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Abstract 

 

The automotive industry is seen to be making a monumental paradigm shift from 

manual to semi-autonomous to fully Autonomous Vehicles. An Advanced Driver 

Assistance System (ADAS) forms a major building block for realizing these next 

generation of highly Autonomous-capable Vehicles. Although the general ADAS 

architecture is widely discussed, limited details are available about the functionality 

of the modules and their interactions, backed up by scientific justification. This 

limits the utilization of such an architecture for pragmatic implementation. A 

Cognitive ADAS Architecture for level 4 Autonomous-capable Electrified Vehicles 

(EV) is proposed in this thesis. Variations for levels 3 and 3.5 (combination of levels 

3 and 4, with the primary fallback through a human driver and the secondary 

through an Automated Driving System) are also presented.  

 

A validated simulation framework is built for highway driving based on the 

proposed level 4 architecture for an enhanced Tesla Model S. It was concluded that 

the autonomous control provided a 28% energy economy increase, on average, 

compared to human driver control. Through a quantitative sensitivity analysis, the 

optimal Mission/Motion Planning and energy management are seen in addition to a 

positive impact on the EV battery, motor, and dynamics, realized from the 

minimized instantaneous fluctuations. These factors are considered to contribute to 

this significant increase in the energy economy of an autonomous-controlled EV. 
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Furthermore, this impact was seen to be relatively higher for autonomous 

longitudinal vehicle control compared to lateral. This difference in the improved 

operation of the Autonomous-capable EV components between the Automated 

Driving System and the human driver control was seen to be the highest for the 

battery current.  

 

In overall, an increase in vehicle autonomy, resulted in an improvement in the EV 

performance, dynamics and operation of the battery and motor, compared to a 

human driver control.   
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ICE   Internal Combustion Engine 

INS   Inertial Navigation System 

IoT   Internet of Things 

ISO   International Organization for Standardization 

ISTEA  Intermodal Surface Transportation Efficiency Act 

LIDAR  Light Detection and Ranging 

LIN   Local Interconnect Network 

MacAUTO McMaster Institute for Automotive Research and 

Technology 

MARC  McMaster Automotive Resource Centre  

MCU   Motor Control Unit 

MAN_N  Normal Human Driver 

MAN_A  Aggressive Human Driver 

MPGe   Miles per Gallon Equivalent 

NHOA  No Hands Across America 

NHTSA  National Highway Traffic Safety Administration 

OCV-R-RC-RC Open Circuit Voltage – Resistor – Resistor/ Capacitor – 

Resistor/Capacitor 
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ODCU   On-board Diagnostics Control Unit 

ODD   Operational Design Domain 

OEDR   Object and Event Detection and Response 

PI   Proportional - Integral 

PID   Proportional - Integral - Derivative 

PROMETHEUS  Programme for a European Traffic of Highest Efficiency and 

Unprecedented Safety 

QM   Quality Managed 

RADAR  Radio Detection and Ranging 

SAE   Society of Automotive Engineers 

SC03   Speed Correction Driving Schedule 

SLAM   Simultaneous Localization and Mapping 

SOC   State of Charge 

SOTIF  Safety of the Intended Functionality 

TCU   Transmission Control Unit 

TTP   Time Triggered Protocol 

V2I   Vehicle to Infrastructure 

V2V   Vehicle to Vehicle 
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Notations 

 

𝑦𝑜𝑓𝑓   Offset of the vehicle at the target’s position 

𝑣   Speed of the vehicle 

𝑎𝑦    Lateral acceleration of the vehicle 

𝑑𝑠   Projected distance between the host and the target vehicle an 

𝛼    Target vehicle’s orientation or angle 

𝑡𝑡𝑐 Time required for a collision to occur between the host 

vehicle and its surrounding target objects 

 𝑑   Distance between the host and the target vehicles  

 𝑣𝑟𝑒𝑙    Relative velocity between the host and the target vehicles 

𝐷𝑟𝑒𝑙   Relative deceleration of the target object 

𝑡𝑡𝑏    Time threshold brake 

 𝜏𝐵    Brake loss time   

 𝐷𝑚𝑎𝑥  Maximum permitted deceleration of the host vehicle without 

causing a collision with the surrounding target objects 

𝐷𝑜𝑏𝑠    Target object’s actual deceleration 
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Chapter 1 

Introduction 

 

This section introduces the thesis by describing the motivation, problem statement 

and an overview of the proposed solution. Furthermore, the thesis contributions, 

scope of research, research objectives, methodology and the organization of the 

thesis is summarized in this chapter.  

   

1.1 Motivation 

Distracted driving has become one of the major reasons for the increasing number 

of road accidents worldwide. According to a study by National Highway Traffic 

Safety Administration (NHTSA), in the U.S. alone, 3,477 people were killed and 

391,000 were injured due to distracted driving in 2015 [1]. These alarming statistics 

on driver distraction demonstrate the significant necessity of evolution in the 

automotive industry to migrate away from traditional systems which require 

complete human attention during all times to systems with permissible flexibility 

for human drivers by minimizing human intervention, if not completely eliminating 

it, as a starting point.  

 

According to Occupational Safety and Health Administration, on average, a human 

driver is required to make 200 decisions for every mile traveled [2]. It is practically 
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impossible to ensure such a high driver attention during all scenarios for all drivers. 

As such, the automotive industry is seeing a major growth of interest in 

Autonomous Vehicles (AV) mainly due to the relative robust capabilities of a 

computer or an automated system in Artificial Intelligence (AI), object detection, 

object tracking, motion planning, intelligent decision making and real-time control 

in a dynamic environment.  

 

In addition to the above points clearly demonstrating a need for a safer alternative 

to completely human driver-controlled vehicles, the automotive industry, in 

general, is hungry for more energy-efficient and optimally designed solutions. This 

precisely has served as a great motivation for this work which aims to explore some 

of the widely known yet currently unresolved topics in the field of Autonomous-

capable Vehicles.  

 

Specifically, this thesis attempts to address some of the challenges in the field of 

Autonomous-capable Vehicles especially around the topic of an Advanced Driver 

Assistance System architecture, especially for higher levels of vehicle automation, 

which are still in conceptual stages. Furthermore, although safety is regarded as one 

of the biggest benefits of the AV technology, the relatively less explored advantage 

in the literature is the contribution of vehicle autonomy in improving the fuel or 

energy economy of the vehicle. This has also been systematically quantified 

through the work presented here, supported by vehicle level simulations and a 
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thorough analysis. 

   

1.2 Summary of Problem Statement and Solution 

This section provides a summary of the problem statement. The solution proposed 

through this thesis’ research work is also presented.  

 

1.2.1 Problem Statement 

The race to having safe and commercially accessible fully autonomous-capable 

vehicles is evident in the automotive industry. This mega technological 

transformation is seeing an increased dependency on machines compared to 

humans, in turn, requiring a more thorough analysis of the research, design and 

development process of these vehicles in order to have a technology that can 

primarily match human abilities and ultimately surpass them. 

 

One of the most important questions which comes up for an Advanced Driver 

Assistance System (ADAS) aimed for the vehicles of Society of Automotive 

Engineers (SAE) levels 3 to 5 [3], is about the system-level architecture. These 

Highly Automated Driving (HAD) vehicles are anticipated to have the ability to 

partially or completely replace human control. Very limited technical publications 

are available justifying a comprehensive system architecture through a rigorous 

scientific analysis, even though ADAS serves as a fundamental and a major building 
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block for realizing an Autonomous-capable Vehicle. The limitation is not only 

quantitative but also qualitative, especially in terms of the details about the various 

modules, their functionality, and interactions. This is mainly due to the conceptual 

and proprietary nature of the on-going HAD research. This, in turn, significantly 

limits the utilization of such an architecture for pragmatic implementation. 

 

In addition, it is critical to combine the understanding from both an autonomy 

function and a vehicle-level perspective to result in an effective system architecture. 

Regarding this, the influence of vehicle autonomy on its performance, dynamics as 

well as the individual vehicle components are also found to be scarcely analyzed in 

the literature backed up through a rigorous scientific analysis. Important findings 

from this analysis, are considered to be vital in optimizing the Autonomous-capable 

Vehicle design. Lastly, although the safety impact of Autonomous-capable 

Vehicles is widely discussed in the industry, this analysis is also expected to aid in 

understanding the benefits of migrating to more human-independent vehicle 

technology from the perspective of improving vehicle performance, optimizing the 

usage of different vehicle components and so on. These less evaluated topics offer 

a direct and tangible benefit to the automotive manufacturers and technology or 

chip providers from the introduction of Highly Automated Driving.     
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1.2.2 Solution 

In order to address the above-described problem regarding the limited availability 

of literature in terms of the ADAS architectures for enabling the development of 

Autonomous-capable Vehicles, this thesis proposes a Cognitive ADAS 

Architecture for Autonomous-capable Electrified Vehicles. The architecture 

represents the systematic functional distribution of the different modules, sub-

modules, component examples, their interactions, and interfaces. The primary 

architecture aims at level 4 Autonomous-capable EVs, however, there are variations 

offered for levels 3 and 3.5. 

 

Furthermore, this architecture is verified through extensive simulations of an 

Autonomous-capable EV subjected to varying test cases and external conditions. In 

addition, through a quantitative analysis of the simulation results, vital conclusions 

regarding the influence of vehicle autonomy on the Electrified Vehicle 

performance, dynamics and the operation of components are presented. Also, a 

comparative analysis between the Automated Driving System, normal human driver 

and an aggressive driver’s partial versus complete lateral and longitudinal vehicle 

control are offered. The simulation results are also validated based on the standard 

5-cycle adjustment method by the Environmental Protection Agency. 
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1.3 Thesis Contributions 

The contributions of this thesis are three-fold. The first contribution is to propose a 

Cognitive ADAS architecture for a Level 4 Autonomous-capable Electrified 

Vehicle (EV). The thesis also offers some suggested variations in the architecture 

to represent a Level 3 and a Level 3.5, which although is not currently part of the 

SAE J3016 [3], it is considered to be a pragmatic step forward in the Autonomous 

Vehicle industry. Level 3.5 is offered in this thesis as a combination of 3 and 4 

where the primary fall back behavior is routed through the driver followed by the 

Automated Driving System (ADS) [3], in case of the primary system failure. This 

will also be explained in more detail in the further sections of the thesis. In order to 

demonstrate the necessity of the proposed Cognitive ADAS architecture, current 

literature review and gaps are also pre-discussed.  

 

The second contribution is to verify the proposed architecture by building a 

pragmatic simulation framework which not only provides the capability of 

simulating an Autonomous-capable Electrified Vehicle in different operational 

domains and external conditions but also provides the opportunity to understand the 

influence of varying levels of vehicle autonomy on the Electrified Vehicle 

performance, dynamics and its components, in comparison to a normal and an 

aggressive human driver. Furthermore, an extensive database of vehicle reactions, 

behavior, dynamics and vehicle component data for a combination of 113 

autonomous and semi-autonomous test cases in addition to variations in external 
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conditions was built. This database was not only found to be helpful for conducting 

the intended analysis but is also considered to be of substantial benefit in carrying 

out future research for understanding more details (described in the future work 

section) about the influence of vehicle autonomy on an Electrified Vehicle’s battery 

life, motor power consumption and so on.  

 

The third contribution is to analyze the impact of increased vehicle automation on 

the Electrified Vehicle’s energy economy, dynamics as well as the vehicle 

components, mainly motor and the battery, through an extensive quantitative 

sensitivity analysis.  

 

The relevant publications that have resulted from the current research are below: 

• K.P. Divakarla, A. Emadi and S.Razavi, "A Cognitive Advanced Driver 

Assistance Systems (ADAS) Architecture for Autonomous-capable Electrified 

Vehicles", accepted and to be published in IEEE Transactions on 

Transportation Electrification, DOI: 10.1109/TTE.2018.2870819. 

• R. Hamilton, H. Seager, K.P. Divakarla, A. Emadi and S.Razavi, "Modeling and 

Simulation of an Autonomous-capable Electrified Vehicle: A Review," in Proc. 

IEEE Canada Electrical Power and Energy Conference (EPEC 2018), Toronto, 

October 2018. 

• K. P. Divakarla, A. Emadi, S. Razavi, S. Habibi and F.Yan, “A Review of 

Autonomous Vehicle Technology Landscape”, submitted to International 

Journal of Electric and Hybrid Vehicles (IJEHV).  
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1.4 Scope of Research 

This section will provide a summary of the assumed scope of research. As described 

in the previous section, one of the major contributions of this thesis is to propose a 

Cognitive ADAS Architecture for Autonomous-capable Electrified Vehicles. The 

scope for this architecture definition has been restricted to Electrified ground 

vehicles only. Some examples and general inferences to other types of Autonomous 

Vehicles have been provided in the thesis for reference, however, the architecture 

development is focused on EVs. EVs have been chosen as a scope for studying the 

topics being discussed in this thesis for two reasons. Firstly, majority of the highly 

Autonomous Vehicles are expected to be electrified for the first generation due to 

the relative simplicity of the powertrain which is to be combined with complex 

autonomous control algorithms. This also precisely points towards the second 

reason for inclining towards the EVs as test Autonomous-capable Vehicles for this 

study. The relatively simpler EV powertrain enables to focus more extensively on 

the concerned evaluation of the influence of vehicle autonomy on Electrified 

Vehicle performance, dynamics, and components. The combination of hybrid or 

Internal Combustion Engine powertrains and complex autonomous-control 

mechanisms are anticipated to result in the simultaneous variation of multiple 

variables making it much more challenging to isolate the impact of Electrified 

Vehicle autonomy on the aforementioned EV attributes. In addition to the proposed 

architecture, the test host Autonomous-capable Vehicle modeled in simulations has 
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also been assumed to be an EV for consistency purposes (the long-term aging of the 

vehicle is not considered in this analysis).  

 

Also, although the proposed architecture is not limited to any particular use case, 

the highway driving scenarios have been assumed for the simulations. This is 

mainly to ensure a maximum ADAS feature operation (by avoiding the stop and go 

nature of the urban traffic) on the road for studying the influence of vehicle 

autonomy on the energy economy, EV dynamics, and components. As such, a 

realistic highway driving road was modeled which will be described further in the 

thesis. The driving environment infrastructure/ objects such as buildings, traffic 

signal lights, and pedestrians were not included in the current simulation model.     

 

Furthermore, the Cognitive ADAS Architecture is proposed at a system-level. The 

distribution of higher-level functions and their interfaces at the system level for an 

Advanced Driver Assistance System are proposed through this architecture. 

Although the components level breakdown is shown at a high-level for reference, 

their decomposition to the hardware and software level is considered to be out of 

scope for this analysis. The architecture is defined to be generic for an easy 

adaptation of the different functional and sub-functional umbrellas presented to 

different use cases and target applications. Every sub-block shown in the 

architecture could be broken down furthermore depending on the intended tier of 
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the automotive application. The proposed architecture is considered to be the 

building block or the first step forward in defining a systematic functionally 

distributed modular architecture for an Advanced Driver Assistance System.  

 

The proposed architecture is targeted mainly towards level 4 autonomous-capable 

EVs. Two different variations of the architecture have also been proposed for levels 

3 and 3.5. The various levels of vehicle automation will be described in more detail 

further in the thesis. The automotive industry is quickly migrating from current 

levels of 0-2 to 3 and above. The higher levels of vehicle automation have been 

targeted for the work presented in this thesis mainly to address the limited 

availability of technical research in this field for understanding the architecture of 

higher levels of vehicle automation as well as their impact on the different 

Electrified Vehicle attributes. 

 

Furthermore, although it has been attempted through the proposed architecture to 

demonstrate the various functions and their interactions within the Advanced Driver 

Assistance System, certain functions were excluded from the simulations. The 

fallback response of the system in case of a sensor or an Automated Driving System 

failure is considered out of the scope for the simulations. This is mainly because the 

architecture targets a generic audience with system level requirements for a Highly 

Automated Driving framework; whereas, the intention of the simulations is to 
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demonstrate the impact of vehicle autonomy on the Electrified Vehicle dynamics, 

components and performance. For this, the simulations are assuming ideal behavior 

of the Automated Driving System and other components such as the sensor suite. 

This enables systematic evaluation of the autonomous control’s maximum potential 

at different levels of vehicle automation. Furthermore, due to the limitations in the 

infrastructure and the too ls, the modeling of Vehicle to Vehicle and Infrastructure 

as well as Cloud/ Internet of Things (IoT) communication has also been excluded 

from the scope of the simulations, although presented in the architecture for 

reference to vehicle external communications. 

 

Lastly, due to the conceptual and proprietary nature of the ongoing industry research 

along with the commercial unavailability of level 4 Autonomous-capable EVs, 

experimental analysis is considered out of scope for this study. It has been presented 

as part of future work based on the expected industry trends which have been 

described in detail in further sections of this thesis.     

 

1.5 Research Objectives 

This section will highlight the main research objectives of the work presented in 

this thesis. Primarily, the aim is to address the limited technical literature available 

in terms of the Advanced Driver Assistance System architectures targeting higher 

levels of vehicle automation by proposing a Cognitive ADAS architecture intended 
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for Autonomous-capable Electrified Vehicles. The objective of this architecture is 

to provide a system level distribution of the main functions, sub-functions, example 

components, their interfaces, and interactions.  

 

In addition to proposing the architecture with a detailed description of the various 

modules and the sub-modules, the aim is also to verify this architecture through 

simulations of test Autonomous-capable Electrified Vehicle. The model is intended 

to encompass a wide range of representative use cases coupled with varying 

external conditions and dynamic driving environments which the Autonomous-

capable Vehicle is expected to face on the road in real-life.  

 

The intention of these vehicle-level simulations is not only to provide a framework 

for verifying the proposed architecture but also to investigate the impact of vehicle 

autonomy on Electrified Vehicle components, performance, and dynamics. 

Furthermore, a quantitative analysis of these results in addition to a comparative 

sensitivity analysis is intended in order to understand how the Electrified Vehicle 

performance, its components’ operation and the overall dynamics differ during the 

Autonomous Driving System control versus the manual human driver control; and 

to analyze which control technique offers more beneficial EV results. The objective 

is also to systematically conclude the reasons behind the improvement in the 

Electrified Vehicle results during the operation in a particular vehicle control mode. 
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1.6 Methodology 

This section presents the methodology adopted for realizing the thesis contributions 

described previously. The primary contribution of this thesis is the proposal of a 

Cognitive ADAS Architecture for Autonomous-capable Electrified Vehicles. The 

architecture aimed at assimilating the various functions within an Advanced Driver 

Assistance System in addition to visualizing the modular and sub-modular 

interactions within the vehicle as well as the interfaces external to the vehicle with 

the dynamic driving environment. For the development of this architecture, an 

extensive literature review of the available system-level architectures, known 

ADAS features in highly Autonomous-capable Vehicles, expected functionalities, 

interactions between the Autonomous and Electrified Vehicle components and so 

on was performed in addition to conducting a thorough gap analysis for 

understanding the limitations of the current literature, with the aim of addressing 

the identified gaps through the proposed Cognitive ADAS Architecture. 

Furthermore, the proposed Cognitive ADAS Architecture based Autonomous-

capable EV simulations guided tremendously in further improving the architecture 

based on the distribution of the various functions for performing the required semi-

autonomous or autonomous operations.  

 

For the development of the simulation model itself, a rigorous tool section process 

was carried out where multiple simulation software tools were studied. IPG 
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CarMaker was selected due to the availability of multiple EV demo models, 

extensive sensor suite and modeling options as well as a variety of ADAS features, 

autonomous/ semi-autonomous control techniques, external conditions and human 

driver simulation options. A functional mapping between the proposed Cognitive 

ADAS Architecture and the developed simulation model is also provided for 

verifying both the architecture as well as the simulation model. The simulation 

results acquired clearly demonstrate the fulfillment of the above motivation. An 

enhanced 2014 Tesla Model S 85 was selected as the test vehicle in order to model 

a real-life vehicle as much as possible as the work presented in this thesis is 

expected to serve as a major building block for pragmatic implementation of an 

Advanced Driver Assistance System with Highly Automated Driving capabilities. 

The vehicle model was developed from an available demo model in CarMaker as 

well as by using the publicly available information [4]. An enhancement in the form 

of an added sensor suite was also made to reflect the difference between the current 

vehicle technology and the intended level 4 vehicle automation. Furthermore, the 

simulations also include varying external conditions such as the changes in road, 

weather, traffic and so on, again to reflect the real-life driving conditions as much 

as possible. These conditions were selected from an impact on the vehicle 

performance perspective based on the analysis in [5]. The development of these 

models will be explained in more details in the further sections of the thesis. 
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The simulation results have been thoroughly analyzed through systematic 

quantitative techniques, which will be described in detail further in the thesis. The 

simulation results analysis focuses on understanding the impact of Electrified 

Vehicle autonomy on its performance measured in terms of energy economy (Miles 

per Gallon Equivalent or MPGe), dynamics and components’ operation. In addition, 

a comparison between the Automated Driving System or ADS control, normal 

human driver and an aggressive human driver is also offered. The results also 

demonstrate the difference in both human driving test cases as well as within the 

different levels of vehicle automation.  

 

Lastly, a validation of the above is also offered through a systematic comparison 

with the Environmental Protection Agency predictions using the 5-cycle adjustment 

method geared towards the vehicle performance estimation of Electrified Vehicles. 

The details of this technique will be discussed in the further sections of this thesis.  

 

1.7 Thesis Organization 

This thesis is divided into seven chapters. The first chapter introduces the thesis by 

describing the motivation of the thesis, providing a summary of the problem 

statement and the solution, and explaining the thesis contributions, scope of 

research, research objectives and the methodology. 
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The second chapter provides a background on the Autonomous Vehicles. Firstly, 

the Autonomous Vehicles are defined. Furthermore, various topics related to the 

history of Autonomous Vehicles, their benefits and limitations as well as their safety 

and the Society of Automotive Engineers (SAE) levels of vehicle automation are 

described. In addition, the different infrastructure and support needed for the 

deployment of Autonomous Vehicles are also described. Existing features and 

examples, as well as other types of Autonomous Vehicles besides the ground 

vehicles and the future industry trends, are also presented in this chapter. 

 

A literature review of the currently discussed Advanced Driver Assistance System 

architectures in addition to the predictions regarding the increase in Electrified 

Vehicle performance with the increase in the vehicle autonomy are presented in the 

third chapter.  

 

The fourth chapter proposes a Cognitive Advanced Driver Assistance System 

(ADAS) architecture for Autonomous-capable Electrified Vehicles. The 

assumptions made for this architectural development are also presented. In addition 

to functionally describing the various modules and sub-modules within the 

proposed Cognitive ADAS Architecture, a discussion on the components are also 

provided as examples. Also, the benefits as well as limitations of the proposed 

architecture are highlighted in this chapter.  
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Chapter five describes the development of the Autonomous-capable Electrified 

Vehicle simulation model in addition to the various aspects of the dynamic driving 

environment and external conditions modeling including the vehicle, traffic, road, 

weather, and ADAS feature set models. A mapping between the simulation model 

and the proposed ADAS architecture, in addition to a theoretical walkthrough of the 

model, is also presented. A validation of the simulation model is also presented. 

 

The simulation setup/test cases in addition to the various vehicle dynamics, vehicle 

performance, Electrified Vehicle motor, and battery results are presented in chapter 

six. Furthermore, a thorough quantitative sensitivity analysis is also performed to 

analyze the impact of vehicle autonomy on Electrified Vehicle performance, 

dynamics, and components’ operation.  

 

Lastly, chapter seven summarizes the thesis conclusions as well as the limitations 

and future work. In addition, a discussion on the presented work is also shared.  
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Chapter 2 

Background on Autonomous Vehicles       

 

This section describes what an Autonomous Vehicle is (as well as some of the major 

vocabulary to be used in this thesis), major historical milestones, advantages and 

limitations, safety, levels of vehicle automation, major aspects related to the 

deployment of Autonomous Vehicles, existing features and examples, other types 

of Autonomous Vehicles, and future industry trends.   

              

2.1 What is an Autonomous Vehicle? 

A vehicle which is able to perceive its driving environment, make accurate 

decisions and take control as needed, independent of a human driver, can be termed 

as an Autonomous Vehicle. A vehicle can also possess partial autonomous 

capabilities where the Automated Driving System (will be explained further) is able 

to perform one or a set of functions independent from the human driver. In this 

thesis, the term “Autonomous Vehicle” will be used when referring to the general 

field or the technology and the term “Autonomous-capable” Vehicle will be used 

to refer to a vehicle which is able to operate with a partial or a full autonomy. It 

should also be noted that a vehicle which is capable of operating at full autonomy, 

can also be operated at a lower level of autonomy during a degraded mode of 

operation in case of a failure in the Automated Driving System or its components 
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or if that is intended by the user. One of the other related terms which will be often 

seen in this thesis as well as in the literature is the Advanced Driver Assistance 

System or ADAS. ADAS provides a functional system level framework of the 

technology incorporating the various physical components, functional modules and 

their interfaces for enabling the autonomous or semi-autonomous control of vehicle 

driving functions. 

  

In addition, another commonly used term within this thesis is the Automated 

Driving System or the ADS [3]. As defined in [3], ADS comprises of the entire 

system including the various components required to autonomously perform all of 

the major tasks relating to the acceleration, braking, steering and so on within an 

Autonomous-capable Vehicle. In essence, an ADS can be viewed as existing within 

an ADAS which is in turn present in an Autonomous-capable Vehicle.  

 

2.2 History  

Historical advancements through time have had a major impact on the currently 

available Autonomous Vehicle technologies. This section will focus on some of 

those major landmarks [6]. One of the very first autonomous cars was built in 1926 

and was called the Linriccan Wonder [6]. The operating principle was very simple. 

It consisted of a transmitting antenna which captured radio signals from another car 

that would be following it. The car’s motion was then controlled by small electric 

motors which were in turn connected to circuit breakers receiving signals from an 
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antenna. In December 1926, Achen Motors showcased a modified version of the 

Linriccan Wonder, in Milwaukee, which was known as the Phantom Auto. 

 

The year 1939 could be marked as another major stepping stone in the development 

of Autonomous Vehicles. Electrified cars which were powered using embedded 

circuits were presented at the world fair by Normal Bel Gedde [6]. 1940s marked 

one of the first successful Cruise Control (CC) systems [7]. General Motors had 

sponsored their Futurama exhibit. Following this, in 1953, RCA labs had built a 

small autonomous car which would be controlled based on a pattern of wires. 

General Motors in collaboration with Leland Hancock and L.N. Ress were able to 

develop this idea further and take it to the actual road. As a result, Firebird, which 

consisted of a series of experimental semi-autonomous vehicles, was launched in 

the General Motors Auto show called Motorama in the 1960s [8] - [10]. This period 

had already marked successful simulations of primary vehicle controls such as 

automatic braking, accelerating and steering. These vehicles mainly worked with 

the help of devices which were installed within the roadway in order to guide the 

vehicles.  

 

Inspired by the Firebird, in 1966, a similar driver-less car was developed by the 

Communication and Control Systems Laboratory team at the Ohio State University. 

This technology of embedded devices within the roadway guiding the vehicle had 

become very popular in the 1960s. Following a similar concept, vehicles were also 
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controlled by embedded magnetic cables. Citroen DS is one such example of an 

autonomous car developed by the Transport and Road Research Laboratory in the 

United Kingdom [11] - [13]. 

 

The concept of vehicle automation was well supported by the Bureau of Public 

Roads in the United States of America with their experimental initiative of an 

electronically controlled highway, within the states such as California, 

Massachusetts, New York, and Ohio [14]. Following this, Bundeswehr University, 

Munich, also developed an autonomous van sponsored by Mercedes. In addition, 

the Prometheus project conducted by EUREKA during the period of 1987 to 1995 

also gained a lot of importance in the field of Autonomous Vehicles [15] - [16]. One 

of the first Adaptive Cruise Control (ACC) implementations was seen in 1991 [17].  

Some of the other Autonomous Vehicle projects during this time period included 

the ones by the United States Department of Defense’s Defense Advanced Research 

Projects Agency, Carnegie Mellon University, the Environmental Research 

Institute of Michigan, University of Maryland, Martin Marietta and the SRI 

International [8]. The combined project with the various universities was known as 

the Autonomous Land Vehicle Project [18] – [21]. 

 

Furthermore, various political changes mainly in terms of the ISTEA 

Transportation Authorization Bill of 1991, in addition to the establishment of the 

National Highway System Consortium in the United States became major stepping 
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stones in the development of driver-less vehicles. Daimler - Benz’ VaMP, 

Bundeswehr University Munich’s Vita-2, Dickmanns’ driver-less S-Class 

Mercedes, Carnegie Mellon University’s Navlab, more popularly called as No 

Hands Across America or NHOA and Alberto Broggi’s ARGO were some of the 

major exciting successful Autonomous-capable Vehicle projects during the period 

of 1990s [21] - [26]. 

 

Finally, more sophisticated and efficient designs of Autonomous Vehicles were 

explored in the 2000s [6]. Various off-road, military as well as public transportation 

options were evaluated for the implementation of autonomous capabilities. One 

prominent example is a public ground transportation system called ParkShuttle, 

which was implemented in the Netherlands [27] - [29]. Also, the United States’ 

efficient military demo vehicles became exemplars in demonstrating the application 

of Autonomous Vehicles [30].   

 

2.3 Benefits and Limitations 

The inclusion of Autonomous Vehicles within the mainstream would be highly 

advantageous mainly for reducing the number of road accidents that may result due 

to driver distraction. In addition, it can be useful for medical or emergency, military 

and space applications where minimal human intervention might be permitted. 

