
USING DYNAMIC MIXINS FOR SOFTWARE

DEVELOPMENT



USING DYNAMIC MIXINS FOR SOFTWARE DEVELOPMENT

By

RONALD EDEN BURTON, M.Sc., B.Math.

A Thesis

Submitted to the Department of Computing and Software

and the School of Graduate Studies

of McMaster University

in Partial Fulfilment of the Requirements

for the Degree of

Doctor of Philosophy

McMaster University c© Copyright by Ronald Eden Burton, July 2018



Doctor of Philosophy (2018) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: Using Dynamic Mixins For Software Development

AUTHOR: Ronald Eden Burton

M.Sc., (Information Systems)

Athabasca University, Athabasca, Canada

B.Math., (Computer Science)

University of Waterloo, Waterloo, Canada

SUPERVISOR: Dr. Emil Sekerinski

NUMBER OF PAGES: xiii, 121

ii



To Mom and Dad



Abstract

Object-oriented programming has gained significant traction in the software develop-
ment community and is now the common approach for developing large, commercial
applications. Many of these applications require the behaviour of objects to be mod-
ified at run-time.

Contemporary class-based, statically-typed languages such as C++ and Java re-
quire collaboration with external objects to modify an object’s behaviour. Further-
more, such an object must be designed to order to support such collaborations. Dy-
namic languages such as Python which natively support object extension do not guar-
antee type safety.

In this work, using dynamic mixins with static typing is proposed as a means
of providing type-safe, object extension. A new language called mix is introduced
that allows a compiler to syntactically check the type-safety of an object extension.
A model to support object-oriented development is extended to support dynamic
mixins.

The utility of the approach is illustrated using sample use cases. Finally, a compiler
was implemented to validate the practicality of the model proposed.

iii



Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor
Dr. Emil Sekerinski for taking me under his wing. His mentorship has proven to be
invaluable not only in the completion of this work but also to my professional and
academic development.

I would also like to thank the members of my supervisory committee: Dr. Frantisek
Franek, Dr. Ridha Khedri and Dr. Tom Maibaum. They have provided constructive
feedback throughout my time at here at McMaster and were critical to me seeing this
project through to its completion.

To my external examiner Dr. Jeremy Bradbury, I am tremendously grateful for
your review of this thesis. Your feedback has strengthened the quality of the final
product.

Thanks also goes to the Computing and Software faculty, staff and my fellow
graduate students. We have a small but special group of people here. Our informal
discussion and interactions have enriched my life greatly. Of particular note are my
lab-mates Dr. Bojan Nokovic, Dr. Tian Zhang and Shucai Yao, for their constructive
feedback during our group meetings.

Last but not least, I reserve a special thanks for my family. Tracy, it has been a
long voyage but the end has finally arrived. We made it! Ashley, Simone, Renee and
Maceo...Daddy’s done.

iv



Contents

Abstract iii

Acknowledgements iv

Declaration of Academic Achievement xii

1 Introduction 1

1.1 Object Composition to Facilitate Code Reuse . . . . . . . . . . . . . 2

1.2 Alternatives to Object Composition . . . . . . . . . . . . . . . . . . . 4

1.3 Mixins as a Reuse Tool . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Current Issues with Mixins . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Type Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.2 Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.3 Inefficient Method Lookup . . . . . . . . . . . . . . . . . . . . 10

1.5 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 10

2 mix, a Statically Typed Language for Dynamic Mixins 12

2.1 Language Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 mix Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Language Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

v



2.4 Differentiating Language Features . . . . . . . . . . . . . . . . . . . . 16

2.5 Formal Definition of mix . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Abstract Syntax for Core Language . . . . . . . . . . . . . . . 17

2.5.2 Core Language Semantics . . . . . . . . . . . . . . . . . . . . 19

2.5.3 Translation of Classes and Modules . . . . . . . . . . . . . . . 22

3 mix Implementation 26

3.1 Memory Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Program Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Object Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Object Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Type Test and Type Cast . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Method Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.8 Translation to Executable Code . . . . . . . . . . . . . . . . . . . . . 34

3.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.10 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Program Correctness 44

4.1 Module Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Mixin Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Correctness of Mixin Composition . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Refinement and Augmentation . . . . . . . . . . . . . . . . . . 48

4.3.2 Class Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.3 Compositional Reasoning with Dynamic Mixins . . . . . . . . 55

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vi



5 Use Case - Intrusive Data Structures 64

5.1 Abstract Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Specification Refinement . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Correctness Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Machine Automated Proofs Using Boogie . . . . . . . . . . . . . . . . 68

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Use Case - Implementing Design Patterns 78

6.1 Decorator Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Proxy Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Chain of Responsibility Pattern . . . . . . . . . . . . . . . . . . . . . 82

6.4 Strategy Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5 Patterns to Support Object Extension . . . . . . . . . . . . . . . . . 85

6.5.1 Dynamic Object Model Pattern . . . . . . . . . . . . . . . . . 85

6.5.2 Extension Objects Pattern . . . . . . . . . . . . . . . . . . . . 87

6.5.3 Role Object Pattern . . . . . . . . . . . . . . . . . . . . . . . 89

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Conclusion 92

A mix Concrete Syntax 100

B mix Program Generated Code 102

C Code Used to Gather Timing Results 113

D Proofs 118

vii



List of Tables

3.1 Timing Results. This table shows the number of seconds (in CPU time)

required to execute the program specified in Listing 3.6. . . . . . . . 40

viii



List of Figures

3.1 Memory Layout of the Example in Section 1.4.2 . . . . . . . . . . . . 28

3.2 A Class Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Method Resolution Time . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 Boogie Model of Associations Program . . . . . . . . . . . . . . . . . 69

ix



Listings

1.1 Modifying an Object Composition . . . . . . . . . . . . . . . . . . . . 2

1.2 Program With Access Outside Collaboration . . . . . . . . . . . . . . 3

1.3 Mixin Potential Safety Issues . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Flawed Design with Mixins . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 A Class Implementing Another Class . . . . . . . . . . . . . . . . . . 14

3.1 A Point class, with related mixins . . . . . . . . . . . . . . . . . . . . 35

3.2 Memory Representation of Point class, with related mixins . . . . . . 36

3.3 Initializing the program from Listing 3.1 . . . . . . . . . . . . . . . . 37

3.4 Examples of “up” method calls . . . . . . . . . . . . . . . . . . . . . 38

3.5 Library function for type casting . . . . . . . . . . . . . . . . . . . . 38

3.6 Adding Features Using Mixins . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Correct Design with Mixins, with class Stack as in Listing 1.4 . . . . 53

4.2 Flawed Mixins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Corrected Mixins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 More Flawed Mixins . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Type Definitions in Boogie . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Association Module Variable Declarations . . . . . . . . . . . . . . . 70

5.3 Specification Verification . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Coupling Invariant Function . . . . . . . . . . . . . . . . . . . . . . . 72

x



5.5 New Associations Object . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 Setting Association Object Fields . . . . . . . . . . . . . . . . . . . . 75

5.7 Clearing Association Object Fields . . . . . . . . . . . . . . . . . . . 76

6.1 Decorator Pattern-Object Composition Solution . . . . . . . . . . . . 80

6.2 Decorator Pattern-Mixin Composition Solution . . . . . . . . . . . . 80

6.3 Proxy Pattern-Object Composition Solution . . . . . . . . . . . . . . 81

6.4 Proxy Pattern-Mixin Composition Solution . . . . . . . . . . . . . . . 81

6.5 CofR Pattern-Object Composition Solution . . . . . . . . . . . . . . . 83

6.6 CofR Pattern-Mixin Composition Solution . . . . . . . . . . . . . . . 83

6.7 Strategy Pattern-Object Composition Solution . . . . . . . . . . . . . 84

6.8 Strategy Pattern-Mixin Composition Solution . . . . . . . . . . . . . 84

6.9 Dynamic Object Model Pattern-Type Code . . . . . . . . . . . . . . 86

6.10 Dynamic Object Model Pattern-Object/Client Code . . . . . . . . . . 86

6.11 Extension Object Pattern . . . . . . . . . . . . . . . . . . . . . . . . 88

6.12 Role Object Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B.1 C Code Generated by Compiler of Point Class Example in Listing 3.1 102

C.1 C++ Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

C.2 Java Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

C.3 Python Inheritance Sample . . . . . . . . . . . . . . . . . . . . . . . . 116

C.4 Python Mixin Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xi



Declaration of Academic

Achievement

Burton E. and Sekerinski E. (2013) Correctness of Intrusive Data Structures Us-

ing Mixins In Proceedings of the 16th International ACM Sigsoft Symposium on

Component-based Software Engineering, 6 pages, pp. 53–58.

Burton E. and Sekerinski E. (2014) Using Dynamic Mixins to Implement Design

Patterns In Proceedings of the 19th European Conference on Pattern Languages of

Programs, 19 pages, pp. 14:1–14:19.

Burton E. and Sekerinski E. (2015) The Safety of Dynamic Mixin Composition

In Proceedings of the 30th Annual ACM Symposium on Applied Computing, 8 pages,

pp. 1992–1999.

Burton E. and Sekerinski E. (2016) An Object Model for a Dynamic Mixin Based

Language In Proceedings of the 31st Annual ACM Symposium on Applied Computing,

7 pages, pp. 1986–1992.

Burton E. and Sekerinski E. (2017) An Object Model for Dynamic Mixins In

xii



Journal of Computer Languages, Systems & Structures, 12 pages, pp. (in print)

xiii



Chapter 1

Introduction

Any non-trivial software system is typically composed of small, discrete units with
well-defined interfaces. This lets software developers focus on implementing solutions
to manageable problems at the unit level. In theory, multiple units can be developed
independently yet in parallel. System architects can abstract away low-level imple-
mentation considerations and concentrate on composing units to obtain the desired
system properties. From an engineering standpoint, the benefits of such an approach
are well known. Individual units are easier to maintain and evolve. They can also
be reused in other systems requiring the same functionality. Furthermore, a unit can
be replaced by one providing equivalent functionally without disrupting the entire
system (Parnas 1972).

An object-oriented design approach is one method of decomposing such systems.
In object-oriented programs, the primary means of decomposition is at the data level.
A system is divided into entities, known as objects, which contain a set of related
data and a set of operations that are used for data access and mutation. These
objects emulate units described above. Properties such as data type and visibility are
attached to each element within an object and externally visible elements define an
object’s interface. This interface is then used by other “client” objects in the system
to access the object’s internally stored data or initiate its operations.

The primary method of code reuse in object-oriented development has been “in-
heritance via subtyping”. Mainstream statically typed, class-based OOP languages
such as Java, C# and C++ support code reuse by allowing a developer to define
superclass-subclass relationships. Classes are used to define the structure of these
objects and act as blueprints for object construction at run-time. Each object is an
instance of a particular class. A class specifies the data members and methods as-
sociated with that class’s related objects. A subclass is then defined in terms of its
parent so only a developer only needs to specify how it differs from its parent class.

1



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

All other parts of the subclass specification are inherited from its parent.

1.1 Object Composition to Facilitate Code Reuse

Despite the popularity of object-oriented development in industry, there are short-
comings about the paradigm that have been identified. When using inheritance for
code reuse, a new class is created and defined as a subclass of the class which contains
the code being reused. This approach becomes problematic when code is to be reused
for multiple, potentially unrelated classes. In object-oriented design, the intent of the
class hierarchy is to describe relationships between objects. Critics argue that sub-
classing solely for the purpose of reuse pollutes the class hierarchy making it difficult
to understand (Szyperski 1992; Flatt, Krishnamurthi, and Felleisen 1998a; Van Lim-
berghen and Mens 1996). Another limitation of relying on inheritance for reuse is
that object modifications can only be done at compile-time and the class level, thus
objects cannot change structure or behaviour during program execution.

These limitations can be addressed by using object composition. Object composi-
tion allows reuse by having individual objects play specific roles in a multiple-object
collaboration. Here, objects store references to other objects they are dependent on in
the collaboration and access additional functionality provided by forwarding messages
to the appropriate object. An advantage of object composition is that the function-
ality provided can be easily changed at run-time. This is done by changing one of the
objects in the collaboration. In Listing 1.1, the methods of ExtObj are available to obj.
By replacing the obj.ext field with a reference to a different object, the behaviour of
the composition has been modified. This example illustrates the more extreme situa-
tion where reference type of obj.ext has changed, so the method implementation that
obj.ext.someMethod() refers to is different. The behaviour of the method called may
be different even if the reference type is unchanged due to the values of the object’s
(obj.ext) internal fields.

Listing 1.1: Modifying an Object Composition

class BaseObject
var ext : ExtObj
...

class ExtObj
method someMethod()

....

class ExtObj2 extends ExtObj

2



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

method someMethod()
....

begin
BaseObject obj
obj := new BaseObject
obj.ext := new ExtObj // save the object reference
obj.ext.someMethod()
dispose obj.ext // destroy the extension object
obj.ext := new ExtObj2 // create/save a new extension
obj.ext.someMethod() // behaviour has changed from earlier invocation

end

Object composition allows run-time object behaviour changes but the features it
provides are spread across multiple objects which breaks encapsulation. The devel-
oper is charged with ensuring that references to the objects in the collaboration are
valid. Furthermore, since objects in the collaboration remain independent, the devel-
oper must ensure that objects receiving forwarding messages that are not modified
in unexpected ways by external objects. In Listing 1.2, assume the functionality pro-
vided by ExtObj is intended to be accessed via objA. Copying the reference to e (or
accessing objA.ext directly) allows the collaboration to be modified nefariously. An-
other important point is that in this collaboration, objA must have been designed to
support the ExtObj extension in advance if a statically typed language is being used.

