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Abstract

In this thesis, we study the role of interdiction in the Vehicle Routing Problem (VRP),

which naturally arises in humanitarian logistics and military applications. We assume

that in a general network, each arc has a chance to be interdicted. When interdiction

happens, the vehicle traveling on this arc is lost or blocked and thus unable to continue

the trip. We model the occurrence of interdiction as a given probability and consider

the multi-period expected delivery. Our objective is to minimize the total travel

cost or to maximize the demand fulfillment, depending on the supply quantity. This

problem is called the Vehicle Routing Problem with Interdiction (VRPI). We first

prove that the proposed VRPI problems are NP-hard. Then we show some key

analytical properties pertaining to the optimal solutions of these problems. Most

importantly, we examine Dror and Trudeau’s property applied to our problem setting.

Finally, we present efficient heuristic algorithms to solve these problems and show the

effectiveness through numerical studies.
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Notation and abbreviations

List of Abbreviations

VRP Vehicle Routing Problem

CVRP Capacitated Vehicle Routing Problem

SDVRP Split Delivery Vehicle Routing Problem

VRPI Vehicle Routing Problem with Interdiction

SEC Subtour Elimination Constraints

NP-Hard Non-deterministic Polynomial-time hard

HCP Hamiltonian Cycle Problem

GRASP Greedy Random Adaptive Search Procedure

RCL Restricted Candidate List

CPLEX IBM/ILOG Optimization Software

List of Notations

V Set of nodes

A Set of arcs/directed edges

G Graph of (V,E)
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N Number of nodes

{0} Depot node

i Indices for demand nodes, i = 1, . . . , N

ij Indices for arcs, ij ∈ A

di Node demands, i = 1, . . . , N

si Safety stock, i = 1, . . . , N

cij cost of arc ij (CVRP)

xij arc ij is selected, xij = {0, 1} (CVRP)

K Number of available vehicles

Q Vehicle capacity

qij Probability of interdiction ij ∈ A

pij Probability of no interdiction ij ∈ A

r(S) Minimum number of vehicles to serve subset S ⊆ V (CVRP)

Ω Set of feasible routes

r A feasible route originating from the depot

cr cost of route r

φir probability of reaching node i in r

yir amount of supply delivered to i in route r

xr route r is selected, xr = {0, 1}

air node i is visited by route r, air = {0, 1}

bijr route r uses arc (i, j), bijr = {0, 1}

yir amount delivered to i in r
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Chapter 1

Introduction and Problem

Statement

In the face of natural or man-made disasters, a major area of focus is on the dis-

tribution of vital emergency supplies. Following the earthquake in Nepal (Sharma

and Adkin, 2015), or the ongoing armed conflict in Syria (Danish Refugee Council,

2016), much efforts have been put on humanitarian relief in a way that minimizes

human suffering, cost of distributing emergency supplies, and risk of further loss of

lives. Typically, we wish to plan out a route for which vehicles may supply those

that are in need, however, one problem that often arises in these situations is the

possibility that the a supply vehicle becomes damaged or broken down. In natural

disasters, these vehicles may be caught by resultant avalanches or tsunamis arising

in the aftershocks of an earthquake. Bridges, underpasses, or tracks can be severely

weakened from the strains of these disasters and may be on the brink of collapse.

In armed conflicts, this can happen due to the malicious action of the enemy, or by

land-mine, or crossfire. Even in day to day business operations, supply trucks may
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breakdown or encounter other traffic obstructions that prohibit them from completing

their delivery. Thus, it is clear that the roads in many routing applications are highly

unstable and have a chance to be interdicted during use, which can incapacitate or

even destroy the vehicles that are traveling upon it. Though the chances for most of

these scenarios to happen can be quite low, when these highly unstable networks are

repeatedly traveled upon, it is very important to have a routing plan that addresses

these long term uncertainties of interdiction.

The goal of our paper is to address the high risks that may be presented within

a vehicle routing application. We introduce the Vehicle Routing Problem with Inter-

diction (VRPI). That is, the Vehicle Routing Problem (VRP) with the possibility of

interdiction on any of the arcs in a network.

The first instance of the VRP was proposed by (Dantzig and Ramser, 1959)

originally called the Truck Dispatching Problem. It has since been one of the most

widely studied integer programming problem in the field of optimization, business,

transportation and logistics. In the classic VRP, we are given a number of vehicles

(trucks) that start at a depot. The goal of the VRP is to deliver enough goods to

satisfy all customer demands such that cost is minimized. For many applications, the

distance between two nodes are interpreted as the cost of travel. Other constraints

for the VRP include limited truck capacities, and limited fleet size. There are many

variations of the VRP as discussed by (Toth and Vigo, 2014), for which new variables

can be added to represent values such as network structure, vehicle capacities, inter-

route constraints, fleet composition, or transportation type.

For our research, we assume that it is impossible to have guaranteed successful

delivery, especially in high risk areas where we might encounter destructive forces

2
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of nature or acts of violence. Instead, we assume that it is possible to estimate or

predict the chance of interdiction. We use the term interdiction to describe when

a road in our network is destroyed, damaged, or blocked. Interdiction may occur

in many scenarios including military supply distributions, disaster relief systems,

communications networks, and so on. When interdiction occurs on a path, all the

supply on the vehicle traveling on the path are considered lost. As a result, vehicles

will be unable to supply their target nodes in a single delivery period. Our problem

setting emerges when it is possible to hedge against that uncertainty across multiple

delivery periods so that long term delivery goals are met. This specification is very

important because although expected delivery goals will be met, we cannot guarantee

sufficient demands for a single delivery period.

Our problem setting focuses on customers (or locations requiring supplies) that

have a specified expected demand requirement which receive deliveries over multiple

periods. Therefore, in the VRPI, we are interested in the expected supply rate of

vehicles in a network. Just to contrast, in the original VRP, the expected supply

is exactly equal to the amount of supply we send along any route since we assume

nothing will happen to our vehicles. In our problem setting, the expected supply will

change depending on the route that is selected. Riskier routes will of course be less

favorable than safer routes.

The two key situations in this paper are: when the total supply is greater than

the total demand, and when the total supply is less than the total demand. In the

former case, we consider cost minimization, which is similar to the typical goal of

classical VRP models. Cost can be interpreted as the cost incurred by traveling

upon that arc, or it can be interpreted as the travel time, where the minimization of

3
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the travel time corresponds to accelerated response time. It is noted that a feasible

solution corresponding to the classical VRP case may no longer be feasible in the

case of interdiction. In the latter case, it becomes critical to fulfill the demands of

the customers as much as possible; and cost is no longer the priority. This situation

often prevails in the midst of a disaster, where the number of affected people is high

and available resources (supplies/vehicles) is limited.

In this paper, we present two models, the VRPI with the objective to minimize cost

and the VRPI with the objective to maximize demand fulfillment. These models build

upon the Split Delivery Vehicle Routing Problem (SDVRP), which comes with some

unique analytical properties. Most notably, is Dror and Trudeau’s property (Dror and

Trudeau, 1990), which mentions that if the route costs satisfy the triangle inequality,

then the optimal SDVRP solution has at most one common demand point among any

two routes. In our problem setting, we guarantee that the triangle inequality holds

with respect to cost, however, we later mention that the interdiction probabilities do

not. This is the key difference that gives our problem different structural properties for

the optimal solutions from the typical SDVRP. The development of these properties

are examined in more detail later for the VRPI models. We also prove that the

proposed VRPI problems are NP-hard. Because of the uniqueness of our problem,

we design heuristic algorithms to solve several carefully selected network instances of

the VRPI. It is important to mention that for our problems, solving to optimality

is much harder because there are no ”Benchmark Instances” like in (Uchoa et al.,

2017). Optimal solutions were computed through brute force and we later compared

these values to the performance of our algorithms in several computational studies.

The remainder of this thesis will be organized as follows. Chapter 2 begins with a

4
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review of the literature that is relevant to our problem. Chapter 3 introduces the two

models of VRPI and provides some insight to the difficulty of our problem. Chapter

4 brings forth some analytical properties of the optimal solution, some of which are

closely related to SDVRP. In Section 5, we describe two heuristic algorithms that

are used to solve the VRPI. The experimental results are presented in Chapter 6.

Concluding remarks and future research directions are given in Chapter 7.

5



Chapter 2

Literature review

Before we get into more detail about the VRPI, we must first present the basis for

our problem. First of all, we take a look at the class of problems called the Vehicle

Routing Problem (VRP).

2.1 The Capacitated Vehicle Routing Problem

To define the VRP, we are given a graph G = (V,A), with N nodes where V =

{v0, v1, v2, . . . , vN−1} and A = {i, j : (i, j) ∈ V }. v0 represents the depot and nodes

v1 . . . vN−1 represent the customers. Each customer i ∈ 1 . . . N − 1 will have a de-

mand that we need to satisfy, denoted by di, for each demand node i ∈ V \{v0}.

