p(1 + ν + ν̄)p(s− t)eK(1+ν)p(s−t) (5.173)

Proof [Lemma 5.27] Let us fix y ∈ Bν . By definition |y(u)| ≤ ||ρ||. Since ωy2(u) ∈

[0, 1] we can easily see that both ayi (u) and byi (u) are bounded by constants ||ai|| and

||bi||.

Let us use the fact that

Rt,y
i (s) := eZ

t,y
i (s)

satisfies the SDE

dRt,y
i (s) = Rt,y

i (s)(at,yi (s) +
(bt,yi (s))2

2
)ds+ bt,yi (s)dW (s) (5.174)

Proposition 5.22 yields the existence of K2 independent of t, s such that:

EP
t [ sup
t≤u≤s

epZ
t,y
i (u)] ≤ K2e

K2(s−t) ≤ K2e
K2T (5.175)

The proof of inequality (5.261) is similar if we consider the process e−pZ
t,y
i (s).

Now, let us fix t ≤ u ≤ s ≤ T and y ∈ Bν . To prove the inequality (5.262), we

use the SDE

dDt,y(s) = [G0.(
∂y

∂ω2

+φ0)+g0.(y+Φ0)(s, ωt,y2 (s))]Dt,y(s)ds+(θ1S−θ2S)g0(ωt,y2 (s))Dt,y(s)dWs

∣∣∣∣G0.(
∂y
∂ω2

+ φ0) + g0.(y + Φ0)
)
dv

∣∣∣∣ ≤ K(1 + ν) ,

∣∣∣∣(θ1S − θ2S)g0(ωt,y2 (s))

∣∣∣∣ ≤ K
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for a certain constant K independent of t, s, ν, Proposition 5.22 yields

EP
t

[
(Dt,y)∗ps

]
≤ KeK(1+ν)p(s−t)

The proof of inequality (5.263) is similar. Recall

Lt,yi (s) :=

∫ s

t

(
∂ayi (u)

∂ω2

Dt,y(u)du+

∫ s

t

∂byi (u)

∂ω2

Dt,y(u)dWu

Lt,y1 (s) =

∫ s

t

(c′1(ωy2)− p1γ1(ωy2
∂y

∂ω2

+ y))Dt,y(u)du+

∫ s

t

p1γ1(θ2S − θ1S)Dt,y(u)dWu

(5.176)

so that by Proposition 5.22,

EP
t

[
(Lt,y1 )∗ps

]
≤ KEP

t

∫ s

t

∣∣∣∣(c′1(ωy2)−p1γ1(ωy2
∂y

∂ω2

+y))Dt,y(u)

∣∣∣∣p+∣∣∣∣p1γ1(θ2S−θ1S)Dt,y(u)

∣∣∣∣pdu
We can see that

EP
t

[
(Lt,y1 )∗ps

]
≤ K(1 + ν)peK(1+ν)p(s−t)(s− t) (5.177)

A similar inequality can be derived for Lt,y2 .

The proof of inequality 5.264 is also similar:

Et,y
i (s) =

∫ s

t

∂2ayi (u)

∂ω2
2

(Dt,y(u))2 +
∂ayi (u)

∂ω2

Et,y(u)du+

∫ s

t

p1γ1(θ1S − θ2S)Et,y(u)dWu

Taking

Js =

∫ s

t

∂2ayi (u)

∂ω2
2

(Dt,y(u))2du
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we get by Proposition 5.22:

EP
t [(E

t,y
i )∗p(s)] ≤ K1

(
EP
t [J
∗p
s ] +K(1 + ν)pEP

t

[ ∫ s

t

|Et,y(u)|pdu
])

By Jensen’s inequality

EP
t [J
∗p
s ] ≤ (s− t)p−1EP

t [ sup
t≤u≤s

∫ u

t

|∂
2ayi
∂ω2

2

(v)|p.(Dt,y(v))2pdv]

≤ K(1 + ν + ν̄)p(s− t)p ×KeK(1+ν)(s−t)

Again, by applying Proposition 5.22 successively:

EP
t [(E

t,y)∗p(s)] ≤ K1(EP
t [(J

t,y
E )∗ps ] + 2p−1(s− t)(||α||p + |(θ1S − θ2S)g0|p)

×e2p−1(s−t)(||α||p+|(θ1S−θ2S)g0|p))

where

J t,yE (s) =

∫ s

t

∂α(u)

∂ω2

Dt,y(u)2du+

∫ s

t

(θ1S − θ2S)g′0(ωt,y2 (s))Dt,y(u)2dWu (5.178)

and

EP
t [(J

t,y
E )∗ps ] ≤ K(1 + ν + ν̄)p(s− t)p ×KeK(1+ν)(s−t)

Since

||∂
2ayi
∂ω2

|| ≤ K(1 + ν + ν̄)
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we get:

EP
t [(E

t,y)∗p(s)] ≤ K1(K(1 + ν + ν̄)p(s− t)p ×KeK(1+ν)(s−t)