Listing 1.2: Program With Access Outside Collaboration

begin
...
ExtObj e
objA.ext := new ExtObj // create an extension obj, save the reference
e := objA.ext // extension can be accessed outside collaboration

end

Also note that memory management is left to the developer. When extObj is
released from the collaboration, they must ensure that it is destroyed to prevent
memory leaks.

3



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

1.2 Alternatives to Object Composition

Various approaches have been developed in order to support reuse. Unlike composi-
tion, which uses multiple external run-time objects to modify an object’s behaviour,
these approaches bind code to an existing object at the class level (where all objects
of the class type are affected) or at the object level (where only the current object is
affected). There are two benefits that a developer would like to gain with such code
segments.

• object modification. The code shall alter a set of objects’ behaviour in a
predictable way.

• applicable in multiple contexts. The same code can be applied to multiple,
potentially unrelated objects.

Aspects

In aspect-oriented development, code segments are placed in advices which can be
invoked at programmer defined join points (Kiczales, Hilsdale, Hugunin, Kersten,
Palm, and Griswold 2001). It was developed to provide functionality required across
many different features in a system.

Subjects

In subject-oriented development domain modelling accounts for the fact that objects
can be viewed from different perspectives within a system (Ossher, Kaplan, Katz,
Harrison, and Kruskal 1996). This results in a set of implementations associated with
an interface’s method declarations. The method implementation used when invoked
is based on user-defined composition rules. Subjects change the behaviour of objects
depending on current context but are not really designed for reuse.

Contexts

Context-Oriented Programming allows method invocation to be directed to different
code based on the current receiving object’s type and the current user-defined layer of
execution (Hirschfeld, Costanza, and Nierstrasz 2008). Object behaviour modification
is done by changing contexts at different points of execution as oppose to explicit
object extension.

Traits/Talents

Traits are a group of methods that can be added to a class (Ducasse, Nierstrasz,
Schärli, Wuyts, and Black 2006). In the event that a method name is equivalent to

4



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

one in the class it is being applied to, the programmer is tasked with providing a
resolution at compile time via aliasing (renaming). Talents are traits applied at the
object as opposed to the class level (Ressia, Gı̂rba, Nierstrasz, Perin, and Renggli
2014). Unlike traits however, objects can both acquire and relinquish talents at run-
time.

These approaches to changing object behaviour follow seminal work on the topic
in the late 1970s at MIT. A project called Flavors (Moon 1986) defines a type of
object to be a flavor. Such flavors can be “mixed” together to define an object’s
behaviour.

This work focuses on dymamic mixins as a viable alternative for object extension
and code reuse. The following section describes dynamic mixins in detail.

1.3 Mixins as a Reuse Tool

Mixins are design elements that support the maintainability and incremental de-
velopment of large programs. Mixins do not stand on their own but have to be
bound to provide functionality. They were originally introduced as abstract classes,
which are subsequently composed with superclasses in order to create objects (Moon
1986); more generally, mixins allow a unifying treatment of diverse inheritance mech-
anisms (Bracha and Cook 1990).

Static mixins are code fragments that can be composed with classes. Typically
they are used to encapsulate behaviour that can be reused with different classes. They
contain methods and fields but are incomplete because they can refer to methods that
have no associated implementation. Static mixin composition can be viewed as the
application of a function that takes in a class and a set of static mixins and returns
a class containing a union of the fields and methods from each of its constituents.
This operation provides bindings for any unresolved method calls found in the mixins
provided. Semantics vary per implementation but some linearization scheme is used
to order the mixins applied to a class. This determines how a program searches for
an object’s particular field or method when referenced. Some mixins can add their
intended behaviour without assistance from the objects they are bound to. These
are known as free mixins (Simons 2004). Methods included in bound (or incomplete)
mixins have references to their associated objects contained within them. Dynamic
mixins are applied to individual objects at run-time, extending the object with its
contained fields and methods. For the purposes of this work, the term “mixin” refers to
a dynamic mixin (applied to an object at run-time) unless explicitly stated otherwise.

Dynamic mixins allow the composition and modification of objects at run-time;
this is in contrast to the composition at compile-time, as is done through inheritance.
Dynamic mixins can be used for the modelling of roles that objects may acquire and
relinquish (VanHilst and Notkin 1996), for efficient data structure implementations
(Burton and Sekerinski 2013), and for more flexibly adding features to a base product

5



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

(Apel, Leich, and Saake 2006). Dynamic mixins can be expressed in several recent
languages. They are directly supported in Groovy (Subramaniam 2008), Perl 6, and
Ruby (Fitzgerald 2007). Dynamic mixins can be expressed in JavaScript and Python
through object augmentation (Harmes and Diaz 2007) by adding and overwriting
object fields that are methods. In Python, static mixins are directly expressed as
classed and composed through multiple inheritance (Lutz 2008).

1.4 Current Issues with Mixins

1.4.1 Type Safety

Dynamic mixins add run-time flexibility but can introduce safety problems in dynam-
ically typed languages. This is due to the fact that one cannot ensure that dynamic
extensions to objects are available when accessed at run-time. In Listing 1.3, object a
will always be able to call the method provideServiceA() because its class definition CA
has guaranteed that it will implement the ServiceA interface. At the point where

the statement (b as ServiceA).provideServiceA() is executed however, it is unknown
whether the object b has been extended to include the provideServiceA() method.
This depends on the value of someCondition earlier.

Listing 1.3: Mixin Potential Safety Issues

class ServiceA
provideServiceA()
...

class CA extends ServiceA
...

class CB
...

class MA extends ServiceA
...

begin
var someCondition : boolean
var extendObj : ServiceA
CA a := new CA()
CB b := new CB()

6



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

...
if someCondition then

extend b with MA
...

a.provideServiceA () // safe
(b as ServiceA).provideServiceA () // unsafe

end

1.4.2 Interference

Dynamic mixins support separation of concerns, a term that was used by Dijkstra
in the 70’s and underlies Parnas’ principles for modularization. However, interaction
among dynamic mixins can be subtle and lead to unexpected consequences as their
order of composition is not statically fixed. The example in Listing 1.4, adapted
from (Prehofer 2001), illustrates this. We specify a stack using sequences, writing 〈〉
for the empty sequence and e → s for prepending element e to sequence s. Method
parameters are passed by value and the type of a method’s return value is specified
as part of its signature.

Listing 1.4: Flawed Design with Mixins

class Stack
var s : seq(integer) := 〈〉
method push(val e : integer)

s := e → s
method pop() : integer

var e : integer
e, s := head(s), tail(s)
return e

method size() : integer
return len(s)

class Lock extends Stack
var l : boolean := false
method lock()

l := true
method unlock()

l := false
method push(val e : integer)

if ¬l then Stack.push(e)

7



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

method pop() : integer
if ¬l then return Stack.pop()

class Counter extends Stack
var c : integer
method init()

Stack.size(c)
method push(val e : integer)

c := c + 1 ; Stack.push(e)
method pop() : integer

c := c − 1 ; return Stack.pop()
method size() : integer

return c

class Encrypt extends Stack
method push(val e : integer)

Stack.push(9 − e)

var log : integer := 0

class Logging extends Stack
method push(val e : integer)

Stack.push(e) ; log := log + 1
method pop() : integer

val e : integer
e := Stack.pop() ; log := log + 1
return e

method size() : integer
val n : integer
n := Stack.size() ; log := log + 1
return n

Indentation is used instead of explicit bracketing. All methods are assumed to be
public and all fields are assumed to be private. Any class can be a mixin, which
can be added to an object at run-time. Mixins, however, may need certain features
to be present, hence they are “abstract subclasses.” The extends clause is used to
explicitly specify that dependency. A mixin accesses external features by invoking
method calls in the form C.m(), where C is the feature’s class name.

We write r := new C for creating an object x of class C and extend r with D
for extending object r with D. This extension requires that classes needed by mixin
D are implemented by r. For example, Stack can be implemented by a class that uses
arrays and pointers instead of sequences, as long as it provides the methods push,
pop, and size. Object r can also include other mixins. Thus, r does not have to be

8



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

“exactly” as needed by D, simply “at least” as needed by D. For example,

x := new Stack() ;
extend x with Counter ;
extend x with Lock

will first create a Stack object and then add Counter and Lock mixins to it. The
purpose of Counter is to keep an explicit count of the number of elements in the
stack such that the number can more efficiently be queried. The purpose of Lock is
to provide additional functionality by allowing the stack to be unmodifiable.

Method calls are resolved in linear order beginning with the last mixin bound to
the object and ending with the object’s base class. Above, after the creation of x, the
call x.push(a) leads to the calling sequence Lock.push  Counter.push  Stack.push
and the effect is x.c := x.c + 1 ; x.s := a → x.s (because Lock.l is false). Along the
same lines, the statement

x.push(a) ; x .lock() ; x .push(b) ; x .size(n) (1)

also has the effect of x.c := x.c + 1 ; x.s := a → x.s and additionally sets n to 1 be-
cause the call x.push(b) will resolve to Lock.push, which will return immediately as
the field l has been set to true by the call x.lock(). However, if x is composed in a
different order,

x := new Stack() ;
extend x with Lock ;
extend x with Counter

then (1) would also have the effect of x.c := x.c + 1 ; x.s := a → x.s but sets n to 2. In
this case, the call x.push(b) resolves to Counter.push  Lock.push, which increments c
in Counter.push and returns immediately in Lock.push. Now the call x.size() does not
return the size of the stack as x.c does not reflect the size of the stack, contrary to the
purpose of Counter. Intuitively, the problem is the assumption that Counter.c always
equals the size of the stack is broken. This assumption can be formally expressed by
the invariant c = len(s) in Counter.

The interference of Lock with Counter violates the separation of concerns principle
as Counter and Lock are not truly independent. Suppose that in the development of
a large system, stacks with locks are needed to implement the functionality of module
L, stacks with counters are needed to implement the functionality of module M , and
modules L and M are developed independently by different developers. Also, assume
that each developer is not aware that the other may extend stacks with mixins. The
extension of a stack object with a counter mixin only works as the developers of M
intended if no lock mixin is present in that stack object. The existence of a lock
mixin, however, is unknown to the developers of module M . Even if it were known,
the developers would have to agree to the order in which the mixins are applied.

9



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

The purpose of the class Logging in Listing 1.4 is to count the number of calls to
push and pop across objects. Now consider the sequence

x := new Stack() ;
extend x with Lock ;
extend x with Logging ;
x.lock() ; x.push(a)

which will increment log by 1. However, if Lock and Logging are added in reverse
order,

x := new Stack() ;
extend x with Lock ;
extend x with Logging ;
x.push(a)

then log will not be incremented. Thus, no invariant is violated, but the order in
which mixins are added changes the result of the computation.

1.4.3 Inefficient Method Lookup

Static, object-oriented languages that do not support dynamic mixins can have a
static object memory layout. Once an object is created, its fields and their types
are known. A fixed offset to fields provides constant time access to an object’s fields
at run-time. Languages that provide object extension must have some lookup code
added to each field access request since field location cannot be calculated at run-time.
Dynamically typed languages allow object extension by storing object members using
some abstract data structure. A scheme is also required to handle name clashes. The
time required to access to field members is bounded by the type of data structure
used.

A linearization order determines the order that components within an object are
inspected when searching for an object’s member. It also is used for method combina-
tion. The linearization tree formed with inheritance (or static mixins) is determined
at compile-time so location of all subclasses within an object is known. On the other
hand, the order in which the dynamic mixins are added is not known until run-time.
This complicates the compiler’s object model as this information must be encoded in
the object.

Finally, casting an object to a type involves finding the location of a particular
mixin within an object. Since a mixin location is not fixed, an efficient means of
traversing the object to find this information is required.