Additionally, each arc has an associated travel cost cij,∀(i, j) ∈ A that is incurred

upon traveling on that arc. Oftentimes, the cost, cij, may be treated as the travel

time between two nodes in the network. In the VRP, our objective is to find the set of

arcs that minimizes the total cost for satisfying all demands in the network. Finally,

we have the constraints on fleet size and vehicle capacity, K and Q respectively. This

6
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model is typically referred to as the Capacitated Vehicle Routing Problem (CVRP)

because of the capacity constraints on each vehicle. By the nature of VRP problems,

all vehicles must originate and finish their journey at the depot.

In the optimization problem, the binary decision variables are xij,∀(i, j) ∈ A

where

xij =


1 if arc (i,j) is in our solution

0 otherwise

There are predominantly two families of formulations for the CVRP: The compact

formulation and the extensive formulation (Toth and Vigo, 2014).

2.1.1 Compact Formulation

The compact formulation models the CVRP using a classical network flow method.

The formulation using arcs (or directed edges) is given by:

7
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(CVRP–c) min
N−1∑
i=0

N−1∑
j=0

cijxij (2.1)

s.t.
N−1∑
i=1

xij = 1 ∀j = 1, . . . , n (2.2)

N−1∑
j=1

xij = 1 ∀i = 1, . . . , n (2.3)

N−1∑
j=1

x0j ≤ K (2.4)

N−1∑
j=1

xj0 ≤ K (2.5)

N−1∑
j=1

N−1∑
j=1

xij ≥ r(S) ∀S ⊆ N,S 6= ∅ (2.6)

xij ∈ {0, 1} (2.7)

(2.1) is the expression that seeks to minimize the total cost of all the arcs that exist

in our network. (2.2) and (2.3) are the constraints to ensure each customer is served.

(2.4) and (2.5) make sure that there are no more than K vehicles leaving and arriving

back at the depot. This maintains that we do not exceed the total amount of vehicles

that are given to us in our fleet. Constraint (2.7) ensures that our decision variable

returns an integer value that translates to a logical solution. Finally, constraint (2.6)

introduces r(S), which is the minimum number of vehicles needed to serve a subset

S ⊆ V . This constraint is synonymous to a combination of the Subtour Elimination

Constraints (SEC) and capacity constraints because of the restriction imposed on

each subset of nodes. The SEC are typically the set of constraints that prevent the

8
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problem from having a solution where routes are disconnected from one another.

These constraints are more formally represented as follows:

∑
i,j∈S,i6=j

xij ≤ |S| − 1, ∀S ⊂ V, S 6= ∅ (2.8)

In 2.8, we require that each nonempty subset S of nodes contain at most |S| − 1

arcs. Without the SEC, it would be possible to have a cycle that is disconnected from

the depot. This of course would make little sense because trucks cannot appear out

of thin air as shown in the example below.

Figure 2.1: CVRP without SEC

The example in Figure 2.1 shows a CVRP problem where SEC are not considered.

If we assume node 0 as the depot, then we clearly see that the vehicle along the cycle

{4, 5, 6} is invalid because all vehicles must originate from the depot.

Our value for r(S) in constraint (2.6) is obtained by solving the bin packing

problem, though a lower bound, given by d
∑

i∈S di/Qe, can also be used.

Typically, the given graph G is a n-complete graph under the assumption that

cij = cji, but the model can be easily altered to fit other cases. For example, if there

is no direct route from node i to node j, we can modify the cost to be cij = M , where

M is large. Further, if we relax the condition that cij = cji, we can rewrite the graph

using directed paths (arcs).

One consequence of the compact formulation (CVRP–c) is with constraint (2.6).

9
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We notice that as n becomes large, the number of subsets grows exponentially. The

requirement of these SEC is the main reasons why the class of VRP problems is

NP-Hard (Garey and Johnson, 1979). Many efficient algorithms in practice carefully

select a subset of these SEC and solve a relaxed version of the problem.

Alternatively, we can look at what is called the extensive formulation of the CVRP.

2.1.2 Extensive Form

The extensive CVRP formulation originates from the set partitioning model formu-

lated by Balinski and Quandt (1964). Their idea was to define feasible routes as

the object of interest and to build an integer programming model to support a care-

fully chosen set of feasible routes. We define a route to be a sequence of nodes

r = (n0, n1, n2, . . . , ns) where n0 = ns = 0 to satisfy the condition that all vehicles

must begin and finish at the depot. Note that a route is feasible if
∑

i∈r yir < Q,

where yir is the amount of supply delivered to i in route r. We also define Ω to be

the set of all feasible routes and we introduce the following binary variables:

xr =


1 route r is selected

0 otherwise

air =


1 node i is visited by route r

0 otherwise

bijr =


1 route r uses arc (i, j)

0 otherwise

10
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In this formulation, the definition of arc cost is also modified as follows: cr =∑
(i,j)∈A bijrcij. Thus the model is given as:

(CVRP–e) min
∑
r∈Ω

crxr (2.9)

s.t.
∑
r∈Ω

airxr ≥ 1 ∀i ∈ V \{v0} (2.10)

∑
r∈Ω

xr ≤ K (2.11)

xr ∈ {0, 1} ∀r ∈ Ω (2.12)

The objective (2.9) seeks to minimize the total costs of all selected routes in the

chosen solution. Equation (2.10) guarantees that all customer demands are met by

at least one vehicle in the fleet. Often in literature, it is common to model (2.10)

as a tight constraint to represent each customer only being visited by a single truck.

However, writing this constraint as an inequality relaxes our lower bound and we

will see later that it helps with our later models. (2.11) guarantees that we do not

schedule more vehicles that are available to us in our fleet. Finally, constraint (2.12)

describes the binary decision variables xr, so that a route must be either used or not.

The variable bijr is not considered in (CVRP–e) because it will only be used in the

selection of feasible routes. That is for the extensive form, we are assuming that all

routes in Ω are already feasible. Similarly, vehicle capacities, Q, is no longer necessary

provided that the Ω is well defined.

We notice immediately that the new formulation (CVRP–e) avoids the problem of

having SEC which may occur in the formulation of (CVRP–c). Instead, the model now

11
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becomes a problem of finding the set of feasible routes in Ω. Of course, if this problem

was solved by brute force, Ω would need to contain every feasible route (which grows

exponentially). Advances in research for the CVRP has improved this computation

greatly. The most prominent approach, is column generation along with branch &

price. The approach of column generation was used by Feillet et al. (2004), where

dynamic programming was used to generate feasible routes efficiently in (CVRP–e).

The extensive formulation will be the model that we will follow for the remainder

of this thesis for the ease of representation.

One unintended consequence of both these CVRP formulations is the restriction

on the number of deliveries to a single node. That is, only a maximum of one vehicle

may deliver to each node. This restriction may not necessarily be the most logical,

because it means that a vehicle must fully satisfy the demand of a node if it must

deliver to it. We show in the next section a generalization of this problem where

multiple vehicles may visit a single node.

2.2 The Split Delivery Vehicle Routing Problem

One important branch of literature is the Split Delivery Vehicle Routing Problem

(SDVRP), which was proposed by Dror and Trudeau (1989). In our previous CVRP

formulations, every demand node can only be supplied by a single vehicle. In the

SDVRP, a demand node is allowed to be served by multiple vehicles. The reasoning

for allowing split deliveries is shown by Dror and Trudeau (1990) to have potential

savings in cost. For this model we use the variable yir to represent the amount of

supply delivered to node i along route r. The formulation of the SDVRP is as follows:

12
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(SDVRP) min
∑
r∈Ω

crxr (2.13)

s.t.
∑
r∈Ω

xr ≤ K (2.14)

∑
i∈V

yir ≤ Q ∀r ∈ Ω (2.15)

yir ≤ Qairxr ∀i ∈ V, ∀r ∈ Ω (2.16)∑
r∈Ω

yir ≥ di ∀i ∈ V (2.17)

xr ∈ {0, 1} ∀r ∈ Ω (2.18)

yir ≥ 0 ∀i ∈ V, ∀r ∈ Ω. (2.19)

The constraints (2.13), (2.14), and (2.18) are similar to the constraints (2.9),

(2.11), and (2.12) from (CVRP–e). Constraint (2.15) ensures that the amount of

supplies that is carried by each vehicle does not exceed its capacity. Constraint

(2.16) are the necessary logic constraints to ensure that only trucks (routes) that

are selected for use may have positive capacity. Constraint (2.17) are the demand

requirements and finally, (2.19) ensures positive values for supply.

In original formulation given by Dror and Trudeau (1989), the SDVRP is modeled

using as a compact formulation. We do not show that, but instead we use the much

simpler extensive formulation (SDVRP). The work by Dror and Trudeau (1990) fo-

cused on the structural properties of the optimal solution. One key property is that

in the presence of the triangle inequality, no two routes in the optimal solution can

have more than one split demand point in common. This is a very significant result

13
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because it gives us some insight to the behavior of the “good” routes. It is also a

property that we later generalize to the case of the VRPI in Chapter 4.

The computational complexity of the SDVRP on special networks was shown to

be NP-hard by Archetti et al. (2011). In their experiments, they characterized four

network structures to study the limited fleet SDVRP and unlimited fleet SDVRP.