Furthermore, it can assist disabled people in increasing their mobility. Traffic 

management based on safe vehicle arrangement is another major advantage of 
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Autonomous Vehicles. Also, optimization of parking space can be facilitated with 

the use of Autonomous Vehicles. The Autonomous Vehicle can drop off the 

passenger and park itself at a distant location and pick up the passenger when 

required.  

 

In addition to the above-discussed advantages, Autonomous Vehicles also offer a 

significant benefit from an automotive manufacturer perspective. Increasing the 

level of vehicle automation within a vehicle will be beneficial in reducing human 

involvement which in turn can be helpful in eliminating certain redundant 

components [31] from the vehicle’s powertrain design. In other words, certain 

modifications could be done to the powertrain in terms of the various components 

that need to be connected for an optimal performance in order to offer lighter, 

cheaper and easier to manufacture vehicle designs. However, it is to be noted that 

the elimination of current vehicle components such as the steering wheel cannot be 

realized until the evolution of the Autonomous Vehicle technology up to level 5. 

Policies and regulations can also be expected to play a significant role here in 

shaping the human driver responsibility at the higher vehicle automation levels 

which might further impose restrictions on the complete elimination of some 

currently existing vehicle components.  

 

Furthermore, as described in [32], the Autonomous Vehicles could result in fuel 

economy improvement offering an immediate tangible commercial benefit to the 
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automotive industry and environmental benefits, at large. However, the exact 

impact of vehicle autonomy can only be assessed through a quantitative analysis 

backed up by reasonable simulations. This is also precisely the topic which has been 

explored, at length, in this study.  

      

In contrast to the advantages discussed above, there are also some challenges 

associated with the Autonomous Vehicles. Since majority of the vehicle control is 

based on an internal computer, its malfunction can be problematic. Having 

redundant loops within the control system that can serve as a back-up, in case of a 

failure of the main system, is essential. In addition, it might result in a loss of jobs 

due to the replacement of drivers, depending on the level of vehicle automation. 

Liability or insurance in case of an accident is also raised as a big question. Neither 

the driver nor the computer can be held solely responsible for any deviation in the 

desired vehicle control. Also, the benefits of Autonomous Vehicles are more 

evident when both the surrounding vehicles as well as the infrastructure is in 

coordination with it. As such, a change of the infrastructure is needed in order to 

incorporate Autonomous Vehicles in the mainstream. Furthermore, due to the 

comprehensive knowledge of the internal computer about the passengers’ daily 

usage and activity, concerns can arise due to the loss of passenger privacy. Lastly, 

cyber security becomes a major concern due to the possibility of external malicious 

attacks into the host vehicle’s system.       
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2.4 Safety of Autonomous Vehicles 

As the automotive industry is making the transition from conventional vehicles to 

more automated vehicles, the level of complexity within the vehicle systems and 

dependency on the computer-oriented decision making has increased considerably, 

thus, resulting in a need for more robust, safe, and dependable vehicles. The overall 

safety within an Autonomous-capable Vehicle can be categorized into three broad 

umbrellas - functional safety, Safety of the Intended Functionality (SOTIF) and 

cybersecurity. This section summarizes the main concepts associated with the three 

categories and discusses the current establishments or work in progress for each.   

 

1) Functional Safety 

International Organization for Standardization (ISO) 26262 is an automotive 

functional safety standard followed widely across the automotive industry [33]-

[35]. The scope of ISO 26262 is restricted to avoiding malfunctioning behavior 

caused by electrical and electronic systems as well as their interactions [33]. Parts 

1 to 4 are the most applicable for carrying out the system level functional safety 

analyses of Advanced Driver Assistance Systems.  

 

It is important to realize that risk cannot be reduced to zero even in the best-

predicted systems. The intention is, instead, to bring down the risk to an acceptable 

reasonable level. This acceptance criteria is defined based on the application space 
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of the system under study. Furthermore, the ideology is to prevent the violation of 

top-level safety goals of a system which could be caused due to failures affecting 

safety critical functionalities.  

 

Automotive Safety Integrity Level (ASIL) is a key classifier used in the functional 

safety analyses in order to segregate one system from another in terms of its safety 

criticality. ASIL is in turn dependent on three major factors – severity, exposure 

and controllability [34]-[35].  Severity represents the extent of harm which could 

occur in case a hazardous failure was to happen. It ranges from 0 to 3, where 0 

represents the lowest severity and 3 represents the highest. Exposure estimates the 

probability of a particular event occurring. It is not to be confused with the 

probability of a failure occurring in that particular event. It ranges from 0 to 4; 0 

representing the lowest probability and 4 representing the highest probability to be 

present in a situation which could become hazardous if it were to coexist with a 

failure in that situation. Controllability identifies the ability of either the driver or 

any other passenger involved to be able to avoid the hazardous situation at hand. It 

ranges from 0 to 3 where 0 represents the highest controllability and 3 represents 

the lowest. ASIL is then determined based on the selections for severity, exposure, 

and controllability as described in [35]. The ASIL classifications range from A to 

D, where A represents a system with the lowest safety criticality and D represents 

a system with the highest safety criticality. Besides ASIL A-D, systems can also be 

classified as Quality Managed or QM. Such a system does not need any additional 



Ph.D. Thesis - K. Divakarla; McMaster University - Electrical and Computer Engineering 

27 
 

special functional safety treatment as per ISO 26262, instead, it is accepted to be 

sufficiently designed as per the quality management processes within the company.     

 

Ensuring safety during engineering design is challenging. It includes both the 

prediction of failures or hazards well before time, in addition to designing 

redundancies within the system to address those failures, if they were to occur in 

the future. Risk is anticipated beforehand using various standardized functional 

safety analyses such as Hazard Analysis and Risk Assessment (HARA), Failure 

Mode and Effect Analysis (FMEA), Fault Tree Analysis (FTA), Design 

Verification Plan and Report (DVP & R) and so on [33]. The main goal of these 

work products is to make sure that various failures, effect of the failures on the 

system, measure of risk due to the failures and the various risk mitigation strategies, 

to avoid the hazards is evaluated methodically. Then, based on the analysis, extra 

redundant features are added to the system as a precaution. Majority of the failure 

prediction and mitigation planning can be based on knowledge from the past 

systems, conceptual brainstorming, experimental analysis, or thorough simulations.  

 

2) Safety of the Intended Functionality (SOTIF) 

Violation of a top-level safety goal need not only result from a system failure. A 

system could be functioning exactly as intended, free of malfunctions, yet, could 

result in a hazardous behavior if it has limitations in terms of its usage in an 
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application space. This is the exact concern which SOTIF tries to address. ISO 

(SOTIF) PAS 21448 is currently under development which attempts to describe the 

various SOTIF analyses systematically [36]. Limitations in the used technology 

(e.g. sensors) and human driver related topics (e.g. interaction between the driver 

and ADS) are well-known applications of where SOTIF might be applicable [36]. 

For example, even if a sensor on an Autonomous-capable Vehicle is functioning 

without any failures, there is a possibility of a severe hazard, if an object detection 

outside the sensor’s range capabilities is intended. Similarly, an Autonomous-

capable Vehicle could result in an inevitable crash if the Human Machine Interface 

(HMI) is unsuccessful in capturing the driver attention within the Fault Tolerant 

Time Interval (FTTI), in a case, when a driver is the Automated Driving System’s 

fallback option to take the vehicle control. Both examples would be SOTIF 

classified.   

 

From a solution perspective for technological limitations, sensor fusion has gained 

credibility for ensuring adequacy of the perception domain [37]-[38]. Building 

redundancy within a system is a classic approach for avoiding availability issues. 

In addition, a safety case should be built on the basis of thorough brainstorming of 

critical use cases.  
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As identified in [39], human factors is also a very important aspect in designing safe 

Autonomous Vehicle systems. It is practically impossible to predict before-hand 

how every human driver might react in every situation. Attentiveness of the driver 

becomes even more vital if they are part of a vehicle’s safe stop maneuver or 

degradation [39]. There might be multiple factors including age, gender, driving 

experience, cognitive loading, personality, driving knowledge, trust on the vehicle 

systems, drowsiness level, external driving conditions and so on that could have an 

effect on a driver’s distraction level. Designing an efficient HMI that would not 

only understand the driver’s needs but also be able to communicate with them 

effectively to make sure they are attentive, could be the first step in addressing this 

issue [36]. Vehicles equipped with sophisticated physiological measurement 

devices and video cameras could also help in capturing the driver attention metrics 

[40].      

 

3) Cyber Security 

The last category described in this section for ensuring an overall safety is 

cybersecurity [41]. This realm of safety deals with malicious attacks or intrusion 

into the vehicles’ systems by an external agent, resulting in a compromise in the 

vehicle’s safe control and a catastrophic privacy loss. Through such intervention, it 

could be possible to take complete control of the vehicle’s primary DDT, depending 

on the level of dependency on the ADS. The risk of having cyber-security attacks 
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is increasing with the higher amounts of connectivity seen for highly Autonomous-

capable vehicles through V2X, cloud and IoT. There are multiple access points 

which could give external sources a provision for reaching to the safety critical 

islands of the vehicle. The sensors, actuators, communication, data processing and 

application layers have been identified as the vulnerable layers for such attacks in 

[42].   As prescribed in [41], having enough resiliency and encryption within safety 

critical elements is essential in order to prevent such attacks from happening. Even 

if they were to occur in unlikely scenarios, a timely fault reaction should be 

designed in order to make sure that a safe transition to a fallback system takes place 

within the FTTI.  

 

2.5 Levels of Vehicle Automation 

When it comes to AVs, there is a common misconception that an Autonomous 

Vehicle can only refer to a completely driver-less vehicle. However, that is not the 

complete story. There are various levels of autonomy that can categorize these 

vehicles. According to the Society of Automotive Engineers (SAE) J3016 standard, 

there are six distinct levels of vehicle automation [3]. These levels are categorized 

based on four parameters – control of lateral and longitudinal vehicle motion, 

Object and Event Detection and Response (OEDR), Dynamic Driving Task (DDT) 

and Operational Design Domain (ODD).  OEDR mainly consists of the perception, 

response formulation and reaction with an AV. DDT includes all of the vehicular 
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activities performed that contribute to a particular motion of the vehicle [3]. ODD 

refers to a scope of conditions in which the vehicle has been designed to operate in. 

Depending on how the responsibility for these 4 categories is allocated between a 

human driver versus the Automated Driving System (ADS), a level of vehicle 

autonomy is assigned.  

 

1) Level 0 

Level 0 (No Driving Automation) is the first level where the driver is mainly 

responsible for all the major control of the vehicle consisting of steering, braking 

and throttle. In this level, although the driver is taking the responsibility for the 

entire DDT, other active safety systems may be present on the vehicle. Blind spot 

monitoring, collision warning, and lane departure warning systems are some 

examples of level 0 automation.  

 

2) Level 1 

Level 1 (Driver Assistance) is the second level of vehicle automation. In this level, 

the driver is still mainly responsible for the overall vehicle control. However, level 

1 automation allows for the use of an automated system that may support the driver 

in only one of the lateral or longitudinal vehicle motion control. The responsibility 

for the OEDR and DDT fallback is still on the driver. Some examples of level 1 

automation include Adaptive Cruise Control, electronic stability control, automatic 

braking and lane keeping.  
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3) Level 2 

The next level of autonomy is the Level 2 (Partial Driving Automation). In this 

level, the ADS is permitted to take control of both the lateral and the longitudinal 

vehicle motion. However, the driver is still expected to supervise the ADS and take 

responsibility for the OEDR and DDT fall back. Tesla Autopilot can be classified 

as a level 2.   

 

4) Level 3 

The fourth level of autonomy is referred to as the Level 3 (Conditional Driving 

Automation). At this level, the autonomous system is able to take primary control 

of the vehicle, including the lateral and longitudinal control and the OEDR, 

ensuring a safe operation. However, it is advisable for the driver to be present in 

case a switch of the operation mode is intended by the ADS from autonomous to 

driver controlled. As such, the DDT fallback still remains as the human driver, 

adding additional layers of complexity, unlike the other levels lower and higher than 

this.  

 

5) Level 4 

The fifth level of vehicle automation is termed as Level 4 (High Driving 

Automation). In this level of vehicle automation, the automated system is expected 

to take full control of the vehicle with no intervention expected from the driver. In 
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other words, the system is responsible for the OEDR, vehicle’s full control and the 

DDT fallback. However, the ODD is still expected to be limited, unlike Level 5, 

which is the final level. 

 

6) Level 5 

In Level 5 (Full Driving Automation), the ADS is again expected to take full 

responsibility of the entire vehicle control, OEDR and the DDT fallback, however, 

the ODD is no more limited to only a few use cases.  

 

2.6 Support Needed for Autonomous Vehicle Deployment 

Although some lower levels of Autonomous Vehicles are already commercially 

available, when it comes to deploying higher levels of Autonomous Vehicles, 

especially 3 to 5, there is a significant support needed for ensuring their intended 

operation on the road as well as for gaining the maximum benefit out of this 

evolution [43] - [44].  

 

Primarily, the infrastructure including roads, buildings, traffic signals/signs, other 

vehicles, communication networks (enabling V2X), cloud framework, computation 

methodologies, and so on needs major modification and revamping to meet the 

demands of a higher-level Autonomous Vehicle [43] - [44]. The current 

transportation policies would also need to be updated in order to better delegate the 

responsibilities as well as liabilities between the ADS and the human driver. This 
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could, in turn, result in a modification of insurance policies, legal procedures as 

well as other standards currently governing the transportation regulations in various 

states [43] - [44]. According to [45], for safety and security reasons, a remote driver 

or authority can be expected to keep track of the highly Autonomous-capable 

Vehicles at all times. With the upcoming trends such as vehicle platooning, the 

maturity of safe and secure communication networks become a priority. Traffic 

management can also be considered crucial to avoid any unintended disturbance or 

immobility of the surrounding traffic due to a large set of vehicles participating in 

a platoon. The vehicles’ transition in and out of platoon in addition to any support 

activities also need to be managed through advanced ADAS infrastructure [46].           

 

Furthermore, a significant amount of driver training and education is needed for the 

autonomous functionalities within the vehicle, in order to increase their credibility, 

confidence, and desirability. In addition, with a mix of autonomous, semi-

autonomous and manual vehicles on the road, a disciplined driving environment 

with minimized possibility of misuse, is ideal for the deployment of higher levels 

of Autonomous Vehicles.   

 

Lastly, it is needless to talk about the progress required on the sensor fusion, 

computation capabilities, intelligent learning, Internet of Things, and so on in order 

to ensure adequate and efficient transition to higher levels of Autonomous Vehicles 

[43] - [44]. 
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2.7 Existing Autonomous Features in Ground Vehicles and Examples  

This section provides a summary of the major autonomous features currently 

existing in the market. Many higher-level features are a combination of several 

lower-level ones. Also, the utility of a feature completely depends on the intended 

level of autonomy for the vehicle using that particular feature.  

 

1) Cruise Control (CC) 

Cruise Control is one of the most primitive semi-autonomous capabilities that has 

been deployed in the automotive industry. It enables the driver to set a maximum 

speed for the car to cruise on. It does not automatically brake in case of a nearing 

obstacle, which could result in a front-end collision (if the driver does not brake). It 

also does not take into account any surrounding vehicles that might want to come 

into the host vehicle’s lane. Cruise Control is generally most effective for highway 

driving. Majority of the cars today already come with an option of a traditional 

cruise control.  

 

2) Adaptive Cruise Control (ACC) 

Adaptive Cruise Control is an enhancement of the CC technology. It allows the 

drivers to set a minimum distance between the host and the vehicle in the front in 

addition to the maximum speed. The ACC controller then uses the most 
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conservative approach to maintain a safe distance from the vehicle in the front with 

the aim of avoiding front-end collisions. However, the vehicle is still not capable, 

just based on ACC, of modifying its planned actions, in case another vehicle signals 

to enter into the host vehicle’s lane. Some examples of cars already having ACC 

include Toyota Corolla, Honda Civic, Subaru Impreza, Nissan Sentra, Honda 

Accord, Toyota Prius, Hyundai Ioniq, Volkswagen Jetta, Subaru Crosstrek, Subaru 

Legacy, Mazda CX-3, Mazda 3, Honda CR-V, Hyundai Elantra, Kia Niro, and so 

on [47].   

 

3) Automatic Emergency Braking (AEB) 

AEB is one of the sub-features supported by some of the other comprehensive 

features described in this section. Under activation, AEB supports in automated 

braking, as required. For example, during the operation of the Rear Cross Assist 

feature (will be described below), if there is a static or a dynamic obstacle noticed 

in the rear path of the host vehicle, the reverse maneuver will be stalled with the 

help of AEB. Acura, Alfa Romeo, Audi, BMW, Buick, Cadillac, Chevrolet, 

Chrysler, Fiat, Ford, Genesis, GMC, Honda, Hyundai, Infiniti, Jeep, Kia, Lexus, 

Lincoln, Mazda, Mercedes, Porsche, Subaru, Toyota, Volkswagen, Volvo, and so 

on are some examples of cars with the AEB feature available [48].  
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4) Active Brake Assist 

The Brake Assist [49] feature enables the identification of sudden braking while 

driving. It then assists the driver by providing additional pressure while braking. 

The Navigation-Brake Assist technology [50] helps in detecting the stop signs 

ahead of time and thus aids in braking as applicable. Some examples of cars 

supporting the Active Brake Assist feature include Toyota [49]-[50], Volvo [51], 

Mercedes [52], and so on.   

 

5) Active Lane Keep Assist  

The Active Lane Keep Assist system helps in providing timely Lane Departure 

Warning to the driver in case the vehicle gets diverted from the current lane 

unintentionally [53]. In such situations, it can also support the driver by activating 

the AEB and automatically steering the vehicle back into the lane with the help of 

Radar Cruise Control. This technology mainly works by recognizing the lines on 

the road and steering the vehicle according to the changes in the road curvature, 

while keeping Lane Centering active for the duration of the drive cycle. Some 

examples of cars already supporting this feature include Toyota [53], Acura, Audi, 

BMW, Buick, Cadillac, Chevy, Ford, Genesis, GMC, Hyundai, Infiniti, Lexus, 

Lincoln, Mazda, Mercedes, Subaru, Volvo, et cetera [54].   
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6) Active Lane Change Assist 

When a lane change request is initiated by the driver, the Active Lane Change Assist 

feature can aid in automatic maneuver or steering in the intended lane after 

following Blind Spot Monitoring (will be described below). This lane change 

operation may also be activated by the ADS instead of the human driver, depending 

on the level of vehicle autonomy. Hyundai Sonata, Porsche Macan, Subaru Legacy, 

Mazda 3, Lexus ES, Volvo S60, Toyota Tacoma, Range Rover Evoque, Chevrolet 

Volt, Dodge Charger, et cetera are some examples of the cars that have an option 

of supporting the Active Lane Change Assist functionality [55].  

 

7) Active Blind Spot Assist 

The Blind Spot Monitoring technology [56] can help in the accurate detection of 

another vehicle existing in the host Autonomous-capable Vehicle’s blind spot. 

Since the blind spot of another vehicle is one of the riskiest areas to be present on 

the road, this functionality can be very helpful to address the road safety issue 

arising due to driver distraction. If another static or dynamic obstacle is detected in 

the blind spot of the host vehicle, during a lane change operation, AEB activation 

will prevent the driver from making this lane change. The range of alerts or 

warnings (visual, audio and haptic) provided to the driver and the Automatic 

Steering operation in order to prevent the lane change, depends on the level of 

vehicle autonomy. Mercedes-Benz [57] and Nissan Infiniti [58] are classic 
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examples of the implementation of this feature.     

 

8) Automated Parking 

Automated Parking is another useful feature, especially in cosmopolitan cities, for 

optimization of parking spaces and increasing the driver convenience. This feature 

can firstly aid in the parking space detection and then in carrying out the required 

maneuver into the detected parking space. Furthermore, Automated Parking can 

also be enhanced for Parallel Parking, which can be quite challenging in areas with 

heavy traffic flow, in order to provide the Self Parallel Parking feature. Some 

examples of cars which support the Automated Parking feature include Volvo S90, 

Toyota Prius, Chrysler Pacifica, Chevrolet Malibu, BMW 5 Series, Ford F-150, 

Mercedes Benz S-Class, Tesla Model S, and so on [59]. 

 

9) Rear Cross Traffic 

The Rear Cross Traffic feature enables the drivers to carry out the reversing 

maneuver (e.g. out of a parking lot, driveway, and so on) with the help of a rear-

view camera. In case of a dynamic or a static obstacle detected in the vehicle’s 

reverse path, depending on the level of vehicle autonomy, the Autonomous-capable 

Vehicle could decide to alert the driver (Rear Cross Traffic Warning) to stop the 

vehicle’s reverse maneuver or the vehicle could assist the driver by enabling the 
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AEB (Rear Cross Traffic Assist). Audi Q2 and Lexus RX are a couple of examples 

that have implemented the Rear Cross Traffic Assist feature [60] - [61].    

 

10) Autopilot 

The Autopilot feature offers one of the most advanced autonomous functionalities 

[4]. It is able to result in automatic steering of the vehicle, when commanded, by 

making sure that the vehicle is well centered within the lane. Using the autopilot 

feature, it is also possible to change lanes according to the lane change signal used. 

In addition, it is able to adapt well to the driving environment and adjust the vehicle 

control accordingly. This functionality comprises of a combination of various other 

autonomous features such as lane centering, Adaptive Cruise Control (ACC) based 

on the traffic awareness and park assist. Tesla was one of the first contenders of the 

Autopilot [4]. 

 

11) Automatic High Beam (AHB) 

AHB assists the drivers by switching between low beam and high beam lighting 

depending on the surrounding lighting conditions in the Autonomous Vehicle’s 

driving environment. This helps in automatically optimizing the driving visibility 

for the driver. This technology has already been in the market for a few years. 

Multiple cars including Mazda, Subaru, Toyota, and so on are some examples that 

support this feature [62].  
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12) Adaptive Front Lighting System 

Intelligent Adaptive Front-lighting system [13] enables better visibility on the road 

by automatically adjusting the direction of the headlights based on the road 

curvature. Similar to AHB, the Adaptive Front Lighting system has also been 

absorbed in the market for a few years. Some examples of cars offering this feature 

include Volkswagen Jetta, Mazda, Hyundai Elantra, Infiniti Q50, Subaru Outback, 

Volvo S60, and so on [63].  

 

2.8 Other Types of Autonomous Vehicles 

The use of autonomous capabilities is not only restricted to ground vehicles but very 

largely applied to other areas as well [64]. Unmanned aircraft systems have many 

wide applications. These can be very useful in the agriculture industry by helping 

the farmers in irrigation, monitoring, application of fertilizers, planting and 

pollination [65] – [67]. These aircraft systems can also be helpful for military 

applications such as rescue during natural calamities, emergencies, and situations 

permitting minimal human intervention [64]. Aerial Surveillance for data capturing 

or media purposes is another application [68]. Delivery of various goods can also 

become more efficient with the use of autonomous aircraft systems [69] – [74]. 

 

Marine is another area where the use of unmanned systems is of a significant 

advantage. Observation of ocean beings [43], oil and gas surveys and autonomous 

cargo shipments [73] are some of the applications of underwater autonomous 
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systems. Underwater security systems could also be installed with the help of 

autonomous submarines [74].   

 

Autonomous spacecraft have been in existence for a very long time. In majority of 

the space explorations, since human involvement is very difficult due to the 

surroundings, unmanned equipment can be very beneficial [75]. 

 

The driver-less train is another major example of an Autonomous Vehicle [76]. 

Since the observation of surroundings in terms of Object Detection and Tracking 

might be carried out in the same environment for every trip, the incorporation of 

autonomous capabilities to eliminate redundant driver-based activities is credible. 

 

In overall, the existence of autonomous capabilities in vehicles helps in reducing 

the scope of driver errors. However, the autonomous functionality incorporated into 

the vehicles depends on the required level of autonomy as per the application 

domain.   

 

2.9 Predicted Future Trends 

This section highlights some of the major anticipated ADAS technologies which 

are being researched or tested currently. Furthermore, timeline predictions as 

publicly expressed by some of the major car manufacturers for various levels of 

Autonomous Vehicles, planned for commercial release in the near future, are also 
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presented. The autonomous or semi-autonomous features which are currently 

available today have already been described previously. 

   

1) Cooperative Adaptive Cruise Control (CACC)  

CACC is one of the most sophisticated forms of Adaptive Cruise Control (ACC). It 

enables more informed decision making by extracting information from the smart 

driving environment through Vehicle to Vehicle (V2V) and Vehicle to 

Infrastructure (V2I) communication [77].  For example, if the surrounding vehicles 

or infrastructure could communicate the traffic conditions to the host Autonomous 

Vehicle before-hand, it could then plan its execution path accordingly.  

 

2) Autonomous Flying Car 

Since a few years, the concept of autonomous ground cars is being explored further 

to discover the possibilities of a major technological transformation in the form of 

an autonomous flying car. There is incredible potential to such a technology if 

realized, mainly in optimizing the traffic flow. Such an autonomous flying car 

concept has been described in [78]. It has also been identified in [78] that the 

complex combination of automotive and aerospace parts for ensuring an efficient 

design could be one of the major roadblocks currently.    
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3) Autonomous Fuel Cell Car 

While the biggest Autonomous Vehicle industry buzz has been around the 

Autonomous Electrified and Hybrid Vehicles, the realm of fuel cell vehicles in the 

space of autonomy is also being explored. One such concept SAE level 4 

autonomous fuel cell car is currently undergoing testing as described in [79].   

 

The dynamic timeline predictions offered by major car manufacturers in the realm 

of autonomous driving provide insights into the Autonomous Vehicle deployment 

roadmap [80] - [96]. As such, in Fig. 2.1, an attempt has been made to capture a 

snapshot of these current publicized predictions [80] - [96] in no specific order. A 

classification according to the various levels of Autonomous Vehicles predicted to 

be deployed, at a given time, by some of the major car manufacturers has been 

presented here. Acronym “L” has been used to represent “Level” of vehicle 

automation. For example, L3 would refer to a Level 3 Autonomous Vehicle. In 

order to avoid double counting, the technology or Autonomous Vehicle platform 

providers and chip manufacturers have been excluded from this figure. It is not the 

intent of this figure to provide any comparison on the commercial availability of 

these Autonomous-capable Vehicles from different manufacturers as the solutions 

are expected to have variations in the SAE levels of automation, geo-fencing 

requirements, application space, and technology. Instead, the intention of Fig.2.1. 
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is to provide a visual representation of the clustering of varying levels of 

Autonomous-capable Vehicles for a respective timeline.  

 

 

Fig.2.1. Mapping of Autonomous Vehicles Timeline to the SAE Levels of 

Automation as Predicted by Some of the Major Car Manufacturers. 
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Chapter 3 

Fundamentals of the Autonomous Vehicle Technology 

 

This chapter provides a review of the current ADAS architectures and literature 

exploring the impact of Electrified Vehicle autonomy on its performance. This will 

become very critical in demonstrating the gap analysis between the available 

literature and the requirements of the industry.   

 

3.1 Review of Current Advanced Driver Assistance System Architectures 

This section will provide a summary of the existing literature in terms of the 

different ADAS architectures and provide a gap analysis. As previously mentioned, 

the current technical publications describing an ADAS architecture for vehicles 

with higher levels of autonomy, are limited both in number as well as in terms of 

the encompassing functions that are able to comprehensively represent such a 

system. 

 

A possible hierarchical illustration of the various perception functions within an 

ADAS architecture is shown in [97]. The autonomous features are described as an 

output of the situational analysis. Although, the architecture well represents the 

high-level breakdown of the various perception functions, the other functions of the 

system including the actuation and decision-making are not included. While [98] 
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presents a good high-level representation of the actuation and perception systems, 

decision making is not explained as part of the ADAS control. Furthermore, the 

driver is shown as part of an HMI feedback, although no control is routed through 

the driver to the actuation systems. Similarly, [99] provides a detailed breakdown 

of both the perception and the actuation systems, however, the decision making or 

planning within an autonomous-capable vehicle is not shown in similar details. The 

ADAS architecture is also well described in [100]. The perception is broken down 

in terms of sensing domain and environmental characterization and the decision 

making is represented in terms of the threat assessment and the counter-measure 

decision algorithms. However, the actuation interface to various vehicle systems is 

not clearly identified. Furthermore, [101] provides a very detailed representation of 

the ADAS architecture with unique terminology. The architecture is described with 

the aid of multiple diagrams. Accurate perception, localization, mapping, and 

navigation are explained in this architecture in details. The interaction with the 

external infrastructure with the help of a Cloud environment is also described. 

However, the challenge is due to the limited representation of the decision making 

and actuation within the ADAS architecture. The ADAS architecture in [102] well 

represents the sensing, processing, actuation and the resulting autonomous or semi-

autonomous features on a high level. However, the interfaces between them are not 

represented. This prevents understanding the flow of information from one module 

to the other. In addition, [103] also provides a systematic modular representation of 

the ADAS architecture. It dives deep into the perception, localization and mapping 
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aspects. A reasoning and decision-making layer in addition to the path planning 

layer is also shown, although the details of the various functions are not 

demonstrated. Furthermore, the ADAS control layer showing the transmission of 

various signals including steering, braking and throttle is also presented, however, 

its interface to other higher-level actuation systems such as energy management, 

powertrain, and so on are not evident.  