1.5 Summary of Contributions

The primary goal of this work is to address the concerns listed in Section 1.4. In
particular, the thesis addresses the question of whether dynamic mixins can be used

10



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

as a type-safe, efficient method of code reuse. To accomplish this, the following
contributions have been documented:

Mixin Formalization Current theory in literature about object-oriented design fo-
cuses on subclassing and subtyping. In this work, we extend a theory which
models object-oriented programs to formalize dynamic mixins (Burton and Sek-
erinski 2014). (Chapter 2)

Mixin Refinement Data refinement is used to ensure that a given module is a cor-
rect specialization of a data specification. In object-oriented development, there
has been much work in ensuring that subclasses are refinements of their parent
classes. A definition for mixin-based refinement is provided and rules to help
ensure that mixin composition is “safe” are presented (Burton and Sekerinski
2015). (Chapter 4)

Mixin Language The survey of current languages supporting dynamic mixins as
a language construct shows that most are dynamically typed languages which
do not support type safety. To address this shortcoming, a statically typed
language mix1 is presented (Burton and Sekerinski 2014). (Chapter 2)

Object Model Current languages that support dynamic mixins implement classes
as a set of attributes stored in an abstract data structure. In this work, an
alternative object model is presented which supports dynamic mixins while pro-
viding constant time access to attributes and methods (Burton and Sekerinski
2016). (Chapter 3)

Mixin Implementation A prototype compiler has been developed in order to test
the practicality of mix and implement a concrete version of the mixin-refinement
theory. The implementation also uses the object model developed (Burton and
Sekerinski 2017). (Chapter 3)

Use Cases Finally, we present a set of use cases to validate the applicability of the
work for practitioners (Burton and Sekerinski 2013), (Burton and Sekerinski
2014).(Chapter 5, 6)

1pronounced “mix”

11



Chapter 2

mix, a Statically Typed Language
for Dynamic Mixins

Mixin features are presented here as implemented in mix, a language developed to
support the flexible, modular, and safe extension of objects. The distinguishing fea-
ture of mix is that dynamic mixins are the primary means of code reuse; dynamic
mixins allow reuse that can be achieved by static mixins and inheritance. Despite the
dynamic nature of the language, mix statically ensures that method calls are defined.
Only mixin-related aspects of the mix language are discussed.

2.1 Language Goals

The purpose of mix is to support the structured use of dynamic mixins. With this in
mind, the following are design goals of the language.

1. support for implementing roles and features

2. simple object evolution

3. object safety

A subset of an object’s properties are relevant in a particular collaboration can be
seen as a role (Kristensen and Osterbye 1996). In this context, a collaboration is a
group of objects that work together to provide a service or implement an application
feature. An object can take on many roles and participate in multiple collaborations
over its lifetime, some of them concurrently. In mix, the intention is to give developers
the ability to express the fact that objects can routinely enter and exit collaborations
via adding and dropping roles during program execution.

Developers should be able to easily update the behaviour of an object based on
the system state or environment. This is essential for the development of self-aware
and context-aware systems (Salehie and Tahvildari 2009) (Ceri, Daniel, Matera, and

12



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Facca 2007). Furthermore, feature improvement should be applied in a modular
fashion. The goal is to make the development and support of such systems as simple
as possible.

Dynamic mixins provide flexibility but we wish to prevent object composition that
violates object invariants. An object invariant is defined as a property of its state
space (set of fields) that is expected to hold throughout its lifetime. In particular, we
concern ourselves with bound mixins that require access to their associated object’s
fields.

2.2 mix Abstract Syntax

The abstract syntax for mix is presented below. The non-terminal id is a sequence
of letters. A line over a term stands for that term being repeated zero to many times.
A term in square brackets is optional and occurs at most once. Text in courier font
is a terminal keyword in the language. The concrete syntax in Appendix A includes
extra terminal symbols and distinguishes between lists and single terms. Note that the
abstract syntax uses result variables to store values returned from methods. Their
associated result values can be used in program correctness proofs. The concrete
syntax passes method results to its caller using the return statement as is common
in many programming languages.

〈program〉 ::= program id 〈class〉 〈statement〉

〈class〉 ::= class id [extends id] [implements id] 〈member〉

〈member〉 ::= 〈constant〉 | 〈variable〉 | 〈method〉 | 〈init〉

〈constant〉 ::= const id 〈type〉 〈expression〉

〈variable〉 ::= var id 〈type〉

〈method〉 ::= method id (val id : 〈type〉) [res id 〈type〉] 〈variable〉 〈statement〉

〈init〉 ::= initialization (val id : 〈type〉) 〈variable〉 〈statement〉

〈designator〉 ::= id .id

〈statement〉 ::= 〈designator〉 := 〈expression〉
| if 〈expression〉 then 〈statement〉 else 〈statement〉
| extend 〈expression〉 with id
| implement 〈expression〉 with id

13



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

| dispose 〈expression〉
| 〈expression〉 (〈expression〉,id)
| 〈statement〉 ; 〈statement〉

〈expression〉 ::= nil | true | false | 0 | 1 | . . .
| new id 〈expression〉
| id as id | id has id
| 〈expression〉 ∧ 〈expression〉 | 〈expression〉 + 〈expression〉

. . .

〈type〉 ::= boolean | integer | . . .

2.3 Language Definition

Classes serve for both creating and adding mixins to objects. Class fields are assumed
to be private to the class and class methods are assumed to be public. Classes may
extend another class and may implement another class; at most one class can be
extended and one class implemented. Classes that don’t extend another class can be
directly instantiated or used as a free mixin. Classes that extend another class require
objects of other classes to be present and are used as bound mixins.

If class D extends C, then D may add new methods and must override methods
of C. In order to reuse methods of C, an overriding method in D has a method
body that makes a “super-call” to the corresponding C method. If a method m of
C is not explicitly overridden in D, it is assumed to be defined as the “super-call”
C.m() in D. If class D′ implements class D, then D′ must define all methods of D:
type-checking allows objects of class D′ to be used wherever objects of class D are
expected. Fields of D′ are only those declared in D′, fields of D are not “inherited”.
If D extends C, then D′ must also extend C. Listing 2.1 gives an example of how the
state space is replaced in an implementing class. In this example, IntLock implements
Lock (found in Listing 1.4) by using an integer field instead of a boolean field. The
method length() uses a default implementation from the Stack object that the class
is bound to at runtime.

Listing 2.1: A Class Implementing Another Class

class IntLock extends Stack implements Lock
var n : integer
initialization()

n := 0
method push(t : integer)

if n = 0 then
Stack.push(t)

method lock(t : integer)
n := 1

14



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

method length() : integer
return Stack.length()

If D extends C, we write extends(D) = C. The function extends is defined for all
classes except class Object, a predefined class. If a class declaration does not include
an extends clause, it implicitly extends Object. The notions of sub- and superclasses
as well as sub- and supertypes are the transitive and reflexive extensions of the extends
and implements relations:

superclasses(C) = set of all classes that C transitively extends, including C

subclasses(C) = set of all classes that transitively extend C, including C

supertypes(C) = set of all classes that C transitively implements, including C

subtypes(C) = set of all classes that transitively implement C, including C

The declaration of an object variable specifies the type to be a class, as in
var s: Stack. Variable s may refer to a Stack object or to one that implements Stack.
The object can have other mixins, like Lock, but through s only the functionality of
the Stack mixin can be accessed, even if a call to s.push may lead to another mixin,
like Lock. The statements and expressions in mix relating to mixins are:

x := new C create object x of class C: allocate the object and execute its initializer.
Class C must be or implement the declared class of x and C must not extend
another class.

y := extend x with D extend object x with mixin D and let y refer to the new
mixin; if mixin D is already present in x, raise an exception; if D extends a class
E distinct from Object and an E mixin is not present in x, raise an exception.
This ensures that mixin D occurs in x at most once and that all mixins extended
by D are already contained in the object. The order in which mixins are added
to an object is maintained. This is used for method call resolution. If used as a
statement, like extend s with Lock for the example in Listing 1.4, the returned
reference to Lock is discarded.

z := implement x with D given the static type of s of object x, replace the mixin
that implements s with a new mixin segment of type D and let z refer to this
new segment. If mixin D does not implement s, raise an exception. The new
mixin segment of type D assumes the same place in the linearization order as
the one it replaced.

x has D test if one of the mixins of x is of class D or implements D; x may be
declared of any class.

x as D return an object of class D by casting x, if x has D, otherwise raise an
exception; object x may be declared of any class. For example, given s : Stack

15



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

and l : Lock, if l := s as Lock succeeds, l.lock may be called. Converting to Object
will always succeed. For example, s and l cannot be compared for equality, as
they have different types, but s as Object = l as Object tests if s and l refer to
mixins of the same object.

x.m() execute the last mixin that was added to x and that implements a class that
extends C, assuming x is declared to be of class C, x : C and C includes method
m; that is, call the last added method m. (If unrelated classes define methods m,
these are unrelated methods.) Within a class, the “self-call” to another method
of the same class is written as m().

C.m() “super-call” m by executing the previous mixin that was added and imple-
ments m, provided that the class in which C.m() is called is a proper subclass
of C and m is a method of C.

The extends relation between related mixins forms a tree. This relation is linearized
according to the order of extension. Self-calls in one mixin go to the last mixin, super-
calls go to the previous mixin. Both self-calls and super-calls are dynamically bound.

Since an object may contain several unrelated mixins, meaning that they don’t
have a common superclass except Object, each set of related classes has it own lin-
earization order. Mixins don’t have to be of the exact extended type, only of an
implemented type.

Consider the example in Listing 1.4 where a base stack data structure is decorated
with both a counter and a locking feature mixin. The call s.push(5) goes to the end of
the linearization chain, here to mixin Counter. By making the super-call Stack.push()
in each of the object extensions that extend Stack, all mixins in the linearization chain
rooted in Stack will be called and can reestablish their own local mixin invariant (Bur-
ton and Sekerinski 2015): the call Stack.push(t) in Lock goes to Counter and the call
Stack.push(t) in Counter goes to Stack.

2.4 Differentiating Language Features

Unlike in dynamically typed languages, adding individual fields to objects in mix is
not allowed. The rationale is that developers must organize their classes into features
or roles before they are composed with objects. Such functionality can be obtained
using the Decorator pattern in a statically typed language, however a base object
must anticipate its extension and declare a pointer to a specific class extension type
at compile time (Burton and Sekerinski 2014). Future extensions involve modifying
the base object’s class code. In mix, the base object is unaware of any extension.
“Super-calls” are made without knowing the actual type of the class that will receive
it. This call is safe because the receiver is guaranteed to implement the interface that
the sender needs.

16



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Statically typed object-oriented languages such as C++ do not support dynamic
super-calls natively. The Extension Object Pattern provides a means of developing
object extensions but does not consider super-calls between extensions (Gamma 1997).
In Java, one can simulate this by generating a linked list of collaborating objects. The
reflection API can then be used to obtain class type and interface information about
the objects. Method calls would then be routed to the appropriate class based on this
information. Type safety is not guaranteed because class and method name would
have to be passed by the caller.

While statically typed languages like C++ and Java don’t directly support mixins,
extensions of such languages with static mixins have been proposed (Ancona, Lago-
rio, and Zucca 2003; Flatt, Krishnamurthi, and Felleisen 1998b; Allen, Bannet, and
Cartwright 2003). Dynamically typed languages are well suited to support dynamic
mixins. Flavors is an extension of Lisp in which objects are created by composing
mixins, called ”flavors” (Moon 1986). It includes multiple means of method combi-
nation where a programmer can define a sequence of method calls from an object’s
different constituent flavors when one of its methods is invoked. XOTcl, an extension
of OTcl (Neumann and Zdun 1999), provides a simpler method combination technique
where an object’s methods with the same name are linearized and the keyword next
is used to invoke the next method in the list. In Python and JavaScript, mixins are
not natively available but since attributes can be added to objects dynamically, mix-
ins can be simulated using additional code (Harmes and Diaz 2007). Ruby supports
dynamic mixins (Fitzgerald 2007) but does not allow them to contain state or provide
a way to remove them. Dynamic mixins can be added to Groovy objects using the
metaClass attribute at runtime (Subramaniam 2008) or via the static Class.mixin
attribute (CodeHaus 2014).

2.5 Formal Definition of mix

The formal definition of mix is in two steps: first we define a core language by the
weakest precondition predicate transformer. Then we define mix by translation to the
core language.

2.5.1 Abstract Syntax for Core Language

The abstract syntax of the core language is as follows. A line over a term stands for
that term being repeated zero or more times. The core language adds statements such
as non-deterministic assignment and composition which allows a programmer to build
non-executable program specifications. Guards and preconditions are also added. A
procedure type is introduced so that methods can be passed as parameters.

17



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

〈statement〉 ::= skip (empty statement)

| abort (failed statement)

| assume 〈expression〉 (guard)

| assert 〈expression〉 (precondition)

| id := 〈expression〉 (multiple assignment)

| id :∈ 〈expression〉 (nondeterministic assignment)

| 〈expression〉(〈expression〉, id) (call)

| 〈statement〉 [] 〈statement〉 (nondeterministic composition)

| 〈statement〉 ; 〈statement〉 (sequential composition)

| declaration in 〈statement〉 (declaration)

〈declaration〉 ::= const id = 〈expression〉 (constant)

| var id : type | 〈expression〉 (variable)

〈expression〉 ::= val id : type res id : type • 〈statement〉 (procedure)

| 〈expression〉 ∧ 〈expression〉 | 〈expression〉+ 〈expression〉 . . .

(other expressions)

〈type〉 ::= type 7→ type (procedure type)

| boolean | integer | . . . (other types)

〈program〉 ::= program id 〈statement〉 (main program)

A program declares the extent variable ref and initializes it to the empty set:

programP S =̂ var ref : Ref := {} inS

18



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

2.5.2 Core Language Semantics

The core language is similar to those of other refinement calculi, e.g. (Back and Wright
1998; Morgan 1998), with the exception of considering statements as values (Naumann
1995), which we treat here syntactically by defining the syntax of statements as ex-
pressions, rather than semantically, as this is sufficient for our purpose. Procedures
are expressions: a procedure is formally a triple, a statement with formal value and re-
sult parameters, of procedure type, e.g. val i : integer res b : boolean • b := even(i)
is of type integer 7→ boolean. In the call f(e, x), expression f is a procedure and
e, x are the actual value and result parameters. We assume that all programs are
well-typed and may leave out the types for brevity.