More specifically, the networks that were analyzed were when all the demands appear

in, a line, a star, a tree, and a circle. Any network can be reduced to a combination

of these four structures, which allows us to conclude that the general instance of the

SDVRP with a limited fleet is NP-hard.

The formulation of (SDVRP) given above was used in the applications of human-

itarian logistics (Huang et al., 2011), which serves as an important tool in delivering

aids to those in disaster or emergency situations. Their work focuses on the distribu-

tion of relief supplies according to a few key performance metrics, commonly used in

humanitarian logistics: efficiency, efficacy, and equality. The performance metric of

efficiency is synonymous to the typical objective of the VRP, which is cost (or travel

times). Efficacy refers to the speed and sufficiency of delivery, which they compute

using arrival times (not specified in (SDVRP) above). Finally, equity ensures that

there is an equal spread in service levels across all demands of the network. For our

models, we only consider efficiency and a modified version of efficacy, which considers

fulfillment.

The models in the research by Huang et al. (2011) address the routing problem

in a purely deterministic fashion, where they assume a perfect success rate while

traveling across any arc in the network. Several properties were also analyzed in their

work regarding the optimal solution structure. Our work is largely based off the work

14
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by Huang et al. (2011), with the added assumption of interdiction across all arcs.

2.3 Uncertainty in the VRP

Looking at the previous work in the VRP, we notice that there is one key assumption

to all of the models. Namely, this is the assumption that vehicles will not encounter

any variability in their journey. That is not to say that uncertainty has never been

considered in the literature; it is a topic that has been studied extensively, but mostly

in a more optimistic manner. The three most widely studied variants are the following:

• The VRP with stochastic demands, first studied by Tillman (1969). In this

problem setting, the demands at each customer node in our network have a

random (stochastic) volume.

• The VRP with stochastic customers where customers are unknown. This vari-

ation was introduced by Bertsimas (1988) and it differs from the first case in

that demands are known. The unknown in this scenario is whether or not a

customer is present in the network.

• The VRP with stochastic travel time is introduced by Laporte et al. (1992) and

just as the name suggests, it is the VRP problem considering variable travel

times.

In all of the previous studies of uncertainty in the VRP, we notice that there were

very few that have actually discuseed the case where vehicles may be lost.

In a recent study in disaster management, Liu et al. (2013) discuss a vehicle

routing problem, where arcs may be “destroyed”. However, in their model, vehicles
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are not lost when this interdiction occurs. Instead, they are rerouted according to

a two-stage model, called the multi-vehicle path decision problem. Furthermore, in

contrast to our assumption, they only consider the probabilistic interdiction of a single

path, while we believe that interdiction should be considered among all paths.

Finally, the term for interdiction that we have constantly used throughout this

thesis, is a concept that is derived from network flow problems. In that model,

scholars consider the situation of a leader and a follower. The leader’s task is to find

the shortest path or maximum flow from origin to destination. The follower’s task

is to select certain arcs or nodes to interdict to prevent the flow of the leader. This

framework leads to a Stackelberg game and bi-level programming models. Cormican

et al. (1998) and Collado and Papp (2012) apply this framework to illegal material

transportation and military operations. In our research, we apply the same concept

of interdiction to VRP, however, we are interested in the expected loss incurred by

interdiction. Furthermore, by using the expectation of interdiction, we are able to

apply the concept of maximum reliability. Roosta (1982) introduced a method to

simplify the problem of finding a path through a stochastic network that has the

maximum probability. They showed that this problem can be manipulated into the

shortest path problem using the following reduction:
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max
∏
pij∈P

pij (2.20)

= max log(
∏
pij∈P

pij) (2.21)

= max
∑
pij∈P

log pij (2.22)

= min
∑
pij∈P

− log pij (2.23)

pij is the expected success rate, so our original goal, (2.20) is the expression of

finding the set of paths that maximizes expected success rate. We make the reasoning

for (2.21) to (2.22) because the logarithmic function is a monotonically increasing

function. The concepts that Roosta (1982) developed provide us with a starting

point for the development of effective solutions to be later used in our models.

2.4 Contribution

The contribution that we make in this thesis is to introduce a novel formulation of

the VRP; namely, the VRP with interdiction. This is a branch of the VRP that

has applications in disaster relief, military operations, communications networks and

more. The VRPI is primarily an extension to the work done by Huang et al. (2011),

but with the new idea where there may be delivery failures. Though interdiction has

seen several applications in network flow, the inclusion of this idea in the VRP has

not yet been considered. With this new VRPI model, we are also able to provide

several key properties that will aid us in finding the optimal routing for the VRPI.
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Chapter 3

VRPI Formulations

In the classical VRP as we discussed in Chapter 2, we are given a network, G, with N

customers and one depot. Each customer i has a specified demand, di, and we must

find the minimum cost routing plan such that all these demands are met.

In this chapter, we introduce the VRP with interdiction. To model the VRPI,

again we have a network G = (V,A), where V is the set of demand nodes plus the

depot, and A is the set of arcs connecting two nodes. We assume for our instances,

G is a complete graph. Each node apart from the depot has an associated demand,

di, and each arc has an associated cost, cij. Our situation arises when demand nodes

require a fixed expected amount of supplies over multiple delivery periods, where the

optimal routing plan will be executed over multiple periods. In this model, we assume

that in any single delivery period, arcs are subject to interdiction. Every arc in our

network has a chance to be interdicted and when interdiction occurs, all vehicles and

supplies carried by the vehicles traveling upon that arc will be lost.

We denote probability that an arc (i, j) is interdicted as qij (0 ≤ qij < 1), and

the probability that (i, j) is not interdicted is pij = 1 − qij. The values qij and pij
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are given for each arc (i, j), or we simply assume that these values can be estimated.

Moreover, we assume that the interdiction probability of each arc is independent of

any other. Since we are optimizing for multiple periods, we use the expectation of

delivery across all nodes of our network. This implies that it is possible to encounter

insufficient supply in a single period due to interdiction, however, in our model, we are

able to safeguard against that situation so that the long term demand requirements

are met.

Our models are based on route formulation, similar to the one used by Huang

et al. (2011). That is, we let Ω be an input parameter containing the set of all feasible

routes that begin and end at the depot. Each route, r ∈ Ω, is identified by the set

of nodes that it visits. More formally, r = {0, n1, · · · , nk, 0} where n1, · · · , nk ∈

V and 0 represents the depot. Each route is associated with a cost which can be

computed by: cr =
∑

(i,j)∈r cij. We can also compute the probability of reaching n1

without interdiction in route r as φn1r = p0n1 , the probability of reaching n2 without

interdiction as φn2r = p0n1pn1n2 , and so on. Therefore, we define φir as the probability

of arriving at node i without interdiction in route r (probability of success). Route

costs and probabilities of success are computed for each route as an input parameter.

A summary of notation is given in Table 3.1.

Next, we examine two performance measures for the VRPI: Cost minimization and

fulfillment maximization. The option to use for one model over the other depends on

the context of the situation and the amount of supply that is available to us.

When the total supply is greater than the total demand, we have an excess of sup-

ply, in which case, it is preferable to minimize with respect to cost. In humanitarian

applications, the objective will be to deliver supplies as efficiently as possible. When
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Table 3.1: Notations for the VRPI

Indices
0 : index of the depot.
i : index of demand nodes (customers); i ∈ V = {1, · · · , N}.
(i, j) : index of arcs; (i, j) ∈ A.
r, rk : index of routes; r, rk ∈ Ω.
Parameters
di : demand of node i.
cr : transportation cost of route r.
φir : probability of arriving at node i without interdiction in route r.
air : air = 1 if node i is in route r; otherwise air = 0.
K : number of vehicles.
Q : vehicle capacity.
Decision Variables
yir : amount of supply delivered to node i in route r.
xr: xr = 1 if route r is selected; otherwise xr = 0.

the total supply is less than the total demand, we have a shortage of supplies. In this

situation, our goal will be to optimize the distribution of our supplies. We want to

make sure that those in need will receive as much supplies as we could possibly give.

Here, cost is no longer a primary concern anymore, and as Kaplan (2001) has noted,

cost can be treated as a constraint rather than an objective.

3.1 Cost minimization

In the first formulation, we aim at minimizing the cost that is required to satisfy the

demands of all nodes. This formulation assumes that the total supply is larger than
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the total demand.

(VRPI–1) min
∑
r∈Ω

crxr (3.1)

s.t.
∑
r∈Ω

xr ≤ K (3.2)

∑
i∈V

yir ≤ Q ∀r ∈ Ω (3.3)

yir ≤ Qairxr ∀i ∈ V, ∀r ∈ Ω (3.4)∑
r∈Ω

φiryir ≥ di ∀i ∈ V (3.5)

xr ∈ {0, 1} ∀r ∈ Ω (3.6)

yir ≥ 0 ∀i ∈ V, ∀r ∈ Ω. (3.7)

The objective (3.1) aims at minimizing the total cost of all selected routes. Ω

is the set of all feasible routes. Constraint (3.2) enforces the maximum number of

vehicles selected. Constraint (3.3) ensures that the total supplies on a vehicle cannot

exceed its capacity Q. Constraint (3.4) enforces the necessary logic constraint that

only if a route is selected, the delivery on this route can be positive. Constraint (3.6)

guarantees that the expected amount delivered to every node meets their demand.