+2p−1(s− t)(||α||p + |(θ1S − θ2S)g0|p)× e2p−1(s−t)(||α||p+|(θ1S−θ2S)g0|p))

EP
t [(E

t,y)∗p(s)] ≤ K(1 + ν + ν̄)p(s− t)eK(1+ν)p(s−t)

Thus

EP
t [(E

t,y
i )∗p(s)] ≤ K1

(
EP
t [J
∗p
s ] +K(1 + ν)pEP

t

[ ∫ s

t

|Et,y(u)|pdu
])

≤ K1

(
K(1 + ν + ν̄)p(s− t)p ×KeK(1+ν)(s−t) +K(1 + ν)p(1 + ν + ν̄)p(s− t)2eK(1+ν)p(s−t)

)
EP
t [(E

t,y
i )∗p(s)] ≤ K(1 + ν)p(1 + ν + ν̄)p(s− t)eK(1+ν)p(s−t)

�

Definition of the norm ||.||t0,t1 Suppose z is a continuous bounded function de-

fined on [0, T ]× [0, 1], then ||z||t0,t1 will denote the following supremum:

||z||t0,t1 = sup
(u,x)∈[t0,t1]×[0,1]

|z(u, x)|

Lemma 5.28. Let y, z ∈ Bν and p ≥ 1. There is K > 0 independent of t, s, y:

EP
t [ sup
t≤u≤s

|ωt,z2 (u)− ωt,y2 (u)|p] ≤ K||z − y||pt,s(s− t)eK(1+ν)p(s−t) (5.179)

Proof [Lemma 5.28 ]

Fix y, z ∈ Bν . We suppose ωt,y2 (t) = ωt,z2 (t). From the SDE (5.247),
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ωt,z2 (s)−ωt,y2 (s) =
∫ s
t

(G0.z+G0.Φ0(u, ωt,z2 (u))du−(G0.y+G0.Φ0(u, ωt,y2 (u)))du+∫ s
t

(θ1S − θ2S)(G0(ωt,z2 (u))−G0(ωt,y2 (u)))dW (u)

The term in du (by the mean value theorem) is smaller than

|G0.Φ0(u, ωt,z2 (u))−G0.Φ0(u, ωt,y2 (u))|+ |G0.z(u, ωt,z2 (u))−G0.z(u, ωt,y2 (u))|

+|G0.z(u, ωt,y2 (u))−G0.y(u, ωt,y2 (u))|

≤ K(1 + ν)|ωt,z2 (u)− ωt,y2 (u)|+K||z − y||t,u

The dW (u) term is smaller than

|G0(ωt,z2 (u))−G0(ωt,y2 (u))| ≤ K|ωt,z2 (u)− ωt,y2 (u)| (5.180)

Thus, Proposition 5.22 yields:

EP
t [ sup
t≤u≤s

|ωt,z2 (u)− ωt,y2 (u)|p]

≤ KEP
t

[
(1 + ν)p

∫ s

t

|ωt,z2 (v)− ωt,y2 (v)|pdv + ||z − y||pt,s(s− t)
]

And by Gronwall’s inequality:

EP
t [ sup
t≤u≤s

|ωt,z2 (u)− ωt,y2 (u)|p] ≤ K||z − y||pt,s(s− t)eK(1+ν)p(s−t)

�
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Lemma 5.29. If y, z ∈ Bν, we get:

EP
t [|eZ

t,z
1 (s) − eZ

t,y
1 (s)|] ≤ K(1 + ν)

√
s− t||z − y||t,seK(1+ν)2(s−t) (5.181)

For p ≥ 2

EP
t

[
sup
t≤u≤s

|eZ
t,z
i (u) − eZ

t,y
i (u)|p

]
≤ K(1 + ν)p||z − y||pt,s(s− t)

1
2 eK(1+ν)p(s−t) (5.182)

If furthermore y, z ∈ Bν,ν̄, we get:

EP
t

[
sup
t≤u≤s

|Dt,z(u)−Dt,y(u)|p
]
≤ K

(
||z−y||pt,s+||

∂z

∂ω2

− ∂y

∂ω2

||pt,s
)

(1+ν+ν̄)peKν(s−t)(s−t)

(5.183)

and

EP
t sup
t≤u≤s

[|Lt,zi (u)−Lt,yi (u)|p] ≤ K(1 + ν + ν̄)2p
√
s− t×

(
||z− y||p + || ∂z

∂ω2

− ∂y

∂ω2

||pt,s
)

(5.184)

Proof [Lemma 5.29 ] We first prove inequality 5.272. We consider the case i = 1,

the case i = 2 is similar. We use the mean value theorem to get the estimate

|eZ
t,z
1 (s) − eZ

t,y
1 (s)| ≤ eM1(s)|Zt,z

1 (s)− Zt,y
1 (s)| with M1(s) ∈ [Zt,y

1 (s), Zt,z
1 (s)] (5.185)