The correctness assertion {p}S{q} means that if predicate p holds initially, then
statement S terminates and predicate q holds finally. This is equivalent to stating
that p implies the weakest precondition of S to establish q, written as p ⇒ wp(S, q).
The predicate transformer wp is defined in the standard way for common statements.
Let x be an identifier, X a type, b, e, q expressions, and S, T statements. An overline
indicates a list, e.g. x is a list of identifiers:

wp(abort, q) =̂ false
wp(skip, q) =̂ q
wp(assume b, q) =̂ b⇒ q
wp(assert b, q) =̂ b ∧ q
wp(x := e, q) =̂ q[x\e]
wp(x :∈ e, q) =̂ ∀x ∈ e • q
wp(f(e, x), q) =̂ ∀w : W • wp(S, q[x\w])[v\e] where f = val v : V res w : W • S
wp(S [] T, q) =̂ wp(S, q) ∧ wp(T, q)
wp(S ; T, q) =̂ wp(S,wp(T, q))
wp(const x = e inS, q) =̂ wp(S[x\e], q)
wp(var x : X | b inS, q) =̂ ∀x : X • b⇒ wp(S, q) provided x not free in q

The abort statement guarantees nothing about the program’s state or termina-
tion. The skip statement leaves the program’s state unmodified and always termi-
nates. The multiple assignment x := e updates all variables x simultaneously; type-
checking ensures that the expressions e are of the correct types. The nondeterministic
assignment x :∈ e assigns any element of the set e to x and blocks if e is empty; it
generalizes to a tuple x of variables. The assumption assume b skips if b is true and
blocks otherwise. The assertion assert b skips if b is true and aborts otherwise. The
nondeterministic choice S [] T selects either operand, whichever is not blocked. If
either operand aborts, the whole statement aborts. For the procedure call f(e, x),
type-checking ensures that f is of the appropriate form. The term wp(S, q[x\w])[v\e]
implies that finally w is assigned to x and that initially e is assigned to v. The universal
quantification of w expresses that w is initialized arbitrarily. The sequential composi-
tion is as usual. The constant declaration const x = e inS is defined by substituting

19



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

x by e in S, which is well-defined as S is an expression. Both constant and variable
declarations introduce bound “variables”, which follow the usual rules of nesting. The
variable declaration var x : X | b inS initializes variables x to any element such that
b holds, or blocks if none exist.

Two statements are semantically equal (rather than equal as terms) if they always
establish the same postcondition:

S = T =̂ ∀q • wp(S, q) = wp(T, q)

Following example illustrates parameter passing, procedures as values, and substitu-
tion in statements; the types are left out:

wp(m := (valx res y • y := 2× x) ; m(3, a), a = 6)
≡ wp(m(3, a), a = 6)[m\valx res y • y := 2× x] (wp of ;, :=)
≡ wp((val x res y • y := 2× x)(3, a), a = 6) (substitution)
≡ ∀y • wp(y := 2× x, (a = 6)[a\y])[x\3] (wp of call)
≡ ∀y • wp(y := 2× x, y = 6)[x\3] (substitution)
≡ true (wp of :=, substitution, logic)

As a note, this treatment of procedures as values is general enough to allow “self-
modifying” programs; for example, wp(m := (m := skip) ; m(),m = skip) is indeed
true. Statements of the core language can be extended as needed, for example with
require and if statements:

〈statement〉 ::= . . .

| require〈expression〉 then〈statement〉

| if〈expression〉 then〈statement〉 else〈statement〉

| if〈expression〉 then〈statement〉

Those are defined in terms of the core statements:

require b thenS =̂ assert b ; S
if b thenS elseT =̂ (assume b ; S) [] (assume¬b ; T )
if b thenS =̂ if b thenS else skip

Loops can be defined in terms of fixed points, e.g. (Back and Wright 1998; Morgan
1998). We skip their treatment as they are not needed for the formalization of mixins.
Object fields are defined as functions from object references to their values. We extend

20



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

expressions and assignments accordingly:

〈expression〉 ::= . . .

| 〈expression〉.id (field selection)

〈statement〉 ::= . . .

| 〈expression〉.id := 〈expression〉 (field assignment)

| 〈expression〉.id :∈ 〈expression〉(nondeterministic field assignment)

The dot notation x.f , used for referring to field f of object x, is synonymous to f(x).
For example, x.f := x.f + 1 is synonymous to f(x) := f(x) + 1. We write f [x ← e]
for modifying function f to return e given the argument x:

f(d) := e =̂ f := f [d← e]
f(d) :∈ e =̂ varh | h ∈ e • f := f [d← h]

We add procedure declarations, class declarations, and for convenience, variations
of variable declarations:

〈declaration〉 ::= . . .

| var id : type

| var id : type := 〈expression〉

| procedure id(val id : 〈type〉 res id : type) 〈statement〉

| class idvar id : 〈type〉

method id(val id : 〈type〉 res id : 〈type〉) 〈statement〉

| class id extends id var id : 〈type〉

method id(val id : 〈type〉 res id : 〈type〉) 〈statement〉

| class id implements id var id : 〈type〉

method id(val id : 〈type〉 res id : 〈type〉) 〈statement〉

Not specifying an initializing predicate, as in varx : X means that x is initialized to
an arbitrary value; alternatively, a variable may be initialized to a specific value, as
in var x : X = e, or var x = e if the type can be inferred.

varx : X =̂ varx : X | true
varx : X := e =̂ var x : X | x = e

21



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Declaring a variable varx : C, where C is a class, makes x of type Ref, the set of all
possible object references, and associates the class C to x. A procedure declaration
is just a shorthand for a constant declaration:

procedurem(val v : V resw : W ) S =̂ constm = val v : V resw : W • S

A module A is formally a structure with a set of variables, an initialization predi-
cate, an invariant, and a set of methods (Abrial 1996; Morgan 1998). Variables and
methods are either private or public; if a variable or method is not marked as private,
it is understood to be public:

module A
var v : V = v0
invariant I
method m (u: U) w: W

require b then S
...

We refer to the invariant I as Ainv and to the initialization v = v0 as Ainit. Each
method is a pair, with the precondition b of method m referred to as mpre and the
body S as mbody; if the precondition is left out, it is understood to be true.

2.5.3 Translation of Classes and Modules

Classes are declared within modules but the notion of independent modules are re-
moved during translation. Classes themselves are either free or extend another class,
in which case the methods of the extended class are overridden. The declaration of
any class, say C, leads to the declaration of a number of variables, constants, and
procedures: an extent variable C.ref for all objects (or mixins) of that class, for each
field f , a field variable C.f mapping C references to field values, and for each method
m, a method variable C.m mapping C references to procedures. A method is a func-
tion that takes an object reference, by convention called self, and returns a procedure.
Free class C also declares constants C::init for the initialization (“constructor”), which
is taken to be skip by default, and C::m for each method m. The procedure C.init
assigns the methods C::m to the method variables of the created object and calls
the initialization. The procedure C.new creates an object before calling C.init. The
procedure C.extend(r) checks if r is an object before calling C.init. Procedures C.has
and C.as perform class (“type”) checks and class (“type”) casts. With ref : Ref being
the set all created objects, we define:

class C
var f : F
method init(val u : U) P
method m(val v : V res w : W) M

=̂

22



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

var C.ref : set(Ref) := {}
var C.f : Ref → F
var C.m : Ref → (V 7→ W)
const C::init(self : Ref) = val u : U • P
const C::m(self : Ref) = val v : V res w : W • M
procedure C.init(val r: Ref, u : U)

C.ref := C.ref ∪ {r} ; C.m(r) := C::m(r) ; C::init(r)(u)
procedure C.new(val u : U res r : Ref)

r :/∈ ref ; ref := ref ∪ {r} ; C.init(r, u)
procedure C.extend(val r : Ref, u : U)

require r ∈ ref then C.init(r, u)
procedure C.has(val r : Ref res b : boolean)

b := r ∈ C.ref
procedure C.as(val r : Ref res s : ref)

require r ∈ C.ref then s := r

This definition generalized to classes with more (or less) than one field or method. We
allow fields to be initialized at declaration, writing var f : F := e, which is equivalent
to adding self.f := e to the C::init method.

If class D extends C, then overridden methods of C are stored in the method
variables of C. For the fields g of D and the new methods D::n of D, new field and
method variables are introduced. Method D.extend(r) checks if r is a C object and
if so, mixes D into the object:

class D extends C
var g : G
method init(z : Z) Q
method m(val v : V res w : W) M
method n(val x : X res y : Y) N

=̂
var D.ref : set(Ref) := {}
var D.g : Ref → G
var D.n : Ref → (X 7→ Y)
const D::init(C.m)(self : Ref) = val z : Z • Q
const D::m(C.m)(self : Ref) = val v : V res w : W • M
const D::n(self : Ref) = val x : X res y : Y • N
procedure D.init (val r : Ref, z : Z)

D.ref := D.ref ∪ {r} ;
C.m(r), D.n(r) := D::m(C.m(r))(r), D::n(r) ;
D::init(r, z)

procedure D.extend(val r : Ref, z : Z)
require r ∈ C.ref then D.init(r, z)

procedure D.has(val r : Ref res b: boolean)

23



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

b := r ∈ D.ref
procedure D.as(val r : Ref res s : Ref)

require r ∈ D.ref then s := r

Here, D::init, D::m are functions that take C.m, a procedure that is distinct from the
method variable C.m, as a parameter. There are two kinds of method calls. The
down-call c.m(x, e), is resolved to method m of object c at the time of the call; as a
special case, c can be self , the receiver of a call. If c is of class C, a call to a method
m of c refers to C.m(c):

c.m(e, x) =̂ C.m(c)(e, x)

The other method call is the up-call (super-call) C.m, which when occurring in
mixin D, is resolved to the value of self.m at the time when the mixin D is applied
to self. The assignment to C.m(r) in D.init reflects this.

A number of conventions are used to make programs look familiar. Access to
field f of object r is written as r.f . Furthermore, if r is declared as being of class C
and D is another class (which may or may not need C):

r.f =̂ C.f(r)
r := newC =̂ C.new(r)
extend rwithC =̂ C.extend(r)
b := r hasD =̂ D.has(r, b)
s := r asD =̂ D.as(r, s)

Within methods, field access self.f is abbreviated as f , as in Listing 1.4.
Finally, a mix program is a named statement:

program ::= program id 〈statement〉 (main program)

A program declares the extent variable ref and initializes it to the empty set:

programP S =̂ var ref : Ref := {} inS

A program is syntactically well-defined (1) if all classes that it uses are declared
on top level within the program, (2) all extent variables and method variables are
“hidden”, i.e. only modified through new and extend, (3) all field variables are
“private”, i.e. each field f is modified only through assigning self.f in methods, (4)
object initializations do not modify any variables except self.f . Well-defined programs
may access and modify global variables. These are used for observing the program’s
behaviour.

var Lock.ref : set(Ref) := {}
var Lock.l : Ref → boolean
var Lock.lock : Ref → (() 7→ ())

24



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

var Lock.unlock : Ref → (() 7→ ())
const Lock::init(self : Ref) = self.l := true
const Lock::lock(self : Ref) = self.l := true
const Lock::unlock(self : Ref) = self.l := false
const Lock::push(Stack.push)(self : Ref) =

val e : integer res d : boolean •

if ¬self.l then Stack.push(e, d) else d := false
const Lock::pop(Stack.pop)(self : Ref) =

res e : integer, d : boolean •

if ¬self.l then Stack.pop(e, d) else d := false
procedure Lock.init(val self : Ref)

Lock.ref := Lock.ref ∪ {self} ;
Stack.push(self), Stack.pop(self) :=

Lock::push(Stack.push(self))(self), Lock::pop(Stack.pop(self))(self) ;
Lock.lock(self), Lock.unlock(self) := Lock::lock(self), Lock::unlock(self) ;
Lock::init(self)

procedure Lock.new(res r : Ref)
r :/∈ ref ; ref := ref ∪ {r} ; Lock.init(r)

procedure Lock.extend(val r : Ref)
require r /∈ Stack.ref then Stack.init(r)

procedure Lock.has(val r : Ref res b : boolean)
b := r ∈ Lock.ref

procedure Lock.as(var r : Ref res s : Ref)
require r ∈ Lock.ref then s := r

25



Chapter 3

mix Implementation

Dynamic mixins complicate the compiler’s object model. The order in which the
mixins are added is not known until runtime, so this information must be encoded in
the model. This linearization order is required to determine where to look up method
definitions when a message is received by the base object. As with the Decorator
pattern, dynamic mixins can be used for method combination. This linearization
order defines how methods are combined. Finally, casting an object to a type involves
finding the location of a particular mixin within an object. Since a mixin location
is not fixed, an efficient means of traversing the object to find this information is
required.

