
Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

REINFORCEMENT LEARNING TRAFFIC SIGNAL CONTROL

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

DEEP REINFORCEMENT LEARNING ADAPTIVE TRAFFIC SIGNAL CONTROL

By WADE GENDERS, B.Eng.Soc, M.A.Sc (McMaster University)

A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy.

McMaster University c©Copyright by Wade Genders, November 2018

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

McMaster University DOCTOR OF PHILOSOPHY (2018)

Hamilton, Ontario (Civil Engineering)

TITLE: Reinforcement Learning Traffic Signal Control

AUTHOR: Wade Genders, B.Eng.Soc, M.A.Sc (McMaster University)

SUPERVISOR: Dr. Saiedeh Razavi

NUMBER OF PAGES: xvii; 119

ii

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

LAY ABSTRACT

Inefficient transportation systems negatively impact mobility, human health and the environment.

The goal of this research is to mitigate these negative impacts by improving automated transporta-

tion control systems, specifically intersection traffic signal controllers. This research presents a

system for developing adaptive traffic signal controllers that can efficiently scale to the size of cities

by using machine learning and parallel computation techniques. The proposed system is validated

by developing adaptive traffic signal controllers for 196 intersections in a simulation of the City

of Luxembourg, Luxembourg, successfully reducing delay, queues, vehicle stopped time and travel

time.

iii

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

ABSTRACT

Sub-optimal automated transportation control systems incur high mobility, human health and envi-

ronmental costs. With society reliant on its transportation systems for the movement of individuals,

goods and services, minimizing these costs benefits many. Intersection traffic signal controllers are

an important element of modern transportation systems that govern how vehicles traverse road

infrastructure. Many types of traffic signal controllers exist; fixed time, actuated and adaptive.

Adaptive traffic signal controllers seek to minimize transportation costs through dynamic control

of the intersection. However, many existing adaptive traffic signal controllers rely on heuristic or

expert knowledge and were not originally designed for scalability or for transportation’s big data

future.

This research addresses the aforementioned challenges by developing a scalable system for adap-

tive traffic signal control model development using deep reinforcement learning in traffic simulation.

Traffic signal control can be modelled as a sequential decision-making problem; reinforcement learn-

ing can solve sequential decision-making problems by learning an optimal policy. Deep reinforcement

learning makes use of deep neural networks, powerful function approximators which benefit from

large amounts of data. Distributed, parallel computing techniques are used to provide scalability,

with the proposed methods validated on a simulation of the City of Luxembourg, Luxembourg,

consisting of 196 intersections.

This research contributes to the body of knowledge by successfully developing a scalable sys-

tem for adaptive traffic signal control model development and validating it on the largest traffic

microsimulator in the literature. The proposed system reduces delay, queues, vehicle stopped time

and travel time compared to conventional traffic signal controllers. Findings from this research in-

clude that using reinforcement learning methods which explicitly develop the policy offers improved

performance over purely value-based methods. The developed methods are expected to mitigate

the problems caused by sub-optimal automated transportation signal controls systems, improving

mobility and human health and reducing environmental costs.

iv

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

PREFACE

Included Manuscripts

This thesis contains three manuscripts, as listed below:

• W. Genders and S. Razavi, “Asynchronous n-step q-learning adaptive traffic signal control,”

Journal of Intelligent Transportation Systems, 2018. doi:10.1080/15472450.2018.1491003. Ac-

cepted, In Press

• W. Genders and S. Razavi, “Policy analysis of reinforcement learning adaptive traffic signal

control,” ASCE Journal of Computing in Civil Engineering, 2018. 4th round of revisions,

CPENG-2667R4

• W. Genders and S. Razavi, “Distributed deep deterministic policy gradients for adaptive traffic

signal control,” IEEE Transactions on Intelligent Transportation Systems, 2018. Submitted 15

August 2018 , T-ITS-18-08-0805

Manuscript Details

Paper 1 Presented in Chapter 2

The work was completed between May 2015 and October 2017. The manuscript was submitted in

October 2017 and accepted in June 2018. My contributions are:

• Development of the reinforcement learning adaptive traffic signal control proof-of-concept.

• Simulation implementation, experiments and analysis.

• Manuscript authorship and journal submission corresponding author.

Paper 2 Presented in Chapter 3

The work was completed between May 2015 and January 2018. The manuscript was submitted in

January 2018. My contributions are:

• Development and extension of the reinforcement learning adaptive traffic signal control proof-

of-concept.

• Simulation implementation, experiments and analysis.

• Manuscript authorship and journal submission corresponding author.

v

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Paper 3 Presented in Chapter 4

The work was completed between May 2015 and August 2018. The manuscript was submitted in

August 2018. My contributions are:

• Development of the distributed reinforcement learning adaptive traffic signal control architec-

ture.

• Simulation experiments and analysis.

• Manuscript authorship and journal submission corresponding author.

vi

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Copyright Permission

I have secured permission to include copyright material in this Ph.D. thesis from the copyright holder.

The permission includes a grant of an irrevocable, non-exclusive license to McMaster University and

to Library and Archives Canada to reproduce the material as part of the thesis.

vii

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

ACKNOWLEDGMENTS

I would like to thank my supervisor, Dr. Saiedeh Razavi, for her guidance and support during my

studies. I’m especially grateful to my supervisor for the research freedom I was afforded which made

my time fruitful and enjoyable - a Ph.D. student could ask for little more. Thank you to Dr. Rong

Zheng and Dr. Antonio Páez for their time and efforts serving on my Ph.D. committee.

To my current and former lab mates, Shuming Du and Dr. Jun Wang, it has been a pleasure to

work beside you and I’m honoured to call you my friends. Thanks to Shuo Feng for all the interesting

conversations over lunch.

Thanks to Mike Justason for the hours of interesting (mathematical) conversation which pre-

served my sanity and for keeping me fed. Thanks to Dr. Brian Baetz for all the advice and support

and for connecting Dr. Razavi and I all those years ago.

To my friends and family, especially my Mom and Dad, I’m lucky to have such a loving, supportive

group of people in my life.

To my wife Virginia, your love and support sustained me during my education. Thank you for

encouraging me when I struggled and for celebrating my successes - I love you.

“The only thing I know is that I know nothing.”

-Socrates

“I was born not knowing and have had only a little time to change that here and there.”

-Richard Feynman

viii

Contents

LAY ABSTRACT iii

ABSTRACT iv

PREFACE v

ACKNOWLEDGMENTS viii

LISTS OF FIGURES AND TABLES xii

LISTS OF ABBREVIATIONS, INITIALISMS AND ACRONYMS xvi

1 INTRODUCTION 1

1.1 Problem Statement and Motivation . 1

1.2 Research Objectives . 2

1.3 Research Outline . 3

1.4 Thesis Organization . 4

1.5 Background . 4

1.5.1 Traffic Signal Control . 4

1.5.2 Machine Learning . 5

1.5.3 Markov Decision Processes . 5

1.5.4 Reinforcement Learning . 6

1.5.5 Neural Network Function Approximation . 7

1.6 Research Methodology . 10

2 Asynchronous Adaptive Traffic Signal Control 13

2.1 Introduction . 13

2.2 Asynchronous n-Step Q-learning Adaptive Traffic Signal Control 14

2.3 Abstract . 14

2.4 Introduction . 14

2.5 Literature Review . 16

2.6 Contribution . 19

2.7 Proposed Model . 20

2.7.1 State Space . 20

2.7.2 Action Space . 20

2.7.3 Reward . 22

ix

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

2.7.4 Agent . 22

2.8 Experimental Setup and Training . 24

2.9 Results and Discussion . 27

2.10 Conclusion and Future Work . 33

3 Policy-based Adaptive Traffic Signal Control 35

3.1 Introduction . 35

3.2 Policy Analysis of Reinforcement Learning Adaptive Traffic Signal Control 36

3.3 Abstract . 36

3.4 Introduction . 36

3.5 Literature Review . 37

3.6 Reinforcement Learning . 38

3.7 Model . 39

3.7.1 Traffic Simulation . 39

3.7.2 Traffic Signal Control . 40

3.7.3 State . 42

3.7.4 Action . 42

3.7.5 Reward . 43

3.7.6 Agent . 44

3.8 Experiments . 44

3.9 Results and Discussion . 46

3.10 Contribution . 50

3.11 Conclusion . 50

3.12 Appendix . 51

3.12.1 Training . 52

3.12.2 Testing . 52

3.12.3 Asynchronous Q-learning . 53

3.12.4 Asynchronous Advantage Actor-Critic . 53

4 City Scale Multi-agent Adaptive Traffic Signal Control 56

4.1 Introduction . 56

4.2 Distributed Deep Deterministic Policy Gradients for Adaptive Traffic Signal Control 57

4.3 Abstract . 57

4.4 Introduction . 57

4.5 Related Work . 58

x

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

4.6 Contribution . 60

4.7 Background . 60

4.7.1 Traffic Signal Control . 60

4.7.2 Reinforcement Learning . 61

4.7.3 Deep Deterministic Policy Gradients . 62

4.8 Proposed Method . 62

4.8.1 State . 64

4.8.2 Actor . 64

4.8.3 Critic . 64

4.8.4 Action . 64

4.8.5 Reward . 65

4.8.6 Agent . 65

4.9 Experiments . 65

4.9.1 Learning Architecture . 65

4.9.2 Traffic Simulation . 66

4.9.3 Training . 66

4.9.4 Testing . 68

4.10 Results and Discussion . 69

4.11 Conclusions and Future Work . 70

4.12 Appendix . 72

4.13 Acknowledgments . 72

5 CONCLUSION 73

5.1 Contributions . 73

5.2 Limitations & Future Work . 74

REFERENCES 77

APPENDIX A: DQN-TSC 90

APPENDIX B: RL-TSC State Space Evaluation 109

xi

LISTS OF FIGURES AND TABLES

List of Figures

1 Research Outline . 3

2 At time t+1 an experience tuple et = (st, at, rt, st+1) is generated from the interaction

of the agent with the environment. The agent observes the state st of the environment

sEnv which may be partially st ⊂ sEnv or fully observable st = sEnv. The agent uses

the policy to select an action π(st) = at; policies can be stochastic or deterministic.

The environment transitions and returns feedback for the agent in the form of a

quantitative reward rt and a new state st+1. The agent uses experiences to learn, to

move towards the optimal policy π∗. 7

3 Computational neuron without activation function. A computational neuron com-

putes the dot product ~x · ~θ between its parameter vector ~θ and an input vector ~x.

From a geometric perspective, a neuron’s computation can be reformulated as the

cosine similarity between the input and parameter vectors cos(φ) = ~x·~θ
‖~x‖

∥∥∥~θ∥∥∥ . A single

neuron is equivalent to linear regression. 8

4 A neural network is composed of layers of neurons with activation functions z(~x · ~Θ)

after the dot product. Function composition is accomplished by each hidden layer’s

output becoming the input vector for the next layer. Different activation functions

are utilized depending on the problem, common examples include linear, sigmoid,

rectified linear (ReLu), softmax and hyperbolic tangent. 9

5 nQN-TSC model. First, the density and queue state st is observed by the agent, which

is used as input to the neural network (Fully Connected (FC) layer of 42 neurons

connected to another FC layer of 42 neurons), which produces a column vector of real

numbers, each representing a different actions’ value. Solid green arrows represent

protected movements and white arrows represent permissive movements. 16

6 Simulation model of intersection, arrows represent lane movements. 25

7 Block diagram describing main steps for real world deployment. The neural network

Q(st, a; θ) is first developed in simulation and then used to determine the next phase

using traffic sensor data. 25

8 Examples of randomly generated simulation rush hour traffic demand. The demands

are randomly translated in time for use during training while the untranslated rush

hour demand is used during testing. 28

xii

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

9 Performance of TSC methods under 100, two hour rush hour simulations. Lines

represent the mean and the shaded area is the 99% confidence interval. Note that the

throughput is influenced by the traffic demand. Traffic demand begins low, increases

to a maximum, remains constant, and then decreases at the end of the testing scenario. 30

10 Total throughput and delay for individual simulation runs. Coloured rectangles rep-

resent the range between the first and third quartiles, solid white line inside the

rectangle represents the median, dashed coloured lines represent 1.5 x interquartile

range, coloured dots represent outliers. 31

11 Individual vehicle delay by intersection lane movement and TSC type. Coloured

rectangles represent the range between the first and third quartiles, solid white line

inside the rectangle represents the median, dashed coloured lines represent 1.5 x

interquartile range, coloured dots represent outliers. Performance of TSC methods

under 100, two hour rush hour simulations. 33

12 Actions available to RL TSC. The four action set is A4 = {NSG, EWG, NSGL,

EWGL} and the eight action set is A8 = {NSG, EWG, NSGL, EWGL, NG, SG, EG,

WG}. For each action, solid green arrows indicate protected movements and white

arrows indicate permissive movements. 40

13 Model training and test architecture for 2 asynchronous agents. 41

14 To generate vehicles into the network an exponential distribution is used to create

random samples representing times between vehicle generation events. Different func-

tions are used for modelling the rate parameter λ(t) of the exponential distribution

during testing and training. 41

15 Network stopped time and queue samples over 50 independent testing simulation runs

for each TSC method. Note the natural logarithm network stopped time is presented

for improved reader clarity because of the variance across TSC methods. 46

16 Vehicle travel time samples over 50 independent testing simulation runs for each TSC

method. 47

17 Traffic Phase Lost Time and Action Frequency samples collected over 50 independent

testing simulations for each TSC method. Phases selected with a frequency < 2% are

unlabeled. 48

18 City of Luxembourg SUMO [4] simulation model [5, 6]. 58

xiii

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

19 Adaptive traffic signal control DDPG agent (left) and distributed acting, centralized

learning architecture (right). Each actor has one LuST environment and neural net-

works for all intersections. Each learner is assigned a subset of intersections at the

beginning of training and is only responsible for computing parameter updates for

their assigned intersections, effectively distributing the computation load for learning. 63

20 Agent diversity, phase A and lane L set cardinality histogram for all intersections in

LuST scenario. 67

21 Comparison of mobility measures for different traffic signal controllers at each in-

tersection. Blue vertical lines represent independent, two sample difference of means

95% confidence intervals (CI), used for testing hypotheses H0 : µπRL
−µπRand

= 0 and

H0 : µπRL
−µπFixed

= 0. Blue lines that do not cross the red line indicate statistically

significant different means (i.e., sufficient evidence to reject the null hypothesis H0). 70

22 Individual vehicle temporal measures of effectiveness for each traffic signal control

method. Times are categorized into short (< 30 minutes) and long (> 30 minutes)

durations. 71

23 Example of simulated traffic (a) with corresponding Boolean- (b) and real-valued

DTSE vectors (c). 95

24 Intersection throughput while training. 104

25 Average intersection queue while training. 104

26 Average travel time of vehicles while training. 105

27 Average cumulative delay of vehicles while training. 105

28 Average reward of DQTSCA while training. 106

29 Reward of DQTSCA in an epoch while taking only exploratory action early in training.106

30 Reward of DQTSCA in an epoch while taking only exploitative action after training

completed. 107

31 Rush hour demand traffic scenario used for training (right) and testing (left). 113

32 Testing results comparing state definitions. 118

xiv

List of Tables

1 Reinforcement Learning Adaptive Traffic Signal Control related work. 11

2 Traffic Signal Phase Information . 21

3 Traffic Signal Phase Action Transitions . 21

4 Model Hyperparameters . 27

5 Traffic Signal Control Rush Hour Results . 34

6 Traffic Signal Phase Information . 43

7 Model Hyperparameters . 45

8 Traffic Signal Control Testing Results . 47

9 Adaptive Traffic Signal Control related work. 60

10 Hyperparameters . 68

11 Testing results . 71

12 Traffic Signal Phase Action Transitions . 96

13 Vehicle Generation Distributions by Flow Rate . 100

14 STSCA and DQTSCA Traffic Metrics . 103

15 Traffic Signal Phase Information. 114

16 Cumulative statistics testing results comparing state definitions. 119

xv

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

LIST OF ABBREVIATIONS, INITIALISMS AND ACRONYMS

A3C Asynchronous Advantage Actor-Critic

DDPG Deep Deterministic Policy Gradients

DNN Deep Neural Network

DQN Deep Q-Network

FC Fully Connected

LuST Luxembourg SUMO Traffic Scenario

MDP Markov Decision Process

MoE Measure of Effectiveness

NEMA National Electrical Manufacturers Association

NN Neural Network

RBF Radial Basis Function

ReLu Rectified Linear Unit

RL Reinforcement Learning

TSC Traffic Signal Control/Controller

xvi

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

DECLARATION OF ACADEMIC ACHIEVEMENT

Wade Genders was the main contributor and first author for all manuscripts in this thesis. Any

co-author contributions are detailed at the beginning of each chapter that includes a published

manuscript.

xvii

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

1 INTRODUCTION

1.1 Problem Statement and Motivation

Transportation systems are fundamental to society - all users benefit from increased mobility at low

cost. Urban transportation systems are governed by automated control systems, such as intersection

traffic signal controllers (TSC), that strive for optimal control, attmpeting to maximize safety and

mobility and minimize cost. Transportation systems experience dynamic and stochastic demand,

requiring systems and control policies that can adapt and respond to change. Sub-optimal control

in transportation systems creates large inefficiencies which incur significant costs due to widespread

use. Intersection traffic signal controllers enacting sub-optimal decisions contribute to congestion,

negatively affecting the environment, human health and mobility [7]. These costs can be quantified

financially [8], 108 to 109 United States Dollars (USD) per annum for large populations and 103

USD for individuals [9, 10, 11, 12]. These costs manifest as delay to individuals and unnecessary

fuel consumption/emission [13] and are incurred when vehicles accelerate, decelerate and idle at

intersections or when vehicles take longer travel times than necessary [14]. The transportation sector

contributes 24% of global carbon dioxide emissions, with approximately three-quarters emitted by

road traffic [15]. Annually, air pollution is responsible for over three million fatalities globally [16]

with emissions from land transportation contributing one out of three fatalities from air pollution in

North America [17]. Individuals living in metropolitan areas consistently exposed to traffic related

noise and air pollution have statistically significant increases in coronary heart disease mortality [18].

With transportation systems used universally throughout society, improvements can yield significant

benefits from cumulative effects. Sub-optimal TSC are a result of their control policy, which is often

governed by simple or heuristic logic (e.g., fixed time TSC) that does not consider current traffic

conditions. It would be desirable to have a TSC with adaptive capabilities, that predicates its

behaviour on current traffic conditions.

However, it can be challenging to develop optimal control policies for dynamic, stochastic and

high dimensional environments such as traffic intersections [19]. Vehicle traffic at intersections is

dynamic, changing demand from peak to free-flow throughout the day. Intersection dynamics exhibit

stochasticity, both from inherent stochasticity (e.g., driver behaviour and idiosyncrasies) and sensor

aliasing. The optimal traffic signal control policy must be able to adapt to these changes and

uncertainties.

Intelligent transportation systems offer solutions and improvements for transportation problems

using computational intelligence. Much research has been devoted to studying and developing

1

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

adaptive traffic signal controllers. An adaptive traffic signal controller,

...uses detection data and algorithms to adjust signal timing parameters for current

conditions...is able to adjust various timing parameters (within certain constraints) based

on what the traffic requires. Over time, traffic evolves - whether quickly in minutes

or slowly in days, months, or years - and renders signal timing plans increasingly less

effective. Traditional signal operations are often unable to adjust to this variability,

resulting in degradation of traffic performance. [20, p. 9-11].

Adaptive TSC attempt to improve upon traditional TSC by implementing dynamic phase durations

and acyclic sequencing. Numerous techniques have been used to develop adaptive traffic signal

controllers; dynamic programming [21, 22], fuzzy systems [23, 24] evolutionary algorithms [25, 26, 27].

Adaptive systems can use a combination of sensor observations, models and memory to make traffic

signal control decisions. Some of these adaptive techniques have seen field deployment; SCOOT [28],

OPAC [29], SCATS [30], RHODES [31] and ACS-Lite [32]. However, many of the aforementioned

methods rely on models and/or expert knowledge. This can be problematic in cases where models do

not replicate reality or if expert knowledge is incorrect. These techniques can also become infeasible

as the quantity or dimensionality of the data increases. With the introduction of connected and

autonomous vehicles along with additional traffic sensors (e.g., video cameras, radar), transportation

systems are quickly becoming domains of big data [33]. Traditional control systems were not designed

to utilize data at this scale, necessitating new solutions. Adaptive TSC solutions which overcome

these problems are desirable.

1.2 Research Objectives

To address the aforementioned problems, the primary research objective of thesis is to develop an

adaptive traffic signal controller for optimal traffic signal control which overcome the limitations

of conventional traffic signal controllers. A traffic signal controller that can adapt to the dynamic

and stochastic nature of traffic will reap improvements by reducing congestion and decreasing costs

from inefficiencies. Since transportation systems exhibit large numbers of users, any improvements

or efficiencies benefit many. Developing improved automated control systems for key transportation

infrastructure, such as traffic signal controllers, is desirable to reduce mobility, environmental and

health costs. Sub-objectives which will aid in achieving the primary objective include answering the

following questions:

• What decisions should an adaptive traffic signal controller make?

• How can the solution be made scalable?

2

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

1.3 Research Outline

Problem Statement and Motivation

● Automated transportation control systems enacting sub-optimal policies contribute to
inefficiencies incur significant costs.

Research Objectives

● Develop adaptive traffic signal controller for optimal control.

Chapter 2/Paper 1
Asynchronous Adaptive
Traffic Signal Control

Objectives

●Develop adaptive traffic signal
controller proof-of-concept.

●Model must be scalable.

Methods

●Develop n-step q-learning
adaptive TSC agent in
simulation.

●Acyclic TSC.
●Single intersection, dynamic

demand testing scenario.
●Evaluate against conventional

TSC and linear RL.

Outcomes

●Successfully developed
adaptive TSC
proof-of-concept, improved
mobility.

●Demonstrated linear RL
inferiority compared to deep
RL.

●Developed parallel computing
architecture for future model
scalability.

Chapter 3/Paper 2
Policy-based Adaptive
Traffic Signal Control

Objectives

●Extend adaptive traffic signal
controller proof-of-concept.

●Evaluate on multi-intersection
network.

●Analyze control policies.

Methods

●Develop actor-critic,
policy-based RL adaptive TSC
in simulation.

●Acyclic TSC.
●Multi-intersection, dynamic

rush hour demand testing
scenario.

●Evaluate against conventional
TSC and value-based RL
adaptive TSC.

Outcomes

●Successfully extended
adaptive TSC using
policy-based RL.

●Policy-based RL offers
improved performance over
value-based RL.

●Independent RL adaptive TSC
can function in multi-agent
setting.

Chapter 4/Paper 3
City Scale Multi-agent

Adaptive Traffic Signal
Control

Objectives

●Develop adaptive traffic signal
control system for city-scale.

●Evaluate on simulation
calibrated from real-world
data.

Methods

●Develop distributed adaptive
traffic signal control system in
simulation.

●Cycle TSC.
●Test on City of Luxembourg

simulation.
●Analyze performance for

intersections and vehicles.

Outcomes

●Successfully validated
proposed RL adaptive TSC
system at scale.

●Performance analysis
demonstrates increased
efficiency, reduced costs.

Conclusions, Contributions & Future Work

Figure 1: Research Outline

3

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

1.4 Thesis Organization

This thesis is composed of the following chapters:

Chapter 1 provides an introduction to the problem along with research motivations, subsequent

research objectives and research outline to achieve the objectives.

Section 1.5 provides a background on important topics used in this thesis; Traffic Signal Con-

trol, Machine Learning, Markov Decision Processes, Reinforcement Learning and Neural Networks.

Readers familiar with these topics can skip this chapter.

Section 1.6 provides a detailed methodology for achieving the research objectives.

Chapter 2 develops the first proof-of-concept solution, developing a reinforcement learning, adap-

tive TSC for an isolated intersection in simulation. This chapter is composed of a published journal

article.

Chapter 3 extends the proof-of-concept by developing an adaptive TSC using different reinforce-

ment learning techniques. Instead of using value-based reinforcement learning, policy based methods

are used to achieve higher performance compared to Chapter 2. Simulation experiments are con-

ducted in a multi-intersection setting and the developed reinforcement learning policies analyzed to

better understand the adaptive TSC.

Chapter 4 uses knowledge generated from preceding chapters to develop a scalable system for

adaptive TSC and validate it in city scale traffic simulation. Results show the proposed system

achieves the research objectives, optimizing transportation by minimizing costs, reducing vehicle

delay and queues, stopped and travel time.

Chapter 5 concludes the thesis by summarizing the work presented, its main contributions,

limitations and areas for future work.

Appendices A and B provide supplemental research conducted during the course of the thesis.

1.5 Background

1.5.1 Traffic Signal Control

Modern transportation systems rely on various automated control systems. Road intersections are

ubiquitous in urbanized areas and are predominantly governed by traffic signal controllers which use

tuples of coloured lights known as phases to control intersection user movements.

Fundamentally, a traffic signal controller must enact two control decisions in sequence: selecting

the current phase from among a finite set to enact, and for how long in duration? A traffic signal

controller’s purpose is to serve intersection users (e.g., vehicles, pedestrians) in safely crossing the

intersection with different phases. If the traffic signal controller implements phases in a cycle, phases

4

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

displayed in an ordered sequence, then the answer to the first control decision is simply to consult

the cycle. If a cycle is used, the duration of the phase, the second control decision, still must be

chosen. Various classes of traffic signal controllers provide a myriad of answers to these decisions.

The simplest class is a fixed time traffic signal controller, which implements phases in a cycle

with fixed durations. Phase durations are often calculated based on historical or estimated based on

traffic metrics (e.g., vehicle flow, density). However, as the disparity between estimation and reality

increases, fixed phase durations become increasingly sub-optimal.

1.5.2 Machine Learning

Although some question its longevity, Moore’s Law [34] has continued to produce cheaper, smaller

and more efficient computer hardware, making computers ubiquitous. Transportation systems have

benefited from Moore’s law, with increased automation and data generation from sensors. Conse-

quently, because transportation is pervasive, observing transportation systems yields ample data.

Machine learning offers an ensemble of mathematical techniques that benefit from large quantities

of data to develop solutions to problems.

Machine Learning allows computers to attain knowledge from data to solve problems, often in

high dimensional problems which overwhelm human capabilities. Computers are particularly good

at fast computation and storing large quantities of data. These two qualities can be leveraged to

solve some problems that humans find difficult or solve sub-optimally.

Intersection traffic signal control can be modelled as sequential decision-making problem and

machine learning can learn how to make the optimal decisions given sufficient data.

1.5.3 Markov Decision Processes

Decision-making can be theoretically modeled by Markov Decision Processes (MDP) [35]. An MDP

can be used to describe sequential problems where outcomes are partly stochastic and partly in-

fluenced by a decision maker who can act. Mathematically, an MDP is defined by a tuple <

S,A,R, T, γ >; consisting of a state space S, an action space A, a reward function R : S×A×S → R,

a State Action Transition function T : S×A×S → R and a discount factor γ ∈ [0, 1). Beyond these

sets and functions, an MDP assumes the Markov property.

Beginning at time t, assume we encounter a sequence of states, potentially infinite, and define

it as the state history SH = st, st+1, ..., st+∞. If this history exhibits the Markov property, then

P(st+1|sH) = P(st+1|st), meaning information about future states is predicated entirely on the

present state, also described as memoryless. This property can be used to simplify calculation and

aid in optimization. A policy π is a state-action function π : S × A → [0, 1], describing action

5

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

selection probabilities conditioned on the state π(s, a) = P[aπ = a|sπ = s]. Actions influence future

states, actions and rewards. Reward R quantitatively describes success or failure relative to an

abstract goal and is ultimately influenced by states and actions. The reward can be used to compare

and improve policies. Different states, actions and policies are said to be optimal if they lead to

maximum reward.

1.5.4 Reinforcement Learning

Reinforcement Learning is a type of machine learning which uses noisy feedback and past experience

to solve problems [36]. A reinforcement learning agent acts in an environment to achieve a goal,

developing behaviour to solve sequential decision-making problems. Reinforcement learning relies

on MDP for modelling sequential decision-making problems, however different classes of algorithms

make different mathematical assumptions. Model-based reinforcement learning explicitly models

the state action transition function T and Reward function R. These are built from dynamic

programming methods [37]. Model-free reinforcement learning techniques do not model a state

action transition function or reward function and instead rely exclusively on environment samples.