Taking the expectation and using Cauchy Schwarz’s inequality yields:

EP
t [|eZ

t,z
1 (s) − eZ

t,y
1 (s)|] ≤ (EP

t [e
2M1(s)])

1
2 × (EP

t [|Z
t,z
1 (s)− Zt,y

1 (s)|2])
1
2 (5.186)

The first term (EP
t [e

2M1(s)])
1
2 is bounded by a constant K and the second term is
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bounded by

(EP
t [2|

∫ s
t
at,z1 (u)−at,y1 (u)du|2+2|

∫ s
t
bt,z1 (u)−bt,y1 (u)dW (u)|2])

1
2 ≤ 2(s−t)EP

t [
∫ s
t
|at,z1 (u)−

at,y1 (u)|2du+2
∫ s
t
|bt,z1 (u)−bt,y1 (u)|2du)

1
2 ≤

(
K||z−y||t,s+K(1+ν)(EP

t [supt≤u≤s |ωz2(u)−

ωy2(u)|2])
1
2

)√
s− t ≤

(
K||z − y||t,s +K(1 + ν)

√
s− tK||z − y||t,seK(1+ν)2(s−t))√s− t

EP
t [|eZ

t,z
1 (s) − eZ

t,y
1 (s)|] ≤ K(1 + ν)

√
s− t||z − y||t,seK(1+ν)2(s−t)

Now, we prove inequality 5.273.

eZ
t,z
1 (u) − eZ

t,y
1 (u) =

∫ u

t

(az1 +
(bz1)2

2
)eZ

t,z
1 (v) − (ay1 +

(by1)2

2
)eZ

t,y
1 (v)dv

+

∫ u

t

(eZ
t,z
1 (v)bz1(v)− eZ

t,y
1 (v)by1(v))dW (v)

Thus, by Proposition 5.22

EP
t [ sup
t≤u≤s

|eZ
t,z
1 (u) − eZ

t,y
1 (u)|p] ≤ EP

t [

∫ s

t

|(az1 +
(bz1)2

2
)eZ

t,z
1 (v) − (ay1 +

(by1)2

2
)eZ

t,y
1 (v)|pdv

+

∫ u

t

|eZ
t,z
1 (v)bz1(v)− eZ

t,y
1 (v)by1(v)|pdv]

Using the expressions

ay1(u) = −p1γ1y(u)ωy2(u) + c1(ωy2(u)); by1(u) = p1δ1 + γ1p1θ1S + γ1p1(θ2S − θ1S)ωy2(u)

and the triangular inequality, we get that the first integrand is smaller than

(K(1 + ν)|ωz2(v)− ωy2(v)|+K||z − y||t,v)p ×max(epZ
t,z
1 (v), epZ

t,y
1 (v)) +K|eZ

t,z
1 (v) − eZ

t,z
1 (v)|p
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The second integrand is similarly smaller than

(K|ωz2(v)− ωy2(v)|)p ×max(epZ
t,z
1 (v), epZ

t,y
1 (v)) +K|eZ

t,z
1 (v) − eZ

t,z
1 (v)|p

Thus, using the fact that

EP
t [e

pZt,y1 (v)] ≤ K

and EP
t [|ωz2(v) − ωy2(v)|p × epZ

t,y
1 (v)] ≤ (EP

t [|ωz2(v) − ωy2(v)|2p]) 1
2 × (EP

t [e
2pZt,y1 (v)])

1
2 ≤

K(v − t) 1
2 ||z − y||pt,veK(1+ν)2p(v−t).

EP
t [ sup
t≤u≤s

|eZ
t,z
1 (u) − eZ

t,y
1 (u)|p

≤ EP
t

[ ∫ s

t

(K(1 + ν)p|ωz2(v)− ωy2(v)|p +K||z − y||pt,v +K|eZ
t,z
1 (v) − eZ

t,y
1 (v)|p)dv

]

And using Lemma 5.28, we get

EP
t [ sup
t≤u≤s

|eZ
t,z
1 (u) − eZ

t,y
1 (u)|p

≤ EP
t

[ ∫ s

t

(K(1 + ν)p||z − y||pt,v(v − t)
1
2 eK(1+ν)p(v−t) +K||z − y||pt,v +K|eZ

t,z
1 (v) − eZ

t,y
1 (v)|p)dv

]
≤ K(s− t)||z − y||pt,s(1 + ν)peK(1+ν)2p(s−t) +KEP

t

[ ∫ s

t

|eZ
t,z
1 (v) − eZ

t,y
1 (v)|pdv

]

And by Gronwall’s inequality:

EP
t [ sup
t≤u≤s

|eZ
t,z
1 (u) − eZ

t,y
1 (u)|p] ≤ K(s− t)||z − y||pt,s(1 + ν)peK(1+ν)2p(s−t)eK(s−t)

which is equivalent to inequality (5.273).
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We give a proof of the estimate (5.274) of |Dt,z(u)−Dt,y(u)|.