The implementation of the dynamic mixin language mix is discussed in this chapter.
In particular, a memory model to support the language implementation is described.
Static, object-oriented languages that do not support dynamic mixins can have a
static object memory layout. Once an object is created, its fields and their types are
known. Fixed field offsets provide constant time access to an object’s fields at runtime.
Languages that provide object extension must have some lookup code added to each
field access request since field locations cannot be calculated at compile-time. The
proposed memory layout allows constant time access to fields and methods defined in
the static type of the object, while supporting functionality found in the Decorator
pattern. Pointer management is left to the language implementer as opposed to the
application developer.

3.1 Memory Layout

Despite allowing an object to be extended with an arbitrary number of mixins, meth-
ods are always accessed using a statically known offset; no searching for methods by
name takes place. This is realized by two kinds of structures, type descriptors and
object segments.

For every class D, including Object, a type descriptor D type is created. This
is a record that contains a pointer to a method implementation for every method

26



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

defined in that class. If class D extends C, then D type contains all methods defined
in D, whether new or overridden. The layout of type descriptors is such that if
class C ′ implements C, then the type descriptor of C ′ first has pointers to its own
implementation of methods of C and then possibly pointers to new methods. Type
descriptors are used to identify types and for method call resolution. We use the type
TypePtr for pointers to type descriptors.

Each object consists of a number of object segments, of which one is the head
segment and the remaining are mixin segments. The head segment determines the
object’s identity. Mixin segments can be added (and potentially removed) as needed.
Each object segment is a record with following fields:

type The field type points to the type descriptor of the mixin’s type. The head segment
points to Object type, the type descriptor of Object.

cycle The field cycle points to the next segment in order of extension, regardless of
its type. The head segment points to the first mixin segment and the last mixin
segment points to the head segment.

bottom For every class C, except Object, all subclasses of C, including C, have a field
C bottom that points to the last added mixin that extends C.

up For every class C, except Object, all proper subclasses of C, i.e. excluding C, have
a field C up to the last previously added mixin that extends C.

fields This field is itself a record, containing all the fields declared in the mixin’s class

The order of fields is such that type and cycle are first, then the bottom and up
fields for each superclass, in order of the subclass relation, starting with the one that
only needs Object, and finally concludes with the fields record.

Figure 3.1 illustrates this.
This memory layout also applies in presence of subtyping: if some class C ′ imple-

ments C and has extra methods m′(), then C ′ type has fields for m() and m′(). If
D extends C ′, and has extra methods n(), then D type will only have fields for m()
and n() because class D is a subtype of C but not C ′. The type ObjPtr is the type of
pointers to object segments.

The auxiliary function implements(t, C) tests if the type pointed to by t imple-
ments C, which means that it is of type C or any of its subtypes:

implements(t, C) =̂
∨

B ∈ subtypes(C) • t = B type

For example, if only class C ′ implements C, we have that implements(t, C) is t
= C type ∨ t = C ′ type. Calls to implements in the code found in the upcoming
sections are inlined as at run-time. Class names, the implements relation, and the
extends relation are not explicitly represented.

27



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

cycle

type
cycle
Stack_bottom
fields

type

fields

 

 

Stack_up
Lock_bottom
fields

 

s:

type
Object_type:

push()
length()

Stack_type:
 

 

 

cycle

Counter_type:

type
Lock_type:

Stack_up

Stack_bottom

 

cycle

Stack_bottom

Counter_bottom

object
segment

Legend:

points to

 push()
length()

push()
length()
lock()

Figure 3.1: Memory Layout of the Example in Section 1.4.2

Figure 3.2 gives an example with multiple extensions of a class and “interleaved”
addition of mixins from different branches.

3.2 Program Initialization

When a program in mix begins, a type descriptor C type for each class, which includes
declared classes and the predefined class Object, is allocated:

28



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

for C ∈ all classes do
// allocate type descriptor C type for C
for m ∈ methods defined in C do

C type.m := implementation of m

3.3 Object Creation

Creating an object of class C first creates the head segment and then extends it
with C’s segment. The statement x := new C translates to the call x := C new(),
assuming that C does not extend any class other than Object:

procedure C new(): ObjPtr
// allocate header segment h
h.type := Object type
h.cycle := h
return C extend(h)

3.4 Object Extension

When extending an object by class D that extends C, first the absence of a D mixin
and the presence of a C mixin are checked. In existing segments, the bottom pointers
need to be updated: each bottom pointer in a segment that goes to a segment that
implements a superclass of D is set to point to the extension. As updating bottom
pointers when extending by D is also required when extending by a class that extends
D, the code for that is factored out in the procedure D updateBottoms. The new
segment has up pointers for all proper superclasses of D. If A is a proper superclass,
A up is set to the last mixin that extends A. The last mixin is found by iterating
through all mixins from the first segment downward and recording A up each time
a segment is found that implements a subclass of A. In order to start at the first
segment, the header is located using the cycle pointers; the first segment is the one
after the header. The updates of the bottom pointers of the segment and the up

29



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

pointers of the extension can be merged into one loop. Finally, the cycle pointers are
updated to make e the new bottom and the bottom pointers of e are set to itself. The
statement y := extend x with D translates to the call y := D extend(x):

procedure D extend(p: ObjPtr): ObjPtr
if D has(p) ∨ ¬ C has(p) then raise
b := p
while b.cycle.type 6= Object type do // find bottom b

b := b.cycle
h := b.cycle // header
// allocate segment e for extension D
q := h.cycle // first segment
repeat

D updateBottoms(q, e)
for A in superclasses(D) − {D} do

if
∨

B ∈subclasses(A) • implements (q.type, B) then
e.C up := q

q := q.cycle
until q = b
b.cycle := e // new bottom is e
e.cycle := h
e.type := D type
for C in superclasses(D) do

e.C bottom := e
return q

If D extends only Object, the body of D updateBottoms(q, e) is empty. Otherwise,
if D extends C we have:

procedure D updateBottoms(q, e: ObjPtr)
for B ∈ subclasses(C) − subclasses(D) do

if implements(q.type, B) then q.B bottom := e
C updateBottoms(q, e)

30



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

m()

m()

m()

Object
cycle

type
cycle
C_bottom
fields

type

fields

 

 

C_up
E_bottom
fields

 

type

D_bottom
D_up

 

F_bottom
fields

h:

c:

d:

e:

f:

type
Object_type:

m()
C_type:

 

 

 

cycle

D_type:

type
E_type:

C_up

C_bottom

C
m()

D
m()
n()

E
m()
o()

F
m()
n()
p()

 

F_type:

n()

cycle

 
cycle
C_bottom
C_up

C_bottom

D_bottom

object
segment

Legend:

class
method extends

points to

 
n()

o()

p()

Figure 3.2: Top right: a class hierarchy; class C only extends Object, thus C mixins
have only a C bottom field; class D extends C, thus D mixins have C bottom,C up,
D bottom fields and similarly for class E; class F extends D, which itself extends C,
thus F mixins have C bottom, C up, D bottom, D up, F bottom fields.

Left: in solid lines, a C object to which D and E mixins were added, in that
order; in dashed lines, changes after extending with F . The corresponding mixins are
labelled c, d, e, f : fields C bottom in c, d, e point to E, the last mixin extending C,
after extension with F , point to F ; field D bottom in d points to d, after insertion of
F , the last mixin extending D, points to F ; in e, field E bottom is unaffected by the
extension with F .

31



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

3.5 Type Test and Type Cast

The expression x has D translates to the call D has(x); for each type, one such proce-
dure is generated. The cycle fields connect all segments of an object and the parameter
x points to one of those. The segments are traversed and if a segment is found that
implements D, the type test returns true, otherwise false:

procedure D has(p: ObjPtr): boolean
q := p
repeat

if implements(q.type, D) then return true
q := q.cycle

until p = q
return false

The expression x as D translates to the call D as(x). The implementation is
similar to that of type tests, except that a pointer to a segment that implements D
is returned if one is found, otherwise an exception is raised:

procedure D as(p: ObjPtr): ObjPtr
q := p
repeat

if implements(q.type, D) then return q
q := q.cycle

until p = q
raise

3.6 Method Calls

Suppose x is declared to be of class D and D has method m. The call x.m(args) goes
to the last mixin of x that extends D, which is determined by following the D bottom
pointer of x. The segment x.D bottom is used for both selecting the method to be
called and as the first parameter, self, in the method call:

x.m(args) =̂ x.D bottom.type.m(x.D bottom, args)

Recall that the field D bottom is present in every mixin segment that extends D and
is allocated at the same offset in every such segment; the segment D bottom may be
of class D or a class that implements D. The “self-call” m(args) within a class with
method m is a shorthand for self.m(args):

m(args) =̂ self.D bottom.type.m(self.D bottom, args)

In class D, a “super-call” C.m(args) to any of its proper superclasses where

32



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

C ∈ superclasses(D)− {D} translates to an up-call following the C up field. Variable
self is the pointer to the segment in which the call occurs; self.C up is used for both
selecting the method to be called and as the self-parameter in the method call:

C.m(args) =̂ self.C up.type.m(self.C up, args)

Recall that the field C up is present in every mixin segment that extends C and is
allocated at the same offset in every such segment.

3.7 Analysis

A compiler emitting C code has been built to evaluate this model. The run-time
complexity of the generated code is as follows:

Program initialization is linear in the number of classes and linear in the total
number of methods (as in other compiled languages)

Object creation needs constant time, plus the time for memory allocation (as in
other compiled languages)

Object extension is linear in the number of mixins (assuming that the presence of
the extending class, absence of the extended class is checked while searching for
header), plus quadratic in the depth of the extension hierarchy (for updating the
up and bottom pointers for existing mixins, assuming that implements requires
constant time), plus linear in the number of mixins of the object, plus linear in
the depth of the extension hierarchy (for updating the bottom pointers of the
extension); plus the time for allocation (in Python object extension is linear in
the number of methods, accessed by hashing)

Type test, type cast needs time linear in the number of mixins (assuming that the
implements function needs constant time) (in Python, test of set membership,
in case mixins are recorded as a set in a field; in compiled languages, if the class
hierarchy is fixed, can be optimized to constant time)

Down-call needs constant time (one indirection to the bottom mixin and one to the
method table, accessing the method at a fixed offset); (in compiled languages,
one indirection to the method table, accessing the method at a fixed offset)

Super-call needs constant time (one indirection to the up mixin and one to the
method table, accessing the method at a fixed offset); (in compiled languages,a
direct call)

The assumption that implements requires constant time can be guaranteed if the class
hierarchy is fixed. The dependencies can be summarized as follows:

33



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

• The number of free mixins does influence type casts, type test linearly and ob-
ject extension double linearly, but neither influences method lookup nor object
creation time.

• The number of method and fields per mixin does not influence method lookup
and field access time (like C++, Java, but unlike languages that require hashing)

• The depth of the extension hierarchy influences object extension quadratically;
(in C++, Java, Python there is no influence)

The memory overhead is as follows:

• For each free mixin: three pointers (cycle, type, bottom)

• For every object: one header segment with two pointers (type, cycle)

• For every directly or indirectly extended class: two pointers (up, bottom)

(In C++, Java, Python, one type pointer for each object)

3.8 Translation to Executable Code

The compiler that has been built to implement mix emits C code as its target. A target
of C code allows for fair comparison with C program implementations as the same
compiler will be used to optimize and generate executable code. The source code is
available in the following git repository - http://www.github.com/bmellow/mx.

Listing 3.1 contains a program which defines a Point class. It is used to explain key
parts of the translation as described earlier in the chapter. For brevity, the complete
translation is found in Appendix B.

Along with the core Point class, the following are included.

• ArrayPoint, an alternative data representation of a point. This provides a dif-
ferent implementation of all methods that Point exposes. Since it implements
Point, this mixin can be used wherever a Point mixin is. In Listing 3.1, the
statement implement p with ArrayPoint replaces the object segment in p of
type Point with a new one of type ArrayPoint. The new segment takes the
place of the discarded segment in the object p’s linearization order. In order to
accomplish this, the new segment copies the cycle, Point up and Point bottom
from the discarded segment.

• MultiPoint, a bound mixin that adds a feature to Point. It adjusts any move of
a point by some defined linear factor. Unlike ArrayPoint, this mixin requires an
object segment of type Point to exist in the object before it can be added to an
object. Augmenting an object with this segment requires that it is inserted into

34

http://www.github.com/bmellow/mx


Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

the cycle and Point linked lists. Thus, Point up field must be updated to store
the pointer of the previously added Point extending or implementing segment.
The Point bottom fields of all Point typed segments must be updated to store
a pointer to this newly added segment.

• Member, a free mixin that records the fact an object is a member of some
arbitrary set. Free mixins only require that the cycle field of the previously
added object segment (of any type) stores the pointer to this newly added
Member segment. The newly added segment should initialize its cycle field to
store the pointer to the head segment of the object.