Both of these methods seek to develop policies which achieve the maximum reward, known as optimal

policies.

Reinforcement learning offers a variety of algorithms to develop agents for environments (i.e.,

MDP). However, they all share a common goal of developing a policy to maximize reward. The

concept of value in reinforcement learning represents the notion of long term reward [36]. A rein-

forcement learning agent can estimate values of states and actions to develop the optimal policy.

The agent uses its experiences with the environment to calculate and improve value estimates. Since

the environment is unknown and potentially stochastic, the agent uses previous success coupled with

current observations to achieve optimal behaviour.

To make decisions in a MDP, an agent must act. Consider an agent interacting with an MDP

through a policy π in discrete time intervals. Desirable agents interact with an environment (i.e.,

MDP) and receive high amounts of reward. A policy is a function from states to actions π : S → A,

where the agent first observes the state st and then chooses an action at based on the state. The

agent’s action transitions the MDP to a next state st+1 and the agent receives a reward rt. A

tuple representing one interaction between the agent and an MDP is known as an experience et =

(st, at, rt, st+1).

Many successful reinforcement learning algorithms exist that use experiences in different ways

to develop optimal policies; Q-learning [38], SARSA [39], TD-λ [36] policy based methods; REIN-

FORCE [40], natural gradients [41]. Optimal policies can be developed for low dimensional problems

6

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

t

Environment

Agent Agent

at
rt, st+1st

et= (st, at,rt, st+1)(st) = at

t+1 Time

Figure 2: At time t+ 1 an experience tuple et = (st, at, rt, st+1) is generated from the interaction of

the agent with the environment. The agent observes the state st of the environment sEnv which may

be partially st ⊂ sEnv or fully observable st = sEnv. The agent uses the policy to select an action

π(st) = at; policies can be stochastic or deterministic. The environment transitions and returns

feedback for the agent in the form of a quantitative reward rt and a new state st+1. The agent uses

experiences to learn, to move towards the optimal policy π∗.

with tabular function approximation, however as dimensionality increases, tabular methods become

infeasible. Linear function approximation can improve upon tabular solutions, but may still have

insufficient model capacity. Many function approximation methods have been developed beyond

tabular and linear, both parametric and non-parametric. Neural network function approximation

has been used to develop deep reinforcement learning agents with success.

1.5.5 Neural Network Function Approximation

Neural Networks are powerful function approximators. Neural networks use computational neurons

and function composition to model a wide family of functions [42]. A comparison with linear

regression, a common function approximator, is provided for comprehension, displayed in Figure

3. It is useful to consider the similarities and differences between these methods if unfamiliar with

neural networks. Mathematical notation in this section includes x scalars, ~x vectors, X matrices

and X tensors.

Both linear regression and neural networks are parametric methods, using a set of parameters θ to

to develop a function approximation of a target function f(x) ≈ f(x; θ). Linear regression produces

a single output from the dot product of an input vector and a parameter vector f(~x; ~θ) = ~x · ~θ.

The input vector ~x ∈ X is often considered a sample from some function. Each input vector has

a corresponding output from a label set y ∈ ~y, often referred to as the ‘true’ output, creating

a data tuple (~x, y). This is often data observed from some phenomena or experiment. Linear

7

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

x x ⇀ ⇀⇀ y=x ⇀⇀^

Figure 3: Computational neuron without activation function. A computational neuron computes

the dot product ~x · ~θ between its parameter vector ~θ and an input vector ~x. From a geometric

perspective, a neuron’s computation can be reformulated as the cosine similarity between the input

and parameter vectors cos(φ) = ~x·~θ
‖~x‖

∥∥∥~θ∥∥∥ . A single neuron is equivalent to linear regression.

regression provides a framework to model the relationship between the function input and output

from pairs drawn from a dataset with a linear combination of the input and parameter vectors. This

linear function is parameterized by its parameter vector ~θ. Like any machine learning algorithm,

linear regression ultimately seeks to model the relationship of the data well (i.e., the approximation

should be accurate). The approximation’s quality is measured using an error (or loss or cost)

function. The accuracy of the approximation depends on the parameters. Linear regression optimizes

the parameters by minimizing the error between linear regression’s estimate of the correct output

ŷ = f(~x, θ) and the target output y. Linear regression uses the ordinary least squares error function,

defined in Equation 1.

L(y, ŷ) =
1

2
(y − ŷ)2 (1)

Optimal parameters minimize the given loss function and produce accurate approximations.

To represent a neural network, a parameter tensor is used Θ. Each layer is represented as

a parameters matrix Θ ∈ Θ, with individual neuron parameters ~θ ∈ Θ. Neural networks have

many neurons per layer and multiple layers, this is represented as function composition f(~x; Θ) =

f(...f(f(~x; Θ); Θ)...; Θ). Common error functions for optimizing neural network parameters are the

mean squared error and cross-entropy, defined in Equation 2.

L(~y, ~̂y) = −
∑

~y log(~̂y) (2)

Neural networks build from linear regression by being capable of modelling a wider family of

functions. These additional capabilities are afforded through function composition and activation

8

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

^ Neural Network

x⇀

⇀

⇀

y = z(x·)x
x· z(x·)

⇀ ⇀ ⇀

⇀ ⇀ ⇀ ⇀

Neuron

⇀x ŷ
⇀

Figure 4: A neural network is composed of layers of neurons with activation functions z(~x · ~Θ) after

the dot product. Function composition is accomplished by each hidden layer’s output becoming the

input vector for the next layer. Different activation functions are utilized depending on the problem,

common examples include linear, sigmoid, rectified linear (ReLu), softmax and hyperbolic tangent.

functions. Function composition allows for learning hierarchical representations of the input data,

learning high level representations of data from lower, more basic representations. Activation func-

tions further transform the data, yielding additional model capacity. To train the hidden layer

parameters, the backpropagation algorithm is used [43, 44]. Backpropagation is a gradient-based

optimization technique. Gradient-based optimization uses a function’s derivative to find its optimal

values, gradient descent (i.e., minimize function) defined in Equation 3.

x′ = x− αf ′(x) (3)

Where x′ represents the next iteration taking a gradient step f ′(x) scaled by α starting from x.

Repeatedly applying this gradient step approaches a function minimum. However, since this is a

first order optimization algorithm, it is unknown whether a global or local minimum.

Neural networks are popular in machine learning because they have been responsible for many

recent machine learning successes thanks to their function approximation capabilities. Function

approximation is useful in reinforcement learning, as value and policy functions must often be

estimated from samples.

Deep artificial neural networks use multiple hidden layers and weight connectivities (e.g., fully

connected, convolutional, recurrent) to increases their function approximation capabilities. Deep

reinforcement learning combines the powerful function approximation of deep neural networks with

reinforcement learning algorithms, yielding agents that can perform complex tasks, sometimes better

9

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

than humans, such as various video games [45, 46, 47, 48, 49], the game of GO [50, 51], image

recognition [52] and robotics [53].

1.6 Research Methodology

The research objectives were achieved by using simulations tools, computational methods and quan-

titative metrics.

Like other safety critical systems, traffic signal controllers are developed using simulation tools

because in situ development is dangerous - any failure during development would be disastrous. Sim-

ulations offer a safe environment to develop, allowing researchers to thoroughly verify and validate

their work before real-world deployment. Many categories of traffic simulator exist. Macroscopic

simulators model traffic at a high-level, describing vehicles in aggregate with density, speed and

flow. Mesoscopic simulators provide more resolution by aggregating vehicles in small groups or

platoons. Microscopic simulators provide the highest resolution, modelling vehicles as individual

entities interacting. Macrosopic models require the least amount of computation at the cost of sig-

nificant aliasing. Microscopic models offer the most accurate model of traffic at the cost of high

computation. This research uses microscopic traffic simulation because it provides the most accu-

rate model of real-world traffic. Individual vehicle dynamics are important when studying traffic

signal controllers; macroscopic and mesocopic simulations provide an insufficiently detailed model,

omitting these dynamics. Microscopic traffic simulations are composed of network geometry and

vehicle dynamics models.

Network geometry includes all vehicle infrastructure (e.g., roads, intersections, traffic signal

controllers). Vehicle dynamics are controlled by various sub-models. Vehicles are generated into the

network and assigned a trip, a route from an origin to a destination in the network. Various routing

algorithms are used to develop vehicle trips from origin to destination (e.g., Dijkstra). Vehicles

use a car-following model to describe a vehicle’s position and its derivatives with respect to other

vehicles [54, 55]. The lane changing and gap acceptance models describe how a vehicle safely changes

lanes when an appropriate gap exists. This thesis uses the microscopic traffic software Simulation

of Urban Mobility (SUMO) [4]. SUMO offers ample tools to model custom or real-world network

geometry, vehicle demand and traffic signal controllers. Like many software simulations, SUMO

relies on pseudorandom number generation [56] for stochasticity.

To develop an adaptive traffic signal controller in simulation, machine learning methods are

used. Machine learning, as a subfield of artificial intelligence, allows computers to solve problems

by using data. Since transportation is quickly becoming a domain of big data, machine learning

is appealing as it is a data driven problem solving method. Reinforcement learning, a type of

10

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

machine learning, is an abstract family of techniques to develop goal-oriented behaviour in uncertain,

sequential decision-making problems. A reinforcement learning agent interacts with an environment,

learning a behaviour policy to achieve a pre-defined goal. Since traffic signal control can be modelled

as a sequential decision-making problem, reinforcement learning is an obvious candidate solution.

Ample literature detailing reinforcement learning, adaptive TSC exists, displayed in Table 1.

Initial research demonstrated positive proof-of-concept results for adaptive TSC using reinforce-

ment learning [57, 58, 59, 60]. However, these initial works made many simplifications (e.g., vehicle

dynamics, intersection control models) that obliged additional research. Subsequent research has

attempted to improve beyond initial efforts, using more powerful learning algorithms and realistic

simulation tools [61, 62, 63, 64, 65]. Still, these efforts lacked in areas such as function approximation

and scale. Recently, deep reinforcement learning techniques, combining reinforcement learning with

deep neural network function approximation, have been applied for adaptive traffic signal control

with varying degrees of success [66, 67, 68, 69]. Deep reinforcement learning provides powerful func-

tion approximation at the cost of model complexity, potentially difficult development and model

instability. Although considerable amounts of research attest to the simulated success of reinforce-

ment learning adaptive TSC, few of these systems been deployed in the field.

Table 1: Reinforcement Learning Adaptive Traffic Signal Control related work.

Research Method Notes

[70] Genetic RL 3x3 grid network, local RL, global genetic algorithm optimization

[57] SARSA1 4x4 grid network, discrete state representation

[59] Model-based RL 2x3 grid network, co-learning, agent communication

[60] Q-learning Isolated intersection, CMAC2 function approximation

[71] NeuroFuzzy Isolated intersection, NN function approximation

1 State-Action-Reward-State-Action (SARSA).

2 Cerebellar Model Articulation Controller (CMAC).

Traditional, quantitative transportation performance indicators and measures of effectiveness are

used for evaluating the proposed research [20]. These include mobility metrics such as vehicle travel

and stopped time, and intersection metrics such as vehicle queue and delay. These metrics are used

to compare and validate the proposed research to traditional solutions, such as fixed time, Webster’s

[72] and actuated TSC.

The methodology can be separated into two phases. First, developing and verifying proof-of-

concept solutions and second, validating the solutions at scale.

The first phase of this research develops a proof-of-concept reinforcement learning, adaptive

traffic signal controller in simple (i.e., isolated intersections) simulations. The answers to the specific

11

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

research questions stated as part of the objectives will be developed in this phase. Reinforcement

learning offers many methods, verifying which ones are best suited for adaptive traffic signal control

requires careful analysis.

The second phase uses insights developed in the first phase to develop a scalable solution that

will be validated under realistic simulation conditions (i.e., city scale). Techniques must be sought

and developed that can transfer the findings from the first phase and make them useful in a scalable

manner.

Using this systematic approach, an adaptive traffic signal control system was developed to opti-

mize transportation, improve mobility and minimize costs.

12

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

2 Asynchronous Adaptive Traffic Signal Control

2.1 Introduction

Adaptive traffic signal controllers can improve transportation efficiency and reduce costs through

optimal control. Reinforcement learning can be used for optimal adaptive traffic signal control,

however existing methods can be computationally expensive and are not designed for scalability. In

this chapter, n-step Q-learning is combined with parallel, asynchronous computation to develop a

proof-of-concept acyclic adaptive traffic signal controller to overcome these challenges/gaps. In sim-

ulation, the proposed adaptive controller is developed and evaluated on an isolated intersection and

compared against conventional traffic signal controllers and linear adaptive traffic signal controllers.

The publication included in this chapter is:

W. Genders and S. Razavi, “Asynchronous n-step q-learning adaptive traffic signal control,”

Journal of Intelligent Transportation Systems, 2018. doi:10.1080/15472450.2018.1491003. Accepted,

In Press

The co-author’s contributions to the above work include:

• Financial and technical supervision of the study presented in this work.

• Manuscript editing.

13

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

2.2 Asynchronous n-Step Q-learning Adaptive Traffic Signal Control

2.3 Abstract

Ensuring transportation systems are efficient is a priority for modern society. Intersection traffic

signal control can be modeled as a sequential decision-making problem. To learn how to make the

best decisions, we apply reinforcement learning techniques with function approximation to train an

adaptive traffic signal controller. We use the asynchronous n-step Q-learning algorithm with a two

hidden layer artificial neural network as our reinforcement learning agent. A dynamic, stochastic

rush hour simulation is developed to test the agent’s performance. Compared against traditional loop

detector Actuated and Linear Q-learning traffic signal control methods, our reinforcement learning

model develops a superior control policy, reducing mean total delay by up 40% without compromising

throughput. However, we find our proposed model slightly increases delay for left turning vehicles

compared to the Actuated controller, as a consequence of the reward function, highlighting the need

for an appropriate reward function which truly develops the desired policy.

2.4 Introduction

Society relies on its many transportation systems for the movement of individuals, goods and ser-

vices. Ensuring vehicles can move efficiently from their origin to destination is desirable by all.

However, increasing population, and subsequent vehicle ownership, has increased the demand of

road infrastructure often beyond its capacity, resulting in congestion, travel delays and unnecessary

vehicle emissions. To address this problem, two types of solutions are possible. The first is to

increase capacity by expanding road infrastructure, however this can be expensive, protracted and

decrease capacity in the short term (i.e., parts of the existing infrastructure are often restricted to

traffic while construction occurs). The second solution is to increase the efficiency of existing infras-

tructure and the systems that govern them, such as traffic signal controllers (TSC). We advocate

this second solution, by utilizing innovations from the domain of artificial intelligence [45, 46] to

develop an adaptive traffic signal controller.

Developing a traffic signal controller means attempting to solve the traffic signal control problem

(i.e., deciding what traffic phases should be enacted at any given time). Many solutions have

been proposed to solve the traffic signal control problem, differing in complexity and assumptions

made. The traffic signal control problem can be modeled as a sequential decision-making problem.

Reinforcement learning, a machine learning paradigm, provides a framework for developing solutions

to sequential decision-making problems. A reinforcement learning agent learns how to act (i.e.,

control the intersection phases) in an uncertain environment (i.e., stochastic vehicle dynamics) to

14

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

achieve a goal (i.e., maximize a numerical reward signal, such as throughput). Rewards r are

quantitative measures of how well the agent is achieving its goal. Described mathematically, given

a discount factor γ ∈ [0, 1), the agent seeks to maximize the sum of discounted future rewards

Gt =
∑∞
i=0 γ

irt+i. Formally, the agent develops a policy π which maps states to actions π(s) = a,

in an attempt to maximize the sum of discounted future rewards. To achieve optimal control, we

develop an optimal state-action policy π∗. We use valued-based reinforcement learning to estimate an

action-value function, which tells us how “good” any action is in a given state based on the agent’s

prior experiences. We derive the optimal policy by developing an optimal action-value function

Q∗(s, a) defined in Equ. (4).

Q∗(s, a) = max
π

E
[
Gt|s = st, a = at, π

]
(4)

Q-learning [38], a type of temporal difference learning [73], is used to estimate the optimal

action-value function through repeated environment interactions, composed of the agent, at time t,

observing the state of the environment st, choosing an action at, receiving feedback in the form of a

reward rt and observing a new state st+1. Accurately estimating an action’s value allows the agent

to select the action which will yield the most long-term reward.

However, traditional reinforcement learning can suffer from the curse of dimensionality, where

developing tabular solutions becomes intractable due to a combinatorial explosion of the state-

action space. This problem can be alleviated by combining traditional reinforcement learning with

function approximators and supervised learning techniques. We approximate the optimal action-

value function using an artificial neural network, defined in Equ. (5).

Q∗(s, a) ≈ Q(s, a; θ) (5)

We develop the parameters θ (weights between neurons) of the neural network action-value

function using a variant of the deep Q-network (DQN) algorithm [45], asynchronous n-step Q-

learning [46]. Once sufficiently approximated, the optimal policy can be derived by selecting the

action with the highest value using the developed action-value function, defined in Equ. (6).

π∗(s) = argmaxaQ(s, a; θ) (6)

Using the microtraffic simulator SUMO [4] as the environment, we ultimately produce an agent

that can control the traffic phases, termed an n-step Q-network traffic signal controller (nQN-TSC),

illustrated in Figure 5.

Other researchers have long noted reinforcement learning’s potential in solving the traffic signal

control problem and have applied it with varying degrees of success [74, 75, 64]. Recent deep

15

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Figure 5: nQN-TSC model. First, the density and queue state st is observed by the agent, which

is used as input to the neural network (Fully Connected (FC) layer of 42 neurons connected to

another FC layer of 42 neurons), which produces a column vector of real numbers, each representing

a different actions’ value. Solid green arrows represent protected movements and white arrows

represent permissive movements.

reinforcement learning techniques, successful in other domains, have provided further improvements

over traditional reinforcement learning, traffic signal control models [66, 68, 67, 76, 77]. However,

we observed subtle deficiencies in previous work which we address in this paper; specifically, the

traffic signal control problem has been modeled too simply (discussed in the Literature Review)

and must be confronted authentically. We argue these simplifications have created uncertainty as

to whether reinforcement learning can truly be a contending solution for the traffic signal control

problem compared against established solutions.

2.5 Literature Review

Intersection traffic signal control methods have been studied for decades. Traditionally, traffic signal

phases are displayed in an ordered sequence to produce a cycle. If the phase durations and sequence

are static, a fixed cycle traffic signal controller is produced and can be classified as a non-adaptive

form of traffic signal control. Non-adaptive signal control methods are stable and relatively simple

to create, yet may not be optimal as they are not influenced by current traffic conditions. With the

advent of sensors (e.g., loop detectors, radar, cameras) at intersections, adaptive traffic signal con-

trollers were possible. Adaptive traffic signal controllers can vary phase duration or phase sequence,

16

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

producing dynamic phase durations and acyclic phase sequences. Adaptive methods can potentially

improve performance as they react to current traffic conditions, but can be unstable, complex and

difficult to develop.

We propose reinforcement learning as the appropriate method for traffic signal control because

it offers specific advantages compared to other solutions. First, reinforcement learning utilizes the

structure of the considered problem, observing what actions in certain states achieve reward [36].

This is in contrast to other optimization techniques, such as evolutionary methods (e.g., genetic algo-

rithms [78]), which ignore the information yielded from individual environment interactions. Second,

Q-learning is a model-free reinforcement learning algorithm, requiring no model of the environment

once it has been sufficiently trained. Contrasted with many traffic signal control optimization sys-

tems (e.g., SCOOT [28], SCATS [30], RHODES [31]) which require traffic models, or control theory

approaches [79, 80, 81] which use other models, such as backpressure, model-free reinforcement

learning makes no assumptions about the model as no model is required. This arguably makes

reinforcement learning more robust to traffic dynamics; model-based methods require their models

accurately reflect reality. As the disparity between the model and reality increases, the performance

of the system suffers. Model-free reinforcement learning is parsimonious compared to model-based

methods, requiring less information to function.

Significant research has been conducted using reinforcement learning for traffic signal control.

Early efforts were limited by simple simulations and a lack of computational power [57, 59, 82, 60].

Beginning in the early 2000’s, continuous improvements in both of these areas have created a variety

of simulation tools that are increasingly complex and realistic. Traffic microsimulators are the most

popular tool used by traffic researchers, as they model individual vehicles as distinct entities and

can reproduce real-world traffic behavior such as shockwaves. Research conducted has differed in

reinforcement learning type, state space definition, action space definition, reward definition, simu-

lator, traffic network geometry and vehicle generation model and can be separated into traditional

reinforcement learning and deep reinforcement learning. Previous traditional reinforcement learning

traffic signal control research efforts have defined the state space as an aggregate traffic statistic,

the number of queued vehicles [59, 60, 83, 84, 85] and traffic flow [63, 74] the most popular. The

action space has been defined as all available signal phases [63, 64] or restricted to green phases

only [74, 83, 84]. The most common reward definitions are functions of delay [63, 64] and queued

vehicles [74, 83, 84]. For a comprehensive review of traditional reinforcement learning traffic signal

control research, the reader is referred to [86] and [87]. Bayesian reinforcement learning has also

been demonstrated effective for adaptive traffic signal control [88, 89, 90, 65].

Deep reinforcement learning techniques were first applied to traffic signal control via the DQN in

17

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

[66]. The authors followed the example in [45] closely, defining the dimensions of the state space to

be the same dimensions as in the Atari environment, meaning only a fraction of any state observation

contained relevant information (which the authors identified and acknowledged as problematic). A

uniform distribution was used to generate vehicles into the network, which is likely too simple a

model of vehicles arriving at an intersection. Also, only green phases were modeled, meaning no

yellow change or red clearance phases were used between green phases.

Subsequent work by [68] expanded on the ideas in [66], with the inclusion of vehicle speed and

signal phases in the state observation and one second yellow change phases, Double Q-learning

and limited experiments with multiple intersections. Both authors noted that while the agent’s

performance improved with training, there were concerns with the agent’s learned policy, such as

quickly oscillating phases and the inability to develop stable, long-term policies.

Research by [67] deviated from previous work by using deep stacked autoencoders to approximate

the optimal action-value function. A disadvantage of stacked autoencoders is that each layer must

be trained individually until convergence and then stacked on top one another, as opposed to DQN,

which can be trained quicker in an end-to-end manner. The state observation was the number of

queued vehicles in each lane over the past four seconds. The authors tested their agent on an isolated

four way, two lane intersection where vehicles could not turn left or right, only travel through. This

simplified the action space to two green phases. They also mandated a minimum green time of 15

seconds and did not model any yellow change or red clearance phases. The traffic demand for each

intersection approach was [100, 2 000] veh/hr generated ‘randomly’, without detailing the specific

probability distribution.

Research referenced thus far used valued-based reinforcement learning, which estimate value

functions to develop the traffic signal control policy. Policy based methods are another type of

reinforcement learning which explicitly parameterize the policy instead of using a value function to

derive the policy. A traffic signal control policy was parameterized in [76] and [77]. Deep policy

gradient was used in [76] to control dozens of traffic signal controllers in a large traffic network

with impressive results. However, the model developed modified an existing traffic signal control

policy instead of deriving its own in a truly autonomous manner. It seems this was a concession

made so that multiple intersections could be controlled with the same agent, however it makes the

implicit assumption that the optimal policy for each intersection is the same, which is unlikely.

Regardless, the size and scope of the experiments which the agent was subjected, and its subsequent

performance, is strong evidence for further work using policy-based reinforcement learning for traffic

signal control.

18

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

2.6 Contribution

Considering the previous work as detailed, we identify the following problems and our contributions.

First, prior research has modeled the traffic signal problem with unrealistic simplifications.

Specifically, either completely omitting yellow change and red clearance phases [66, 67], or including

them for short durations [68]. Acknowledging that yellow and red phase durations can depend on

many factors (e.g., intersection geometry and traffic laws), we contend that omitting yellow and

red phases or including them for unrealistically short durations simplifies the traffic signal control

problem such that any results are questionable. If reinforcement learning methods are to provide

a solution to the traffic signal control problem, the modelling must include all relevant aspects as

would be present in practice. We contribute a realistic model of the traffic signal control problem,

with yellow and red phase durations of four seconds. Although the inclusion of these additional

signals may seem slight, it changes how the agent’s actions are implemented.

Second, we contend the only actions worth choosing by the agent are the green phases, as

these are the actions which ultimately achieve any rational traffic signal control goal (i.e., maximize

throughput, minimize delay or queue), assuming safety concerns have been satisfied. However, if

green phases are the only actions available to the agent, depending on the current phase, some

actions can not always be enacted immediately - yellow change and red clearance phases may be

necessary. For example, there exist action sequences which are unsafe to transition from immediately,

meaning the traffic signal phase can not immediately change to the agent’s chosen action for safety

reasons (i.e., the movements constituting these phases conflict). Some action sequences may require

the traffic signal to enact a yellow change phase, instructing vehicles to slow down and prepare to

stop, and then a red clearance phase, instructing vehicles to stop. Note that the agent does not

explicitly select these transition traffic phases as actions, they are implicit when selecting actions

that conflict with the previous action. Therefore, yellow change and red clearance phases are only

included between sequences of conflicting actions.

Third, prior research has generated traffic using simple [66, 68], and likely unrealistic, models

(e.g., uniform distribution vehicle generation). For reinforcement learning traffic signal control to be

a contender in practice, it must be able to control intersections at any point on the demand spectrum,

up to saturation demands. We train and test our agent under a dynamic rush hour demand scenario,

authentically modelling the challenging environment as would be present in practice.

19

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

2.7 Proposed Model

Attempting to solve the traffic signal control problem using reinforcement learning requires a formu-

lation of the problem using concepts from Markov Decision Processes, specifically, defining a state

space S, an action space A and a reward R.

2.7.1 State Space

The state observation is composed of four elements. The first two elements are aggregate statistics

of the intersection traffic - density and queue of each lane approaching the intersection. The density,

sd,l is defined in Equ. (7) and the queue, sq,l , is defined in Equ. (8):

sd,l =
|Vl|
cl

(7)

Where Vl represents the set of vehicles on lane l and cl represents the capacity of lane l.

sq,l =
|Vq,l|
cl

(8)

Where Vq,l represents the set of queued (i.e., stationary) vehicles on lane l.

The third and fourth elements encode information about the current traffic signal phase. These

elements are a one-hot vector encoding the current traffic signal phase and a real-valued scalar

encoding the time spent in the current phase. A one-hot vector is a binary valued, categorical

encoding of qualitative properties. Therefore, the state space at an intersection with L lanes and

a set of traffic phases P is formally defined as S ∈
(
RL × RL × B|P | × R

)
. At time t, the agent

observes the traffic state as st ∈ S.

Technologies over the last decade have made gathering information required for the proposed state

space possible. Video cameras [91] are becoming more common as sensor devices at intersections

and vehicles with wireless communication capabilities (i.e., Connected Vehicles [92]) are expected to

be deployed in the near future.

2.7.2 Action Space

The actions available to the agent are the green phases that the intersection traffic signal controller

can enact. Although traditionally denoted numerically with natural numbers starting at 1 (i.e.,

National Electrical Manufacturers Association (NEMA) standard), in this research, to reduce am-

biguity, we denote phases by their compass directions and movement priority. Beginning with the

four compass directions, North (N), South (S), East (E) and West (W) and combining the parallel

20

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Table 2: Traffic Signal Phase Information

Turning Movements

Action NEMA Phases Compass Directions Left Through Right

NSG 2, 6 North, South Permissive Protected Permissive

NSLG 1, 5 North, South Protected Prohibited Permissive

EWG 4, 8 East, West Permissive Protected Permissive

EWLG 3, 7 East, West Protected Prohibited Permissive

Table 3: Traffic Signal Phase Action Transitions

Selected Action at

NSG EWG NSLG EWLG

Current Traffic Signal Phase

NSG - {NSY, R} {NSLY} {NSY, R}

EWG {EWY, R} - {EWY, R} {EWLY}

NSLG - {NSY, R} - {NSY, R}

EWLG {EWY, R} - {EWY. R} -

directions, along with the two different lane movements which allow vehicles to traverse the inter-

section, through green (G) and advanced left green (LG), the four possible actions are North-South

Green (NSG), East-West Green (EWG), North-South Advance Left Green (NSLG) and East-West

Advance Left Green (EWLG). For any of the action phases, all other compass direction traffic move-

ments are prohibited (i.e., East-West Green phase imply all North-South signals are red), except

for right turns, which are permissive (i.e., right on red). Formally the set of all possible actions A

is defined as A = {NSG, EWG, NSLG, EWLG}, with additional information available in Table 2.