Dt,z(u)−Dt,y(u) =

∫ u

t

(G0.(
∂z

∂ω2

+ φ0) + g0.(z + Φ0))Dt,z(v)

−(G0.(
∂y

∂ω2

+ φ0) + g0.(y + Φ0))Dt,y(v)dv +

∫ u

t

(θ1S − θ2S)(g0(ωt,z2 (v))− g0(ωt,y2 (v)))dWv

Thus, the Proposition 5.22 yields:

EP
t [ sup
t≤u≤s

|Dt,z(u)−Dt,y(u)|p]

≤ EP
t

[ ∫ s

t

|(G0.(
∂z

∂ω2

+ φ0) + g0.(z + Φ0))Dt,z(v)− (G0.(
∂y

∂ω2

+ φ0) + g0.(y + Φ0))Dt,y(v)|pdv

+

∫ s

t

|(θ1S − θ2S)(g0(ωt,z2 (v))− g0(ωt,y2 (v)))|pdv
]

The dv term is smaller than

|(G0.(
∂z

∂ω2

+ φ0) + g0.(z + Φ0))Dt,z(v)− (G0.(
∂y

∂ω2

+ φ0) + g0.(y + Φ0))Dt,y(v)|p

≤ K max(Dt,z(v)p, Dt,y(v)p)

(
|| ∂z
∂ω2

− ∂y

∂ω2

||t,v + ||z − y||t.v

+(1 + ν + ν̄)|ωt,z2 (v)− ωt,y2 (v)|
)p

+K(1 + ν)p|Dt,z(v)−Dt,y(v)|p

The dW (v) term is smaller than

K|ωt,z2 (v)− ωt,y2 (v)|p

Using the Cauchy Schwarz inequality:

EP
t [D

t,z(v)p×|ωt,z2 (v)−ωt,y2 (v)|p] ≤ (EP
t [D

t,z(v)2p])
1
2×(EP

t [|ω
t,z
2 (v)−ωt,y2 (v)|2p]) 1

2 ≤

eK(1+ν)(v−t) ×K||z − y||pt,s(v − t)
1
2 eK(1+ν)2p(v−t)
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Similarly to the previous proof, Gronwall’s inequality yields:

EP
t [ sup
t≤u≤s

|Dt,z(u)−Dt,y(u)|p] ≤ K(s−t)eK(1+ν)2p(s−t)(1+ν+ν̄)p
(
||z−y||pt,s+||

∂z

∂ω2

− ∂y

∂ω2

||pt,s
)

(5.187)

The next inequality is proven in a similar faction:

|Lt,z1 (s)− Lt,y1 (s)| ≤
∫ s

t

(
∂az1(u)

∂ω2

Dt,z(u)− ∂ay1(u)

∂ω2

Dt,y(u))du

+

∫ s

t

(
∂bz1(u)

∂ω2

Dt,z(u)− ∂by1(u)

∂ω2

Dt,y(u))dWu

∣∣∣∣∂az1(u)

∂ω2

Dt,z(u)− ∂ay1(u)

∂ω2

Dt,y(u)

∣∣∣∣ ≤ ∣∣(∂az1(u)

∂ω2

− ∂ay1(u)

∂ω2

)Dt,z(u)
∣∣+
∣∣∂ay1(u)

∂ω2

(Dt,z(u)−Dt,y(u))
∣∣

≤ K(1 + ν)|Dt,z(u)−Dt,y(u)|+K(1 + ν + ν̄)Dt,z(u)

[
|ωz2(u)− ωy2(u)|+ || ∂z

∂ω2

− ∂y

∂ω2

||t,u
]

Using inequalities (5.274), (5.270), we conclude

EP
t sup
t≤u≤s

[|Lt,z1 (u)−Lt,y1 (u)|p] ≤ K(1 + ν+ ν̄)2p(s− t)×
(
||z− y||pt,s + || ∂z

∂ω2

− ∂y

∂ω2

||pt,s
)

The proof for i = 2 is similar. �

Fix y, z ∈ Bν . Since F = F1 − F2, by the triangular inequality:

|F [z](t, ω2)− F [y](t, ω2)| ≤ |F1[z]− F1[y](t, ω2)|+ |F2[z]− F2[y](t, ω2)|

and

|Fi[z](t, ω2)− Fi[y](t, ω2)| =
∣∣∣∣F1i[z]

F0i[z]
− F1i[y]

F0i[y]
(t, ω2)

∣∣∣∣
≤

∣∣∣∣F1i[z](t, ω2)− F1i[y](t, ω2)

F0i[z](t, ω2)
+
F1i[y](t, ω2)(F0i[z]− F0i[y])

F0i[y](t, ω2)F0i[z](t, ω2)

∣∣∣∣
198



Ph.D. Thesis - Oumar Soule Mbodji McMaster - Mathematics

Thus

|Fi[z](t, ω2)− Fi[y](t, ω2)| ≤ 2||ρi|||F0i[z]− F0i[y]|(t, ω2)

