
Decentralized Crash-Resilient Runtime Verification

DECENTRALIZED CRASH-RESILIENT RUNTIME

VERIFICATION

BY

SHOKOUFEH KAZEMLOU, M.Sc.

a thesis

submitted to the department of Computing & Software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

c© Copyright by Shokoufeh Kazemlou, December 2017

All Rights Reserved

Master of Applied Science (2017) McMaster University

(Computing & Software) Hamilton, Ontario, Canada

TITLE: Decentralized Crash-Resilient Runtime Verification

AUTHOR: Shokoufeh Kazemlou

M.Sc.

SUPERVISOR: Dr. Borzoo Bonakdarpour

NUMBER OF PAGES: viii, 76

ii

Abstract

Runtime Verification is a technique to extract information from a running system in

order to detect executions violating a given correctness specification. In this thesis, we

study distributed synchronous/asynchronous runtime verification of systems. In our

setting, there is a set of distributed monitors that have only partial views of a large

system and are subject to failures. In this context, it is unavoidable that monitors

may have different views of the underlying system, and therefore may have different

valuations of the correctness property. In this thesis, we propose an automata-based

synchronous monitoring algorithm that copes with f crash failures in a distrbuted

setting. The algorithm solves the synchronous monitoring problem in f + 1 rounds of

communication, and significantly reduces the message size overhead. We also propose

an algorithm for distributed crash-resilient asynchronous monitoring that consistently

monitors the system under inspection without any communication between monitors.

Each local monitor emits a verdict set solely based on its own partial observation,

and the intersection of the verdict sets will be the same as the verdict computed by

a centralized monitor that has full view of the system.

iii

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor Dr. Borzoo

Bonakdarpour for the continuous support of my M.Sc. study and research, for his

patience, motivation, and immense knowledge. I could not have imagined having a

better mentor for my M.Sc. study. I am very grateful to Professor Ryszard Janicki

and Professor Mark Lawford for graciously agreeing to be my examiners and for their

invaluable comments and suggestions. I am also grateful for the funding and sup-

port provided by the Natural Sciences and Engineering Research Council of Canada

(NSERC). Finally, I would like to thank my loved ones, who have supported me and

encouraged me throughout my years of study and through the process of researching

and writing this thesis.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 Decentralized Runtime Verification 2

1.2 Decentralized Synchronous Monitoring 4

1.3 Decentralized Asynchronous Monitoring 5

1.4 Thesis Statement . 6

1.5 Contributions . 7

1.6 Thesis Organization . 8

2 Literature Review 9

2.1 Lattice-based Distributed Monitoring 10

2.2 Distributed Monitoring for Past-time LTL 12

2.3 Synchronous Distributed Monitoring 13

2.4 Fault-tolerant Distributed Monitoring 14

3 Preliminaries 15

v

3.1 Linear Temporal Logics . 15

3.2 LTL for Runtime Verification . 17

3.2.1 Finite LTL (FLTL) . 17

3.2.2 3-valued LTL . 18

3.2.3 RV-LTL . 19

4 Decentralized Automata-Based Monitoring 21

4.1 Synchronous Monitoring Algorithm Sketch 22

4.2 Model of Computation and Terminology 24

4.3 Problem Statement . 27

4.4 Challenges in Synchronous Monitoring 28

4.5 Synchronous Automata-based Monitoring 32

4.5.1 Synchronous Monitoring Using Ltl3 Monitors 33

4.5.2 Detailed Description of The Algorithm 36

4.5.3 Synchronous Automata-Based Monitoring Using Extended Ltl3

Monitor . 41

5 Decentralized Asynchronous Monitoring 55

5.1 Problem Statement . 56

5.2 Model of Computation and Terminology 58

5.3 Challenges in Asynchronous Monitoring 59

5.4 Asynchronous Automata-Based Monitoring Algorithm Using Ltl3 Mon-

itor . 62

5.5 Asynchronous Automata-Based Monitoring Algorithm Using Extended

Ltl3 Monitor . 64

vi

6 Conclusion 67

6.1 Summary . 67

6.2 Future Work . 68

vii

List of Figures

3.1 Ltl3 monitor for ϕ = aU b. 19

3.2 Ltl4 monitor of ϕra. 20

4.1 Ltl3 monitor of ϕ = F(a ∧ b). 38

4.2 Ltl3 monitor vs. Extended Ltl3 monitor for ϕ = F(a ∧ b) 47

5.1 Example: Monitors M1 and M2 monitoring formula ϕra2 from two

different states s0 and s′0. 61

5.2 Mϕ
e for ϕ = F(a ∧ b) . 65

viii

Chapter 1

Introduction

In a computing system, correctness refers to the assertion that a system satisfies its

specification. Software errors are an everyday problem. They occur for a variety

of reasons like coding, hardware or network errors. There exist many techniques to

ensure correctness in computing systems, most notably:

• Model checking is a fully automated push-button method to check that every

execution path of the system under scrutiny satisfies its specification, usually

given in some temporal logic formula.

• Theorem proving as a semi-automated way to rigorously demonstrate that the

system under inspection complies with its specification usually defined in higher-

order logic.

• Testing is a way to detect such failures by checking for the presence of faults

for a set of executions.

Recently, there has been an emerging interest on monitoring a software system

to discover bugs in obscure corner cases that can only be observed during online

1

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

execution. Runtime verification (RV) refers to a technique, where a monitor checks

at run time whether or not the execution of a system under inspection satisfies a

given correctness property. RV complements exhaustive verification methods such as

model checking and theorem proving, as well as incomplete solutions such as testing

and debugging. Exhaustive verification often requires developing a rigorous abstract

model of the system and suffers from the infamous state-explosion problem. Testing

and debugging, on the other hand, provide us with under-approximated confidence

about the correctness of a system as these methods only check for the presence of

defects for a limited set of scenarios.

1.1 Decentralized Runtime Verification

Most existing RV methods employ a central monitor that collects the executions of

all components and then checks the system’s global behaviour in terms of a linear-

time temporal logic (LTL) formula. The existing work on RV techniques where the

monitor consists of a set of components, each having a partial view of the system, is

limited to the following:

• Lattice-theoretic centralized and decentralized online predicate detection in dis-

tributed systems has been studied in Chauhan et al. (2013); Mittal and Garg

(2005). However, this line of work does not address monitoring properties with

temporal requirements. This shortcoming is addressed in Ogale and Garg (2007)

for a fragment of temporal operators, but for offline monitoring and in Mostafa

and Bonakdarpour (2015) for distributed monitoring of LTL specifications.

2

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

• In Sen et al. (2004), the authors design a method for monitoring safety prop-

erties in distributed systems using the past-time linear temporal logic (PLTL).

This work, however, is not sound, meaning that valuation of some predicates

and properties may be overlooked. This is because monitors gain knowledge

about the state of the system by piggybacking on the existing communication

among processes. That is, if processes rarely communicate, then monitors ex-

change very little information and, hence, some violations of properties may

remain undetected.

• Runtime verification of LTL for synchronous distributed systems, where pro-

cesses share a single global clock, has been studied in Bauer and Falcone (2016);

Colombo and Falcone (2016).

Another short coming of existing RV methods is that they assume a fault-free set-

ting, where each individual monitor is resilient to failures. In fact, handling monitors

subject to failures, creates significant challenges specially in asynchronous monitor-

ing, as local monitors would not be able to agree on the same perspective of the global

system state, due to the impossibility of consensus Fischer et al. (1985). Therefore,

it is inevitable that local monitors emit different local verdicts about the current run,

and a consistent global verdict with respect to a correctness specification must be

constructed from these verdicts. In this area, the work in the literature is limited

to Bonakdarpour et al. (2016), where the authors propose a crash-resilient decentral-

ized algorithm for monitoring LTL formulas in a wait-free setting.

This thesis studies the decentralized synchronous/asynchronous monitoring in a

failure-prone environment, i.e., a faulty monitor stops executing prematurely. After

it has crashed, a monitor does nothing. Before crashing, a monitor behaves correctly.

3

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

In our synchronous setting, we do not employ a centralized monitor to check the

system’s global behaviour. Rather, the satisfaction or violation of specifications can be

detected by local monitors alone. We show that in a framework of several synchronous

or asynchronous unreliable monitors, naive local monitoring may lead to inconsistent

global verdicts for ϕ. More specifically, the set of verdicts emitted by the monitors

may not be sufficient to distinguish executions that violate the formula from those

that satisfy it. Intuitively, this is because each monitor has only a partial view of the

system under inspection, and after a finite number of rounds of communication among

monitors, still many different perspectives about the global system state remain.

1.2 Decentralized Synchronous Monitoring

In the decentralized synchronous setting, we assume the system under scrutiny gen-

erates a finite trace α = s0s1 · · · sk and is inspected by a set of synchronous monitors

M = {M1,M2, · · · ,Mn} with respect to a correctness property expressed by an Ltl

formula ϕ. The monitors communicate with each other by sending and receiving

messages in synchronous rounds, and through point-to-point bidirectional reliable

communication links. The decentralized crash-resilient synchronous monitoring can

be reduced to the uniform consensus problem in the crash failure model.

Uniform Consensus in the Crash Failure Model In the consensus problem,

each process proposes a value, and the processes have to collectively agree on the same

value. Of course, a process can crash before deciding a value. Moreover, in order to

be meaningful, the value that is decided has to be related to the values that are

proposed. This is captured by the following specification.

4

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

• Validity: A decided value is a proposed value.

• Agreement: No two processes decide different values.

• Termination: Every correct process decides.

The validity and agreement properties define the safety property of the consensus

problem. Validity relates the output to the inputs, while agreement captures the dif-

ficulty of the problem. Termination is the liveness property of the consensus problem.

It states that at least the processes that do not crash have to decide. In a synchronous

setting and in the presence of faults, consensus is solvable in f + 1 rounds, where f

is the maximum number of processes than can crash.

In the synchronous monitoring problem, the validity specification is that the de-

cided value must be the same value that a centralized monitor that has full view of

the system would compute.

1.3 Decentralized Asynchronous Monitoring

In a decentralized asynchronous setting, there is a set of monitors

M = {M1,M2, · · · ,Mn} that verify a finite trace α = s0s1 · · · sk produced by the

system under inspection, with respect to a correctness property ϕ. The monitors can

communicate with each other via a read/write shared memory, they are asynchronous

wait-free processes, and any of them can fail by crashing.

We work in the shared memory model because we can consider runs composed

of any interleaving of monitor operations, facilitating analysis. Also to including the

extreme case where any number of monitors may fail. In message passing partitions

may happen if half of the monitors can fail. Given that in a wait-free distributed

5

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

monitoring system it is impossible for the monitors to solve consensus, it is unavoid-

able that different verdicts are emitted. We show how, given any Ltl formula, a set

of verdicts collectively provided by the local monitors can be used to compute the

verdict computed by a centralized monitor that has full view of the system under

scrutiny.

Decentralized asynchronous monitoring can also be reduced to consensus in the

asynchronous setting with the three properties mentioned in Section 1.2.

1.4 Thesis Statement

The main difficulty created by the crash failure model is the following. Suppose M is a

monitor that crashes during a round r while it is broadcasting a message m. Since the

broadcast operation by M is not atomic, and there is no predetermined sending order

with respect to the destination monitors, a message m can be received by any subset of

monitors. This subset is completely arbitrary, and can be the empty set. This means

that the crash of a monitor in a send phase of a round generates non-determinism,

as it is impossible to know what are the monitors that will receive message m. This

uncertainty is the main challenge in designing a distributed monitoring algorithm in

the presence of crash failure.

Our research hypothesis is that synchronous/asynchronous monitoring in fault-

tolerant distributed environment can be performed efficiently. More specifically, we

can design distributed algorithms that can solve the synchronous monitoring problem

with relatively small message size overhead, and solve the asynchrnous monitoring

problem with little communication between the monitors.

6

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

1.5 Contributions

We validate our research hypothesis by proposing an automata-based distributed LTL

monitoring algorithm for the decentralized crash-resilient synchronous monitoring

problem, where monitors are processes that communicate by message passing and

can crash. Our monitoring algorithm reduces the message size overhead from |AP |

per message, where AP is a set of atomic propositions, to log(mq), where mq is the

number of outgoing transitions from the current monitor state in each local monitor’s

automaton. Our main contribution is to construct an automaton that is employed in

each local monitor’s algorithm. This automaton, which is called an Extended Ltl3

monitor, is a deterministic finite state machine that is constructed based on the Ltl3

monitor Bauer et al. (2011) of a given Ltl formula. The intuition behind constructing

an Extended Ltl3 monitor is the idea of calculating the intersection of the verdict

sets emitted by a set of distributed monitors that have partial view of the global

system state. The extension ensures that monitors share enough detail about their

local state, so that crash failures do not compromise their soundness.

Our second contribution is an algorithm for distributed crash-resilient asynchronous

RV that can consistently monitor the system under inspection without any round of

communication between asynchronous monitors. Each local monitor emits a verdict

set solely based on its own partial observation, and the intersection of the verdict sets

will be the same as the verdict computed by a centralized monitor that has full view

of the system.

7

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

1.6 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 presents the related work and

Chapter 3 provides the preliminary concepts. Chapter 4 discusses the synchronous

monitoring in crash-resilient distributed environment and presents an algorithm to

construct an Extended Ltl3 monitor which is the main contribution of this thesis.

In Chapter 5 the decentralized crash-resilient asynchronous monitoring is introduced.