Note that we can add some safety stock si if necessary, so that the right hand side of

constraint (3.5) becomes di + si. Finally, we require that the decision variables xr be

binary, and yir be nonnegative in (3.6) and (3.7), respectively.

Even though this model assumes an excess of supply, we cannot always guarantee

feasibility. Because we are looking at the expected delivery to nodes, having a risky

routing plan (with high interdiction probabilities) could generate infeasible solutions.
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Additionally, if the total supply is less than the total demand, this model will be infea-

sible. In those cases, it is advisable to optimize with respect to fulfillment (VRPI–2),

presented below.

3.2 Fulfillment maximization

We also propose a VRPI formulation that aims at maximizing demand fulfillment,

which naturally assumes that the total supply is less than the total demand. In

humanitarian operations, we might use this model when the performance measure

depends on how well we can satisfy demands with limited resources.

(VRPI–2) max
∑
i∈V

∑
r∈Ω

φiryir (3.8)

s.t.
∑
r∈Ω

xr ≤ K (3.9)

∑
i∈V

yir ≤ Q ∀r ∈ Ω (3.10)

yir ≤ Qairxr ∀i ∈ V, ∀r ∈ Ω (3.11)∑
r∈Ω

φiryir ≤ di ∀i ∈ V (3.12)

xr ∈ {0, 1} ∀r ∈ Ω (3.13)

yir ≥ 0 ∀i ∈ V, r ∈ Ω. (3.14)

The objective (3.8) aims at maximizing the expected demand fulfillment for all

nodes. Constraints (3.9), (3.10), (3.11), (3.13) and (3.14) are the same as (3.2),

(3.3), (3.4), (3.6) and (3.7), respectively. Constraint (3.12) guarantees that we do not
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oversupply a node so that we can satisfy as much of the other demands as possible.

In (VRPI–2), we assume that the total supply is less than the total supply, i.e.,

there is a lack of supply. If on the contrary, there is an excess of supply, using the de-

mand fulfillment model will give us multiple optimal solutions. In such situations, the

solution of (VRPI–2) becomes meaningless, since it would be better to optimize over

cost using (VRPI–1). Alternatively, we can add a term −ε
∑

r∈Ω crxr in the objective

function of (VRPI–2), where ε is a small positive constant. This treatment could allow

us to find the most economic route among the routes that have the highest fulfillment.

One important feature of the VRPI formulations is that for the final leg of the

journey (from node i back to the depot 0), the interdiction probability has no impact

on the solution. This problem could therefore be formulated as the Open Vehicle

Routing Problem (OVRP), where vehicles do not need to return to the depot after

servicing its last customer (see (Li et al., 2007)). We choose not to adopt this model

for the purpose of possibly reusing vehicles. Another reasoning for this is that an

empty vehicle has very little reason to be interdicted and therefore has no impact on

the fulfillment of nodes.

3.3 Examples

To further clarify our VRPI formulations, we show two examples. First, we have a

cost minimization model with the following 5 demand nodes.
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Figure 3.1: (VRPI–1) Network Example

Table 3.2: (VRPI–1) example with 5 nodes

node x-coordinate y-coordinate demand

depot (0) 0 0

1 -122 132 24

2 -132 -60 24

3 50 108 42

4 -160 62 25

5 -143 -124 21

In Table 3.2, we have a fleet size of K = 4 and a vehicle capacity of Q = 50. In

this network, we generate the interdiction probabilities randomly between 1% − 5%

and we will use distance to represent cost of travel. The interdiction probabilities can

be summarized in the following matrix:
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Interdiction Probabilities :



∼ 4% 3% 1% 5% 1%

4% ∼ 1% 2% 2% 3%

3% 1% ∼ 5% 5% 5%

1% 2% 1% ∼ 4% 3%

5% 2% 5% 4% ∼ 4%

1% 3% 5% 3% 4% ∼


The index (i, j) in the above matrix represents the probability of interdiction from

traveling between node i and node j.

Similarly, the distances between nodes (cost) are represented as follows:

Cost Matrix :



∼ 180 145 119 172 189

180 ∼ 192 174 80 257

145 192 ∼ 248 125 65

119 174 248 ∼ 215 302

172 80 125 215 ∼ 187

189 257 65 302 187 ∼


Upon solving this network using (VRPI–1), we get the set of routes illustrated in

Figure 3.2. The optimal solution for this network has the value of 1221 and it has

the following routes:

• r1 = {0, 3, 0}: y31 = 50

• r2 = {0, 1, 4, 0}: y12 = 25, y42 = 25

• r3 = {0, 5, 2, 4, 0}: y53 = 21.2, y23 = 25.5, y43 = 1.7

25



M.A.Sc. Thesis - Michael Xu McMaster - Computational Science & Engineering

Figure 3.2: (VRPI–1) Example with interdiction

Just to contrast, the same network with no interdictions has an optimal value of

1069 with the routes shown in Figure 3.3

Figure 3.3: (VRPI–1) Example with no Interdiction

For the (VRPI–2), we use the same network, but we adjust it slightly so that the

total demand is greater than the total supplies available. In this scenario, we change

the vehicle capacity to Q = 30. Interdiction rates and costs, demands, and fleet size
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remain the same. The optimal solution that we obtained is shown in figure 4.5, with

a value of 115.981.

Figure 3.4: (VRPI–2) Example

The case for no interdiction for (VRPI–2) is less meaningful since any feasible

route will ‘maximize’ the fulfillment of the nodes. Since we will then have multiple

optimal solutions, we can add the term −ε
∑

r∈Ω crxr to the objective of (VRPI–

2). We thus encounter the same problem as (VRPI–1), to optimize the secondary

objective which is cost.

We explain in Chapter 6 with more detail on how networks were generated and

how they were solved.

3.4 Complexity

The classical VRP is already known to be NP-hard since it is shown to be an imme-

diate reduction of the Traveling Salesman Problem introduced by Garey and Johnson
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(1979). It was much later that Archetti et al. (2011) proved the NP-hardness of SD-

VRP with a limited fleet. Knowing the complexity of SDVRP, we can use a simple

reduction to show the complexity of (VRPI–1).

Theorem 1 (VRPI–1) is NP-hard.

Proof: The VRPI for cost minimization is NP-hard since the SDVRP is a special case

of (VRPI–1), where the probability of interdiction is 0 across all arcs.

The complexity of the (VRPI–2) is not as obvious, since the objective of this

model is much different from typical VRP models. However, we show that it is still

a difficult problem using a reduction from the Hamiltonian Cycle Problem (HCP),

which is known to be NP-complete (Garey and Johnson, 1979). The objective of the

HCP is to find a Hamiltonian cycle (a cycle that visits each vertex exactly once in a

given network).

Theorem 2 (VRPI–2) is NP-hard.

Proof: We use a reduction from the Hamiltonian Cycle Problem (HCP). Consider

any arbitrary graph G′ with n nodes. A corresponding instance of the (VRPI–2) can

be constructed on a complete graph as follows: We set pij = 1 if (i, j) ∈ G, otherwise

pij = 0.01 (or an arbitrary very small positive number). We optimize (VRPI–2) using

a single vehicle, K = 1 with capacity Q = n, and n customers each with di = 1. If

and only if the optimal routing to this instance of the (VRPI–2) gives us an objective

value of n, the corresponding graph in G′ has a Hamiltonian cycle.
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Chapter 4

Analysis of the VRPI

In this chapter, we characterize the properties of the optimal solutions of VRPI mod-

els.

4.1 Optimal Route Characteristics

Dror and Trudeau (1989) introduced one key property in their introduction of the

SDVRP. They proved that when the arc costs in the network satisfy the triangle

inequality, then an optimal solution cannot have two routes with more than a single

common demand point. Their reasoning for this was that if more than a single

demand point is shared among two routes, than we are able to adjust the demands

such that the new delivery routes produce a better solution in terms of cost. For

example, consider the following network.
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Figure 4.1: Dror’s property with 2 split deliveries

In Figure 4.1 we have a routing plan where two demand nodes share two routes. If

we assume WLOG that ymin = min yi1, yi2, yj1, yj2 = yj1, then the following changes

to deliveries will produce a better solution

y∗i1 = yi1 + yj1

y∗i2 = yi2 − yj1

y∗j2 = yj2 + yj1

y∗j1 = 0

Figure 4.2: Dror’s property with new deliveries

This change in delivery values is also illustrated in Figure 4.2

A large part of this property by Dror and Trudeau (1989) is reliant on the fact

that costs satisfy the triangle inequality, however when interdiction is involved, things

start to change. However, we can first generalize this property as Lemma 1.