 

Similarly, there have been several attempts for representing the system level ADAS 

architecture [104]-[107]. However, the challenge is to comprehensively present the 

details of the various functions, components as well as the interfaces between them 

at different abstraction levels. Furthermore, it is also critical to identify the role of 

the important actors – ADS and the human driver. A summary of the above 

described literature is also visually represented in Fig.3.1 [97]-[107]. This thesis 

attempts to address some such gaps and offer a Cognitive ADAS Architecture for 

an Autonomous-capable Electrified Vehicle. In addition, the proposed ADAS 

architecture targets the higher levels of vehicle automation, which still seem to be 

in the conceptual stage in the automotive industry, making its availability with 

accurate details backed up by scientific justifications scarce in the literature.   
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Fig.3.1. Summary of the Major ADAS Architecture Topics Discussed in the 

Current Literature. 
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3.2 Review of Existing Literature on the Impact of Vehicle Autonomy on 

Vehicle Performance 

 

In addition to the ADAS architectures, this thesis also attempts to address the topic 

of the impact of vehicle autonomy on its performance. This section will review 

some of the existing literature on this topic and provide a gap analysis. 

 

Regarding the topic of the impact of vehicle autonomy on vehicle dynamics and 

fuel economy, there are multiple intuitions about smooth acceleration and 

deceleration profiles, optimal control strategies and energy management as well as 

elimination of human factors and driver inefficiencies which could have a positive 

impact on both the dynamics and the fuel consumption of the vehicle [108]-[113], 

[114]-[118]. While [108] predicts an overall decrease of 2 to 4 percent in fuel 

consumption based on a report by the Intelligent Transportation Society of America, 

[109] estimates a 10% increase in the fuel economy due to the efficiency 

improvements from autonomous control algorithms. Similarly, a 10 to 15 percent 

fuel economy benefit is also highlighted by [110], due to the possibility of vehicle 

platooning (cutting down the aerodynamic drag by moving vehicles with a specific 

distance gap), components re-design and so on. Furthermore, according to [111], 

the better driving efficiency, lower congestion, improved acceleration/deceleration 

patterns in addition to the benefit due to platooning can also result in very high 

reductions in fuel consumption. Also, [112] claims that the vehicle interconnectivity 
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through V2V and V2I communication can play a major role in improving the fuel 

economy by as much as 10 %. An overview of the fuel economies for different 

vehicles through years has been shown in [113]. The autonomous-capable vehicles 

are predicted to exhibit more eco-friendly driving through their impact on the 

engine, accessory loads, rolling resistance and so on [113]. In [114], Model 

Predictive Control is used to anticipate future trajectories of the vehicle, which in 

turn is expected to aid in fuel economy improvements. Furthermore, a 40% 

improvement in fuel economy is predicted in [115] based on a simulation study of 

Toyota Prius’ engine, battery state of charge and the fuel economy itself. The main 

reason for this significant improvement is accounted to better control strategies 

arising from the autonomous control of hybrid powertrain resulting in a more fuel-

efficient driving [115]. Optimal Energy Management, connectivity, and intelligent 

driving styles are also seen as major contributors to fuel economy improvement in 

[116], [117] and [118] respectively.  

 

Furthermore, the variations in the vehicle performance (for urban and highway 

driving) based on the different operation modes of the hybrid and plug-in hybrid 

vehicles, including the blended mode, is also discussed in the literature [119], [120].   

 

Despite many different predictions on the percentage of fuel economy improvement 

and the reasons behind it, the challenge is to systematically demonstrate the 

relationship, backed up by a thorough scientific analysis, between different levels 
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of autonomous control and the Electrified Vehicle components specifically, which 

can, in turn, result in significant energy savings.  As such, this thesis provides this 

analysis through a simulation-based framework, established on the proposed 

Cognitive ADAS Architecture. The intention of this work is to not only support this 

analysis for existing vehicle automation levels but also for the future autonomous 

levels 3 and above which are only seen to be conceptual at this stage in the 

automotive industry.      
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Chapter 4 

A Cognitive Advanced Driver Assistance Systems (ADAS) 

Architecture for Autonomous-capable Electrified Vehicles      

 

This section proposes a Cognitive ADAS Architecture for Autonomous-capable 

Electrified Vehicles [121]. The different modules and sub-modules, as well as their 

interactions, are described in detail. Assumptions made for this architectural 

development are also provided. A discussion on the various component examples 

that are used within this ADAS architecture is also provided. Lastly, the benefits 

and applications, as well as the limitations of the proposed Cognitive ADAS 

Architecture, are presented.         

             

4.1 Assumptions 

This section describes some of the major assumptions that were made for the 

development of the proposed Cognitive ADAS Architecture. Primarily the 

architecture is targeted towards Autonomous-capable Electrified Vehicles. 

Furthermore, the intended level of vehicle automation is 4 for the primary 

architecture presented. Variations of the architecture for levels 3 and 3.5 have also 

been offered, which will be described in detail further in the thesis. The next 

assumption made for the architecture definition is about the level of abstraction. As 
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described in the Scope of Research section, since it is practically impossible to 

define an architecture which can address all the functions at all the levels including 

the Autonomous-capable Vehicle, platform, chips and the technology levels with a 

comprehensive mapping of all the functions and their interactions; the architecture 

was assumed to be at a system-level addressing the various functions, example 

components, the interactions between them and the vehicle internal and external 

interfaces in a modular and systematic approach. As such, it is also assumed that 

for an efficient and optimal design of an Autonomous-capable EV, such an 

extensive functional breakdown is further studied at lower abstraction levels 

(presented as future research), similar to the one presented in this thesis at the 

system-level. This can be performed by further decomposing the functions 

presented in a modular and sub-modular manner from the proposed Cognitive 

ADAS Architecture. Lastly, it is also assumed that the vehicle manufacturer will 

include optimal redundancy for providing a safe implementation of this architecture 

for addressing any irreversible failures within any of the modules or the sub-

modules presented in the Cognitive ADAS Architecture. The required 

communication between the redundant systems can be carried out through the 

central ADAS Management System which contains the Onboard Diagnostics 

Collection Unit encompassing the sanity information of all the modules and the sub-

modules within the architecture. More details about the architecture will be 

presented in the next section on Proposed Cognitive ADAS Architecture.           
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4.2 Proposed Cognitive ADAS Architecture 

This section primarily proposes the Cognitive ADAS Architecture for a Level 4 

Autonomous-capable Electrified Vehicle [121]. Before presenting the details of the 

proposed Cognitive ADAS Architecture, the major steps for the functionality of an 

Autonomous-capable Vehicle from a simplistic and a high-level perspective is 

depicted through Fig.4.1 [122]. As it can be seen from the below block diagram, the 

Autonomous-capable Vehicle actions can be classified into three broad categories 

– Perceive, Decide and Execute [123].  

 

 

Fig.4.1. High-level ADAS Architecture. 

The detailed Cognitive ADAS Architecture itself is presented in Fig.4.2. It is termed 

as “Cognitive”, being inspired by the series of functions within a human brain [121], 

[124]-[125]. The motivation of this architecture is to present the various aspects of 
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an Autonomous-capable Electrified Vehicle at a system level, including the 

different functions, sub-functions, component examples, their interfaces and 

interactions [3], [97]-[107], [121], [126]-[133]. The intention is also to assimilate 

the known information about Electrified Vehicles with the Perception and 

Cognition topics, which are currently being explored in the literature, to understand 

their system level interaction, along with the human driver responsibility, for Highly 

Automated Driving framework.  The architecture presented here can be applied to 

various use cases such as highway, urban, off-road, and so on. However, urban 

applications could be expected to have much higher performance requirements 

mainly in terms of the Perception and Cognition functions due to the extremely 

dynamic driving environment. Variations of this architecture are also shown for 

levels 3 and 3.5 in Fig. 4.3. and 4.4 respectively. Level 3.5 is not currently part of 

the SAE levels of vehicle automation, however, it has been proposed in this thesis, 

as an insight into the future industry trends, to incorporate other combinations of 

the ADS and human driver’s control distribution, which are not part of the current 

literature. A level 3.5 is a combination of 3 and 4 with the primary fallback routed 

through the human driver, followed by the ADS, in case of an inattentive driver. 

The main changes in these architectures are seen for the fallback configuration 

which are also highlighted in red within the architectures. In addition, the in-vehicle 

communication networks are shown with a solid line, whereas the vehicle external 

communication networks (with at least one end-point existing external to the 

vehicle) with a dashed line.     
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Fig.4.2. Proposed Cognitive ADAS Architecture for Level 4 Autonomous-

capable Electrified Vehicle. 
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Fig.4.3. Proposed Cognitive ADAS Architecture for Level 3 Autonomous-

capable Electrified Vehicle. 
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Fig.4.4. Proposed Cognitive ADAS Architecture for Level 3.5 Autonomous-

capable Electrified Vehicle. 
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4.2.1 Sensor Layer 

The proposed Cognitive ADAS Architecture cycles in a closed-loop. The primary 

interface, however, between an Autonomous-capable EV and its driving 

environment, which can consist of other vehicles, infrastructure, static and dynamic 

obstacles, and pedestrians, and so on is the Sensor Layer. This layer represents the 

raw data collected through the physical sensors mounted on the Autonomous-

capable EV including RADARs, LIDARs, Ultrasonic sensors, Cameras, Global 

Positioning System (GPS), Inertial Navigation System (INS) and the High 

Definition Map data. It is expected that the sensor suite selected would include a 

diversity in the technology as well as redundancy to ensure an accurate 360-degree 

surround vision for the Autonomous-Capable EV at all times.     

 

4.2.2 Perception 

The raw sensor data from the Sensor Layer is received by the Perception block. The 

perception module primarily aids in the accurate interpretation of the Autonomous 

Vehicle’s driving environment.  The raw image data is pre-processed before 

performing any other Perception functions. This greatly helps in filtering out any 

unnecessary noise which can be computationally expensive to process.  

 

Following the sensor data processing, the Object Detection stage needs to be taken 

care of. The Autonomous-capable Vehicle needs to detect all kinds of objects 
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including moving vehicles and pedestrians, motorcycles, bicycles, animals, 

stationary vehicles and pedestrians, traffic signals, stop signs and the other dynamic 

and static objects present in the driving environment. As specified in [122], the 

Deformable Part Models Algorithm can be used for accurate Object Detection 

[134]. In [135], to increase computational efficiency, parallel algorithms 

implemented on Graphics Processing Unit (GPU) are designed to accelerate the 

information processing. 

 

The next step is called Object Tracking [122]. In addition to detecting where a 

particular object is in the concerned scope of space on the road, it is also vital to 

track the changes in their position. In other words, the motion of the objects needs 

to be detected and updated in real time. This will provide the Autonomous Vehicle 

with a better understanding of its dynamic environment, which in turn will be 

helpful in updating its intelligent control as part of a closed loop control system. 

Detected and tracked objects can then be classified based on the interpretation of 

their attributes in order to analyze whether and what type of a control action needs 

to be taken to satisfy the real-time requirements of the dynamic driving 

environment. 

 

The next step in the Perception layer is the Sensor Fusion and Integration. Sensor 

Fusion includes the use of redundant and diverse technology or sensor suite to look 

upon the same region of interest in order to increase the confidence level of the 
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sensing output. The Sensor integration includes aggregation of the multiple sensor 

data in order to produce the 360-degree surround view Perception required for 

Highly Automated Driving.    

 

Projection and Re-projection are the next steps in the process of accurate perception 

[33]. Following Sensor Fusion and Integration, the information needs to be 

summarized and combined in order to get a better three-dimensional depth estimate 

of the interested space on the road. These steps aid in an accurate estimation of the 

free space between the host vehicle and the surrounding objects in its immediate 

field of view. Free Space Estimation will be very crucial in establishing an accurate 

trajectory plan for the Autonomous-capable EV, which will be explained further in 

the Cognition sub-section.   

 

Following this, a generative model of the driving environment is established. This 

generative model goes through an extensive filtration process to establish 

Simultaneous Localization and Mapping (SLAM) which only focuses on the area 

of interest of the Autonomous-capable EV [122]. During SLAM, the Autonomous-

capable Vehicle is first sensed and accepted into its driving environment. Then an 

accurate real-time 3D map is generated and updated frequently as the vehicle goes 

through its drive cycle. As described in [122], a three-dimensional Normal 

Distributions Transform algorithm [136] can be utilized in order to perform accurate 

matching and mapping operation with the 3D cloud data.   
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4.2.3 Cognition 

The perceived world model, once established, is transmitted to the Cognition block. 

This block can be interpreted as the “brain” of the Autonomous-capable EV, which 

understands the information seen and plans for prospective vehicle behavior. The 

Cognition block develops its intelligence based on the various Learning 

Algorithms, training received as well as past events-based Memory [125] and 

Cloud-based feedback from other vehicles (Vehicle to Vehicle or V2V) and 

infrastructure (Vehicle to Infrastructure or V2I). The training set, which is the 

current training repository, is expected to receive this feedback. The current 

learning, training, and planning become a part of the Memory for future events. A 

Policy database which dictates the rules and regulations of the driving environment, 

traffic and road serves as an important input to the Planner. Both the Mission or the 

destination and the Motion or the maneuvers to reach to the destination are 

calculated by the Planner. A Dynamic Driving Task (DDT) and Fallback Mission 

and Motion are planned. The use of conformal spatio-temporal lattices [137] for 

planning the motion according to the changes in the environment has been 

demonstrated in [122]. 

 

The DDT behavior (including the normal functions of the vehicle such as 

acceleration, braking, and steering) is intended to be executed as part of the normal 

Autonomous-capable EV behavior, whereas, the Fallback behavior is executed in 

case there is a failure, or a threat/ malicious attack predicted or detected within the 
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ADS. The Failure/ Threat Prediction is normally based on the comparison of current 

events with the past events knowledge. Failure/ Threat Detection is enabled through 

a central ADAS Management System (to be described further below). The 

Intelligent Decision-Making Unit (IDMU) analyzes the output from the Cognition 

block and decides whether the DDT behavior or the Fallback behavior should be 

executed. For the level 4 architecture, both the DDT and Fallback behavior are 

controlled by the ADS; whereas for level 3, the human driver is responsible for the 

Fallback behavior and in 3.5 [3], the primary Fallback is routed through the driver 

and the secondary through the ADS, in case the driver is not alert enough to take 

back vehicle control when requested. At this point, certain ADS functionality may 

be at a degraded level than normal. It is important to note that between a DDT and 

a Fallback behavior, only one of them is executed at a time, depending on the 

decision made by the IDMU, based on the Perceived World Model and the 

requirements of the dynamic driving environment. Similarly, for a level 3.5, the 

Fallback control is routed either through the ADS or the Human Driver, one at a 

time. This decision is made by the ADAS Management System based on the sub-

systems’ sanity information collected by the On-board Diagnostics Control Unit 

(ODCU), which will be described further in the ADAS Management System. When 

the Human Driver is in the control loop for levels 3 and 3.5, there are multiple 

internal feedback loops to primarily alert the driver to take back vehicle control 

through an HMI and then to constantly monitor driver’s attention, reaction, and 

control, as shown in Fig.4.3. and 4.4 respectively. Current literature describing the 
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human driver attention capturing techniques has been previously summarized in 

section 2.4. This Fallback response is extremely critical in ensuring that the vehicle 

is able to respond to unexpected events or foreseen failures and threats.  The time 

required by the system to respond to these emergencies will mainly depend on two 

factors – the type of Fallback response being executed, and the performance/ 

computation capabilities of the sensor suite being considered. The expectation is to 

have a redundant sensor suite to enable timely detection, classification, planning, 

reaction and thus a timely and safe Fallback system response, within the Fault 

Tolerant Time Interval (FTTI) [33]. It is also expected for the Autonomous-capable 

EV to be able to communicate back to the driver any important vehicle relevant 

information as needed (for all levels of vehicle automation); for example, the 

perceived driving environment, executed actuation controls and so on through the 

HMI.      

 

4.2.4 Actuation Control 

The decided Autonomous-capable EV behavior, either DDT or Fallback is 

communicated by the Intelligent Decision-Making Unit to the Actuation Control 

block, which in turn consists of an Energy Management System (EMS), Electronic 

Control Unit (ECU), Motor Control Unit (MCU) and Battery Control Unit (BCU). 

The Actuation Control block not only makes decisions about the control actions for 

various sub-units but also communicates the specific expected behavior to the 
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respective Execution sub-units within the Electrified Powertrain Execution System. 

In case of a level 3.5 and 4, both the DDT and Fallback behavior is expected to be 

routed through the Actuation Control. In a level 3 architecture, since, the human 

driver is responsible for the fallback behavior, the human controlled actions are 

directly routed through the Electrified Powertrain Execution System, as can be seen 

in Fig.4.3. This is to ensure that in case of an ADS failure, the human driver is able 

to override ADS decided execution commands in order to perform a safe stop 

maneuver.   

 

4.2.5 Electrified Powertrain Execution System 

This block consists of various sub-units that execute the expected steering, braking 

and throttle behavior of an Autonomous-capable EV. The various systems such as 

Energy Storage, Motor, Steering, Braking, Acceleration, Suspension, Transmission, 

and the various EV Interconnects between them are considered to be part of the 

Electrified Powertrain Execution System. This block receives execution commands 

either from the Actuation Control or the Human Driver, depending on the level of 

intended autonomy, as previously described.    

 

4.2.6 Navigation 

The actions performed by the Electrified Powertrain Execution System are routed 

through the Navigation system in order to make sure that the Autonomous-capable 
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EV’s real-time behavior matches the intended behavior based on the dynamic 

requirements of its driving environment. As previously mentioned, since the 

presented architecture is part of a closed loop system, the actions performed by the 

autonomous-capable EV are expected to contribute back to its driving environment. 

Furthermore, the ADAS Control Unit in conjunction with the Onboard Diagnostics 

Collection Unit (ODCU) which will be described further, helps in understanding 

whether the vehicle is on the desired trajectory at every milestone. In the case of a 

significant deviation, the control and tracking input would be updated accordingly 

in order to cover the difference. A smaller duration in between the milestone checks 

would result in a more accurate vehicle control. As suggested in [122], the Pure 

Pursuit Algorithm can be used for this path following step [138].           

 

4.2.7 ADAS Management System 

The proposed Cognitive ADAS Architecture also includes a central ADAS 

Management System which comprises of the Human Machine Interface (HMI), a 

database of ADAS features and their associated functionality algorithms as well as 

an ADAS Control Unit and the Onboard Diagnostics Collection Unit or ODCU. 

Unlike at levels 3 and 3.5 that demand increased driver responsibility for ensuring 

Fallback behavior, at a level 4 autonomous capability, although a human driver is 

not expected to directly perform any DDTs, it is expected that the various 

autonomous/ semi-autonomous features will only be activated based on a user 
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request, possibly through an HMI interface. Based on the user request, the intended 

ADAS features are activated and according to their required functionality, the 

ADAS Control Unit decides on the arbitration of the rest of the blocks which are 

part of the proposed Cognitive ADAS Architecture. It also takes in input from the 

ODCU which receives all the diagnostics information from the rest of the modules 

within the architecture. This link is very helpful to know if there has been any failure 

in the ADS or an external threat has been perceived based on Cloud and IoT 

infrastructure. The current literature discusses the use of both in-vehicle and Cloud-

based vehicle diagnostics [139]. Multiple sensors for monitoring the voltage, 

temperature, fuel consumption and even the driver behavior are currently available 

internal to the vehicle. However, Autonomous-capable vehicles might see a growth 

in the amount of complex computations that need to be performed in real time, 

especially for trajectory planning, impacting the computational cost. Cloud-based 

solutions are seen to be especially beneficial here to leverage the complex 

computation capabilities external to the vehicle. [139] presents an approach for 

Cloud-based driver monitoring and vehicle diagnostics estimation. Ensuring secure 

communication between the host vehicle and the Cloud infrastructure is crucial to 

avoid compromising with vehicle’s privacy. Furthermore, it is also important to 

ensure that certain safety critical functions of the vehicle are performed internally 

to avoid any latency issues arising from Cloud communication.       
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As such, the ADAS Management System looks upon the Sensor Layer, Perception, 

Cognition, Failure/Threat Detection, and Prediction, Actuation Control, Electrified 

Powertrain Execution System, Navigation, Human Driver and the Cloud and IoT 

infrastructure layer. In addition to the previously mentioned utility of the Cloud and 

IoT Infrastructure layer for communication of vital driving environment insights 

established through V2V and V2I communication to the Cognition and the ADAS 

Management System, it is also expected that the host Autonomous-capable EV will 

be able to communicate back its relevant information (position, any accident 

information on the road and so on) from the ADAS Management System to the rest 

of the driving environment. In other words, a bi-directional information exchange 

is expected between the host AV and the rest of the driving environment as part of 

the V2V/ V2I based Cloud and IoT layer.       

 

4.3 Discussion on Autonomous-capable Electrified Vehicle Components 

The Cognitive ADAS Architecture was proposed in the last section while describing 

the different modules, sub-modules, interfaces, and interactions between them. 

Some examples of the components which could be seen as part of this architecture 

were also presented. This section offers a discussion on some of those major 

components seen within an Advanced Driver Assistance System. It is beyond the 

scope of this analysis to present the ideal selection of the Hardware or Software as 

they would depend upon the intended application and would surface out at the 

lowest abstraction level. Since, the Cognitive ADAS Architecture is presented at 
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the system level, some of the major components such as the sensors, communication 

networks and so on that would be seen at the vehicle level of a highly Autonomous-

capable EV (levels 3 and above) are shared here [122], [140]-[143].  

 

One of the most important components of Autonomous-capable Vehicles is the 

sensor suite equipped within them. This is mainly because environment detection is 

a critical function for the intelligent decision making within such vehicles. 

However, the type of sensors or equipment used within the Autonomous Vehicles 

depends on the functionality required. Light Detection and Ranging (LIDAR) 

sensors are generally used in order to provide a three-dimensional map of the 

vehicle’s environment, including an accurate measure of the distance between the 

Autonomous Vehicle and the surrounding objects within both a short as well as a 

long-range [122]. 

 

These sensors work by measuring the time taken by objects to reflect a beam of 

laser light indicating their distance from the measuring point [140]. These sensors 

are not only helpful for collision avoidance but also for Path Planning. In addition 

to LIDAR sensors, RADAR sensors are also very useful for the Perception as well 

as the Motion Planning stage [140]. They work mainly by using radio waves once 

again to detect the objects in the surroundings in order for the Autonomous-capable 

Vehicle to form a perception of its environment. Furthermore, Ultrasonic sensors 

work on a similar principle. The distance between a car and a near-by obstacle can 
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be gauged by the echo produced at the collision of the ultrasonic sound waves and 

the neighboring object [141]. In addition, as described in [144], infrared cameras, 

which work on the concept of heat emission, might be seen especially useful for 

night vision.   

 

Specialized cameras, including video cameras [140], stereo cameras providing a 

three-dimensional vision [141] and 360-degree cameras [142] can also be used for 

detecting important road information such as traffic signal light, stop signs as well 

as dynamic objects on the road.  

 

No one sensor can be expected to provide enough accuracy to match or exceed 

human vision. A combination of sensors must be used redundantly and with 

diversity through Sensor Fusion and Integration. Furthermore, it is critical to 

process the information collected by the sensors, through an Image Processing Unit, 

to extract the most meaningful information, which can then be used by the 

Intelligent Decision-Making Unit within the Autonomous-capable Electrified 

Vehicle.  

 

Also, the Autonomous Vehicle’s driving environment, namely other vehicles and 

infrastructure such as smart buildings, traffic signs and so on are also capable of 

holding useful information for the AV’s accurate Perception. As such, Vehicle to 

Vehicle (V2V) and Vehicle to Infrastructure (V2I) communications are recently 
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promoted concepts [145] in this area. In addition to the V2V/ V2I vehicle external 

communication networks, which are routed through Cloud and IoT infrastructure, 

the vehicle internal communications are expected to be equally critical (categorized 

by SAE as Class A, B, and C for low, medium and high communication speeds 

respectively) [146]-[148]. The Controller Area Network or CAN [146]-[148] is one 

of the majorly used Class C communication networks for in-vehicle communication 

between the different modules and sub-modules (through a CAN bus) presented as 

part of the Cognitive ADAS Architecture.  Besides CAN, there are multiple other 

protocols that have been traditionally developed for in-vehicle communication 

including Local Interconnect Network (LIN) as a low cost – low speed alternative 

to CAN, SAE J1850, covering Class A and B networks, ISO 9141 as an alternative 

to SAE J1850 enabling communication with diagnostic ports, the deterministic 

Time-Triggered Protocol (TTP) intended for SAE Class C applications, FlexRay 

for safety-critical systems and so on [146]-[148]. The selection of these protocols 

depends entirely on the cost, intended level of safety, targeted application and so 

on.     

 

In addition to the various sensors and communication networks, one of the other 

important components of an Autonomous-capable Electrified Vehicle is its central 

computer [140] that serves as a major decision-making unit. A Microcontroller Unit 

or a Microprocessor Unit could be coupled as an input to the Decision-making 

System. The major role of the components in the Cognition layer is to collect the 
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processed sensor information and take real-time decisions for the Autonomous-

capable EV. The motivation at this stage is to imitate a human brain which 

understands its perceived driving environment and makes an informed decision 

based on the traffic rules (which in the case of the Autonomous-capable EV, is 

dictated by a Policy database, as per the proposed Cognitive ADAS Architecture). 

Again, similar to the human brain, which is trained to learn from the past, an 

Algorithm Database, fed by reinforcement learning, can feed into the Decision-

making System as a closed loop in order to constantly update the decisions, as 

needed.     

 

The set of real-time decisions made in the Cognition layer are then transferred 

accordingly to the various control units inside the Autonomous Vehicle such as the 

Motor Control Unit (MCU), Transmission Control Unit (TCU), Electronic Control 

Unit (ECU), Energy Management System (EMS), Advanced Driver Assistance 

System Control Unit and so on so that the decisions made can be efficiently 

transformed into the type of real-time actions or behavior that the Autonomous 

Vehicle needs to exhibit in order to fulfill the dynamic requirements on the road. It 

is to be noted that these components completely depend on the vehicle powertrain 

(e.g. Hybrid Autonomous, Electrified Autonomous, Internal Combustion Engine 

Autonomous and so on). Similarly, the vehicle powertrain also dictates the type of 

components actually responsible for executing the decided actions on the road. 

Some examples could include the Steering System, Braking System, Acceleration 
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System and so on as already described in the Cognitive ADAS Architecture. 

 

Furthermore, the overall vehicle Navigation System encompassing the Global 

Positioning System (GPS), coupled with the Inertial Navigation System (INS), 

Tachometer, Altimeter, Gyroscope, Odometer and so on form an important element 

within the Cognitive ADAS Architecture [140], [143]. The vehicle Navigation 

System can not only aid in Simultaneous Localization and Mapping but also in 

guiding the executed actions to be in the planned navigation path, hence represented 

in both the Senor and Navigation layers. The Human Machine Interface (HMI) is 

also a key element in this sphere. The HMI can not only display the perceived 

driving environment but also dictate actions for human control depending on the 

level of vehicle automation. 

 

Lastly, the Cloud platform and the Internet of Things (IoT) infrastructure are 

essential for communication between the three functions – Perceive, Decide and 

Execute [141]. This is a virtual layer of communication which exists between the 

Autonomous-capable EV and the rest of the driving environment and is present 

external to the vehicle. The other utilities of this layer for Failure / Threat prediction 

have already been described in the Proposed Cognitive ADAS Architecture section.  
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4.4 Benefits and Applications  

This section describes the advantages and applications of the proposed Cognitive 

ADAS Architecture for Autonomous-capable Electrified Vehicles. The most 

significant benefit of this architecture is the systematic distribution of the different 

functions, components, their interfaces and interactions at a system level. The 

modular approach provides an advantage of remodeling the architecture to represent 

different levels of automation, powertrains such as Electrified, Hybrid or Internal 

Combustion Engine and varied hierarchies of abstraction, in addition to serving as 

a primary building block in realizing a highly Autonomous-capable EV.  

 

Furthermore, the pragmatic representation of the information flow through the 

architecture enables the development of a simulation model or a testbed in order to 

verify and validate the various Autonomous Vehicle systems before investing in 

real scale testing. In addition, the proposed architecture is helpful for targeting 

higher levels of Electrified Vehicle automation (levels 3 and above) applications.  

This is of a great value to the automotive industry especially due to the limited 

literature in the field of Highly Automated Driving. 

 

In addition, the proposed architecture can aid in further decomposition of the 

system-level functional requirements which are key in the implementation of the 

Cognitive ADAS Architecture. An integrated development process across the 
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various tiers of the automotive industry with the technology meeting the system 

demands would be essential for realizing the highly Autonomous-capable vehicles. 

    

4.5 Challenges 

This section addresses some of the challenges or limitations with the proposed 

Cognitive ADAS architecture. One of the challenges faced during the architecture 

development was to systematically represent the enormous number of functions 

carried out at different abstraction levels for the operation of an Autonomous-

capable EV within a Highly Automated Driving Framework. It is practically 

impossible to demonstrate the complex functionalities to the last abstraction layer. 

This end-to end integration of intricate functions could also be one of the key 

challenges in implementing the architecture. As such, the scope of the architecture 

definition was restricted only to be at the system level. The architecture, however, 

provides the benefit of adopting a modular approach, which can aid in simply 

expanding each of the last hierarchies of sub-modules to decompose the next level 

of details.  