F0i[z](t, ω2)

and

|F0i[z](t, ω2)− F0i[y](t, ω2)|

≤ EP
t

[ ∫ T

t

fi(t, s)|eZ
t,z
i (s) − eZ

t,y
i (s)|ds+ fi(t, T )|eZ

t,z
i (T ) − eZ

t,y
i (T )|

]

And since by Lemma 5.29

F0i[z](t, ω2) ≥ K1

(∫ T

t

fi(t, s)ds+ fi(t, T )

)
(5.188)

we get:

|Fi[z]− Fi[y](t, ω2)| ≤
2||ρi||

( ∫ T
t fi(t,s)ds+fi(t,T )

)
EP
t [supt≤s≤T |e

Z
t,z
i

(u)−eZ
t,y
i

(u)|]

K1

( ∫ T
t fi(t,s)ds+fi(t,T )

)

|Fi[z]− Fi[y](t, ω2)| ≤
2||ρi|EP

t [supt≤s≤T |eZ
t,z
i (u) − eZ

t,y
i (u)|]

K1

(5.189)

Since F = F1 − F2, we get

|F [z]− F [y](t, ω2)| ≤ 4||ρ||K||z − y||t,T (1 + ν)eKν(T−t)(T − t)
K1

(5.190)

∂Fi[y](t, ω2)

∂ω2

=

∂F1i[y]
∂ω2

F0i[y]
−

∂F0i[y]
∂ω2

F1i[y]

F 2
0i[y]

=

∂F1i[y]
∂ω2

F0i[y]
− Fi[y]

∂F0i[y]
∂ω2

F0i[y]
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Thus

∣∣∣∣∂Fi[z](t, ω2)

∂ω2

− ∂Fi[y](t, ω2)

∂ω2

∣∣∣∣
=

∣∣∣∣ ∂F1i[z]
∂ω2

F0i[z]
−

∂F1i[y]
∂ω2

F0i[y]
− Fi[z]

∂F0i[z]
∂ω2

F0i[z]
+ Fi[y]

∂F0i[y]
∂ω2

F0i[y]

∣∣∣∣
Again after some manipulations and using the triangular inequality, we get:

∣∣∣∣∂Fi[z](t, ω2)

∂ω2

− ∂Fi[y](t, ω2)

∂ω2

∣∣∣∣ (5.191)

≤
∣∣∣∣∂F0i[z]

∂ω2

− ∂F0i[y]

∂ω2

∣∣∣∣2||ρi||F0i[z]
+
|∂F0i[y]
∂ω2
|

F0i[y]

(
2||ρi||
F0i[z]

|F0i[z]− F0i[y]|+ |Fi[z]− Fi[y]|
)

In what follows, we estimate |∂F0i[y]
∂ω2
| and

∣∣∣∣∂F0i[z]
∂ω2

− ∂F0i[y]
∂ω2

∣∣∣∣.
|∂F0i[y](t, ω2)

∂ω2

| = |EP
t

[∫ T

t

fi(t, s)e
Zt,yi (s)Lt,yi (s)ds

]
|

≤
∫ T

t

fi(t, s)

√
EP
t [e

2Zt,yi (s)]EP
t [L

t,y
i (s)2]ds

≤
∫ T

t

fi(t, s)

√
EP
t [e

2Zt,yi (s)]EP
t [L

t,y
i (s)2]ds

≤
∫ T

t

fi(t, s)
√
K.K(1 + ν)2eK(1+ν)2(s−t)(s− t)ds

|∂F0i[y](t, ω2)

∂ω2

| ≤ K(1 + ν)
√
T − t.eK(1+ν)2(T−t).

(∫ T

t

fi(t, s)ds+ fi(t, T )

)

In the last inequality, we have added the final term that appears in the definition of

F0i[y](t, ω2). Thus

|∂F [y](t, ω2)

∂ω2

| ≤ 4||ρ||K(1 + ν)eK(1+ν)2(T−t)√T − t
K1

||z − y||t,T (5.192)
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This concludes the estimation of |∂F0i[y](t,ω2)
∂ω2

|.

Estimation of

∣∣∣∣∂F0i[z]
∂ω2

− ∂F0i[y]
∂ω2

∣∣∣∣.
∣∣∣∣∂F0i[z]

∂ω2

− ∂F0i[y]

∂ω2

∣∣∣∣ ≤ EP
t

[∫ T

t

fi(t, s)
∣∣eZt,zi (s)Lt,zi (s)− eZ

t,y
i (s)Lt,yi (s)

∣∣ds] (5.193)

The integrand term

EP
t

[∣∣eZt,zi (s)Lt,zi (s)− eZ
t,y
i (s)Lt,yi (s)

∣∣] ≤ EP
t

[
eZ

t,z
i (s)|Lt,zi (s)− Lt,yi (s)|+ |Lt,yi (s)||eZ

t,z
i (s) − eZ

t,y
i (s)|

]
≤
(
EP
t [e

2Zt,zi (s)]EP
t [|L

t,z
i (s)− Lt,yi (s)|2]