Lemma 1 For (VRPI–1) and (VRPI–2), if qij ≡ ξ for a constant 0 ≤ ξ < 1 for all

(i, j) ∈ A, then there exists an optimal solution where two routes will have at most

one shared demand node.
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This conclusion is true because when qij is constant, the triangle inequality will hold

and taking a less direct route will not be cost efficient. This is a slightly general-

ized argument to the one presented by Dror and Trudeau (1990), for which we have

provided a sketch above.

Property 1 For (VRPI–1) and (VRPI–2), two demand nodes may have multiple

routes in common in an optimal solution.

We notice that property 1 is a direct violation of Lemma 1, i.e., Dror & Trudeau’s

property. An important assumption behind Dror & Trudeau’s property is the fact

that arc costs in the network satisfy the triangle inequality. While this is also true

in VRPI, interdiction probabilities do not satisfy this assumption. In the VRPI,

some overlapping routes may have a better probability of success (i.e., probability

of no interdiction) since the chance that each arc is interdicted is independent of

one another. Expected delivery in our models (i.e., probability of no interdiction

multiplied by delivery quantity) does not follow the triangle inequality either, so

additional routes covering the same nodes may be present in the optimal solution

because of the higher probability of success. While a more direct route that bypasses

nodes with fulfilled demands could appear to save costs, the expected delivery from

taking this route could be too small. In this scenario, an additional vehicle would

be required to cover any unmet demands, which is ultimately less optimal. In other

words, the cost associated with adding an additional vehicle in our solution to cover

these unmet demands, could outweigh the cost of making a less direct route to avoid

interdiction. In some instances, adding an additional vehicle can even be infeasible

(due to the constraint of vehicle number K). In general, as interdiction probabilities

become larger, there is a better chance that we see overlaps between routes, where

31



M.A.Sc. Thesis - Michael Xu McMaster - Computational Science & Engineering

this property applies.

An example is given in Figure 4.3. In Figure 4.3, we have the goal of minimizing

cost. The optimal solution consists of r1 = {0, 1, 2, 0} and r2 = {0, 1, 2, 3, 0}, both

covering demand nodes 1 and 2. Although r2 is not supplying node 1 and does

not need to travel on arcs (0, 1), (1, 2), the vehicle still makes that detour because

otherwise our solution would require 3 vehicles (p0,3 ·Q = 2 < 3 = d3 and p0,2 ·p2,3 ·Q =

1.8 < 3 = d3), which is infeasible since K = 2.

Figure 4.3: (VRPI–1) with 3 demand nodes, Q = 5, K = 2.

For (VRPI–2), it can be easily shown that property 1 is also true. Naturally,

arcs with higher probability of successs are more favorable in maximizing fulfillment

because the expected delivery will be greater.

Figure 4.3 also illustrates a critical property different from Dror & Trudeau’s

property.
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Property 2 For (VRPI–1) and (VRPI–2), there exists an optimal solution, where

for every pair of nodes, at most one route delivers to both nodes.

Proof: First, we prove the result for (VRPI–1). We consider two routes 1 and 2,

both of which visit two arbitrary demand nodes i and j. For simplicity, we use the

following notation:

φi1 = φ1, φj1 = φ2, φi2 = φ3, φj2 = φ4,

yi1 = y1, yj1 = y2, yi2 = y3, yj2 = y4.

We assume that demands for i and j are both satisfied, i.e., φ1y1 + φ3y3 ≥ di and

φ2y2 + φ4y4 ≥ dj. The capacity constraints are also satisfied, i.e., y1 + y2 ≤ Q and

y3 + y4 ≤ Q. Assume that in this optimal solution, both nodes have split demands,

i.e., y1, y2, y3, y4 > 0.

We consider four cases:

case 1: if φ4 ≥ φ2φ3
φ1

and y2 >
φ3
φ1
y3 we can make the following substitution:

y∗1 = y1 +
φ3

φ1

y3 y∗2 = y2 −
φ3

φ1

y3

y∗3 = 0 y∗4 = y4 + y3.

case 2: if φ4 <
φ2φ3
φ1

and y4 >
φ1
φ3
y1 we can make the following substitution:

y∗1 = 0 y∗2 = y2 + y1

y∗3 = y3 +
φ1

φ3

y1 y∗4 = y4 −
φ1

φ3

y1.
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case 3: if φ4 <
φ2φ3
φ1

and y4 ≤ φ1
φ3
y1 we can make the following substitution:

y∗1 = y1 −
φ4

φ2

y4 y∗2 = y2 +
φ4

φ2

y4

y∗3 = y3 + y4 y∗4 = 0.

case 4: if φ4 ≥ φ2φ3
φ1

and y2 ≤ φ3
φ1
y3 we can make the following substitution:

y∗1 = y1 + y2 y∗2 = 0

y∗3 = y3 −
φ2

φ4

y2 y∗4 = y4 +
φ2

φ4

y2.

We can verify that all these four cases give feasible solutions. For example, in

case 4, capacity constraints are satisfied: y∗1 + y∗2 = y1 + y2 ≤ Q and y∗3 + y∗4 =

y3 − φ2
φ4
y2 + y4 + φ2

φ4
y2 = y3 + y4 ≤ Q. Demand constraints are also satisfied:

φ1y
∗
1 + φ3y

∗
3 = φ1(y1 + y2) + φ3(y3 −

φ2

φ4

y2)

= φ1y1 + φ3y3 + (φ1 −
φ3φ2

φ4

)y2

≥ φ1y1 + φ3y3

≥ di

and

φ2y
∗
2 + φ4y

∗
4 = φ2(0) + φ4(y4 +

φ2

φ4

y2)

= φ2y2 + φ4y4

≥ dj.
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A similar argument applies for the other three cases. In all cases, after applying

the substitution, we are left with a solution where no supply is delivered on one of

the nodes from one of the routes.

Finally, we check to ensure that the adjusted deliveries do not negatively affect the

objective value. In (VRPI–1), it is clear that the objective value
∑

r∈Ω crxr remains

unchanged since the selection of routes is still the same. The only modification is the

distribution of supplies between the vehicles.

The proof for (VRPI–2) is similar. The only adjustment that must be made is if

a node receives too much supply and thus violates constraint (3.12). To account for

this (φ1y1 +φ3y3 ≤ di and φ2y2 +φ4y4 ≤ dj), we can simply remove the excess supply

from the vehicles. In case 4:

y∗1 = y1 + y2 y∗2 = 0

y∗3 = min{y3 −
φ2

φ4

y2,
di − φ1y

∗
1

φ3

} y∗4 = min{y4 +
φ2

φ4

y2,
dj
φ4

}.

The new objective value for this case is
∑

i∈V
∑

r∈Ω φiryir. Other parts of the
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network remain unchanged so we focus on the following four entries:

φ1y
∗
1 + φ2y

∗
2 + φ3y

∗
3 + φ4y

∗
4

= φ1y
∗
1 + φ2(0) + φ3(y3 −

φ2

φ4

y2) + φ4(y4 +
φ2

φ4

y2)

≥ φ1y
∗
1 + φ2(0) + φ3(

di − φ1y
∗
1

φ3

) + φ4(
dj
φ4

)

= φ1y
∗
1 + di − φ1y

∗
1 + dj

≥ φ1y
∗
1 + φ1y1 + φ3y3 − φ1y

∗
1 + φ2y2 + φ4y4

= φ1y1 + φ2y2 + φ3y3 + φ4y4.

With the new delivery values, the objective value for (VRPI–2) is nondecreasing. A

similar argument applies to the other cases as well. Thus we have shown that there

will always exist an optimal solution where for every pair of nodes, at most one route

delivers to both nodes.

Property 2 differs from property 1 in that we acknowledge multiple routes may visit

several common nodes, however, there exists an optimal solution such that demand

split only happens on one of these nodes. For example, two routes r1 and r2 may

share nodes i, j; if yi2 > 0 and yj2 > 0, then either yi1 = 0 or yj1 = 0. On the other

hand, property 2 can be understood as a generalization of Dror & Trudeau’s property.

Indeed, in the classic SDVRP, property 2 automatically implies property 1, because

when the triangle inequality holds, it is unnecessary to make a detour and visit nodes

that have already received deliveries.

Next we formally define the concept of a “detour point”.
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4.2 Detours

Definition 1 A route r contains a detour point at node i, if i is visited by r without

receiving any supply.

The use of a detour point is shown in Figure 4.3 and they are frequently used

when there are large interdiction probabilities. In fact, one distinguishing property

of the VRPI is the following.

Property 3 For (VRPI–1) and (VRPI–2), an optimal solution may contain several

detour points; a single node can be used as a detour point several times.

An example of property 3 is shown in Figure 4.4 below. Though the interdiction

probabilities in the network are quite extreme, such an instance may also occur when

the interdiction probabilities on the arcs (2, 3) and (3, 4) are much larger.

Figure 4.4: Multiple detours
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Another observation of the VRPI comes from the fact that a single trip to a node

can still be insufficient to satisfy the node demand. This can happen in both the case

of Q ≥ di and the case of Q < di, since the interdiction probability may make the

expected delivery unable to satisfy the node demand completely. This observation

brings us to our next property:

Property 4 For (VRPI–1) and (VRPI–2), an optimal solution may use a single

route multiple times.