 

In addition, as previously described in the Scope of Research section, this 

architecture is mainly focused on Electrified Vehicles to prevent the complex 

mapping between the autonomous and hybrid/ ICE powertrain controls which 

would be needed for other types of vehicles such as Hybrids and ICE. However, the 

architectural representation provides the benefit of scalability to target other ground 
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vehicles (including light weight, heavy duty, off-road and so on) with simple 

modifications in the Actuation Control and the Execution System, which will be 

described in detail further in the thesis. 
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Chapter 5 

Development of the Autonomous-capable Electrified 

Vehicle Simulation Model 

 

This section will describe the development of the Autonomous-capable Electrified 

Vehicle simulation model and its dynamic driving environment [121], [149]. The 

IPG CarMaker simulation software was utilized for carrying out the vehicle-level 

simulations described in this thesis. These simulations have proved to be extremely 

crucial for verifying the hypothesis around the positive impact of increased vehicle 

autonomy in increasing an Electrified Vehicle performance. The simulation 

platform also enables in the virtual implementation of the proposed Cognitive 

ADAS Architecture targeting up to level 4 vehicle autonomy. The conceptual nature 

of the present higher levels of automated driving architectures (level 3 and above) 

make the verification through commercial experimentation far from reality. This is 

also where the simulations play an essential role in enabling more systematic and 

corroborated development of optimal ADAS architectures and AV designs. In 

addition to serving as a virtual verification platform for the proposed Cognitive 

ADAS Architecture and enabling in concluding the impact of Electrified Vehicle 

autonomy on vehicle performance, these simulations also enable in understanding 

the impact of vehicle autonomy on the Electrified Vehicle dynamics and various 
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components such as the motor and battery. Furthermore, validation of the 

simulation model is also presented. 

    

5.1 Autonomous-capable Electrified Vehicle Model 

This sub-section will cover the major aspects associated with the Autonomous-

capable Electrified Vehicle modeling. An enhanced 2014 Tesla Model S 85 [4] has 

been used as a test vehicle for performing the simulations described in this study. 

To model this test vehicle, a demo Tesla Model S [150] provided by IPG CarMaker 

was utilized. This demo model was then modified by including an additional sensor 

suite, which will be described further, in order to represent a level 4 Autonomous-

capable Electrified Vehicle. The sensor suite was adequately selected and modeled 

to represent geo-fenced level 4 highway driving scenarios for this study.  

 

It is not the intention of this thesis to claim an optimal sensor suite selection for 

commercial deployment in a level 4 Autonomous-capable EV. This is considered 

as out of scope for this study. The selection of sensor technology will be widely 

dependent on the intended level of vehicle autonomation, required redundancy to 

fulfill safety considerations and the assumed driving scenarios that a vehicle will 

encounter in its lifetime.  
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There are 12 sensors that have been modeled for the simulations. These include 1 

Slip Angle sensor, 1 Inertial sensor, 4 Object sensors, 1 Free Space sensor, 1 Traffic 

Sign sensor, 1 Line sensor, 1 Road sensor, 1 Collision sensor and 1 Global 

Navigation sensor. The sensor parameterization for the test vehicle has been scaled 

based on their addition on other demo vehicle models available in IPG CarMaker. 

The parameters for the various sensors can be seen in Tables 1 to 8. The reference 

for the position has been taken as the rear bottom right corner of the test vehicle in 

CarMaker.  

 

All the sensors are assumed to be ideal; as such, fallback behavior of the vehicle in 

case of a sensor failure is considered out of scope for this analysis. This is mainly 

to enable maximum ADAS features activation period to study the impact of vehicle 

autonomy on Electrified Vehicle performance and dynamics.   

 

The test vehicle is modeled with a Slip Angle sensor. This sensor is helpful in 

identifying the side slip angle at the location mounted [151]. An inertial sensor is 

also included in the vehicle model. This sensor is helpful in measuring the position, 

velocity, and acceleration of the vehicle where mounted. This sensor can be 

especially helpful in the Object Tracking function described in the proposed 

Cognitive ADAS Architecture by tracking the vital vehicle data from both the host 

and the target vehicles in order to plan the immediate vehicle path accordingly. The 
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parameters for Slip Angle and Inertial sensors are shown in Table 5.1 and 5.2 

respectively.    

Table 5.1. Slip Angle Sensor Parameters 

Slip Angle Sensor 

Position x/ y/ z [m] 2.51 / 0 / 0.578 

 

Table 5.2. Inertial Sensor Parameters 

Inertial Sensor 

Position x/ y/ z [m] 3.1 / 0.3 / 0.77 

Orientation x/ y/ z [deg] 0.0 / 0.0 / 0.0 

 

The Object sensors are also crucial in ensuring accurate detection and tracking of 

the dynamic obstacles. Four Object sensors including RADARs (left, right and 

front) and a front camera were used. For a level 4 autonomous function, a 360-

degree surround vision is expected for the vehicle to have complete knowledge of 

its surroundings at all times. The Object Detection, Tracking, Classification and 

Sensor Fusion and Integration happen in the background of the CarMaker software 

[151] in order to provide an accurate monitoring of the dynamic driving 

environment surrounding the host vehicle. The parameters for the Object sensors 

can be found in Table 5.3. As it can be seen from below, the target is detected by 

these sensors based on Nearest in Path mode calculation. This means that the Object 

sensors will only detect the objects in the host vehicle’s estimated trajectory, which 

are closest to the host vehicle within a particular range. Furthermore, a calculation 
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class of Nearest Point is selected for the Object sensors. This ensures a conservative 

Object Detection approach by always having the nearest point of an object, even if 

on the surface, to be used for free space estimation. The rest of the sensor parameters 

below are based on the available demo models in CarMaker. They are scaled to fit 

the exteriors of the test vehicle. The sensor data is refreshed or updated based on 

the specified update frequency and cycles offset.      

Table 5.3. Object Sensors Parameters 

Object Sensors Left Radar Right Radar Front Radar Camera 

Observation radius 

[m] 
700 700 700 700 

Position x/ y/ z [m] 
4.3 / 0 /  

0.63 

4.3 / 0 /  

0.63 

4.6 / 0 /  

0.43 

2.86 / 0 / 

1.25 

Orientation x/ y/ z 

[deg] 
0/ 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 1 / 0 

Field of view h / v 

[deg]  

(max 180) 

16 / 4 16 / 4 16 / 10  45 / 45 

Range min / max [m] 150 10 200 100 

Update [Hz] - Cycles 

offset  
1000 - 1 1000 - 0 60 - 0 60 - 1 

Target detection 
Nearest in 

path 

Nearest in 

path 

Nearest in 

path 

Nearest in 

path 

Calculation class 
Nearest 

Point 

Nearest 

Point 

Nearest 

Point 

Nearest 

Point 

Traffic object 

quantities 
Yes Yes Yes Yes 

 

Following Object Detection, it is critical for the Autonomous-capable EV to be able 

to assess the free space that is available between itself or the host vehicle and the 
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immediate targets detected. A front Free Space sensor is modeled with the 

parameters provided in Table 5.4 below. This sensor aids in understanding the host 

vehicle’s free or available action space by dividing the field of view into horizontal 

(h) and vertical (v) segments as specified below.  

Table 5.4. Free Space Sensor Parameters 

Front Free Space Sensor 

Position x/ y/ z [m] 2.86 / 0.0 / 1.26 

Orientation x/ y/ z [deg] 0.0 / 0.0 / 0.0 

Field of view h / v [deg] 179 / 10 

Range min / max [m] 0.1 / 150 

Update [Hz] - Cycles offset [-] 25 - 0 

Segments h / v [-] 200 / 1 

 

Furthermore, a level 4 Autonomous-capable EV is anticipated to interact with other 

vehicles and infrastructure through V2V and V2I communication respectively, as 

depicted in the proposed Cognitive ADAS Architecture. Although, due to the 

infrastructural limitations, these are considered out of scope for the simulations in 

this study, a traffic sign sensor has been added with the parameters provided in 

Table 5.5 below for scalability of the simulation framework.   

Table 5.5. Traffic Sign Sensor Parameters 

Traffic Sign Sensor Front Camera 

Position x/ y/ z [m] 2.86 / 0.0 / 1.26 

Orientation x/ y/ z [deg] 0.0 / 0.0 / 0.0 

Field of view h / v [deg] (max 90) 80 / 45 

Range min / max [m] 50 
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Update [Hz] - Cycles offset [-] 30 - 0 

Detection of all signs Yes 

 

A line sensor is an ideal camera [151] which is capable of detecting the line 

markings, traffic barriers and so on. This sensor is essential for keeping the vehicle’s 

lateral deviations from the center of the lane minimal, especially during autonomous 

lateral control. The parameters for the line sensor used in the simulations of this 

study can be found in Table 5.6 below.  

Table 5.6. Line Sensor Parameters 

Line Sensor 

Position x/ y/ z [m] 2.86 / 0.0 / 1.26 

Orientation x/ y/ z [deg] 0.0 / 0.0 / 0.0 

Field of view h / v [deg] (max 90) 50 / 50 

Range min / max [m] 100 

Update [Hz] - Cycles offset [-] 30 - 0 

 

In addition to the lane markings, it is also important to detect other road properties 

such as curvature, slope and other lane relevant information such as width, vehicle 

lateral deviations [151] and so on in order to perform the required autonomous or 

semi-autonomous functions for the current simulations. The road sensor with the 

parameters described in Table 5.7 below is helpful in ensuring the above-described 

detections.   
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Table 5.7. Road Sensor Parameters 

Road Sensor 

Preview distance [m] 10 

Consider bumps Yes 

 

Lastly, the Global Navigation sensor is crucial in performing the navigation 

functions described in the proposed Cognitive ADAS Architecture. The parameters 

for the Global Navigation sensor can be found in Table 5.8 below. A default 

elevation mask has also been applied, as can be seen below, in order to avoid 

capturing any signals below a certain elevation. This improves the atmospheric 

propagation time by filtering out the signals with lower elevations [151].  

   Table 5.8. Global Navigation Sensor Parameters 

Global Navigation Sensor 

Position x/ y/ z [m] 0.0 / 0.0 / 0.0 

Update [Hz] - Cycles offset [-] 10 - 0 

Elevation Mask [deg] 10.0 

 

5.2 Traffic Model 

An Autonomous-capable Vehicle is anticipated to encounter dynamic traffic during 

its drive cycle. It is expected to be able to accurately detect, track and classify the 

dynamic traffic objects in addition to planning a safe trajectory around the traffic 

conditions by making sure that the Autonomous-capable Vehicle does not create a 

threat for itself or the rest of the traffic objects in the immediate region of interest. 
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This section will describe modeling of the traffic conditions for the various 

simulation test cases. As it can be seen from the test cases setup described in the 

next section of the thesis, there are three different possibilities for the traffic 

conditions – no traffic, lead vehicle only or multi-object traffic set.      

 

The cases where only a lead vehicle is used as a traffic object, a Volkswagen Beetle 

2012 has been assumed as the lead vehicle. This object has been kept constant 

throughout all the test cases with only a lead vehicle in order to carry out the analysis 

in an unbiased manner. This particular traffic object has been selected randomly for 

the purposes of the simulations of this study. An Autonomous-capable Host Vehicle 

is expected to accurately function on the road in any type of traffic conditions. In 

order to model reaction of the host vehicle, when following a lead traffic vehicle, 

the parameters described in Table 5.9 have been assumed. A minimum safe distance 

of 10 m between the host and the lead vehicle has been selected. This has been 

selected keeping compact as well as larger vehicles such as trucks, buses and so on 

in mind. Furthermore, since it is essential to keep consistent test conditions for an 

unbiased analysis, these parameters have been selected to support safe autonomous-

capable driving in ideal as well as adverse driving environment conditions. The rest 

of the parameters have been kept as the default values provided by IPG CarMaker 

for a lead vehicle follow mode. The energy efficient driving coefficient ranges from 

0 to 1, where 0 represents the least energy efficient driving and 1 represents the 

highest energy efficient driving. The default value of 0.75 has been assumed for the 



Ph.D. Thesis - K. Divakarla; McMaster University - Electrical and Computer Engineering 

87 
 

current simulations.  The general and motion model parameters for the lead vehicle 

are shown in Tables 5.10 and 5.11 respectively. The lead vehicle maneuvers are 

shown in Table 5.12.  

 

Table 5.9. Host Vehicle Parameters for Reacting to Lead Traffic Vehicle 

Host Vehicle Traffic Parameters  

Mode Following Lead Vehicle 

Min. Time Gap (sec) 1.8  

Max. Time Gap (sec) 5.0 

Min. Distance (m) 10 

Max. Distance (m) 250 

Energy efficient driving (0 -1) 0.75 

 

Table 5.10. General Parameters for the Lead Traffic Vehicle 

General Parameters 

Description Volkswagen Beetle 2012 

Detectable by Sensors, Autonomous traffic 

Dimension l / w / h [m] 4.28 / 1.82 / 1.28 

Orientation x / y / z [deg] 0 / 0 / 0 

Basic offset x / z [m] 0.0 / 0.19 

Center of mass x [m] 2.15 

Start position s / t [m] 100 / 0.0 
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Table 5.11. Motion Model Parameters for the Lead Traffic Vehicle 

Motion Model 

Overall mass [kg] 1530 

Moment of inertia lxx / lyy / lzz [kgm2] 470 / 2080 / 2160 

Overhang front / rear [m] 0.7 / 0.75 

Front cornering stiffness [N/rad] 1.4e5 

Rear cornering stiffness [N/rad] 1.2e5 

Roll stiffness rate [Nm/rad] 1.6e5 

Roll damping rate [Nms/rad] 1.6e4 

Pitch stiffness rate [Nm/rad] 2.3e5 

Pitch damping rate [Nms/rad] 2.3e4 

Maximum steer angle [deg] 40.0 

 

Table 5.12. Lead Traffic Vehicle Maneuvers 

Maneuver – Update rate 200 Hz 

Start time (sec) Longitudinal Maneuver (km/h) 

t = 200 v = 70 

t = 400 v = 100 

t = 600 v = 80 

t = 700 v = 100 

 

In addition, as described in the test cases setup in the next section of this thesis, the 

Autonomous-capable Electrified vehicle is also simulated against multi-object 

dynamic traffic. This multi-object traffic set is generated stochastically within 
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CarMaker to have a random selection of varying traffic objects. A car ratio of 90% 

has been assumed for generating the traffic [152]. The make and model of all the 

realistic traffic objects including their vehicle data (powertrain, body and so on) was 

stochastically generated. Their maneuvers and velocity profiles were manually 

adjusted for the traffic to have an impact on the host vehicle.  The generated traffic 

set has been consistently used for all the ADS and manual human driver control test 

cases with multi-object traffic set. Traffic density is adjusted to have up to 4 traffic 

objects impacting the host vehicle throughout the drive cycle. Since, the objective 

of the current study is not to simulate conditions such as traffic jams but to analyze 

the potential impact of vehicle autonomy on Electrified Vehicle dynamics, a near 

to fully operational highway driving scenario is needed to be considered.  

The following highway driving maneuvers were incorporated for the test cases with 

multi-object traffic set. These maneuvers were selected based on the commonly 

discussed ones in the literature [153]-[154].   

• Sudden braking of lead vehicle 

• Acceleration of lead vehicle 

• Lane change of lead vehicle causing the host vehicle to react to a different 

lead vehicle.  

• The new lead vehicle has sudden speed drop compared to the original cruise 

speed. 

The above described maneuvers are illustrated in Fig. 5.1 (a)-(d).  
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Fig.5.1 (a). Sudden braking of lead vehicle. 

 

 

Fig.5.1 (b). Acceleration of lead vehicle. 
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Fig.5.1 (c). Lane change of lead vehicle. 
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Fig.5.1 (d). New lead vehicle with a sudden speed drop. 

 

The first traffic object is a 2015 Citroen C3. The general parameters and the motion 

model parameters for the first traffic object are shown in Tables 5.13 and 5.14 

respectively. The dynamic maneuvers of the traffic object are shown in Table 5.15. 

A positive lane change indicates a change to the left lane by the number of lanes 

specified. Similarly, a negative lane change indicates a change to the right lane.      
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Table 5.13. General Parameters for the First Traffic Object 

General Parameters 

Name Traffic 0 

Description 2015 Citroen C3 

Detectable by Sensors, Autonomous traffic 

Dimension l / w / h [m] 3.83 / 1.64 / 1.31 

Orientation x / y / z [deg] 0 / 0 / 0 

Basic offset x / z [m] 0.0 / 0.00001 

Center of mass x [m] 2.16 

Start position s / t [m] 500 / 0.036 

 

Table 5.14. Motion Model Parameters for the First Traffic Object 

Motion Model 

Overall mass [kg] 1230 

Moment of inertia lxx / lyy / lzz [kgm2] 460 / 1370 / 1480 

Overhang front / rear [m] 0.74 / 0.66 

Front cornering stiffness [N/rad] 8.1e4 

Rear cornering stiffness [N/rad] 6.6e4 

Roll stiffness rate [Nm/rad] 1.04e5 

Roll damping rate [Nms/rad] 1.04e4 

Pitch stiffness rate [Nm/rad] 2.5e5 

Pitch damping rate [Nms/rad] 2.5e4 

Maximum steer angle [deg] 40.0 
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Table 5.15. First Traffic Object Maneuvers 

Maneuver – Update rate 200 Hz 

Start time (sec) Longitudinal Maneuver (km/h) Lateral Maneuver 

t = 150 auto = 80  

t = 170 v = 60  

t = 175 v = 100  

t = 176 v = 100 LaneChange = -2 

t = 182 v = 100  

 

The second traffic object is a 2016 Renault Megane. The general parameters for this 

traffic object are provided in Table 5.16. The motion model parameters and the 

traffic object’s dynamic maneuvers are shown in Table 5.17 and 5.18 respectively.  

 

Table 5.16. General Parameters for the Second Traffic Object 

General Parameters 

Name Traffic 1 

Description 2016 Renault Megane 

Detectable by Sensors, Autonomous traffic 

Dimension l / w / h [m] 4.36 / 1.81 / 1.21 

Orientation x / y / z [deg] 0 / 0 / 0 

Basic offset x / z [m] 0.0 / 0.0011 

Center of mass x [m] 2.4 

Start position s / t [m] 510 / -0.053 
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Table 5.17. Motion Model Parameters for the Second Traffic Object 

Motion Model 

Overall mass [kg] 1320 

Moment of inertia lxx / lyy / lzz [kgm2] 550 / 1740 / 1950 

Overhang front / rear [m] 0.92 / 0.77 

Front cornering stiffness [N/rad] 1.6e5 

Rear cornering stiffness [N/rad] 1.1e5 

Roll stiffness rate [Nm/rad] 1.45e5 

Roll damping rate [Nms/rad] 1.45e4 

Pitch stiffness rate [Nm/rad] 3.0e5 

Pitch damping rate [Nms/rad] 3.0e4 

Maximum steer angle [deg] 40.0 

 

Table 5.18. Second Traffic Object Maneuvers 

Maneuver – Update rate 200 Hz 

Start time (sec) Longitudinal Maneuver (km/h) 

t = 400 auto = 80 

t = 500 v = 100 

t = 550 v = 30 

 

The third traffic object is a 2005 MB Citaro O345. The general and the motion 

model parameters for this traffic object are provided in Tables 5.19 and 5.20 

respectively. The dynamic traffic maneuvers are provided in Table 5.21.  
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Table 5.19. General Parameters for the Third Traffic Object 

General Parameters 

Name Traffic 2 

Description 2005 MB Citaro O345 

Detectable by Sensors, Autonomous traffic 

Dimension l / w / h [m] 11.89 / 2.55 / 2.65 

Orientation x / y / z [deg] 0 / 0 / 0 

Basic offset x / z [m] 0.0 / 0.185 

Center of mass x [m] 6.0 

Start position s / t [m] 600 / 0.064 

              

Table 5.20. Motion Model Parameters for the Third Traffic Object 

Motion Model 

Overall mass [kg] 13700 

Moment of inertia lxx / lyy / lzz [kgm2] 11040 / 26700 / 26850 

Overhang front / rear [m] 2.77 / 3.39 

Front cornering stiffness [N/rad] 4.9e5 

Rear cornering stiffness [N/rad] 6.4e5 

Roll stiffness rate [Nm/rad] 1.7e6 

Roll damping rate [Nms/rad] 1.7e5 

Pitch stiffness rate [Nm/rad] 8.3e6 

Pitch damping rate [Nms/rad] 8.3e5 

Maximum steer angle [deg] 40.0 
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Table 5.21. Third Traffic Object Maneuvers 

Maneuver – Update rate 200 Hz 

Start time (sec) Longitudinal Maneuver (km/h) Lateral Maneuver 

t = 10 auto = 120 y_abs = -2 

 

The last traffic object stochastically generated is a 2016 Honda Ridgeline. The 

general parameters, motion model parameters, and the dynamic traffic maneuvers 

are shown in Tables 5.22, 5.23 and 5.24 respectively.   

 

Table 5.22. General Parameters for the Fourth Traffic Object 

General Parameters 

Name Traffic 3 

Description 2016 Honda Ridgeline 

Detectable by Sensors, Autonomous traffic 

Dimension l / w / h [m] 5.32 / 1.94 / 1.49 

Orientation x / y / z [deg] 0 / 0 / 0 

Basic offset x / z [m] 0.0 / 0.09 

Center of mass x [m] 2.77 

Start position s / t [m] 610 / 0.060 
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Table 5.23. Motion Model Parameters for the Fourth Traffic Object 

Motion Model 

Overall mass [kg] 2016 

Moment of inertia lxx / lyy / lzz [kgm2] 1080 / 4080 / 4380 

Overhang front / rear [m] 0.91 / 1.18 

Front cornering stiffness [N/rad] 1.4e5 

Rear cornering stiffness [N/rad] 1.5e5 

Roll stiffness rate [Nm/rad] 2.4e5 

Roll damping rate [Nms/rad] 2.4e4 

Pitch stiffness rate [Nm/rad] 3.4e5 

Pitch damping rate [Nms/rad] 3.4e4 

Maximum steer angle [deg] 40.0 

 

Table 5.24. Fourth Traffic Object Maneuvers 

Maneuver – Update rate 200 Hz 

Start time (sec) Longitudinal Maneuver (km/h) 

t = 10 v = 130 

 

 

5.3 Road Model 

The test road that has been used in the simulations for this study will be described 

in this subsection. A motorway or highway with three driving lanes in one direction 

with a shoulder lane on the right has been constructed using the Scenario/ Road 
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builder in CarMaker. A similar road structure has been replicated for the oncoming 

traffic with a divider lane separating the two. The road images can be seen in Fig. 

5.2. 

 

Fig.5.2. Test Road in CarMaker. 

The overall length of the road is 25 km, requiring anywhere about 800 to over 1000 

seconds to complete the trip depending on the autonomous function or vehicle 

control mode initiated. The US traffic and road rules, with right-hand traffic, have 

been assumed for building the Policy database described in the proposed Cognitive 

ADAS Architecture. The parameters for different speed selections can be found in 

Table 5.25 below. Furthermore, a CarMaker default lane width of 3.5 m was 

assumed for the lanes. In addition, a Global Coordinate System (GCS) with a 
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projection mode of Flat Earth, which is also a default selection in CarMaker was 

used for all road relevant GCS calculations.   

Table 5.25. Speed Limit Definitions for Different Types of Roads 

Type of Road Speed Limit (km/h) 

Urban 50 

Country 100 

Motorway 100 

Roundabout 30 

Ramp 70 

Dirt-track 30 

 

As it can be seen from the test cases setup in the next section, two different types of 

roads were assumed for evaluating different autonomous or semi-autonomous 

driving functions. The first one (Road 1) is a flat road, with no gradient variations. 

The second one (Road 2) includes gradient variations, which were built into the 

current road definition, based on the Pikes Peak in Colorado, US, which was 

available in CarMaker demo roads from the measurements provided by 3D 

Mapping Solutions GmbH [155]. This was helpful in constructing a realistic road 

slope profile for the simulations. This demo road slope profile was scaled to fit the 

test road’s length as well as the autonomous/ semi-autonomous use cases studied in 
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the simulations of this thesis. The slope and elevation profile can be seen below in 

Fig.5.3 and 5.4 respectively. 

 

Fig.5.3. Road 2 Slope profile. 

 

Fig.5.4. Road 2 Elevation profile. 
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5.4 Weather model 

Two different weather models have been considered for the simulations in this study 

including ideal and adverse weather conditions. The ideal weather condition 

parameters are mostly based on the default values provided by IPG CarMaker. 

Some parameters such as the reference temperature have been adjusted based on 

the EPA city and highway averages [156]. Likewise, the air density is also adjusted 

accordingly [157]. Since air humidity can vary depending on the location, time of 

the year or even day, and so on, a default value provided by the CarMaker tool was 

assumed. Also, a default solar radiation provided by CarMaker was assumed for all 

simulations.  

 

For modeling adverse weather conditions, the EPA cold temperature test 

procedure’s reference temperature was assumed [156] and the air density was 

calculated accordingly [157]. Furthermore, about 50% reduction in the visibility 

due to fog is also considered. Since, according to [158], above 40 mm/h 

precipitation is assumed as heavy rainfall, a value of 45 mm/h is assumed for 

modeling adverse weather conditions.  

 

According to the Beaufort Wind Scale [159], a wind speed of 20 km/h categorized 

as Moderate Breeze, is also used for modeling the adverse weather conditions. 

Extreme wind speeds categorized as hurricane have not been included in the adverse 
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weather conditions model as the intention is to enable modeling of realistic adverse 

environment conditions, with a reasonable probability of occurrence, permitting the 

operation of the vehicle simulation. The edge case scenarios such as a storm or 

hurricane are out of the scope of this analysis as they could even prevent the AV 

from starting during such extreme conditions when simulated in a virtual 

environment. Towards the upper bound of the friction coefficients presented in 

[160] for wet road conditions were also considered for adverse weather conditions 

model. As such, a road friction coefficient of 0.7 was assumed to depict a wet 

driving condition. A temperature offset depending on the time of the day is also 

accounted for based on the below available default CarMaker profile shown in 

Fig.5.5. 

 

Fig.5.5. Temperature Offset Profile Depending on the Time of the Day. 

 

The parameters used within the environment model of the IPG CarMaker 

simulation can be found summarized in the Table 5.26 below.  
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Table 5.26. Weather Model Parameters 

Properties Ideal Weather Adverse Weather 

Reference Temperature [°C] 25 -7 

Air Density [kg/m3] 1.18 1.33 

Air Pressure [bar] 1.013 1.013 

Air Humidity [60%] 60 60 

Solar Radiation [W/m2] 400 400 

Rain Rate [mm/h] 0 45 

Visual Range in Fog [m] 200 100 

Wind Velocity [km/h] N/A 20 

Wind Angle [deg] N/A 

2 (coming from front 

left) 

Road Friction Coefficient 1 0.7 

 

5.5 ADAS Feature Set Model 

This sub-section will describe the development of the different autonomous/ semi-

autonomous functions including the traditional Cruise Control, Adaptive Cruise 

Control, Active Lane Keep Assist and a combination of the above including 

Traction Control to depict a level 4 autonomous functionality. Depending on the 

level of vehicle automation, the engagement of ADS versus a human driver will 

differ. This has been described through Table 5.27 below. As it can be seen from 
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the test cases setup in the next section, the ADS control is compared to normal as 

well as aggressive driver’s manual control.  

Table 5.27. ADS and Human Driver Responsibility for Longitudinal and Lateral 

Vehicle Control 

  ADAS 

Feature 

Set 

Longitudinal 

Control – 

ADS 

Responsibility 

Longitudinal 

Control – 

Human 

Driver 

Responsibility 

Lateral 

Control – 

ADS 

Responsibility 

Lateral 

Control – 

Human 

Driver 

Responsibility 

Traditional 

Cruise 

Control 

Partial Partial N/A Complete 

Adaptive 

Cruise 

Control 

Complete N/A N/A Complete 

Active 

Lane Keep 

Assist 

N/A Complete Complete N/A 

L4 (ACC 

+ ALKA + 

Traction 

Control) 

Complete N/A Complete N/A 

 

In order to model these various combinations of autonomous, semi-autonomous and 

manual human driver control, parameters, as shown in Tables 5.28 to 5.53, have 

been used. The different parameters that were used to model the normal driver, 

aggressive driver and ADS control include the delta change of pedals, corner cutting 

coefficient, minimum delta acceleration and deceleration, maximum longitudinal 

and lateral acceleration and maximum lateral acceleration. The delta change of 

pedals is the time required by the driver to switch from the accelerator to the brake 

[150]. The corner cutting coefficient depicts the lateral deviations of the driver or 
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the ADS from the lane center while remaining within the lane [150]. It ranges from 

0 to 1, where 0 depicts no deviation and 1 depicts maximum deviation within the 

lane to use up the entire lane width. The minimum delta acceleration and 

deceleration is the time taken by the driver to switch between the acceleration and 

deceleration maneuvers [150]. In addition, the vehicle longitudinal and lateral 

control (ADS and human driver) were implemented using a default PI and PID 

controller respectively in CarMaker (will be described further).    