Finally, in Chapter 6, we make concluding remarks and discuss future work.

8

Chapter 2

Literature Review

Runtime verification is now an established area of research with many applications.

Research efforts in the literature of runtime verification expands on many different

areas including theory and system development with even annual competition dedi-

cated for efficient tool development Bartocci et al. (2018). The literature, however,

is mainly focused on centralized systems or at least centralized monitors:

• The seminal technique on runtime verification Havelund and Rosu (2001b,a,

2004); d’Amorim and Rosu (2005); Chen and Rosu (2007); Havelund and Rosu

(2002) uses formula rewriting. In particular, the monitor observes the incoming

states of the system produced at run time and rewrites the formula using the

newly observed events. As long as the formula does not result in logical true or

false, the valuation of the formula can go either way in the future.

• Automata-based monitoring was first proposed in Bauer et al. (2011). The

idea here is to synthesize an automaton from a given LTL formula that acts

as a monitor. The work in Bauer et al. (2011) employs three truth values

9

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

{>,⊥, ?}, where > (respectively, ⊥) means that the formula is permanently

satisfied (respectively, violated), and truth value ‘?’ means that the valuation

is currently unknown (i.e., both > and ⊥ are possible for future extensions).

• More domain specific techniques have also been proposed. For example, in Bonakdar-

pour et al. (2011); Navabpour et al. (2011, 2015); Bonakdarpour et al. (2013),

the authors propose time-triggered RV techniques for monitoring real-time sys-

tems, where schedulability is required. Monitoring security policies have always

been an area of interest. The notion of security automata was first introduced

in Schneider (2000) and revisited in Basin et al. (2013). Other efforts in the

area of RV for security policies include the work on monitoring hyperproper-

ties Agrawal and Bonakdarpour (2016); Brett et al. (2017); Finkbeiner et al.

(2017) and on monitoring compliance policies Basin et al. (2016). Finally, mon-

itoring cyber-physical systems, where computing systems interact with physical

environments has been studied in Nguyen et al. (2017); Deshmukh et al. (2015),

by monitoring formulas in the signal temporal logic (STL) and its variants, and

in Medhat et al. (2015) by monitoring under resource constraints.

In the sequel, we only focus on reviewing the work on monitoring distributed

systems and distributed monitors.

2.1 Lattice-based Distributed Monitoring

Lattice theory has been an important tool for design and analysis of distributed

algorithms Garg (2002). The notion of happened before by Lamport Lamport (1978)

basically defines a partial order of events, which essentially constructs a distributive

10

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

lattice. Such a lattice is often called a computation. Each node in the lattice is

essentially a possible state of the distributed system.

Predicate detection is the problem of identifying states of a distributed computa-

tion that satisfy a predicate. Detecting a predicate in a computation is a challenging

problem Garg (2002); Stoller and Schneider (1995). The reason is the combinatorial

blow up in the number of possible states. Given n processes each with k local states,

the number of possible global states in the computation could be as large as O(kn).

Determining whether a global state satisfies the given predicate may, therefore, require

looking at a large number of consistent cuts. In fact, it is shown that the problem

is in general NP-complete Mittal and Garg (2001). Computation slicing Mittal and

Garg (2005) is a technique for reducing the size of the computation and, hence, the

number of global states to be analyzed for detecting a predicate. The slice of a com-

putation with respect to a predicate is the (sub)computation satisfying the following

two conditions. First, it contains all global states for which the predicate evaluates

to true. Second, among all computations that satisfy the first condition, it contains

the least number of consistent cuts. Intuitively, slice is a concise representation of

consistent cuts satisfying a given property. In Mittal and Garg (2005), the authors

propose an algorithm for detecting regular predicates. This idea was then extended

to full blown distributed algorithm for distributed monitoring Chauhan et al. (2013).

One shortcoming of this line work is that it does not address monitoring proper-

ties with temporal requirements. This shortcoming is addressed in Ogale and Garg

(2007) for a fragment of temporal operators. In Mostafa and Bonakdarpour (2015),

the authors propose the first sound and complete method for runtime verification of

asynchronous distributed programs for the 3-valued semantics of LTL specifications

11

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

defined over the global state of the program. The technique for evaluating LTL prop-

erties is inspired by distributed computation slicing described above. The monitoring

technique is fully decentralized in that each process in the distributed program under

inspection maintains a replica of the monitor automaton. Each monitor may main-

tain a set of possible verification verdicts based upon existence of concurrent events.

LTL formulas in this work are in terms of conjunctive predicates; i.e., predicates that

are conjunctions are local propositions of processes.

One of the problems with lattice-based techniques, especially when it comes to

temporal properties in distributed LTL monitoring, is that if processes communicate

rarely, then the computation will include many concurrent global states and the lattice

will become very wide. To tackle this problem in Yingchareonthawornchai et al.

(2016), the authors proposed an algorithm and analytical bounds if a combination of

logical and physical clocks (called hybrid clocks) are used. This method is enriched

with SAT solving techniques in Valapil et al. (2017).

2.2 Distributed Monitoring for Past-time LTL

In Sen et al. (2004), the authors propose a decentralized monitoring algorithm that

monitors a distributed program with respect to safety properties in PT-DTL, a vari-

ant of past time linear temporal logic. PT-DTL is designed in Sen et al. (2004) to

express temporal properties of distributed systems by drawing relation to particular

process and their knowledge of the local state of other processes at any point in time.

In the monitoring algorithm, monitors gain knowledge about the state of the system

by piggybacking on the existing communication among processes. In such a frame-

work, the valuation of some predicates and properties may be overlooked. That is, if

12

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

processes rarely communicate, then monitors exchange little information and, hence,

some violations of properties may remain undetected. This method was then used to

design an algorithm for monitoring multi-threaded programs Sen et al. (2006).

2.3 Synchronous Distributed Monitoring

The most relevant work to this thesis is arguably the algorithms proposed in Bauer

and Falcone (2016); Colombo and Falcone (2016). The algorithm in Bauer and Fal-

cone (2016) for monitoring synchronous distributed systems with respect to LTL for-

mulas is designed such that satisfaction or violation of specifications can be detected

by local monitors alone. The framework employs a different alphabet for each process

in the system. When a local monitor has a part of the formula that it cannot eval-

uate, it sends a message to the monitor that hosts the subformula. The subformula

is then progressed over synchronous rounds and the monitor generates a suformula

that represents the evaluation of the monitor in the respective round number. The

authors also present an implementation and show that our algorithm introduces only

a negligible delay in detecting satisfaction/violation of a specification. Moreover, the

practical results show that the communication overhead introduced by the local mon-

itors is generally lower than the number of messages that would need to be sent to a

central data collection point.

In Colombo and Falcone (2016), the authors introduce a way of organizing sub-

monitors for LTL subformulas in a synchronous distributed system, called choreogra-

phy. In particular, the monitors are organized as a tree across the distributed system,

and each child feeds intermediate results to its parent in a manner similar to dif-

fusing computation. They formalize choreography-based decentralized monitoring by

13

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

showing how to synthesize a network from an LTL formula, and give a decentralized

monitoring algorithm working on top of an LTL network.

These articles are different from this thesis in the following ways: (1) the frame-

work in in Bauer and Falcone (2016); Colombo and Falcone (2016) is fault-free, and

(2) in this thesis we do not assume that components have disjoint propositions.

2.4 Fault-tolerant Distributed Monitoring

In Fraigniaud et al. (2013), the authors consider the problem of whether in a dis-

tributed task, one can determine the set of inputs and outputs satisfy their intended

specification in a wait-free setting subject to crash faults. They call this problem

checkability which is a special instance of runtime monitoring for simple safety speci-

fications. They show that this problem is as hard as solving consensus. They extend

their results in Fraigniaud et al. (2014a,b) and show that if runtime monitors em-

ploy multiple opinions (instead of the conventional false/true valuations), then it is

possible to monitor distributed tasks in a consistent manner.

Building on the work in Fraigniaud et al. (2013, 2014a,b), the authors in Bonakdar-

pour et al. (2016) show that employing the LTL four-valued logic Bauer et al. (2010)

will result in inconsistent distributed monitoring for some formulas. The first main

contribution of this work is a family of logics, called LTL2k+4, that refines the 4-valued

LTL incorporating 2k + 4 truth values, for each k ≥ 0. The truth values of LTL2k+4

can be effectively used by each monitor to reach a consistent global set of verdicts

for each given formula, provided k is sufficiently large. The second contribution of

this work is an algorithm for monitor construction enabling fault tolerant distributed

monitoring based on the aggregation of the individual verdicts by each monitor.

14

Chapter 3

Preliminaries

In this chapter, we review the preliminary concepts.

3.1 Linear Temporal Logics

Let AP be a set of atomic propositions and Σ = 2AP be the alphabet. We call each

element of Σ an state. A trace is a sequence s0s1 · · · , where si ∈ Σ for every i ≥ 0. The

set of all finite (resp., infinite) traces over Σ is denoted by Σ∗ (resp., Σω). Throughout

the thesis, we denote finite traces by the letter α, and infinite traces by the letter σ.

We denote the empty trace by ε. Finally, For a finite trace α = s0s1 · · · sn, by αi we

mean trace suffix sisi+1 · · · sn of α.

LTL Syntax. Formulas in linear temporal logic (Ltl) Manna and Pnueli (1979)

are defined using the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

15

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

where p ∈ AP is an atomic proposition, U is the “until” operator, and X is the

“next operator”. Additionally, we allow the following operators as syntactic sugar,

each of which is defined in terms of the above ones: true = p∨¬p, false = ¬true, ϕ1 ∧

ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2),Fϕ = trueUϕ,and Gϕ = ¬F(¬ϕ). Formulas without temporal

operators are called state formulas.

LTL Semantics. The semantics of Ltl is defined w.r.t. infinite traces. Let

σ = s0s1 · · · be an infinite trace in Σω, i ≥ 0, and |= denote the satisfaction relation.

The semantics of Ltl is defined as follows:

σ, i |= p iff p ∈ si

σ, i |= ¬ϕ iff σ, i 6|= ϕ

σ, i |= ϕ1 ∨ ϕ2 iff σ, i |= ϕ1 or σ, i |= ϕ2

σ, i |= Xϕ iff σ, i+ 1 |= ϕ

σ, i |= ϕ1 Uϕ2 iff ∃k ≥ i : σ, k |= ϕ2 and ∀j ∈ [i, k) : σ, j |= ϕ1.

Also, σ |= ϕ holds iff σ, 0 |= ϕ holds. For example, consider the following re-

quest/acknowledgment Ltl formula:

ϕra = G
(
¬a ∧ ¬r

)
∨
(

(¬aU r) ∧ Fa
)

This formula requires that (1) if a request is emitted (i.e., r = true), then it should

eventually be acknowledged (i.e., a = true), and (2) an acknowledgment happens only

in response to a request.

16

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

3.2 LTL for Runtime Verification

3.2.1 Finite LTL (FLTL)

The semantics of Ltl is defined over infinite traces. In the context of runtime verifi-

cation, since a system only generates finite traces, the standard Ltl semantics does

not seem to be the appropriate formalism. Finite Ltl (denoted Fltl Manna and

Pnueli (1995)) allows us to reason about finite traces for verifying properties at run

time. The syntax of Fltl is identical to that of Ltl and the semantics is based on

the truth values B2 = {>,⊥}. The semantics of Fltl for atomic propositions and

Boolean operators are identical to those of Ltl. We now recall the semantics of Fltl

for the temporal operators. Let ϕ, ϕ1, and ϕ2 be Ltl formulas, α = s0s1 · · · sn be a

non-empty finite trace, and |=F denote satisfaction in Fltl. We have

[α |=F Xϕ] =

[α1 |=F ϕ] if α1 6= ε

⊥ otherwise

and

[α |=F ϕ1 Uϕ2] =

> if ∃k ∈ [0, n] : ([αk |=F ϕ2] = >) ∧ (∀` ∈ [0, k), [α` |=F ϕ1] = >)

⊥ otherwise

To illustrate the difference between Ltl and Fltl, let ϕ = Fp and α = s0s1 · · · sn.

If p ∈ si for some i ∈ [0, n], then we have [α |=F ϕ] = >. Otherwise, [α |=F ϕ] = ⊥,

and this holds even if the program under inspection extends α in the future to a state

where p becomes true.

17

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

3.2.2 3-valued LTL

As illustrated above, for a finite trace α, Fltl ignores the possible future extensions

of α, when evaluating a formula. The 3-valued semantics of Ltl (denoted Ltl3 Bauer

et al. (2011)) evaluates Ltl formulas for finite traces with an eye on possible future

extensions. In Ltl3, the set of truth values is B3 = {>,⊥, ?}, where ‘>’ (resp., ‘⊥’)

denotes that the formula is permanently satisfied (resp., violated), no matter how the

current execution extends, and ‘?’ denotes an unknown truth value; i.e., there exist

an extension that can falsify the formula, and another extension that can truthify the

formula.

Now, let α ∈ Σ∗ be a non-empty finite trace. The truth value of an Ltl3 formula

ϕ with respect to α, denoted by [α |=3 ϕ], is defined as follows:

[α |=3 ϕ] =

> if ∀σ ∈ Σω : ασ |= ϕ

⊥ if ∀σ ∈ Σω : ασ 6|= ϕ

? otherwise.