Therefore, at time t, the agent chooses an action at, where at ∈ A.

However, when an agent chooses an action, it may not be immediately enacted. To ensure safe

control of the intersection, additional phases may precede the chosen action. Instead of immediately

transitioning from the current traffic signal phase to the selected action, a sequence of yellow change

and red clearance phases may be required, dependent on the current phase and chosen action. All

possible action transition sequences to transition from the current traffic phase to the chosen action

phase are shown in Table 3. Note the addition of the North-South Yellow (NSY), East-West Yellow

(EWY), North-South Advance Left Yellow (NSLY), East-West Advance Left Yellow (EWLY) change

and red clearance (R) phases, which cannot be chosen explicitly as actions, but are part of some

phase transition sequences. The set of all traffic signal phases, actions and transition phases, is

defined as P = {NSG, EWG, NSLG, EWLG, NSY, EWY, NSLY, EWLY, R}.

21

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

2.7.3 Reward

The final element of reinforcement learning, after the agent has observed the state of the environment

st, chosen an action at, and performed it, is receiving the reward rt. Reward is one element that

differentiates reinforcement learning from other types of machine learning; the agent seeks to develop

a policy which maximizes the sum of future discounted rewards. Compared to supervised learning, in

which correct actions are given by instruction, reinforcement learning has the agent evaluate actions

by interacting with the environment and receiving reward.

In the context of traffic signal control, various rewards have been successfully used. Examples

of rewards used are functions based on queue, delay and throughput [86], however there is yet no

consensus on which is best.

We define the reward rt as a function of the number of queued vehicles (9).

rt = −(|V tq |2) (9)

Where V tq is the set of queued vehicles at the intersection at time t. The number of queued

vehicles is squared to increasingly penalize actions that lead to longer queues. Since reinforcement

learning agents seek to maximize reward, the negative number of queued vehicles squared is used,

rewarding the agent for minimizing the number of queued vehicles.

2.7.4 Agent

In reinforcement learning, the agent is the entity that learns by interacting with the environment.

There is a single agent governing the traffic signal controller, exclusively responsible for selecting

the next green traffic phase from the set of possible green phases A. We model the agent control-

ling the traffic signals similar to a DQN [45]. A DQN is a deep artificial neural network trained

using Q-learning, a valued-based reinforcement learning algorithm. Artificial neural networks are

mathematical functions inspired by biological neural networks (i.e., brains) that are appealing for

their function approximation capabilities. Many problems in machine learning can suffer from the

“curse of dimensionality”, which is when the dimensionality of the data increases, the training and

computational resources required grow exponentially. Artificial neural networks have the capability

to generalize from what they have learned, weakening the problems posed by the curse of dimen-

sionality.

Artificial neural networks are defined by their architecture and weight parameters θ. Typically,

neural networks are composed of at least one hidden layer of computational neurons. Additional

hidden layers in a network allow it to develop high level representations of its input data through

22

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

multiple layers of function composition, potentially increasing performance. The nQN-TSC is im-

plemented as a two hidden layer artificial neural network. The input to the nQN-TSC is the state

observation st outlined in 2.7.1. The two hidden layers are fully connected with 42 neurons and

are each followed by rectified linear activation units (ReLu). The output layer is composed of four

neurons with linear activation units, each representing the action-value of a different action (i.e.,

green phase).

The optimal policy π∗ is achieved by using the neural network to approximate the optimal

action-value function by changing the parameters θ through training. The action-value function

maps states to action utilities (i.e., what is the value of each action from a given state). Values

represent long-term reward. If an action has a high value (and is accurately estimated), enacting it

means reaping future reward. Choosing actions with the highest value will yield the optimal policy.

The specific reinforcement learning algorithm used in this research is asynchronous n-step Q-

learning [46], a variant of DQN [45]. Asynchronous n-step Q-learning differs from DQN in two

fundamental ways. First, instead of a single agent interacting with a single environment, the al-

gorithm leverages modern multi-core computer processors to simulate multiple agent-environment

pairs in parallel, each agent-environment pair on a CPU thread maintaining their own local pa-

rameters θ′. The agents collect parameter updates dθ, using their local parameter set θ′, that are

used to asynchronously update a global parameter set θ. Each agent periodically copies the global

parameter set to its local parameter set every I actions. Utilizing multiple agents improves learn-

ing, as each agent is likely experiencing different environment states, taking different actions, and

receiving different rewards. Second, instead of updating the parameters θ after each action, the

agent executes n actions and uses data from all n actions to improve reward (and value) estimates.

The asynchronous n-step Q-learning algorithm pseudo code is presented in Algorithm 1 and the

model hyperparameters are presented in Table 4. Note the inclusion of reward normalization by the

maximum reward rmax experienced thus far across all agents.

The RMSProp [93] optimization algorithm is used to train the network with an initial learning

rate α of 0.001.

The agent employs an action repeat of 10 for improved stability (i.e., actions/green phases have

a duration of 10 seconds). Yellow change and red clearance phases have a duration of four seconds.

If at least one vehicle is on an incoming lane to the intersection, the agent must select an action.

However, if no vehicles are present on incoming lanes, this is considered the terminal state sterminal,

the agent does not select an action and the traffic phase defaults to the red clearance (R) phase.

To select actions during training, we implement the simple, yet effective, ε-greedy exploration

policy, which selects a random action (explore) with a probability ε and selects the action with

23

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

the highest value (exploit) with a probability 1-ε. The value of ε decreases as training progresses

according to (10).

εm = 1.0− m

M
(10)

Where m is the current number of completed actions and M is the total number of actions. Initially,

m = 0, meaning the agent exclusively explores, however, as training progresses, the agent increasingly

exploits what it has learned, until it exclusively exploits.

2.8 Experimental Setup and Training

All experiments were conducted using the traffic microsimulator SUMO v0.29 [4]. SUMO provides a

Python application programming interface (API), by which custom functionality can be implemented

in the traffic simulation. We used the SUMO Python API and custom code to implement all

experiment code. The nQN-TSC was implemented using Tensorflow v1.2.1 [94] with additional code

from [95]. Additional optimized functionality was provided by NumPy and SciPy libraries [96]. The

simulations were executed using eight parallel agents on a desktop computer with an i7−6700 CPU,

16 GB of RAM running Ubuntu 16. To train the nQN-TSC for M = 1.5 × 106 actions requires

approximately 6 hours of wall time.

The intersection geometry is four lanes approaching the intersection from every compass direc-

tions (i.e., North, South, East and West) connected to four outgoing lanes from the intersection.

The traffic movements for each approach are as follows: the inner lane is left turn only, the two

middle lanes are through lanes and the outer lane is through and right turning. All lanes are 300

meters in length, from the vehicle origin to the intersection stop line. The state observations are

derived from the stop bar to 150 meters away from the intersection (i.e., only vehicles 150 meters or

closer to the intersection are considered in the state). A visual representation can be seen in Fig 6.

24

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Figure 6: Simulation model of intersection, arrows represent lane movements.

Observe traffic state st from
traffic sensors

Number of vehicles > 0
at intersection

Next phase = argmaxa Q(st, a;)Next phase = red clearance

YesNo

Implement any necessary yellow,
red phases, then next phase

Begin

Figure 7: Block diagram describing main steps for real world deployment. The neural network

Q(st, a; θ) is first developed in simulation and then used to determine the next phase using traffic

sensor data.

25

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Algorithm 1: nQN-TSC Parallel Training pseudo code

m← 0, Initialize θ, θ
′

While m < M

t← 0, Generate vehicle demands

While t < T

Reset parameter gradients dθ ← 0

Set thread parameters to global θ′ = θ

tstart = t

Observe state st

While st 6= sterminal and t− tstart 6= tmax

If Unif(0, 1.0) > εm

at = argmaxaQ(st, a; θ
′)

Else

at = Unif(A)

Receive reward rt and observe new state st+1

If rt > rmax

rmax = rt

rt =
rt

rmax

st = st+1

t← t+ 1

m← m+ 1

If m modI == 0

θ′ ← θ

If st == sterminal

G = 0

Else

G = max
a

Q(st, a; θ
′)

For i ∈ {t− 1, t− 2, ..., tstart}

G← ri + γG

Collect gradients dθ ← dθ + ∂(G−Q(st,a;θ
′))2

∂θ′

Asynchronously update θ with dθ

For training the nQN-TSC, we subject it to different traffic simulations. We seek to model the

dynamic nature of traffic at an intersection, which changes over time. Therefore, we model a rush

hour or peak traffic demand scenario. Initially, the traffic demand is at a minimum, then it begins

26

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Table 4: Model Hyperparameters

Variable Parameter Value

|st| State Cardinality 42

cl Lane Capacity 20 veh

T Traffic Simulation Length 7200 s

tmax Max Experience Sequence/n-step 4

M Total Training Actions 1.5× 106

I Update Interval 7500

γ Discount Factor 0.99

increasing until it reaches a maximum, where it remains for an hour, after which it begins decreasing

and then returns to a constant minimum. This training procedure is devised to create a dynamic

training environment. We seek to make solving the traffic signal control problem in simulation as

challenging as would be faced in practice - dynamic and stochastic. To ensure these qualities, we

randomly translate the traffic demand in time at the beginning of each training simulation, displayed

in Figure 8. The demands are translated to vary training and to ensure the agent doesn’t overfit

the training data. Vehicles are generated using a negative exponential distribution, where the rate

parameter λ is used to sample from a normal distributionN (λ, λ10) to stochastically generate vehicles.

This procedure is used to ensure training simulations are similar but not the same, exposing the

agent to a diversity of traffic states. Training is completed after the agent has executed M = 1.5×106

actions. A block diagram describing the use of the proposed model after training is displayed in

Figure 7.

Vehicles are generated into the network from each compass direction with uniform probability.

Vehicle routing is proportional to turning movement capacity. Vehicles are randomly assigned a

route with a probability proportional to the route’s lane capacity (i.e., through movements are more

likely than turning movements as there are more lanes from which through movements are possible).

Given the lane movements defined earlier in the section, The probability a vehicle assigned a through

movement is 3
5 and 1

5 each for left and right turning movements.

2.9 Results and Discussion

To evaluate the performance of the nQN-TSC after training, untranslated rush hour demands are

used and its performance is compared against three other TSC methods; Random, Actuated and

Linear Q-learning.

The Random TSC method enacts each action with a uniform probability (i.e., π(st)Rand =

27

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

0 1000 2000 3000 4000 5000 6000 7000
0

1000

2000

3000

4000

5000

6000

7000 Translated Training Demand

0 1000 2000 3000 4000 5000 6000 7000

Translated Training Demand

0 1000 2000 3000 4000 5000 6000 7000
0

1000

2000

3000

4000

5000

6000

7000Testing Demand

N(λ(t),
λ(t)

10
)

λ(t)

Rush Hour Demand

Time (s)

 Vehicle
Demand
(veh/hr)

 Vehicle
Demand
(veh/hr)

Figure 8: Examples of randomly generated simulation rush hour traffic demand. The demands are

randomly translated in time for use during training while the untranslated rush hour demand is used

during testing.

28

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Unif(A)). A random action policy is extremely naive with respect to optimality, however, it provides

a baseline from which to compare the progress of nQN-TSC.

The actuated method is a fixed phase sequence, dynamic phase duration TSC. Sensors are used to

modify the green phase durations, making this method adaptive. Each green phase has a minimum

duration (10 seconds), after which a timer begins decrementing from a gap-out time (5 seconds).

If a vehicle is sensed in a green phase lane (i.e., the lane currently has a permissive or protected

movement given the current phase) while the timer is decrementing, the timer is reset and the

current phase is temporarily extended. Only a finite number of extensions can occur, limited by a

maximum extension time (40 seconds). The sensors modeled in simulation are loop detectors (one

per lane, 50 meters from the stop line), which trigger when a vehicle traverses them.

The Linear Q-learning method is similar to the proposed nQN-TSC, selecting the next phase in

an ad-hoc manner, except that it uses a linear combination of features instead of a neural network

for function approximation. A linear combination of features function approximator can be thought

of as a neural network without hidden layers and activation functions. Each action has its own

value function, as a linear combination of features can not approximate all action-values simultane-

ously. The features used by Linear Q-learning are the same as the input layer to the nQN-TSC, a

combination of the lane queue, density and phase information. The Linear Q-learning method does

not use asynchronous learning (i.e., only one actor and one environment) or n-step returns, instead

computing the traditional action-value target update (i.e., 1-step return). Gradient descent is used

to train the Linear Q-learning action-value functions using the same model hyperparameters as the

nQN-TSC. To train the Linear Q-learning method requires approximately 24 hours of wall time.

Total vehicle delay D (11) and throughput F (12) traffic data are collected for comparing TSC

methods.

D =

T∑
t=0

∑
v∈V t

arrive

dv (11)

Where T is the total number of simulation steps, V tarrive is the set of vehicles at time t that arrive

at their destination (i.e., are removed from the simulation) and dv is the delay experienced by vehicle

v.

F =

T∑
t=0

|V tarrive| (12)

Where V tarrive is the set of vehicles at time t that arrive at their destination (i.e., are removed

from the simulation) and T is the total number of simulation steps.

To estimate relevant statistics, each TSC method is subjected to 100 two hour simulations at

testing rush hour demands. Results from the testing scenarios are shown in Table 5 and Figure 9,

29

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

0 1000 2000 3000 4000 5000 6000 7000
0.0

0.5

1.0

1.5

2.0

2.5

Throughput
(veh/s)

0 1000 2000 3000 4000 5000 6000 7000
Time (s)

0

5000

10000

15000

20000

Delay (s)

Random
Actuated
Linear
nQN-TSC

Rush Hour Testing Results I

Figure 9: Performance of TSC methods under 100, two hour rush hour simulations. Lines represent

the mean and the shaded area is the 99% confidence interval. Note that the throughput is influenced

by the traffic demand. Traffic demand begins low, increases to a maximum, remains constant, and

then decreases at the end of the testing scenario.

10 and 11.

As expected, the Random TSC achieves the worst performance, with the lowest throughput and

highest delay.

Comparing the Actuated, Linear and nQN-TSC, there is no significant difference in throughput,

however the nQN-TSC achieves the lowest delay. Interestingly, Linear Q-learning produces higher

delay than the Actuated TSC. This is likely evidence that the use of a linear combination of feature

as a function approximator has insufficient capacity to model the action-value function for the

traffic signal control problem. Although the nQN-TSC and Linear Q-learning methods share many

hyperparameters, the additional layers and non-linear transformations of the neural network seem to

allow it to more accurately estimate the optimal action-value function, leading to better performance.

We find it interesting that the same number of vehicles are traversing the intersection during the

rush hour under the Actuated, Linear and nQN-TSC, but there are significant differences in delay.

We conjecture there is a strong correlation between vehicle queues and delay, and since the nQN-

30

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Random Actuated Linear nQN-TSC
TSC Type

6000

6200

6400

6600

6800

Total
Throughput
(veh/sim)

Random Actuated Linear nQN-TSC
TSC Type

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Total
Delay
(s/sim)

×108

Rush Hour Testing Results II

Figure 10: Total throughput and delay for individual simulation runs. Coloured rectangles represent

the range between the first and third quartiles, solid white line inside the rectangle represents the

median, dashed coloured lines represent 1.5 x interquartile range, coloured dots represent outliers.

31

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

TSC seeks to minimize the queue, it is also minimizes vehicle delay, as queued vehicles are delayed

vehicles (i.e., both are stationary). The performance disparity can be attributed to the flexibility

the nQN-TSC has in selecting the next green phase. The nQN-TSC does not need to adhere to

a particular phase cycle, it operates acyclically. Every action (i.e., green phase) chosen is in an

attempt to maximize reward. The Actuated TSC does not exhibit such goal-oriented behaviour,

instead executing primitive logic that produces inferior performance compared to the nQN-TSC.

Granted, the Actuated TSC does not have the benefit of training like the nQN-TSC, but its design

precludes it from being of any benefit even if it was available. The information contained in the

nQN-TSC’s state representation is also much higher compared to the Actuated TSC, improving

its action selection. The Actuated TSC’s state representation is a bit for every lane and this low-

resolution state likely aliases many different traffic states. These results provide evidence to support

that adaptive traffic signal control can be accomplished with reinforcement learning and function

approximation.

We also present individual vehicle delay results for each lane/turning movement in Figure 11.

We observe that although in aggregate the nQN-TSC achieves the lowest total delay results, this

observation doesn’t exist for all lanes. For the through and right lanes, the nQN-TSC exhibits the

lowest median delay, quartiles and outliers compared to the other TSC methods. However, observing

the left lane delay, the Actuated method achieves lower delay than the nQN-TSC, specifically in

regards to outliers, as the nQN-TSC has significant outliers which indicate some left turning vehicles

have to wait a disproportionate amount of time to turn left compared to other vehicles. This

result can be understood by considering the reward function, which seeks to minimize the squared

number of queued vehicles. The intersection geometry used in this research has, in any single

compass direction, three incoming lanes which allow through movements while only one lane for

left turn movements. The nQN-TSC has discovered that selecting the actions/phases which give

protected green signals to through movements (i.e., NSG and EWG) yield the highest reward. The

nQN-TSC learns to favour these actions over the exclusive left turning actions/phases (i.e., NSLG,

EWLG), because they yield less reward from having fewer queued vehicles potentially traversing the

intersection when selected.

The nQN-TSC’s behaviour is contrasted with the Actuated method, which implements a cycle

and reliably enacts exclusive left turning phases, yielding lower delays for vehicles in left turning

lanes. This is an example of a reinforcement learning agent developing a policy which seems optimal

with respect to the reward, but with undesirable, unintended consequences. This behaviour could

be corrected with a different reward function for the nQN-TSC, but perhaps at the expense of its

desirable performance in the other metrics (e.g., total delay, through lane delay, right lane delay).

32

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Random Actuated Linear nQN-TSC
TSC Type

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

Delay (s)

Left

Random Actuated Linear nQN-TSC
TSC Type

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

Through

Random Actuated Linear nQN-TSC
TSC Type

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

Right
Individual Vehicle Lane Delay

Figure 11: Individual vehicle delay by intersection lane movement and TSC type. Coloured rectan-

gles represent the range between the first and third quartiles, solid white line inside the rectangle

represents the median, dashed coloured lines represent 1.5 x interquartile range, coloured dots rep-

resent outliers. Performance of TSC methods under 100, two hour rush hour simulations.

This is an interesting result that we have not observed discussed in the TSC reinforcement learning

literature and should be the focus of future research.

2.10 Conclusion and Future Work

We modeled an n-step Q-network traffic signal controller (nQN-TSC) trained to control phases at

a traffic intersection to minimize vehicle queues. Compared to a loop detector Actuated TSC in

a stochastic rush hour demand scenario, the modeled nQN-TSC achieve superior performance by

reducing average total vehicle delay by 40%. This research provides evidence that valued-based

reinforcement learning methods with function approximation can provide improved performance

compared to established traffic signal control methods in stochastic environments, such as rush hour

demands.

Beyond this research, many areas of future work are available. The function approximator

used in this research was simple (i.e., two fully connected hidden layer neural network) compared

33

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Table 5: Traffic Signal Control Rush Hour Results

(µ̂, σ̂)

Traffic Signal Control Method Total Throughput (veh/sim) Total Delay (s/sim)

Random (6 508, 151) (81× 106, 20× 106)

Actuated (6 594, 95) (7.8× 106, 0.7× 106)

Linear (6 618, 91) (20× 106, 9.1× 106)

nQN-TSC (6 609, 93) (3.0× 106, 0.8× 106)

to research in other domains; using convolutional or recurrent layers in the neural network will

likely yield additional performance improvements. Future work can also investigate policy or actor-

critic reinforcement learning algorithms, different state representations, pedestrians and multiple

intersections. These ideas will be explored in future endeavors by the authors.

34

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

3 Policy-based Adaptive Traffic Signal Control

3.1 Introduction

Although n-step Q-learning was successfully used to develop an adaptive traffic signal controller

in the previous chapter, reinforcement learning algorithms which directly develop a policy have

demonstrated superior performance in other domains. This chapter extends the work from the

previous chapter by developing an acyclic adaptive traffic signal controller using the asynchronous

advantage actor-critic (A3C) algorithm. Policy-based reinforcement learning methods exhibit certain

advantages over value-based methods (i.e., Q-learning), such as the ability to develop stochastic

policies. The A3C adaptive traffic signal controller is compared against the asynchronous n-step Q-

learning controller developed in the previous chapter and conventional traffic signal control methods.

Although trained on an isolated intersection, all controllers are evaluated on a multi-intersection

simulation network. The A3C controller demonstrates the best performance in a multi-intersection

network despite independent training and execution. The learned policies of the various controllers

are analyzed to understand the difference in performance. The submitted manuscript included in

this chapter is:

W. Genders and S. Razavi, “Policy analysis of reinforcement learning adaptive traffic signal

control,” ASCE Journal of Computing in Civil Engineering, 2018. 4th round of revisions, CPENG-

2667R4

The co-author’s contributions to the above work include:

• Financial and technical supervision of the study presented in this work.

• Manuscript editing.

35

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

3.2 Policy Analysis of Reinforcement Learning Adaptive Traffic Signal

Control

3.3 Abstract

Previous research studies have successfully developed adaptive traffic signal controllers using rein-

forcement learning; however, few have focused on analyzing what specifically reinforcement learning

does differently than other traffic signal control methods. This research proposes and develops

two reinforcement learning adaptive traffic signal controllers, analyzes their learned policies and

compares them to a Webster’s controller. The asynchronous Q-learning and advantage actor-critic

adaptive algorithms are used to develop reinforcement learning traffic signal controllers using neural

network function approximation with two action spaces. Using an aggregate statistic state represen-

tation (i.e., vehicle queue and density), the proposed reinforcement learning traffic signal controllers

develop the optimal policy in a dynamic, stochastic traffic microsimulation. Results show that the

reinforcement learning controllers increases lost time but ultimately achieve superior performance

compared to the Webster’s controller, reducing mean queues, stopped time and travel time. The

reinforcement learning controllers exhibit goal-oriented behaviour, developing a policy which which

excludes many phases found in a tradition phase cycle (i.e., protected turning movements) instead

choosing phases which maximize reward, as opposed to the Webster’s controller, which is constrained

by cyclical logic that diminishes performance.

3.4 Introduction

Researchers have long noted reinforcement learning’s (RL) suitability as a solution for traffic signal

control (TSC), producing an abundance of literature [86, 87, 97]. However, insufficient attention

has been given to determining what RL TSC does differently than traditional TSC (e.g, pre-timed,

Webster’s, loop-detector Actuated). Ample research exists attesting to the success and benefits of

RL TSC, however the question of what a TSC trained using RL is doing differently has largely been

ignored. The answer to this question is important, as it can aid researchers’ in comprehending RL’s

strengths and weaknesses in the domain of TSC, highlighting future areas of inquiry. The authors’

investigate this issue by modelling an authentically challenging traffic simulation scenario and ob-

serving the behaviour of the RL TSC. This research models two adaptive TSC using asynchronous

RL algorithms, asynchronous Q-learning (AQ) and asynchronous advantage actor-critic (A3C) [46],

analyzes their learned behaviours and compares them to a Webster’s TSC.

36

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

3.5 Literature Review

Traffic signal controllers can be broadly classified into pre-timed and adaptive. Pre-timed methods do

not consider the current state of traffic at the intersection, exhibiting fixed phase and cycle durations

that repeat the same phase sequence. The de facto pre-timed TSC method is Webster’s method [72],

which relies on recurring traffic demand often estimated from historical data. Adaptive methods

come in many varieties, however they all use sensor data to dynamically control the intersection.

Adaptive traffic signal controllers can dynamically change the cycle duration, phase duration or

phase sequence to improve safety and mobility. Pre-timed methods are predictable, stable and

simple to develop, yet may not be optimal, while adaptive methods strive for optimality at the cost

of being more complex, potentially unstable and expensive.

Early RL TSC research used simple simulations but offered evidence that RL could be a con-

tending solution for TSC [57, 59, 82, 60]. Improved simulation tools have allowed RL TSC to be

applied to large simulations with impressive results [64, 84, 98, 99, 100]. Recently, value-based deep

RL methods have been proposed by various authors with varying degrees of success [66, 68, 67, 69].

Extensive reviews of RL TSC have been developed comprehensively outlining previous research

[86, 87, 97].

The majority of past RL TSC research have used value-based methods, such as Q-Learning [38].

Policy-based RL has been investigated less for TSC, with the few instances described below.

Some of the earliest policy-based TSC work was completed using the natural actor-critic algo-

rithm [101, 102]. The authors modelled the TSC problem as a partially observable Markov decision

process. Their proposed traffic signal controller selected the next phase ever 5 timesteps in an at-

tempt to maximize vehicle throughput. They compared their two policy-based methods against uni-

form pre-timed and non-RL adaptive traffic signal controllers, in which their proposed policy-based

methods reduced travel times in a variety of traffic scenarios. However, as the authors acknowledge,

the traffic simulator emphasized simulator speed instead of realism, which they recommended should

be addressed in future work.

A radial basis artificial neural network was used to model a fuzzy actor-critic traffic signal con-

troller [103]. The authors’ modelled an isolated intersection (2 lanes per direction) and showed their

fuzzy actor-critic traffic signal controller performed better than a pre-timed traffic signal controller.

Other research has developed both policy and value-based methods for TSC [75]. The authors’

proposed algorithms attempted to minimize a long-run average cost function which is a function of

queue lengths and vehicle waiting times. They test their proposed traffic signal controllers on a few

network configurations and report that the policy gradient actor-critic algorithm achieves the best

37

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

performance.

The asynchronous advantage actor-critic algorithm was used to train a traffic signal controller

given a simulated image snapshot of the intersection [77]. Their proposed method was able to

improve its policy over time, however the network geometry (1 lane each direction) and vehicle

generation method (uniform distribution) were simplified compared to reality.

Deep deterministic actor-critic policy gradient methods were used to to develop a signal controller

specifically for controlling large-scale traffic networks (i.e., many traffic signal controllers) [76]. This

research focused on practical implementation and assumed data available from loop detectors as

input for deriving the state observation. The actions were constrained to scaling the phase durations

in a fixed cycle, instead of dynamically deriving the phase sequence, to ensure coordination between

intersections was maintained. The author also proposed a disaggregated reward instead of a single

scalar reward, which they claim is the first of its kind in RL. Their method achieves superior

performance on a simulation of a large urban area with dozens of intersections compared against a

multi-agent Q-learning traffic signal controller and random timings.

3.6 Reinforcement Learning

Controlling traffic signals at an intersection can be modelled as a sequential decision-making problem.

Reinforcement learning is a type of machine learning that can develop solutions to sequential decision-

making problems. A RL agent learns how to act in an environment to maximize a numerical reward

signal [36], representing success at achieving a desired goal. At time t, the agent observes the

environment state st ∈ S and then chooses an action at ∈ A conditioned on st. After taking action,

the agent receives feedback in the form of numerical reward rt. The agent seeks to develop a policy

π mapping from states to actions a = π(s). The agent’s ultimate goal is to develop an optimal

policy π∗ which maximizes cumulative discounted future rewards, known as the return Gt, defined

in Equation 13.

Gt =

∞∑
k=0

γkrt+k (13)

Where γ ∈ (0, 1] is the discount factor, which influences how the reward k state-action transitions

after t contributes to the return.

Q-learning is a value-based RL method which develops an action-value function defined by pa-

rameters θ, defined in Equation 14. An action-value function can be used to estimate the expected

return starting from a given state s and taking action a and following policy π thereafter.

38

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Qπ(s, a; θ) = E[Gt|st = s, at = a; θ] (14)

To implement the optimal policy using Q-learning, the action-value function is used by selecting

the action in the current state with the highest value, defined in Equation 15.