 

Furthermore, a g-g diagram is also constructed based on the specified speed, 

acceleration and deceleration exponents which is shown in Fig. 5.6 to 5.11. This 

diagram is helpful in depicting the maximum boundary limits of the dependency 

between the lateral and longitudinal acceleration and deceleration [150]. Also, 

different declutching or gear shifting parameters (which dictate the maximum and 

minimum engine speeds based on the pre-determined driver models), maximum 

steering wheel angle, velocity, and acceleration are also specified. All of the above-

described parameters are selected based on the recommended values in CarMaker 

for normal or an aggressive driver. In order to model the ADS control, defense 

driving parameters have been assumed. In addition to the above-described 

parameters, tolerated longitudinal and lateral deviations, as well as reaction times 

based on the frequently used values in the literature, have been assumed. For a 

normal driver, a longitudinal deviation of 10 km/h [161]-[162] and a lateral 

deviation of 0.25 m [162] is assumed. Similarly, a longitudinal deviation of 20 km/h 
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[163] was assumed for an aggressive driver. The speed deviations described in [163] 

were scaled according to the operational domains of the simulation in order to 

simulate longitudinal velocity deviations modeling aggressive driving behavior. 

Likewise, the more adverse case of lateral deviations, resulting in 0.52 m, due to 

aggressive driving behavior as described in [164] was assumed. An average human 

driver reaction time of 1.5 seconds was also used for all cases [165]-[168]. 

Table 5.28. General Parameters for ADS under Traditional Cruise Control 

 

 

Table 5.29. Acceleration Parameters for ADS under Traditional Cruise Control 

 

 

 

 

Table 5.30. Declutching / Gear Shifting Parameters for ADS under Traditional 

Cruise Control 

 

 

Cruising 

Speed (km/h) 

dt Change 

of 

Pedals (s) 

Corner 

Cutting 

Coefficient 

Min. dt 

Accel./Decel. 

(s) 

Traction 

Control 

100 0.5 0.5 8 No 

Max. Long. 

Acceleration 

(m/s2) 

Max. Long. 

Deceleration 

(m/s2) 

Max. Lat 

Acceleration 

(m/s2) 

Exponent of g-g 

Diagram 

2.0 -2.0 4.0 

Speed 

(km/h) 

Accel

. 
Decel. 

50 0.5 0.5 

Time for Shifting 

(s) 
Engine Speeds (RPM) 

1.0 
min max idle up acc down 

1000 3000 1500 2000 
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Table 5.31. Lateral and Longitudinal Deviation Parameters for ADS under 

Traditional Cruise Control 

Tolerated 

Deviation 

Reaction 

Time 

Max. 

Steering 

Wheel Angle 

(deg) 

Max. Steering 

Wheel 

Velocity 

(deg/s) 

Max. Steering 

Wheel Accel. 

(deg/s2) 

Long 

Km/h 

Lateral 

m 

Long 

(s) 

Lateral 

(s) 630 500  3000  
0.0 0.25 0.0 1.5 

 

 

 

Fig. 5.6. g-g Diagram for ADS Traditional Cruise Control. 

 

Table 5.32. General Parameters for ADS under Adaptive Cruise Control 

 

Table 5.33. Acceleration Parameters for ADS under Adaptive Cruise Control 

 

Cruising 

Speed (km/h) 

dt Change 

of 

Pedals (s) 

Corner 

Cutting 

Coefficient 

Min. dt 

Accel./Decel. 

(s) 

Traction 

Control 

100 0.75 0.5 8 No 

Max. Long. 

Acceleration 

(m/s2) 

Max. Long. 

Deceleration 

(m/s2) 

Max. Lat 

Acceleration 

(m/s2) 

Exponent of g-g 

Diagram 

2.0 -2.0 3.0 

Speed 

(km/h) 

Accel

. 
Decel. 

50 0.5 0.5 
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Table 5.34. Declutching / Gear Shifting Parameters for ADS under Adaptive 

Cruise Control 

 

 

Table 5.35. Lateral and Longitudinal Deviation Parameters for ADS under 

Adaptive Cruise Control 

Tolerated 

Deviation 

Reaction 

Time 

Max. 

Steering 

Wheel Angle 

(deg) 

Max. Steering 

Wheel 

Velocity 

(deg/s) 

Max. Steering 

Wheel Accel. 

(deg/s2) 

Long 

Km/h 

Lateral 

m 

Long 

(s) 

Lateral 

(s) 630 250 1500 
0.0 0.25 0.0 1.5 

 

 

Fig. 5.7. g-g Diagram for ADS Adaptive Cruise Control. 

 

Table 5.36. General Parameters for ADS under Active Lane Keep Assist 

 

 

Time for Shifting 

(s) 
Engine Speeds (RPM) 

1.5 
min max idle up acc down 

1000 3000 1500 2000 

Cruising 

Speed (km/h) 

dt Change 

of 

Pedals (s) 

Corner 

Cutting 

Coefficient 

Min. dt 

Accel./Decel. 

(s) 

Traction 

Control 

100 0.5 0.25 4 No 
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Table 5.37. Acceleration Parameters for ADS under Active Lane Keep Assist 

 

 

Table 5.38. Declutching / Gear Shifting Parameters for ADS under Active Lane 

Keep Assist Control 

 

 

Table 5.39. Lateral and Longitudinal Deviation Parameters for ADS under Active 

Lane Keep Assist Control 

Tolerated 

Deviation 

Reaction 

Time 

Max. 

Steering 

Wheel Angle 

(deg) 

Max. Steering 

Wheel 

Velocity 

(deg/s) 

Max. Steering 

Wheel Accel. 

(deg/s2) 

Long 

Km/h 

Lateral 

m 

Long 

(s) 

Lateral 

(s) 630 250 1500 
10.0 0 1.5 0.0 

 

 

Fig. 5.8. g-g Diagram for ADS Active Lane Keep Assist Control. 

Max. Long. 

Acceleration 

(m/s2) 

Max. Long. 

Deceleration 

(m/s2) 

Max. Lat 

Acceleration 

(m/s2) 

Exponent of g-g 

Diagram 

3.0 -4.0 4.0 

Speed 

(km/h) 

Accel

. 
Decel. 

50 1.0 1.0 

Time for Shifting 

(s) 
Engine Speeds (RPM) 

1.0 
min max idle up acc down 

1500 4000 2000 3000 
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Table 5.40. General Parameters for ADS under Level 4 Autonomous Function 

 

 

Table 5.41. Acceleration Parameters for ADS under Level 4 Autonomous 

Function 

 

 

Table 5.42. Declutching / Gear Shifting Parameters for ADS under Level 4 

Autonomous Function 

 

 

Table 5.43. Lateral and Longitudinal Deviation Parameters for ADS under Level 4 

Autonomous Function 

Tolerated 

Deviation 

Reaction 

Time 

Max. 

Steering 

Wheel Angle 

(deg) 

Max. Steering 

Wheel 

Velocity 

(deg/s) 

Max. Steering 

Wheel Accel. 

(deg/s2) 

Long 

Km/h 

Lateral 

m 

Long 

(s) 

Lateral 

(s) 630 250 1500 
0.0 0 0.0 0 

 

Cruising 

Speed (km/h) 

dt Change of 

Pedals (s) 

Corner 

Cutting 

Coefficient 

Min. dt 

Accel./Decel. 

(s) 

Traction 

Control 

100 0.75 0.25 8 Yes 

Max. Long. 

Acceleration 

(m/s2) 

Max. Long. 

Deceleration 

(m/s2) 

Max. Lat 

Acceleration 

(m/s2) 

Exponent of g-g 

Diagram 

2.0 -2.0 3.0 

Speed 

(km/h) 

Accel

. 
Decel. 

50 0.5 0.5 

Time for Shifting 

(s) 
Engine Speeds (RPM) 

1.5 
min max idle up acc down 

1000 3000 1500 2000 
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Fig. 5.9. g-g Diagram for ADS Level 4 Autonomous Function. 

 

 

Table 5.44. General Parameters for Normal and Aggressive Human Driver 

Control 

 

 

 

Table 5.45. Acceleration Parameters for Normal and Aggressive Human Driver 

Control 

 

 

Driving 

Behavior Cruising 

Speed 

(km/h) 

dt 

Change 

of 

Pedals 

(s) 

Corner 

Cutting 

Coefficient 

Min. dt 

Accel./Decel. 

(s) 

Traction 

Control 

Normal 100 0.5 0.5 4 No 

Aggressive 100 0.25 0.8 0.5 No 

Driving 

Behavior 
Max. Long. 

Acceleration 

(m/s2) 

Max. Long. 

Deceleration 

(m/s2) 

Max. Lat 

Acceleratio

n (m/s2) 

Exponent of g-g 

Diagram 
Speed 

(km/h) Accel. Decel. 

Normal 3.0 -4.0 4.0 50 1.0 1.0 

Aggressive 4.0 -6.0 5.0 50 1.5 1.5 
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Table 5.46. Declutching / Gear Shifting Parameters for Normal and Aggressive 

Human Driver Control 

 

 

 

Table 5.47. Lateral and Longitudinal Deviation Parameters for Normal and 

Aggressive Human Driver Control 

Driving 

Behavior 

Tolerated 

Deviation 
Reaction Time 

Max. 

Steering 

Wheel 

Angle 

(deg) 

Max. 

Steering 

Wheel 

Velocity 

(deg/s) 

Max. 

Steering 

Wheel 

Accel. 

(deg/s2) 

Long 

(Km/h) 
Lateral 

(m) 
Long 

(s) 
Lateral 

(s) 

Normal 10.0 0.25 1.5 1.5 630 500  3000  

Aggressive 20.0 0.52 1.5 1.5 630 500  20000  

 

 

 

Fig. 5.10. g-g Diagram for normal human driver control. 

 

Driving 

Behavior Time for 

Shifting (s) 

Engine Speeds (RPM) 

min max idle up acc down 

Normal 1.0 1500 4000 2000 3000 

Aggressive 1.0 2500 5000 3000 4500 
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Fig. 5.11. g-g Diagram for aggressive human driver control. 

 

 

Table 5.48. ACC Control Parameters for ADS (incl. L4 longitudinal control) 

Control Model Acceleration Control + ACC 

Acceleration function ACC 

Acceleration controller factor P [-] 0.001 

Acceleration controller factor I [-] 0.001 

Referenced object sensor RadarL 

Brake threshold [-] 0.2 

Initial time distance [s] 1.8 

Minimal distance [m] 10 

Minimal acceleration [m/s2] -2.5 

Minimal acceleration [m/s2] 1.0 

Distance controller factor kd [-] 36.0 

Distance controller factor kv [-] 2.0 

Velocity controller factor kv [-] 13.0 
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Table 5.49. Generic lateral control parameters for ADS (incl. L4 lateral control) 

Control Model Generic Lateral Control 

Initial line detection mode Line Sensor 

Referenced road sensor AlongR 

Lane keeping assist system Yes 

Minimal velocity [km/h] 55.0 

Maximal assist torque [Nm] 2.0 

Time constant PT1 filter [s] 0.003 

Maximal lane width [m] 7.0 

Minimal lane width [m] 1.8 

Curvature controller factor P [-] 2.0 

Curvature controller factor I [-] 0.2 

Curvature controller factor D [-] 0.0 

Maximal deviation distance [m] 0 

Assist torque coefficient [Ns2] 2.05 

Lane departure warning Yes 

Minimal velocity [km/h] 55.0 

Distance departure warning [m] 0.2 

 

5.6 Mapping of the Simulation Model to the Proposed ADAS Architecture 

This section presents a functional mapping between the proposed Cognitive ADAS 

Architecture and the simulation model developed in CarMaker. Although this 
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simulation model presents one specific adaptation of the architecture, the various 

concepts discussed regarding the sensors, vehicle control techniques (ADS and 

human driver) weather, road and traffic modeling can be generalized for the overall 

highly automated driving framework.  

 

The sensor parameters are defined through the Vehicle Data Set in the Parameters 

section. Different parameters are used to define the sensors, depending on their type. 

Some of these parameters include the mounting position, orientation of the sensor, 

range, field of view, update frequency and so on. As previously described, a 

combination of slip angle, inertial, object (RADAR and Camera), free space, traffic 

sign, line, road, collision, and global navigation are the different types of sensors 

used for the simulation model. The sensor suite is a physical layer existing on the 

Autonomous-capable EV. The Perception layer functions itself happen in the 

background through semiconductor technologies. Similarly, the Perception 

functions including the Sensor Data Processing, Object Detection, Tracking, 

Classification, Sensor Fusion and Integration, Free Space Estimation, driving 

environment model generation/ filtration and the SLAM happen in the background 

of the simulation model. The successful operation of these functions can be assessed 

from the IPGMovie Animation of the simulation which highlights the various 

attributes of the driving environment perceived. The detection of driving 

environment in a level 4 test case, including the traffic objects, lane markings and 

the Region of Interest can be seen in Fig. 5.12, 5.13 and 5.14 respectively. 
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Furthermore, the sensor outputs can also be generated using the IPGControl to 

assess any gap between the expected output and the simulation result.     

 

 

Fig.5.12. Detection of Traffic Objects by Host Autonomous-capable EV. 
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Fig.5.13. Detection of Lane Markings by Host Autonomous-capable EV. 

 

Fig.5.14. Host Autonomous-capable EV’s Sensors Field of View. 
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Following Perception, the Cognition layer makes critical decisions about the host 

vehicle’s immediate and long-term maneuver. The Policy database which serves as 

an important input to Cognition is defined using the Scenario Settings within the 

Scenario/ Road Parameters. The different localized speed limit settings for different 

types of roads such as urban, country, motorway, roundabout, ramp and dirt track 

are defined. The current country of operation, driving side, and so on are also 

specified here. The Policy database only specifies the general rules of the road 

which should not be disobeyed in any circumstance. However, this should not be 

confused with maximum speed or minimum safe distance specifications, for 

example, which are defined as part of an autonomous or semi-autonomous control. 

The Mission and Motion Plan are defined using Longitudinal and Lateral Dynamics 

within the Maneuver Parameters. Furthermore, the long-term mission plan is also 

based on the road definition modeled within the Scenario/ Road Parameters. The 

maneuvers can also be modified depending on the actor – normal driver, aggressive 

driver or the ADS within the Driver Parameters under Maneuvers. The ADAS 

Control Unit parameters are also specified as part of the Driver Parameters within 

the Longitudinal and Lateral Dynamics in Maneuver Parameters. The control 

technique, as well as initialization of an ADAS feature, is performed through the 

Vehicle Control GUI within the Car Parameters. The types of control (generic 

lateral, ACC, general longitudinal, AEB, Lane Departure Warning, Lane Keep 

Assist and so on), their associated control parameters and referenced sensors for 

carrying out the required control techniques are specified here.  
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Furthermore, the Actuation Control functions are parameterized through the 

Powertrain Control Unit within the Vehicle Data Set (Car Parameters). The type of 

powertrain and the associated control models are selected here based on a library of 

control techniques available. The Electrified Powertrain Execution System 

modeling is performed through the General, Drive Source, Driveline, and the Power 

Supply Parameters within the Vehicle Data Set. The CarMaker default options for 

the demo Tesla Model S were used, for both the Actuation Control and the 

Electrified Powertrain Execution System modeling, for the purposes of the 

simulations presented in this study. The battery is parameterized using the default 

Chen model with an OCV-R-RC-RC circuit [151]. This enables the use of 

CarMaker’s default curve for the voltage factor based on the SOC %. The initial 

SOC is assumed to be 70% for all test cases as seen previously. The motor torque 

versus rotational speed profile (Characteristic Value model) has been selected to be 

the default for Tesla Model S demo model. Furthermore, the motor efficiency 

profile is based on the rotational speed gathering the data from an available 2D look-

up table.   

 

The Navigation system modeling is performed through the Global Navigation and 

Inertial sensors definition within the Vehicle Data Set. Lastly, the driving 

environment itself can be defined through the Scenario/ Road, Environment and 

Traffic Parameters. Although, a stochastic generation of the traffic data based on 

fixed Traffic Density and Car Ratio is possible through the Traffic parameterization 
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within the Scenario/ Road editor, and is recommended for development of unbiased 

random traffic, it is necessary to make sure that the stochastically generated data is 

within the host vehicle’s immediate Region of Interest to be able to study the impact 

of the external traffic on the host Autonomous-capable EV. As such, it is 

recommended to manually adjust the stochastically generated traffic using the 

Traffic Parameters in order to make sure that the above-described constraints are 

met. 

    

5.7 Theoretical Analysis and Walkthrough of the Model 

Some of the major theoretical concepts relating to the current simulation model, 

which is based on the proposed Cognitive ADAS Architecture, will be described in 

this section. Firstly, it is critical to understand how the Object Detection is taking 

place within the simulation model [151]. As it was described in the Sensor Model 

section previously, the target detection is being performed by using the Nearest in 

Path and Nearest Point calculation technique. Through these techniques, the host 

Autonomous-capable EV is not only able to assess the traffic object’s position or 

location on the road but is able to perform an accurate free space estimation based 

on the projected trajectories of both the host and the immediate traffic objects. The 

sensors’ field of view is analyzed for any of the traffic objects within the immediate 

Region of Interest by following the below [151].  
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𝑦𝑜𝑓𝑓 = (
𝑣2

𝐴𝑏𝑠(𝑎𝑦)
−  √(

𝑣2

𝐴𝑏𝑠(𝑎𝑦)
)

2

− (𝑑𝑠 ∗ cos (𝛼))2) ∗ 𝑠𝑖𝑔𝑛 (𝑎𝑦)  

 

Where, 𝑦𝑜𝑓𝑓 is the offset of the vehicle at the target’s position, 𝑣 is the speed of the 

vehicle, 𝑎𝑦 is the lateral acceleration of the vehicle (𝑠𝑖𝑔𝑛(𝑎𝑦) is helpful in 

understanding the direction of the vehicle offset), 𝑑𝑠 is the projected distance 

between the host and the target vehicle and 𝛼 is the target vehicle’s orientation or 

angle [151]. The projected distance is illustrated through Fig. 5.15 below [151]. 

This projected path is calculated by CarMaker in the background.   

 

Fig.5.15. Illustration of the Projected Distance Between Host and Lead Vehicle. 
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Following this, it is analyzed whether the traffic objects fall within the projected 

host vehicle’s trajectories which is the intersection of the below trajectory limits 

[151].  

 

(𝑦𝑜𝑓𝑓 −  
𝑙𝑎𝑛𝑒 𝑤𝑖𝑑𝑡ℎ

2
) <   (𝑑𝑠 ∗ sin (𝛼))  < (𝑦𝑜𝑓𝑓 +  

𝑙𝑎𝑛𝑒 𝑤𝑖𝑑𝑡ℎ

2
)   

 

It is important to make sure that the Planner, described within the Cognitive ADAS 

Architecture, correctly plans the long- and short-term Mission and Motion with an 

intention to avoid collisions with the surrounding objects in the host vehicle’s 

driving environment, at all times.    

 

Furthermore, the simulations in this thesis demonstrate a vehicle automation of up 

to level 4. The Level 4 autonomous control includes a combination of both the 

lateral and the longitudinal control performed by the ADS. Some of the theoretical 

background behind these control strategies are described below. The Adaptive 

Cruise Controller or ACC provides the required longitudinal control for the 

Autonomous-capable host EV. CarMaker implements two different closed-loop 

control strategies depending on the situation of the dynamic driving environment to 

simulate real-life ACC conditions [151]. The host vehicle velocity is controlled to 

be the set desired maximum speed by the user if no target object is detected within 
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the immediate Region of Interest. The distance between the host vehicle and the 

lead vehicle is controlled to be the minimum safe distance specified by the user if 

there is a target object detected within the immediate Region of Interest. This 

manipulation of the longitudinal acceleration is performed by changing the 

positions of the brake and the throttle pedals using a PI controller in CarMaker. 

 

In addition to ACC, Automated Emergency Braking or AEB also forms a vital 

functionality of the level 4 autonomous control. As described previously in the 

thesis, AEB is a safety critical function which helps in controlling the vehicle 

velocity as needed per the requirements of the dynamic driving environment. 

CarMaker performs the AEB control by following the below calculations for time 

to collision and time threshold brake to identify if a braking intervention is required 

by the ADS for the host Autonomous-capable EV [151].  

 

For a stationary or a very slow-moving target object, the time to collision is 

calculated as follows in CarMaker [151]: 

𝑡𝑡𝑐 =
𝑑

𝑣𝑟𝑒𝑙
 

Where 𝑡𝑡𝑐 is the time required for a collision to occur between the host vehicle and 

its surrounding target objects, 𝑑 is the distance between the host and the target 
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vehicles and 𝑣𝑟𝑒𝑙 is the relative velocity between the host and the target vehicles 

[151]. 

 

In addition, if the target object’s acceleration is reducing, the time to collision is 

calculated as follows [151]: 

𝑡𝑡𝑐 =
√𝑣𝑟𝑒𝑙

2 − 2𝑑𝐷𝑟𝑒𝑙 − 𝑣𝑟𝑒𝑙

𝐷𝑟𝑒𝑙
 

Where, 𝐷𝑟𝑒𝑙 is the relative deceleration of the target object [151]. 

Furthermore, the time threshold brake is also calculated depending on whether the 

target object is moving or not. This further signifies the importance of Object 

Tracking for accurate Object Classification and Free Space Estimation. The time 

threshold brake is calculated as follows for the static traffic objects [151]: 

    

𝑡𝑡𝑏 =  𝜏𝐵 +  
𝑣𝑟𝑒𝑙

2𝐷𝑚𝑎𝑥
 

Where, 𝑡𝑡𝑏 is the time threshold brake, 𝜏𝐵 is the brake loss time and 𝐷𝑚𝑎𝑥 is the 

maximum permitted deceleration of the host vehicle without causing a collision 

with the surrounding target objects [151].  

Also, the time threshold brake for dynamic target objects is calculated as follows 

[151]: 
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𝑡𝑡𝑏 =  𝜏𝐵 +  
𝑣𝑟𝑒𝑙 +  𝐷𝑟𝑒𝑙 𝜏𝐵

2(𝐷𝑚𝑎𝑥 − 𝐷𝑜𝑏𝑠)
 

Where, 𝐷𝑜𝑏𝑠 is the target object’s actual deceleration [151].  

 

Lastly, the Active Lane Keep Assist System provides lateral vehicle control by the 

ADS. As previously discussed in the thesis, lateral control of the vehicle is critical 

from a safety perspective. Unintended lane departures, especially in the evaluated 

highway scenarios could also be fatal depending on the conditions of the dynamic 

driving environment. This is implemented in CarMaker using a PID controller to 

make sure that vehicle is always kept at the center of the lane unless a lane change 

is intended by the user [151]. The lateral deviation angle and distance in addition to 

the perceived path curvature is taken as inputs into the PID controller for tuning 

against the target path curvature, in turn to produce the steering assist torque 

required to bring the host Autonomous-capable EV back to the center of the lane, 

in case any unintended deviation has occurred [151].    

 

5.8 Validation 

Validation is an essential step for a model or a simulations-based analysis in 

identifying the accuracy of the assumptions made, simulations performed, and 

analysis conducted. This section will describe the above validation for the 

simulations being studied in this thesis. The model will be validated using the 
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Environmental Protection Agency or EPA standard driving test procedures or 

driving cycles. There are different driving cycles available for city and highway 

driving [156], [169]-[171], [119]. Due to the commercial unavailability of a level 4 

Autonomous-capable Electrified Vehicle, experimental validation was considered 

out of scope for this research. However, it is presented as a part of future research, 

anticipating the market availability of such vehicles in the future. The Cognitive 

ADAS Architecture proposed in this thesis is expected to form a fundamental 

building block in realizing Highly Automated Driving commercially in the 

upcoming years. The positive validation results to be described further also forms 

as a basis for the validation of the proposed Cognitive ADAS Architecture to which 

the simulation model has been mapped, as previously described in the thesis.        

 

EPA has been one of the central organizations in establishing standard test 

procedures for testing the different vehicles for their performance on a 

dynamometer by incorporating driving conditions which a vehicle might encounter 

on the road. EPA proposes a 5-cycle test method including the various standard 

driving cycles such as the Federal Test Procedure (FTP), Highway Fuel Economy 

Test (HWFET), US06 or the Supplemental Federal Test Procedure, Speed 

Correction Driving Schedule (SC03) and FTP under cold temperatures [156]. FTP 

represents city driving with regularly stopping traffic [156]. The HWFET represents 

the free-flow highway traffic [156]. The US06 represents city and highway driving 

with aggressive driving behavior [156]. The SC03 driving cycle represents the use 



Ph.D. Thesis - K. Divakarla; McMaster University - Electrical and Computer Engineering 

128 
 

of air conditioning within the vehicle during adverse warm weather outside [156]. 

Lastly, the FTP drive cycle is repeated under extreme cold weather conditions 

outside [156]. These standard drive cycles were run using the current simulation 

model by also incorporating the test conditions specified as per [156]. The velocity 

over time profiles established using the current simulation model for the above 

standard driving cycles are shown in Fig. 5.16 to 5.20 below. These profiles 

generated through the simulation model can be seen to be the same as [156].     

 

 

Fig.5.16. FTP-75 Standard Driving Cycle Generated Through the Simulation 

Model. 
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Fig.5.17. HWFET Standard Driving Cycle Generated Through the Simulation 

Model. 

 

 

Fig.5.18. US06 Standard Driving Cycle Generated Through the Simulation 

Model. 
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Fig.5.19. SC03 Standard Driving Cycle Generated Through the Simulation Model. 

 

Fig.5.20. FTP-75 with a Cold Start Standard Driving Cycle Generated Through 

the Simulation Model. 

 

-10

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700

V
el

o
ci

ty
 (

km
/h

)

Time (sec)

-20

0

20

40

60

80

100

0 500 1000 1500 2000

V
el

o
ci

ty
 (

km
/h

)

Time (sec)



Ph.D. Thesis - K. Divakarla; McMaster University - Electrical and Computer Engineering 

131 
 

In order to further validate the simulations and analysis presented in this thesis, the 

test Electrified Vehicle performance results are compared with the EPA predictions. 

The EPA predictions for MPGe are based on the 5-cycle adjustment method 

established for the EVs [172]. This method enables scaling the acquired results from 

the 5-cycle test with a factor of up to 0.7 in order to reflect the numbers for EVs. 

This scaling factor has been established by EPA in order to incorporate any 

difference between the Internal Combustion Engine (ICE) vehicles and the EVs as 

the original test procedures have been established for the ICE vehicles. The 

published EPA values for the 2014 Tesla Model S’s MPGe are 88 for city driving 

and 90 for highway driving giving a combined MPGe of 89 following a weighted 

average of 55% and 45 % for the city and highway respectively [173]. The scaled 

MPGe values acquired from the 5-cycle adjustment method performed using the 

current simulation model for 2014 Tesla Model are shown in Table 5.50 below.  

Table 5.50. MPGe Values Acquired from the Standard Driving Cycles Simulation 

Standard Driving 

Cycle 

MPGe 

FTP-75 84 

HWFET 84 

US06 61 

SC03 81 

FTP-75 with cold start 83 
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From the above MPGe values, it can be seen that the Electrified Vehicle 

performance results acquired from the current simulation model are comparable to 

the EPA predictions, which further emphasize the robustness of the simulation 

model. The minor discrepancy noticed could be due to an adjustment factor applied 

by EPA to decrease the dynamometer based MPGe results to reflect the real-life 

conditions based on the proprietary past vehicle data collected. Furthermore, the 

adaptability and scalability of standard driving cycles for Autonomous-capable 

Vehicles are still being studied in the industry, limiting the knowledge of any 

scaling needed to incorporate Autonomous Vehicle control and maneuvers.  
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Chapter 6 

Verification through Vehicle-level Simulations 

 

This chapter describes the simulation setup as well as the various test cases. In 

overall, there are 113 test cases – 108 functional and 5 validation test cases (which 

have been presented in the previous chapter) with about 60 unique combinations of 

the ADS, human driver and 7 external conditions variations. In addition, the 

simulation results, as well as analysis including a quantitative sensitivity analysis, 

is also presented to understand the impact of vehicle autonomy on Electrified 

Vehicle performance, dynamics and the operation of the various components.  

             

6.1 Simulation Setup and Test Cases  

This section describes the formulation of 108 functional test cases which will be 

utilized to understand the impact of Electrified Vehicle autonomy on energy 

economy as well as various Electrified Vehicle components and dynamics. The 108 

functional test cases depict six different autonomous features with varying levels of 

automation. They include traditional Cruise Control (CC), Adaptive Cruise Control 

(ACC), Automated Emergency Braking (AEB), Active Lane Keep Assist (ALKA) 

and a combination of multiple longitudinal and lateral autonomous control 

functions in addition to Traction Control to depict a Level 4 or L4 autonomous 

function [174]-[177]. These functions have been selected mainly due to their 
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enormous impact on the vehicle dynamics and performance during highway 

driving. The autonomous functions of varying levels are compared with two types 

of manual driving – normal and aggressive driving behavior. Furthermore, 

variations in external conditions – specifically in road (flat versus with gradient 

profile), weather (ideal versus adverse) and traffic (no traffic, lead vehicle only or 

dynamic traffic maneuvers). This results in about 60 unique combinations of ADS 

and manual driving use cases with varying external conditions. These are 

summarized in Table 6.1 and 6.2. The split between the ADS control and the normal 

(MAN_N) or the aggressive driver (MAN_A) is also shown in these tables. Out of 

the 108 functional test cases, primary vehicle control by the ADS, normal human 

driver and aggressive human driver accounts for 36 test cases each. Although some 

of the human driving test cases could be reused for the comparative analysis, due to 

the identical longitudinal and lateral control responsibility distribution, every 

human driver test case is compared with a different ADS test case each time, 

resulting in the data set of 108 functional test cases in overall.      