The Ltl3 monitor of a formula ϕ is the unique deterministic finite state machine

Mϕ
3 = {Σ, Q, q0, δ, λ}, where Q is a set of states, q0 is the initial state, δ : Q×Σ→ Q

is the transition function, and λ : Q→ B3, is a function such that:

λ(δ(q0, α)) = [α |=3 ϕ]

for every finite trace α ∈ Σ∗. In Bauer et al. (2011), the authors introduce an

algorithm that takes as input an Ltl formula and constructs as output an Ltl3

monitor. For example, Fig. 3.1 shows the Ltl3 monitor for the Ltl formula ϕ =

18

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

aU b.

q⊥

q0

q>

a ∧ ¬b

¬a ∧ ¬b b

true true

Figure 3.1: Ltl3 monitor for ϕ = aU b.

3.2.3 RV-LTL

Rv-Ltl Bauer et al. (2010), which we will denote in this thesis by Ltl4, refines the

truth value ? into ⊥p and >p. That is, B4 = {>,>p,⊥p,⊥}. More specifically,

evaluation of a formula in Ltl4 agrees with Ltl3 if the verdict is ⊥ or >. Otherwise,

(i.e., when the verdict in Ltl3 is ?), Ltl4 utilizes Fltl to compute a more refined

truth value.

Now, let α ∈ Σ∗ be a finite trace. The truth value of an Ltl4 formula ϕ with

respect to α, denoted by [α |=4 ϕ], is defined as follows:

[α |=4 ϕ] =

> if [α |=3 ϕ] = >

⊥ if [α |=3 ϕ] = ⊥

>p if [α |=3 ϕ] =? ∧ [α |=F ϕ] = >

⊥p if [α |=3 ϕ] =? ∧ [α |=F ϕ] = ⊥

19

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

>p⊥p

> ⊥

¬a ∧ r
a ∧ ¬r

¬a ∧ ¬r

a ∧ r

¬a ∧ r

a

truetrue

Figure 3.2: Ltl4 monitor of ϕra.

The Ltl4 monitor of a formula ϕ is the unique deterministic finite state machine

Mϕ
4 = {Σ, Q, q0, δ, λ}, where Q is a set of states, q0 is the initial state, δ : Q×Σ→ Q

is the transition function, and λ : Q→ B4, is a function such that:

λ(δ(q0, α)) = [α |=4 ϕ]

for every finite trace α ∈ Σ∗. In Bauer et al. (2011) , the authors introduce an

algorithm that takes as input an Ltl formula and constructs as output an Ltl4 mon-

itor. For example, Fig. 3.2 shows the Ltl4 monitor for the request/acknowledgement

formula ϕra = G(¬a ∧ ¬r) ∨ [(¬aU r) ∧ Fa].

20

Chapter 4

Decentralized Automata-Based

Monitoring

An Ltl3 monitor can evaluate an Ltl formula ϕ in a centralized setting where each

proposition represents the global state of the system. We show in Section 4.1 and

Chapter 5 that in a framework of several synchronous or asynchronous unreliable

monitors, naive local monitoring may lead to inconsistent global verdicts for ϕ. More

specifically, the set of verdicts emitted by the monitors may not be sufficient to

distinguish executions that violate the formula from those that satisfy it. Intuitively,

this is because each monitor has only a partial view of the system under inspection,

and after a finite number of rounds of communication among monitors, still many

different perspectives about the global system state remain. We use the Ltl formula

ϕ = F(a ∧ b) throughout this Chapter to explain the concepts.

This Chapter is organized as follows: We discuss the synchronous monitoring

problem in a failure-prone distributed environment in Section 4.1. The model of

computation and terminology are discussed in Section 4.2. The problem statement

21

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

is given in Section 4.3, and in Section 4.4 we discuss the challenges in synchronous

monitoring. The synchronous automata-based monitoring is discussed in Section

4.5 where we introduce our automata-based monitoring algorithm, and present the

algorithm to construct an Extended Ltl3 monitor.

4.1 Synchronous Monitoring Algorithm Sketch

In this section, we propose a framework for synchronous distributed fault-tolerant

runtime verification (RV). To this end, we make a link between RV and consensus in

a failure-prone distributed environment by proposing an automata-based algorithm.

We consider a distributed monitoring system made up of a fixed number n of mon-

itors M = {M1,M2, . . . ,Mn} that communicate by sending and receiving messages

through point-to-point bidirectional communication links. Each communication link

is reliable, that is, we assume no loss or alteration of messages. Each monitor locally

executes an identical sequential algorithm. Each run of a monitor consists of a se-

quence of rounds that are identified by the successive integers 1, 2, etc. The round

number is a global variable and its progress is ensured by the synchrony assumption.

Each round is made up of three consecutive steps: send, receive, and local computa-

tion. The principle property of the round-based synchronous model is the fact that

a message sent by a monitor Mi to another monitor Mj during a round r is received

by Mj at the very same round r.

Throughout this chapter, the system under inspection produces a finite trace α =

s0s1 · · · sk, and is inspected with respect to an Ltl formula ϕ by a set of synchronous

distributed monitors.

22

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

Algorithm sketch: For every j ∈ [0, k − 1], between each sj and sj+1, each

monitor:

1. reads the value of a subset of propositions in sj, which may result in a partial

observation of sj;

2. at every synchronous round, broadcasts a message containing its current ob-

servation of the underlying system, and then waits for messages from other

monitors;

3. based on the messages received at each round, executes a local computation,

updates its current observation by incorporating observations of other monitors,

and composing the message to be sent at next round, and

4. finally evaluates ϕ at the end of communication rounds and subsequently emits

a truth value from B3.

The skeleton of the algorithm is shown in Algorithm 1.

23

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

Data: Ltl formula ϕ and state sj

Result: a verdict from B3

1 Let Ssji be the initial concrete local state of the monitor

2 LS1
i ← µ(Ssji , ϕ) ; /* computes the initial abstract local state based on the initial

concrete local state */

3 for r = 1, 2, · · · do

4 Send: broadcasts its current abstract local state LSr
i ; /* r is the round number

*/

5 Receive: let Πr
i = {LSr

j }j∈[1,n] be the set of all messages received at round r.

6 Computation: LSr+1
i ← LC(Πr

i) ; /* calculates a new abstract local state */

7 emits a verdict from B3 ; /* evaluates ϕ according to the final abstract local state */

Algorithm 1: Behavior of Monitor Mi, for i ∈ [1, n]

4.2 Model of Computation and Terminology

We now present our computation model, notation, and terminology.

Definition 4.1. A ‘concrete local state’ Ssj
i of a monitor Mi at global state sj is a

mapping from the set AP of atomic propositions to the set {true, false, \}, where \

denotes an unknown value, and for all ap ∈ AP, we have:

(Ssj
i (ap) = true → ap ∈ sj) ∧ (Ssj

i (ap) = false → ap 6∈ sj)

When a state sj is reached in a finite trace α = s0s1 · · · sk, each monitor Mi ∈M,

for 1 ≤ i ≤ n, takes a sample from sj, which results in obtaining a concrete local

state Ssj
i . Hence, in the concrete local state of a monitor, if the value of an atomic

proposition is not unknown, then its value is consistent with state sj. Thus, two

24

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

monitors Mi and Ml cannot have inconsistent concrete local states. That is, for any

state sj and concrete local states Ssj
i , Ssj

l , and for every ap ∈ AP , we have:

(Ssj
i (ap) 6= Ssj

l (ap) → (Ssj
i (ap) = \ ∨ Ssj

l (ap) = \)

Definition 4.2. An ‘abstract local state’ LSi is a symbolic representation of a mon-

itor Mi’s concrete local state Ssj
i with respect to an Ltl formula ϕ computed by an

‘abstraction function’ µ, where LSi = µ(Ssj
i , ϕ).

Note that Definition 4.2 does not prescribe a specific symbolic representation or

abstraction function. We will present a choice for this function in Section 4.5. The

idea here is that monitors communicate their abstract local states rather than concrete

local states for space and communication efficiency. During the computation step,

the monitor computes the message that it will to broadcast during the next round.

Let LSr
i denote the abstract local state of Mi at the beginning of round r. In the

local computation step, a monitor Mi modifies its abstract local state according to

the messages it has received from other monitors (including its own message). Let

Πr
i =

{
LSr

l

}
l∈[1,n]

be the set of all messages received by monitor Mi during round r.

Definition 4.3. The ‘local computation function’ of a monitor Mi is a function LC

that computes Mi’s new abstract local state in each round r, given the set of messages

Πr
i received in round r. Formally,

LSr+1
i = LC(Πr

i)

25

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

Similar to abstraction function, we will describe local computation function in

Section 4.5.

State Coverage: We say that a set of monitors cover a global state if and only

if the collection of concrete local states of these monitors covers the value of all atomic

propositions. The formal definition is given below.

Definition 4.4. A set M = {M1,M2, . . . ,Mn} satisfies ‘state coverage’ for a state s

if and only if for every ap ∈ AP, there exists Mi ∈M such that Ss
i (ap) 6= \.

Definition 4.5. We say monitor Mi is ‘aware’ of proposition ap at round r, if:

• Ss
i (ap) 6= \, or

• Mi receives a message from a monitor Mj at round r′ ∈ [1, r), where Mj is

aware of ap at round r′.

Fault Model: In our setting, the fault model specifies that each monitor may

fail by crashing (i.e., halt and never recover). We assume that up to n− 1 monitors

can crash, where n = |M|. A monitor may crash at any round. To ensure the state

coverage, we assume that, if there is a proposition ap ∈ AP , such that at round r

monitor Mi is the only monitor aware of ap, then the message sent by Mi at round

r, must be received by at least one non-faulty monitor in round r.

Note that in order to weaken the latter condition, one might assume that each

proposition ap ∈ AP is read by sufficiently large number of local monitors such that

it is ensured that at least one monitor which is aware of ap does not crash, e.g., by

assuming that each proposition is read by at least f + 1 monitors.

26

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

4.3 Problem Statement

Suppose α = s0s1 · · · sk is a finite trace generated by the system under inspection,

and ϕ is an Ltl formula with respect to which we monitor the system. Each monitor

Mi ∈M, i ∈ [1, n], runs Algorithm 1 as follows. For any given new state sj, monitor

Mi first obtains an initial concrete local state by taking a sample from sj (cf. Line

1). Recall from Definition 4.1 that the value of an atomic proposition in a concrete

local state is either true, false, or \. After obtaining the initial concrete local state,

monitor Mi computes the initial local state based on the initial concrete local state

(cf. Line 2). After intialization, each monitor Mi executes a sequence of send, receive,

and computation actions (cf. Lines 4-6) for some a priori known number of rounds.

In Line 4, monitor Mi sends its current abstract local state to all other monitors in

M. In Line 5, it receives messages from other monitors and stores them (along with

its own message) in a set Πr
i . In line 6, which is the computation step, monitor Mi

computes and updates its abstract local state based on messages in Πr
i . Finally, after

a certain number of rounds, the for-loop ends, and Mi evaluates ϕ and emits a truth

value from B3 based on its final abstract local state (cf. Line 7). Note that Algorithm

1 is executed whenever a new global state is reached in α.

Our formal problem statement is the termination requirement for Algorithm 1.

Roughly speaking, we require that when a non-faulty monitor runs Algorithm 1 to

the end, it should compute and emit a verdict that a centralized monitor that has

global view of the system would compute. This termination condition is formally, the

following

∀i ∈ [1, n] : Mi is non-faulty → νi = [α |=3 ϕ]

27

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

where νi is the truth value emitted by monitor Mi at the end of running Algorithm 1.

4.4 Challenges in Synchronous Monitoring

It is easy to see that our decentralized synchronous monitoring problem, described in

Section 4.3, is similar to the uniform consesus problem that was described in Section

1.2. It is also straightforward to verify that the lower bound on the number of rounds

required to consistently monitor the system is f + 1, where f is the total number of

crashes the system can tolerate. The proof would be similar to the proof of the lower

bound on the number of rounds required for the consensus algorithm that copes with

f process crashes.

Compared to the processing capacity of monitors, the communication links are low

bandwidth, and hence, the communication costs are of concern. The communication

cost depends on the number of messages transmitted by monitors, and the size of

these messages. An increase in the message size enforced by the algorithm is referred

to as the message size overhead. And an increase in the number of messages that

must be transmitted is called the network traffic overhead.

The following example illustrates the worst case scenario in which f+1 rounds are

required to distributedly monitor the system, where f is the total number of faults

tolerated. It also shows how message size can dramatically increase with the state

space of the system under inspection.

Example: Let ϕ = F(a ∧ b), AP = {a, b}, and M = {M1,M2,M3,M4}. Sup-

pose s = {a, b} is the current global state of the system, and the initial concrete local

28

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

states of the monitors are as follows:

Ss
1 [1](a) = true Ss

1 [1](b) = \

Ss
2 [1](a) = \ Ss

2 [1](b) = true

Ss
3 [1](a) = \ Ss

3 [1](b) = \

Ss
4 [1](a) = \ Ss

4 [1](b) = \

where Ss
i [r] represents the concrete local state of monitor Mi at the begining of round

r. Let f = 2, i.e., at most 2 monitors may crash, and suppose M1 and M2 are faulty

monitors. The worst case scenario is when one and only one monitor crashes at each

round. Suppose M1 crashes at round 1 and M2 crashes at round 2. Since M1 is the

only monitor that is aware of proposition a, according to our failure model assumption

(in order to preserve the state coverage), at least one non-faulty monitor must receive

a message from M1 at round 1. Let M2 be the monitor that receives M1’s message at

round 1.