Listing 3.1: A Point class, with related mixins

program P
class Point

var x : integer
var y : integer
initialization(x0, y0 : integer)

x := x0; y := y0
method move(x0, y0 : integer)

x := x + x0; y := y + y0

class MultiPoint extends Point
var m : integer
initialization (sz2 : integer)

m := sz2
method setMultiplier(sm : integer)

m := sm
method move(x0, y0 : integer)

var x1 : integer
var y1 : integer
x1 := x0 ∗ m; y1 := y0 ∗ m
Point.move(x1, y1)

class ArrayPoint implements Point
var ar : array of integer
initialization(x0, y0 : integer)

ar := new integer[2]
ar[0] := x0; ar[1] := y0

method move(x0, y0 : integer)
ar[0] := ar[0] + x0; ar[1] := ar[1] + y0

class Member

35



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

var g : boolean
method setg(x : boolean)

g := x

begin
var p : Point
var m : Member
p := new Point;
extend p with Member; extend p with MultiPoint;
implement p with ArrayPoint;
p.move(5,7); m := p as Member; m.setg(true)

end

Object Structure

Each class is translated into a C structure containing its attributes and pointers to
other segments as described in Section 3.1. Another structure is created for pointers
to the class’s methods. By convention, for class C, these two structures are named
C Impl and C Methods respectively. Since a unique C Method type is created for
each class declared in the program, the methods pointer type in the C Impl class can
explicitly be declared.

In addition to function pointers, the C Impl structure also contains an implements
attribute. Since the C emitted code only instantiates one instance of each C Method
structure per class, they can be used as type descriptors for run-time type checks and
casts. The implements relation forms a tree among different classes so the implements
attribute used to store it is left untyped (i.e. void pointer). This allows storage of
different pointer types (representing different classes) for simple tree traversal.

Listing 3.2: Memory Representation of Point class, with related mixins

Object Interface∗ Object cycle;
struct Point Impl∗ Point bottom;
int x;
int y;

} Point Impl;

void Point construct ( Point Impl∗ self, int y0 , int x0){
self−>x = x0;
self−>y = y0;

}

36



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

void Point move ( Point Impl∗ self, int y0 , int x0){
self−>x = self−>x+x0;
self−>y = self−>y+y0;

}

void Point init() {

Initialization

The set of mix statements at the end of Listing 3.1 enclosed with the begin and end
keywords are translated and placed inside the main() function.

An initialization procedure is generated for each class. It allocates memory for
the appropriate C Method and assigns its reference to a global variable. Function
pointers are then initialized to point to class method implementations.

The generated class initialization procedure invocation statements are placed at
the beginning of the main() function.

Listing 3.3: Initializing the program from Listing 3.1

void∗ point MethodTable;

void Point init() {
point MethodTable = malloc(sizeof(Point Methods));
((Point Methods∗)point MethodTable)−>construct =

(void(∗)(void ∗, int y0 , int x0)) &Point construct;
((Point Methods∗)point MethodTable)−>move =

(void(∗)(void ∗, int y0 , int x0)) &Point move;
}

int main() {
Object init(); Point init(); MultiPoint init();Member init();
Point Impl∗ p; Member Impl∗ m;
p = Point new();
Member extend((Object Interface ∗)p);
MultiPoint extend((Object Interface ∗)p);
(((Point Methods∗)(p−>Point bottom)−>methods)−>move(p−>Point bottom,5,7));
m = (Member Impl ∗) castObject( (void ∗) p,member MethodTable);
(((Member Methods∗)(m−>Member bottom)−>methods)−>setg(m−>Member bottom,1));
}

37



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Method Calls

Method resolution is done by finding the last mixin added which implements or ex-
tends the object’s static type and invoking that mixin’s implementation of the named
method.

To invoke a method of an object, a pointer to the receiving object is obtained and a
pointer to the last extending mixin segment is obtained using the static type’s “down”
pointer. A pointer to the method implementation is accessed using the methods
attribute. This pointer is then casted to the static type’s method structure. Finally,
the function is invoked in the usual way for object-oriented implementations where the
first parameter is a “self” reference. The mix statement m.setg(true) is translated into
the last statement of Listing 3.3. Up-calls within bound mixin methods are handled
similarly with the “up” pointer of the “self” reference being used as the object pointer
argument as shown in Listing 3.4.

Listing 3.4: Examples of “up” method calls

void MultiPoint move ( MultiPoint Impl∗ self, int y0 , int x0){
int x1; int y1;
x1 = x0∗self−>m; y1 = y0∗self−>m;
(((Point Methods∗)(self−>Point up)−>methods)−>move(self−>Point up,x1 , y1));
}

Type Casting

Casting an object to another type is done with a type-agonstic library function.
The mix statement m := p as Member is translated into the following C statement.

m = (Member Impl ∗) castObject( (void ∗) p,member MethodTable);

The definition of castObject() is found in Listing 3.5.

Listing 3.5: Library function for type casting

void∗ castObject(void∗ m, void∗ t) {
Object Interface∗ temp = ((Object Interface∗) m)−>Object cycle;
while ((temp−>methods != object MethodTable) && (temp−>methods != t))

temp = temp−>Object cycle;

if ((temp−>methods == object MethodTable) && (t != object MethodTable)) {
printf("exception"); return NULL;
}
return temp;
}

38



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

3.9 Related Work

Object field or method access in Smalltalk requires at least one level of indirection as
access to the object’s metaclass object is required. Metaclass objects store pointers to
a class’s method implementations so method resolution for objects done by searching
a list of class objects in the current class hierarchy until one is found (Goldberg
and Robson 1983). In mix, type descriptors serve the purpose of specifying class types.
Similar to Smalltalk, object class types are encapsulated with class method definitions.
A type hierarchy, however, is not formed with metaclasses but is encoded directly into
objects.

Self is another dynamically typed language which has a prototype-based object
model (Ungar and Smith 1991). At the implementation level, objects are represented
as assignable slots and a pointer to an appropriate map (Chambers, Ungar, and Lee
1989). When an object is extended, a new map to reflect its new structure must be
generated. The mix language does not support extension by individual fields but only
by complete class. Since the object layout for all classes is known at compile time, no
map structures are generated at runtime.

Python is a dynamically typed language, which unlike other class based languages,
allows one to add and remove fields at runtime. The CPython implementation stores
fields in a dictionary. This has the disadvantage of requiring that the field identi-
fiers are stored in every object and field access requires some type of search. Hash
tables are typical implementations, which must be sparsely populated to work effi-
ciently. In (Ishizaki, Ogasawara, Castanos, Nagpurkar, Edelsohn, and Nakatani 2012),
caching field accesses is proposed as a means of reducing access time. The PyPy im-
plementation uses maps like in Self to optimize field access (Bolz 2011). When an
object is created, it is assigned a map that stores the instance offsets in a linked
list. Common objects share the same map, eliminating the memory wasted by storing
this information on a per-object basis. Adding fields to or removing fields from an
object requires that object to be assigned to a new map that matches its structure.
A similar concept, called hidden classes, is used to optimize field access in Google’s
V8 implementation of its JavaScript engine (Google 2015). As in Python methods
are fields, dynamic mixins can be expressed by adding all fields and methods for a
mixin as new fields, with appropriate names to avoid name clashes. In this case, the
depth of the extension hierarchy is not influenced, but the total number of fields and
methods influences the efficiency of the hash table used for field and method lookups.

In strongly, statically typed languages such as C++, field access is accomplished by
adding an offset to an object pointer. Since this offset is known at compile time using
the object’s type information, and objects are stored in contiguous memory, field
access is significantly faster than any technique involving lookup tables (Pugh and
Weddell 1990). This constant time access is preserved even in the context of objects
with non-virtual base classes since the memory required to store such objects and a
deterministic ordering of their fields can be established at compile time (Stroustrup

39



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Table 3.1: Timing Results. This table shows the number of seconds (in CPU time)
required to execute the program specified in Listing 3.6.

Call Depth Inheritance-Based Mixin-Based
PyPy CPython Java C++ PyPy CPython mix

2 0.398 13.1 0.099 0.169 0.514 12.5 0.182
4 0.635 20.6 0.117 0.287 0.920 21.1 0.320
8 1.26 37.8 0.191 0.522 1.7 36.9 0.650

1999). Polymorphic field access is done by maintaining class offset pointers for all of a
class’s superclasses. Polymorphic method calls are handled by dispatch tables which
select method implementations based on the dynamic type of an object.

In languages which support multiple inheritance, a means of ensuring static offsets
to class fields becomes challenging when a superclass occurs multiple times in a class
inheritance hierarchy1 (Zibin and Gil 2003). Techniques to address this include:

Colouring Techniques based on (Dixon, McKee, Vaughan, and Schweizer 1989),
where indices into a lookup table are assigned so that no field in the same
object have the same index.

Bidirectional Object Layouts where objects can have both negative and positive
indices (Pugh and Weddell 1990)

Both approaches are NP-hard to solve so algorithms proposed in (Ducournau 2011;
Myers 1995) seek to produce acceptable yet suboptimal results.

In (Templ 1993), multiple inheritance is shown to be implementable using single
inheritance and thus removing the space and speed concessions made by using the
algorithms above. The approach involves allocating a separate block of memory for
each of an object’s superclasses. Each block would store instance variables inherited
from that superclass and pointers to the object’s other memory blocks. To reduce
the number of memory blocks allocated in the general case, an optimization would
involve grouping objects into compound objects and including static offsets to address
the embedded ones. This approach however assumes that repeated inheritance is
disallowed.

Listing 3.6: Adding Features Using Mixins

program MixinExtensionTest
class C0

var c0 : integer
initialization(t : integer)

c0 := 1

1We assume a shared model where only one copy of the superclass’s fields is included when
instantiating an instance of the subclass. This occurs in C++ when the virtual keyword is used

40



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

method m(d : integer)
c0 := (c0 + d) mod 99

class C1 extends C0
var c1 : integer
initialization(t : integer)

c1 := 1
method m(d : integer)

C0.m(d)
c1 := (c1 + d) mod 99

class C2 extends C1
var c2 : integer
initialization(t : integer)

c2 := 1
method m(d : integer)

C1.m(d)
c2 := (c2 + d) mod 99

begin
var c : C0
var i : integer
i := 0
c := new C0
extend c with C1
extend c with C2
while i < 100000000 do

c.m(i)
i := i + 1

end

3.10 Evaluation

The proposed object model is designed to support object extension without the need
to look up methods or fields by name; fields are accessed with fixed offsets and method
calls, both up-calls and bottom-calls, require two indirections. In order to test the effi-
ciency of the mix object model, a dedicated benchmark is employed: the assumption is
that method calls are significantly more frequent than object creations, object exten-
sions, type tests, or type casts. Method calls require one extra indirection compared
to compiled languages, but field access does not, so the benchmark focuses on method
calls and involves little computation, see Listing 3.6. The benchmark simulates the
Decorator pattern, which requires upcalls through all extending mixins. The length
of the call chain is varied from 2, 4 and 8. The comparison is done with Java, C++,

41



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Figure 3.3: Method resolution in mix is not as fast as inheritance-based approaches
but outperforms mixin-based ones.

and two Python implementations, CPython and PyPy. Code used for the tests can
be found in Appendix C. The mix compiler employs the same LLVM code generator
as the C++ compiler.

The C++ compiler uses fixed offsets for field access and one indirection (in the
virtual method table) with a fixed offset to resolve method calls. The Java JIT compiler
additionally optimizes method calls at run-time, replacing indirect calls with direct
ones. CPython is an interpreter that looks up method names in a hash table. PyPy
is a JIT compiler that improves name lookups.

The results are shown in Table 3.1 and graphically in Figure 3.3. The first four
columns show timing results from inheritance-based programs. These programs do
not express dynamic mixins, but are included here as a level of performance that we
would like to approach. Addresses to class methods needed to access super-calls are
known at compile-time. Since accessing methods can be done using offsets and table
lookups in C++ and Java, the inheritance approaches in these languages provide
the best performance results. Of the two Python implementations, the compiled
PyPy is much faster than CPython. The next two columns show times when the
program is implemented using dynamic mixins and the receiver of a super-call must
be determined at runtime. In the Python-mixin based implementations, the receiver
is found by using a name lookup at runtime. The difference between Python mixin
vs inheritance based results can be explained by the extra time required to look up

42



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

the address of super calls. In summary, the object model used in mix incurs a penalty
for method resolution over statically typed inheritance, but provides a significant
improvement over mixin approaches which require name lookup.

3.11 Discussion

The fact that the set of mixins bound to an object changes at runtime makes a con-
tiguous, fixed offset memory representation of an object impossible. Furthermore,
“super-calls” need to be resolved at runtime. The memory model proposed deals
with these issues by representing an object as a set of memory segments where each
segment stores a mixin object. Method calls can be resolved with a single extra
indirection as opposed to performing a name lookup. Our measurements on an ar-
tificial benchmark, consisting mainly of method calls with little computation, show
that this is significantly more efficient than method lookup by name but slower than
ahead-of-time compiled languages with single indirection (as in C++) by a factor of
about 1.5. Given that typical programs would contain more computation and fewer
method calls, chances are that the slowdown of dynamic mixins may not be signifi-
cant, making them an attractive programming construct for the flexibility and safety
gained. On the other hand, just-in-time compiled languages with single indirection
(as in Java) are a factor of 2 to 3 more efficient in our artificial benchmark. This
motivates us to study the run-time optimization of our required double indirection
method call in the future.