π∗(s) = argmaxaQ(s, a; θ) (15)

Policy-based RL methods attempt to directly approximate the optimal policy π∗(a|s) ≈ π(a|s; θ)

with a set of parameters θ [40]. Directly developing the policy has advantages compared to value-

based RL methods, such as the ability to develop stochastic policies, shown in Equation 16.

π(a|s; θ) = Pr[at = a|st = s; θ] (16)

Actor-critic RL methods represent both a value and policy function, estimating a value function

to update the policy function [36, 104]. A parameterized state value function can be used to estimate

the expected return starting from a given state s and following a policy π, defined in Equation 17.

V π(s; θ) = E[Gt|st = s; θ] (17)

3.7 Model

This section describes the traffic simulation and TSC elements in the framework of RL.

3.7.1 Traffic Simulation

To train the RL TSC agent, a microscopic traffic simulator is used as the environment. The traffic

simulation is dichotomized into network geometry and vehicle dynamics.

The network geometry modelled is an isolated intersection with four origin destination zones.

Vehicles are generated into the network from an origin zone and exit the simulation from a destination

zone. Each zone is denoted with one of the four compass directions, North (N), South (S), East

(E) and West (W), forming the set C ={N, E, S, W}. The intersection is composed of eight roads

of length 300 m, four incoming roads from each of the origin zones to the intersection, and four

outgoing roads from the intersection to each of the destination zones. Each road is composed of

5 lanes with each lane allowing different vehicle movements at the intersection. The rightmost

lane allows through and right turning movements, the middle two lanes allow through movements

and the two leftmost lane allow left turning movements. Incoming lanes are denoted with an l

and subscript consisting of a compass direction and integer from [0, 4]. The compass direction

39

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

NSG EWG

NSGL EWGL SG

NG

WG

EG

E

Figure 12: Actions available to RL TSC. The four action set is A4 = {NSG, EWG, NSGL, EWGL}

and the eight action set is A8 = {NSG, EWG, NSGL, EWGL, NG, SG, EG, WG}. For each action,

solid green arrows indicate protected movements and white arrows indicate permissive movements.

indicates the incoming direction of the lane and the integer indicates its position starting from the

rightmost lane. For example, lE,4 is the incoming East, leftmost turning lane. The set of all incoming

intersection lanes is L = {lc,i|c ∈ C, i ∈ [0, 1, ..., 4]}.

The vehicle demand is modelled as a Poisson point process. An exponential distribution models

the time between vehicle generation events and is controlled by a dynamic rate parameters λ(t).

The function defining the rate parameter is different depending on whether training or testing the

RL TSC agents. Further details are provided in the Appendix and Figure 14.

3.7.2 Traffic Signal Control

The TSC dictates how vehicles traverse the intersection. A phase is a tuple of traffic signals which

indicate movement priority, one for each movement at the intersection. The intersection is con-

trolled by selecting sequences of phases that ensure conflicting movements are not given priority

simultaneously. This is accomplished by inserting yellow change and red clearance phases between

conflicting phase sequences. In this research, phases are denoted by a pair of compass directions and

the movement priority signal. For example, the phase that gives protected movements to NS and

SN through movements is North-South Green (NSG). The NSG phase also makes left turning move-

ments permissive (i.e., routes NE and SW). The compass directions not represented in a phase have

40

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Figure 13: Model training and test architecture for 2 asynchronous agents.

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0

2

4

6

8

10

Demand
(veh/s)

Sample Training Episode Demands

sin(6) + 1.0
(ftrain(t), ftrain(t)

10)

(ftrain(t), ftrain(t)
10)

(ftrain(t), ftrain(t)
10)

0 1000 2000 3000 4000 5000 6000 7000
Time (s)

0

1

2

3

4

5

Sample Testing Episode Demands

Figure 14: To generate vehicles into the network an exponential distribution is used to create

random samples representing times between vehicle generation events. Different functions are used

for modelling the rate parameter λ(t) of the exponential distribution during testing and training.

41

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

implied red signals (i.e., NSG means all East and West movements are red). However, right turning

movements are always permissive, regardless of the phase. Phases with an L indicate protected left

turning movements and prohibited through movements. The red clearance phase (R) prohibits all

through and left turning movements.

3.7.3 State

The TSC agent interacts with the environment in discrete timesteps - one timestep represents one

second in simulation. At timestep t, the agent first observes the state of the environment st. The state

observation in this research is an aggregate statistic of each lane - normalized density and normalized

queue. First, an observable distance d is chosen which extends away from the intersection stopline.

This distance bounds the agent’s state observation and in practice would be the maximum range of

the intersection sensors. The jam density c of each lane is then determined given two parameters,

the average vehicle length lv and average stopped vehicle headway h. The jam density of any lane

is then c = d
lv+h

. Assume Vl represents the set of vehicles on lane l and Vl,q represents the set of

queued vehicles on lane l, then each lane’s state is represented by two real-valued scalars, |Vl|
c and

|Vl,q|
c . The state observation also includes the current traffic phase encoded as a one hot vector. If

the intersection has m incoming lanes, then the agent observes a state st ∈ R(2m+|A|+1).

The authors’ acknowledge that the chosen state representation would require specialized sensors

to observe in practice, however, a variety of existing technologies are capable (e.g., video cameras,

radar, wirelessly connected vehicles).

3.7.4 Action

After observing the state of the environment st, the agent selects an action at. The actions available

to the agent are the green phases. The authors model two action sets, illustrated in Figure 12,

to determine if greater action diversity affects RL TSC performance. The first set A4 consists of

through movements and protected left turning movements and the second, larger action set A8

contains the first set with additional protected movements for each compass direction. All necessary

yellow and red phases are inserted between sequences of conflicting actions/green phases. The action

set is constrained exclusively to green phases as these are the only phases the agent has to learn

meaningful policies about. Whenever the agent chooses a green phase as the next action, it is enacted

for 15 s. After 15 s has elapsed, the agent observes a new state and selects a new action.

A 15 s green phase duration is selected for two reasons. First, it is sufficiently long as recom-

mended by municipalities [105] for stability to prevent quick phase oscillation. Second, it satisfies the

constraint, though not modelled in this research, for pedestrian crossing time given the intersection

42

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Table 6: Traffic Signal Phase Information

Turning Movements

Action NEMA Phases Compass Directions Left Through Right

NSG 2, 6 North, South Permissive Protected Permissive

NSGL 1, 5 North, South Protected Prohibited Permissive

EWG 4, 8 East, West Permissive Protected Permissive

EWGL 3, 7 East, West Protected Prohibited Permissive

NG 2, 5 North Protected Protected Permissive

SG 1, 6 South Protected Protected Permissive

EG 4, 7 East Protected Protected Permissive

WG 3, 8 West Protected Protected Permissive

geometry modelled. Any TSC method, RL or otherwise, must have phase durations sufficient in

duration to allow pedestrians to safely traverse the intersection. Assuming an average pedestrian

walking speed of 1.5 m/s, and considering the modelled intersection has five parallel lanes in an di-

rection, each 3.2 m wide, pedestrians require a minimum of 11 s to safely cross to the road median.

For an increased safety factor, this research selected a green phase action duration of 15 s, above

the minimum required 11 s.

There are no additional constraints on the RL TSC’s action selection. The RL TSCs do not

follow a cycle with structured phase sequences or have maximum green times. The RL TSCs are

given as much action autonomy as possible while still prioritizing safety. The RL TSC policy can

be considered ad-hoc; it observes the current state st and then selects an action (i.e., phase at ∈ A).

Any policy developed by the agent can be represented using a ring-barrier structure and Na-

tional Electrical Manufacturers Association (NEMA) phasing. Additional traffic phase information

is shown in Table 6.

3.7.5 Reward

After observing state st and taking action at, the agent receives feedback in the form of a scalar

reward rt ∈ R. Many reward functions exist for RL TSC (e.g., functions of queue, flow, delay). In

this research, the reward is the negative square of queued vehicles, defined in Equation 18:

rt = −(|Vt,Q|2) (18)

Where Vt,Q represents the number of queued vehicles on incoming lanes at time t. The maximum

43

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

achievable reward in single step is 0, because rt ≤ 0 (i.e., punishments unless no vehicles queued).

The square number of queued vehicles is used to increasingly punish long queues.

3.7.6 Agent

In RL, the agent is the entity which implements and improves the policy through interaction with

the environment. In this research, the agent is an artificial neural network. The artificial neural

network with parameters θ represents the action-value function Q(s, a; θ) for AQ and both the policy

π(a|s; θ) and state value function V (s; θ) for A3C. An artificial neural network is chosen because of its

flexible function approximation capabilities. According to the Universal Approximation Theorem,

feed forward neural networks can be trained to represent a wide variety of functions [106]. Because

the state is real-valued, st ∈ RN, tabular methods are infeasible. Function approximators, such as

artificial neural networks, are useful when tabular methods fail.

The architecture of the artificial neural network is first the state st is input to a fully connected

hidden layer of |st| neurons with rectified linear unit (ReLu) activation functions, followed by another

fully connected hidden layer of |st| neurons with ReLu activation functions. Both AQ and A3C

have the same aforementioned neural network architecture, but differing final layers. The AQ’s

final output layer is |A| neurons with linear activation functions. The A3C’s final output layer is

modified depending on whether using the state value function or the policy. The state value function

final layer is a single neuron with a linear activation function. The policy function final layer is |A|

neurons with softmax activation functions. Constructed in this way, where the final layer is modified

depending on whether the state value or policy function is desired, the A3C’s parameters are shared,

allowing for efficient training.

Each RL TSC method is combined with an action set to yield four RL TSC agents, AQ-4, AQ-8,

A3C-4 and A3C-8. The AQ-4 and A3C-4 agents select actions from A4 and AQ-8 and A3C-8 agents

select actions from A8. Additional information for each RL TSC method is detailed in the Appendix.

3.8 Experiments

The traffic microsimulator SUMO v0.32 [4] was used for training and testing experiments. Libraries

used for implementation, including the asynchronous RL algorithms, were Tensorflow v1.2.0 [94],

NumPy, SciPy [96] and additional open-source code [95]. The Adam gradient descent algorithm

[107] with a learning rate α = 0.0001 was used to optimize the parameters of the artificial neural

networks.

The system configuration for training and testing was a desktop computer running Ubuntu 16

with an i7 4.2 GHz processor and 16 GB of RAM. As opposed to other modern machine learning

44

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Table 7: Model Hyperparameters

Variable Hyperparameter Value

d Lane State Range 150 m

lv Average Vehicle Length 5 m

h Average Vehicle Headway 2.5 m

c Lane Jam Density 20 veh

|st| State Cardinality 58

Ttrain Train Simulation Episode Length 3 600 s

Ttest Test Simulation Episode Length 7 200 s

n Max Experience Return steps 4

γ Discount Factor 0.99

β Entropy Regularization Strength 0.01

research, the AQ and A3C algorithms were specifically developed for use without modern graphics

processing units. The asynchronous algorithms leverage multi-core processors to run multiple agent-

environments in parallel, each on their own, unique thread. This allows research to be conducted

efficiently with modest computing resources without expensive graphics processing units. The au-

thors used eight threads each running an agent-environment pair. Each thread’s agent generates

experiences and computes parameters updates that asynchronously update a master network. An

illustration for model training and testing can be seen in Figure 13. Hyperparameters used during

training and testing can be found in Table 7. These parameters were selected to reflect practical

implementation and determined via empirical testing.

The RL TSC agents only chooses actions when vehicles are present at the intersection, meaning

terminal states sterminal are states where no vehicles are present on incoming lanes L (i.e., ∀l, Vl =

{}). When no vehicles are present, the RL TSC enacts the red clearance phase (R).

The proposed RL TSCs are compared against two TSC methods, a uniform random policy for

each action set, Random-4 and Random-8, and Websters-4.

A uniform random policy (∀a, πrand(a|st) = 1
|A|) is naive with respect to optimality but included

for analysis. It is the initial policy of all RL TSCs and therefore a baseline for measuring overall

learning progress. The RL TSC’s initial action selection is uniform random, as they have no experi-

ence to favour any action over another. Ideally, with repeated interaction and experience with the

environment, the RL TSC’s initially random policy will converge towards the optimal policy π∗.

The Websters-4 TSC develops the green phase durations in a cycle based on the estimated flow

capacity ratio. The flow is estimated over some historical interval (one hour in this research), pro-

45

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

0 1000 2000 3000 4000 5000 6000 7000

4

6

8

10Network
Stopped
Time
(ln(s))

Testing Simulation Results

0 1000 2000 3000 4000 5000 6000 7000
Time (s)

0

100

200

300

400

500

Network
Queue
(veh)

Random-4
Random-8
Websters-4
AQ-4
AQ-8
A3C-4
A3C-8

Figure 15: Network stopped time and queue samples over 50 independent testing simulation runs

for each TSC method. Note the natural logarithm network stopped time is presented for improved

reader clarity because of the variance across TSC methods.

portionally assigning green phases based on a green phases’ flow capacity ratio (i.e., green phases

with higher flow capacity ratios receive longer green times). Webster’s method requires some hy-

perparameters for stability, a minimum phase duration (15 s), maximum cycle length (110 s) which

were selected based on recommendations from the City of Toronto [105].

Each TSC method was executed for 50 independent testing demand simulation episodes, illus-

trated in Figure 14, with random seeds to collect statistics for comparison. The testing episodes are

Ttest = 7 200 s in duration on a three by three square grid of intersections. Vehicle stopped time,

queue, travel time and flow are the measures of effectiveness collected during testing to compare

TSC methods. Network data is also collected, representing the cumulative sum of a MoE over the

entire testing episode. Additional information on training and testing can be found in the Appendix.

3.9 Results and Discussion

Results comparing all TSC methods are represented in Table 8 and visually in Figure 15 and Figure

16. As expected, the random policy performs poorly, exhibiting the highest vehicle stopped time,

46

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Random-4 Random-8 Websters-4 AQ-4 AQ-8 A3C-4 A3C-8
0

500

1000

1500

2000

Travel
Time
(s)

Testing Simulation Travel Time

0 100 200 300 400 500 600 700 800 900 1000
Travel Time (s)

0.000

0.001

0.002

0.003

0.004

Normalized
Frequency

Random-4
Random-8
Websters-4
AQ-4
AQ-8
A3C-4
A3C-8

Figure 16: Vehicle travel time samples over 50 independent testing simulation runs for each TSC

method.

Table 8: Traffic Signal Control Testing Results

TSC Network Stopped Time Network Queue Network Flow Travel Time Training Time

(s×106/sim) (veh×105/sim) (veh×103/sim) (s) (hr)

Random-4 134±5.2 18±0.4 14±0.1 267±0.4 0

Random-8 173±5.3 22±0.4 14±0.1 293±0.5 0

Websters-4 19±0.3 8±0.1 14±0.1 187±0.3 0

AQ-4 9±0.1 5±0.1 14±0.1 170±0.2 6

AQ-8 8±0.2 4±0.1 14±0.1 165±0.2 13

A3C-4 4±0.1 3±0.1 14±0.1 156±0.2 1

A3C-8 4±0.1 3±0.1 14±0.1 156±0.2 1

Note: 95% C.I. from 50 independent testing episodes for each TSC method. Network MoE implies

cumulative over the entire testing episode.

47

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Random-4
Y

12%

R

11%

G
77%

Lost Time
EWG

28%
NSGL

25%

EWGL

24%
NSG

23%

Action Frequency

Random-8
Y

15%

R

12%

G

72%

WG
12%

EWGL

13%

EWG

12%
EG

15%

NSGL
11%

NSG

14%
NG

13%
SG

10%

Websters-4 Y8%

R
8%

G
84%

NSGL
25%

EWG
25%

EWGL
25%

NSG
25%

AQ-4
Y

13%

R

13%

G
74%

NSGL

33%

EWG 32%

EWGL

2%

NSG

33%

AQ-8
Y

15%

R

16%

G

68%

EWGL

EWG

41%

NSG

56%

A3C-4
Y

17%

R

20%

G

64%

EWG

51%

NSG

49%

A3C-8
Y

17%

R

20%

G

63%

EWG

49%

NSG

51%

Figure 17: Traffic Phase Lost Time and Action Frequency samples collected over 50 independent

testing simulations for each TSC method. Phases selected with a frequency < 2% are unlabeled.

48

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

queues and travel time. Comparing the Websters-4 and RL TSCs, all RL TSCs achieve superior

performance, reducing mean vehicle stopped time, queues and travel time. Comparing the AQ and

A3C TSCs, the A3C TSC achieves the lowest mean vehicle stopped time, queues and travel time.

Interestingly the different action space variants of A3C, A3C-4 and A3C-8, offer no difference in

performance. The authors’ initial hypothesis was that a larger action space (i.e., |A8| > |A4|) would

allow the TSC agent greater flexibility in developing the optimal policy.

The difference in training times between RL TSC is stark, with both A3C methods requiring

only one hour, short by RL standards, while the AQ methods require significantly more time to

achieve inferior performance. The training time and performance disparity provide evidence that

RL methods which explicitly represent the policy, such as actor-critic methods, instead of indirectly

deriving it through an action-value function are more suitable for developing adaptive TSCs.

Policy analysis is conducted using phase/action data for each TSC method, presented in Figure

17. Lost time is defined as phases where vehicles are not traversing the intersection (i.e., yellow and

red phases). Lost time occurs when the TSC switches between green phases. Websters-4 spends the

most amount of time in green phases and the least in yellow and red phases. The RL TSCs accrue

more lost time, indicating more frequent phase switching. Since the RL TSC are acyclic and select

the next phase in an ad-hoc fashion, this behaviour is likely producing more lost time.

Considering the action frequency for each TSC method, a few observations emerge. First, the

Websters-4 does not favour any action. Second, the RL TSCs learn a policy that predominantly

selects protected through movements (i.e., NSG and EWG) over others except for AQ-4, which selects

almost exclusively from one of NSG, EWG or NSGL. The authors find it curious that the AQ-4’s

policy isn’t more balanced, selecting NSGL frequently but EWGL infrequently. This may be an

indication of insufficient training, but without additional experiments this is only conjecture. Third,

the AQ-8, A3C-4 and A3C-8 policies have similar action frequencies, with both A3C TSC almost

identical. It is surprising to the authors that the learned optimal policy appears to require only two

actions, NSG and EWG. The performance similarity between TSCs with different action spaces is

now easily understood; despite the potential for different policies to be learned because of different

action spaces, different RL TSC all discovered that only a subset, {NSG, EWG}, of the actions is

required to achieve optimality in the experiments conducted. Although it may strike the reader as

strange that the optimal policy developed by the RL TSCs essentially eliminated all actions/phases

except those with protected through movements, this finding was also observed in research using

a micro-auction based TSC [108]. Considering that a completely different optimization technique

observed the same result can be seen as mutually corroborating of the observed behaviour in this

research.

49

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

3.10 Contribution

Although significant RL TSC research has been conducted, the following deficiencies are noted and

the authors’ contributions detailed.

First, this research proposes two RL TSC, AQ and A3C, to determine if there is any difference

between RL paradigms (i.e., value or policy-based methods). Additionally, two different action spaces

are modelled to determine a larger action space’s impact on RL TSC performance. This research also

seeks to demonstrate that the proposed asynchronous methods are practical and efficient, requiring

modest computational resources and time, highlighting their feasibility for real-world deployment.

Second, some previous work has modelled the TSC too simply by omitting yellow change, red

clearance (or both) phases or ignoring pedestrian constraints. This was likely done to reduce un-

certainty for the agent, however, it removes an important element of the problem that would be

present in practice. If RL methods are to provide solutions to TSC, they must authentically rep-

resent the problem in every regard. This research implements an authentically challenging model

without simplification, including yellow change and red clearance phases four seconds in duration

each [105]. Additionally, previous research has used simple vehicle generation models to generate

vehicles into the network. The authors’ present a model closer to reality with a stochastic, dynamic

traffic demand to test the proposed methods.

Third, although much of the previously conducted RL TSC research has demonstrated it capable

of superior performance compared to traditional methods, little attention has been given to analyzing

what are the RL TSC methods doing differently. This research analyzes the TSC policies developed

by all methods to gain insight into the performance differences. The analysis considers traditional

traffic measures of effectiveness (MoE) such as stopped time, queue, travel time [105] along with

TSC phases metrics such as lost time and phase frequency. The lost time and phase frequency

provide an explicit description of the a TSC’s behaviour for analysis. This research is valuable

beyond academia; for example, to practitioners, such as transportation engineers, it elucidates and

clarifies the capabilities of RL TSC, going beyond previous research which demonstrated its superior

performance without inquiring to its specific behaviour.

3.11 Conclusion

Two asynchronous RL TSC were proposed and compared in simulation against random and Websters

TSCs. Results show that the RL TSCs outperform all other methods by developing a surprisingly

simple policy in a multi-intersection traffic network with dynamic, stochastic vehicle demand. Re-

sults also show that RL methods that explicitly represent the policy, such as A3C, achieve superior

50

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

performance in TSC compared to value-based methods in a fraction of the training time.

Limitations of the conducted research and areas for future work include the following.

In its current form the architecture for action selection is constraining. The agent chooses the

next green phase but its duration is constant - 15 s in this model. This limits green phases to interval

multiples of 15 (e.g., 15, 30, 45). Instead of having a constant action duration, the action selection

architecture could be improved by also choosing the action’s duration, as this would allow the agent

to better control the environment. Other researchers have termed this ‘fine grain action repetition’

and have shown it improve RL’s performance in other domains [109]. The authors consider this a

promising extension that would reap improvements.

If the action space or state space was changed, the model would need to be retrained. Although

we have demonstrated that actor-critic based models train quicker than value-based models, they

still require time to train. Intersections with different geometries and numbers of green phases

would each require their own unique agent to be trained. This limitation could be overcome using

transfer learning, which allows RL agents to generalize their behaviour across environments or to new

environments [110, 111]. Transfer learning could be used to develop one agent capable of controlling

intersections with differing geometries and actions spaces.

Although the testing scenario used in this research consisted of multiple intersections, each inter-

section was controlled by an isolated RL agent. Therefore, the authors’ models can not be considered

as a true multi-agent RL system. True multi-agent RL TSC systems have been successfully developed

using other architectures [64, 84]. The authors’ model could be combined with previous multi-agent

RL TSC research for improved performance.

3.12 Appendix

To develop a reinforcement learning agent using neural network functions approximation, the agent

learns by interacting with the environment. Environment interaction at time t yields an experience

tuple et, created by the agent observing the environment state st, selecting an action at, receiving

feedback in the form of a reward rt and observing a new state st+1, forming et = (st, at, rt, st+1).

Supervised learning trains neural networks given a labelled training dataset containing input data

and correctly labelled outputs. Input data from the dataset is fed into the network and the net-

work’s output is compared with the labelled output using a loss function to compute an error. The

backpropagation algorithm [44] is used to propagate the error and train the network parameters.

Instead of a labeled dataset, experiences tuples are used as training data along with a custom loss

function to train a neural network as a reinforcement learning agent.

In the original deep Q-network (DQN) [45], only one experience a time was used to estimate the

51

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

return. It has been demonstrated that using multiple sequential experiences can improve the return

estimate, termed n-step returns. This research uses 4-step returns to estimate the return, which has

been shown to be effective in accelerating learning by improving reward estimation [46].

This research consists of two phases, training and testing. First, the neural network must

be trained using experiences generated by the agent interacting with the environment. Multiple

agent-environment pairs execute asynchronously in parallel to generate experiences and parame-

ter updates, using a local parameter set θ′, for a master network. The benefits of using multiple

environment-agent pairs include training diversity and computational efficiency. Each environment

can be different, creating diversity in the agent’s experiences, which improves learning. Since mul-

tiple environment-agent pairs are executing in parallel, training time is decreased, as the network is

being updated from more experiences than would be available in serial.

3.12.1 Training

This research uses training episodes where an agent interacts with a single, isolated intersection with

a stochastic demand for Ttrain = 3 600 s. Each episode exhibits a stochastic demand, generated

before the start of the episode, illustrated in Figure 14. The vehicle demand generation training

function ftrain(t) = A sin(6π + φ) + 1.0 is created using a periodic function sin(6π) + 1.0, randomly

scaled by A = Unif(0.25, 4) and phase shifted by φ = Unif(0, 6π) as a form of data augmentation for

each training episode. Further stochasticity is added by sampling from N (ftrain(t), ftrain(t)
10). These

efforts are undertaken to ensure training diversity over the entire demand spectrum.

This stochastic training is used to ensure the agent experiences all types of traffic demands and

does not overfit to any specific traffic demand. Described in this way, these efforts can be considered

as a form of training data augmentation often seen in supervised learning. Training is complete

when the neural network parameters have converged and are no longer changing with additional

experiences.

3.12.2 Testing

After training is complete, the agent’s policy is evaluated. A criticism of many modern reinforcement

learning research studies is that the environment used to evaluate the learned behaviour of the agent

is exactly the same as used during training. This is problematic because it does not evaluate the

agent’s capacity to generalize in new environments. This problem is avoided in traditional supervised

learning by dichotomizing the dataset into a training set and a testing set. This ensures an honest

evaluation of the algorithm’s generalization performance on new, unseen data. Influenced by super-

vised learning, this research attempts to overcome the aforementioned problem by differentiating the

52

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

test and training data in two ways. First, a different traffic network is used during testing. Instead

of a single, isolated intersection, as is used during training, a three by three square grid of nine

intersections is used during testing. Each intersection is controlled by a copy of the agent developed

during training. This testing network is used to better emulate real-world traffic networks, as square

grids are a popular topology in urban centres. Second, the testing traffic demand is generated from

a different piecewise, stochastic function than used in training. The testing demand simulates a rush

hour scenario of length Ttest = 7 200 s, illustrated in Figure 14. The testing regimen is designed

in this way to highlight the dynamic, stochastic nature of traffic experienced in practice, and how

pre-timed, cycle based methods are insufficiently adaptive to the changes in traffic.

3.12.3 Asynchronous Q-learning

The AQ algorithm implements reward normalization by dividing the current reward by the absolute

value of the largest reward experienced rmax. Given the proposed reward definition, negative square

of queued vehicles, this normalization effectively clips the reward to the interval [−1, 0]. During

training, the ε-greedy action selection policy is used, linearly annealed over training until it reaches

ε = 0.05. In addition to global parameters θ and local parameters θ′, the asynchronous Q-learning

algorithm maintains a set of target network parameters θ−, as in the original DQN to stabilize

learning. The target network parameters are updated to the master network parameters every

I = 10 000 experiences for AQ-4 and I = 20 000 experiences for AQ-8. A longer target network

update interval is used for AQ-8 because of the larger action space, requiring more experiences for

a stable update. The AQ-4 was trained for M = 500 000 experiences and the AQ-8 was trained for

M = 1 000 000 experiences. After sufficient training, the optimal policy is derived by selecting the

action with the highest value, π∗(s, a) = argmaxaQ(s, a; θ). The AQ training pseudocode can be

found in Algorithm 1.

3.12.4 Asynchronous Advantage Actor-Critic

The A3C algorithm utilizes reward normalization and the gradient of the policy entropy to improve

learning. After n experiences have been appended to the experience buffer E, the rewards are

standardized by subtracting the mean reward µr and dividing by the standard deviation of the

reward σr, calculated from all rewards in the experience buffer. This transformation centres the

rewards at 0, controlling their variance and preventing the gradients from becoming too large during

backpropagation [112]. Both A3C variants were trained for M = 100 000 experiences. The A3C

training pseudocode can be found in Algorithm 2.