According to Algorithm 1, the monitors are to broadcast their current abstract

local states at each round. In this case, let the abstract local state of each monitor be

the same as its concrete local state, i.e., LSr
i = µ(Ss

i [r], ϕ) = Ss
i [r] where Ss

i [r] is the

concrete local state of monitor Mi at round r. In this case, each message sent by a

monitor is a register that consists of |AP | elements, one for each atomic proposition

in AP . At the end of each round, each monitor Mi reads the values of all received

messages and copies them into its local register as follows:

∀p ∈ AP : ((Ss
i [r](p) = \) ∧ (∃j ∈ [1, n] : Ss

j [r](p) 6= \)) → (Ss
i [r](p)← Ss

j [r](p))

29

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

Hence, at the end of round 1 (i.e., begining of round 2), the concrete local states are

as follows:

Ss
2 [2](a) = true Ss

2 [2](b) = true

Ss
3 [2](a) = \ Ss

3 [2](b) = true

Ss
4 [2](a) = \ Ss

4 [2](b) = true

Suppose monitor M2 crashes at round 2 and since it is the only monitor that

is currently aware of proposition a, at least one non-faulty monitor must receive a

message from M2 at round 2, suppose M3 is the monitor which receives the message.

Thus, the new concrete local states at the end of round 2 are as follows:

Ss
3 [3](a) = true Ss

3 [3](b) = true

Ss
4 [3](a) = \ Ss

4 [3](b) = true

Finally, at round 3, since there is no faulty monitor, each monitor receives messages

from all other monitors, and the concrete local states at the end of this round will be

as follows:

Ss
3 [4](a) = true Ss

3 [4](b) = true

Ss
4 [4](a) = true Ss

4 [4](b) = true

Hence, at the end of round 3 (namely., round f +1) all non-faulty monitors are aware

of all propositions in AP , and they emit the correct truth value:

30

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

ν3 = ν4 = [{a, b} |=3 ϕ] = >

The following tables summarize the scenario:

sample

a b

M1 true \

M2 \ true

M3 \ true

M4 \ true

round 1

a b

M1 crashed crashed

M2 true true

M3 \ true

M4 \ true

round 2

a b

M1 crashed crashed

M2 crashed crashed

M3 true true

M4 \ true

round 3

a b

M1 crashed crashed

M2 crashed crashed

M3 true true

M4 true true

One can see in the above example, in case each monitor broadcasts its concrete

local state, namely, if the abstract local state is the same as the concrete local state,

then each message sent by a monitor is a register that consists of |AP | elements,

one for each atomic proposition in AP . Our goal is to decrease the message size

overhead, hence we introduce an algorithm that decreases the message size from |AP |

bits to something significantly lower. In Section 4.5, we introduce an algorithm which

decreases the message size overhead in synchronous distributed monitoring. The

31

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

algorithm solves the synchronous distributed monitoring problem in f + 1 rounds

of communication with message size of log(mq), where mq is the number of outgoing

transitions from monitor state q in an Extended Ltl3 monitor that will be introduced

in Section 4.5.3.

4.5 Synchronous Automata-based Monitoring

In this section, we introduce an automata-based algorithm that solves the decentral-

ized synchronous monitoring problem in f+1 rounds of communication, where f is the

maximum number of crash failures tolerated. To this end, first, in Section 4.5.1, we

introduce an algorithm that is used by each local monitor to synchronously monitor

the system under inspection. The general idea is that each local monitor evaluates

the input formula and computes a possible set of verdicts, as a monitor may not

know the value of all propositions. Then, through synchronous communication, the

monitors share their verdict sets with each other. Finally, applying some function

on the verdicts sets (e.g., computing their intersection) computes the verdict that a

centralized monitor that has the global view of the system would compute.

Our algorithm uses Ltl3 monitorMϕ for a formula ϕ in order to generate the set

of possible verdicts. Thus, in our first attempt, in Section 4.5.1, we use the Ltl3 mon-

itors in our algorithm, but we also show that Mϕ, as defined in Section 3.2.2, is not

sufficient to consistently monitor the system for Ltl formulas. Then, in Section 4.5.3,

we introduce an ‘Extended Ltl3 monitor’ which we will use in each local monitor’s

algorithm to consistently monitor the global state of the system with respect to any

Ltl formula.

Note that in this work, we only consider monitoring of properties that are specified

32

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

as Ltl formulas, as Pnuelis Ltl Pnueli (1977) is a well-accepted linear-time temporal

logic for specifying properties of infinite traces. However, In runtime verification, our

goal is to check Ltl properties given finite prefixes of infinite traces. Therefore, one

has to interpret their semantics with respect to finite prefixes as they arise in observing

actual systems. Although it is possible to use infinite semantics of Ltl, namely by

using nondeterministic Büchi automata as monitors and explore all nondeterministic

choices, it is more convenient to use the finite semantics of Ltl to monitor Ltl

formulas at run time. To this end, in Bauer et al. (2011) introduced Ltl3 as a

linear-time temporal logic which has the same syntax as in Ltl but deviates in its

semantics for finite traces. To implement the idea that, for a given Ltl3 formula, its

meaning for a prefix of an infinite trace must correspond to its meaning considered

as an Ltl formula for the full infinite trace, they use three truth values: true, false,

and inconclusive, denoted respectively by >, ⊥, and ?.

4.5.1 Synchronous Monitoring Using Ltl3 Monitors

Recall that an Ltl3 monitor Mϕ for Ltl formula ϕ is a deterministic finite state

machine (FSM) represented as Mϕ = {Σ, Q, q0, δ, λ}, where Σ is a finite alphabet,

Q is a finite non-empty set of states (we refer to them as monitor states), q0 is the

initial monitor state, δ : Q × Σ → 2Q is a transition function, and λ : Q → B3 is a

mapping function which maps each monitor state to a truth value in B3 = {>,⊥, ?}.

Observe that a transition tij from monitor state qi to monitor state qj is the set of

all states s ∈ Σ such that δ(qi, s) = qj. More formally

tij = {s ∈ Σ | δ(qi, s) = qj}

33

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

Now, let Mϕ be the Ltl3 monitor for an Ltl formula ϕ. We denote by Tq the

set of all outgoing transitions from monitor state q. Formally, Tq = {tq1, · · · , tqmq
}

where mq is the total number of outgoing transitions from monitor state q and each

tqj is an outgoing transition from monitor state q. Given that an Ltl3 monitor is a

deterministic FSM, the followings hold

• ∀j ∈ [1 · · ·mq] : tqj ⊆ Σ,

• ∀j, k ∈ [1 · · ·mq] : j 6= k ⇒ tqj ∩ t
q
k = ∅, and

• tq1 ∪ · · · ∪ tqmq
= Σ.

Let Ss
i be the concrete local state of a monitor Mi at global state s. We denote

the set of all possible global states from the viewpoint of monitor Mi by E(Ss
i):

E(Ss
i) =

{
s′ ∈ Σ | ∀ap ∈ AP : (Ss

i (ap) 6= \)→ ((Ss
i (ap) = true→ ap ∈

s′) ∧ (Ss
i (ap) = false→ ap /∈ s′))

}
Informally, E(Ss

i) is the set of all states s′ ∈ Σ that are possible to be the global

state s, from viewpoint of monitor Mi. Obviously, for any global state s, we have:

∀i ∈ [1, n]. s ∈ E(Ss
i)

Now, suppose Ltl3 monitor Mi is at state q, and Ss
i is Mi’s concrete local state.

We denote the set of possible verdicts by monitor Mi as follows

Vi = {δ(q, s′) | s′ ∈ E(Ss
i)}

It should be noted that each verdict vj from a verdict set Vi is a monitor state.

The mapping function λ shall be applied to obtain the truth value of a verdict, i.e.,

34

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

λ(vj) ∈ B3. Moreover, note that due to the synchrony assumption, all monitors

always are at the same monitor state. Obviously, if all monitors are at monitor state

q and the new global state of the system is s, then we have

∀i ∈ [1, n]. δ(q, s) ∈ Vi

Notation: Let q be the current monitor state. We denote by Iq the intersection

of all verdict sets emitted by all monitors in M. Formally

Iq =
n⋂

i=1

Vi

Obviously, at every monitor state q ∈ Q, we have δ(q, s) ∈ Iq, where s is a global

state of the system. If |Iq| = 1, then we have Iq = {δ(q, s)}. This case happens,

when the set of all possible states of at least one monitor consists of only one state.

In this case, the intersection represents the verdict of a centralized monitor that has

global view of the system. This is formalized in the following lemma.

Lemma 4.1. Let s be a global state of the system and q be the current monitor state.

If there is at least one monitor Mi such that ∀p ∈ AP . Ss
i (ap) 6= \, then we have

|Iq| = 1.

Proof. It is easy to verify that if there is a monitor Mi such that ∀p ∈ AP .Ss
i (ap) 6= \,

then according to our definition, we have E(Ss
i) = {s}. Consequently, we have

Vi = {δ(q, s)} and it follows that |Iq| = 1.

Abstraction Function in Automata-Based Algorithm. Here we define the

abstract local state LSi of a monitor Mi to be the verdict set Vi emitted by the

35

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

monitor. Given the concrete local state Ss
i of a monitor Mi and the Ltl3 monitor

Mϕ of an Ltl formula ϕ, the abstraction function first computes the set of possible

global states E(Ss
i) from viewpoint of monitor Mi, and then calculates the verdict

set based on E(Ss
i). More formally

LSi = µ2(E(Ss
i),Mϕ) = {δ(q, s′)}s′∈E(Ssi) = Vi

E(Ss
i) = µ1(Ss

i) = {s′ ∈ Σ | ∀ap ∈ AP : (Ss
i (ap) 6= \)→

((Ss
i (ap) = true→ ap ∈ s′) ∧ (Ss

i (ap) = false→ ap /∈ s′))}

where µ1 and µ2 are the abstraction functions. µ1 receives as input a concrete local

state Ss
i and computes the set of all possible global states E(Ss

i), and µ2 receives as

input a set of global states and a monitor Mϕ, and returns the set of all monitor

states in Mϕ that can be reached by the given global states.

Local Computation Function in Automata-Based Algorithm. The local

computation function LC of a monitor Mi calculates the intersection of the messages

(which are the verdict sets emitted by nonfaulty monitors) received in Πr
i , at each

round r. Formally,

LSr+1
i = LC(Πr

i) =
⋂

j∈[1,n]

{LSr
j } =

⋂
j∈[1,n]

{V r
j }

4.5.2 Detailed Description of The Algorithm

Each local monitor Mi ∈ M, i ∈ [1, n], runs Algorithm 2 that we shall describe in

detail. For any given new state sj, monitor Mi first obtains an initial concrete local

state by taking a sample from sj (cf. Line 1). Recall from Definition 4.1 that the

value of an atomic proposition in a concrete local state is either true, false, or \. After

36

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

obtaining the initial concrete local state, monitor Mi computes the initial abstract

local state based on the initial concrete local state, by applying the abstraction func-

tions µ1 and µ2 (cf. Line 2). After initialization, each monitor Mi executes a sequence

of send, receive, and computation actions (cf. Lines 4-6) for f + 1 number of rounds.

In Line 4, monitor Mi sends its current local state to all other monitors in M. In

Line 5, it receives messages from other monitors and stores them, along with its own

message, in a set Πr
i . In line 6, which is the computation step, monitor Mi computes

and updates its abstract local state based on the messages in Πr
i , by applying the

local computation function LC which simply calculates the intersection of the verdict

sets in Πr
i . Finally, after f + 1 rounds, the for-loop ends, and Mi emits λ(vi) ∈ B3,

where {vi} = LSf+2
i (cf. Line 7).

37

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

Data: Ltl3 monitor Mϕ and state sj

Result: a verdict from B3

1 Let Ssji be the initial concrete local state of the monitor

2 LS1
i ← µ2(µ1(S

sj
i ,Mϕ)) = V 1

i /* computes the initial abstract local state based on

the initial concrete local state. V r
i denotes the verdict set emitted by monitor Mi to

be broadcasted at round r */

3 for r = 1, · · · , f + 1 do

/* f is the maximum number of crash failures tolerated */

4 Send: broadcasts its current abstract local state LSr
i = V r

i /* r is the round

number */

5 Receive: let Πr
i = {V r

j }j∈[1,n] be the set of all messages received at round r.

6 Computation: LSr+1
i ← LCi(Π

r
i) =

⋂
j∈[1,n]{V r

j } /* calculates a new abstract

local state */

7 emit λe(vi) /* where {vi} = LSf+2
i */

Algorithm 2: Behavior of Monitor Mi, for i ∈ [1, n]

Now let us look at the following example to see how each local monitor implements

Algorithm 2 to emit a verdict. In the following example each monitor employs Ltl3

monitor Mϕ of a given Ltl formula ϕ, in order to compute an abstract local state

based on its concrete local state.

Example: Let ϕ = F(a ∧ b)

q0q>

{a, b}

{a}, {b}, ∅

Figure 4.1: Ltl3 monitor of ϕ = F(a ∧ b).