The presence of multiple routes is illustrated in Figure 4.5. In Figure 4.5, the

optimal solution is to use route r1 = {0, 1, 2, 0} twice (i.e., send two vehicles along

the route r1). The supply distributions for the two routes are different and satisfy

properties 1 and 2. The route r1 is chosen twice because it gives us the highest

probability of supplying demand node 2 to its desired demand. Indeed, if we were to

send the second vehicle directly from the depot to node 2 (i.e., r2 = {0, 2, 0}), then

our solution would be infeasible since p02Q+ y21 < d2.

Figure 4.5: (VRPI–1) with 2 demand nodes, Q = 37, K = 2.
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Figure 4.6: Depot as a detour point.

Throughout this paper, we have assumed that the probability of interdiction for

each arc is independent of one another. Therefore, with respect to probability of

success, the triangle inequality does not hold. One consequence is that we could

travel upon the same arcs twice and revisit a node whose demand has already been

satisfied (property 1 and property 2), or the usage of multiple highly reliable routes

(property 4). Another interesting consequence is the existence of an optimal solution

where a vehicle uses the depot as a detour point. This scenario is shown in Figure

4.6.

In Figure 4.6, we can see that, a vehicle who just visits node 1, has a choice

of going directly to node 2 (with p12 = 0.8), or making a detour via the depot to

reach node 2 (with p10p02 = 0.81). Obviously, making the direct trip would incur

a higher interdiction probability. So in (VRPI–2), we would choose the detour trip.

The routing decision for (VRPI–1) will only choose the direct trip from node 1 to

node 2 if the supply left on the vehicle is enough to satisfy the demand at node 2 (i.e.,

Q − y1r ≥ d2
φ2r

). To account for this detour in our model, we could add an auxiliary

node with demand 0 to act as the depot. In practice, if such an instance occurs,

another option could be to send the required supply to node 1, then replenish the

vehicle at the depot before rerouting it. The option to replenish vehicles may however

come with an additional cost.

The same applies in general to any sequence with arbitrary number of nodes. In
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(VRPI–2), consider a sequence i1, i2, . . . , ik, we will use the path {i1, i2, . . . , ik} over

{i1, ik} if pi1i2 . . . pik−1ik > pi1ik , although it would be more advantageous in terms of

travel cost to make the direct trip from i1 to ik due to the triangle inequality on travel

costs.

Finally, we have a property describing the number of vehicles in our optimal

solution.

Property 5 For (VRPI–1), we may not minimize the number of vehicles used. How-

ever, for (VRPI–2), we are always able to find an optimal solution where we use all

vehicles that are available to us.

We observe that in some instances of (VRPI–1), it is much more cost effective to

route a new vehicle from the depot than to use each vehicle to its capacity. Consider

for example, a relaxed variation of Figure 4.3 where K = 5 (all the other data

unchanged). The current solution with 2 routes yield an objective value of z = cr1 +

cr2 = 15 + 20 = 35. Now consider the following solution r1 = {0, 1, 0}, r2 = {0, 2, 0},

r3 = r4 = {0, 3, 0}. The objective value of this solution is cr1 + cr2 + cr3 + cr4 =

8 + 10 + 8 + 8 = 34 < z.

The second part of property 5 is more obvious since the use of additional vehicles

does not decrease our objective value in (VRPI–2), so we are always able to find an

optimal solution that uses the maximum allowable number of vehicles.

In the VRPI models, we are optimizing the long term average performance of a

single routing plan that is executed repeatedly. Thus, in a single delivery period, it

is possible for us to oversupply nodes in a network. The amount of additional stock

from the oversupply could be used as a safety stock to account for uncertainties in

future deliveries due to interdiction. The same concept applies for both (VRPI–1)
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and (VRPI–2).

In the next chapter, we discuss the solution methodologies for VRPI models.
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Chapter 5

Algorithms

To model the VRPI problems, we use route formulations. Therefore, to solve a VRPI

problem to optimality, we have to enumerate all the possible routes are in Ω. However,

it is time consuming to do this. Moreover, according to properties 3 and 4, there may

exist multiple repeated routes or detour points in the optimal solution, which implies

that a much larger set is required for Ω. On the other hand, though we must consider

all the possible routes, only a small subset of those routes will appear in the optimal

solution, so an efficient procedure would only require a well picked set of routes in Ω.

For our numerical studies, we use heuristic algorithms to generate the set of routes

that we will use.

The auxiliary model that we use to select “good” routes relies on a metaheuristic

framework, called GRASP (Greedy Random Adaptive Search Procedure) as described

by Feo and Resende (1995).
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5.1 GRASP

GRASP can be applied in two phases: 1. A construction phase, and 2. Local Search.

In the construction phase, a feasible solution is iteratively built. This is followed

by the improvement phase where a local search is performed in the neighborhood of

the constructed feasible solution. These two steps are performed repeatedly until a

stopping criteria is reached. During each iteration of the algorithm the best solution

is kept. The random and greedy aspect of GRASP comes in the construction phase

where a candidate list is chosen based on a desired degree of randomness or greedi-

ness. The pseudocode of their algorithm (Feo and Resende, 1995) is shown below in

Algorithm 5.1

Algorithm 1 GRASP pseudo-code

1: BestSolution = {}
2: while Stop criteria not met do
3: S = {}
4: while element list 6= ∅ do
5: Make Restricted Candidate list(RCL)
6: Select random element c in RCL
7: S = S ∪ {c}
8: Update RCL
9: end while

10: while Stop criteria not met do
11: Find better solution T in the neighbourhood of S
12: Compare T with S
13: Update BestSolution with {T, S}
14: end while
15: end while
16: Return BestSolution

Lines 4-9 of Algorithm 1 refer to the construction phase. This step builds the

feasible solution using a Restricted Candidate List (RCL). The RCL is built based

on a variable α = [0, 1]. An α value of 0 makes the RCL purely random, whereas an
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α value of 1 makes the RCL purely greedy.

Figure 5.1: GRASP

Figure 5.1 illustrates the general GRASP algorithm

In the next section, we adapt the GRASP to our own problem setting.

5.2 Algorithm for (VRPI–1)

We begin with an empty s et of routes (Ω = ∅) and as the auxiliary model is solved,

new routes are generated. In this auxiliary model, we identify paths that are likely

to exist in the optimal solution based on the following two criteria: Paths with a

high probability of success, or paths with low travel cost. The algorithms for the two

different models are described in more detail below.

Cost minimization
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Algorithm 2 Route Generation for (VRPI–1)

1: Initialization: Ω = ∅; generate U , i.e., the set of all initial routes; set γ as the
interdiction threshold

2: while U 6= ∅ do
3: Choose rk = {0, i, . . . ,m, 0} ∈ U
4: Find node u /∈ rk such that minu cmu
5: Let r1

k = {0, i, . . . ,m, u, 0}
6: Find node v /∈ rk such that maxv pmv
7: Let r2

k = {0, i, . . . ,m, v, 0}
8: if

∑
j∈r1k

dj < Q and φur1k > γ then

9: Add route r1
k to U

10: end if
11: if

∑
j∈r2k

dj < Q and φvr2k > γ and u 6= v then

12: Add route r2
k to U

13: end if
14: Remove route rk from U and add it to Ω
15: Reoptimize U
16: end while

Our heuristic for the cost minimization model, Algorithm 2, has a construction

phase and a local improvement phase. We begin with the initial set of K routes,

where K is the number of vehicles available to us. The K routes are chosen based

on the criteria of having the K lowest interdiction rates. Each route has the form

{0, i, 0}.

The set Ω is the final set of routes that we input into our formulation and the set

U is the set of unprocessed routes waiting for improvement. In each iteration of the

procedure, we perform what is called the extension step on each of the routes in our

set. In the extension step, we take a route and identify a neighboring unvisited node

that has minimum cost and a neighboring unvisited node that has minimum chance

of interdiction. Completing this step would provide us two new routes.

Afterwards, we check the feasibility of these two new routes and discard those
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infeasible routes. In this feasibility check step, we check the following two conditions:

1) The sum of all demands of visited nodes is no greater than the capacity. 2) The

probability of reaching the final demand node in the route is greater than γ (γ is

the stopping condition chosen by the decision-maker). We will usually set this value

according to the average probability of success in the network.

The last step is to perform some local improvements for the set U with the newly

added routes. This is line 14 of Algorithm 1, where we remove any routes that are

dominated by another route. If any two routes contain the same demand nodes, we

only keep the route that has a lower cost or higher probability of success. This step

ensures a smoother runtime and that we don’t need to process unnecessary routes

that are potentially less good. A flow chart of Algorithm 2 is presented in Figure 5.2.

Figure 5.2: Heuristic for (VRPI–1)
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5.3 Algorithm for (VRPI–2)

For (VRPI–2), we use the same GRASP framework where we have a construction

phase and a local improvement phase.