53

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Algorithm 1: AQ training pseudocode [46]

m← 0, rmax ← 1.0, Initialize θ, θ
′

While m < M :

t← 0, Generate stochastic demand for training episode

While t < Ttrain:

Reset parameter gradients dθ ← 0, Set thread parameters to global θ′ = θ

E = ()

Observe state st

While st 6= sterminal and |E| 6= n:

Perform ε-greedy action at from argmaxaQ(st, a; θ′)

Receive reward rt and observe new state st+1

If |rt| > rmax:

rmax = |rt|

rt ← rt
rmax

Append et = (st, at, rt, st+1) to buffer E

st = st+1, t← t+ 1, m← m+ 1

G = 0 If st == sterminal else G = max
a

Q(st, a; θ−)

For e in reverse(E):

s = est , a = eat , r = ert , st+1 = est+1

G← r + γG

Collect gradients dθ ← dθ + ∂(G−Q(s,a;θ′))2

∂θ′

Asynchronously update θ with dθ

If m mod I == 0:

θ− ← θ

54

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Algorithm 2: A3C training pseudocode [46]

m← 0, Initialize θ, θ
′

While m < M :

t← 0, Generate stochastic demand for training episode

While t < Ttrain:

Reset parameter gradients dθ ← 0, Set thread parameters to global θ′ = θ

E = (), Observe state st

While st 6= sterminal and |E| 6= n:

Perform action at from π(at|st; θ′)

Receive reward rt and observe new state st+1

Store et = (st, at, rt, st+1) in rollout E

st = st+1, t← t+ 1, m← m+ 1

G = 0 If st == sterminal else G = V (st; θ
′)

For e in reverse(E):

s = est , a = eat , r = ert , st+1 = est+1

r ← r−µr

σr

G← r + γG

Adv = G− V (s; θ′)

Collect policy gradients dθ ← dθ +∇θ′ loge π(a|s; θ′)(Adv) + β∇θ′H(π(s; θ′))

Collect value gradients dθ ← dθ + ∂(Adv)2

∂θ′

Asynchronously update θ with dθ

55

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

4 City Scale Multi-agent Adaptive Traffic Signal Control

4.1 Introduction

Knowledge generated from the previous chapters is used to design a flexible and scalable archi-

tecture for reinforcement learning adaptive traffic signal control model development. Analysis of

the learned policies in the previous chapters showed an acyclic controller can learn to ignore some

phases which can decrease a minority of road users quality of service. Retaining the improvements

demonstrated by directly developing a policy using an actor-critic (i.e., deep deterministic policy

gradients) algorithm, a cycle based, dynamic phase duration adaptive traffic signal control archi-

tecture is designed. To validate the proposed controller, a simulation of the City of Luxembourg,

Luxembourg is used. A distributed architecture is developed to cope with the scale of the validation

simulation, as 196 adaptive traffic signal controllers must be developed. The proposed method is

parsimonious, as independent reinforcement learning is used to train in a multi-agent setting (i.e.,

no explicit coordination/communication necessary between intersections).

W. Genders and S. Razavi, “Distributed deep deterministic policy gradients for adaptive traffic

signal control,” IEEE Transactions on Intelligent Transportation Systems, 2018. Submitted 15 August

2018 , T-ITS-18-08-0805

The co-author’s contributions to the above work include:

• Financial and technical supervision of the study presented in this work.

• Manuscript editing.

56

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

4.2 Distributed Deep Deterministic Policy Gradients for Adaptive Traffic

Signal Control

4.3 Abstract

Congestion in transportation systems negatively impacts mobility, the environment and human

health. Intersection traffic signal controllers are an important element of many cities’ transporta-

tion infrastructure where sub-optimal solutions can contribute to congestion. However, developing

optimal transportation control systems at the appropriate scale can be difficult, as cities’ trans-

portation systems are large, complex and dynamic. This research develops a scalable architecture

for flexible and efficient reinforcement learning, adaptive traffic signal controller model development

using recent innovations from machine learning. To validate the proposed methods, a simulation of

the City of Luxembourg is used, consisting of 196 intersections. Evaluated over 40 simulated days

and compared to random and fixed time traffic signal controllers, the proposed adaptive system

reduces delay, queue, travel time and stopped time. Although the cumulative effect of the rein-

forcement learning adaptive control is positive, 15% of intersections experienced increased delay and

queues, leaving room for future improvements.

4.4 Introduction

Cities rely on road infrastructure for transporting individuals, goods and services. Demand beyond

infrastructure capacity creates congestion, adversly affecting the environment, human mobility and

health. Studies observe vehicles consume a significant amount of fuel accelerating, decelerating or

idling at intersections [113]. Land transportation emissions are estimated to be responsible for one

third of all mortality from fine particulate matter pollution in North America [17]. Globally, over

three million deaths are attributed to air pollution per year [16]. In 2017, residents of three of the

United States’ biggest cities, Los Angeles, New York and San Francisco, spent between three and

four days on average delayed in congestion over the year, respectively costing 19, 33 and 10 billion

USD from fuel and individual time waste [12]. It is paramount to ensure transportation systems are

optimal to minimize these costs.

Automated control systems are used in many aspects of transportation systems. Intelligent trans-

portation systems seek to develop optimal solutions in transportation using intelligence. Intersection

traffic signal controllers are an important element of many cities’ transportation infrastructure where

sub-optimal solutions can contribute to congestion. Traditionally, traffic signal controllers have func-

tioned using heuristic logic which can be improved. Using artificial intelligence and machine learning

to develop adaptive traffic signal controllers has been significantly researched with promising results

57

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

1 km

Figure 18: City of Luxembourg SUMO [4] simulation model [5, 6].

[75, 64, 100].

Traffic signal controllers govern how vehicles traverse an intersection and can be modelled as a

sequential decision-making problem. Reinforcement learning can solve sequential decision-making

problems by developing an optimal policy through experience [36]. The combination of reinforcement

learning and deep artificial neural networks has been used to develop systems that can best humans

in complicated tasks such as the game of Go [50, 51], Atari video games [45, 114, 115, 48] and image

recognition [116, 117]. To reduce congestion and improve mobility at a city scale, deep reinforcement

learning techniques are used in simulation to develop an adaptive traffic signal controller. To achieve

this goal, considering the scope of the problem, the authors develop a scalable architecture for flexible

and efficient model development using recent innovations from machine learning [118]. The proposed

reinforcement learning adaptive signal controller is demonstrated to reduce delay, queue, travel time

and stopped time compared to random and fixed controllers.

4.5 Related Work

Reinforcement learning has been demonstrated to be an effective method for developing adaptive

traffic signal controllers in simulation [70, 57, 71, 60]. Recently, deep reinforcement learning has

58

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

been used for adaptive traffic signal control with varying degrees of success [66, 68, 67, 69, 77, 119].

However, the majority of this research has used small networks (i.e., single/few intersections) and/or

simplified models. Readers interested in additional research can consult extensive review articles

[86, 87, 97].

Initial research using multi-agent reinforcement learning for adaptive traffic signal control yielded

promising proof-of-concept results [59]. However, it too made simplifying assumptions and used

simple models (e.g., vehicle dynamics, signal control dynamics) that necessitated additional work.

Examples of research that define the problem at a scale that approaches the real-world are presented

in Table 9. Reviewing the research conducted, a few observations are apparent.

First, at best previously simulated networks model sections of cities, and at worst are artificial

grids. The number of intersections controlled are in the range of [10,100]. While these simulations are

obviously more realistic than research with single, isolated intersections, it is desirable to continue

increasing the scale of the simulations to reflect reality.

Second, Q-learning [38] is the dominant reinforcement learning algorithm. Q-learning is powerful,

simple to implement and exhibits strong convergence with tabular and linear function approximation.

However, Q-learning has some weaknesses, such as being infeasible in continuous action spaces.

Also, policy-based reinforcement learning methods have demonstrated higher performance in certain

domains [114, 115, 48].

Third, linear functions are the most common form of function approximation. Like Q-learning,

linear function approximation is simple to implement with appealing convergence properties. How-

ever, it has been demonstrated that function approximators which can model a wider class of func-

tions beyond linear relationships offer improved performance in many domains [45], including traffic

signal control [1].

Finally, the majority of previous research used multi-agent algorithms relying on some form of

communication between agents or local models of other agents. For example, the max-plus algo-

rithm requires that agents share messages. Communication between agents is simple in simulation.

However, if these systems were to be deployed in the real-world, communication infrastructure would

be required. Assuming communication infrastructure exists, any system relying on communication

becomes vulnerable when communication degrades/fails. A system not requiring communication

would be impervious to these issues. It would avoid the problems posed by poor communication

and likely be cheaper, with no infrastructure required.

59

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Table 9: Adaptive Traffic Signal Control related work.

Research Network Intersections Multi-agent RL Function Approximation

[120] Grid 15 Max-plus Model-based N/A

[75] Grid, Corridor <10 None Q-learning Linear

[121] Springfield, USA 20 Max-plus Q-learning N/A

[64] Toronto, Canada 59 Game Theory Q-learning Tabular

[84] N/A 50 Holonic Q-learning N/A

[65] Grid 22 Reward Sharing Q-learning Bayesian

[122] Grid 100 Regional Q-learning Linear

[76] Barcelona, Spain 43 Centralized DDPG DNN1

[100] Tehran, Iran 50 None Actor-Critic RBF2, Tile Coding

[123] Changsha, China 96 Reward sharing Q-learning Linear

* Luxembourg City 196 None DDPG DNN

1 Deep Neural Network (DNN).

2 Radial Basis Function (RBF).

* This manuscript’s research.

4.6 Contribution

Although several successful examples of adaptive traffic signal control in large-scale simulations have

been detailed, the authors’ work contributes in the following areas:

• Scale: To the best of the authors’ knowledge, no previous research has demonstrated adaptive

traffic signal control at the scale of the City of Luxembourg, using the Luxembourg Sumo

Traffic (LuST) Scenario [5, 6]. Demonstrating the proposed model in a simulated real-world

scenario is necessary if it is to ever be deployed in the field.

• Parsimony: Multi-agent systems often rely on communication between or models of other

agents to function. Depending on the agent space topology, the curse of dimensionality can

manifest. The proposed system uses independent reinforcement learning agents requiring only

local information at run-time.

4.7 Background

4.7.1 Traffic Signal Control

An intersection is composed of traffic movements, or ways that a vehicle can traverse the intersection

beginning from an initial lane. Traffic signal controllers use phases, combinations of coloured lights

that indicate when specific movements are allowed, to control vehicles at the intersection. Typically,

traffic signal controllers use a repeating sequence of phases known as a cycle. If the phase durations

60

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

are static within a cycle, this is known as a fixed time traffic signal controller. Actuated traffic

signal controllers use sensors and boolean logic to create dynamic phase durations. Adaptive traffic

signal controllers are capable of acyclic operation and dynamic phase duration to adapt to traffic

conditions at the intersection. Adaptive controllers can achieve better performance at the expense

of complexity, cost and reliability.

Fundamentally, traffic signal control requires two decisions at any given time; what should the

next phase be and for how long in duration? Using reinforcement learning, the authors strive to

learn the answers to these questions.

4.7.2 Reinforcement Learning

Reinforcement learning uses the framework of Markov Decision Processes to solve goal-oriented,

sequential decision-making problems by repeatedly acting in an environment. At discrete points

in time t, a reinforcement learning agent observes the environment state st and then uses a policy

π to determine an action at. After implementing its selected action, the agent receives feedback

from the environment in the form of a reward rt and observes a new environment state st+1. The

reward quantifies how ‘well’ the agent is achieving its goal (e.g., score in a game, completed tasks).

This process is repeated until a terminal state sterminal is reached, and then begins anew. The

return Gt =
∑k=T
k=0 γ

krt+k is the accumulation of rewards by the agent over some time horizon T ,

discounted by γ ∈ [0, 1). The agent seeks to maximize the expected return E[Gt] from each state st.

The agent develops an optimal policy π∗ to maximize the return.

There are many techniques for an agent to learn the optimal policy, however most of them rely

on estimating value functions. Value functions are useful to estimate future rewards. State value

functions V π(s) = E[Gt|st = s] represent the expected return starting from state s and following

policy π. Action value functions Qπ(s, a) = E[Gt|st = s, at = a] represent the expected return

starting from state s, taking action a and following policy π. In practice value functions are unknown

and must be estimated using sampling and function approximation techniques. Parametric function

approximation, such as neural networks, use a set of parameters θ to estimate an unknown function

f(x; θ) ≈ f(x). To develop accurate approximations, the function parameters must be estimated

with some optimization technique.

A reinforcement learning agent interacts with its environment in trajectories et, et+1, et+2, ... or

sequences of experiences, e = (st, at, rt, st+1). Trajectories begin in an initial state sinit and end in a

terminal state sterminal. To accurately estimate the value function, experiences are used to optimize

the parameters. If neural network function approximation is used, the parameters are optimized

using experiences to perform gradient-based techniques and backpropagation [43, 44].

61

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

4.7.3 Deep Deterministic Policy Gradients

Deep deterministic policy gradients (DDPG) [124] are an extension of deep Q-networks (DQN) [45]

(i.e., Q-learning [38]) to continuous action spaces. Similiar to Q-learning, DDPG is a model-free,

off-policy reinforcement learning algorithm. This algorithm comes from the temporal-difference [73]

learning family of reinforcement learning, which over time develops improved approximations, from

approximations, of value functions [36]. Value functions are useful to estimate future rewards based

on states or actions. The DDPG algorithm is an example of actor-critic learning, as it develops

a policy function π(s) (actor) using an action-value function Q(s, a) (critic). The actor interacts

with the environment and modifies its behaviour based on feedback from the critic. In practice these

functions are not known and must be estimated using samples. As the name of the algorithm implies,

deep artificial neural networks are used for function approximation, as they have been demonstrated

capable of approximating a wide family of functions.

Training a neural network requires a loss function, which is used to determine how to change

the parameters to achieve better approximations of the training data. Reinforcement learning trains

neural networks using experiences from the environment. Experiences are tuples et = (st, at, rt, st+1)

that represent an interaction between the agent and the environment. To estimate the policy and

value functions (i.e., neural networks), experiences are used as sample data.

The critic’s loss function is the gradient of the mean squared error of the target yt and the

prediction, defined in (19).

yt = rt + γmaxQ(st+1, at|θ′)

∇θLQ(θ) = (yt −Q(st, at|θ))∇θQ(st, at|θ)
(19)

The actor’s loss function is the sampled policy gradient, defined in (20).

∇θLπ(θ) = ∇θQ(st, at|θ)∇θπ(st|θ) (20)

Like DQN, DDPG uses two sets of parameters, online θ and target θ′, and experience replay [125]

to reduce instability during training. DDPG performs updates on the parameters for both the actor

and critic by uniformly sampling batches of experiences from the replay. The target parameters are

slowly updated towards the online parameters according to θ′ = (1− τ)θ′ + (τ)θ with a period of P

updates.

4.8 Proposed Method

The authors propose an adaptive traffic signal control model for all intersections using independent

reinforcement learning and DDPG.

62

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

FC |st|+|at|

Network

Network

Actor

Network

Learner
Replay R

Experience
Batch
B

Parameters
FC |st|+|at|

FC |st|

FC |st|

Local State st

Action at∊[gmin,gmax]
Next phase duration

 Actor

Q Critic

Figure 19: Adaptive traffic signal control DDPG agent (left) and distributed acting, centralized

learning architecture (right). Each actor has one LuST environment and neural networks for all

intersections. Each learner is assigned a subset of intersections at the beginning of training and

is only responsible for computing parameter updates for their assigned intersections, effectively

distributing the computation load for learning.

The proposed adaptive traffic signal controller implements a cycle with dynamic phase durations.

However, the cycle skips phases when no vehicles are present on incoming lanes. The next phase

logic is presented in Algorithm 1. This architecture is motivated by the observation that cycles

maintain fairness and ensure a minimum quality of service between all intersection users. Once the

next green phase has been determined using the cycle, the policy π is used to select its duration.

Explicitly, the reinforcement learning agent is learning how long in duration to make the next green

phase to maximize its return.

The set of all intersections I = {i0, i1, ...} constitute the independent agents that interact in the

traffic simulation. Each intersection i is controlled by a DDPG reinforcement learning agent.

63

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Algorithm 1 Adaptive Signal Control Next Phase

1: procedure NextPhase(currentPhase, cycle)

2: j = cycle.index(currentPhase)

3: newCycle = cycle[j + 1 :] + cycle[: j + 1]

4: for phase in newCycle do

5: if VehiclesInPhase(phase) then

6: return phase . Find next phase in cycle with vehicles

7: end if

8: end for

9: return all red . If no vehicles present, next phase is all-red

10: end procedure

4.8.1 State

4.8.2 Actor

The proposed state observation for the actor is a combination of the current phase and the queue

and density of incoming lanes at the intersection at time t. Assume each intersection has a set L of

incoming lanes and a set P of green phases. The state space is then defined as S ∈ (R2|L|×B|P |+1).

The queue and density of each lane is normalized to the range [0, 1] by dividing by the lane’s jam

density kj . The current phase is encoded as a one-hot vector B|P |+1, where the plus one encodes

the all-red clearance phase.

4.8.3 Critic

The proposed state observation for the critic combines the state st and the actor’s action at, depicted

in Figure 19.

4.8.4 Action

The proposed action space for the adaptive traffic signal controller is the duration of the next green

phase in seconds. The action controls the duration of the next phase from Algorithm 1; there is no

agency over what the next phase is, only on how long it will last. The DDPG algorithm produces

a continuous output, a real number over some range at ∈ R. Since the DDPG algorithm outputs a

real number and the phase duration is defined in intervals of seconds, the output is rounded to the

nearest integer. In practice, phase durations are bounded by a minimum time gmin and a maximum

time gmax to ensure a minimum quality of service for all users. Therefore the agent selects an action

64

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

{at ∈ Z|gmin ≤ at ≤ gmax} as the next phase duration.

4.8.5 Reward

The reward used to train the adaptive traffic signal controller is a function of vehicle delay. Delay d

is the difference in time between a vehicle’s free-flow travel time and actual travel time. Specifically,

the reward is the negative sum of all vehicles’ delay at the intersection, defined in (21):

rt = −
∑
v∈V

dtv (21)

Where V is the set of all vehicles on incoming lanes at the intersection, and dtv is the delay

of vehicle v at time t. Defined in this way, the reward is a punishment, with the agent’s goal to

minimize the amount of punishment it receives. Each intersection saves the reward with the largest

magnitude experienced to perform minimum reward normalization rt
|rmin| to scale the reward to the

range [−1, 0] for stability.

4.8.6 Agent

The agent approximates the policy π and action-valueQ function with deep artificial neural networks.

The policy function is two hidden layers of 2|st| fully connected neurons, each with rectified linear

unit (ReLU) activation functions, and the output layer is one neuron with a hyperbolic tangent

activation function. The action-value function Q is two hidden layers of 2(|st|+ |at|) fully connected

neurons with ReLU activation functions and the output layer is one neuron with a linear activation

function. The policy’s input is the intersection’s local traffic state st and the action-value function’s

input is the local state concatenated with the local action st + at.

By deep reinforcement learning standards these networks are not that deep, however, their archi-

tecture is selected for simplicity and to respect resource constraints, as one agent is needed for each

of the 196 intersections. Canonical reinforcement learning problems (e.g., Atari, cartpole, move-

ment simulators) require training a single agent. Since the proposed simulation requires hundreds

of agents, a suitable learning architecture is required to make the problem tractable.

4.9 Experiments

4.9.1 Learning Architecture

To train agents for all intersections, a distributed acting, centralized learning architecture is devel-

oped [46, 118, 48]. Using parallel computing, multiple actors and learners are created, illustrated

in Figure 19. Actors have their own instance of the environment (i.e., LuST scenario) and neural

65

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

networks for all intersections. Learners are assigned a subset of all intersections, for each they have

a neural network and an experience replay buffer R. Actors generate experiences et for all inter-

sections, sending them in batches B to the appropriate learner. Learners only receive experiences

for their assigned subset of intersections. The learner stores the experiences in an experience replay

buffer, which is uniformly sampled for batches to optimize the neural network parameters. After

computing parameter updates, learners send new parameters to all actors.

There are many benefits to this architecture, foremost is it makes the problem feasible. Because

there are hundreds of agents, distributing computation across many actors and learners is necessary

to decrease training time. Another benefit is experience diversity, granted by multiple environments

and varied exploration rates.

4.9.2 Traffic Simulation

The Luxembourg Sumo Traffic scenario is used as the environment to train all the agents [5, 6]. The

LuST scenario models the City of Luxembourg, displayed in Figure 18, and was developed to be a

standardized testbed for evaluating traffic applications in microsimulation. The model topology is

an area of 156 km2 with 930 km of road, 89 km of which is highway. The scenario authors modelled

and calibrated the 24 hour scenario to ensure a high degree of realism. Demographic and floating

point car data was used to generate the traffic demand, yielding over 250 000 vehicle trips, including

transit. Readers interested in additional details can consult the scenario authors’ publications [5, 6].

All 196 intersections are controlled with the proposed reinforcement learning adaptive traffic

signal control system over the entire 24 hour simulation. The set of intersections I is a heterogeneous

set of agents, evidenced by state and action space distributions illustrated in Figure 20. Agents have

between 2 and 7 phases and between 3 and 16 incoming lanes. To the best of the author’s knowledge,

this is the largest application of adaptive traffic signal control in microsimulation.

4.9.3 Training

To train all the agents using the proposed architecture the following training augmentations are

implemented to improve learning.

First, actors are distributed temporally in the simulation so as to begin learning at different

times. This is similar to the no-op starts in the Atari environment to ensure agents do not become

biased to any initial state.

Second, Gaussian noise is added to actions for exploration. Various exploration rates ε are used

as the standard deviation parameter at +N (0, ε).

Third, actors implement different exploration rates, ranging from highly exploitative to highly

66

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

0 1 2 3 4 5 6 7 8
|Ai|

0

20

40

60

80

100

120

Frequency

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|Li|

0

10

20

30

40

50

Frequency

Figure 20: Agent diversity, phase A and lane L set cardinality histogram for all intersections in

LuST scenario.

exploratory. This ensures learning is robust; neither exploitation nor exploration is favoured and

the state-action space is constantly being searched.

Finally, before learners begin parameter updates, the experience replay buffer is filled to 75%

capacity to ensure a diversity of experiences. After the replay is at sufficient capacity, each network

performs U parameter updates using batches B sampled from the replay buffer R. All hyperparam-

eters are outlined in Table 10. These hyperparameters were selected via parameter sweeping in an

isolated intersection simulation. Supplemental simulation information is detailed in the Appendix.

67

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Table 10: Hyperparameters

Hyperparameter Variable Value

Batch Size |B| 32

Max Replay Size |R| 5000

Parameter Updates U 5000

Target Update τ 0.01

Target Network Period P 8

Learning Rate α 0.001

Adam Epsilon εAdam 0.0001

Discount Rate γ 0.99

Exploration Rates ε {0.025, 0.5, 1.0}

Min green time gmin 5

Max green time gmax 30

!

4.9.4 Testing

To evaluate the policies learned, the proposed reinforcement learning adaptive traffic signal controller

πRL is compared to random and fixed time traffic signal controllers.

The random traffic signal controller functions exactly as the reinforcement learning adaptive

controller except its policy uniformly samples the next duration over the action space πRand(st) =

Unif(gmin, gmax). This policy is used as a control to contrast what has been learned via reinforcement

learning.

The fixed time traffic signal controller πFixed represents a conventional system that is currently

used in practice. Fixed time controllers implement a cycle of green phases with static green times.

The fixed time controller configuration used is included with the LuST scenario.

Traditional traffic engineering measures of effectiveness, vehicle travel time and stopped time,

intersection delay and queue, are used to compare and evaluate the different traffic signal controllers.

Each controller is subjected to 40 different random seed, 86400 step (24 hour) simulations to estimate

the measures of effectiveness as test metrics. During testing, the proposed reinforcement learning

adaptive traffic signal controller does not perform parameter updates and uses a constant exploration

rate ε = 0.025, significantly reduced from training to evaluate the learned policies performance.

68

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

4.10 Results and Discussion

Testing results are displayed in Figures 21 and 22 and Table 11.

The performance of each individual intersection compared with different traffic signal controllers

is displayed in Figure 21. Across metrics, the random controller performs the worst, but this is to

be expected. The fixed time controller performs better than random, but the reinforcement learning

adaptive traffic signal controller achieves the lowest delay and queue in the majority of intersections

along with reducing travel time and stopped time across the network. The remaining analysis is

focused on comparing the fixed and reinforcement learning controllers as the random controller is

uncompetitive.

The proposed reinforcement learning adaptive traffic signal controller decreases delay by a statis-

tically significant amount in 94% (184 out of 196) of intersections, similar results are observed with

vehicle queues. However, in 4% (8 out of 196) of intersections, the reinforcement learning policy

increases delay and queue. Although performance isn’t improved at every individual intersection,

the cumulative effect on the network is positive, evidenced by the decrease in vehicle travel and

stopped time.

Under the reinforcement learning adaptive traffic signal controller, mean and median travel time

and stopped time are reduced, illustrated in Figure 22 and Table 11. This is evidence suggesting that

the improvements offered by the reinforcement learning adaptive traffic signal controller overcome the

detriments caused by the minority of intersections where the reinforcement learning policy performed

worse than the fixed time controller. However, considering 94% of intersections have developed

superior policies compared to random and fixed controllers, the authors hypothesize improvements

to the learning algorithm could learn optimal policies for all intersections. Although these measures

of effectiveness are mobility oriented, they also have environmental consequences. Particularly,

reducing stopped time is beneficial to reducing fuel consumption, as the acceleration and deceleration

involved with stopping consumes unnecessary fuel.

An important observation is that the variance of the intersections performance can be high, as

evidenced by the 2% (i.e., 4 out of 196) of intersections where the null hypothesis can not be rejected

for difference of means. This can indicate the learned reinforcement learning policy is unstable or

insufficiently estimated. Like many control systems, society requires traffic signal controllers be

stable, ensuring variance is minimized would be necessary in practice.

69

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

 Intersections
100

75

50

25

0

25

50

75

100

RL >

Delay
Change

(%)

 RL <

RL vs. Random 95% CI

 Intersections
100

75

50

25

0

25

50

75

100

RL vs. Fixed 95% CI

 Intersections
100

75

50

25

0

25

50

75

100

RL >

Queue
Change

(%)

 RL <

 Intersections
100

75

50

25

0

25

50

75

100

Figure 21: Comparison of mobility measures for different traffic signal controllers at each intersection.

Blue vertical lines represent independent, two sample difference of means 95% confidence intervals

(CI), used for testing hypotheses H0 : µπRL
− µπRand

= 0 and H0 : µπRL
− µπFixed

= 0. Blue lines

that do not cross the red line indicate statistically significant different means (i.e., sufficient evidence

to reject the null hypothesis H0).

4.11 Conclusions and Future Work

A reinforcement learning adaptive traffic signal control model was proposed and tested to control 196

intersections in a simulation of the City of Luxembourg. Using a distributed architecture and the

DDPG algorithm, the reinforcement learning system reduced travel time, stopped time, queue and

delay compared to random and fixed controllers. Despite agent diversity, one set of hyperparameters

is sufficient to develop more than 100 deep reinforcement learning agents successfully.

This research contributes to the body of knowledge by developing a scalable architecture capable

of training hundreds of reinforcement learning adaptive traffic signal controllers in simulation. This

framework can be used on any network as long as a simulation model has been developed.

Many areas for future research exist. Pedestrians were not modelled in the experiments con-

ducted, modelling and observing their behaviour with adaptive signal control is necessary to ensure

their quality of service does not diminish.

Many techniques have been developed to improve deep reinforcement learning that were not

70

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

0 250 500 750 1000 1250 1500 1750 2000
Travel Time (s)

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

Frequency

< 30 minutes

1801 3085 4370 5655 6940 8225 9510 10795 12080 13365
Travel Time (s)

0

50000

100000

150000

200000

250000

300000

350000

400000

> 30 minutes

0 250 500 750 1000 1250 1500 1750 2000
Stopped Time (s)

0

1000000

2000000

3000000

4000000

5000000

6000000

Frequency

1801 2607 3413 4220 5026 5833 6639 7446 8252 9059
Stopped Time (s)

0

10000

20000

30000

40000

50000

60000

Random
Fixed
RL

Figure 22: Individual vehicle temporal measures of effectiveness for each traffic signal control method.

Times are categorized into short (< 30 minutes) and long (> 30 minutes) durations.

Table 11: Testing results

(µ, σ, median, n)

Traffic Signal

Controller Travel Time (s) Stopped Time (s)

Random (799, 672, 625, 1.1e7) (262, 394, 144, 7.9e6)

Fixed (756, 525, 630, 1.1e7) (236, 295, 160, 8.0e6)

RL (651, 344, 575, 1.1e7) (136, 143, 92, 7.9e6)

71

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

utilized [47]. Improvements to the learning may develop better policies for the subset of intersections

where our proposed model decreased performance.