) 1
2

+

(
EP
t [|L

t,y
i (s)|2]EP

t [|eZ
t,z
i (s) − eZ

t,y
i (s)|2]

) 1
2

and by Lemmas 5.27 and 5.28, we have

EP
t

[∣∣eZt,zi (s)Lt,zi (s)− eZ
t,y
i (s)Lt,yi (s)

∣∣]
≤ K(1 + ν + ν̄)2eK(1+ν)4(s−t)(s− t)

1
2

(
||z − y||t,s + || ∂z

∂ω2

− ∂y

∂ω2

||t,s
)
(5.194)

Taking the integral between t and T and adding the final term, we get

∣∣∣∣∂F0i[z]

∂ω2

− ∂F0i[y]

∂ω2

∣∣∣∣ ≤ (1+ν+ ν̄)2eK(1+ν)2(T−t)(T − t)
1
2 × (||z−y||t,T + || ∂z

∂ω2

− ∂y

∂ω2

||t,T )

(5.195)

We conclude that

∣∣∣∣∂Fi[z]

∂ω2

− ∂Fi[y]

∂ω2

∣∣∣∣ ≤ K(1+ν+ ν̄)2eK(1+ν)4(T−t)(T − t)
1
2 ×(||z−y||t,T + || ∂z

∂ω2

− ∂y

∂ω2

||t,T )

(5.196)
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Since F = F1 − F2

∣∣∣∣∂F [z]

∂ω2

− ∂F [y]

∂ω2

∣∣∣∣ ≤ K(1+ν+ ν̄)2eK(1+ν)4(T−t)(T−t)
1
2×
(
||z−y||t,T +|| ∂z

∂ω2

− ∂y

∂ω2

||t,T
)

Notice that for all y ∈ Bν , |F [y](t, ω2)| ≤ 2||ρ|| for all (t, ω2) ∈ [0, T ] × [0, 1]. For

y ∈ Bν,ν̄ , if we look at (5.263), (5.264), (5.261),(5.260), it is easy to see that we can

obtain an estimate for
∣∣∂2F [y]

∂ω2
2

∣∣
|∂

2F [y]

∂ω2
2

| ≤ K(1 + ν)(1 + ν + ν̄)(T − t)
1
2 eK(1+ν)2(T−t) (5.197)

Let

ν := 1 + 4 sup
(t,ω2)∈[0,T ]×[0,1]

|∂F [0]

∂ω2

| (5.198)

and

ν̄ := 1 + sup
(t,ω2)∈[0,T ]×[0,1]

|∂
2F [0]

∂ω2
2

| (5.199)

We fix K to be the maximum between 1 and K2 where K is a constant number that

appears in the various inequalities written above.

We choose ε0 ∈ (0, T ) such that

K(1 + ν)(1 + ν + ν̄)
√
ε0e

K(1+ν)2T ≤ ν̄ (5.200)

We choose ε1 ∈ (0, ε0] such that

4||ρ||K(1 + ν)eK(1+ν)T√ε1
K1

≤ 1

4
(5.201)

202



Ph.D. Thesis - Oumar Soule Mbodji McMaster - Mathematics

and ε2 ∈ (0, ε1] such that

K(1 + ν + ν̄)2eK(1+ν)4T ε
1
2
2 ≤

ν

4
(5.202)

Then

1. F [y] ∈ Bν,ν̄ for all y ∈ Bν,ν̄ .

2. For all y, z ∈ Bν,ν̄ ,

||∂F [z]

∂ω2

−∂F [y]

∂ω2

||T−ε2,T+||F [z]−F [y]||T−ε2,T ≤
1

2
(|| ∂z
∂ω2

− ∂y

∂ω2

||T−ε2,T+||z−y||T−ε2,T )

(5.203)

If we call B1
ν := {y|[T−ε2,T ]×[0,1] | y ∈ Bν} the restriction of Bν to [T−ε2, T ]× [0, 1]

and similarly , B1
ν,ν̄ := {y|[T−ε2,T ]×[0,1] | y ∈ Bν,ν̄} the restriction of Bν,ν̄ to [T − ε2, T ]×

[0, 1],

then we can conclude that F 1(B1
ν,ν̄) ⊂ B1

ν,ν̄ . Define the norm

||y||B1
ν

:= ||y||[T−ε2,T ] + || ∂y
∂ω2

||[T−ε2,T ] (5.204)

Wrapping up :

We construct a fix point for F 1 in B1
ν :

Define (ψn) a sequence of functions in Bν,ν̄ by:

ψ0(t, ω2) = 0 ; ψn+1(t, ω2) = F [ψn](t, ω2) ∀(t, ω2) ∈ [T − ε2, T ]× [0, 1]
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A simple recursion on n shows that

||F 1[ψn+1]− F 1[ψn]||B1
ν
≤ 1

2n
||ψ1 − ψ0||B1

ν
(5.205)

Therefore (ψn) converges in B1
ν to a function Ψ1. A uniform limit of ν̄-Lipschitz is

ν̄-Lipschitz, therefore ∂Ψ1(t,ω2)
∂ω2

is actually ν̄-Lipschitz in the ω2 variable. Furthermore,

Ψ1 is the unique fix point in B1
ν : if Ψ̄1 is another fix point of the operator F 1 then we

would have

||Ψ1 − Ψ̄1||B1
ν

= ||F 1[Ψ1]− F 1[Ψ̄1]||B1
ν
≤ 1

2
||Ψ1 − Ψ̄1||B1

ν

so that ||Ψ1 − Ψ̄1||B1
ν

= 0 i.e. Ψ1 = Ψ̄1.