The object model proposed could be implemented using a contiguous chunk of
memory which varies in size as mixins are added. Implementing the model using
this memory layout would mean using memory offsets instead of pointers to access
the various embedded mixins. The allocated memory would have to be expanded as
mixins are added. Such a layout may have potential benefits with respect to caching
and memory fragmentation, but requires the cooperation of a garbage collector. An
evaluation of the potential benefits of this memory layout is also left as future work.

43



Chapter 4

Program Correctness

Our approach is to establish the correctness of modules using mixins by the refine-
ment of abstract modules. The theory of refinement has been studied extensively,
e.g. (Back and Wright 1998; Morgan 1998), and applied to object-oriented programs,
e.g. (Mikhajlov and Sekerinski 1998; Mikhajlova and Sekerinski 1997).

We use abstract classes for the specification of programs with dynamic mixins.
Abstract classes are defined in terms of a programming language extended with spec-
ification constructs (abstract data types and abstract statements). The correctness
of a (concrete) program with dynamic mixins is shown by refinement of an abstract
class, or in general of an abstract module. Class refinement as defined here is based
on data refinement (Hoare 1972).

4.1 Module Consistency

Recall the structure of a module from Section 2.5.2.

Definition 1. Module A is consistent if

(a) the initialization establishes the invariant,

Ainit ⇒ Ainv

(b) each method m of A preserves the invariant under its precondition:

Ainv ∧ wp(mbody, true)⇒ wp(mbody, Ainv)

The definition implies that the precondition of every method must be strong
enough to guarantee the termination of the body. In particular, if the body con-
tains further method calls, then the precondition must be strong enough that the
precondition of all the method calls are satisfied. The definition of consistency also

44



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

necessitates that public module variables can be inspected, but not modified outside
of the module.

Statement S is refined by statement T , written S v T if for all postconditions c,
whenever S terminates with c, so does T , formally:

S v T ≡ ∀c • wp(S, c)⇒ wp(T, c) (4.1)

Ordinary (algorithmic) refinement can be generalized to data refinement. Let S be
a statement over “abstract” variables, say x, let T be a statement over “concrete”
variables, say y, and let R be a predicate over x and y, known as the coupling invariant.
In general, R may involve other variables that are common to S and T . Statement
S is refined by T via R, written S vR T if, provided that the variables of S and T
are initially related by R, after their “simultaneous execution” the variables are again
related by R, formally:

S vR T ≡ ∀c • (∃y •R ∧ wp(S, c))⇒ wp(T,∃x •R ∧ c) (4.2)

When refining modules, the invariant of the “concrete” module becomes the coupling
invariant.

Definition 2. Let A and B be modules with the same public variables and public
methods. Then A is refined by B if

(a) the joint initialization establishes the invariant of B,

Ainit ∧Binit ⇒ Binv

(b) each method A.m is refined by B.m via Binv under Ainv:

Ainv ⇒ A.m vBinv
B.m

Module refinement ensures that the observable behaviour through public variables
and methods is preserved (Morgan 1998).

4.2 Mixin Refinement

Our proposal for safe mixin composition relies on the notion of refinement. Infor-
mally, for programs with statements that create and use objects, class refinement is
understood as follows:

Suppose a program creates and uses an object of class C. Class D refines C
means that creating an object of class D instead will preserve the behavior
of the program.

45



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Thus C can be substituted by D for object creation. This implies that the public fields
and methods of D have to be “syntactically compatible” with those of C. Classes C
and D can have different private fields and methods. Their public methods can also
have different bodies. Any extra public fields and methods of D that are not present
in C are irrelevant as they will not be used. Class refinement is formally established
by a refinement relation, that can be expressed as a coupling invariant between the
fields of C and D.

Mixins can provide additional functionality through new fields and methods (as
in Lock in Listing 1.4) or can re-implement existing functionality (as in Counter).
Informally, mixin refinement is understood as follows:

Suppose a program creates and uses an object of class C. Assume class
D, the mixin, needs C and provides extra functionality. Now consider an
interleaving of statements of the original program with statements extend-
ing the object by D and using D’s extra functionality. Then D refines C
if the behaviour of the original program is preserved.

Behavioral subtyping between classes also considers new methods in the subtype (Liskov
and Wing 1994): new methods can only have an effect that is achievable through a
combination of calls to existing methods. Mixin refinement is more permissive in that
new methods can provide extra functionality, as long as the behavior of the existing
methods is preserved.

4.3 Correctness of Mixin Composition

Compositionality is analysed through establishment and preservation of invariants
and through augmentation and refinement of methods. Statement S establishes pred-
icate p if, provided that S terminates, i.e. wp(S, true) holds, at termination p holds.
Statement S preserves p if S establishes p under p:

S establishes p =̂ wp(S, true)⇒ wp(S, p)
S preserves p =̂ p ∧ wp(S, true)⇒ wp(S, p)

Preservation of invariants can be shown over the structure of statements:

46



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Lemma 1 (Preservation Over Structure). For statements S, T and predicates b, p, q:

skip preserves p (a)
(b⇒ S preserves p) ≡ assume b ; S preserves p (b)
(b⇒ S preserves p) ≡ assert b ; S preserves p (c)

(p⇒ p[x\e]) ≡ x := e preserves p (d)
(p⇒ (∀x ∈ e • p)) ≡ x :∈ e preserves p (e)

(S preserves p) ∧ (T preserves p) ⇒ S ; T preserves p (f)
(b⇒ S preserves p) ∧ (¬b⇒ T preserves p) ≡ if b thenS elseT preserves p (g)

(T [x\e] preserves p) ≡ constx = e inT preserves p (h)
(∀x : X • b⇒ T preserves p) ⇒ var x : X | b inT preserves p (i)

Preservation can be shown piecewise by breaking up the predicate:

Lemma 2 (Piecewise Preservation). For statements S, T and predicates p, q:

(S preserves p) ∧ (S preserves q) ⇒ (S preserves p ∧ q) (a)
(q ⇒ S preserves p) ∧ (p⇒ S preserves q) ⇒ (S preserves p ∧ q) (b)

For example, Lemma 2 (b) allows to conclude

x, y := x + y, x + y preserves x ≥ 0 ∧ y ≥ 0

from:

y ≥ 0⇒ x, y := x + y, x + y preserves x ≥ 0
x ≥ 0⇒ x, y := x + y, x + y preserves y ≥ 0

The syntactic notion of a statement not assigning to a variable is generalized to a
statement not modifying an expression and further generalized to modifying a function
only at one argument. Let e be an expression of type E:

S does not modify e =̂ ∀q : E → bool • S preserves q(e)
S modifies f only at r =̂ ∀o 6= r • S does not modify f(o)

Statement S does not modify predicate p is stronger than S preserves p, as not
modifying implies that both p and ¬p are preserved.

Lemma 3 (Statement Not Modifying Expression). For statement S:

S does not modify p ⇒ S preserves p

This follows immediately from the definition of S does not modify p by instantiating q
with the identity. If the free variables of p are not assigned in S, then S obviously
does not modify p. The next lemma states when a statement establishes a property
for all elements of a set.

47



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Lemma 4 (Statement Updating a Function). For statement S, variable f of function
type, and boolean function p, assume that S modifies f only at d, that S does not
modify s, and that S establishes p(f(d)):

(∀i ∈ s− {d} • p(f(i))) ∧ wp(S, true) ⇒ wp(S,∀i ∈ s • p(f(i)))

4.3.1 Refinement and Augmentation

The following lemma includes a general rule for refinement of assignments.

Lemma 5 (Refinement Laws). Let S be a statement over variables that include x,
the abstract variables, let T be a statement over variables that include y, the concrete
variables, let R(x)(y) relate x and y, and let z be among the global variables:

(R(x)(y)⇒ R(e)(f)) ≡ x := e vR y := f (a)
(R(x)(y)⇒ e = f) ≡ z := e vR z := f (b)

(R(x)(y) ∧ x ∈ e⇒ (∀y ∈ f • R(x)(y)) ≡ x :∈ e vR y :∈ f (c)
(R(x)(y)⇒ e ⊇ f) ≡ z :∈ e vR z :∈ f (d)

(S1 vR T1) ∧ (S2 vR T2) ⇒ S1 [] S2 vR T1 [] T2 (e)
(S1 vR T1) ∧ (S2 vR T2) ⇒ S1 ; S2 vR T1 ; T2 (f)

The abstract and concrete variables can have the same name, but still be distinct.
For example, x := x+1 vR x := 1−x where R(x)(x′) ≡ x′ = xmod 2. We adopt the
convention of priming the concrete variables when they need to be distinguished from
the abstract one. Formally, this requires substituting the variables in the concrete
program with primed one before applying the definition of data refinement.

This definition of refinement does not cover the refinement of procedures, as wp
is defined only for statements, not expressions. Refinement is extended to procedures
in a natural way, with the value and result parameters becoming global variables:

val v : V resw : W • S vR val v : V resw : W • T =̂ S vR T

For example, with abstract variable x and concrete variable y, from Lemma 5 (b)
it follows that resw • w := xmod 2 vR resw • w := y provided R(x)(y) ≡ y =
xmod 2.

Algorithmic refinement is always reflexive, S v S for any S, but data refinement,
S vR S, not. For example, x := x∪{3} vR x := x∪{3} holds for R(x)(x′) ≡ x ⊆ x′,
but does not hold for R(x)(x′) ≡ x ⊇ x′. We say that a statement preserves a relation
R if it refines itself under R:

S preserves R =̂ S vR S

Preservation of a relation is equivalent to preservation of a predicate if the relation is
a “partial identity”.

48



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Lemma 6. For statement S and predicate p over variables x, let R(x)(x′) ≡ p∧x = x′

relate abstract variables x to concrete variables x′. Then:

S preserves R ≡ S preserves p

Proof.

S preserves R
≡ ∀q • p ∧ x = x′ ∧ wp(S, q)⇒ wp(S[x\x′], ∃x • p ∧ x = x′ ∧ q) (definitions)
≡ ∀q • p ∧ x = x′ ∧ wp(S, q)⇒ wp(S[x\x′], p[x\x′] ∧ q[x\x′]) (one-point rule)
≡ ∀q • p ∧ wp(S, q)⇒ wp(S, p ∧ q) (renaming)
≡ ∀q • p ∧ wp(S, q)⇒ wp(S, p) (conjunctivity, logic)
≡ p ∧ wp(S, true)⇒ wp(S, p) (“⇒” by taking p for q, “⇐” by monotonicity)
≡ S preserves p (def. preserves)

Considering a single statement of a mixin, in essence, “adds computation” to
an existing computation. The notion of augmentation formalizes this. Let A be a
function that takes a statement, say X, as a parameter and adds computation to X.
Suppose that when applying A to some statement S, we want the existing computation
to be preserved, so A(S) to refine S. However, we allow S to be augmented already
and want to preserve that behaviour as well, motivating following definition:

A augments S under R =̂ ∀X • S vR X ∧X preserves R⇒ X vR A(X)

The term X vR A(X) implies that the abstract variables, i.e. those modified by X, are
among the concrete variables, but A may add more concrete variables. The following
examples assume that S is over x, function A adds y, and R(x)(x′, y) ≡ x = x′:

1. Assume A(X) = X. Then A augments x := x + 3 under R. Specifically, for
X = x, y := x + 3, 5, we have that x := x + 3 vR X and X preserves R (by
Lemma 6 with p ≡ true), hence X vR A(X) = X.

2. Assume A(X) = X ; z := 7. Then A augments x := x+ 3 under R. Specifically,
for X = x, y := x + 3, 5, we have that x := x + 3 vR X and X preserves R,
hence X vR A(X) = X ; z := 7.

3. Assume A(X) = y := 5 ;X. Then A augments x := x+ 3 under R. Specifically,
for X = x, y := x + 3, 5, we have that x := x + 3 vR X and X preserves R,
hence X vR A(X) = y := 5 ; X.

4. Assume A(X) = y := 5. Then A does not augment x := x + 3 under R. As
a counterexample, take X = x := x + 3. It follows x := x + 3 vR X, but
X 6vR A(X) = y := 5.

49



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

5. Assume A(X) = X ; X. Then A does not augment x := x + 3 under R. As
a counterexample, take X = x := x + 3. It follows x := x + 3 vR X, but
X 6vR A(X) = x := x + 3 ; x := x + 3.

6. Assume A(X) = X ; x := 5. Then A does not augment x := x + 3 under R.
As a counterexample, take X = x := x + 3. It follows x := x + 3 vR X, but
X 6vR x := x + 3 ; x := 5.

For the following examples, let R(x)(x′, y) ≡ x ⊆ x′.

7. Assume A(X) = X ;x := x∪{3}. Then A augment x := x∪{5} under R. That
is, if x := x ∪ {5} vR X and X preserves R, then X vR X ; x := x ∪ {3}.

8. Assume A(X) = x := x∪{5}. Then A does not augment x := x∪{5} under R.
As a counterexample, take X = x := x ∪ {5, 7}. It follows x := x ∪ {5} vR X
and X preserves R, but X 6vR x := {5}.

9. Assume A(X) = skip. Then A does not augment skip under R. As a coun-
terexample, take X = x := x ∪ {5}. It follows skip vR x := x ∪ {5} and X
preserves R, but X 6vR skip.