Recalling that fundamentally traffic signal control requires two decisions at any given time (i.e.,

selection of the next phase and duration) the proposed model only decides on the next phase duration

and uses a cycle for next phase selection. Future models could act on both decisions, choosing

the next phase and duration. This would likely require some kind of hierarchical or factorized

reinforcement learning architecture, however, researchers have developed and successfully applied

these techniques in other domains [126, 109, 127].

4.12 Appendix

Software used include SUMO 0.32.0 [4], Tensorflow 1.8 [128], SciPy [96] and public code [129]. The

neural network parameters were intiailized with Xavier [130] and optimized using Adam [107]. Dur-

ing training 40 actors and 8 learners were utilized. The authors found the computational constraint

was experience generation, necessitating more actors than learners. However, if more computa-

tionally intensive neural networks were used (e.g., convolutional, recurrent), the ratio of actors to

learners may need modification. Actors required ∼ 4.5 GB and learners < 1 GB of RAM. Training

wall clock time was ∼ 5 hours with the aforementioned configuration and hyperparameters.

To ensure intersection safety, yellow change and all-red clearance phases of four seconds in dura-

tion were inserted between all green phase transitions. By default the fixed time controller included

with LuST does not include red clearance phases, which the authors manually include to ensure

parity in results. As indicated in Algorithm 1, if no vehicles are present at the intersection, the

phase defaults to all-red, which is considered a terminal state sterminal. Each intersection’s state

observation is bounded by the shortest incoming lane or 125 m (i.e., the queue and density are cal-

culated from vehicles up to a maximum of 125 m from the intersection stopline). The dynamic user

assignment (dua) configuration of the LuST scenario is used for training and testing with random

seeds.

4.13 Acknowledgments

The authors would like to acknowledge this research would not have been possible without freely

available software. Specifically, [5, 6] and [4] whose free distribution of their work was an integral

part of this research.

This research was enabled in part by support in the form of computing resources provided

by SHARCNET (www.sharcnet.ca), their McMaster University staff and Compute Canada (www.

computecanada.ca).

72

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

5 CONCLUSION

5.1 Contributions

Transportation systems exhibit significant costs to the environment, human health and mobility

when governed by systems which act sub-optimally. Optimal control and decision-making in trans-

portation systems reduces costs and benefits society at large. To improve mobility and efficiency in

transportation systems, this thesis systematically developed an adaptive traffic signal control sys-

tem using reinforcement learning and validates it at scale in a realistic city simulation. This thesis

contributes to the academic body of knowledge:

• Adaptive Traffic Signal Controller: This thesis develops three different reinforcement

learning adaptive traffic controllers, Q-learning, A3C and DDPG, in simulation all with parallel

computing methods that decrease development time and allow for future scalability. Using

quantitative traffic measures of effectiveness, simulation evidence demonstrated the developed

methods can improve upon sub-optimal control from conventional traffic signal controllers.

Explicitly, the developed adaptive traffic signal controllers decrease delay, queues, stopped

time and travel time; consequently reducing vehicle emissions and improving human health.

The developed adaptive traffic signal controller was validated at scale, on a 24 hour simulation

of the City of Luxembourg, Luxembourg, controlling 196 intersections independently without

communication. To the best of the author’s knowledge, this is the largest application of

adaptive traffic signal controller in simulation to date, contributing to the state of the art

practice.

• Explicit Policy Representation: From a machine learning perspective, this thesis con-

tributes evidence that explicitly parameterizing the policy offers improved performance for

reinforcement learning adaptive traffic signal control, concurring with an ensemble of research

in other domains [46, 131, 48].

• Flexible Reinforcement Learning: This thesis demonstrated reinforcement learning is

flexible in implementation for adaptive traffic signal control. In answering the question what

decisions should an adaptive traffic signal controller make, this research demonstrated both

acyclic (i.e., choose the next phase, static duration) and cycle-based (i.e., next phase from

cycle, dynamic duration) adaptive traffic signal controllers can be used successfully. However,

acyclic controllers may learn to ignore some phases, diminishing some intersection users quality

of service, as evidenced in Chapter 2. As stability and fairness is desired in traffic signal

73

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

controllers, cycle based adaptive traffic signal controllers developed with reinforcement learning

are suggested by the evidence in this research. Additional research included as Appendix B

demonstrated a variety of state representations can be used, ranging from low-resolution data

provided by loop detectors to high-resolution data from cameras [132]. The reward can be

defined as a function of queue, delay or stopped time, all of which achieve favourable results.

This flexibility in problem definition when using reinforcement learning for adaptive traffic

signal control gives practitioners and academics many options for successful implementation.

These research findings and contributions also have broader impacts that are useful to a variety

of parties. Traffic engineers can use the methods proposed in this thesis to develop adaptive traffic

signal controllers which can cope with the increasing amounts of traffic data. This thesis details

how to develop control logic for adaptive traffic signal controllers at scale, guiding those interested

in practical implementation. For researchers and academics, this thesis demonstrates reinforcement

learning can be used to provide solutions to real-world, practical problems, beyond the video games

and toy problems commonly found in the literature. Policy-makers could learn what technological

solutions are available, and capable of, in solving society’s transportation problems.

5.2 Limitations & Future Work

This thesis contributes a system for developing adaptive traffic signal control logic and provides

a foundation for many areas of future inquiry. Foremost, practical implementation would require

expertise from a multitude of disciplines, most importantly the hardware necessary to integrate the

methods developed in this research with transportation infrastructure.

Transportation systems are multi-modal. In developing an adaptive traffic signal controller, this

research only modelled road based vehicles in simulation. In reality, traffic signal controllers af-

fect users of other transportation modes, such as pedestrians and cyclists. Cyclists share the road

with vehicles but exhibit different behaviour. Pedestrians have their own, parallel infrastructure

but are still influenced by a traffic signal controller’s policy when they want to traverse the inter-

section. Pedestrians in particular place constraints on traffic signal controllers, requiring minimum

amounts of time to safely cross the intersection. While efforts were taken in this thesis to respect

these constraints without explicitly modelling these other users/modes, future work should overcome

this limitation by consulting previous efforts [133, 100, 134] and include additional modes in their

simulation models. Transit and other active modes (i.e., walking, cycling) could be incorporated

into reinforcement learning adaptive traffic signal control by modifying the reward function used

in training. For example, a reward function defined at the passenger scale instead of the vehicle

74

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

scale could be used to favour transit over single passenger vehicles. These changes could be used by

transportation agencies interested in promoting a more efficient, sustainable transportation system.

A true multi-agent framework was not used in this research. While any adaptive traffic signal

control architecture exhibits its own advantages and disadvantages, using multi-agent systems tech-

niques is already a promising area of inquiry. Either through centralized control or decentralization

with communication, multi-agent adaptive traffic signal control has already been the focus of much

research [64, 98, 135]. Specifically in near saturated and over saturated traffic demand, multi-agent

systems would be able to coordinate their behaviour to achieve their goals perhaps better than

individual, isolated agents. However, any performance improvements achieved with multi-agent sys-

tems would need to be weighed against the additional resource requirements (i.e., centralization,

communication).

It is important to know how drivers would respond to adaptive traffic signal control in practice.

Drivers often traverse familiar routes (e.g., from home to work and back) and become accustomed

to certain regularities, developing expectations about their travel. For example, a daily commuter

will become familiar with the functioning of traffic signal controllers on their route. Although it is

hypothesized that an adaptive traffic signal controller’s decisions would be respected by drivers, it

is yet unknown if a driver’s familiar expectations will conflict with an adaptive controller. As any

traffic signal controller must ensure safe control of the intersection, it is necessary to study driver’s

response to adaptive control to guarantee safety isn’t compromised.

Future research could also focus on technical aspects. Only fully connected neural networks were

used for function approximation; other neuron connectivities (e.g., convolutional, recurrent, residual)

could offer improved performance. Despite the parsimony offered by model-free reinforcement learn-

ing methods compared to model-based methods, traffic demand exhibits recurring patterns from

which demand models could be developed and used with model-based reinforcement learning meth-

ods. Incorporating some form of continous learning [136] after field deployment is also a promising

area of future inquiry. Traditionally, deep reinforcement learning agents train for some fixed dura-

tion and then perform no further updates to their model parameters. Developing the capability to

learn at all times will likely further improve performance in non-stationary environments like traffic

signal control. Bayesian methods are particularly well-suited to develop continuous reinforcement

learning models, with some successful research already conducted for adaptive traffic signal control

[88, 89, 90]

It is worth noticing that although this thesis successfully developed adaptive traffic signal con-

trollers, this success is actually managing symptoms of a problem and not its cause. The real

problem is not one of a lack of infrastructure or even completely inadequate control methods, but

75

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

a demand-time-capacity problem. For the majority of the time, demand of traffic infrastructure is

below capacity. It is only for a fraction of the time (e.g., work day morning/evening commute) that

traffic demand exceeds infrastructure capacity and problems arise. Fundamentally, if traffic demand

never exceeded infrastructure capacity, this would eliminate many of the problems and inefficiencies

currently experienced. Society expects solutions to the problem as it currently exists, but what if

solutions were developed which prevented the problem from manifesting in the first place? Some un-

orthodox, perhaps quixotic, solutions are worth consideration. An obvious solution is public transit,

which uses separate infrastructure or uses shared infrastructure more efficiently. Another possibility

would be to restructure society such that demand is more uniformly distributed over time. Peak

demands occur when the majority of people travel to and from work. If society’s working hours

were restructured in a way that wasn’t so bi-modal, demand wouldn’t exceed capacity as often.

Both of these solutions would require significant collective change within a population, but they

are nonetheless worth considering. Implementing solutions of these kind lie outside the domain of

engineering, likely requiring policy and political action, and to some may be considered unrealistic.

Nevertheless, an objective account of this problem should consider all solutions, as the increasing

costs incurred necessitate considering all possibilities.

Ensuring transportations are efficient transportation systems will continue to be among the

foremost concerns for societies. This research successfully developed adaptive traffic signal control

solutions, addressing present and future transportation concerns with benefits to mobility, human

health and the environment.

76

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

REFERENCES

[1] W. Genders and S. Razavi, “Asynchronous n-step q-learning adaptive traffic signal control,”

Journal of Intelligent Transportation Systems, 2018. doi:10.1080/15472450.2018.1491003. Ac-

cepted, In Press.

[2] W. Genders and S. Razavi, “Policy analysis of reinforcement learning adaptive traffic signal

control,” ASCE Journal of Computing in Civil Engineering, 2018. 4th round of revisions,

CPENG-2667R4.

[3] W. Genders and S. Razavi, “Distributed deep deterministic policy gradients for adaptive traffic

signal control,” IEEE Transactions on Intelligent Transportation Systems, 2018. Submitted 15

August 2018 , T-ITS-18-08-0805.

[4] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent development and applications

of SUMO - Simulation of Urban MObility,” International Journal On Advances in Systems

and Measurements, vol. 5, pp. 128–138, December 2012.

[5] L. Codeca, R. Frank, and T. Engel, “Luxembourg sumo traffic (lust) scenario: 24 hours of mo-

bility for vehicular networking research,” in Proceedings of the 7th IEEE Vehicular Networking

Conference, pp. 1–8, 2015.

[6] L. Codecá, R. Frank, S. Faye, and T. Engel, “Luxembourg SUMO Traffic (LuST) Scenario:

Traffic Demand Evaluation,” IEEE Intelligent Transportation Systems Magazine, vol. 9, no. 2,

pp. 52–63, 2017.

[7] S. Pandian, S. Gokhale, and A. K. Ghoshal, “Evaluating effects of traffic and vehicle char-

acteristics on vehicular emissions near traffic intersections,” Transportation Research Part D:

Transport and Environment, vol. 14, no. 3, pp. 180–196, 2009.

[8] P. Goodwin, “The economic costs of road traffic congestion,” 2004.

[9] M. M. Baker, “White paper european transport policy for 2010: time to decide,” 2001.

[10] D. Schrank, B. Eisele, T. Lomax, and J. Bak, “2015 urban mobility scorecard,” tech. rep.,

The Texas A&M Transportation Institute and INRIX, 2015. https://static.tti.tamu.

edu/tti.tamu.edu/documents/mobility-scorecard-2015.pdf.

[11] CPCS, “Grinding to a halt: Evaluating canada’s worse bottlenecks,” tech. rep., Canadian

Automobile Association, 2017.

77

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

[12] G. Cookson, “INRIX global traffic scorecard,” tech. rep., INRIX, 2018.

[13] X. Liu, F. Lu, H. Zhang, and P. Qiu, “Intersection delay estimation from floating car data via

principal curves: a case study on beijing’s road network,” Frontiers of earth science, vol. 7,

no. 2, pp. 206–216, 2013.

[14] T. Liao and R. Machemehl, “Optimal traffic signal strategy for fuel consumption and emissions

control at signalized intersections,” in Proceedings of 24th European Transport Forum, Brunel

University, England, 1996.

[15] International Energy Agency, “CO2 emissions from fuel combustion 2017 high-

lights.” https://www.iea.org/publications/freepublications/publication/

CO2EmissionsfromFuelCombustionHighlights2017.pdf, 2017.

[16] World Health Organization et al., “Ambient air pollution: A global assessment of exposure

and burden of disease,” 2016.

[17] R. A. Silva, Z. Adelman, M. M. Fry, and J. J. West, “The impact of individual anthropogenic

emissions sectors on the global burden of human mortality due to ambient air pollution,”

Environmental health perspectives, vol. 124, no. 11, p. 1776, 2016.

[18] W. Q. Gan, H. W. Davies, M. Koehoorn, and M. Brauer, “Association of long-term exposure

to community noise and traffic-related air pollution with coronary heart disease mortality,”

American journal of epidemiology, vol. 175, no. 9, pp. 898–906, 2012.

[19] Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.-i. Tadaki,

and S. Yukawa, “Traffic jams without bottlenecks—experimental evidence for the physical

mechanism of the formation of a jam,” New journal of physics, vol. 10, no. 3, p. 033001, 2008.

[20] Transportation Research Board and National Academies of Sciences, Engineering, and

Medicine, Signal Timing Manual - Second Edition. Washington, DC: The National Academies

Press, 2015.

[21] T. Li, D. Zhao, and J. Yi, “Adaptive dynamic programming for multi-intersections traffic signal

intelligent control,” in Intelligent Transportation Systems, 2008. ITSC 2008. 11th International

IEEE Conference on, pp. 286–291, IEEE, 2008.

[22] C. Cai, C. K. Wong, and B. G. Heydecker, “Adaptive traffic signal control using approximate

dynamic programming,” Transportation Research Part C: Emerging Technologies, vol. 17,

no. 5, pp. 456–474, 2009.

78

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

[23] S. Chiu and S. Chand, “Adaptive traffic signal control using fuzzy logic,” in Fuzzy Systems,

1993., Second IEEE International Conference on, pp. 1371–1376, IEEE, 1993.

[24] M. C. Choy, D. Srinivasan, and R. L. Cheu, “Cooperative, hybrid agent architecture for real-

time traffic signal control,” IEEE Transactions on Systems, Man, and Cybernetics-Part A:

systems and humans, vol. 33, no. 5, pp. 597–607, 2003.

[25] D. J. Montana and S. Czerwinski, “Evolving control laws for a network of traffic signals,” in

Proceedings of the 1st annual conference on genetic programming, pp. 333–338, MIT Press,

1996.

[26] B. Park, C. Messer, and T. Urbanik, “Traffic signal optimization program for oversaturated

conditions: genetic algorithm approach,” Transportation Research Record: Journal of the

Transportation Research Board, no. 1683, pp. 133–142, 1999.

[27] H. Ceylan and M. G. Bell, “Traffic signal timing optimisation based on genetic algorithm

approach, including drivers’ routing,” Transportation Research Part B: Methodological, vol. 38,

no. 4, pp. 329–342, 2004.

[28] P. Hunt, D. Robertson, R. Bretherton, and R. Winton, “Scoot-a traffic responsive method of

coordinating signals,” tech. rep., 1981.

[29] N. Gartner, “A demand-responsive strategy for traffic signal control,” Transportation Research

Record, vol. 906, pp. 75–81, 1983.

[30] P. Lowrie, “Scats, sydney co-ordinated adaptive traffic system: A traffic responsive method of

controlling urban traffic,” 1990.

[31] P. Mirchandani and L. Head, “A real-time traffic signal control system: architecture, algo-

rithms, and analysis,” Transportation Research Part C: Emerging Technologies, vol. 9, no. 6,

pp. 415–432, 2001.

[32] F. Luyanda, D. Gettman, L. Head, S. Shelby, D. Bullock, and P. Mirchandani, “Acs-lite algo-

rithmic architecture: applying adaptive control system technology to closed-loop traffic signal

control systems,” Transportation Research Record: Journal of the Transportation Research

Board, no. 1856, pp. 175–184, 2003.

[33] M. Clarke, “Big data in transport,” tech. rep., The Institution of Engineering and Technol-

ogy, 2018. https://www.theiet.org/sectors/transport/topics/intelligent-mobility/

files/sector-insight.cfm.

79

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

[34] G. E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics, vol. 38,

no. 8, pp. 114–117, 1965.

[35] R. A. Howard, “Dynamic programming and markov processes,” Science, vol. 132, no. 3482,

1964.

[36] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, vol. 1. MIT press

Cambridge, 1998.

[37] R. Bellman, “The theory of dynamic programming,” tech. rep., RAND Corp Santa Monica

CA, 1954.

[38] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–292,

1992.

[39] G. A. Rummery and M. Niranjan, On-line Q-learning using connectionist systems, vol. 37.

University of Cambridge, Department of Engineering Cambridge, England, 1994.

[40] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning,” Machine learning, vol. 8, no. 3-4, pp. 229–256, 1992.

[41] S. M. Kakade, “A natural policy gradient,” in Advances in neural information processing

systems, pp. 1531–1538, 2002.

[42] S. Haykin, Neural networks and learning machines, vol. 3. Pearson Upper Saddle River, NJ,

USA:, 2009.

[43] S. Linnainmaa, “Taylor expansion of the accumulated rounding error,” BIT Numerical Math-

ematics, vol. 16, no. 2, pp. 146–160, 1976.

[44] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-

propagating errors,” nature, vol. 323, no. 6088, p. 533, 1986.

[45] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep rein-

forcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[46] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and

K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in International

Conference on Machine Learning, pp. 1928–1937, 2016.

80

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

[47] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan,

B. Piot, M. Azar, and D. Silver, “Rainbow: Combining improvements in deep reinforcement

learning,” arXiv preprint arXiv:1710.02298, 2017.

[48] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu,

T. Harley, I. Dunning, et al., “Impala: Scalable distributed deep-rl with importance weighted

actor-learner architectures,” arXiv preprint arXiv:1802.01561, 2018.

[49] M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. G. Castaneda, C. Beattie,

N. C. Rabinowitz, A. S. Morcos, A. Ruderman, et al., “Human-level performance in first-

person multiplayer games with population-based deep reinforcement learning,” arXiv preprint

arXiv:1807.01281, 2018.

[50] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,

I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the game of go with deep

neural networks and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[51] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,

L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go without human knowledge,”

Nature, vol. 550, no. 7676, p. 354, 2017.

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional

neural networks,” in Advances in neural information processing systems, pp. 1097–1105, 2012.

[53] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic ma-

nipulation with asynchronous off-policy updates,” in Robotics and Automation (ICRA), 2017

IEEE International Conference on, pp. 3389–3396, IEEE, 2017.

[54] P. G. Gipps, “A behavioural car-following model for computer simulation,” Transportation

Research Part B: Methodological, vol. 15, no. 2, pp. 105–111, 1981.

[55] K. Nagel and M. Schreckenberg, “A cellular automaton model for freeway traffic,” Journal de

physique I, vol. 2, no. 12, pp. 2221–2229, 1992.

[56] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally equidistributed

uniform pseudo-random number generator,” ACM Transactions on Modeling and Computer

Simulation (TOMACS), vol. 8, no. 1, pp. 3–30, 1998.

[57] T. L. Thorpe and C. W. Anderson, “Traffic light control using sarsa with three state repre-

sentations,” tech. rep., Citeseer, 1996.

81

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

[58] E. Bingham, “Neurofuzzy traffic signal control,” 1998.

[59] M. Wiering et al., “Multi-agent reinforcement learning for traffic light control,” in ICML,

pp. 1151–1158, 2000.

[60] B. Abdulhai, R. Pringle, and G. J. Karakoulas, “Reinforcement learning for true adaptive

traffic signal control,” Journal of Transportation Engineering, vol. 129, no. 3, pp. 278–285,

2003.

[61] D. de Oliveira, A. L. Bazzan, B. C. da Silva, E. W. Basso, L. Nunes, R. Rossetti, E. de Oliveira,

R. da Silva, and L. Lamb, “Reinforcement learning based control of traffic lights in non-

stationary environments: A case study in a microscopic simulator.,” in EUMAS, 2006.

[62] D. Srinivasan, M. C. Choy, and R. L. Cheu, “Neural networks for real-time traffic signal

control,” IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 3, pp. 261–272,

2006.

[63] I. Arel, C. Liu, T. Urbanik, and A. Kohls, “Reinforcement learning-based multi-agent system

for network traffic signal control,” IET Intelligent Transport Systems, vol. 4, no. 2, pp. 128–135,

2010.

[64] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, “Multiagent reinforcement learning for inte-

grated network of adaptive traffic signal controllers (marlin-atsc): methodology and large-scale

application on downtown toronto,” IEEE Transactions on Intelligent Transportation Systems,

vol. 14, no. 3, pp. 1140–1150, 2013.

[65] M. A. Khamis and W. Gomaa, “Adaptive multi-objective reinforcement learning with hybrid

exploration for traffic signal control based on cooperative multi-agent framework,” Engineering

Applications of Artificial Intelligence, vol. 29, pp. 134–151, 2014.

[66] T. Rijken, DeepLight: Deep reinforcement learning for signalised traffic control. PhD thesis,

Master’s Thesis. University College London, 2015.

[67] L. Li, Y. Lv, and F.-Y. Wang, “Traffic signal timing via deep reinforcement learning,”

IEEE/CAA Journal of Automatica Sinica, vol. 3, no. 3, pp. 247–254, 2016.

[68] E. van der Pol, Deep reinforcement learning for coordination in traffic light control. PhD thesis,

Master’s Thesis. University of Amsterdam, 2016.

[69] W. Genders and S. Razavi, “Using a deep reinforcement learning agent for traffic signal con-

trol,” arXiv preprint arXiv:1611.01142, 2016. https://arxiv.org/abs/1611.01142.

82

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

[70] S. Mikami and Y. Kakazu, “Genetic reinforcement learning for cooperative traffic signal con-

trol,” in Evolutionary Computation, 1994. IEEE World Congress on Computational Intelli-

gence., Proceedings of the First IEEE Conference on, pp. 223–228, IEEE, 1994.

[71] E. Bingham, “Reinforcement learning in neurofuzzy traffic signal control,” European Journal

of Operational Research, vol. 131, no. 2, pp. 232–241, 2001.

[72] F. Webster, “Traffic signal settings, road research technical paper no. 39,” Road Research

Laboratory, 1958.

[73] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine learning,

vol. 3, no. 1, pp. 9–44, 1988.

[74] P. Balaji, X. German, and D. Srinivasan, “Urban traffic signal control using reinforcement

learning agents,” IET Intelligent Transport Systems, vol. 4, no. 3, pp. 177–188, 2010.

[75] L. Prashanth and S. Bhatnagar, “Reinforcement learning with function approximation for

traffic signal control,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 2,

pp. 412–421, 2011.

[76] N. Casas, “Deep deterministic policy gradient for urban traffic light control,” arXiv preprint

arXiv:1703.09035, 2017.

[77] S. S. Mousavi, M. Schukat, P. Corcoran, and E. Howley, “Traffic light control using deep policy-

gradient and value-function based reinforcement learning,” arXiv preprint arXiv:1704.08883,

2017.

[78] J. Lee, B. Abdulhai, A. Shalaby, and E.-H. Chung, “Real-time optimization for adaptive traffic

signal control using genetic algorithms,” Journal of Intelligent Transportation Systems, vol. 9,

no. 3, pp. 111–122, 2005.

[79] T. Wongpiromsarn, T. Uthaicharoenpong, Y. Wang, E. Frazzoli, and D. Wang, “Distributed

traffic signal control for maximum network throughput,” in Intelligent Transportation Systems

(ITSC), 2012 15th International IEEE Conference on, pp. 588–595, IEEE, 2012.

[80] J. Gregoire, X. Qian, E. Frazzoli, A. De La Fortelle, and T. Wongpiromsarn, “Capacity-aware

backpressure traffic signal control,” IEEE Transactions on Control of Network Systems, vol. 2,

no. 2, pp. 164–173, 2015.

83

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

[81] S. Timotheou, C. G. Panayiotou, and M. M. Polycarpou, “Distributed traffic signal control

using the cell transmission model via the alternating direction method of multipliers,” IEEE

Transactions on Intelligent Transportation Systems, vol. 16, no. 2, pp. 919–933, 2015.

[82] E. Brockfeld, R. Barlovic, A. Schadschneider, and M. Schreckenberg, “Optimizing traffic lights

in a cellular automaton model for city traffic,” Physical Review E, vol. 64, no. 5, p. 056132,

2001.

[83] Y. K. Chin, N. Bolong, A. Kiring, S. S. Yang, and K. T. K. Teo, “Q-learning based traffic opti-

mization in management of signal timing plan,” International Journal of Simulation, Systems,

Science & Technology, vol. 12, no. 3, pp. 29–35, 2011.

[84] M. Abdoos, N. Mozayani, and A. L. Bazzan, “Holonic multi-agent system for traffic signals

control,” Engineering Applications of Artificial Intelligence, vol. 26, no. 5, pp. 1575–1587, 2013.

[85] H. A. Aziz, F. Zhu, and S. V. Ukkusuri, “Learning-based traffic signal control algorithms

with neighborhood information sharing: An application for sustainable mobility,” Journal of

Intelligent Transportation Systems, vol. 22, no. 1, pp. 40–52, 2018.

[86] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, “Design of reinforcement learning parameters

for seamless application of adaptive traffic signal control,” Journal of Intelligent Transportation

Systems, vol. 18, no. 3, pp. 227–245, 2014.

[87] P. Mannion, J. Duggan, and E. Howley, “An experimental review of reinforcement learning

algorithms for adaptive traffic signal control,” in Autonomic Road Transport Support Systems,

pp. 47–66, Springer, 2016.

[88] M. A. Khamis, W. Gomaa, A. El-Mahdy, and A. Shoukry, “Adaptive traffic control system

based on bayesian probability interpretation,” in Electronics, Communications and Computers

(JEC-ECC), 2012 Japan-Egypt Conference on, pp. 151–156, IEEE, 2012.

[89] M. A. Khamis, W. Gomaa, and H. El-Shishiny, “Multi-objective traffic light control system

based on bayesian probability interpretation,” in Intelligent Transportation Systems (ITSC),

2012 15th International IEEE Conference on, pp. 995–1000, IEEE, 2012.

[90] M. A. Khamis and W. Gomaa, “Enhanced multiagent multi-objective reinforcement learning

for urban traffic light control,” in Machine Learning and Applications (ICMLA), 2012 11th

International Conference on, vol. 1, pp. 586–591, IEEE, 2012.

84

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

[91] S. Sivaraman and M. M. Trivedi, “Looking at vehicles on the road: A survey of vision-based

vehicle detection, tracking, and behavior analysis,” IEEE Transactions on Intelligent Trans-

portation Systems, vol. 14, no. 4, pp. 1773–1795, 2013.

[92] C. Hill and G. Krueger, “ITS ePrimer Module 13: Connected vehicles.” https://www.pcb.

its.dot.gov/eprimer/module13.aspx.

[93] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running average

of its recent magnitude,” COURSERA: Neural Networks for Machine Learning, vol. 4, no. 2,

2012.

[94] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin, et al., “Tensorflow: Large-scale machine learning on heterogeneous dis-

tributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[95] S. Kapturowski, “Tensorflow-rl.” https://github.com/steveKapturowski/tensorflow-rl,

2017.