We can repeat the argument on [T − 2ε2, T − ε2]× [0, 1]. So on, until we reach

0. Let us do it carefully.

Define the operator F 2
i on the space C([T − 2ε2, T − ε2];C1[0, 1]) by

F 2
i [y](t, ω2) =

F 2
1i[y](t, ω2)

F 2
0i[y](t, ω2)

F 2[y] := F 2
1 [y]− F 2

2 [y]

and

F 2
0i[y](t, ω2) := Et

[ ∫ T

t

fi(t, s)e
∫ s
t a

y2

i (u)du+
∫ s
t b

y2

i (u)dWuds+ fi(t, T )e
∫ T
t ay

2

i (u)du+by
2

i (u)dWu

]
F 2

1i[y](t, ω2) := Et
[ ∫ T

t

∂fi(t, s)

∂t
e
∫ s
t a

y2

i (u)du+
∫ s
t b

y2

i (u)dWuds+
∂fi(t, T )

∂t
e
∫ T
t ay

2

i (u)du+by
2

i (u)dWu

]
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and

y2(t, ω2) =


Ψ1(t, ω2), if T − ε2 < t ≤ T

y(t, ω2), if T − 2ε2 ≤ t ≤ T − ε2
(5.206)

Define

∂y2

∂ω2

(t, ω2) =


∂Ψ1

∂ω2
(t, ω2), if T − ε2 < t ≤ T

∂y
∂ω2

(t, ω2), if T − 2ε2 ≤ t ≤ T − ε2
(5.207)

We will omit again the final term fi(t, T )e
∫ T
t ay

2

i (u)du+by
2

i (u)dWu to simplify the

calculations.

Let B2
ν := {y ∈ C([T−2ε2, T−ε2]×[0, 1] | y is C1 in t, ω2 and such that | ∂y

∂ω2
| ≤

ν} and B2
ν,ν̄ := {y ∈ C([T−2ε2, T−ε2]×[0, 1] | y is C1 in t, C2 in ω2 and such that | ∂y

∂ω2
| ≤

ν, | ∂2y
∂ω2

2
| ≤ ν̄}

Since z2 = y2 on [T − ε2, T ], we have

||z − y||t,T−ε2 = ||z2 − y2||t,T (5.208)

|| ∂z
∂ω2

− ∂y

∂ω2

||t,T−ε2 = || ∂z
2

∂ω2

− ∂y2

∂ω2

||t,T (5.209)

we only need to estimate

|F 2[z](t, ω2)− F 2[y](t, ω2)| and |∂F
2[z](t,ω2)
∂ω2

− ∂F 2[y](t,ω2)
∂ω2

| for t ∈ [T − 2ε2, T − ε2).

By observing (5.184) that gives an estimate for |Fi[z](t, ω2)−Fi[y](t, ω2)|, we see

that

|F 2[z2](t, ω2)− F 2[y2](t, ω2)| ≤ 4||ρ||
K1

EP
t

[
sup

i=1,2;t≤s≤T
|eZ

t,z2

i (s) − eZ
t,y2

i (s)|
]

If (t, s) ∈ [T − 2ε2, T − ε2]2, we can use the fact that |s− t| ≤ ε2 to get estimates
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when y, z is replaced by y2, z2.

The only additional case to check is (t, s) ∈ [T − 2ε2, T − ε2]× [T − ε2, T ].

We first find an estimate for |ωt,z
2

2 (u)− ωt,y
2

2 (u)| for u ∈ [T − ε2, s].

We use the SDE for ωt,y
2

2 and ωt,z
2

2 to get

|ωt,z
2

2 (u)− ωt,y
2

2 (u)| = |ωt,z2

(T − ε2)− ωt,y
2

2 (T − ε2)

+

∫ u

T−ε2
G0.(Φ0 + z2(v, ωz

2

2 (v)))−G0.(Φ0 + y2(v, ωy
2

2 (v)))dv

+

∫ u

T−ε2
(θ1S − θ2S)(G0(ωz

2

2 (v))−G0(ωy
2

2 (v))dW (v)|

As before , an application of Gronwall’s inequality yields for p ≥ 1,

EP
t [ sup
u∈[T−ε2,s]

|ωt,z
2

2 (u)−ωt,y
2

2 (u)|p] ≤ KEP
t

[
|ωt,z

2

2 (T−ε2)−ωt,y
2

2 (T−ε2)|peK(1+ν)p(s−(T−ε2))
]