38

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

Consider M = {M1,M2,M3,M4}, s = {a, b}, Ss
1(a) = true, Ss

1(b) = \, Ss
2(a) = \,

Ss
2(b) = true, Ss

3(a) = \, Ss
3(b) = \, Ss

4(a) = \, Ss
4(b) = \, and let f = 2. According to

Algorithm 2, each local monitor Mi computes an abstract local state LS1
i based on

its concrete local state using abstraction functions µ1 and µ2 (cf. Line 1). The initial

abstract local states are given in Table below (sample).

sample

a b LS1
i

M1 true \ {q0, q>}

M2 \ true {q0, q>}

M3 \ \ {q0, q>}

M4 \ \ {q0, q>}

round 1

LS2
i

M1 crashed

M2 {q0, q>}

M3 {q0, q>}

M4 {q0, q>}

round 2

LS3
i

M1 crashed

M2 crashed

M3 {q0, q>}

M4 {q0, q>}

round 3

LS4
i

M1 crashed

M2 crashed

M3 {q0, q>}

M4 {q0, q>}

M1 knows that the value of proposition a is true in state s, but it does not know

the value of proposition b in s. Therefore, from its viewpoint state s can be either

{a} or {a, b}. We say {a} and {a, b} are possible global states from veiwpoint of M1.

Thus M1’s initial abstract local state is the verdict set LS1
1 = {q0, q>} which includes

the monitor states that can be reached by states {a} and {a, b}, as δ(q0, {a}) = q0

and δ(q0, {a, b}) = q>. Similarly, the possible global states from viewpoint of monitor

M2 are {b} and {a, b}, therfore its initial abstract local state is the verdict set LS1
2 =

{q0, q>}, which are the monitor states that can be reached by states {b} and {a, b}.

M3 and M4 do not know the value of any proposition in s, thus from their viewpoint,

all global states ∅, {a}, {b}, and {a, b} are possible to be the global state s, hence

LS1
3 = LS1

4 = {q0, q>}.

39

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

Suppose monitor M1 crashes at round 1 and since it is the only monitor which

knows the value of proposition a, we assume its message is received by at least one

nonfaulty monitor, e.g. M2. Therefore, after one round of communication, each

monitor updates its abstract local state by calculating the intersection of its own

verdict set with the verdict sets received from other monitors (cf. Line 6):

LS2
2 = {q0, q>}, LS2

3 = {q0, q>}, LS2
4 = {q0, q>}

In round 2, monitor M2 crashes, and again, since it is the only monitor whose abstract

local state encapsualtes proposition a, its message must be received by at least one

monitor, e.g. M3, at this round. The abstract local states at the end of round 2 will

be updated as follows:

LS3
3 = {q0, q>}, LS3

4 = {q0, q>}

Finally at round 3, no monitor crashes and M4 and M3 receive messages from each

other and update their abstract local states:

LS4
3 = {q0, q>}, LS4

4 = {q0, q>}

As we observe, at the end of round 3 (namely, f + 1), the local monitors still

cannot decide a single verdict since |LS4
i | > 1. This is because the Ltl3 monitor of

ϕ = F(a ∧ b) is not sufficient to distinguish the correct verdict when local monitors

have partial view of the system. In particular, monitors M3 and M4 both have {q0, q>}

as their verdicts, while [{a, b} |=3 F(a ∧ b)] = >. That is, the monitors cannot map

their collective verdicts to the verdict of a monitor that has the global view of the

system.

In order to resolve this insufficiency, we introduce an algorithm that constructs an

‘Extended Ltl3 monitor’. The algorithm receives as input an Ltl3 monitor and solely

40

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

based on the structure of the input monitor, it determines whether to add new monitor

states to the original Ltl3 monitor. The Extended Ltl3 monitor then is used in each

local monitor Mi’s algorithm (Algorithm 2) to consistently solve the decentralized

synchronous monitoring problem. As described earlier, the intuition behind this

algorithm is to monitor the system under inspection by taking the intersection of

the sets of verdicts emitted by a set of distributed monitors.

4.5.3 Synchronous Automata-Based Monitoring Using Ex-

tended Ltl3 Monitor

In this Section, first we present an algorithm to construct an Extended Ltl3 mon-

itor Mϕ
e which can be used in Algorithm 2 to solve the synchronous monitoring

problem that was described in Section 4.3, for any given Ltl formula ϕ. Then we

provide an example to show how Mϕ
e is used in each local monitor’s algorithm to

emit their verdicts and consistently monitor the system.

4.5.3.1 Extended Ltl3 Monitor Construction

Let Mϕ = {Σ, Q, δ, q0, F} be the Ltl3 monitor for Ltl formula ϕ. Our goal is to

construct an Extended Ltl3 monitor Mϕ
e = {Σ, Qe, q0, δe, λe} such that |Iq| = 1 at

every monitor state q ∈ Qe, where Iq is the intersection of the verdict sets emitted

by a set of distributed monitors whose partial views (namely, concrete local states)

cover the global state of the system under inspection (see Definition 4.4).

Definition 4.6. Let Mϕ = {Σ, Q, q0, δ, λ} be the Ltl3 monitor of an Ltl formula

ϕ. An Extended Ltl3 monitor of ϕ is a deterministic finite state machine Mϕ
e =

{Σ, Qe, q0, δe, λe}, where Qe is a set of states s.t. Q ⊆ Qe, q0 is the initial state, δe :

41

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

Qe×Σ→ 2Qe is a transition function, and λe : Qe → B3 is a mapping function, such

that (1) for every non-empty finite trace α ∈ Σ∗, we have λe(δe(q0, α)) = λ(δ(q0, α)),

and (2) at every q ∈ Qe we have |Iq| = 1.

Algorithm 3 constructs an Extended Ltl3 monitor given an Ltl3 monitor Mϕ.

Input: Mϕ = {Σ, Q, q0, δ, λ}

Output: Mϕ
e = {Σ, Qe, q0, δe, λe}

1 Qe ← Q

2 for every qi ∈ Q do

3 Obtain the set of outgoing transitions Ti from monitor state qi

4 for every tij ∈ Ti do

/* tij = {s ∈ Σ | δ(qi, s) = qj} */

/* Nj denotes the number of transitions from which tij is indistinguishable, and Kj denotes the number of transitions

indistinguishable from tij */

5 Nj ← 0 , Kj ← 0

6 for every tik ∈ Ti\{tij} do

7 if indisting?(tij , t
i
k) then

8 Nj ← Nj + 1

9 if indisting?(tik, t
i
j) then

10 Kj ← Kj + 1

11 if Nj > 0 then

12 {tij1, t
i
j2} ← SPLIT (tij , Nj , Kj , Ti)

13 Ti ← {tij1, t
i
j2} ∪ Ti\{tij}

14 Qe ← {qj1, qj2} ∪ (Qe\{qj})

15 if i 6= j then

16 for every tik ∈ Ti do

17 δ(qi, s) = qk for every s ∈ tik

18 δ(qj1, s)← δ(qi, s) for every s ∈ Σ

19 δ(qj2, s)← δ(qi, s) for every s ∈ Σ

20 if i = j then

21 for every tik ∈ Ti do

22 δ(qj1, s) = qk for every s ∈ tik

23 δ(qj2, s)← δ(qj1, s) for every s ∈ Σ

24 λe(qj1)← λ(qj)

25 λe(qj2)← λ(qj)

26 else

27 δe(qi, s)← qj for every s ∈ tij
28 λe(qj)← λ(qj)

Algorithm 3: Extended Ltl3 monitor Construction

42

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

function SPLIT(transition tij , Nj , Kj , set of transitions Ti)

Nj,min ← Nj

Kj,min ← Kj

for every {ti,lj1 , t
i,l
j2 } ∈ PARTITION(tij) do

Njl ← 0 , Kjl ← 0

for every tik ∈ ({ti,lj2 } ∪ Ti\{tij}) do

if indisting?(t
i,l
j1 , tik) then

Njl ← Njl + 1

if indisting?(tik, t
i,l
j1) then

Kjl ← Kjl + 1

for every tik ∈ ({ti,lj1 } ∪ Ti\{tij}) do

if indisting?(t
i,l
j2 , tik) then

Njl ← Njl + 1

if indisting?(tik, t
i,l
j2) then

Kjl ← Kjl + 1

if (Njl +Kjl) 6 (Nj,min +Kj,min) then

lmin = l

tij1 = t
i,lmin
j1 , tij2 = t

i,lmin
j2

return {tij1, t
i
j2}

end function

function PARTITION (transition tij)

compute all partitions {ti,lj1 , t
i,l
j2 } of tij where l ∈ [1 · · · 2

|tij |−2
2

], s.t.

for every pair {ti,lj1 , t
i,l
j2 }:

• t
i,l
j1 ∪ t

i,l
j2 = tij

• t
i,l
j1 ∩ t

i,l
j2 = ∅

return {{ti,1j1 , t
i,1
j2 }, {t

i2
j1, t

i2
j2}, · · · , {t

i,2
2
|tij |−2

2
j1 , t

i, 2
|tij |−2

2
j2 }}

end function

Algorithm 4: Functions SPLIT and PARTITION

4.5.3.2 Detailed Description of Algorithm 3

We now explain how Algorithm 3 constructs an Extended Ltl3 monitor Mϕ from

an Ltl3 monitor Mϕ. As described in Definition 4.6, the goal is to construct a de-

terministic finite state machine Mϕ
e = {Σ, Qe, q0, δe, λe} such that |Iq| = 1 at every

monitor state q ∈ Qe. Algorithm 3 first initializes Qe with Q (cf. Line 1). Then,

for every qi ∈ Q, it obtains the set of all outgoing transitions from qi, which is de-

noted by Ti (cf. Line 3). Recall that tij = {s ∈ Σ | δ(qi, s) = qj} is a transition

43

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

from monitor state qi to monitor state qj. Two variables Nj and Kj are associated

to every transition tij ∈ Ti (cf. Line 5). Nj keeps the number of transitions in Ti

from which transition tij is indistinguishable, and Kj keeps the number of transitions

in Ti that are indistinguishable from transition tij. The notion of ‘indistinguishable’

is defined in Definition 4.8 below. In Lines 7-10, the algorithm verifies for every

transition tik ∈ Ti\{tij} whether tij is indistinguishable from tik, and/or tik is indistin-

guishable form tij, and updates Nj and Kj, respectively. If Nj = 0 it means that tij is

distinguishable from all transitions in Ti\{tij}, thus there is no need to split tij, there-

fore the algorithm proceeds to Lines 27-28. In Lines 27 and 28 transition function

δe and mapping function λe of the Extended Ltl3 monitor are updated by adding

transitions δe(qi, s) = qj,∀s ∈ tij, and the mapping λe(qj) = λ(qj), respectively.

If Nj > 0 it means that there is at least one transition tik ∈ Ti\{tij} such that

tij is indistinguishable from tik. In this case, the Algorithm proceeds to Lines 12-25.

in Line 12 transition tij is splitted into two new transitions tij1 and tij2 by using the

function SPLIT. Function SPLIT is described below. In Line 13, the new transitions

tij1 and tij2 are added to the set of outgoing transitions Ti from monitor state qi and

tij is removed from Ti. In Line 14, monitor state qj is replaced by two new monitor

states qj1 and qj2 in Qe. The transition function δe is updated in Lines 15-23. If the

transition tij is not a self-loop, i.e., i 6= j, then the transition function δe is updated

through Lines 16-19. If tij is a self-loop, then δe is updated through Lines 21-23, where

the monitor state qi is practically replaced by qj1. Finally, in Lines 24-25, the mapping

function λe is updated with the new mappings λe(qj1) = λ(qj) and λe(qj2) = λ(qj).

As mentioned earlier, when a transition tij is splitted into two transitions t0j1 and

t0j2, consequently two new monitor states qj1 and qj2 are added to Mϕ
e . Note that

44

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

qj1 and qj2 have the same mapping and the same set of outgoing transitions as qi.

Namely, λ(qj1) = λ(qj2) = λ(qi), and Tj1 = Tj2 = Ti. This is in fact a necessary

condition in order to have

[α |=3 ϕ] = [α |=e
3 ϕ]

where [α |=e
3 ϕ] ∈ B3 denotes the valuation of any finite trace α according to an

Extended Ltl3 monitor.

Definition 4.7. We say state s is ‘covered’ by transition t, and we denote it by

covered?(s, t), if we have:

∀ap ∈ AP . ∃s′ ∈ t. (ap ∈ s⇔ ap ∈ s′)

Definition 4.8. We say a transition t1 is ‘indistinguishable’ from another transition

t2, and denote it by indisting?(t1, t2), if the following holds:

∃s ∈ t2. covered?(s, t1)

Transition t1 is distinguishable from t2, denoted by disting?(t1, t2), if it is not

indistinguishable form t2.

Function SPLIT This function is in fact the main function in Algorithm 3.

Given a transition tij ∈ Ti, it splits tij into two new transitions tij1 and tij2 such that

the total number of transitions in Ti\{tij} that are indistinguishable from tij1 and

transitions that are indistinguishable from tij2, plus the total number of transitions in

Ti\{tij} from which tij1 is indistinguishable and transitions from which tij2 is indistin-

guishable is minimum. This is because we are interested in generating the minimum

45

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

number of new transitions, and consequently minimum number of new monitor states.

Hence, we can claim that an Extended Ltl3 monitor constructed by Algorithm 3 is

optimum in the terms that |Qe| is minimum. This is done as follows; first all partitions

of tij are calculated by function PARTITION which is described below. Two variables

Njl and Kjl are used in function SPLIT where Njl is a counter for the total number of

transitions in Ti\{tij} from which tij1 is indistinguishable, and transitions from which

tij2 is indistinguishable. Kjl is a counter for the total number of transitions in Ti\{tij}

that are indistinguishable from tij1, and transitions that are indistinguishable from

tij2. Function SPLIT calculates Njl +Kjl for all partitions {ti,lj1, t
i,l
j2} ∈ PARTITION

and returns a partition with minimum value of Njl +Kjl.