Fulfillment maximization

Algorithm 3 Route Generation for (VRPI–2)

1: Initialize Ω = ∅, U = ∅, and set ε as the threshold value
2: for i ∈ V do
3: Find the most reliable path {0, n1, . . . , nk} from 0 to nk, where nk = i
4: Add route {0, n1, . . . , nk, 0} to Ω and U
5: end for
6: while U 6= ∅ do
7: Select route r = {0, i, . . . ,m, 0} ∈ U
8: Find a neighboring node u /∈ r with maxu{pmu}
9: Let r′ = {0, i, . . . ,m, u, 0}

10: if φu,r′ > ε and
∑

j∈r′ dj < Q then
11: Add route r′ to U
12: end if
13: Remove r from U and add to Ω
14: end while

In (VRPI–2), we notice that the solution that maximizes our objective function

consists of the arcs yielding the highest value for φiryir. The choice of yir is greedy

in the sense that larger φir leads to larger yir. Thus we turn to φir, which is our

probability of success. We use the idea of maximum reliability, introduced by Roosta

(1982) and solved using a variation of the shortest path problem. In Algorithm 3,

the initial loop begins by generating a set of routes that maximize the probability

of success (or minimize the chance of interdiction). To find the path with maximum

probability of success, we compute−log(pij) for each arc (i, j) in our network and solve

the shortest path problem (with Dijkstra’s algorithm). These paths (computed in lines

2-5) serve as the initial set of routes from which we can make further improvements.
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In the subsequent step, when additional capacity is available on a vehicle, we use

a greedy route extension step: Picking a neighboring arc with unfulfilled demand

that has the smallest chance of interdiction to extend our current path. The route

extension step continues until we systematically determine that the path can no longer

contain any more demand nodes and/or when a certain threshold, representing highest

acceptable interdiction chance, is reached. The set U is used to represent the set of

unprocessed routes which can be extended. Initial routes and routes that can no

longer be extended are candidates to be placed in set Ω.

A threshold for stopping our route extension is added because routes need not to

be inclusive of all nodes. When looking at the general length of a route, optimally,

we prefer a route that stops by the major nodes without being too constrained by

the chances of interdiction. We also observe that longer routes will have a quickly

diminishing capacity, unless the prior nodes in a route are detour points. Furthermore,

the accumulation of interdiction probabilities upon a longer route will quickly make

such routes less optimal. Therefore, with the exception of routes with detour points,

the capacity of a vehicle is diminished by approximately di
φir

for each subsequent

service to demand node i in route r. Another stopping condition that can be applied

is a threshold based on a target service level that one must achieve. For example, in

a network with a target service level of 90% and constant interdiction probabilities

of 0.01 across all arcs, we can expect the optimal routes to contain no more than

10 demand nodes (a route containing 11 nodes will have one customer with φir =

0.9911 < 0.9). The set of feasible routes is expected to be smaller for a higher service

level.
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Chapter 6

Numerical Results

The numerical experiments serve two purposes: 1). We evaluate the effectiveness of

the proposed models; 2) we test the efficiency of the proposed algorithms.

In our experiments, we test networks of 5, 6, and 7 demand nodes. Though these

networks are small, larger instances would not be computable and the solutions that

we obtain would not be easily interpreted. For brevity, we only present the results for

the 7 node networks. Each node in a selected network is scattered randomly along a

200 × 200 square grid. The depot is located at the center of the grid and the travel

cost between two nodes is set to be the Euclidean distance of the two nodes rounded

to the nearest integer.

We set the parameters as: Q = 50 or 100, K = 4 or 6, and qij = U [0.01, 0.05] or

U [0.01, 0.10] or U [0.01, 0.20], where U [a, b] denotes a uniform distribution between a

and b. The 12 instances that we have generated for the 7 node network are summarized

in the Table 6.1, where column “Ins. Num.” presents the instance number and column

“Int. Prob.” represents the interdiction probability.
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Table 6.1: Selected Network Instances for VRPI Models

Ins. Num. Q K Int. Prob.

1 50 4 U[0.01,0.05]

2 50 4 U[0.01,0.10]

3 50 4 U[0.01,0.20]

4 50 6 U[0.01,0.05]

5 50 6 U[0.01,0.10]

6 50 6 U[0.01,0.20]

7 100 4 U[0.01,0.05]

8 100 4 U[0.01,0.10]

9 100 4 U[0.01,0.20]

10 100 6 U[0.01,0.05]

11 100 6 U[0.01,0.10]

12 100 6 U[0.01,0.20]

All of the models and algorithms are coded in C++ using the IBM ILOG CPLEX

Concert Technology (CPLEX 12.2.0). The computations are performed on a 1.60

GHz 64-bit Intel Core i5 CPU with 8GB RAM.

6.1 VRPI Route Structure

For the (VRPI–1), we create instances where the total supply is greater than the

total demand; and for the (VRPI–2), we create instances where the total supply is

less than the total demand. By solving the VRPI models to optimality, we make the

following observations.
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Observation 1 High interdiction, low cost arcs.

Arcs with a relatively high interdiction probability but low cost will appear near

the rear of the route.The reasoning behind this observation is that as a route traverses

risky arcs, the accumulation of interdiction probabilities makes the overall probability

of success of reaching all subsequent nodes lower. If the risky arc in our network is

selected much later in our route, then only nodes that are visited after the risky arc

will be affected. Similarly, if we want to maximize the fulfillment in (VRPI–2), then

we surely want to minimize the number of nodes that are affected by a single risky

arc. Thus, if the selection of a risky arc is inevitable, it is preferable to locate this

arc near the rear of a route.

Observation 2 Low demand nodes.

Nodes with relatively low demands are visited last in an optimal route. As our

route lengthens, the cumulative interdiction rate grows, therefore the expected supply

for the nodes served at the rear of the route will be less than if the node was one

of the first ones served. Another way to look at it takes into account the expected

loss. When delivering a larger amount of supply through a risky path, the expected

loss will be higher compared to delivering a smaller quantity through the same path.

Correspondingly, nodes with higher demand will typically appear near the front of a

route. The expected probability of successs is much more likely to be higher at the

front of a route. This observation holds for both (VRPI–1) and (VRPI–2).

Observation 3 Split deliveries.

A route experiences split delivery if the supply of the vehicle along that route

cannot completely satisfy the demand of a node along the route. We notice that in
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all our experiments, the number of split deliveries is at most 2. This observation

was recorded in both experiments with (VRPI–1) and (VRPI–2). It is conjectured

that this observation holds for all instances in general because the loss incurred by

interdiction will deter the use of some routes. Particularly those routes where split

deliveries occur.

Observation 4 Repeated routes and detour points.

Although we show with Property 4 that the presence of multiple routes is possible,

in our generated instances of select networks, the optimal solution will rarely contain

repeated routes. This observation provides us with a simplification to the problem

by not including multiple copies of routes in the set Ω. Additionally, we have shown

that there may exist solutions where there is a detour point in Property 2. However,

the use of a single detour point, or even multiple detour points is rather uncommon

in (VRPI–1). One factor that might account for this observation is the fact that our

interdiction probabilities are uniformly distributed. In (VRPI–2), however, the use

of detour points is much more common. This is likely because the objective function

does not include traveling costs.

Observation 5 Size of routes.

We observe that in the instances that we have generated, a single route will often

have a length of at most Q
mini∈V {di:di>0} . In general, model (VRPI–1) has a prefer-

ence for shorter routes because the cumulative interdiction probabilities along with

the traveling costs make it less likely for demands to be completely satisfied on a

long route. In (VRPI–2), the size of the routes tends to reach the maximum length

(simply based on the absence of route costs and the nature of the CPLEX solver).
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However, in this solution, the nodes at the rear of the route will not be served and

we can interpret solution in a way such that these nodes are removed from the route.

Applying this soft upper bound on the size of routes will allow us to find a good

estimation of the optimal solution within a shorter time.

All of these observations allow us to have a better understanding of the optimal

route structure of the VRPI models as they are valid for most of the instances.

6.2 Solution of (VRPI–1)

In (VRPI–1), we generate the demands using a random uniform distribution such

that di = U [10, 30] for instances with Q = 50 (Instances 1-6) and di = U [30, 70] when

Q = 100 (Instances 7-12).

Five unique 7-node networks are created within the specifications for each instance

and we record the averages of these five networks. We compare the computational

time and objective value by our heuristic algorithm with those of the CPLEX solver.

Because we use all possible permutations of routes, the CPLEX solver finds the op-

timal objective value. Below is a summary of the experiments.
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Table 6.2: Computational Results for (VRPI–1)

Ins. Num. Opt. Time Heu. Time Opt. Gap

1 553.28 0.79 1.60 %

2 969.20 0.72 1.45 %

3 979.64 0.57 2.06 %

4 886.86 0.69 2.32 %

5 905.03 0.62 2.21 %

6 800.26 0.91 2.75 %

7 233.01 0.87 2.06 %

8 237.92 0.59 3.72 %

9 204.03 0.58 3.87 %

10 250.05 0.55 3.89 %

11 274.06 0.63 3.48 %

12 384.87 0.58 3.75 %

In Table 6.2, column “Opt. Time” represents the solution time of the CPLEX

solver. Column “Heu. Time” represents the solution time of the heuristic algorithm.