(5.210)

And since by (5.270)

EP
t

[
|ωt,z

2

2 − ωt,y
2

2 (T − ε2)|p
]
≤ K||z − y||pt,T−ε2(T − ε2 − t)eK(1+ν)p(T−ε2−t) (5.211)

we get:

EP
t [ sup
u∈[T−ε2,s]

|ωt,z
2

2 (u)− ωt,y
2

2 (u)|p] ≤ KEP
t

[
|ωt,z

2

2 − ωt,y
2

2 (T − ε2)|peK(1+ν)p(s−(T−ε2))
]

≤ KeK(1+ν)p(s−(T−ε2))K||z − y||pt,T−ε2(T − ε2 − t)eK(1+ν)p(T−ε2−t)

≤ K2eK(1+ν)p(s−t)||z − y||pt,T−ε2ε2
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We conclude that

EP
t [ sup
u∈[t,s]

|ωt,z
2

2 (u)− ωt,y
2

2 (u)|p] ≤ KeK(1+ν)p(s−t)ε2||z − y||pt,T−ε2 (5.212)

We then have

EP
t [ sup
t≤u≤s

|eZ
t,z
1 (u) − eZ

t,y
1 (u)|p] ≤ K(1 + ν)p||z − y||pt,T−ε2ε

1
2
2 e

K(1+ν)p(s−t)

Thus

|F 2[z](t, ω2)− F 2[y](t, ω2)| ≤ 4||ρ||
K1

EP
t

[
sup

i=1,2;t≤s≤T
|eZ

t,z2

i (s) − eZ
t,y2

i (s)|
]

≤ 4||ρ||
K1

K(1 + ν)||z − y||t,T−ε2ε
1
2
2 e

K(1+ν)2T ≤ 1

4
||z − y||t,T−ε2

because ε2 was chosen small enough to have

4||ρ||
K1

K(1 + ν)ε
1
2
2 e

K(1+ν)T ≤ 1

4

The same is true for the derivative:

|∂F
2[z]

∂ω2

(t, ω2)− ∂F 2[y]

∂ω2

(t, ω2)| ≤ 1

4

(
||z − y||t,T−ε2 + || ∂z

∂ω2

− ∂y

∂ω2

||t,T−ε2
)

Adding the two estimates we get

||F 2[z]− F 2[y]||B2
ν
≤ 1

2
||z − y||B2

ν
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Again, we get a contraction from B2
ν to B2

ν , thus we get a fixed point for the operator

F 2. We call the fixed point Ψ as before and now we have Ψ2 defined on [T − 2ε2, T −

ε2] × [0, 1] and Ψ1 defined on [T − ε2, T ] × [0, 1]. We have to verify that the two

functions coincide on the set {T − ε2} × [0, 1].

From the expressions

F 2
0i[y](t, ω2) := Et

[ ∫ T

t

fi(t, s)e
∫ s
t a

y2

i (u)du+
∫ s
t b

y2

i (u)dWuds+ fi(t, T )e
∫ T
t ay

2

i (u)du+by
2

i (u)dWu

]
F 2

1i[y](t, ω2) := Et
[ ∫ T

t

∂fi(t, s)

∂t
e
∫ s
t a

y2

i (u)du+
∫ s
t b

y2

i (u)dWuds+
∂fi(t, T )

∂t
e
∫ T
t ay

2

i (u)du+by
2

i (u)dWu

]

We see that

F 2
0i[Ψ

2](T − ε2, ω2) = F 1
0i[Ψ

1](T − ε2, ω2);F 2
1i[Ψ

2](T − ε2, ω2) = F 1
1i[Ψ

1](T − ε2, ω2)

since Ψ2(t, ω2) = Ψ1(t, ω2) for ω2 ∈ [0, 1] . Thus we conclude that

F [Ψ2](T − ε2, ω2) = (
F11

F01

− F12

F02

)(T − ε2, ω2) = F [Ψ1](T − ε2, ω2)

The same is true for the derivative

∂F [Ψ2](T − ε2, ω2)

∂ω2

=
∂F [Ψ1](T − ε2, ω2)

∂ω2

We can continue this process and construct Ψk a fixed point of F k for t ∈

[T − kε2, T − (k − 1)ε2].

We call Q the function defined on [0, T ] × [0, 1] that coincides with Ψk on the

set [T − kε2, T − (k − 1)ε2]× [0, 1].

By looking at the definition of Q = F [Q] as a quotient of two integrals over t,
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we conclude that Q is actually C1 in the time variable. Q ∈ Bν is a fixed point for F .

∂Q(t, ω2)

∂ω2

=
∂F [Q](t, ω2)

∂ω2

is also well defined, continuous in the t variable and ν̄-Lipschitz in the ω2 variable.

This ends the proof of the Theorem. �

209