[96] E. Jones, T. Oliphant, P. Peterson, et al., “SciPy: Open source scientific tools for Python,”

2001. "http://www.scipy.org/".

[97] K.-L. A. Yau, J. Qadir, H. L. Khoo, M. H. Ling, and P. Komisarczuk, “A survey on rein-

forcement learning models and algorithms for traffic signal control,” ACM Computing Surveys

(CSUR), vol. 50, no. 3, p. 34, 2017.

[98] F. Zhu, H. A. Aziz, X. Qian, and S. V. Ukkusuri, “A junction-tree based learning algorithm to

optimize network wide traffic control: A coordinated multi-agent framework,” Transportation

Research Part C: Emerging Technologies, vol. 58, pp. 487–501, 2015.

[99] J. Jin and X. Ma, “A group-based traffic signal control with adaptive learning ability,” Engi-

neering applications of artificial intelligence, vol. 65, pp. 282–293, 2017.

[100] M. Aslani, M. S. Mesgari, and M. Wiering, “Adaptive traffic signal control with actor-critic

methods in a real-world traffic network with different traffic disruption events,” Transportation

Research Part C: Emerging Technologies, vol. 85, pp. 732–752, 2017.

[101] J. Peters, S. Vijayakumar, and S. Schaal, “Natural actor-critic,” in European Conference on

Machine Learning, pp. 280–291, Springer, 2005.

[102] S. Richter, D. Aberdeen, and J. Yu, “Natural actor-critic for road traffic optimisation,” in

Advances in neural information processing systems, pp. 1169–1176, 2007.

85

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

[103] L. Chun-Gui, W. Meng, S. Zi-Gaung, L. Fei-Ying, and Z. Zeng-Fang, “Urban traffic signal

learning control using fuzzy actor-critic methods,” in Natural Computation, 2009. ICNC’09.

Fifth International Conference on, vol. 1, pp. 368–372, IEEE, 2009.

[104] T. Degris, P. M. Pilarski, and R. S. Sutton, “Model-free reinforcement learning with continuous

action in practice,” in American Control Conference (ACC), 2012, pp. 2177–2182, IEEE, 2012.

[105] Toronto, “Traffic signal operations policies and strategies,” April 2018.

https://www.toronto.ca/wp-content/uploads/2017/11/91d6-0_2015-11-13\

_Traffic-Signal-Operations-Policies-and-Strategies_Final-a.pdf.

[106] B. C. Csáji, “Approximation with artificial neural networks,” Faculty of Sciences, Etvs Lornd

University, Hungary, vol. 24, p. 48, 2001.

[107] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[108] S. Goel, S. F. Bush, and C. Gershenson, “Self-organization in traffic lights: Evolution of signal

control with advances in sensors and communications,” arXiv preprint arXiv:1708.07188, 2017.

[109] S. Sharma, A. S. Lakshminarayanan, and B. Ravindran, “Learning to repeat: Fine grained

action repetition for deep reinforcement learning,” arXiv preprint arXiv:1702.06054, 2017.

[110] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu, A. Pritzel, and D. Wier-

stra, “Pathnet: Evolution channels gradient descent in super neural networks,” arXiv preprint

arXiv:1701.08734, 2017.

[111] I. Higgins, A. Pal, A. A. Rusu, L. Matthey, C. P. Burgess, A. Pritzel, M. Botvinick, C. Blun-

dell, and A. Lerchner, “Darla: Improving zero-shot transfer in reinforcement learning,” arXiv

preprint arXiv:1707.08475, 2017.

[112] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional continuous

control using generalized advantage estimation,” arXiv preprint arXiv:1506.02438, 2015.

[113] L. Wu, Y. Ci, J. Chu, and H. Zhang, “The influence of intersections on fuel consumption in

urban arterial road traffic: a single vehicle test in harbin, china,” PloS one, vol. 10, no. 9,

2015.

[114] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy optimiza-

tion,” in International Conference on Machine Learning, pp. 1889–1897, 2015.

86

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

[115] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimiza-

tion algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[116] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778,

2016.

[117] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and X. Tang, “Residual

attention network for image classification,” arXiv preprint arXiv:1704.06904, 2017.

[118] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. Van Hasselt, and D. Silver,

“Distributed prioritized experience replay,” arXiv preprint arXiv:1803.00933, 2018.

[119] X. Liang, X. Du, G. Wang, and Z. Han, “Deep reinforcement learning for traffic light control

in vehicular networks,” arXiv preprint arXiv:1803.11115, 2018.

[120] L. Kuyer, S. Whiteson, B. Bakker, and N. Vlassis, “Multiagent reinforcement learning for

urban traffic control using coordination graphs,” in Joint European Conference on Machine

Learning and Knowledge Discovery in Databases, pp. 656–671, Springer, 2008.

[121] J. C. Medina and R. F. Benekohal, “Traffic signal control using reinforcement learning and the

max-plus algorithm as a coordinating strategy,” in Intelligent Transportation Systems (ITSC),

2012 15th International IEEE Conference on, pp. 596–601, IEEE, 2012.

[122] T. Chu, S. Qu, and J. Wang, “Large-scale traffic grid signal control with regional reinforcement

learning,” in American Control Conference (ACC), 2016, pp. 815–820, IEEE, 2016.

[123] W. Liu, G. Qin, Y. He, and F. Jiang, “Distributed cooperative reinforcement learning-based

traffic signal control that integrates v2x networks’ dynamic clustering,” IEEE Transactions on

Vehicular Technology, vol. 66, no. 10, pp. 8667–8681, 2017.

[124] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wier-

stra, “Continuous control with deep reinforcement learning,” arXiv preprint arXiv:1509.02971,

2015.

[125] L.-J. Lin, “Self-improving reactive agents based on reinforcement learning, planning and teach-

ing,” Machine learning, vol. 8, no. 3-4, pp. 293–321, 1992.

[126] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hierarchical deep reinforce-

ment learning: Integrating temporal abstraction and intrinsic motivation,” in Advances in

neural information processing systems, pp. 3675–3683, 2016.

87

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

[127] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and

K. Kavukcuoglu, “Feudal networks for hierarchical reinforcement learning,” arXiv preprint

arXiv:1703.01161, 2017.

[128] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-

fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,

M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-

sudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,

“TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015. Software avail-

able from tensorflow.org.

[129] M. Zhou, “Reinforcement-learning-with-tensorflow,” 2018. Accessed on 15 July 2018.

[130] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural

networks,” in Proceedings of the thirteenth international conference on artificial intelligence

and statistics, pp. 249–256, 2010.

[131] A. Gruslys, M. G. Azar, M. G. Bellemare, and R. Munos, “The reactor: A sample-efficient

actor-critic architecture,” arXiv preprint arXiv:1704.04651, 2017.

[132] W. Genders and S. Razavi, “Evaluating reinforcement learning state representations for adap-

tive traffic signal control,” Procedia computer science, vol. 130, pp. 26–33, 2018. https:

//doi.org/10.1016/j.procs.2018.04.008.

[133] Q. He, K. L. Head, and J. Ding, “Multi-modal traffic signal control with priority, signal

actuation and coordination,” Transportation Research Part C: Emerging Technologies, vol. 46,

pp. 65–82, 2014.

[134] Y. Zhang, K. Gao, Y. Zhang, and R. Su, “Traffic light scheduling for pedestrian-vehicle mixed-

flow networks,” IEEE Transactions on Intelligent Transportation Systems, no. 99, pp. 1–16,

2018.

[135] S. Araghi, A. Khosravi, and D. Creighton, “Intelligent cuckoo search optimized traffic signal

controllers for multi-intersection network,” Expert Systems with Applications, vol. 42, no. 9,

pp. 4422–4431, 2015.

[136] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong learning

with neural networks: A review,” arXiv preprint arXiv:1802.07569, 2018.

88

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

[137] G. Tesauro, “Temporal difference learning and td-gammon,” Communications of the ACM,

vol. 38, no. 3, pp. 58–68, 1995.

[138] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional archi-

tecture in the cat’s visual cortex,” The Journal of physiology, vol. 160, no. 1, pp. 106–154,

1962.

[139] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate

cortex,” The Journal of physiology, vol. 195, no. 1, pp. 215–243, 1968.

[140] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document

recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[141] F. Chollet, “Keras.” https://github.com/fchollet/keras, 2018.

[142] Theano Development Team, “Theano: A Python framework for fast computation of mathe-

matical expressions,” arXiv e-prints, vol. abs/1605.02688, May 2016.

[143] R. Riccardo and G. Massimiliano, “An empirical analysis of vehicle time headways on rural

two-lane two-way roads,” Procedia-Social and Behavioral Sciences, vol. 54, pp. 865–874, 2012.

[144] A. Maurya, S. DEY, and S. DAS, “Speed and time headway distribution under mixed traffic

condition,” Journal of the Eastern Asia Society for Transportation Studies, vol. 11, no. 0,

pp. 1774–1792, 2015.

[145] J. L. McClelland, B. L. McNaughton, and R. C. O’Reilly, “Why there are complementary

learning systems in the hippocampus and neocortex: insights from the successes and failures

of connectionist models of learning and memory.,” Psychological review, vol. 102, no. 3, p. 419,

1995.

[146] J. O’Neill, B. Pleydell-Bouverie, D. Dupret, and J. Csicsvari, “Play it again: reactivation of

waking experience and memory,” Trends in neurosciences, vol. 33, no. 5, pp. 220–229, 2010.

[147] L.-J. Lin, “Reinforcement learning for robots using neural networks,” tech. rep., DTIC Docu-

ment, 1993.

[148] M. Wiering, J. Vreeken, J. Van Veenen, and A. Koopman, “Simulation and optimization of

traffic in a city,” in Intelligent Vehicles Symposium, 2004 IEEE, pp. 453–458, IEEE, 2004.

[149] S. Kapturowski, “Tensorflow-rl,” 2017. https://github.com/steveKapturowski/

tensorflow-rl.

89

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

APPENDIX A: DQN-TSC

This manuscript was completed in the early stages of thesis research and was published to the

preprint website arXiv under the following reference:

W. Genders and S. Razavi, “Using a deep reinforcement learning agent for traffic signal control,”

arXiv preprint arXiv:1611.01142, 2016. https://arxiv.org/abs/1611.01142

The co-author’s contributions to the above work include:

• Financial and technical supervision of the study presented in this work.

• Manuscript editing.

90

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Abstract

Ensuring transportation systems are efficient is a priority for modern society. Technological advances

have made it possible for transportation systems to collect large volumes of varied data on an

unprecedented scale. We propose a traffic signal control system which takes advantage of this new,

high quality data, with minimal abstraction compared to other proposed systems. We apply modern

deep reinforcement learning methods to build a truly adaptive traffic signal control agent in the traffic

microsimulator SUMO. We propose a new state space, the discrete traffic state encoding, which is

information dense. The discrete traffic state encoding is used as input to a deep convolutional neural

network, trained using Q-learning with experience replay. Our agent was compared against a one

hidden layer neural network traffic signal control agent and reduces average cumulative delay by

82%, average queue length by 66% and average travel time by 20%.

Introduction

Modern society relies on its many transportation systems for the movement of individuals, goods

and services. Ensuring vehicles can move efficiently from their origin to destination is desirable by

all. However, increasing population, and subsequent vehicle ownership, has increased the demand of

road infrastructure often beyond its capacity, resulting in congestion, travel delays and unnecessary

vehicle emissions. To address this problem, two types of solutions are possible. The first is to increase

capacity by expanding road infrastructure, however this can be expensive, protracted and decrease

capacity in the short term. The second solution is to increase the efficiency of existing infrastructure

and the systems that govern them, such as traffic signal controllers (TSC). We advocate this second

solution, by utilizing recent advancements from the domain of artificial intelligence [45] to develop

a new traffic signal controller.

We define the traffic signal control problem as follows; given the state of traffic at an intersection,

what is the optimal traffic signal phase and sequence that should be enacted? Many systems have

been proposed that utilize new sensors, particularly reinforcement learning for traffic signal control,

however they do not take full advantage of the available data. We propose a deep artificial neural

network as a traffic signal control agent (TSCA), trained using reinforcement learning, that strives

to solve the traffic signal control problem by developing an optimal control policy.

Reinforcement learning is a machine learning paradigm where an agent seeks to maximize cumu-

lative reward by developing a state-action policy through repeated interaction with its environment.

Reinforcement learning agents achieve optimal control with respect to a defined reward by develop-

ing an optimal state-action policy. Function approximators, such as artificial neural networks, have

91

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

been used in reinforcement learning to approximate value functions when the agent’s representation

of the environment, or state space, becomes too large [137]. Convolutional neural networks, a spe-

cific type of network architecture, are inspired by biological research on the animal visual cortex

[138][139] and have displayed impressive performance [140]. They apply the mathematical convolu-

tion operation between various filters and the layer input to produce feature maps. Convolutional

networks are advantageous because minimal input pre-processing is required and they can develop

their own features. We develop a deep Q-network traffic signal control agent (DQTSCA), with the

action-value function modelled as a deep convolutional neural network trained using reinforcement

learning in a traffic microsimulator, SUMO, on an isolated intersection.

Reinforcement learning is a suitable technique for attempting to solve the traffic signal control

problem, as it elegantly represents the elements of the problem - agent (traffic signal controller),

environment (state of traffic) and actions (traffic signals). Previous research using reinforcement

learning for traffic signal control has yielded impressive results [74][75][64], yet we perceive areas for

improvement. We propose a new state space definition, the discrete traffic state encoding (DTSE), as

an improved representation of traffic, as it contains more relevant information compared to previous

research’s state space definitions. The DTSE is proposed as it is information dense; the convolutional

neural network is required to take advantage of the information dense state. The DTSE will allow the

convolutional neural network to perceive more relevant traffic information than previous research,

extract useful features and develop high-level state representations. The agent can then achieve

optimal control by choosing the actions with the highest value, or maximum expected cumulative

reward.

The succeeding sections are organized as follows: the Literature Review details research con-

ducted in the domain of traffic signal control and reinforcement learning, the Proposed System

describes the proposed DQTSCA and defines the state space, action space and reward, the Exper-

imental Setup and Training details the tools used to implement the proposed agent and describes

its training, Results and Discussion discusses the results and performance of the agent and the

Conclusion summarizes the research conducted and provides ideas for future work.

Literature Review

Significant research has been conducted using reinforcement learning for traffic signal control. Early

efforts were limited by simple simulations and a lack of computational power [57][59][82][60]. Be-

ginning in the early 2000’s, continuous improvements in both of these areas have created a variety

of simulation tools that are increasingly complex and realistic. Traffic microsimulators are the most

popular tool used by traffic researchers, as they model individual vehicles as distinct entities and

92

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

can reproduce real-world traffic behavior such as shockwaves. Research conducted has differed in

reinforcement learning type, state space definition, action space definition, reward definition, simu-

lator, traffic network geometry and vehicle generation model. Previous research efforts have defined

the state space as some attribute of traffic, the number of queued vehicles [59][60][83][84] and traffic

flow [63][74] the most popular. The action space has been defined as all available signal phases

[63][64] or restricted to green phases only [74][83][84]. The most common reward definitions are

change in delay [63][64] and change in queued vehicles [74][83][84]. For a comprehensive review of

reinforcement learning traffic signal control research, the reader is referred to [86] and [87].

Regarding previous research, the following observations can be made. First, the majority of state

definitions are abstractions of the traffic state which omit relevant information. A reinforcement

learning agent must first observe the state of the environment before it can act, if useful information

is missing, it is unlikely to be able to act optimally. For example, if the state space is defined as the

number of queued vehicles at the intersection, this ignores all of the moving vehicles, as well as the

queued vehicles’ lane and queue position. We believe the state space definition should include as

much relevant information about the traffic state as possible, including vehicles’ location and speed,

thus our proposal of the DTSE, formally defined in the Proposed System section. We recognize

that in practice it may be difficult for a TSCA to observe the state of all vehicles’ location and

speed, but we will defend this assumption in succeeding sections. However, some previous research

has proposed a similar, less abstracted, yet limited, state definition [57], from which our research

acknowledges their contribution and seeks to extend beyond their efforts.

Second, the TSCA should be given as much action autonomy as possible, therefore it must be

recognized that defining the action space as choosing between fixed sequences of signal phases is

limiting. For example, if we define that an advance left green signal phase must always precede a

through green signal phase, this assumes the optimal policy follows such a sequence. However, it

is conceivable that the optimal action given a certain traffic state is to have an advance left green

signal phase succeed a through green signal phase. Much of the previous research has constrained

the agent’s action in such a way; our action space definition seeks to endow the agent with a higher

degree of autonomy in an attempt to learn the optimal policy.

Finally, all previous research have used computer simulations, as real-world experimentation is

infeasible for various reasons. The majority of research assumes vehicle generation can be modelled

as a Poisson process, which relies upon the negative exponential distribution, to model the time

between vehicle generation events. We propose in subsequent sections that the negative exponential

is not the best distribution to model real traffic, as empirical research has shown other distributions

to more accurately model different vehicle generation flow rates.

93

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Proposed System

Attempting to solve the traffic signal control problem using reinforcement learning requires a formu-

lation of the problem in the language of reinforcement learning, specifically, defining a state space

S, an action space A and a reward R.

State Space

We propose the DTSE as the appropriate state space S in this research, inspired by a common

technique in computing of discretization and quantization of continuous entities. For each lane

approaching the intersection, the DTSE discretizes a length l of the lane segment, beginning at the

stop line, into cells of length c. The selection of c will change the behavior of system. If c is many

times larger than the average vehicle length, the individual dynamics of each vehicle will be lost,

however computational cost will be reduced. If c is much smaller than the average vehicle length, the

individual vehicle dynamics will be retained, however the computational cost will increase, perhaps

unnecessarily. We mention the selection of c is important, however for this research we select c in a

simplified manner in an attempt to evaluate the proposed system.

The DTSE is composed of three vectors, the first representing the presence of a vehicle or not in

the cell, the second the speed of the vehicle and the third the current traffic signal phase (i.e., the

most recent action selected). The addition of second speed vector is an extension beyond [57], as their

state definition only consists of a vector representing the presence of a vehicle. Therefore, the state

of traffic at an intersection with n lanes is formally defined as the DTSE, where S ∈ (B× R)
l
c×n×P

and P represents the current traffic signal phase. At time t, the agent observes the traffic state

(i.e., the DTSE) as st ∈ S. A representation of the DTSE can be seen in Fig. 23, with triangles

representing vehicles travelling from left to right. In Fig. 23, Fig. 23 (a) shows simulated vehicles

approaching the intersection, Fig. 23 (b) is the Boolean-valued vector of the DTSE, encoding the

presence or absence of a value and Fig. 23 (c) is the real-valued vector of the DTSE, encoding the

normalized speed.

The motivation behind the DTSE is to retain useful information. If the agent is to discover

the optimal policy, it must discover the optimal actions for any given state; having knowledge of

approaching vehicle’s speed and position is conjectured to be superior to only the number of queued

vehicles or vehicle flow. The first vector’s elements are Boolean-valued, with a one representing the

presence of a vehicle and a zero representing the absence of a vehicle. The second vector’s elements

are real numbers and represent the vehicle’s speed, normalized by the speed limit. Each element of

P represents a different traffic phase and all elements of P are zero except for the current phase,

94

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Figure 23: Example of simulated traffic (a) with corresponding Boolean- (b) and real-valued DTSE

vectors (c).

which is one, therefore P ∈ B|A|.

Technologies over the last decade have made gathering information required for the DTSE pos-

sible. Video cameras [91] are becoming more common as sensor devices at intersections and vehicles

with wireless communication capabilities (i.e., Connected Vehicles [92]) are expected to be deployed

in the near future. Ultimately, the DTSE is sensor agnostic, the means by which the state informa-

tion is gathered, be it vision, wireless or otherwise, is irrelevant to creating the DTSE. The flexibility

in generating the DTSE should be seen as an advantage of the system.

Action Space

After the agent has observed the state of the environment, it must choose one action from the set of

all available actions. In this research, the agent’s possible actions are the traffic signal phase configu-

rations (i.e., the combination of traffic lights controlling individual lanes for the entire intersection).

For simplicity and human comprehension, each action is assigned a compass direction indicating the

approaching lanes’ traffic signal phases (i.e., the color of the traffic signal lights) and abbreviated

for brevity. For explicit clarity, a green traffic signal phase means vehicles can proceed through

the intersection, yellow cautions vehicles to slow down and prepare to stop and red means vehicles

should stop and not proceed through the intersection. The possible actions are North-South Green

(NSG), East-West Green (EWG), North-South Advance Left Green (NSLG), East-West Advance

Left Green (EWLG). Note, for any given action, it is implied that the omitted compass direction

traffic signals are red (e.g., East-West Green means that all North-South traffic signals are red).

Formally the set of all possible actions A is defined as A = {NSG, EWG, NSLG, EWLG}.

Therefore, at time t, the agent chooses an action at, where at ∈ A. However, when an agent

chooses an action, it may not be immediately enacted. To ensure safe control of the intersection,

95

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Table 12: Traffic Signal Phase Action Transitions

Selected Action

NSG EWG NSLG EWLG

Current Traffic Signal Phase

NSG - {NSY, R} {NSY} {NSY, R}

EWG {EWY, R} - {EWY, R} {EWY}

NSLG - {NSY, R} - {NSY, R}

EWLG {EWY} - {EWY. R} -

additional traffic signal phase configurations may precede the chosen action. Instead of immediately

transitioning from the current traffic signal phase to the selected action, a sequence of intermediate

traffic signal phases dependent on the current phase and chosen action may be necessary. All possible

action transition sequences to transition from the current traffic signal to the chosen action are shown

in Table 12. Note the addition of the North-South Yellow (NSY) and East-West Yellow (EWY) and

All Red (R) traffic signal configurations, which cannot be chosen explicitly as actions, but are part of

some traffic signal transition sequences. The yellow and red phases are necessary for safety reasons,

as they slow down and stop traffic so that succeeding green phases may be enacted.

Reward

The final element of reinforcement learning, after the agent has observed the state of the environment

st, chosen an action at, and performed it, is receiving the reward. The reward is one element that

differentiates reinforcement learning from other types of machine learning; developing a state-action

policy which maximizes cumulative long-term reward is what the agent seeks. Compared to other

types of machine learning, in which correct actions are given by instruction, reinforcement learning

has the agent evaluate actions by interacting with the environment. How to select the appropriate

reward for a given task is an unanswered problem in traditional reinforcement learning1. It would

be desirable if the agent could choose its own reward, instead of requiring an expert to define it, and

is therefore a goal of many active researchers.

In the context of traffic signal control, various rewards have been proposed, such as change in

number of queued vehicles, change in cumulative vehicle delay and change in vehicle throughput.

The reward rt+1 ∈ R is a consequence of enacting a selected action from a specific state. In this

research, we define the reward as change in cumulative vehicle delay between actions. This allows

for the reward to be positive or negative, meaning the agent can be punished (rt+1 < 0 for increase

in delay) or rewarded (rt+1 > 0 for decrease in delay). The use of the subscript t+1 is intentional, to

1See inverse reinforcement or apprenticeship learning.

96

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

emphasize the temporal relationship between taking action at in state st, as the reward succeeds these

two events. In addition to receiving a reward from the environment, the agent has the opportunity to

observe the new state of the environment st+1, which was influenced by its most recent action. With

this new state observation, a new action can be chosen and subsequently a new reward received.

This cycle can be continued indefinitely or stopped according to some criteria, depending on the

reinforcement learning task at hand.

Agent

In reinforcement learning, the agent is the entity that learns by interacting with the environment.

We model the agent controlling the traffic signals as a deep convolutional Q-network [45]. Artificial

neural networks are mathematical functions inspired by biological neural networks (i.e., brains) that

are appealing for their function approximation capabilities. Many problems in machine learning can

suffer from the curse of dimensionality, which is when the dimensionality of the data increases, the

training and computational resources required grow exponentially. Artificial neural networks have

the capability to generalize from what they have learned, weakening the problems posed by the curse

of dimensionality. Convolutional neural networks are a variant of artificial neural networks inspired

by biological research that emulate the architecture of the animal visual cortex [138][139], making

them adept at perception tasks.

Most artificial neural networks require data pre-processing, where features of the data are de-

termined by experts. Features are measurable aspects of the data deemed important to the present

machine learning task. Expert-crafted features require assumptions to be made about the data that

may or may not be true. In the context of traffic signal control, examples of expert-crafted features

are queue length or average vehicle flow. These features are abstractions of the individual vehicles

behavior that have been extracted and deemed important by experts for solving the traffic signal

control problem using reinforcement learning. However, because they are abstractions, we argue

important information is lost and the potential for learning is diminished. If only queue length is

used, this assumes all vehicles not in a queue are irrelevant to developing an optimal traffic signal

control policy - a spurious claim. Similarly, average flow is a historical metric calculated over some

time interval, yielding a very coarse approximation of the current traffic state that ignores and

abstracts away useful information. Convolutional neural networks are advantageous because they

develop their own features from the data. The DTSE is proposed because it is a lesser abstraction

of the traffic state than queue length or average flow and the convolutional neural network can take

advantage of its information rich nature.

The depth of a deep neural network refers to the fact that there is more than one hidden

97

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

computational layer of neurons. Additional layers in a network allow it to develop features of

features, transforming low-level features of the data to high-level ones, potentially increasing network

performance. The combination of the DTSE and the convolutional neural network allow for the

creation of a truly adaptive traffic signal controller.

The DQTSCA’s architecture is first two identical networks receiving different inputs. Each

network receives a different input vector from the DTSE - one the real-valued vector, the other

the Boolean-valued vector. The first layer of each network is a convolutional layer with 16 filters

of size 4x4 applied with stride 2 using rectifier nonlinear activation functions. The second layer

of each network is a convolutional layer with 32 filters of size 2x2 applied using rectifier nonlinear

activation functions. The outputs of these two networks and the vector P , representing the current

traffic signal phase, are combined and used as input to two fully-connected layers of 128 and then

64 neurons with rectifier nonlinear activation functions. The output layer is |A| (i.e., four) neurons

with linear activation functions.

The reinforcement learning algorithm used in this research is Q-Learning [38], which is used to

develop an optimal action-selection policy. The optimal policy is achieved by using the convolutional

neural network to approximate the action-value function. The action-value function maps states to

action utilities (i.e., what is the value of each action from a given state). Values represent long-term

reward. If an action has a high value, enacting it means reaping future reward, although potentially

not immediate reward. We define the deep convolutional neural network as the action-value function

η : X 7→ Y , where X ∈ S and Y ∈ R|A|, with Y representing the action-values ∀A. At time t, the

input xt to the network is xt = st. The output yt is a vector containing all the action-values, with

yt,at denoting the action-value of at. After the action-value function has been sufficiently learned,

the optimal policy can be determined by selecting the action with the highest value given st. The

basis of Q-learning is the value iteration update (Q-update), defined in (22).

Q(st, at) = Q(st, at)+

α
(
rt+1 + γmaxAQ(st+1, at)−Q(st, at)

) (22)

Where the learning rate α controls the degree to which new action-value estimates are weighted

against old estimates and the discount factor γ determines how immediate rewards are weighted

against future rewards. Both the learning rate and the discount factor are parameters of Q-learning

and are γ, α ∈ [0, 1]. To use the Q-update to train the deep convolutional network, a variation of

98

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

(22) is used, defined in (23).

xt = st

xt+1 = st+1

yt = η(xt)

yt,at = rt+1 + γmax
(
η(xt+1)

)
(23)

After (23) has been computed, the deep convolutional network can be trained and the weights

θ updated using gradient descent with xt as the network input and yt as the output. We use the

RMSprop [93] gradient descent algorithm with an α of 0.00025 and a γ of 0.95 to train the network.

Once the deep convolutional neural network has sufficiently approximated the action-value function,

optimal control is achieved by selecting the action with the highest value given the current state.

A major problem in any reinforcement learning task is the action-selection policy while learning;

whether to take exploratory action and potentially learn more, or to take exploitative action and

attempt to reap the most reward given what has been learned so far. The explore-exploit tradeoff is

an active area of research in reinforcement learning with many proposed solutions. We implement the

simple, yet effective, decreasing ε-greedy exploration policy, which selects a random action (explore)

with a probability ε and selects the action with the highest value (exploit) with a probability 1-ε.

The value of ε decreases as training epochs progress according to (24).