All the times are counted in seconds. Column “Opt. Gap” represents the relative

percentage gap of the solution found by the heuristic compared with the optimal

objective value.

From the numerical results for (VRPI–1) we notice first that there is generally a

1 − 4% gap between our heuristic solution and the optimal solution. Our heuristic

produces values that are closer to the optimal when the vehicles in our fleet has a

smaller capacity. When vehicles have an increased capacity, there are more options
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when creating a longer route, thus making it more difficult for our heuristic algorithm

to select the most optimal route. We also notice that in networks where large inter-

diction probabilities may appear (up to 20%), there is a larger optimality gap from

the results of our algorithm. This is most likely explained by the fact that in selecting

a less optimal starting route segment, large interdiction rates will be amplified as the

route becomes longer.

6.3 Solution of (VRPI–2)

Experiments conducted for (VRPI–2) are similar to those of (VRPI–1). Note that we

adjust the demands slightly so that the total supply can be less than the total demand.

We set di = U [50, 70] for instances with Q = 50 (Instances 1-6) and di = U [90, 110]

when Q = 100 (Instances 7-12).

In some cases of the (VRPI–2), we see multiple optimal solutions, so we added

the following term −ε
∑

r∈Ω crxr in the objective function, as described in Section 3.

ε set as 0.001.
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Table 6.3: Computational Results for (VRPI–2)

Ins. Num. Opt. Time Heu. Time Opt. Gap

1 611.548 4.057 0.00%

2 662.932 4.831 0.00%

3 479.906 4.975 0.00%

4 532.270 4.783 0.00%

5 686.542 4.994 0.03%

6 463.330 5.763 0.06%

7 537.890 5.697 0.01%

8 418.320 5.978 0.01%

9 414.344 6.003 0.10%

10 541.864 5.342 0.06%

11 536.809 4.872 0.11%

12 557.597 4.750 0.12%

Table 6.3 presents the computational results for (VRPI–2). In the first three in-

stances (when the supply is much less than the demand), our heuristic algorithm

is able to find the optimal solution in all generated configurations of the network.

As the size of the supply in the network increases, we notice that there are some

instances where the heuristic algorithm gives us a less optimal solution in a few of

the 5 generated networks. Among all the instances, the optimality gap between the

solution found by Algorithm ?? and the optimal solution never exceeds 0.2%, which

demonstrates that the truncation of routes in Algorithm ?? tend not to dispose the
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optimal solution. Additionally, the time to compute the optimal solution is approx-

imately 100 times slower than the time to compute the heuristic solution and there

is little difference between the computational time between any two instances of the

(VRPI–2).

Further experimental results are presented in Appendix A
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Chapter 7

Conclusions

This paper establishes the general framework for the VRPI. The proposed models

are an extension of SDVRP with applications in humanitarian relief or military op-

erations. These models are used in the vehicle routing planning phase and we are

concerned of the long term average performance of a single routing plan. Thus, in

a single delivery period, it is possible for us to oversupply nodes in a network. The

amount of additional stock from the oversupply could be used as a safety stock to

account for uncertainties in future deliveries due to interdiction.

Although the VRPI is built upon the SDVRP, they do not share the same prop-

erties. For example, in the SDVRP, there is always an optimal solution where routes

can have at most one shared demand node, whereas in the VRPI, this property is

relaxed, so routes can have multiple shared demand nodes. However, it is still true in

the VRPI that there is an optimal solution where only one of these routes will deliver

to multiple nodes. The properties exhibited by the VRPI give us key insights into

the structure of optimal routes in these problems. In the VRPI, it was necessary to

introduce the concept of a detour node and this is observed in the optimal solution
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of many experimental results. We further introduced a two-phase greedy heuristic

algorithm, based on GRASP to solve small instances of the VRPI. Compared with

the commercial solver CPLEX, we found that our algorithm perform much more ef-

ficiently within 4% optimality gap in (VRPI–1) and within 1% v 4% optimality gap

in (VRPI–2).

One direction for future research for the VRPI includes analysis of the optimal

trade-off between cost and interdiction probabilities. This will give us more insight

on how to make an optimal problem reduction in larger cases. Additionally, exact

algorithms based on cutting plane and branch-and-price could be considered. Finally,

in this paper, we have only investigated the static models of the VRPI. A dynamic

version of the VRPI is a good direction for future work. Such a version would involve

transmitting routing information in an ongoing manner and rerouting vehicles as

interdiction occurs.
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Appendix A

Results for (VRPI–1)

The experiments in Table A.1 consist of 5 demand nodes and have a uniformly demand

range of 20− 50. The experiments in Table A.2 consist of 6 demand nodes and have

a uniformly demand range of 20− 50.
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Table A.1: Additional Results for (VRPI–1), n = 5

Q K Int. Prob. Opt. Time Heu. Time Opt. Gap

200 3 U[0.01,0.05] 0.385 0.115 0.66%

200 3 U[0.01,0.10] 0.454 0.099 1.23%

200 3 U[0.01,0.20] 0.601 0.147 2.40%

200 3 U[0.01,0.40] 0.855 0.083 0.19%

100 4 U[0.01,0.05] 1.467 0.182 0.22%

100 4 U[0.01,0.10] 1.746 0.178 2.75%

100 4 U[0.01,0.20] 1.937 0.115 0.51%

100 4 U[0.01,0.40] 1.438 0.137 2.72%

60 6 U[0.01,0.05] 0.115 0.085 1.95%

60 6 U[0.01,0.10] 0.116 0.069 4.28%

60 6 U[0.01,0.20] 0.169 0.084 4.36%

60 6 U[0.01,0.40] 0.285 0.069 3.59%
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Table A.2: Additional Results for (VRPI–1), n = 6

Q K Int. Prob. Opt. Time Heu. Time Opt. Gap

200 3 U[0.01,0.05] 2.442 0.147 2.30%

200 3 U[0.01,0.10] 4.667 0.131 6.01%

200 3 U[0.01,0.20] 4.864 0.153 6.21%

200 3 U[0.01,0.40] 3.969 0.116 5.84%

100 4 U[0.01,0.05] 11.792 0.354 4.43%

100 4 U[0.01,0.10] 11.717 0.163 4.39%

100 4 U[0.01,0.20] 12.422 0.131 1.91%

100 4 U[0.01,0.40] 26.808 0.154 0.90%

60 6 U[0.01,0.05] 42.089 0.316 2.13%

60 6 U[0.01,0.10] 85.600 0.347 1.92%

60 6 U[0.01,0.20] 53.104 0.147 4.22%

60 6 U[0.01,0.40] 39.532 0.104 5.37%
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Appendix B

Results for (VRPI–2)

The experiments in Table B.3 consist of 5 demand nodes. Rows 1-4 used instances

where networks had a demand of 40-100 and the rest used demands 80-100. The

experiments in Table B.4 consist of 6 demand nodes. Rows 1-4 used instances where

networks had a demand of 40-100 and the rest used demands 80-100.
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Table B.3: Additional Results for (VRPI–2), n = 5

Q K Int. Prob. Opt. Time Heu. Time Opt. Gap

50 4 U[0.01,0.05] 2.848 0.717 0.11%

50 4 U[0.01,0.10] 3.426 0.785 0.02%

50 4 U[0.01,0.20] 4.301 0.669 0.01%

50 4 U[0.01,0.40] 2.143 0.668 0.11%

50 4 U[0.01,0.05] 3.147 0.686 0.19%

50 4 U[0.01,0.10] 3.381 0.716 0.00%

50 4 U[0.01,0.20] 4.779 0.702 0.04%

50 4 U[0.01,0.40] 1.383 0.647 0.06%

120 4 U[0.01,0.05] 2.395 0.653 0.82%

120 4 U[0.01,0.10] 5.895 0.820 0.08%

120 4 U[0.01,0.20] 2.555 0.769 0.09%

120 4 U[0.01,0.40] 4.721 0.769 0.85%
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Table B.4: Additional Results for (VRPI–2), n = 6

Q K Int. Prob. Opt. Time Heu. Time Opt. Gap

50 4 U[0.01,0.05] 28.547 0.815 0.89%

50 4 U[0.01,0.10] 23.478 0.848 0.03%

50 4 U[0.01,0.20] 18.882 0.765 0.06%

50 4 U[0.01,0.40] 21.882 0.762 0.14%

50 4 U[0.01,0.05] 14.860 0.756 0.02%

50 4 U[0.01,0.10] 16.276 0.732 0.02%

50 4 U[0.01,0.20] 24.941 0.816 0.10%

50 4 U[0.01,0.40] 29.679 0.785 0.06%

120 4 U[0.01,0.05] 37.654 0.818 0.02%

120 4 U[0.01,0.10] 13.345 0.779 0.03%

120 4 U[0.01,0.20] 17.068 0.838 0.16%

120 4 U[0.01,0.40] 11.617 0.732 0.00%
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