Function PARTITION Given a transition tij, this function returns the set of

all possible partitions {tij1, tij2} such that:

• tij1 ∩ tij2 = ∅

• tij1 ∪ tij2 = tij

It is easy to verify that the total number of such partitions is equal to 2
|tij |−2
2

.

Now we employ our Extended Ltl3 monitor in each local monitor’s algorithm to

consistently monitor the global state of the system. We replace the Ltl3 monitor

Mϕ in Algorithm 2 with an Extended Ltl3 monitor.

Example Let us construct an Extended Ltl3 monitor for ϕ = F(a ∧ b) whose

Ltl3 monitor is given in Fig. 4.2(a).

46

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

q0q>

{a, b}

{a}, {b}, ∅

(a) Mϕ

q01q>

q02

{a, b}

{b}, ∅

{a}

true

{a, b}
{b}, ∅

{a}

(b) Mϕ
e

Figure 4.2: Ltl3 monitor vs. Extended Ltl3 monitor for ϕ = F(a ∧ b)

We haveMϕ = {{a, b}, {q0, q>}, q0, δ, λ}, where δ(q0, {a}) = δ(q0, {b}) = δ(q0, ∅) =

q0 and δ(q0, {a, b}) = q>. The set of outgoing transitions from monitor state q0 is

T0 = {t00, t0>}, where t00 = {{a}, {b}, ∅} and t0> = {{a, b}} are the outgoing transitions

from monitor state q0 to monitor states q0 and q>, respectively. We can verify that

transition t00 is indistinguishable from t0> since there is a state {a, b} ∈ t0> that is

covered by transition t00, i.e., covered?({a, b}, t00) = true. But t0> is not indistinguish-

able from t00. Therefore, we have N0 = 1, K0 = 0, N> = 0, and K> = 0. Since

N0 > 0, we split t00 into two transitions t001 and t002. Different partitions of t00 are as

follows:

47

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

t0,101 = {{a}} t0,102 = {{b}, ∅}

t0,201 = {{b}} t0,202 = {{a}, ∅}

t0,301 = {∅} t0,302 = {{b}, {a}}

Note that there are 2|t
0
0|−2
2

= 3 different partitions. For each partition t0,l01 we

calculate N0l and K0l as follows:

N01 = 0 K01 = 0

N02 = 0 K02 = 0

N03 = 2 K03 = 1

We can verify that indisting?(t0,302 , t
0
>) = true and indisting?(t0,302 , t

0,3
01) = true,

therefore N03 = 2. Also indisting?(t0,302 , t
0,3
01) = true results in K03 = 1. As we can

see partitions {t0,101 , t
0,1
02 } and {t0,201 , t

0,2
02 } are both optimum partitions as they result

in minimal value for N0l + K0l. Thus, we split t00 into two transitions t001 = {{a}}

and t002 = {{b}, ∅}, and consequently add new monitor states q01 and q01 to Me (see

Figure 4.2(b)). Since transition t00 is a self-loop, therefore monitor state q0 is replaced

by monitor state q01. The mapping function for the new monitor states is as follows:

λ(q01) = λ(q0) =?

λ(q02) = λ(q0) =?

It is easy to verify that there are no more indistinguishable transitions in the monitor,

therefore Figure 4.2 represents the final Extended Ltl3 monitor for ϕ = F(a ∧ b).

We now repeat the example from Section 4.5.1 for formula ϕ = F(a ∧ b) and

this time we use Extended Ltl3 monitor in our algorithm (Algorithm 2). Let M =

{M1,M2,M3,M4}, s = {a, b}, Ss
1(a) = true, Ss

1(b) = \, Ss
2(a) = \, Ss

2(b) = true,

48

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

Ss
3(a) = \, Ss

3(b) = \, Ss
4(a) = \, Ss

4(b) = \, and let f = 2. According to Algorithm

2, each local monitor Mi computes an abstract local state LS1
i based on its concrete

local state using abstraction functions µ1 and µ2 (cf. Line 2). Since all steps are as

before except that we use Extended Ltl3 monitor in Algorithm 2, we skip the details

in order to avoid redundancy, and just recalculate the new verdict sets emitted by

each local monitor (note that all local monitors are at the initial monitor state q01).

Verdict sets after obtaining initial concrete local states:

E(Ss
1) = {{a}, {a, b}} ⇒ LS1

1 = V 1
1 = {q02, q>}

E(Ss
2) = {{b}, {a, b}} ⇒ LS1

2 = V 1
2 = {q01, q>}

E(Ss
3) = {{a}, {b}, {a, b}} ⇒ LS1

3 = V 1
3 = {q01, q02, q>}

E(Ss
4) = {{a}, {b}, {a, b}} ⇒ LS1

4 = V 1
4 = {q01, q02, q>}

At the end of round 1:

LS2
2 = V 2

2 = {q>}

LS2
3 = V 2

3 = {q01, q>}

LS2
4 = V 2

4 = {q01, q>}

At the end of round 2:

LS3
3 = V 3

3 = {q>}

LS3
4 = V 3

4 = {q01, q>}

At the end of round 3:

LS4
3 = V 4

3 = {q>}

LS4
4 = V 4

4 = {q>}

49

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

The following tables summarize the scenario:

sample

a b LS1
i

M1 true \ {q02, q>}

M2 \ true {q01, q>}

M3 \ \ {q01, q02, q>}

M4 \ \ {q01, q02, q>}

round 1

LS2
i

M1 crashed

M2 {q>}

M3 {q01, q>}

M4 {q01, q>}

round 2

LS3
i

M1 crashed

M2 crashed

M3 {q>}

M4 {q01, q>}

round 3

LS4
i

M1 crashed

M2 crashed

M3 {q>}

M4 {q>}

As we observe, at the end of round 3 (namely, f + 1), the abstract local states of all

nonfaulty monitors include the single monitor state q>, and therefore they both emit

the same truth value λ(q>) = >.

4.5.3.3 Proof of Correctness of Algorithm 2

In order to prove the soundness of Algorithm 2, we have to prove that |Iq| = 1

at every monitor state q ∈ Qe. As described above, an Extended Ltl3 monitor is

constructed such that at every monitor state q ∈ Qe, every two outgoing transitions

tqj and tqk from monitor state q are distinguishable. Therefore, to prove the soundness

50

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

of Algorithm 2, it suffices to prove the following theorem.

Theorem 4.1. If at every monitor state q ∈ Qe, every two outgoing transitions tqj

and tqk from monitor state q are distinguishable, then we have |Iq| = 1. Formally

(∀tqj , t
q
k ∈ Tq. disting?(tqj , t

q
k))⇔ |Iq| = 1

where Tq is the set of all outgoing transitions from monitor state q.

We prove theorem 4.1 in two steps. First, we prove that

(∀tqj , t
q
k ∈ Tq. disting?(tqj , t

q
k))⇒ |Iq| = 1

Proof is by contradiction. Suppose every transition in Ti is indistinguishable from

all other transitions in Ti, and suppose |Iq| > 1. Let s be the global state of the

system and suppose δ(q, s) = qk, therefore we know qk ∈ Iq. Since |Iq| > 1, thus

there exists another monitor state qj ∈ Iq. Since qj ∈ Iq therefore for every local

monitor Mi there exists an state s′ ∈ tqj that is possible to be the global state. We also

assumed that the set of monitors satisfy the state coverage, thus for every ap ∈ AP ,

there exists monitor Mi such that Ss
i (ap) 6= \. Formally:

1. ∀ap ∈ AP . ∃Mi ∈M. (Ss′
i (ap) = true→ ap ∈ s) ∧ (Ss′

i (ap) = false→ ap /∈ s))

2. ∀Mi ∈M. ∃s′ ∈ tqj . s′ ∈ Ei

Therefore, for every ap ∈ AP there exists s′ ∈ tqj such that (ap ∈ s′ ⇔ ap ∈ s),

which means that s is covered by tqj , and consequently tqj is indistinguishable from tqk,

which is a contadiction, hence the proof is complete.

51

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

Now we have to prove that

|Iq| = 1⇒ (∀tqj , t
q
k ∈ Tq. disting?(tqj , t

q
k))

The proof, again, is by contradiction. Suppose |Iq| = 1 and suppose there exist

transitions tqj and tqk such that indisting?(tqj , t
q
k) = true. According to Definition 4.8,

transition tqj is indistinguishable from tqk if there exists an state s′ ∈ tqk such that s′ is

covered by tqj , i.e.,

∀ap ∈ AP . ∃s ∈ tqj . (ap ∈ s′ ⇔ ap ∈ s)

Now consider the case where the global state of the system under inspection is

s′ and let us verify how the local monitors emit their verdicts. Recall from Section

4.5.1, that Iq is the intersection of all verdict sets emitted by the local monitors

which have partial view (concrete local state) of the global state of the system, such

that their concrete local states satisfy the state coverage (see Definition 4.4). It is

easy to verify that the worst case scenario, upon which an Extended Ltl3 monitor is

constructed, is when each verdict set is emitted by a monitor which knows the value

of at most one atomic proposition ap ∈ AP . Consider the global state s′, since s′ ∈ tqk

thus we have δ(q, s′) = qk, where qk is the monitor state for which tqk is an incoming

transition. Therefore a local monitor Mi which has full view of the state s′, i.e., for

every ap ∈ AP , Ss′
i (ap) 6= \, emits the verdict {qk}. However, in the worst case

scenario, each local monitor only reads the value of one atomic proposition. In this

case, we can verify that

∀i ∈ [1, n]. qj ∈ V 1
i

52

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

where V 1
i is the verdict set emitted by monitor Mi at round 1 (recall from Algorithm

2 that V 1
i is calculated based on Mi’s concrete local state), and qj is the monitor state

for which tqj is an incoming transition. This holds because we have

∀ap ∈ AP . ∃s ∈ tqj . (ap ∈ s′ ⇔ ap ∈ s)

To see this more clearly, we need to recall the definition of the set of possible

states Ei from viewpoint of a local monitor Mi,

E(Ss′
i) = {s ∈ Σ | ∀ap ∈ AP : (Ss′

i (ap) 6= \)→ ((Ss′
i (ap) = true→ ap ∈

s) ∧ (Ss′
i (ap) = false→ ap /∈ s))}

Now all we need to do is to show that

∀i ∈ [1, n]. ∃s ∈ tqj . s ∈ Ei

and consequently, qj ∈ V 1
i for every i ∈ [1, n].

In order to prove the above statement we claim that

@ap ∈ AP . (Ss′

i (ap) 6= \) ∧ (@s ∈ tqj . (ap ∈ s′ ⇔ ap ∈ s))

Informally, for every local monitor Mi, there is an atomic proposition ap ∈ AP

such that Ss′
i = \ (since we assumed no local monitor has the full view of the system),

and there exists state s ∈ tqj such that (ap ∈ s′ ⇔ ap ∈ s) (since s′ is covered by tqj).

Therefore according to definition of Ei, we have s ∈ Ei, and hence qj ∈ V 1
i . Thus we

proved that

53

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

indisting?(tqj , t
q
k)⇒ ∃s ∈ tqk. ∀i ∈ [1, n]. {(∃ap ∈ AP . Ss

i (ap) = \)→ qj ∈ V 1
i }

Therefore in the worst case scenario where no local monitor has the full view of

the system, qj will appear in the verdict set emitted by each monitor, and therefore

|Iq| > 1, which is a contradiction, and the proof is complete.

Algorithm 3 constructs an Extended Ltl3 monitorMϕ
e such that at every monitor

state q ∈ Qe, every outgoing transition is distinguishable from all other outgoing

transitions, and therefore |Iq| = 1 at every q ∈ Qe.

54

Chapter 5

Decentralized Asynchronous

Monitoring

This Chapter discusses the decentralized asynchronous monitoring problem in the

presence of faulty monitors. The problem statement and the challenges in asyn-

chronous monitoring are discussed in Sections 5.1 and 5.3, respectively. Model of

computation and terminology are presented in Section 5.2. In Section 5.4 we propose

an automata-based algorithm which employs Ltl3 monitor to compute the verdict

sets emitted by local monitors. Finally in Section 5.5 we present an Algorithm that

uses an Extended Ltl3 monitor to solve the decentralized asynchronous monitoring

problem where local monitors emit their verdicts without any round of communication

(i.e., accessing the shared memory).

55

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

5.1 Problem Statement

The system under inspection produces a finite trace α = s0s1 · · · sk, and is inspected

with respect to an Ltl formula ϕ by a set M = {M1,M2, · · · ,Mn} of asynchronous

distributed wait-free monitors. The notion of wait-free distributed monitoring is

formally introduced in Bonakdarpour et al. (2016) as follows.

Definition 5.1. By wait-free monitoring we mean that each monitor (1) runs at its

own speed, that may vary along with time and (2) may fail by crashing (i.e., halt and

never recover), thus a monitor never waits for another monitor (in order to avoid a

livelock).

For every j ∈ [0, k − 1], between each sj and sj + 1, each monitor Mi ∈ M,

i ∈ [1, n], in a wait-free manner:

1. reads the value of propositions in sj, which may result in a partial observation of

sj;

2. repeatedly communicates its partial observation with other monitors through a

single-writer/multi-reader shared memory;

3. updates its knowledge resulting from the aforementioned communication, and

4. evaluates ϕ and emits a verdict based on its current knowledge.