 

Tests 1 to 36 model primary highway driving maneuvers for traditional Cruise 

Control, Adaptive Cruise Control, Active Lane Keep Assist and a combination of 

ACC, ALKA and Traction Control, simulating SAE level 4 autonomous highway 

driving. The ADS has a primary vehicle control responsibility for either 

longitudinal control or lateral control or both in the above test cases. On the other 

hand, tests 37 to 60 attempt to imitate the above-described maneuvers when 
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completely controlled (longitudinal and lateral) by the human driver (normal or 

aggressive driving behavior) instead of the ADS. As described above, all the test 

cases also incorporate changes in the external conditions. In all of the ADS specific 

cases with partial human driver responsibility, a normal driver behavior is assumed. 

For example, in the test cases with ACC, the longitudinal control is being performed 

by the ADS, whereas, the human driver is responsible for the vehicle’s lateral 

control. In such a case with partial vehicle control responsibility lying with the ADS 

and partially with the human driver, a normal driving behavior is assumed. The 

assumptions and parameterization of the external condition models have already 

been described in Chapter 5 of this thesis.      

Table 6.1. ADS Complete or Partial Control Test Cases 

Test 

ID 

ADAS 

Feature 

Primary 

Longitudinal 

Control  

Primary 

Lateral 

Control 

Road Weather 
Traffic 

Density 

1 CC ADS MAN_N Road 1 Ideal 
No 

Traffic 

2 CC ADS MAN_N Road 2 Ideal 
No 

Traffic 

3 CC ADS MAN_N Road 1 Adverse 
No 

Traffic 

4 CC ADS MAN_N Road 2 Adverse 
No 

Traffic 

5 CC ADS MAN_N Road 1 Ideal 

Multi-

object 

Traffic 

Set 

6 CC ADS MAN_N Road 2 Ideal 

Multi-

object 

Traffic 

Set 

7 CC ADS MAN_N Road 1 Adverse 

Multi-

object 

Traffic 

Set 

8 CC ADS MAN_N Road 2 Adverse 
Multi-

object 
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Traffic 

Set 

9 CC ADS MAN_N Road 1 Ideal 

Lead 

Vehicle 

Only 

10 CC ADS MAN_N Road 2 Ideal 

Lead 

Vehicle 

Only 

11 CC ADS MAN_N Road 1 Adverse 

Lead 

Vehicle 

Only 

12 

 
CC ADS MAN_N Road 2 Adverse 

Lead 

Vehicle 

Only 

13 
ACC + 

AEB 
ADS MAN_N Road 1 Ideal 

Lead 

vehicle 

only 

14 
ACC + 

AEB 
ADS MAN_N Road 2 Ideal 

Lead 

vehicle 

only 

15 
ACC + 

AEB 
ADS MAN_N Road 1 Adverse 

Lead 

vehicle 

only 

16 
ACC + 

AEB 
ADS MAN_N Road 2 Adverse 

Lead 

vehicle 

only 

17 
ACC + 

AEB 
ADS MAN_N Road 1 Ideal 

Multi-

object 

Traffic 

Set 

18 
ACC + 

AEB 
ADS MAN_N Road 2 Ideal 

Multi-

object 

Traffic 

Set 

19 
ACC + 

AEB 
ADS MAN_N Road 1 Adverse 

Multi-

object 

Traffic 

Set 

20 
ACC + 

AEB 
ADS MAN_N Road 2 Adverse 

Multi-

object 

Traffic 

Set 

21 ALKA MAN_N ADS Road 1 Ideal 
No 

Traffic 

22 ALKA MAN_N ADS Road 2 Ideal 
No 

Traffic 

23 ALKA MAN_N ADS Road 1 Adverse 
No 

Traffic 

24 ALKA MAN_N ADS Road 2 Adverse 
No 

Traffic 

25 ALKA MAN_N ADS Road 1 Ideal 
Multi-

object 
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Traffic 

Set 

26 ALKA MAN_N ADS Road 2 Ideal 

Multi-

object 

Traffic 

Set 

27 ALKA MAN_N ADS Road 1 Adverse 

Multi-

object 

Traffic 

Set 

28 ALKA MAN_N ADS Road 2 Adverse 

Multi-

object 

Traffic 

Set 

29 

L4 (ACC 

+ AEB+ 

ALKA + 

Traction 

Control) 

ADS ADS Road 1 Ideal 

Lead 

vehicle 

only 

30 

L4 (ACC 

+ AEB+ 

ALKA + 

Traction 

Control) 

ADS ADS Road 2 Ideal 

Lead 

vehicle 

only 

31 

L4 (ACC 

+ AEB+ 

ALKA + 

Traction 

Control) 

ADS ADS Road 1 Adverse 

Lead 

vehicle 

only 

32 

L4 (ACC 

+ AEB+ 

ALKA + 

Traction 

Control) 

ADS ADS Road 2 Adverse 

Lead 

vehicle 

only 

33 

L4 (ACC 

+ AEB+ 

ALKA + 

Traction 

Control) 

ADS ADS Road 1 Ideal 

Multi-

object 

Traffic 

Set 

34 

L4 (ACC 

+ AEB+ 

ALKA + 

Traction 

Control) 

ADS ADS Road 2 Ideal 

Multi-

object 

Traffic 

Set 

35 

L4 (ACC 

+ AEB+ 

ALKA + 

Traction 

Control) 

ADS ADS Road 1 Adverse 

Multi-

object 

Traffic 

Set 

36 

L4 (ACC 

+ AEB+ 

ALKA + 

ADS ADS Road 2 Adverse 
Multi-

object 
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Traction 

Control) 

Traffic 

Set 

 

Table 6.2. Manual Human Driver Complete Control Test Cases 

Test 

ID 
Description 

Longitu-

dinal 

Control 

Lateral 

Control 
Road Weather 

Traffic 

Density 

Driver 

Behavior 

37 

Manual 

comparison 

for Test # 1 

and 21   

MAN_N MAN_N Road 1 Ideal 
No 

Traffic 
Normal 

38 

Manual 

comparison 

for Test # 1 

and 21   

MAN_A MAN_A Road 1 Ideal 
No 

Traffic 
Aggressive 

39 

Manual 

comparison 

for Test # 2 

and 22     

MAN_N MAN_N Road 2 Ideal 
No 

Traffic 
Normal 

40 

Manual 

comparison 

for Test # 2 

and 22     

MAN_A MAN_A Road 2 Ideal 
No 

Traffic 
Aggressive 

41 

Manual 

comparison 

for Test # 3 

and 23       

MAN_N MAN_N Road 1 Adverse 
No 

Traffic 
Normal 

42 

Manual 

comparison 

for Test # 3 

and 23       

MAN_A MAN_A Road 1 Adverse 
No 

Traffic 
Aggressive 

43 

Manual 

comparison 

for Test # 4 

and 24         

MAN_N MAN_N Road 2 Adverse 
No 

Traffic 
Normal 

44 

Manual 

comparison 

for Test # 4 

and 24         

MAN_A MAN_A Road 2 Adverse 
No 

Traffic 
Aggressive 

45 

Manual 

comparison 

for Test # 5, 

17, 25 and 

33         

MAN_N MAN_N Road 1 Ideal 

Multi-

object 

Traffic 

Set 

Normal 

46 

Manual 

comparison 

for Test # 5, 

MAN_A MAN_A Road 1 Ideal 

Multi-

object 

Traffic 

Set 

Aggressive 
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17, 25 and 

33         

47 

Manual 

comparison 

for Test # 6, 

18, 26 and 

34         

MAN_N MAN_N Road 2 Ideal 

Multi-

object 

Traffic 

Set 

Normal 

48 

Manual 

comparison 

for Test # 6, 

18, 26 and 

34         

MAN_A MAN_A Road 2 Ideal 

Multi-

object 

Traffic 

Set 

Aggressive 

49 

Manual 

comparison 

for Test # 7, 

19, 27 and 

35         

MAN_N MAN_N Road 1 Adverse 

Multi-

object 

Traffic 

Set 

Normal 

50 

Manual 

comparison 

for Test # 7, 

19, 27 and 

35         

MAN_A MAN_A Road 1 Adverse 

Multi-

object 

Traffic 

Set 

Aggressive 

51 

Manual 

comparison 

for Test # 8, 

20, 28 and 

36         

MAN_N MAN_N Road 2 Adverse 

Multi-

object 

Traffic 

Set 

Normal 

52 

Manual 

comparison 

for Test # 8, 

20, 28 and 

36         

MAN_A MAN_A Road 2 Adverse 

Multi-

object 

Traffic 

Set 

Aggressive 

53 

Manual 

comparison 

for Test #9, 

13 and 29  

MAN_N MAN_N Road 1 Ideal 

Lead 

vehicle 

only 

Normal 

54 

Manual 

comparison 

for Test #9, 

13 and 29 

MAN_A MAN_A Road 1 Ideal 

Lead 

vehicle 

only 

Aggressive 

55 

Manual 

comparison 

for Test #10, 

14 and 30 

MAN_N MAN_N Road 2 Ideal 

Lead 

vehicle 

only 

Normal 

56 

Manual 

comparison 

for Test #10, 

14 and 30 

MAN_A MAN_A Road 2 Ideal 

Lead 

vehicle 

only 

Aggressive 

57 

Manual 

comparison 

for Test #11, 

15 and 31 

MAN_N MAN_N Road 1 Adverse 

Lead 

vehicle 

only 

Normal 
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58 

Manual 

comparison 

for Test #11, 

15 and 31 

MAN_A MAN_A Road 1 Adverse 

Lead 

vehicle 

only 

Aggressive 

59 

Manual 

comparison 

for Test #12, 

16 and 32 

MAN_N MAN_N Road 2 Adverse 

Lead 

vehicle 

only 

Normal 

60 

Manual 

comparison 

for Test #12, 

16 and 32 

MAN_A MAN_A Road 2 Adverse 

Lead 

vehicle 

only 

Aggressive 

 

For the six different ADAS feature sets being evaluated in this study, the 

responsibility lying on the ADS versus the human driver, once the ADAS feature is 

activated, could differ depending on the feature set. The Table 5.27 in Chapter 5 

has already demonstrated this distribution of host vehicle longitudinal and lateral 

control. The configuration or the initiation of the various autonomous/ semi-

autonomous features are not counted in for this distribution. For example, for an 

ACC feature, it is assumed (hence, not considered a “responsibility” explicitly) that 

the human driver has to set a minimum safe distance and maximum desired speed.  

 

Traditional Cruise Control: 

Test 1 simulates traditional Cruise Control, where a constant set point or speed is 

specified by the user for the host vehicle. Realistically, the ADS maintains this set 

speed until the functionality is deactivated by the user. The correlation with the 

surrounding traffic, for example, in case of a suddenly slowed down target vehicle 

in front of the host vehicle, is not detected or controlled by the ADS, instead, this 
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responsibility of slowing down the host vehicle by braking accordingly lies on the 

human driver. As such, based on the above description, partial longitudinal control 

is performed by ADS; whereas, the lateral control is solely human driver’s 

responsibility. This particular test case assumes a 0% traffic density, ideal weather 

conditions on Road 1. Furthermore, the host vehicle is expected to start from rest 

and accelerate to reach the set speed, which is 100 km/h, in this case. Tests 2 to 12 

model traditional Cruise Control with variations in external conditions such as the 

road (gradient), weather and traffic density as can be seen in Table 6.1 above. Tests 

37 to 60 provide a manual human driver comparison to these ADS test cases as seen 

in Table 6.2.  

 

For the human driver-controlled test cases, both the ‘normal’ and ‘aggressive’ 

driving behaviors are simulated, distinguished by suffixes ‘N’ and ‘A’ respectively 

in the vehicle control descriptions and results analysis shown further in the thesis.   

   

Adaptive Cruise Control: 

Adaptive Cruise Control or ACC is an advancement of the traditional Cruise 

Control discussed previously. ACC offers complete longitudinal control by the 

ADS. The user is expected to define a minimum safe distance between the host and 

the lead vehicle as well as a desired maximum speed of the host vehicle. The ACC 

controller uses the most conservative technique in order to avoid a front-end 
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collision. Tests 13 to 20 simulate ACC with variations in the external conditions as 

shown in Table 6.1. A Volkswagen Beetle 2012 is simulated as a lead vehicle for 

all the test cases (with only a lead vehicle in the traffic set) in order to maintain 

consistency for vehicle dynamics comparison. This was randomly selected as an 

example target in order to fulfill the requirements of the maneuver follow model, 

especially for ACC and level 4 test cases. The exact make or model of this lead 

vehicle is insignificant to the functionality of the ACC controller and is only 

mentioned here for informational purposes. The Perception system itself is expected 

to be robust enough to offer a 360-degree surround field of view in order to 

accurately detect and classify all types of objects including cars, trucks, pedestrians, 

and other dynamic or static obstacles.   For tests 13 to 16, only the lead vehicle is 

assumed to be present in the immediate driving environment of the host vehicle. 

The lead vehicle maneuver is configured such that its speed profiles vary throughout 

the simulation cycle. The maneuvers described in the Traffic section above are 

assumed for this lead vehicle. A significant operational presence of the ADS is 

ensured for the sensitivity analysis on the impact of Electrified Vehicle autonomy 

on the vehicle dynamics and performance which will be described in the next 

sections. The expectation for the host vehicle is to adapt to these variations in the 

lead vehicle’s speed profiles such that an optimal plan is developed by the host 

vehicle in order to reach its intended destination. This not only includes arbitration 

between the minimum safe distance and the maximum desired speed but also 

manipulation according to the rules defined by the Policy database at all times.  
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In addition, tests 17 to 20 also simulate the ACC functionality in the presence of 

multiple traffic objects with dynamic behavior. The setup and configuration of these 

traffic objects and their maneuvers have been described in detail previously in the 

thesis within the Traffic Model section. Every traffic object is seen to have a 

different type of an impact on the host vehicle. The host vehicle is expected to react 

optimally in every dynamic situation on the road, relative to a human driver, 

resulting in an overall optimal eco-driving and vehicle control. Tests 45 to 60 

simulate the replication of the above ACC based ADS maneuvers completely by a 

human driver both for longitudinal and lateral vehicle control.  

 

Automated Emergency Braking: 

Automated Emergency Braking or AEB is an extremely useful feature on the road 

especially in highway scenarios, with both the host and the traffic vehicles operating 

at high speeds where any adverse collision could be fatal. The primary role of AEB 

is to prevent a collision from occurring by braking the vehicle, as needed. In 

addition to preventing from an anticipated threat, AEB can also aid in optimal 

braking of the vehicle by avoiding sudden jerks which cannot only impact the 

vehicle components and the overall vehicle performance but can also pose a severe 

threat to traffic vehicles behind the host vehicle due to inadequate time for driver or 

a system (ADS) reaction.  
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For the simulations presented in this thesis, AEB has been combined with ACC test 

cases. Hence, tests 13 to 20 cover the AEB functionality. These tests also 

incorporate ADS control under varying external conditions. In addition, the tests 45 

to 60 simulate normal and aggressive driving behavior under similar driving 

conditions. The comparative analysis between the ADS control versus the human 

driver will be described in the next section on Simulation Results and Analysis.   

 

Active Lane Keep Assist: 

Active Lane Keep Assist or ALKA assists the driver in maintaining the lateral 

control of the vehicle by minimizing if not completely eliminating any unintended 

deviations of the host vehicle from the center of the lane. ALKA can contribute 

significantly for ensuring safety of the host vehicle as well as the surrounding 

vehicles in the immediate field of view by preventing any accidental lane 

departures. This can be especially helpful with pre-occupied traffic vehicles in the 

host vehicle’s adjacent lanes, especially in the blind spot position. In case of any 

driver misuse or oversteer out of the intended lane, the ALKA is also expected to 

steer the vehicle back into the lane, especially under the threat of a side collision. 

Depending on the system developer, it is also possible to ensure that the host vehicle 

assists the user by steering the vehicle back into the center of the lane as soon as the 

wheels are detected to touch the lane boundaries.   
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In order to understand the impact of maintaining the lateral control of the vehicle 

on the Electrified Vehicle performance, dynamics and components, multiple ALKA 

based simulations are carried out as part of this study. Tests 21 to 28 simulate the 

ADS control for the ALKA function. Similar to the tests described above, the 

ALKA function is also simulated under varying external conditions including the 

road, weather, and traffic.  In addition, a comparative analysis is also performed 

with normal and aggressive driving behavior as described in further sections of the 

thesis. The tests 37 to 52 simulate manual driving behavior under the same external 

conditions.  The parameters used, and assumptions made for normal and aggressive 

driver’s lateral deviations, on average, have been described in the ADAS Feature 

Set Model section.  

 

Traction Control: 

Similar to the other autonomous-capable functions described above such as CC, 

ACC, AEB and ALKA, the Traction Control can offer an incredible safety support 

to the host vehicle, especially, during adverse weather conditions. Traction Control 

is helpful for reducing the acceleration when wheel spins occur [150]. In addition 

to having safety benefits, Traction Control is also expected to provide stability and 

have a positive influence on the performance of the Electrified Vehicle dynamics. 

The simulations for Traction Control have been combined with the L4 Autonomous 

Control simulations, which will be described further in the thesis.  
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Tests 29 to 36 simulate the ADS responsibility for Traction Control, including the 

influence of external conditions. On the other hand, tests 45 to 60 provide a manual 

human driving comparison for these tests, including the normal and the aggressive 

driving behavior.      

 

L4 Autonomous Control: 

L4 is the highest level of vehicle automation function that will be incorporated in 

this thesis. L4 autonomous control requires both the longitudinal and the lateral 

vehicle control to be completely performed by the ADS. The human driver is neither 

needed nor expected to be attentive or take back complete or partial control of the 

vehicle. In order to perform a level 4 autonomous control, the ADS needs to be able 

to detect, track and classify objects, estimate free space accurately, perform Mission 

and Motion Planning and finally, execute as planned. Such a high level of vehicle 

automation can be extremely beneficial not only for ensuring safety of the host and 

the traffic vehicles but also for improving the vehicle performance. The next section 

will walk through the analysis for understanding the impact of Electrified Vehicle 

autonomy on the vehicle’s dynamics, components as well as the energy economy.  

 

Some of the above described semi-autonomous functions such as ACC, ALKA, 

AEB and Traction Control have been combined to simulate an L4 Autonomous 

Control in this study. The tests 29 to 36 simulate the ADS responsibility for an L4 
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Autonomous Control. These test cases also perform this analysis under the 

influence of varying external conditions. The main motive of modeling these 

external conditions is to prove the ability of autonomous vehicle control to 

outperform human control, in terms of improving the vehicle performance and 

having a positive impact on the Electrified Vehicle dynamics and components. 

Furthermore, a comparison of the ADS test cases for L4 Autonomous Control and 

completely human driver-controlled test cases has also been provided. The normal 

and aggressive driving behaviors exhibited while completely controlling the 

longitudinal and lateral behavior of the vehicle, under similar driving conditions, is 

simulated through tests 45 to 60.     

 

6.2 Simulation Results and Analysis 

This section describes the simulation results as well as the analysis accompanied 

with it. The simulation results are divided into four major categories – energy 

economy and consumption, vehicle dynamics, Electrified Vehicle motor, and 

battery results.   

 

6.2.1 Energy Economy and Consumption Results 

The energy economy (MPGe) and consumption results for all the ADS control test 

cases as well as their comparisons with the normal and aggressive human driver are 
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presented in this section. The MPGe for each test case is calculated by following 

the below: 

 

MPGe = (33.7 kWh/ 1 Gallon) / (Total energy consumption for the trip in kWh/               

total miles driven) 

 

Fig. 6.1 (a) and (b) show the MPGe values for all the 108 functional test cases as 

well as their average and standard deviation error bars respectively. It can be clearly 

seen how the ADS control cluster is located much higher on the plot, on average, 

followed by the normal human driver control and lastly, the aggressive human 

driver control. This shows that the vehicle performance measured in terms of the 

energy economy (MPGe) is significantly higher for ADS control or under semi-

autonomous/ autonomous vehicle control. On average, a 28 percent increase is 

noticed through semi-autonomous/ autonomous control of the test Electrified 

Vehicle. This percent increase breaks down to a 22 percent and a 35 percent increase 

of energy economy for ADS control compared to the normal and aggressive human 

driver control respectively. This increase in energy economy with an increase in 

vehicle automation is one of the most significant findings of this thesis.    
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Fig.6.1 (a). MPGe Values for the 108 Functional Test Cases. 

 

Fig.6.1 (b). MPGe Values for the 108 Functional Test Cases with Mean and 

Standard Deviation Error Bars. 
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Many different theoretical predictions regarding the increase in vehicle 

performance with the increase of autonomy were presented in section 3.4. Table 6.3 

summarizes the Electrified Vehicle performance results, in terms of MPGe, for 

ADS versus manual human control (including an average of normal and aggressive 

driving behavior), collected through the simulations presented in this thesis. These 

results, once again strongly demonstrate that the vehicle performance during ADS 

control has surpassed the average performance under manual human control in 

every single test case.   

 

Table 6.3. Comparative Analysis of the MPGe Values for ADS and Manual 

Human Driver Control Test Cases 

Test ADS MAN 

Test 1 103 88 

Test 2 95 78 

Test 3 79 70 

Test 4 74 63 

Test 5 119 77 

Test 6 103 73 

Test 7 86 66 

Test 8 81 61 

Test 9 113 78 

Test 10 104 73 

Test 11 86 68 

Test 12 81 64 

Test 13 120 78 

Test 14 110 73 

Test 15 91 68 

Test 16 85 64 

Test 17 120 77 

Test 18 109 73 

Test 19 90 66 
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Test 20 85 61 

Test 21 101 88 

Test 22 91 78 

Test 23 77 70 

Test 24 72 63 

Test 25 83 77 

Test 26 79 73 

Test 27 72 66 

Test 28 61 61 

Test 29 120 78 

Test 30 110 73 

Test 31 91 68 

Test 32 85 64 

Test 33 120 77 

Test 34 109 73 

Test 35 90 66 

Test 36 85 61 

 

Similar to Fig. 6.1 (a) and (b) which breaks down the impact of human driver control 

into a normal and an aggressive driver, Fig. 6.2 (a) and (b) which show the 

comparison between ADS control and an average human driver control in addition 

to the mean and standard deviation error bars respectively, the ADS control cluster 

of the MPGe values is seen to be significantly higher than the average human driver 

test cases. The p-value is calculated to be 4.6 * 10-6 showing the statistical 

significance of the analysis. Furthermore, the energy economies are also broken 

down per the different ADAS features simulated in addition to the mean and the 

standard deviation error bars as shown in Fig. 6.3 (a) and (b) respectively. The 

respective manual comparisons for them are also offered. For every ADAS feature, 

the MPGe was seen to be higher with ADS control compared to human driver, 
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except the ALKA where the ADS and the normal driver MPGe values were seen to 

be almost the same. The aggressive driver control MPGe was however still lower 

than the ADS as well as the normal human driver. This is mainly because it was 

noticed that the impact of lateral vehicle control on the Electrified Vehicle energy 

economy is relatively lower than the impact of the longitudinal control which is 

evident through the Fig. 6.3 (a) and (b). It is also seen that the values for ACC and 

level 4 were almost the same mainly because of ACC serving as the primary 

longitudinal control even for level 4. Furthermore, this similarity is explicitly 

demonstrated also due to a lower impact of the vehicle lateral control. In addition 

to the ADS control dominating the energy economy results, in overall, the higher 

energy economy with ACC compared to CC further signifies the increase in energy 

economy with the increase in vehicle automation level.     
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Fig. 6.2 (a). MPGe Values Comparison for the ADS and Human Driver Control 

Test Cases. 

 

Fig. 6.2 (b). MPGe Values Comparison for the ADS and Human Driver Control 

Test Cases with Mean and Standard Deviation Error Bars. 
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Fig. 6.3 (a). Percent Difference in MPGe per ADAS Feature. 

 

Fig. 6.3 (b). Percent Difference in MPGe per ADAS Feature with Mean and 

Standard Deviation Error Bars. 
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The rest of this section and the next ones will explore the reasons behind this 

significant improvement in Electrified Vehicle performance with an increase in the 

vehicle automation. The ADS control is expected to exhibit optimal operation of 

the different Electrified Vehicle components as well as energy management by 

reducing the instantaneous sudden fluctuations in their profiles. This, in turn, is 

expected to improve the energy economy through an optimal eco-driving while 

simultaneously reacting to the real-time requirements of the dynamic driving 

environment. The energy consumption for the test cases with traditional Cruise 

Control incorporating the variations in the different external conditions can be seen 

in Fig. 6.4 to 6.15. Its respective manual comparisons for normal and aggressive 

driving behavior can also be seen in these figures. In overall, it can be seen that the 

energy consumption from ADS control is significantly lower than the respective 

manual human driver comparisons, thus resulting in an improvement in the energy 

economy during autonomous/ semi-autonomous vehicle control.  

 

Fig. 6.4. Energy Consumption for Test 1 (CC with Road 1, Ideal Weather and No 

Traffic) and its Manual Comparisons. 
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Fig. 6.5. Energy Consumption for Test 2 (CC with Road 2, Ideal Weather and 

No Traffic) and its Manual Comparisons. 

 

In addition to the relatively lower energy consumption seen during ADS control 

compared to its respective manual human driver test cases, it is also evident through 

these figures that the instantaneous fluctuations in the energy economy profiles are 

the highest for the aggressive human driver, followed by the normal driver and 

lastly the ADS control. In other words, the ADS control profiles are seen to be much 

more streamlined with lower instantaneous fluctuations (sudden fall or rise). 

Fig. 6.6. Energy Consumption for Test 3 (CC with Road 1, Adverse Weather 

and No Traffic) and its Manual Comparisons. 
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Fig. 6.7. Energy Consumption for Test 4 (CC with Road 2, Adverse Weather 

and No Traffic) and its Manual Comparisons. 

 

Higher fluctuations, as seen in the case of human driver control test cases, is 

expected to cause inefficient operation of the Electrified Vehicle components to 

meet these instantaneous demands. It is also anticipated to result in their long-term 

wear. The quantification of these fluctuations and further analyses are offered in the 

next section of this thesis.  

Fig. 6.8. Energy Consumption for Test 5 (CC with Road 1, Ideal Weather and 

Multi-Object Traffic) and its Manual Comparisons. 
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Fig. 6.9. Energy Consumption for Test 6 (CC with Road 2, Ideal Weather and 

Multi-Object Traffic) and its Manual Comparisons. 

Fig. 6.10. Energy Consumption for Test 7 (CC with Road 1, Adverse Weather 

and Multi-Object Traffic) and its Manual Comparisons. 

Fig. 6.11. Energy Consumption for Test 8 (CC with Road 2, Adverse Weather 

and Multi-Object Traffic) and its Manual Comparisons. 
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Fig. 6.12. Energy Consumption for Test 9 (CC with Road 1, Ideal Weather and 

Lead Vehicle Only) and its Manual Comparisons. 

 

The plots for ACC (including AEB) test cases compared with normal human driving 

and aggressive driving test cases are shown in Fig. 6.16 to 6.23. The energy 

consumption for ideal conditions is provided in Fig. 6.16. Fig. 6.17 to 6.23 show 

variations in the different external conditions including traffic, road, and weather.   

 

 

Fig. 6.13. Energy Consumption for Test 10 (CC with Road 2, Ideal Weather and 

Lead Vehicle Only) and its Manual Comparisons. 
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Fig. 6.14. Energy Consumption for Test 11 (CC with Road 1, Adverse 

Weather and Lead Vehicle Only) and its Manual Comparisons. 

Fig. 6.15. Energy Consumption for Test 12 (CC with Road 2, Adverse 

Weather and Lead Vehicle Only) and its Manual Comparisons. 

Fig. 6.16. Energy Consumption for Test 13 (ACC and AEB with Road 1, Ideal 

Weather and Lead Vehicle Only) and its Manual Comparisons. 
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Fig. 6.17. Energy Consumption for Test 14 (ACC and AEB with Road 2, Ideal 

Weather and Lead Vehicle Only) and its Manual Comparisons. 

 

The test cases with a combination of multiple adverse conditions such as gradient-

based hilly road with adverse weather, dynamic traffic with adverse weather, 

dynamic traffic with gradient-based hilly road and a combination of the hilly road, 

adverse weather and dynamic traffic, were the most challenging in terms of the 

impact on the Electrified Vehicle components to meet these requirements.  

 

Fig. 6.18. Energy Consumption for Test 15 (ACC and AEB with Road 1, Adverse 

Weather and Lead Vehicle Only) and its Manual Comparisons. 
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Fig. 6.19. Energy Consumption for Test 16 (ACC and AEB with Road 2, 

Adverse Weather and Lead Vehicle Only) and its Manual Comparisons. 

 

However, even in the presence of one or multiple varying external conditions, ADS 

has surpassed the energy consumption results compared to the normal and 

aggressive driver control, on average. In all of these cases, the energy consumption, 

in addition to the instantaneous fluctuations in energy consumption are seen to be 

significantly lower for the ADS control compared to the human driving test cases, 

on average.  

Fig. 6.20. Energy Consumption for Test 17 (ACC and AEB with Road 1, Ideal 

Weather and Multi-Object Traffic) and its Manual Comparisons. 
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Fig. 6.21. Energy Consumption for Test 18 (ACC and AEB with Road 2, Ideal 

Weather and Multi-Object Traffic) and its Manual Comparisons.