εn = 1.0− n

N
(24)

Where n is the current training epoch and N is the total number of training epochs Initially, ε =

1.0, meaning the agent exclusively explores, however, as training progresses, the agent increasingly

exploits what it has learned, until it exclusively exploits.

Experimental Setup and Training

All experiments were conducted using the traffic microsimulator SUMO v0.22 [4]. SUMO provides

an application programming interface (API) in the Python programming language, by which custom

functionality can be implemented in the traffic simulation. We used the SUMO Python API and

custom code to implement the DQTSCA. The artificial neural network was implemented using Keras

[141] and Theano [142] Python libraries. Additional optimized functionality was provided by NumPy

and SciPy [96] libraries. For the DTSE parameters, we define l as 75 m and c as 5 m. We train

for 1 600 training epochs, where each epoch is 1.25 hours of simulated traffic. The simulations were

executed on a desktop computer with a 3.40 GHz i7-2600 CPU, 8GB of RAM running Ubuntu

14.04. The length of the agent’s actions (i.e., NSG, EWG, NSLG, EWLG) are two seconds and the

transition phases (i.e., R, NSY, EWY) are five seconds.

99

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Table 13: Vehicle Generation Distributions by Flow Rate

Flow Rate (Vehicles/Hour) Distribution Parameters (α, β)

0-150 Inverse Weibull [143] (0.65, 5.8)

250-450 Burr [144] (1.4, 5.9)

The intersection geometry is four lanes approaching the intersection from the compass directions

(i.e., North, South, East and West) connected to four outgoing lanes from the intersection. The

traffic movements for each approach are as follows: the inner lane is left turn only, the two middle

lanes are through lanes and the outer lane is through and right turning. All lanes are 750 meters in

length, from the vehicle origin to the intersection stop line.

The method by which vehicles are generated and released into the network greatly influences the

quality of any traffic simulation. The most popular vehicle generation method is to randomly sample

from a probability distribution numbers that represent vehicle headway times, or the time interval

between vehicles. This research does not break from this method entirely, however we strive to

implement a nuanced version which better models real-world traffic. Empirical research has shown

that different vehicle flow rates are suitably approximated by different probability distributions

[143][144]. Instead of using a negative exponential distribution for all flow rates and modifying its

rate parameter, we use different distributions for different flow rates, shown in Table 13. The Inverse

Weibull distribution is used for generating left and right turning traffic and the Burr distribution is

used for generating through traffic.

The agent is trained using a biologically inspired process known as experience replay [145][146][147].

Instead of training after every individual state, action, reward, state sequence, the agent stores the

experience, defined et = (st, at, rt+1, st+1), in an experience memory M for periodic, randomized

batch training. The training pseudocode is presented in Algorithm 1 and 2. This research takes ad-

vantage of the multithreading capabilities of modern computers, running multiple traffic simulations

in parallel. Each thread is running Algorithm 2 and generating different experiences for use in the

experience replay.

100

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Algorithm 1: Deep reinforcement learning traffic signal control agent experience

replay

Initialize neural network agent η with random weights θ on main agent

Copy main agent weights θ to all thread agents

For epoch=1 to N do

Copy main agent weights θ to all thread agents

In parallel run Algorithm 2 on threads

While all threads not finished do

If buffer == batch size do

Append buffer to M , clear buffer

Randomly sample batch size experiences,

from M

Batch train main agent using (23)

If epoch mod(exp refill) == 0 do

Clear M

While len(M) < min size do

In parallel run Algorithm 2 on threads

Append buffer to M

Algorithm 2: Thread Traffic Simulation

For t=1 to sim len do

Observe DTSE, st

Select random action at with probability ε,

else select at = maxη(st)

Implement selected at, increment simulation,

observe reward rt+1 and st+1,

If len(M) == max size do

delete M [0]

Append et = (st, at, rt+1, st+1) to buffer

The buffer in Algorithm 1 and 2 temporarily stores the most recent experiences until it reaches

batch size, at which point it is appended to M and cleared. The max size and min size are respective

upper and lower limits of M. Training can only begin after M has at least min size experiences. The

oldest experience is deleted when M has max size elements. In our research, we use a batch size of

16, a max size of 500 000 and a min size of 50 000. We found learning improved when we periodically

101

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

cleared M and refilled it with new experiences every exp refill epochs, where exp refill is 200. The

sim len is 4 500 timesteps.

We developed a shallow neural network TSCA to compare against our proposed DQTSCA. The

shallow traffic signal control agent (STSCA) has one hidden layer with 64 neurons using the sigmoid

activation function and four neurons with linear activation functions for its output layer. The state

space of the STSCA is two vectors, the first containing elements that represent the number of queued

vehicles at each intersection approach (i.e., North, South, East and West) and the second the current

traffic signal phase vector P. The action space and reward are the same as the DQTSCA. The STSCA

is trained using the same number of epochs, action selection policy and gradient descent algorithm

as the DQTSCA. However, the traditional agent does not use experience replay, it trains using (23)

after every state, action, reward, state sequence.

Results and Discussion

The performance of the proposed DQTSCA was assessed with respect to common traffic metrics:

throughput, queue length, travel time and cumulative delay. The performance of the agent with

respect to the traffic metrics while learning can be seen in Figures 24, 25, 26, and 27. The agent’s

performance with respect to achieving reward while learning can be seen in Fig. 28. The agent’s

action-reward performance during one epoch is also shown, in Fig. 29 exclusively exploring initially

in training and exclusively exploiting after training in Fig. 30. Initially, while learning, the agent is

predominantly exploring (i.e., taking random actions), attempting to learn the action-value function.

While exploring, the agent’s performance with respect to the traffic metrics exhibits high variance

and it achieves negative reward (i.e., punishment). Because of the agent’s actions, many vehicles are

queued, unnecessarily delayed and the overall throughput is low. As the epochs progress, the agent

has better learned the action-value function and can begin selecting exploitative actions instead

of exploratory ones. The decreasing exploration rate is reflected in improved performance with

respect to all four metrics and higher reward - evidence the agent has learned. Not only does the

DQTSCA perform better as training progresses, convergent behavior emerges, as the variance in its

performance decreases.

The agent’s behavioral change before and after training can be seen in Figures 29 and 30. These

figures show rewards as a consequence of each action taken within one epoch (i.e., 1.25 hours of

simulated traffic). In Fig. 29, the agent is taking random actions with no consideration for reward,

reflected as unstable and divergent rewards. The key observation is that the rewards, positive

or negative, increase in magnitude as the epoch progresses because the agent is taking random,

exploratory actions. Comparing Fig. 30 with Fig. 29, it is apparent the agent is acting differently.

102

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Table 14: STSCA and DQTSCA Traffic Metrics

Traffic Metric (µ, σ, n = 100) STSCA DQTSCA

Throughput (Vehicles) (2 452, 257) (2 456, 248)

Queue (Vehicles) (33, 23) (13, 9)

Travel Time (s) (197, 107) (157, 49)

Cumulative Delay (s) (4 085, 5 289) (719, 1 048)

In Fig. 30, the rewards are an order of magnitude smaller and stable as the epoch progresses,

with no divergence near the end of the epoch as in Fig. 29, because the agent is enacting an

exploitative policy. These observations are supported quantitatively, computing the average and

standard deviation (µ, σ) of the reward for each epoch, Fig. 29 has (−347, 2 220) and Fig. 30 has

(−0.485, 59.6).

A comparison of the proposed DQTSCA with the STSCA can be seen in Table 14. The data in

Table 14 is computed from the last 100 training epochs of each agent, where the agents are taking

exploitative action >93% of the time. Although four traffic metrics are considered, cumulative delay

is the only metric the agent can tangibly interact with, as change in cumulative delay is its reward

function. The DQTSCA achieves an 82% reduction in the average cumulative delay compared to

the STSCA. The difference in this key metric provides evidence that the DQTSCA has learned a

control policy superior to the STSCA. Comparing the other traffic metrics, there is no difference in

the throughput, but the DQTSCA reduces the average queue length by 66% and the average travel

time by 20% compared to the STSCA. The DQTSCA outperforms the STSCA in three of the four

metrics, due to the use of the DTSE and its deep architecture. Future work should investigate a

throughput reward function and compare the two agents performance, as it is the only metric where

the agents perform equally.

A limitation of this research is we did not consider how fair the agent’s policy is. A fair traffic

signal controller would ensure all vehicles are given equal priority to traverse the intersection, however

this may be in conflict with optimizing certain traffic metrics, such as minimization of delay or

maximization of throughput. A balance between fairness and optimality could be achieved with the

appropriate reward function, which should be the subject of future research.

Conclusion

We proposed, developed and tested a DQTSCA in a traffic microsimulator. The results show deep

learning can be applied to traffic signal control with improved performance compared to traditional

methods.

103

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

0 200 400 600 800 1000 1200 1400 1600
Epoch

1600

1800

2000

2200

2400

2600

2800

3000

Th
ro

ug
hp

ut
 (V

eh
ic

le
s)

Figure 24: Intersection throughput while training.

0 200 400 600 800 1000 1200 1400 1600
Epoch

50

100

150

200

250

300

350

Av
er

ag
e

Qu
eu

e
(V

eh
ic

le
s)

Figure 25: Average intersection queue while training.

104

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

0 200 400 600 800 1000 1200 1400 1600
Epoch

200

300

400

500

600

700

800

Av
er

ag
e

Tr
av

el
 T

im
e

(s
)

Figure 26: Average travel time of vehicles while training.

0 200 400 600 800 1000 1200 1400 1600
Epoch

0

50000

100000

150000

200000

Av
er

ag
e

Cu
m

ul
at

iv
e

De
la

y
(s

)

Figure 27: Average cumulative delay of vehicles while training.

105

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

0 200 400 600 800 1000 1200 1400 1600
Epoch

1000

800

600

400

200

0

Av
er

ag
e

Re
w

ar
d

Figure 28: Average reward of DQTSCA while training.

0 100 200 300 400 500
nth Action

6000

4000

2000

0

2000

4000

6000

Re
w

ar
d

Figure 29: Reward of DQTSCA in an epoch while taking only exploratory action early in training.

106

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

0 100 200 300 400 500 600 700
nth Action

200

100

0

100

200

300

Re
w

ar
d

Figure 30: Reward of DQTSCA in an epoch while taking only exploitative action after training

completed.

107

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Future work in this area can extend the agent’s control to all traffic signals, including the yellow

and red phases. Currently, the agent has no capability to control the yellow or red phases, they only

exist in the transitional sequences between agent actions. However, it is obvious that situations exist

where a dynamic yellow or red phase is desirable. For instance, a vehicle does not decelerate to a

yellow phase and accelerates through the intersection; extending the yellow phase until all vehicles

have either cleared the intersection or are otherwise decelerating is prudent. We hypothesize the

means to accomplish this with a TSCA trained through reinforcement learning would be to change

the reward function so that it yielded high reward when vehicles decelerate and are not traversing

the intersection.

The use of the DTSE may also allow for training a TSCA to control intersections of various lane

configurations without retraining. For example, first train the agent using the DTSE on a four lane

intersection. Then it could be used to control a two lane intersection by setting all of the elements

of the two ’missing’ lanes to zero. The DTSE may allow for a widely applicable TSCA without

retraining for different intersection geometries.

Additional research should also increase the complexity of the traffic network and apply the

DTSE and deep architecture to multiple TSCA. These ideas will be explored in future endeavors by

the authors.

108

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

APPENDIX B: RL-TSC State Space Evaluation

This manuscript was submitted, accepted and presented at the 9th International Conference on

Ambient Systems, Networks and Technologies (ANT-2018) conference in Porto, Porugal under the

following reference:

W. Genders and S. Razavi, “Evaluating reinforcement learning state representations for adaptive

traffic signal control,” Procedia computer science, vol. 130, pp. 26–33, 2018. https://doi.org/10.

1016/j.procs.2018.04.008

The co-author’s contributions to the above work include:

• Financial and technical supervision of the study presented in this work.

• Manuscript editing.

109

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Abstract

Reinforcement learning has shown potential for developing effective adaptive traffic signal controllers

to reduce traffic congestion and improve mobility. Despite many successful research studies, few of

these ideas have been implemented in practice. There remains uncertainty about what the require-

ments are in terms of data and sensors to actualize reinforcement learning traffic signal control.

We seek to understand the data requirements and the performance differences in different state

representations for reinforcement learning traffic signal control. We model three state representa-

tions, from low to high-resolution, and compare their performance using the asynchronous advantage

actor-critic algorithm with neural network function approximation in simulation. Results show that

low-resolution state representations (e.g., occupancy and average speed) perform almost identically

to high-resolution state representations (e.g., individual vehicle position and speed). These results

indicate implementing reinforcement learning traffic signal controllers may be possible with conven-

tional sensors, such as loop detectors, and do not require sophisticated sensors, such as cameras or

radar.

Introduction

Vehicle congestion is a major problem in cities across the world. Developing additional infrastructure

is expensive and a protracted process which can exacerbate the problem until completed. Instead

of adding more infrastructure, another solution is to optimize currently available infrastructure.

Intersection traffic signal controllers (TSC) are ubiquitous in modern road infrastructure and their

functionality greatly impacts all users. Many research studies have proposed improvements to TSC,

broadly in an attempt to make them adaptive to current traffic conditions. Reinforcement learning

has been shown to be effective in developing adaptive TSC with many research studies detailing

promising results. Despite the encouraging research, few reinforcement learning adaptive TSC have

been deployed in the field. One inhibiting factor is the resources required; to observe the traffic

state, reinforcement learning TSC often require high-resolution data beyond the detection capability

of traditional sensors (i.e., loop detectors). This research focuses on the potential state definitions

of reinforcement learning TSC and ascertaining the performance differences between them. We seek

to answer, can a reinforcement learning TSC function using low-resolution data from traditional

sensors such loop detectors? Or is high-resolution data from sophisticated sensors (e.g., cameras,

radar) required? Answering this question will help individuals interested in deploying reinforcement

learning TSC in the field, as they will be aware of the requirements and potential outcomes. We use

the traffic microsimulator SUMO [4] and the asynchronous advantage actor-critic (A3C) algorithm

110

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

[46] to train and evaluate multiple adaptive TSC with different resolution state representations.

Literature Review

Many research studies have recognized and displayed reinforcement learning’s capability for providing

a solution to TSC. Early research provided proof-of-concept for reinforcement learning in TSC [57, 59,

82, 60]. Later research applied reinforcement learning methods to more realistic and complex traffic

models [148, 64, 84, 98, 99, 100]. Developments in machine learning have yielded deep reinforcement

learning techniques [46, 45, 124] which have subsequently been applied for TSC [66, 68, 67, 69, 76].

Considering the aforementioned research and the extensive reinforcement learning TSC reviews

[86, 87, 97], we identify numerous possible state representations: vehicle density, flow, queue, loca-

tion, speed along with the current traffic phase, cycle length and red time. These state represen-

tations form a resolution spectrum of the current traffic state, from coarse (e.g., flow) to fine (e.g.,

individual vehicle position and speed). We consider state representation across the resolution spec-

trum, requiring different sensors, and compare their performance. The results can guide individuals

interested in practical implementation.

Model

Reinforcement Learning

Reinforcement learning is a type of machine learning for solving sequential decision-making problems

[36]. A reinforcement learning agent learns a policy π(s) = a, mapping from states s to actions a,

to achieve a goal in an environment under uncertainty. Through repeated environment interactions,

a reinforcement learning agent strives to develop an optimal policy π∗, which maximizes the sum of

future discounted (γ ∈ (0, 1]) rewards, defined as the return Gt in Equation 25:

Gt =

∞∑
k=0

γkrt+k (25)

The agent interacts with the environment in repeating sequences of, at time t, observing the

environment state st, taking action at, receiving reward rt and entering a new state st+1. Over

time, the agent learns what actions in what states maximize long-term reward, also known as value.

Rewards quantitatively represent how successful the agent’s policy is achieving its mandated goal.

The A3C algorithm is used to develop parameterized θ policy π(a|s; θ) (Equation 26) and value

V π(s; θ) functions (Equation 27). The agent develops a value function (critic), which estimates the

expected return from a given state, which is used to improve the policy (actor).

111

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

π(a|s; θ) = Pr[at = a|st = s; θ] (26)

V π(s; θ) = E[Gt|st = s; θ] (27)

The parameters are used for neural network function approximation, defining the weights between

neurons.

Environment

The environment used to train the reinforcement learning adaptive TSC is the traffic microsimulator

SUMO[4]. The network geometry is an isolated intersection with four origin-destination zones in

each compass direction; North (N), South (S), East (E) and West (W). Each origin-destination zone

is connected to the intersection with eight lanes, four incoming and four outgoing. The turning

movements for incoming lanes to the intersection are; the right lane allows right turn and through

movements, the middle two lanes allow through movements and the left lane allows left turns.

We simulate a peak or rush hour traffic demand scenario for training. The traffic is generated

stochastically using a negative exponential distribution with a rate parameter λ. To add further

stochasticity, the rate parameter λ is sampled from a normal distribution N (λ, λ10), as seen in Figure

31.

State

At time t the reinforcement learning agent observes the state of the environment st. The agent’s

behaviour and ability to learn is greatly influenced by the state and its definition. Three state

spaces are defined for reinforcement learning TSC with different resolutions of the environment. All

state representations include the most recent traffic phase encoded as a one-hot vector (i.e. a phase

from the set of all traffic phases P) and the time spent in that phase. One-hot vectors are used

to represent categorical variables. For K categories, a K × K identity matrix represents all the

categories, with each row representing a different category.

Occupancy and Speed

The lowest resolution state space is defined using occupancy and average speed. Loop detectors are

the most common sensors at intersections and can be used to collect coarse traffic statistics, such as

occupancy and average speed for each lane. We model each incoming lane with two loop detectors,

one at the stop line and the other setback 50 m from the stop line. The occupancy and average

112

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

0 1000 2000 3000 4000 5000 6000 7000
0.0

0.5

1.0

1.5

2.0
Rush Hour Demand

N(λ(t),
λ(t)

10
)

λ(t)

0 1000 2000 3000 4000 5000 6000 7000
0

1000

2000

3000

4000

5000

6000

7000Shifted Rush Hour Demand
Rush Hour Demand

Time (s)

 Vehicle
Demand
 λ(t)
 (veh/s)

 Vehicle
Demand
(veh/hr)

Figure 31: Rush hour demand traffic scenario used for training (right) and testing (left).

speed (normalized by the speed limit) are computed from the the previous 10 s interval. Given m

incoming lanes, the loop-TSC state is st ∈ R(2m+|P |+1).

Queue and Density

A higher resolution state space is defined using vehicle density and queue. Loop detectors are

inadequate to collect queue and density data reliably, more sophisticated sensors are required (i.e.,

video cameras, radar). Assuming a jam density kj , Vl represents the set of vehicles on lane l and

Vl,q the set of queued vehicles on lane l, we define vehicle lane density Vl

kj
and vehicle lane queue

Vl,q

kj
. Given m incoming lanes, we denote the queue-TSC state st ∈ R(2m+|P |+1).

Discrete Cell Encoding

The highest resolution state space discretizes each incoming lane into cells of a fixed length c = 2.5

m, termed the discrete traffic state encoding (dtse). Cells are binary encoded, 1 represents the

presence of a vehicle and 0 represents the absence of a vehicle. Sophisticated sensors (i.e., video

cameras, radar) would also be required to collect this state data. Given an incoming lane length

L = 135 m, the dtse-TSC state is st ∈ R(L
c m+|P |+1)t, where we use a history of the t = 2 most

recent states. This state definition was first proposed using SARSA reinforcement learning [57] and

has since been utilized in deep reinforcement learning TSC [66, 68, 69].

113

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Actions

After observing state st, the agent chooses an action at ∈ A. The actions available are the green

traffic phases, denoted in this research by a pair of compass directions and set of movement prior-

ities (i.e., G represents protected through movements and permissive left turn movements and LG

represents protected left turn movements and prohibited through movements). For example, the

action NSG represents North-South protected through movements, permissive left turn movements

and prohibits all East-West movements. Actions in a sequence may require yellow change and red

clearance phases, with additional action/phase information detailed in Table 15. The set of all pos-

sible actions is denoted A = {NSG, EWG, NSLG, EWLG}. All actions at ∈ A have a duration of 10

s and yellow and red phases have a duration of 4 s. When no vehicles are present at the intersection

(i.e., ∀l, Vl =)), all movements are prohibited with the red clearance phase.

The agent’s traffic signal control policy is acyclic, unconstrained and ad-hoc. We argue imposing a

cycle in reinforcement learning TSC is presumptuous. If a cycle is optimal, the agent will develop such

a policy. There are no maximum times for each phase and the agent chooses the next action/phase

without limitation.

Table 15: Traffic Signal Phase Information.

Turning Movements

Action NEMA Phases Compass Directions Left Through Right

NSG 2, 6 North, South Permissive Protected Permissive

NSLG 1, 5 North, South Protected Prohibited Permissive

EWG 4, 8 East, West Permissive Protected Permissive

EWLG 3, 7 East, West Protected Prohibited Permissive

Reward

After observing state st and taking action at, the agent receives a scalar reward rt ∈ R from the

environment. The reward is feedback for how ‘good’ action at was in st. Many rewards have been

proposed for reinforcement learning TSC (e.g., functions of throughput, queue, delay). We define

reward in Equation 28 as change in cumulative delay:

rt = Dat −Dat+1
(28)

114

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Where Dat , Dat+1 represent the cumulative delay at the intersection when action at and at+1 are

taken. Cumulative vehicle delay D at time t is defined in Equation 29:

Dt =
∑
v∈Vt

dvt (29)

Where Vt is the set of vehicles on incoming lanes in the simulation at time t and dvt is the delay

of vehicle v at time t.

Agent

The agent is the entity, through repeated interaction with the environment, that implements and

improves the policy π. In this research, the agent chooses the next green traffic phase. We model

the agent as an artificial neural network and train it using the A3C algorithm.

An artificial neural network is chosen for its flexible function approximation capabilities. The

architecture of the neural network is an input layer and then a fully connected hidden layer with

rectified linear (ReLu) activation functions followed by another fully connected hidden layer with

ReLu activation functions. The output layer has |A| = 4 neurons with softmax activation functions

which output the action probabilities representing the policy. The number of neurons in each hidden

layer for each state representation is equal to the cardinality of the input state; loop-TSC and queue-

TSC hidden layers have 42 neurons and dtse-TSC hidden layers have 1780 neurons.

The A3C algorithm simulates multiple actor-critic agents in parallel, each with their own envi-

ronment. Using a local parameter set θ′, each agent computes an advantage Adv = Gt − V (s; θ′)

from experience sequences of length tmax = 32. The advantage is a measure of the difference between

the actual and expected performance of the policy. The advantage is used to compute parameter

gradients dθ which are asynchronously applied to a global parameter set θ. Each agent periodically

copies the global parameters θ as their local parameters θ′. The rewards are standardized before

computing the return (i.e., rt ← rt−µr

σr
) and the gradient of the policy entropy β∇θ′H(π(si; θ

′)) is

added to the parameter update for improved learning.

115

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Algorithm 1: Asynchronous Advantage Actor-Critic training pseudocode [46]

n← 0, Initialize θ, θ
′

While n < N

t← 0, Generate sim with randomly shifted demand

While t < T

Reset parameter gradients dθ ← 0

Set thread parameters to global θ′ = θ

tstart = t

Observe state st

While st 6= sterminal and t− tstart 6= tmax

Perform action at from π(at|st; θ′)

Receive reward rt and observe new state st+1

st = st+1

t← t+ 1

If st == sterminal

Gt = 0

Else

Gt = V (st; θ
′)

For i ∈ {t− 1, t− 2, ..., tstart}

Gt ← ri + γG

Adv = Gt − V (si; θ
′)

ε = β∇θ′H(π(si; θ
′))

Collect policy gradients dθ ← dθ +∇θ′ loge π(ai|si; θ′)(Adv) + ε

Collect value gradients dθ ← dθ + ∂(Adv)2

∂θ′

Asynchronously update θ with dθ

n← n+ 1

Experiments

We subject each different state representation reinforcement learning TSC to N = 1 000 rush hour

demand scenarios, T = 7 200 simulation steps in duration, for training. As a form of data augmenta-

tion and to prevent overfitting, the rush hour demand scenario is randomly shifted in time for each

116

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

simulation, displayed in Figure 8. Training is conducted using a consumer i7 CPU with 8 parallel,

asynchronous actor-critics, each with their own environment. Training for each state representation

was 3-6 hours wall clock time.

For comparison after training, each different state reinforcement learning TSC is subjected to 100

rush hour demand scenarios without data augmentation to ensure parity during testing. Throughput,

delay and queue statistics are collected during testing simulations.

The traffic microsimulator SUMO[4] is used for all simulations. Tensorflow [94], SciPy [96] and

additional Python libraries [149] are used for implementing the neural networks and reinforcement

learning.

As a baseline for comparison, we model an Actuated TSC which uses loop detectors to modulate

the green phase lengths. The Actuated TSC is cyclic; each phase has a minimum green time of 10

s, after which a gap-out timer begins decrementing from 5 s. If a vehicle is detected in a lane with

a protected movement under the current phase the gap-out timer is reset to 5 s, up to a maximum

of 40 s.

Results

Testing results are displayed in Table 16 and visually in Figure 32. All reinforcement learning TSC

achieve superior performance in reducing delay and queue lengths compared to the Actuated TSC.

This result is not surprising, as the reinforcement learning TSC have greater flexibility in action

selection compared to the Actuated TSC, which has to implement phases in a cycle.

Observing the traffic metrics collected, there appears to be little to no difference between the

different state representations. There is no difference in throughput or queue however the loop-TSC

exhibits the highest delay compared to the queue-TSC and dtse-TSC. This result is surprising to

the authors, specifically how little difference there is between the different state representations

considering the spectrum of data resolution modelled. Results from research in other domains using

deep reinforcement learning suggest that high-resolution state data can yield superior performance

to low-resolution state data. In this research, we find very little difference in performance despite

the disparity in data resolution between the different state representations.

Conclusion

We modelled adaptive TSC using the A3C reinforcement learning algorithm with various state rep-

resentations to determine any differences in performance. Results show that data collected from

traditional and ubiquitous sensors such as loop detectors are sufficient for reinforcement learning

117

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

0.0

0.5

1.0

1.5

2.0

Throughput
(veh/s)

Rush Hour Testing Results

0 1000 2000 3000 4000 5000 6000 7000
0

500

1000

1500

2000

Delay (s)

0 1000 2000 3000 4000 5000 6000 7000
Time (s)

0

10

20

30

40

50

Queue (veh)

loop-TSC
queue-TSC
dtse-TSC
Actuated

Figure 32: Testing results comparing state definitions.

adaptive TSC. Under the model devised in this research, high-resolution state representations re-

quiring sophisticated sensors offer improvements only by reducing delay by approximately 10%, with

no difference in queue or throughput.

A potential explanation for the lack of performance disparity is that high-resolution state data

may only yield benefits with sufficiently complex function approximators. The fully connected

neural network architecture may be too simple compared to convolutional, long short-term memory

layers or residual connections. These architectures may be required to leverage high-resolution state

data and develop the rich representations necessary for improved performance. Given the lack

of substantial performance between state representations, this may be evidence that sophisticated

machine learning methods, such as reinforcement learning, are unnecessary for traffic signal control.

Other, less resource intensive machine learning methods such as decision trees or regression methods

may be more appropriate. These methods may offer similar performance while also being much

more comprehensible, as opposed to the black box nature of a neural network. These ideas should

be should be considered in future research.

118

Ph.D. Thesis - Wade Genders; McMaster University - Civil Engineering

Table 16: Cumulative statistics testing results comparing state definitions.

(µ̂, σ̂)

TSC Throughput (veh/sim) Delay (s/sim) Queue (veh/sim)

loop-TSC (6 609, 86) (2.8× 106, 4.6× 105) (1.2× 105, 0.8× 104)

queue-TSC (6 612, 87) (2.3× 106, 2.5× 105) (1.2× 105, 0.7× 104)

dtse-TSC (6 598, 92) (2.4× 106, 4.9× 106) (1.1× 105, 0.9× 104)

Actuated (6 529, 98) (7.7× 106, 7.3× 105) (2.2× 105, 1.2× 104)

119