56

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

Data: Ltl formula ϕ and state sj

Result: a verdict from B3

1 Let Ssji be the initial concrete local state of the monitor ;

2 Snap
sj
i ← S

sj
i ; /* take sample from state sj */

3 for some fixed number of rounds r > 1 do

4 SM
sj
i ← project(Snap

sj
i); /* write current knowledge in shared memory */

5 Snap
sj
i ← SM sj ; /* take a snapshot of the shared memory */

6 emit [x(Snap
sj
i) . . .x(Snap

sj
i) |=4 ϕ]; /* evaluate ϕ using extrapolation function */

Algorithm 5: Behavior of Monitor Mi, for i ∈ [1, n]

Each monitor Mi in M is a process, and the monitors run in the standard asyn-

chronous wait-free read/write shared memory model Attiya and Welch (2004). We

assume that up to n − 1 monitors can crash. Every monitor that does not fail is

required to emit a verdict. Hence, a distributed algorithm in this settings consists for

each monitor in a bounded sequence of read/write accesses to the shared memory at

the end of which a verdict is emitted. We thus assume without loss of generality that

each monitor may access the shared memory a fixed number of times before emitting

a verdict M. Herlihy and Rajsbaum (2013); Bonakdarpour et al. (2016).

In our setting the assumption is that the set of monitors satisfy the state coverage.

Thus if a proposition is read by only one monitor, then this monitor is supposed to

send its information to at least one nonfaulty monitor before crashing.

Algorithm 5 represents the aforementioned asynchronous monitoring scenario.

Our problem statement is that when a non-faulty monitor runs Algorithm 5, it should

compute and emit a verdict such that it ensures consistent distributed monitoring.

Namely, one has to be able to map a collective set of verdicts of monitors (for any

57

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

execution interleaving) to one and only one verdict of a centralized monitor that has

the full view sj. A necessary condition for this mapping is that, for every two finite

traces α, α′ ∈ Σ∗, if [α |=3 ϕ] 6= [α′ |=3 ϕ] (or alternatively, [α |=4 ϕ] 6= [α′ |=4 ϕ]),

then the monitors inM should compute different collective sets of verdicts for α and

α′, regardless of their initial partial observation and different read/write interleavings.

5.2 Model of Computation and Terminology

For every state sj in α = s0s1 · · · sk, each monitor Mi maintains a local snap-

shot Snapi. Each local snapshot has n registers, one per each monitor in M. The

local register of monitor Mi associated with monitor Ml for state sj is denoted by

Snap
sj
i [l]. Each register has |AP | elements, one for each atomic proposition in AP .

The monitors in M communicate by means of shared memory. The structure of

the shared memory SM is as follows: for each state sj, SM sj consists of n atomic

registers, one per monitor, and each register has |AP | elements one for each atomic

proposition (i.e, single-writer/multiple-reader (SWMR) registers). Thus, for state sj,

each monitor Mi can read the entire content of SM sj , but can only write into register

SM
sj
i . We assume that each monitor is aware of the change of state of the system

under inspection. Thus, for a state sj, a monitor Mi reads and writes in the associ-

ated local and shared memory locations, i.e., Snap
sj
i and SM sj .

The asynchronous monitoring algorithm. Each monitor Mi ∈ M , i ∈

[1, n], runs Algorithm 5. For any given new state sj, Monitor Mi first initializes all

elements of its local snapshot to \ (cf. Line 1). Then, Mi takes a sample from state

58

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

sj and obtains a concrete local state Ssj
i (cf. Line 2). Recall from Definition 4.1 that

the value of an atomic proposition in a concrete local state is either true, false, or \.

We assume that the set of monitors satisfy the state coverage whose definiton was

presented in Chapter 4. The set of values in the concrete local state is copied in local

snapshot Snap
sj
i . Then each monitor Mi executes a sequence of write/read actions

(cf. Lines 4 and 5) for some a priori known number of times. in Line 4, it atomically

writes the content of its local snapshot Snap
sj
i into its associated register SM

sj
i in the

shared memory. In Line 5, Mi reads of all the registers in SM
sj
i , and copies them into

Snap
sj
i , in a single atomic step.

5.3 Challenges in Asynchronous Monitoring

In Bonakdarpour et al. (2016) it is shown that Rv-Ltl is not sufficient to consis-

tenly monitor the global system state in a distributed asynchronous environment. To

overcome this insufficiency, they introduced a family of multi-valued logics (called

Ltl2k+4), for every k > 0, where k relates to the notion of alternation number which

is introduced and formally defined in Bonakdarpour et al. (2016).

We use the example from Bonakdarpour et al. (2016) and we show how each local

monitor runs Algorithm 5 and emits a verdict from B4 based on the final content of

its local snapshot.

59

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

Example Let M = {M1,M2} and consider the formula for two requests and

acknowledgments:

ϕra2 =
(
G(¬a1∧¬r1) ∨ [(¬a1 U r1) ∧ Fa1]

)
∧
(
G(¬a2∧¬r2) ∨ [(¬a2 U r2) ∧ Fa2]

)

Fig. 5.1 shows different execution interleavings of monitors M1 and M2 when running

Algorithm 1 from states s0 = {r1, a1} and s′0 = {r1, a1, r2}. Based on the order

of monitor write-snapshot actions: M1,M2 (resp., M2,M1) denotes the case where

monitor M1 (resp., M2) executes a write-snapshot before monitor M2 (resp., M1)

does, and M1||M2 denotes the case where monitors M1 and M2 execute their write-

snapshot actions concurrently. In case of s0, after executing Line 2 of Algorithm 5,

monitor M1’s sample, i.e., the local snapshot Snaps0
1 [1], consists of Ss0

1 (r1) = true,

Ss0
1 (a1) = \, and Ss0

1 (r2) = Ss0
1 (a2) = false. Moreover, initially, M1 has no knowledge

of M2’s sample. Monitor M2’s sample from s0, i.e., the local snapshot Snaps0
2 [2],

consists of Ss0
2 (r1) = Ss0

2 (a1) = true, Ss0
2 (r2) = \, and Ss0

2 (a2) = false while it initially

has no knowledge of M1’s sample. Likewise, for state s′0, Fig. 5.1 shows different

local snapshots by M1 and M2. Given two values v1 and v2, we define (an arbitrary)

extrapolation function as follows:

xap(v1, v2) =

true if (v1 = true) ∨ (v2 = true)

false otherwise

where ap ∈ {a1, r1, a2, r2}. Finally, starting from s0, if (1) the for loop of Algorithm 5

terminates after 1 communication round, and (2) the interleaving is M1,M2, then

x(JSnaps0
2 K) = {r1, a1}, and evaluation of ϕra2 byM2 in Ltl4 results in [x(JSnaps0

2 K) |=4

60

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

ϕra2] = >p.

M1

M1 M2

r1 t \

a1 \ \

r2 f \

a2 f \

M2

M1 M2

r1 \ t

a1 \ t

r2 \ \

a2 \ f

Snaps0
1

Snaps0
2

samples

M1

M1 M2

r1 t \

a1 \ \

r2 f \

a2 f \

⊥p

M2

M1 M2

r1 t t

a1 \ t

r2 f \

a2 f f

>p

M1

M1 M2

t t

\ t

f \

f f

>p

M2

M1 M2

t t

\ t

f \

f f

>p

M1

M1 M2

t t

\ t

f \

f f

>p

M2

M1 M2

\ t

\ t

\ \

\ f

>p

s0 = {r1, a1}

[s0 |=F ϕra2] = >

write/snapshot

interleavings
M1,M2

M1||M2

M2,M1

Snap
s0
1

Snap
s0
2

v0 = {>p,⊥p} v0 = {>p} v0 = {>p}

M1

M1 M2

r1 \ \

a1 \ \

r2 t \

a2 f \

M2

M1 M2

r1 \ t

a1 \ t

r2 \ \

a2 \ f

Snap
s
′
0

1

Snap
s
′
0

2

M2,M1

M1||M2

M1,M2

M1

M1 M2

r1 \ t

a1 \ t

r2 t \

a2 f f

⊥p

M2

M1 M2

r1 \ t

a1 \ t

r2 \ \

a2 \ f

>p

M1

M1 M2

\ t

\ t

t \

f f

⊥p

M2

M1 M2

\ t

\ t

t \

f f

⊥p

M1

M1 M2

\ \

\ \

t \

f \

⊥p

M2

M1 M2

\ t

\ t

t \

f f

⊥p

s′0 = {r1, a1, r2}

[s′0 |=F ϕra2] = ⊥

Snap
s
′
0

1

Snap
s
′
0

2

v′0 = {>p,⊥p} v′0 = {⊥p} v′0 = {⊥p}

Inconsistency

Figure 5.1: Example: MonitorsM1 andM2 monitoring formula ϕra2 from two different
states s0 and s′0.

Note that v0 and v′0 denote the sets of verdict emitted by monitors at states s0

61

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

and s′, respectively.

We observe that Ltl4 is not sufficienet to consistently monitor all Ltl formulas.

We can see that in Fig. 5.1, the shaded collective verdicts v0 and v′0 are both equal

to {⊥p,>p}, but [s0 |=4 ϕ] 6= [s′0 |=4 ϕ]. Therefore it violates the condition that, if

[α |=4 ϕ] 6= [α′ |=4 ϕ], then the monitors in M should compute different collective

sets of verdicts for α and α′.

5.4 Asynchronous Automata-Based Monitoring Al-

gorithm Using Ltl3 Monitor

In this Section, we present a new approach to solve the asynchronous monitoring

problem in a failure-prone distributed environment utilizing the idea of computing

the intersection of the verdict sets emitted by the distributed monitors.

We use the abstraction functions and the local computation function that were

defined in Chapter 4. We modify Algorithm 5 as follows; After a number of read/write

accesses to the shared memory, each local monitor Mi computes a verdict set V
sj
i

based on its local snapshot Snap
sj
i , where V

sj
i is defined as follows:

V
sj
i = µ2(E(Snap

sj
i)) = {δ(q, s)}

s∈E(Snap
sj
i)

E(Snap
sj
i) = µ1(Snap

sj
i ,Mϕ) = {s ∈ Σ | ∀ap ∈ AP : (Snap

sj
i (ap) 6= \)→

((Snap
sj
i (ap) = true→ ap ∈ sj) ∧ (Snap

sj
i (ap) = false→ ap /∈ sj))}

where µ1 and µ2 are the abstraction functions. In fact each monitor Mi emits a set of

all monitor states that can be reach by any of possible global states from viewpoint

of Mi, i.e., by any s ∈ E(Snap
sj
i) (cf. Line 6).

62

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

Data: Ltl3 monitor Mϕ = {Σ, Q, q0, δ, λ} and state sj

Result: a set of monitor states

1 Let Ssji be the initial concrete local state of the monitor ;

2 Snap
sj
i ← S

sj
i ; /* take sample from state sj */

3 for some fixed number of rounds r > 1 do

4 SM
sj
i ← project(Snap

sj
i); /* write current knowledge in shared memory */

5 Snap
sj
i ← SM sj ; /* take a snapshot of the shared memory */

6 emit V
sj
i = µ2(µ1(Snap

sj
i ,Mϕ)) ; /* emit a set of monitor states according to Mϕ

*/

Algorithm 6: Behavior of Monitor Mi, for i ∈ [1, n]

As we see in Line 3 of the Algorithm r > 1, i.e., each monitor has at least one

read/write access to the shared memory before emitting a verdict. Thus there is at

least one monitor (the one that accesses the shared memory last) that has the full

view of state sj before emitting its verdict. According to Lemma 4.1, If there is at

least one monitor Mi such that ∀p ∈ AP . Ss
i (ap) 6= \, then we have |Iq| = 1, where q

is the current monitor state. Therefore we claim that, at every monitor state q ∈ Q,

the intersection of the verdict sets emitted by all local monitors (obviously the ones

that have not crashed) includes only the monitor state qc where δ(q, sj) = qc, and we

have:

[s0 · · · sj |=3 ϕ] = λ(qc)

63

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

Therefore, regardless of initial partial observations of the local monitors and dif-

ferent read/write interleavings, a set of verdicts collectively provided by the local

monitors can be used to compute the verdict computed by a centralized monitor that

has full view of the system under scrutiny.

5.5 Asynchronous Automata-Based Monitoring Al-

gorithm Using Extended Ltl3 Monitor

In Algorithm 6 each monitor is required to access the shared memory at least once,

i.e., r > 1 (see Line 3). As we observed in Section 5.4 this is in fact a necessary

condition to ensure that there is at least one monitor that obtains the full view of the

global state of the system before emitting its verdict. In this section we present an

Algorithm that can solve our asynchronous monitoring problem without any round

of communication (i.e., accessing the shared memory). This is done by employing

an Extended Ltl3 monitor that we introduced in Chapter 4, in each local monitor’s

algorithm.

Data: Extended Ltl3 monitor Mϕ
e = {Σ, Qe, q0, δe, λe} and state sj

Result: a set of monitor states

1 Let Ssji be the initial concrete local state of the monitor ;

2 Snap
sj
i ← S

sj
i ; /* take sample from state sj */

3 emit V
sj
i = µ2(µ1(Snap

sj
i ,Mϕ)) ; /* emit a set of monitor states according to Mϕ

e

*/

Algorithm 7: Behavior of Monitor Mi, for i ∈ [1, n]

Recall that we assumed the set of local monitors (namely, their concrete local

64

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

states) satisfy the state coverage. As described in Chapter 4, an Extended Ltl3

monitor is constructed based on the worst case scenario where each local monitor

reads the value of at most one atomic proposition, and we also recall that if each

monitor uses an Extended Ltl3 monitor to calculate its verdict set, then we always

have |Iq| = 1 at every monitor state q ∈ Qe, where Iq is the intersection of all verdict

sets emitted by all monitors inM. Therefore Algorithm 7 always computes the same

verdict that is computed by a centralized monitor that has full view of the system,

regardless of initial partial observations of the local monitors.