 

Fig. 6.22. Energy Consumption for Test 19 (ACC and AEB with Road 1, Adverse 

Weather and Multi-Object Traffic) and its Manual Comparisons.

 

Fig. 6.23. Energy Consumption for Test 20 (ACC and AEB with Road 2, Adverse 

Weather and Multi-Object Traffic) and its Manual Comparisons. 
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The energy consumption results for Active Lane Keep Assist are shown in Fig. 6.24 

to 6.31. Similar to the results described above, the ALKA results are also plotted 

for both the ideal external conditions as well as the non-ideal ones varying in 

different combinations. The variations in these external conditions are mainly 

simulated to represent real-life driving conditions which the Autonomous-capable 

Electrified Vehicle might encounter on the road. The intention is thus to test the 

performance of ADS control in all the different conditions to verify the hypothesis 

of the ADS control offering a better Electrified Vehicle performance, dynamics and 

components’ operation, especially for the motor and battery which will be discussed 

in the further sections of this chapter.   

 

Fig. 6.24. Energy Consumption for Test 21 (ALKA with Road 1, Ideal 

Weather and No Traffic) and its Manual Comparisons. 
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Fig. 6.25. Energy Consumption for Test 22 (ALKA with Road 2, Ideal 

Weather and No Traffic) and its Manual Comparisons. 

 

The Active Lane Keep Assist feature offers a lateral control for the host 

Autonomous-capable EV. This feature is extremely important for ensuring safety 

of the host as well as the surrounding vehicles by preventing any unintended lane 

departures. Furthermore, ALKA offers vehicle stability by minimizing the lateral 

deviations from the lane center as much as possible. This is also helpful for ensuring 

passenger comfort.  

Fig. 6.26. Energy Consumption for Test 23 (ALKA with Road 1, Adverse 

Weather and No Traffic) and its Manual Comparisons. 
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Fig. 6.27. Energy Consumption for Test 24 (ALKA with Road 2, Adverse 

Weather and No Traffic) and its Manual Comparisons. 

Although ALKA offers immense safety, vehicle stability and passenger comfort on 

the road through lateral control of the vehicle by ADS, its impact on the energy 

consumption and hence the energy economy of the Electrified Vehicle is slightly 

different from the results expressed for CC and ACC which offer longitudinal 

vehicle control by the ADS.  

 

Fig. 6.28. Energy Consumption for Test 25 (ALKA with Road 1, Ideal Weather 

and Multi-Object Traffic) and its Manual Comparisons. 
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Fig. 6.29. Energy Consumption for Test 26 (ALKA with Road 2, Ideal Weather 

and Multi-Object Traffic) and its Manual Comparisons. 
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Chapter 5 of this thesis.      
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Fig. 6.30. Energy Consumption for Test 27 (ALKA with Road 1, Adverse 

Weather and Multi-Object Traffic) and its Manual Comparisons. 

 

Fig. 6.31. Energy Consumption for Test 28 (ALKA with Road 2, Adverse 

Weather and Multi-Object Traffic) and its Manual Comparisons. 
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compared to the ADS control. This is mainly due to the higher time needed under 

human driver control for the test Autonomous-capable EV to complete the trip 

duration on the road for the same driving environment conditions.    

 

 

Fig. 6.32. Energy Consumption for Test 29 (L4 with Road 1, Ideal Weather and 

Lead Vehicle Only) and its Manual Comparisons. 

 

 

Fig. 6.33. Energy Consumption for Test 30 (L4 with Road 2, Ideal Weather and 

Lead Vehicle Only) and its Manual Comparisons. 
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Fig. 6.34. Energy Consumption for Test 31 (L4 with Road 1, Adverse Weather 

and Lead Vehicle Only) and its Manual Comparisons. 

 

Fig. 6.35. Energy Consumption for Test 32 (L4 with Road 2, Adverse Weather 

and Lead Vehicle Only) and its Manual Comparisons. 
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Fig. 6.36. Energy Consumption for Test 33 (L4 with Road 1, Ideal Weather and 

Multi-Object Traffic) and its Manual Comparisons. 

 

Fig. 6.37. Energy Consumption for Test 34 (L4 with Road 2, Ideal Weather and 

Multi-Object Traffic) and its Manual Comparisons. 
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Fig. 6.38. Energy Consumption for Test 35 (L4 with Road 1, Adverse Weather 

and Multi-Object Traffic) and its Manual Comparisons. 

 

 

Fig. 6.39. Energy Consumption for Test 36 (L4 with Road 2, Adverse Weather 

and Multi-Object Traffic) and its Manual Comparisons. 
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shows the improved vehicle performance with the increase in vehicle automation 

or the increased ADS responsibility.  

 

0

2

4

6

8

10

0 200 400 600 800 1000 1200

En
er

gy
 C

o
n

su
m

p
ti

o
n

 (
kW

h
)

Time (sec)

Test 35 (ADS) Test 49 (MAN_N) Test 50 (MAN_A)

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200

En
er

gy
 C

o
n

su
m

p
ti

o
n

 (
kW

h
)

Time (sec)

Test 36 (ADS) Test 51 (MAN_N) Test 52 (MAN_A)



Ph.D. Thesis - K. Divakarla; McMaster University - Electrical and Computer Engineering 

173 
 

6.2.2 Vehicle Dynamics Results 

This section presents the velocity profiles acquired for the various ADS, normal 

human driver and the aggressive driver test cases. The velocity profiles for CC and 

its manual comparisons with varying external conditions can be seen in Fig. 6.40 to 

6.52. 

 

Fig. 6.40. Velocity Profiles for Test 1 (CC with Road 1, Ideal Weather and No 

Traffic) and its Manual Comparisons. 

 

 

Fig. 6.41. Velocity Profiles for Test 2 (CC with Road 2, Ideal Weather and No 

Traffic) and its Manual Comparisons. 
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Fig. 6.42. Velocity Profiles for Test 3 (CC with Road 1, Adverse Weather and No 

Traffic) and its Manual Comparisons. 

 

Fig. 6.43. Velocity Profiles for Test 4 (CC with Road 2, Adverse Weather and No 

Traffic) and its Manual Comparisons. 

 

Fig. 6.44. Velocity Profiles for Test 5 (CC with Road 1, Ideal Weather and Multi-

Object Traffic) and its Manual Comparisons (including traffic). 
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As it can be seen from these figures, the Cruise Controller is able to maintain the 

desired speed with minimum deviations, unlike the manual driving test cases. This 

efficiency of a Cruise Control to improve the Electrified Vehicle energy economy 

is better seen in highway driving scenarios with a streamlined traffic flow.  

 

Fig. 6.45. Velocity Profiles for Test 6 (CC with Road 2, Ideal Weather and Multi-

Object Traffic) and its Manual Comparisons (including traffic). 

 

 

Fig. 6.46. Velocity Profiles for Test 7 (CC with Road 1, Adverse Weather and 

Multi-Object Traffic) and its Manual Comparisons (including traffic). 
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Since the sudden changes in the driving environment have to be assessed by the 

driver in order to brake the vehicle, during CC, it is not seen to be as efficient 

compared to ACC which will be discussed further. However, the benefit from CC 

in terms of reducing the instantaneous fluctuations compared to normal and 

aggressive human driver control is still evident, even in the presence of dynamic 

traffic.     

 

Fig. 6.47. Velocity Profiles for Test 8 (CC with Road 2, Adverse Weather and 

Multi-Object Traffic) and its Manual Comparisons (including traffic). 

 

 

Fig. 6.48. Velocity Profiles for Test 9 (CC with Road 1, Ideal Weather and Lead 

Vehicle Only) and its Manual Comparisons (including traffic). 
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Fig. 6.49. Velocity Profiles for Test 10 (CC with Road 2, Ideal Weather and Lead 

Vehicle Only) and its Manual Comparisons (including traffic). 

 

Fig. 6.50. Velocity Profiles for Test 11 (CC with Road 1, Adverse Weather and 

Lead Vehicle Only) and its Manual Comparisons (including traffic). 

 

Fig. 6.51. Velocity Profiles for Test 12 (CC with Road 2, Adverse Weather and 

Lead Vehicle Only) and its Manual Comparisons (including traffic). 
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The results for the Adaptive Cruise Control in combination with the Automated 

Emergency Braking is shown in Fig. 6.52 to 6.59. These test cases present the 

ACC controller with varying combinations of dynamic traffic as described 

previously in Chapter 5 of this thesis.  

 

Fig. 6.52. Velocity Profiles for Test 13 (ACC and AEB with Road 1, Ideal 

Weather and Lead Vehicle Only) and its Manual Comparisons (including traffic). 

 

Fig. 6.53. Velocity Profiles for Test 14 (ACC and AEB with Road 2, Ideal 

Weather and Lead Vehicle Only) and its Manual Comparisons (including traffic). 
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Furthermore, the different road and weather conditions are also tested to verify the 

hypothesis. In all the cases, the autonomous longitudinal control offered through 

ACC has been able to better meet the requirements of the dynamic driving 

environment compared to both the normal and the aggressive driver control.  

 

Fig. 6.54. Velocity Profiles for Test 15 (ACC and AEB with Road 1, Adverse 

Weather and Lead Vehicle Only) and its Manual Comparisons (including traffic). 

 

Fig. 6.55. Velocity Profiles for Test 16 (ACC and AEB with Road 2, Adverse 

Weather and Lead Vehicle Only) and its Manual Comparisons (including traffic). 
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In addition, the instantaneous fluctuations are also seen to be relatively lower for 

the ADS control resulting in a smoother or more streamlined profile. Also, when 

the ACC test cases are compared with the CC test cases, the former has been seen 

to outperform the latter in terms of the vehicle dynamics results as well.   

 

Fig. 6.56. Velocity Profiles for Test 17 (ACC and AEB with Road 1, Ideal 

Weather and Multi-Object Traffic) and its Manual Comparisons (including 

traffic). 

 

Fig. 6.57. Velocity Profiles for Test 18 (ACC and AEB with Road 2, Ideal 

Weather and Multi-Object Traffic) and its Manual Comparisons (including 

traffic). 
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environment recognition as well as reaction in terms of the throttle and braking 

behavior are performed by the ADS, the EV performance is seen to be better with 

ACC test cases compared to the CC where the dynamic environment detection and 

reaction are partially performed by the human driver.   

 

Fig. 6.58. Velocity Profiles for Test 19 (ACC and AEB with Road 1, Adverse 

Weather and Multi-Object Traffic) and its Manual Comparisons (including 

traffic). 

 

Fig. 6.59. Velocity Profiles for Test 20 (ACC and AEB with Road 2, Adverse 

Weather and Multi-Object Traffic) and its Manual Comparisons (including 

traffic). 
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driver as described in Chapter 5. This is shown through the comparable graphs for 

the ADS and normal human driver velocity profiles. The difference, however, 

compared to the aggressive driving results is also evident.    

 

Fig. 6.60. Velocity Profiles for Test 21 (ALKA with Road 1, Ideal Weather and 

No Traffic) and its Manual Comparisons. 

 

Fig. 6.61. Velocity Profiles for Test 22 (ALKA with Road 2, Ideal Weather and 

No Traffic) and its Manual Comparisons. 
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Fig. 6.62. Velocity Profiles for Test 23 (ALKA with Road 1, Adverse Weather 

and No Traffic) and its Manual Comparisons. 

 

Fig. 6.63. Velocity Profiles for Test 24 (ALKA with Road 2, Adverse Weather 

and No Traffic) and its Manual Comparisons. 

 

Fig. 6.64. Velocity Profiles for Test 25 (ALKA with Road 1, Ideal Weather and 

Multi-Object Traffic) and its Manual Comparisons (including traffic). 
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Furthermore, despite of normal driver controlling the longitudinal maneuvers of the 

Autonomous-capable EV during autonomous lateral vehicle control, there are some 

deviations noticed in the results for ADS versus normal human driver. This is 

mainly seen when one or multiple external conditions are modeled to be non-ideal. 

The discrepancy arises from the different controls offered through the three 

combinations - lateral control with ADS and longitudinal control with the normal 

human driver, lateral and longitudinal control with a normal human driver and 

lateral and longitudinal control with an aggressive driver.   

 

Fig. 6.65. Velocity Profiles for Test 26 (ALKA with Road 2, Ideal Weather and 

Multi-Object Traffic) and its Manual Comparisons (including traffic). 

 

Fig. 6.66. Velocity Profiles for Test 27 (ALKA with Road 1, Adverse Weather 

and Multi-Object Traffic) and its Manual Comparisons (including traffic). 
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Fig. 6.67. Velocity Profiles for Test 28 (ALKA with Road 2, Adverse Weather 

and Multi-Object Traffic) and its Manual Comparisons (including traffic). 

 

Lastly, the vehicle dynamics results for the level 4 autonomous control can be seen 

in Fig. 6.68 to 6.75. These results also include the variation in the external 

conditions such as traffic, weather, and road. These results show the tracking of the 

traffic objects performed with minimal deviations between the expected and the 

current velocity profiles.  

 

Fig. 6.68. Velocity Profiles for Test 29 (L4 with Road 1, Ideal Weather and Lead 

Vehicle Only) and its Manual Comparisons (including traffic). 
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Fig. 6.69. Velocity Profiles for Test 30 (L4 with Road 2, Ideal Weather and Lead 

Vehicle Only) and its Manual Comparisons (including traffic). 

 

Fig. 6.70. Velocity Profiles for Test 31 (L4 with Road 1, Adverse Weather and 

Lead Vehicle Only) and its Manual Comparisons (including traffic). 

 

Fig. 6.71. Velocity Profiles for Test 32 (L4 with Road 2, Adverse Weather and 

Lead Vehicle Only) and its Manual Comparisons (including traffic). 
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In addition, it can also be seen that the traction control ADAS feature provides an 

extra support especially during the test cases with adverse road and weather 

conditions by preventing the slipping of the vehicle due to wheel spins which can 

affect both the lateral stability and the longitudinal control of the vehicle.  

Fig. 6.72. Velocity Profiles for Test 33 (L4 with Road 1, Ideal Weather and Multi-

Object Traffic) and its Manual Comparisons (including traffic). 

 

 

Fig. 6.73. Velocity Profiles for Test 34 (L4 with Road 2, Ideal Weather and Multi-

Object Traffic) and its Manual Comparisons (including traffic). 
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Fig. 6.74. Velocity Profiles for Test 35 (L4 with Road 1, Adverse Weather and 

Multi-Object Traffic) and its Manual Comparisons (including traffic). 

 

Fig. 6.75. Velocity Profiles for Test 36 (L4 with Road 2, Adverse Weather and 

Multi-Object Traffic) and its Manual Comparisons (including traffic). 
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corresponding manual comparisons have been shown in Fig. 6.76 to 6.99. The 

Electrified Vehicle motor results are studied mainly to understand the impact of 

Electrified Vehicle autonomy on the motor, compared to human driver control. 

Although, the motor speed profiles depict the same trend as the vehicle speed, the 

magnitude variations are important to note.   

 

Fig. 6.76. Motor Speed for Test 1 (CC with Road 1, Ideal Weather and No 

Traffic) and its Manual Comparisons. 

 

Fig. 6.77. Motor Torque for Test 1 (CC with Road 1, Ideal Weather and No 

Traffic) and its Manual Comparisons. 
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Fig. 6.78. Motor Speed for Test 2 (CC with Road 2, Ideal Weather and No 

Traffic) and its Manual Comparisons. 

 

Fig. 6.79. Motor Torque for Test 2 (CC with Road 2, Ideal Weather and No 

Traffic) and its Manual Comparisons. 

 

Fig. 6.80. Motor Speed for Test 3 (CC with Road 1, Adverse Weather and No 

Traffic) and its Manual Comparisons. 
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Fig. 6.81. Motor Torque for Test 3 (CC with Road 1, Adverse Weather and No 

Traffic) and its Manual Comparisons. 

 

Fig. 6.82. Motor Speed for Test 4 (CC with Road 2, Adverse Weather and No 

Traffic) and its Manual Comparisons. 

 

Fig. 6.83. Motor Torque for Test 4 (CC with Road 2, Adverse Weather and No 

Traffic) and its Manual Comparisons. 
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In overall, the instantaneous fluctuations were seen to be higher for the human 

driver-based test cases compared with the ADS control. Also, the magnitudes itself 

for motor speed and torque were seen to be higher, on average, for the aggressive 

driver followed by the normal human driver and lastly the ADS control.  

 

 

Fig. 6.84. Motor Speed for Test 5 (CC with Road 1, Ideal Weather and Multi-

Object Traffic) and its Manual Comparisons. 

 

Fig. 6.85. Motor Torque for Test 5 (CC with Road 1, Ideal Weather and Multi-

Object Traffic) and its Manual Comparisons. 
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Fig. 6.86. Motor Speed for Test 6 (CC with Road 2, Ideal Weather and Multi-

Object Traffic) and its Manual Comparisons. 

 

Fig. 6.87. Motor Torque for Test 6 (CC with Road 2, Ideal Weather and Multi-

Object Traffic) and its Manual Comparisons. 

Fig. 6.88. Motor Speed for Test 7 (CC with Road 1, Adverse Weather and Multi-

Object Traffic) and its Manual Comparisons. 

-5000

0

5000

10000

15000

20000

0 200 400 600 800 1000 1200

M
o

to
r 

Sp
ee

d
 (

R
P

M
)

Time (sec)
Test 6 (ADS) Test 47 (MAN_N) Test 48 (MAN_A)

-400

-200

0

200

400

600

0 200 400 600 800 1000 1200

M
o

to
r 

To
rq

u
e 

(N
m

)

Time (sec)

Test 6 (ADS) Test 47 (MAN_N) Test 48 (MAN_A)

-2000

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000 1200

M
o

to
r 

Sp
ee

d
 (

R
P

M
)

Time (sec)

Test 7 (ADS) Test 49 (MAN_N) Test 50 (MAN_A)



Ph.D. Thesis - K. Divakarla; McMaster University - Electrical and Computer Engineering 

194 
 

Fig. 6.89. Motor Torque for Test 7 (CC with Road 1, Adverse Weather and Multi-

Object Traffic) and its Manual Comparisons. 

Fig. 6.90. Motor Speed for Test 8 (CC with Road 2, Adverse Weather and Multi-

Object Traffic) and its Manual Comparisons. 
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higher for test cases with adverse external conditions demonstrating the extra 

demand on the Electrified Vehicle motor to meet the dynamic requirements of the 

driving environment.    
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Fig. 6.91. Motor Torque for Test 8 (CC with Road 2, Adverse Weather and Multi-

Object Traffic) and its Manual Comparisons. 

Fig. 6.92. Motor Speed for Test 9 (CC with Road 1, Ideal Weather and Lead 

Vehicle Only) and its Manual Comparisons. 

 

Fig. 6.93. Motor Torque for Test 9 (CC with Road 1, Ideal Weather and Lead 

Vehicle Only) and its Manual Comparisons. 

-600

-400

-200

0

200

400

600

0 200 400 600 800 1000 1200

M
o

to
r 

To
rq

u
e 

(N
m

)

Time (sec)

Test 8 (ADS) Test 51 (MAN_N) Test 52 (MAN_A)

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000 1200

M
o

to
r 

Sp
ee

d
 (

R
P

M
)

Time (sec)

Test 9 (ADS) Test 53 (MAN_N) Test 54 (MAN_A)

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200

M
o

to
r 

To
rq

u
e 

(N
m

)

Time (sec)

Test 9 (ADS) Test 53 (MAN_N) Test 54 (MAN_A)



Ph.D. Thesis - K. Divakarla; McMaster University - Electrical and Computer Engineering 

196 
 

 

Fig. 6.94. Motor Speed for Test 10 (CC with Road 2, Ideal Weather and Lead 

Vehicle Only) and its Manual Comparisons. 

Fig. 6.95. Motor Torque for Test 10 (CC with Road 2, Ideal Weather and Lead 

Vehicle Only) and its Manual Comparisons. 

Fig. 6.96. Motor Speed for Test 11 (CC with Road 1, Adverse Weather and Lead 

Vehicle Only) and its Manual Comparisons. 
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Fig. 6.97. Motor Torque for Test 11 (CC with Road 1, Adverse Weather and Lead 

Vehicle Only) and its Manual Comparisons. 

 

Fig. 6.98. Motor Speed for Test 12 (CC with Road 2, Adverse Weather and Lead 

Vehicle Only) and its Manual Comparisons. 

 

In overall, a more optimal operation of the Electrified Vehicle motor was seen 
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This in turn aids in having better Electrified Vehicle performance with increased 

autonomy. 
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Fig. 6.99. Motor Torque for Test 12 (CC with Road 2, Adverse Weather and Lead 

Vehicle Only) and its Manual Comparisons. 

 

The motor speed and torque results for test cases with ACC and AEB control and 

the corresponding manual comparisons can be seen in Fig. 6.100 to 6.115. Similar 

to the results described in the previous sub-sections, the influence of external 

conditions is also considered in these results.   

 

 

Fig. 6.100. Motor Speed for Test 13 (ACC and AEB with Road 1, Ideal Weather 

and Lead Vehicle Only) and its Manual Comparisons. 
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Fig. 6.101. Motor Torque for Test 13 (ACC and AEB with Road 1, Ideal Weather 

and Lead Vehicle Only) and its Manual Comparisons. 

 

Fig. 6.102. Motor Speed for Test 14 (ACC and AEB with Road 2, Ideal Weather 

and Lead Vehicle Only) and its Manual Comparisons. 

Fig. 6.103. Motor Torque for Test 14 (ACC and AEB with Road 2, Ideal Weather 

and Lead Vehicle Only) and its Manual Comparisons. 
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Fig. 6.104. Motor Speed for Test 15 (ACC and AEB with Road 1, Adverse 

Weather and Lead Vehicle Only) and its Manual Comparisons. 

 

Fig. 6.105. Motor Torque for Test 15 (ACC and AEB with Road 1, Adverse 

Weather and Lead Vehicle Only) and its Manual Comparisons. 

 

Fig. 6.106. Motor Speed for Test 16 (ACC and AEB with Road 2, Adverse 

Weather and Lead Vehicle Only) and its Manual Comparisons. 
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Fig. 6.107. Motor Torque for Test 16 (ACC and AEB with Road 2, Adverse 

Weather and Lead Vehicle Only) and its Manual Comparisons. 

 

Fig. 6.108. Motor Speed for Test 17 (ACC and AEB with Road 1, Ideal Weather 

and Multi-Object Traffic) and its Manual Comparisons. 

 

Fig. 6.109. Motor Torque for Test 17 (ACC and AEB with Road 1, Ideal Weather 

and Multi-Object Traffic) and its Manual Comparisons. 
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As it can be seen from the figures, the motor speed and torque fluctuations are 

significantly lower for ADS control compared to the normal and aggressive driver. 

Since, within the ACC control, the entire longitudinal vehicle control responsibility 

is taken by the ADS, an optimal Electrified Vehicle motor operation is evident.   

 

Fig. 6.110. Motor Speed for Test 18 (ACC and AEB with Road 2, Ideal Weather 

and Multi-Object Traffic) and its Manual Comparisons. 

 

 

Fig. 6.111. Motor Torque for Test 18 (ACC and AEB with Road 2, Ideal Weather 

and Multi-Object Traffic) and its Manual Comparisons. 
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Fig. 6.112. Motor Speed for Test 19 (ACC and AEB with Road 1, Adverse 

Weather and Multi-Object Traffic) and its Manual Comparisons. 

Fig. 6.113. Motor Torque for Test 19 (ACC and AEB with Road 1, Adverse 

Weather and Multi-Object Traffic) and its Manual Comparisons. 

 

Fig. 6.114. Motor Speed for Test 20 (ACC and AEB with Road 2, Adverse 

Weather and Multi-Object Traffic) and its Manual Comparisons. 
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Fig. 6.115. Motor Torque for Test 20 (ACC and AEB with Road 2, Adverse 

Weather and Multi-Object Traffic) and its Manual Comparisons. 

The Autonomous-capable Electrified Vehicle’s motor results during the Active 

Lane Keep Assist functionality in addition to their human driver control 

comparisons can be seen in Fig. 6.116 to 6.131. As noticed in the previous energy 

consumption and vehicle dynamic results, the impact of autonomous lateral vehicle 

control on the Electrified Vehicle motor is also relatively low compared to the 

autonomous longitudinal vehicle control.     

Fig. 6.116. Motor Speed for Test 21 (ALKA with Road 1, Ideal Weather and No 

Traffic) and its Manual Comparisons. 
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Fig. 6.117. Motor Torque for Test 21 (ALKA with Road 1, Ideal Weather and No 

Traffic) and its Manual Comparisons. 

 

Fig. 6.118. Motor Speed for Test 22 (ALKA with Road 2, Ideal Weather and No 

Traffic) and its Manual Comparisons. 

Fig. 6.119. Motor Torque for Test 22 (ALKA with Road 2, Ideal Weather and No 

Traffic) and its Manual Comparisons. 
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Fig. 6.120. Motor Speed for Test 23 (ALKA with Road 1, Adverse Weather and 

No Traffic) and its Manual Comparisons. 

 

Fig. 6.121. Motor Torque for Test 23 (ALKA with Road 1, Adverse Weather and 

No Traffic) and its Manual Comparisons. 

 

Fig. 6.122. Motor Speed for Test 24 (ALKA with Road 2, Adverse Weather and 

No Traffic) and its Manual Comparisons. 
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Fig. 6.123. Motor Torque for Test 24 (ALKA with Road 2, Adverse Weather and 

No Traffic) and its Manual Comparisons. 

 

Fig. 6.124. Motor Speed for Test 25 (ALKA with Road 1, Ideal Weather and 

Multi-Object Traffic) and its Manual Comparisons. 

Fig. 6.125. Motor Torque for Test 25 (ALKA with Road 1, Ideal Weather and 

Multi-Object Traffic) and its Manual Comparisons. 
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Fig. 6.126. Motor Speed for Test 26 (ALKA with Road 2, Ideal Weather and 

Multi-Object Traffic) and its Manual Comparisons. 

 

Fig. 6.127. Motor Torque for Test 26 (ALKA with Road 2, Ideal Weather and 

Multi-Object Traffic) and its Manual Comparisons. 

 

In overall, despite of a relatively lower influence of autonomous lateral vehicle 

control on the Autonomous-capable EV attributes studied, the fluctuations and 

overall magnitude are seen to be significantly higher for the aggressive driver test 

cases compared to the ADS control ones.    
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Fig. 6.128. Motor Speed for Test 27 (ALKA with Road 1, Adverse Weather and 

Multi-Object Traffic) and its Manual Comparisons. 

 

Fig. 6.129. Motor Torque for Test 27 (ALKA with Road 1, Adverse Weather and 

Multi-Object Traffic) and its Manual Comparisons. 

 

Fig. 6.130. Motor Speed for Test 28 (ALKA with Road 2, Adverse Weather and 

Multi-Object Traffic) and its Manual Comparisons. 
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Fig. 6.131. Motor Torque for Test 28 (ALKA with Road 2, Adverse Weather and 

Multi-Object Traffic) and its Manual Comparisons. 

 

Lastly, the Autonomous-capable EV motor results for level 4 autonomous control 

can be seen in Fig. 6.132 to 6.147. Similar to previous results, Fig. 6.132 depicts 

the EV motor operation in ideal external conditions. Fig. 6.133 to 6.147 show the 

EV motor behavior for non-ideal or adverse external conditions.    

 

Fig. 6.132. Motor Speed for Test 29 (L4 with Road 1, Ideal Weather and Lead 

Vehicle Only) and its Manual Comparisons. 
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Fig. 6.133. Motor Torque for Test 29 (L4 with Road 1, Ideal Weather and Lead 

Vehicle Only) and its Manual Comparisons. 

 

Fig. 6.134. Motor Speed for Test 30 (L4 with Road 2, Ideal Weather and Lead 

Vehicle Only) and its Manual Comparisons. 

 

Fig. 6.135. Motor Torque for Test 30 (L4 with Road 2, Ideal Weather and Lead 

Vehicle Only) and its Manual Comparisons. 
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Fig. 6.136. Motor Speed for Test 31 (L4 with Road 1, Adverse Weather and Lead 

Vehicle Only) and its Manual Comparisons. 

 

Fig. 6.137. Motor Torque for Test 31 (L4 with Road 1, Adverse Weather and Lead 

Vehicle Only) and its Manual Comparisons. 

 

Fig. 6.138. Motor Speed for Test 32 (L4 with Road 2, Adverse Weather and Lead 

Vehicle Only) and its Manual Comparisons. 
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Fig. 6.139. Motor Torque for Test 32 (L4 with Road 2, Adverse Weather and Lead 

Vehicle Only) and its Manual Comparisons. 

 

Fig. 6.140. Motor Speed for Test 33 (L4 with Road 1, Ideal Weather and Multi-

Object Traffic) and its Manual Comparisons. 

Fig. 6.141. Motor Torque for Test 33 (L4 with Road 1, Ideal Weather and Multi-

Object Traffic) and its Manual Comparisons. 
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Fig. 6.142. Motor Speed for Test 34 (L4 with Road 2, Ideal Weather and Multi-

Object Traffic) and its Manual Comparisons. 

Fig. 6.143. Motor Torque for Test 34 (L4 with Road 2, Ideal Weather and Multi-

Object Traffic) and its Manual Comparisons. 

 

In overall, the Autonomous-capable EV motor speed and torque results evidently 

show a more uniform and streamlined profile for the ADS control compared to 

normal and aggressive driver control. This further demonstrates the optimal 

operation of the EV motor under level 4 autonomous control, where both the lateral 

and the longitudinal vehicle control is completely taken care of by the ADS. This 

impact on the EV motor is also expected to result in better vehicle performance 

when under autonomous control.   
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Fig. 6.144. Motor Speed for Test 35 (L4 with Road 1, Adverse Weather and 

Multi-Object Traffic) and its Manual Comparisons. 

 

Fig. 6.145. Motor Torque for Test 35 (L4 with Road 1, Adverse Weather and 

Multi-Object Traffic) and its Manual Comparisons. 

 

Fig. 6.146. Motor Speed for Test 36 (L4 with Road 2, Adverse Weather and 

Multi-Object Traffic) and its Manual Comparisons. 
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Fig. 6.147. Motor Torque for Test 36 (L4 with Road 2, Adverse Weather and 

Multi-Object Traffic) and its Manual Comparisons. 

 

6.2.4 Electrified Vehicle Battery Results 

This section presents the results for the Autonomous-capable Electrified Vehicle 

battery. Two different battery parameters including the State of Charge or SOC and 

the battery current have been shown here. The battery results for Cruise Control are 

shown in Fig. 6.148 to 6.171.   

 

Fig. 6.148. Battery SOC for Test 1 (CC with Road 1, Ideal Weather and No 

Traffic) and its Manual Comparisons. 
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Fig. 6.149. Battery Current for Test 1 (CC with Road 1, Ideal Weather and No 

Traffic) and its Manual Comparisons. 

 

Fig. 6.150. Battery SOC for Test 2 (CC with Road 2, Ideal Weather and No 

Traffic) and its Manual Comparisons. 

 

Fig. 6.151. Battery Current for Test 2 (CC with Road 2, Ideal Weather and No 

Traffic) and its Manual Comparisons. 
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Fig. 6.152. Battery SOC for Test 3 (CC with Road 1, Adverse Weather and No 

Traffic) and its Manual Comparisons. 

 

Fig. 6.153. Battery Current for Test 3 (CC with Road 1, Adverse Weather and 

No Traffic) and its Manual Comparisons. 

 

Fig. 6.154. Battery SOC for Test 4 (CC with Road 2, Adverse Weather and No 

Traffic) and its Manual Comparisons. 
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Fig. 6.155. Battery Current for Test 4 (CC with Road 2, Adverse Weather and 

No Traffic) and its Manual Comparisons. 

 

Fig. 6.156. Battery SOC for Test 5 (CC with Road 1, Ideal Weather and Multi-

Object Traffic) and its Manual Comparisons. 

 

Fig. 6.157. Battery Current for Test 5 (CC with Road 1, Ideal Weather and 

Multi-Object Traffic) and its Manual Comparisons. 
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A comparison is provided in the battery results for the test cases with and without 

Autonomous Vehicle lateral and longitudinal control under the presence of varying 

external conditions. The optimal operation of the battery is equally important to that 

of the motor in order to produce better vehicle performance results. 

 

 

Fig. 6.158. Battery SOC for Test 6 (CC with Road 2, Ideal Weather and Multi-

Object Traffic) and its Manual Comparisons. 

 

Fig. 6.159. Battery Current for Test 6 (CC with Road 2, Ideal Weather and 

Multi-Object Traffic) and its Manual Comparisons. 
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Fig. 6.160. Battery SOC for Test 7 (CC with Road 1, Adverse Weather and 

Multi-Object Traffic) and its Manual Comparisons. 

 

Fig. 6.161. Battery Current for Test 7 (CC with Road 1, Adverse Weather and 

Multi-Object Traffic) and its Manual Comparisons. 

 

Fig. 6.162. Battery SOC for Test 8 (CC with Road 2, Adverse Weather and Multi-

Object Traffic) and its Manual Comparisons. 
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Fig. 6.163. Battery Current for Test 8 (CC with Road 2, Adverse Weather and 

Multi-Object Traffic) and its Manual Comparisons. 

 

Fig. 6.164. Battery SOC for Test 9 (CC with Road 1, Ideal Weather and Lead 

Vehicle Only) and its Manual Comparisons. 

Fig. 6.165. Battery Current for Test 9 (CC with Road 1, Ideal Weather and 

Lead Vehicle Only) and its Manual Comparisons. 
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Fig. 6.166. Battery SOC for Test 10 (CC with Road 2, Ideal Weather and Lead 

Vehicle Only) and its Manual Comparisons. 

 

 

Fig. 6.167. Battery Current for Test 10 (CC with Road 2, Ideal Weather and 

Lead Vehicle Only) and its Manual Comparisons. 

 

 

In overall, it was seen that the battery SOC was significantly higher for the ADS 

control test cases compared to the normal and aggressive human driving ones. 

Furthermore, the fluctuations in both the battery current and the SOC profiles 

were seen to be significantly lower with more streamlined profiles for the ADS 

control compared to the human driving test cases.  

60

62

64

66

68

70

72

0 200 400 600 800 1000 1200 1400

B
at

te
ry

 S
O

C
 (

%
)

Time (sec)

Test 10 (ADS) Test 55 (MAN_N) Test 56 (MAN_A)

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200 1400

B
at

te
ry

 C
u

rr
en

t 
(A

)

Time (sec)

Test 10 (ADS) Test 55 (MAN_N) Test 56 (MAN_A)



Ph.D. Thesis - K. Divakarla; McMaster University - Electrical and Computer Engineering 

224 
 

Fig. 6.168. Battery SOC for Test 11 (CC with Road 1, Adverse Weather and 

Lead Vehicle Only) and its Manual Comparisons. 

 

Fig. 6.169. Battery Current for Test 11 (CC with Road 1, Adverse Weather 

and Lead Vehicle Only) and its Manual Comparisons. 

 

Fig. 6.170. Battery SOC for Test 12 (CC with Road 2, Adverse Weather and Lead 

Vehicle Only) and its Manual Comparisons. 

58

60

62

64

66

68

70

72

0 200 400 600 800 1000 1200

B
at

te
ry

 S
O

C
 (

%
)

Time (sec)

Test 11 (ADS) Test 57 (MAN_N) Test 58 (MAN_A)

0
100
200
300
400
500
600
700
800

0 200 400 600 800 1000 1200

B
at

te
ry

 C
u

rr
en

t 
(A

)

Time (sec)

Test 11 (ADS) Test 57 (MAN_N) Test 58 (MAN_A)

58

60

62

64

66

68

70

72

0 200 400 600 800 1000 1200

B
at

te
ry

 S
O

C
 (

%
)

Time (sec)

Test 12 (ADS) Test 59 (MAN_N) Test 60 (MAN_A)



Ph.D. Thesis - K. Divakarla; McMaster University - Electrical and Computer Engineering 

225 
 

 

Fig. 6.171. Battery Current for Test 12 (CC with Road 2, Adverse Weather 

and Lead Vehicle Only) and its Manual Comparisons. 

 

 

The autonomous-capable EV battery results for test cases with ACC and AEB 

control in addition to their manual comparisons under the presence of ideal and 

varying non-ideal external conditions can be seen in Fig. 6.172 to 6.187.  

 

Fig. 6.172. Battery SOC for Test 13 (ACC and AEB with Road 1, Ideal 

Weather and Lead Vehicle Only) and its Manual Comparisons. 
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Fig. 6.173. Battery Current for Test 13 (ACC and AEB with Road 1, Ideal 

Weather and Lead Vehicle Only) and its Manual Comparisons. 

Fig. 6.174. Battery SOC for Test 14 (ACC and AEB with Road 2, Ideal 

Weather and Lead Vehicle Only) and its Manual Comparisons. 

Fig. 6.175. Battery Current for Test 14 (ACC and AEB with Road 2, Ideal 

Weather and Lead Vehicle Only) and its Manual Comparisons. 
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Fig. 6.176. Battery SOC for Test 15 (ACC and AEB with Road 1, Adverse 

Weather and Lead Vehicle Only) and its Manual Comparisons. 

 

Fig. 6.177. Battery Current for Test 15 (ACC and AEB with Road 1, Adverse 

Weather and Lead Vehicle Only) and its Manual Comparisons. 

 

Fig. 6.178. Battery SOC for Test 16 (ACC and AEB with Road 2, Adverse 

Weather and Lead Vehicle Only) and its Manual Comparisons. 
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Fig. 6.179. Battery Current for Test 16 (ACC and AEB with Road 2, Adverse 

Weather and Lead Vehicle Only) and its Manual Comparisons. 

 

Fig. 6.180. Battery SOC for Test 17 (ACC and AEB with Road 1, Ideal Weather 

and Multi-Object Traffic) and its Manual Comparisons. 

Fig. 6.181. Battery Current for Test 17 (ACC and AEB with Road 1, Ideal 

Weather and Multi-Object Traffic) and its Manual Comparisons. 

0

200

400

600

800

0 200 400 600 800 1000 1200

B
at

te
ry

 C
u

rr
en

t 
(A

)

Time (sec)

Test 16 (ADS) Test 59 (MAN_N) Test 60 (MAN_A)

60

62

64

66

68

70

72

0 200 400 600 800 1000 1200

B
at

te
ry

 S
O

C
 (

%
)

Time (sec)

Test 17 (ADS) Test 45 (MAN_N) Test 46 (MAN_A)

-600

-400

-200

0

200

400

600

800

0 200 400 600 800 1000 1200

B
at

te
ry

 C
u

rr
en

t 
(A

)

Time (sec)
Test 17 (ADS) Test 45 (MAN_N) Test 46 (MAN_A)



Ph.D. Thesis - K. Divakarla; McMaster University - Electrical and Computer Engineering 

229 
 

Fig. 6.182. Battery SOC for Test 18 (ACC and AEB with Road 2, Ideal 

Weather and Multi-Object Traffic) and its Manual Comparisons. 

 

Fig. 6.183. Battery Current for Test 18 (ACC and AEB with Road 2, Ideal 

Weather and Multi-Object Traffic) and its Manual Comparisons. 
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significantly lower fluctuations or instantaneous deviations compared to the 

normal and aggressive driving test cases. Similar to the CC test cases, the ACC 

and AEB test cases also resulted in a higher battery SOC throughout the drive 

cycle, on average.  
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Fig. 6.184. Battery SOC for Test 19 (ACC and AEB with Road 1, Adverse 

Weather and Multi-Object Traffic) and its Manual Comparisons. 

 

Fig. 6.185. Battery Current for Test 19 (ACC and AEB with Road 1, Adverse 

Weather and Multi-Object Traffic) and its Manual Comparisons. 

 

 

Fig. 6.186. Battery SOC for Test 20 (ACC and AEB with Road 2, Adverse 

Weather and Multi-Object Traffic) and its Manual Comparisons. 
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Fig. 6.187. Battery Current for Test 20 (ACC and AEB with Road 2, Adverse 

Weather and Multi-Object Traffic) and its Manual Comparisons. 

 

 

The battery results for ALKA based test cases and their manual human driving 

comparisons are shown in Fig. 6.188 to 6.203. The patterns reflected for the 

Autonomous-capable EV motor results are also seen to be replicated for the 

battery results, as anticipated.    

 

Fig. 6.188. Battery SOC for Test 21 (ALKA with Road 1, Ideal Weather and 

No Traffic) and its Manual Comparisons. 

-600

-400

-200

0

200

400

600

800

1000

0 200 400 600 800 1000 1200

B
at

te
ry

 C
u

rr
en

t 
(A

)

Time (sec)

Test 20 (ADS) Test 51 (MAN_N) Test 52 (MAN_A)

60

62

64

66

68

70

72

0 200 400 600 800 1000 1200

B
at

te
ry

 S
O

C
 (

%
)

Time (sec)

Test 21 (ADS) Test 37 (MAN_N) Test 38 (MAN_A)



Ph.D. Thesis - K. Divakarla; McMaster University - Electrical and Computer Engineering 

232 
 

Fig. 6.189. Battery Current for Test 21 (ALKA with Road 1, Ideal Weather 

and No Traffic) and its Manual Comparisons. 

 

Fig. 6.190. Battery SOC for Test 22 (ALKA with Road 2, Ideal Weather and No 

Traffic) and its Manual Comparisons. 

 

Fig. 6.191. Battery Current for Test 22 (ALKA with Road 2, Ideal Weather 

and No Traffic) and its Manual Comparisons. 
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Fig. 6.192. Battery SOC for Test 23 (ALKA with Road 1, Adverse Weather 

and No Traffic) and its Manual Comparisons. 

 

Fig. 6.193. Battery Current for Test 23 (ALKA with Road 1, Adverse Weather 

and No Traffic) and its Manual Comparisons. 

 

Fig. 6.194. Battery SOC for Test 24 (ALKA with Road 2, Adverse Weather and 

No Traffic) and its Manual Comparisons. 
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Fig. 6.195. Battery Current for Test 24 (ALKA with Road 2, Adverse Weather 

and No Traffic) and its Manual Comparisons. 

 

Fig. 6.196. Battery SOC for Test 25 (ALKA with Road 1, Ideal Weather and 

Multi-Object Traffic) and its Manual Comparisons. 

Fig. 6.197. Battery Current for Test 25 (ALKA with Road 1, Ideal Weather 

and Multi-Object Traffic) and its Manual Comparisons. 
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Fig. 6.198. Battery SOC for Test 26 (ALKA with Road 2, Ideal Weather and 

Multi-Object Traffic) and its Manual Comparisons. 

 

 

Fig. 6.199. Battery Current for Test 26 (ALKA with Road 2, Ideal Weather 

and Multi-Object Traffic) and its Manual Comparisons. 

 

 

In overall, although once again the autonomous lateral control of the vehicle 

seems to have a relatively lower impact on the EV battery operation, it is evident 

that the battery performs optimally under the ADS lateral control in comparison 

to the aggressive driving control. This is seen through the drastically lower 

fluctuations under ADS control.   
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Fig. 6.200. Battery SOC for Test 27 (ALKA with Road 1, Adverse Weather 

and Multi-Object Traffic) and its Manual Comparisons. 

 

Fig. 6.201. Battery Current for Test 27 (ALKA with Road 1, Adverse Weather 

and Multi-Object Traffic) and its Manual Comparisons. 

 

Fig. 6.202. Battery SOC for Test 28 (ALKA with Road 2, Adverse Weather and 

Multi-Object Traffic) and its Manual Comparisons. 
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Fig. 6.203. Battery Current for Test 28 (ALKA with Road 2, Adverse Weather 

and Multi-Object Traffic) and its Manual Comparisons. 

 

Lastly, the Autonomous-capable Electrified Vehicle battery SOC and current 

profiles for the level 4 autonomous control is presented through Fig. 6.204 to 

6.219. Similar to the energy consumption, vehicle dynamics and motor results 

discussed in the previous sections for level 4 autonomous control, the battery 

results also demonstrate the optimal battery operation under the ADS control.  

 

Fig. 6.204. Battery SOC for Test 29 (L4 with Road 1, Ideal Weather and Lead 
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Fig. 6.205. Battery Current for Test 29 (L4 with Road 1, Ideal Weather and 

Lead Vehicle Only) and its Manual Comparisons. 

 

Fig. 6.206. Battery SOC for Test 30 (L4 with Road 2, Ideal Weather and Lead 

Vehicle Only) and its Manual Comparisons. 

Fig. 6.207. Battery Current for Test 30 (L4 with Road 2, Ideal Weather and 

Lead Vehicle Only) and its Manual Comparisons. 
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Fig. 6.208. Battery SOC for Test 31 (L4 with Road 1, Adverse Weather and 

Lead Vehicle Only) and its Manual Comparisons. 

 

Fig. 6.209. Battery Current for Test 31 (L4 with Road 1, Adverse Weather and 

Lead Vehicle Only) and its Manual Comparisons. 

 

Fig. 6.210. Battery SOC for Test 32 (L4 with Road 2, Adverse Weather and Lead 

Vehicle Only) and its Manual Comparisons. 

58

60

62

64

66

68

70

72

0 200 400 600 800 1000 1200

B
at

te
ry

 S
O

C
 (

%
)

Time (sec)

Test 31 (ADS) Test 57 (MAN_N) Test 58 (MAN_A)

0

200

400

600

800

0 200 400 600 800 1000 1200

B
at

te
ry

 C
u

rr
en

t 
(A

)

Time (sec)

Test 31 (ADS) Test 57 (MAN_N) Test 58 (MAN_A)

55

60

65

70

75

0 200 400 600 800 1000 1200

B
at

te
ry

 S
O

C
 (

%
)

Time (sec)

Test 32 (ADS) Test 59 (MAN_N) Test 60 (MAN_A)



Ph.D. Thesis - K. Divakarla; McMaster University - Electrical and Computer Engineering 

240 
 

 

Fig. 6.211. Battery Current for Test 32 (L4 with Road 2, Adverse Weather and 

Lead Vehicle Only) and its Manual Comparisons. 

 

Fig. 6.212. Battery SOC for Test 33 (L4 with Road 1, Ideal Weather and Multi-

Object Traffic) and its Manual Comparisons. 

Fig. 6.213. Battery Current for Test 33 (L4 with Road 1, Ideal Weather and 

Multi-Object Traffic) and its Manual Comparisons. 
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Fig. 6.214. Battery SOC for Test 34 (L4 with Road 2, Ideal Weather and 

Multi-Object Traffic) and its Manual Comparisons. 

 

Fig. 6.215. Battery Current for Test 34 (L4 with Road 2, Ideal Weather and 

Multi-Object Traffic) and its Manual Comparisons. 

 

 

In other words, the minimized instantaneous fluctuations and the streamlined 
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results will be further analyzed using a through quantitative sensitivity analysis 

in the next section of this thesis.    
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Fig. 6.216. Battery SOC for Test 35 (L4 with Road 1, Adverse Weather and 

Multi-Object Traffic) and its Manual Comparisons. 

 

Fig. 6.217. Battery Current for Test 35 (L4 with Road 1, Adverse Weather and 

Multi-Object Traffic) and its Manual Comparisons. 

 

Fig. 6.218. Battery SOC for Test 36 (L4 with Road 2, Adverse Weather and 

Multi-Object Traffic) and its Manual Comparisons. 
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Fig. 6.219. Battery Current for Test 36 (L4 with Road 2, Adverse Weather and 

Multi-Object Traffic) and its Manual Comparisons. 
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components, properties, and dynamics through a rigorous sensitivity analysis. The 

average instantaneous deviations or fluctuations for every test case is studied 

through a systematic comparative analysis between the ADS, normal human driver 

and an aggressive human driver. In overall, the fluctuations can be seen to be the 

highest for an aggressive driver, followed by a normal driver and then by ADS. This 

precisely contributes to the highest energy economy offered during ADS control 

due to the least amount of fluctuations in the various Electrified Vehicle dynamics 

and the component operation.   

 

Firstly, the average percent deviations for the various Electrified Vehicle properties 

such as host vehicle velocity, battery current, energy consumption and motor load, 

power, torque, voltage, and speed were studied. The results have been presented in 

Fig. 6.220. It can be seen that the battery current is the most sensitive parameter to 

variations in the vehicle control, followed by motor power. It can also be seen that 

for all of the properties analyzed, the average instantaneous fluctuations have been 

the least for ADS control offering semi or full autonomous control of the test 

Electrified Vehicle.      
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Fig. 6.220. Average percent deviations for the various EV properties. 

 

The average percent fluctuations in the instantaneous velocity of the host vehicle is 
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control. The results are represented in Fig.6.221. Similar to above, the fluctuations 

can be seen to be very low for the ADS control compared to the normal and the 

aggressive driving. Furthermore, the deviation cluster is seen to be mostly higher 

for the aggressive driver compared to the normal human driver. This, in turn, 

contributes to a better vehicle performance during ADS or autonomous/ semi-

autonomous control, compared to a human driver, through optimal eco-driving.  
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Fig.6.221. Average percent deviations in host vehicle velocity.   
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Fig.6.222. Average percent deviations in EV battery current.   

 

 

Fig.6.223. Average percent deviations in energy consumption.   
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6.228 respectively. These profiles, in overall, demonstrate a more optimal 

performance of the motor during semi-autonomous or autonomous control of the 

Electrified Vehicle, compared to normal or aggressive human driving, in turn 

resulting in better vehicle performance. 

 

Fig.6.224. Average percent deviations in EV motor load.   

 

Fig.6.225. Average percent deviations in EV motor power.   
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Fig.6.226. Average percent deviations in EV motor torque.   

 

 

Fig.6.227. Average percent deviations in EV motor voltage.   
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Fig.6.228. Average percent deviations in EV motor speed.   
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Table 6.4 Average Percent Increase in Fluctuations for Manual human driver 

control compared to ADS 

 

EV Properties % increase in 

fluctuations for normal 

human driver control 

compared to ADS 

% increase in 

fluctuations for 

aggressive human 

driver control 

compared to ADS 

Vehicle Velocity 146 177 

Battery Current 154 182 

Energy Consumption 15 22 

Motor Load 87 97 

Motor Power 150 177 

Motor Torque 120 154 

Motor Voltage 101 112 

Motor Speed 143 164 
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Chapter 7 

Conclusions and Future Work 

 

This chapter presents major conclusions derived from the research work conducted 

as part of this thesis. Discussion of the challenges faced, and methodology adopted 

to overcome them in addition to the limitations and scope for any future work is 

also presented.  

            

7.1 Thesis Findings and Conclusions 

This thesis addresses the limited technical literature available for ADAS 

architectures which are expected to form as a primary building block for the next 

generation of Highly Automated EVs by proposing a Cognitive ADAS Architecture 

for Autonomous-capable Electrified Vehicles. The proposed architecture is inspired 

by the human cognitive processes to represent a functional distribution of the 

various modules, sub-modules, component examples, interactions, and interfaces 

both internal and external to the vehicle. The proposed Cognitive ADAS 

Architecture is developed primarily for level 4 Autonomous-capable Vehicles. 

However, variations of the architecture are also offered for levels 3 and 3.5.  
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In addition, the proposed Cognitive ADAS Architecture is verified using vehicle-

level simulations based on an enhanced 2014 Tesla Model S 85. 113 test cases with 

108 for functional simulations and 5 for validation are setup with 60 different 

unique combinations of ADS, normal human driver and aggressive driver control. 

7 different variations in the external conditions such as road, traffic and weather 

were also evaluated. This methodology adopted for simulations encompassing 

varying realistic external conditions as well as the validation of the simulation 

model utilizing the EPA standard 5 cycle adjustment method helped in ensuring 

robustness of the proposed model.  

 

Based on the results acquired, it was evident that the ADS control-based test cases 

have outperformed both the normal and the aggressive driver control, on average, 

in terms of the various EV attributes studied. It could be seen that with the increase 

in Electrified Vehicle autonomy, the vehicle performance is also increased. This is 

mainly due to the optimal eco-driving, energy management and planning possible 

through the improved operation of the EV components such as the motor and battery 

under autonomous or semi-autonomous control of the EV compared to the complete 

human driver control. In other words, the Autonomous-capable EV, upon being 

exposed to the same driving environment conditions as the human driver model, 

showed an improved vehicle performance when partially or completely controlled 

by the ADS.    
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On average, a significant increase of about 28 percent was noticed for the 

Autonomous-capable EV energy economy under the ADS control compared to the 

human driver control. When this result was decomposed further, it was seen that 

there was a 22 and 35 percent increase, on average, for ADS control compared to 

the normal and the aggressive driver control respectively. A thorough sensitivity 

analysis was also carried out to further quantify the impact of EV autonomy on the 

various vehicle attributes. From this analysis it was seen that, on average, the 

instantaneous fluctuations were significantly lower, hence providing more uniform 

and streamlined profiles under ADS control, compared to the human driver control 

for the energy economy, vehicle dynamics, motor and battery results collected. The 

battery current, followed by the motor power, speed and then torque were seen to 

have the highest fluctuations, about 168, 163.5, 153.5 and 137 percent higher 

respectively under average human driver control compared to ADS, out of the 

various Autonomous-capable EV component parameters studied. In essence, the 

increase in autonomous control of the EV resulted in an increase in the vehicle 

performance and improved operation of the EV components in addition to the 

overall positive impact also on the vehicle dynamics.  

 

In overall, the work presented in this thesis is believed to advance the current 

literature another step forward in terms of the ADAS architectures, modeling and 

simulation of highly Autonomous-capable EVs as well as systematically 
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understanding the role played by autonomous driving in improving the Electrified 

Vehicle performance.     

 

7.2 Discussion 

This section will present a summary of the challenges faced during this research 

and how they were overcome to successfully accomplish the goals established. 

Firstly, the architecture development was faced with challenges due to the need for 

representing a vast amount of complex details about the different functions, 

components, interfaces and their interactions within an Advanced Driver Assistance 

System targeting Highly Automated Driving. To address this, the architecture was 

broken to provide a modular and systematic arrangement of the important attributes 

at the system-level. The breakdown between levels 3, 3.5 and 4 have been shown 

in separate diagrams. Further details about the different layers, modules, and sub-

modules within the architecture have been described within Chapter 4.  

 

In addition, the development of the simulation model by realizing the complex 

combination of autonomous and Electrified Vehicle concepts was also found to be 

challenging due to the very limited technical literature on this topic. Nevertheless, 

the systematic mapping offered between the proposed Cognitive ADAS 

Architecture and the CarMaker simulation model was very helpful for verifying 

both the architecture and the simulation model.  
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Furthermore, the most arduous challenge faced was the collection and analysis of 

the enormous amount of simulation results (collected with a time span of 0.1 

seconds and simulated at a speed of 5X), acquired from the 113 test cases, which 

accounted for approximately 600,000 rows including vehicle dynamics, motor, 

battery and energy consumption results. This part of the research work was the most 

laborious and time-consuming. This was addressed through the systematic section-

wise arrangement of the representative results and analysis in this thesis.  

 

Lastly, the validation of the simulation model was also found to be challenging due 

to the commercial unavailability of level 4 Autonomous-capable EVs for 

experimental validation. Due to the proprietary nature of some of the on-going 

prototyping activities, very limited technical literature and physical resources are 

currently available. As such, given the extensive amount of validated simulation-

based research work and quantitative analyses conducted, experimental validation 

was considered out of scope for this study, as already described previously. Thus, 

an alternative validation technique using the EPA 5-cycle adjustment method was 

presented in the previous chapter which demonstrated the validity of the simulation 

model and the acquired results in addition to the sound research methodology and 

thorough quantitative analysis techniques adopted for this study.      
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7.3 Limitations and Future Work 

This section summarizes the limitations of the work presented in this thesis as well 

as scope for any future work. The proposed Cognitive ADAS Architecture is 

divided based on the targeted vehicle automation level giving a slightly different 

architecture for every level. Suggested future work includes further development of 

the proposed Cognitive ADAS Architecture to be scalable to represent the different 

levels of vehicle automation ranging from 0 to 5.  

 

Furthermore, each of the individual sub-blocks of the proposed system level 

architecture could be broken down to represent a detailed architecture (similar to 

the one presented) at the next abstraction levels. The architecture could also be 

expanded to include different types of vehicles such as hybrid, ICE and so on. The 

current architecture only focuses on Electrified Vehicles.   

In addition, experimental analysis to further support the evaluation of vehicle 

autonomy and its impact on the Electrified Vehicle dynamics, components and 

performance could be carried out. This has been out of scope for this thesis due to 

the commercial unavailability of the highly Autonomous-capable EVs at the time 

of this research.  

 

The analysis of the results could also be expanded further, as part of future work, to 

understand the other reasons behind the improved vehicle performance during semi-
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autonomous/ autonomous control of EVs compared to manual human driving 

besides the studied attributes such as the optimal eco-driving, energy management 

and operation of the Electrified Vehicle components with decreased instantaneous 

fluctuations during ADS control. Also, evaluation of the simulation model against 

realistic driving cycles as described in 5, [178]-[181] would be very helpful in 

further improving the analysis use cases and for benchmarking through a rolling 

road dynamometer testing or a vehicle simulator. In addition, the impact of 

autonomy on vehicle’s long-term aging, battery life, motor efficiency and power 

consumption could also contribute to advancement of the current work. A trade-off 

analysis looking at the different vehicle attributes as well as safety, cost, comfort, 

economic and societal impacts can also be carried out, based on a specific vehicle 

example, as part of the future work. Also, the benefits of ADS control combined 

with energy optimization (e.g. regenerative braking) in further improving the 

vehicle performance can be evaluated. 

     

Furthermore, some of the growing trends in the field of Autonomous-capable 

Vehicles such as vehicle platooning (with at least one of the host vehicles 

demonstrating level 2 or above vehicle automation level), Vehicle to Vehicle and 

Infrastructure, and Cloud communication can also be explored further in the 

simulations based on the availability of applicable resources. Although V2V, V2I 

and Cloud communications have been included in the proposed Cognitive ADAS 
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architecture, they were considered out of scope for the current simulations due to 

the limited infrastructure available at the time of this research. 

 

Control of the Sensor Fusion and Integration functionality was limited due to the 

assumed default operations performed by CarMaker in the simulation’s 

background. Future improvement on the tool side could be helpful in incorporating 

sensor fusion inaccuracies or realistic discrepancies among the different sensors. It 

was also observed from the simulation results that the normal and aggressive human 

driver models recommended in the tool provided more fluctuations in the velocity, 

motor and battery profiles than expected. Having the availability of additional 

human driver models, with varying parameter recommendations covering other 

possibilities in the human factors spectrum, could be helpful in further improving 

the reliability of human driver comparisons to ADS control.   

 

Lastly, an online repository of the extensive amount of data collected can be 

developed for future vehicle analysis work in the field of Autonomous-capable 

Vehicles.  
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