Let us look at the following example to see how Algorithm 7 is employed by local

monitors to emit their verdict sets.

Example Let ϕ = F(a ∧ b) whose Extended Ltl3 monitor is given below:

q0q>

q1

{a, b}

{b}, ∅

{a}

true

{a, b}
{b}, ∅

{a}

Figure 5.2: Mϕ
e for ϕ = F(a ∧ b)

Suppose monitors are at monitor state q0, and let s = {a, b}. The following

tables represent each monitor Mi’s initial local snapshot Snaps
i and its verdict set Vi

calculated based on only Snaps
i .

65

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

Snaps
1

M1 M2 M3

a true \ \

b \ \ \

V1 {q1, q>}

Snaps
2

M1 M2 M3

a \ \ \

b \ true \

V2 {q0, q>}

Snaps
3

M1 M2 M3

a \ \ \

b \ \ \

V3 {q0, q1, q>}

And by calculating the intersection of the verdict sets we obtain Iq0 = q>, which

is the verdict that a centralized monitor that has full view of state s = {a, b} would

compute. Note that a verdict form B3 can be emitted simply by applying the mapping

function λe, i.e., by calculating λe(v) where v ∈ Iq, which in this example is λe(q>) =

>.

66

Chapter 6

Conclusion

6.1 Summary

In this thesis, we studied synchronous and asynchronous runtime verification of dis-

tributed systems and presented distributed monitoring algorithms for this purpose,

which allow three-valued LTL monitoring. In particular,

• we proposed a synchronous monitoring algorithm that copes with f crash fail-

ures in a distributed setting. The algorithm solves the synchronous monitoring

problem in f+1 rounds of communication, where at each round each local mon-

itor broadcasts a message, receives messages from other monitors, and performs

local computation based on the received messages and computes a message to

be sent in the subsequent round. We proposed an automata-based algorithm

where each local monitor’s message is a set of monitor states that are reachable

from the current monitor state (according to the input automaton) by the set of

67

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

possible global states from viewpoint of that local monitor. Therefore our algo-

rithm reduces the message size overhead from |AP | to log(mq) where mq is the

number of outgoing transitions from the current monitor state q. We showed

that the input automaton (that is employed in each monitor’s algorithm) must

satisfy the following condition:

∀q ∈ Q. |Iq| = 1

where Q is the set of all monitor states in the input automaton, and Iq denotes

the intersection of all verdict sets emitted by local monitors. Therefore we

introduced an algorithm to construct an Extended Ltl3 monitor that satisfies

the aforementioned condition.

• We proposed an algorithm for distributed crash-resilient asynchronous RV that

consistently monitors the system under inspection without any communication

between monitors. Each local monitor emits a verdict set solely based on its own

partial observation, and the intersection of the verdict sets will be the same as

the verdict computed by a centralized monitor that has full view of the system.

6.2 Future Work

Some open problems for further research are as follows:

• In our framework the fault model was crash failure, i.e., the monitors can only

fail by crashing. From a more practical perspective, it would be interesting to

address more severe, e.g., Byzantine failures.

68

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

• In the asynchronous monitoring, although we assumed the monitors are asyn-

chronous wait-free processes, however, it was supposed that the global state of

the system changes synchronously, i.e., all monitors observe the same global

state. We can relax the timing model so that monitors observe, communicate,

and emit verdicts between any two global states.

• Our results in the decentralized asynchronous monitoring can theoretically be

transformed to more practical refinements such as message passing frameworks.

• It would of course be interesting to extend our results to the case where the

input to the monitors is a sequence of global states and each monitor produces

a sequence of verdict sets, one per each global state.

69

Bibliography

Agrawal, S. and Bonakdarpour, B. (2016). Runtime verification of k-safety hyperprop-

erties in hyperltl. In Proceedings of the 20th IEEE Computer Security Foundations

Symposium, CSF, pages 239–252.

Attiya, H. and Welch, J. (2004). Distributed Computing: Fundamentals, Simulations,

and Advanced Topics. Wiley.

Bartocci, E., Falcone, Y., Bonakdarpour, B., Colombo, C., Decker, N., Klaedtke, F.,

Havelund, K., Joshi, Y., Milewicz1, R., Reger, G., Rosu, G., Signoles, J., Thoma,

D., Zalinescu, E., and Zhang, Y. (2018). First international competition on runtime

verification. Software Tools for Technology Transfer (STTT).

Basin, D. A., Jugé, V., Klaedtke, F., and Zalinescu, E. (2013). Enforceable security

policies revisited. ACM Transaction on Information Systems and Security, 16(1),

3:1–3:26.

Basin, D. A., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., and Mantel, H. (2016).

Scalable offline monitoring of temporal specifications. Formal Methods in System

Design, 49(1-2), 75–108.

70

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

Bauer, A. and Falcone, Y. (2016). Decentralised LTL monitoring. Formal Methods

in System Design, 48(1-2), 46–93.

Bauer, A., Leucker, M., and Schallhart, C. (2010). Comparing LTL Semantics for

Runtime Verification. Journal of Logic and Computation, 20(3), 651–674.

Bauer, A., Leucker, M., and Schallhart, C. (2011). Runtime Verification for LTL and

TLTL. ACM Transactions on Software Engineering and Methodology (TOSEM),

20(4), 14:1–14:64.

Bonakdarpour, B., Navabpour, S., and Fischmeister, S. (2011). Sampling-based run-

time verification. In Formal Methods (FM), pages 88–102.

Bonakdarpour, B., Navabpour, S., and Fischmeister, S. (2013). Time-triggered run-

time verification. Formal Methods in System Design, 43(1), 29–60.

Bonakdarpour, B., Fraigniaud, P., Rajsbaum, S., Rosenblueth, D. A., and Travers,

C. (2016). Decentralized asynchronous crash-resilient runtime verification. In Pro-

ceedings of the 27th International Conference on Concurrency Theory (CONCUR),

pages 16:1–16:15.

Brett, N., Siddique, U., and Bonakdarpour, B. (2017). Rewriting-based runtime

verification for alternation-free hyperltl. In Proceedings of the 23rd International

Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS), pages 77–93.

Chauhan, H., Garg, V. K., Natarajan, A., and Mittal, N. (2013). A distributed

abstraction algorithm for online predicate detection. In IEEE 32nd Symposium on

Reliable Distributed Systems (SRDS), pages 101–110.

71

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

Chen, F. and Rosu, G. (2007). MOP: An Efficient and Generic Runtime Verification

Framework. In Object-Oriented Programming, Systems, Languages, and Applica-

tions (OOPSLA), pages 569–588.

Colombo, C. and Falcone, Y. (2016). Organising LTL monitors over distributed

systems with a global clock. Formal Methods in System Design, 49(1-2), 109–158.

d’Amorim, M. and Rosu, G. (2005). Efficient Monitoring of omega-Languages. In

Computer Aided Verification (CAV), pages 364–378.

Deshmukh, J. V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., and Seshia, S. A.

(2015). Robust online monitoring of signal temporal logic. In Runtime Verification

- 6th International Conference, RV 2015 Vienna, Austria, September 22-25, 2015.

Proceedings, pages 55–70.

Finkbeiner, B., Hahn, C., Stenger, M., and Tentrup, L. (2017). Monitoring hyperprop-

erties. In Proceedings of the 17th International Conference on Runtime Verification

(RV), pages 190–207.

Fischer, M. J., Lynch, N. A., and Peterson, M. S. (1985). Impossibility of distributed

consensus with one faulty processor. Journal of the ACM, 32(2), 373–382.

Fraigniaud, P., Rajsbaum, S., and Travers, C. (2013). Locality and checkability in

wait-free computing. Distributed Computing, 26(4), 223–242.

Fraigniaud, P., Rajsbaum, S., and Travers, C. (2014a). On the number of opinions

needed for fault-tolerant run-time monitoring in distributed systems. In Runtime

Verification - 5th International Conference (RV), pages 92–107.

72

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

Fraigniaud, P., Rajsbaum, S., Roy, M., and Travers, C. (2014b). The opinion num-

ber of set-agreement. In Principles of Distributed Systems - 18th International

Conference (OPODIS), pages 155–170.

Garg, V. K. (2002). Elements of distributed computing. Wiley.

Havelund, K. and Rosu, G. (2001a). Monitoring Java Programs with Java PathEx-

plorer. Electronic Notes in Theoretical. Computer Science, 55(2).

Havelund, K. and Rosu, G. (2001b). Monitoring Programs Using Rewriting. In

Automated Software Engineering (ASE), pages 135–143.

Havelund, K. and Rosu, G. (2002). Synthesizing monitors for safety properties. In In-

ternational Conference on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS), pages 342 –356.

Havelund, K. and Rosu, G. (2004). Efficient Monitoring of Safety Sroperties. Software

Tools and Technology Transfer (STTT), 6(2), 158–173.

Lamport, L. (1978). Time, clocks, and the ordering of events in a disributed system.

Communications of the ACM, 21(7), 558–565.

M. Herlihy, D. K. and Rajsbaum, S. (2013). Distributed Computing Through Combi-

natorial Topology. Morgan Kaufmann.

Manna, Z. and Pnueli, A. (1979). The modal logic of programs. In Proceedings of

the 6th Colloquium on Automata, Languages and Programming (ICALP), pages

385–409.

73

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

Manna, Z. and Pnueli, A. (1995). Temporal verification of reactive systems - safety.

Springer.

Medhat, R., Bonakdarpour, B., Kumar, D., and Fischmeister, S. (2015). Runtime

monitoring of cyber-physical systems under timing and memory constraints. ACM

Transactions on Embedded Computing Systems, 14(4), 79:1–79:29.

Mittal, N. and Garg, V. K. (2001). On detecting global predicates in distributed

computations. In Proceedings of the 21st International Conference on Distributed

Computing Systems (ICDCS 2001), Phoenix, Arizona, USA, April 16-19, 2001,

pages 3–10.

Mittal, N. and Garg, V. K. (2005). Techniques and applications of computation

slicing. Distributed Computing, 17(3), 251–277.

Mostafa, M. and Bonakdarpour, B. (2015). Decentralized runtime verification of LTL

specifications in distributed systems. In Proceedings of the 29th IEEE International

Parallel and Distributed Processing Symposium (IPDPS), pages 494–503.

Navabpour, S., Wu, C. W., Bonakdarpour, B., and Fischmeister, S. (2011). Efficient

techniques for near-optimal instrumentation in time-triggered runtime verification.

In International Conference on Runtime Verification (RV). To appear.

Navabpour, S., Bonakdarpour, B., and Fischmeister, S. (2015). Time-triggered run-

time verification of component-based multi-core systems. In Proceedings of the 6th

International Conference on Runtime Verification (RV), pages 153–168.

Nguyen, L. V., Kapinski, J., Jin, X., Deshmukh, J. V., and Johnson, T. T. (2017).

74

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

Hyperproperties of real-valued signals. In Proceedings of the 15th ACM-IEEE In-

ternational Conference on Formal Methods and Models for System Design (MEM-

OCODE), pages 104–113.

Ogale, V. A. and Garg, V. K. (2007). Detecting temporal logic predicates on dis-

tributed computations. In Proceedings of the 21st International Symposium on

Distributed Computing (DISC), pages 420–434.

Pnueli, A. (1977). The temporal logic of programs. In Symposium on Foundations of

Computer Science (FOCS), pages 46–57.

Schneider, F. B. (2000). Enforceable security policies. ACM Transactions on Infor-

mation and System Security (TISSEC), 3, 30–50.

Sen, K., a. Vardhan, Agha, G., and Rosu, G. (2004). Efficient decentralized mon-

itoring of safety in distributed systems. In Proceedings of the 26th International

Conference on Software Engineering (ICSE), pages 418–427.

Sen, K., Vardhan, A., Agha, G., and Rosu, G. (2006). Decentralized runtime analysis

of multithreaded applications. In 20th International Parallel and Distributed Pro-

cessing Symposium (IPDPS 2006), Proceedings, 25-29 April 2006, Rhodes Island,

Greece.

Stoller, S. D. and Schneider, F. B. (1995). Verifying programs that use causally-

ordered message-passing. Sci. Comput. Program., 24(2), 105–128.

Valapil, V. T., Yingchareonthawornchai, S., Kulkarni, S. S., Torng, E., and Demir-

bas, M. (2017). Monitoring partially synchronous distributed systems using SMT

75

M.A.Sc. Thesis - Shokoufeh Kazemlou McMaster - Computer Science

solvers. In Runtime Verification - 17th International Conference, RV 2017, Seattle,

WA, USA, September 13-16, 2017, Proceedings, pages 277–293.

Yingchareonthawornchai, S., Nguyen, D. N., Valapil, V. T., Kulkarni, S. S., and

Demirbas, M. (2016). Precision, recall, and sensitivity of monitoring partially syn-

chronous distributed systems. In Runtime Verification - 16th International Confer-

ence, RV 2016, Madrid, Spain, September 23-30, 2016, Proceedings, pages 420–435.

76