Intuitively, A(X) augments S if A calls X exactly once, on all possible paths. Fur-
thermore, the computation that A(X) adds to X must not modify the outcome of S.
Following theorem formalizes this.

Theorem 1 (Augmentation Laws). Let S, T1, T2 be statements, R a relation, b a
Boolean expression, and A,B functions from statements to statements. Then:

A(X) = X ⇒ A augments S under R (a)
A(X) = T1 ; B(X) ; T2 ∧
skip vR T1 ∧ skip vR T2 ∧
B augments S under R

⇒ A augments S under R (b)

A(X) = if b thenB(X) elseC(X) ∧
(b⇒ B augments S under R) ∧
(¬b⇒ C augments S under R)

⇒ A augments S under R (c)

Proof. For (a), assuming A(X) = X:

A augments S under R
≡ ∀X • S vR X ∧X preserves R⇒ X vR X def. of augments, assumption
≡ true (def. of preserves, logic)

50



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

For (b), assuming A(X) = T1 ; B(X) ; T2:

A augments S under R
≡ ∀X • S vR X ∧X preserves R⇒ X vR T1 ; B(X) ; T2

def. of augments, assumption
⇐ ∀X • S vR X ∧X preserves R⇒ skip vR T1 ∧X vR X ∧ skip vR T2

(as X = skip ;X and X = X ; skip, Lemma 5())
≡ skip vR T1 ∧ skip vR T2 ∧ A augments S under R (def. of augments, logic)

For (c), assuming A(X) = if b thenB(X) elseC(X):

A augments S under R
≡ ∀X • S vR X ∧X preserves R⇒

X vR if b thenB(X) elseC(X) (def. of augments, assumption)
≡ ∀X • S vR X ∧X preserves R⇒

(b⇒ X vR B(X)) ∧ (¬b⇒ X vR C(X))
(def of if/then/else, Lemma 1(g))

≡ (b⇒ (∀X • S vR X ∧X preserves R⇒ X vR B(X))) ∧
(¬b⇒ (∀X • S vR X ∧X preserves R⇒ X vR C(X))) (logic)

≡ (b⇒ B augments S under R) ∧ (¬b⇒ B augments S under R)
(def. augments)

Note that proofs of the lemmata used can be found in Appendix D.

4.3.2 Class Invariants

Listing 4.1 explicitly specifies the object invariant c = len(s) of class Counter. In
general, if free class C declares fields C.f , the object invariant is a predicate over
C.f(self ); if class D extends C and declares fields D.g, the object invariant is a
predicate over D.g(self ) and C.f(self ). The object invariant cannot refer to global
variables, to fields of other objects of the same class, or to fields of other classes. The
object invariant of Counter is a shorthand for Counter.c(self)= len(Stack.s(self)).

The class invariant is derived from the object invariant and involves the extent
variable, the field variables, and the method variables of the class. Assume that C1,
C2, . . . with fields C1.f , C2.f , . . . and methods C1.m, C2.m. . . are all the classes
declared in the program. The refinement relation PRJ relates abstract variables ref ,
C1.ref , C2.ref , . . . , C1.m, C2.m, . . . to the same concrete variables. It is defined by
predicate prj, with the concrete variables primed:

prj =̂ (∧i • Ci.ref ⊆ Ci.ref ′) ∧ (∧i • ∀o ∈ Ci.ref • Ci.f(o) = Ci.f
′(o))

51



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

For free class C with methods m the class invariant C.inv is defined as:

C.inv =̂C.ref ⊆ ref ∧
(∀o ∈ C.ref • C::inv(o)) ∧
(∀o ∈ C.ref • C::m(o) vPRJ C.m(o))

The inclusion C.ref ⊆ ref implies subsumption: every C object is an object. The
universal quantification ∀o ∈ C.ref • C::inv(o) lifts the object invariant to all objects
of the class. The class invariant is “higher order” in the sense that the invariant
has to be preserved by methods but also includes the refinement vPRJ for methods,
hence methods have to preserve method refinement. For class C, method variables
C.m(o) may “point” to methods C::m or to methods of another class with which
object o was extended. The refinement C::m vPRJ C.m(o) allows the actual methods
C.m(o) to perform additional computation: the refinement relation PRJ permits the
new methods to create additional objects, Ci.ref ⊆ Ci.ref ′, but requires that the
fields of “old” objects are unaffected, Ci.f(o) = Ci.f

′(o). The refinement relation is a
projection that does not constrain global variables and “new” objects.

For class D extending class C and with new methods n, the class invariant D.inv
is defined as:

D.inv =̂D.ref ⊆ C.ref ∧
(∀o ∈ D.ref • D :: inv(o)) ∧
(∀o ∈ D.ref • D::m(C::m)(o) vPRJ C.m(o)) ∧
(∀o ∈ D.ref • D::n(o) vPRJ D.n(o)) ∧
C.inv

The inclusion D.ref ⊆ C.ref again implies subsumption: every D object is a C object.
The refinement D::m(C::m)(o) vPRJ C.m(o)) now requires that methods m to which
the method variables “point” have to refine their definition in D, under relation PRJ ,
provided that up-calls in D go to C, which is expressed as D::m(C::m)(o) vPRJ

C.m(o). The new methods n in C have to refine their definition in D, D::n(o) vPRJ

D.n(o). Finally, the class invariant of C becomes part of the class invariant of D.

Free class C is well-defined if the initialization establishes the object invariant and
all methods m preserve the object invariant:

C is well-defined =̂
r ∈ C.ref ⇒ C::init(r) establishes C::inv(r) (a)
r ∈ C.ref ⇒ C::m(r) preserves C::inv(r) (b)

Class D needing class C is well-defined if the initialization establishes the object
invariant, overriding methods m preserve the object invariant under the assumption
that up-calls go to C, each overriding method augments the overridden one, and new

52



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

methods preserve the object invariant:

D is well-defined =̂
I::inv(r)⇒ D::init(C::m)(r) establishes D::inv(r) (a)
I::inv(r)⇒ D::m(C::m)(r) preserves D::inv(r) (b)
I::inv(r)⇒ D::m( )(r) augments C::m(r) (c)
I::inv(r)⇒ D::n(r) preserves D::inv(r) (b)

Listing 4.1 is an alternate design to the Stack problem illustrated in Listing 1.4.
It contains well-defined classes: Stack and Logging have true as invariant, which is
not specified explicitly as the invariant is trivially established and preserved.

Listing 4.1: Correct Design with Mixins, with class Stack as in Listing 1.4

class Stack
var s : seq integer := 〈〉
method push(val e : integer, res d : boolean)

s, d := e → s, true [] d := false
method pop(res e : integer, d : boolean)

e, s, d := head(s), tail(s), true [] d := false
method size(res n : integer)

n := len(s)

class Lock extends Stack
var l : boolean := false
invariant s = s′

method lock()
l := false

method unlock()
l := true

method push(val e : integer, res d : boolean)
if ¬l then Stack.push(e, d) else d := false

method pop(res e : integer, d : boolean)
if ¬l then Stack.pop(e, d) else d := false

class Counter extends Stack
var c : integer
invariant c = len(s) ∧ s = s′

method init()
Stack.size(c)

method push(val e : integer, res d : boolean)
Stack.push(e, d) ; if d then c := c + 1

method pop(res e : integer, d : boolean)
Stack.pop(e, d) ; if d then c := c − 1

53



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

method size(res n : integer)
n := c

class Cache extends Stack
var t : integer
var v : boolean
invariant (v ∧ s = t → s′) ∨ (¬v ∧ s = s′)
method init()

v := false
method pop(val e : integer)

if v then e, v := t, false
else Stack.pop(e)

method push(res e : integer)
if ¬v then v := true
else Stack.push(t) ;
t := e

method size(res n : integer)
Stack.size(n) ;
if v then n := n + 1

class Encrypt extends Stack
invariant ∀ i • 0 ≤ i < len(s) ⇒ s(i) = s′(9 − i)
push(val e : integer)

Stack.push(9 − e)

var log : integer := 0

class Logging extends Stack
invariant s = s′

method push(val e : integer)
Stack.push(e) ; log := log + 1

method pop(res e : integer)
Stack.pop(e) ; log := log + 1

method size(res n : integer)
Stack.size(n) ; log := log + 1

class Counter extends Stack
var c : integer
invariant c = len(s)
method init()

Stack.size(c)
method push(val e : integer, res d : boolean)

54



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

c := c + 1 ; Stack.push(e)
method pop(res e : integer, d : boolean)

c := c − 1 ; Stack.pop(e)
method size(res n : integer)

n := c

var log : integer := 0

class Logging extends Stack
override method push(val e : integer)

log := log + 1 ; Stack.push(e)
override method pop(res e : integer, d : boolean)

log := log + 1 ; Stack.pop(e, d)

Analyzing the example of Listing 1.4 reveals that Lock does not not refine Stack:
the method Stack::push will always push an element on the stack, but Lock::push will
not, so it does not augment Stack::push. This can be corrected by having Stack::push
either add an element to the stack and set a success flag or clear the flag otherwise.
The Lock::push method is modified to clear the flag if l is true, as in Listing 4.1.
Lock refines Stack by reducing the nondeterminism, however that modification of
Stack causes Counter to behave incorrectly, as Counter::push always increments c by
one whether the call to Stack.push adds e to the stack or not. The solution is to
increment c only if calls to Stack.push are successful. Now, if object x of class Stack is
created, Counter and Lock can be added in any order, and the behaviour of Stack is
preserved. As a side note, Stack::push could be equivalently expressed with pre- and
postconditions,

method push(val e : integer, res d : boolean)
modifies s
ensures (s = e → s0 ∧ d) ∨ (s = s0 ∧ ¬ d)

where s0 refers to the “old” value of s, however, Lock::push and Counter::push cannot
be specified solely with pre- and postconditions. These would have to literally include
the pre- and postcondition of the called method Stack::push, leading to duplication or
to the necessity of naming the postcondition of Stack::push so it can be referred to.
More importantly, such a specification would allow implementations that do not call
Stack.push if that effect can be achieved otherwise. The intention is that Lock::push
calls Stack::push, as is later shown to be necessary.

4.3.3 Compositional Reasoning with Dynamic Mixins

Dynamic mixins have different compositional properties depending on if they are
non-interfering, non-finalizing, or non-observable. A non-interfering mixin preserves
invariants, a non-finalizing mixin augments inherited methods, and a non-observable

55



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

mixin refines the needed mixin. Every mixin should be non-interfering but not nec-
essarily non-finalizing and non-observable.

Well-definedness of classes ensures non-interference, i.e. invariants are not invali-
dated. For example in Listing 4.1, class Logging is well-defined, but adding a Logging
mixin is observable—which is the point of logging. Refinement of classes ensures
non-observability, i.e. adding a refining mixin cannot be observed, under certain con-
ditions. For example, the original design of the Logging class does not refine Stack.
The following two theorems formalize this.

Theorem 2 (Non-interference). Consider a well-formed program with well-defined
classes. Assume that C, D are among those classes, C is a free class, and D extends C.

(a) The program initialization establishes all class invariants.

(b) The object creation r := newC preserves all class invariants.

(c) The object extension extend rwithD preserves all class invariants.

(d) The method call r.m(e, x) preserves all class invariants.

Proof. Let C1, C2, . . . be all classes of the program. For (a), note that the pro-
gram initializes ref to the empty set, that any class Ci is declared on the top level
and initializes Ci.ref to the empty set, hence all parts of Ci.inv hold after program
initialization.

For (b) to (d), let additionally C ′, D′ be arbitrary distinct classes of the program
such that C ′ is free and D′ needs C ′. We first determine wp(C::init(r), C.inv):

wp(C::init(r), C.inv)
≡ wp(C::init(r), C.ref ⊆ ref ∧ (∀o ∈ C.ref • C::m vPRJ C.m(o))) ∧

wp(C::init(r), (∀o ∈ C.ref • C :: inv(o))) (def. of C.inv, conjunctivity)
≡ C.ref ⊆ ref ∧ (∀o ∈ C.ref • C::m vPRJ C.m(o)) ∧ wp(C::init(r), true) ∧

wp(C::init(r), (∀o ∈ C.ref • C :: inv(o))) (Lemma 3, (*), def. of preserves)
≡ C.ref ⊆ ref ∧ (∀o ∈ C.ref • C::m vPRJ C.m(o)) ∧ wp(C::init(r), true) ∧

(∀o ∈ C.ref − {r} • C :: inv(o)) (Lemma 4, (**), def. of preserves)

The step (*) relies on C::init not modifying C.ref, C.m, which is given by well-
formedness of the program. The step (**) relies on C::init(self ) establishing I(self ),

56



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

which is given by well-definedness of C. Now we determine wp(C.init(r), C.inv):

wp(C.init(r), C.inv)
≡ wp(C.ref := C.ref ∪ {r} ; C.m(r) := C::m ; C::init(r), C.inv) (def. of C.init)
≡ wp(C.ref := C.ref ∪ {r} ; C.m(r) := C::m,

C.ref ⊆ ref ∧ (∀o ∈ C.ref • C::m vPRJ C.m(o)) ∧
wp(C::init(r), true) ∧ (∀o− {r} ∈ C.ref • C :: inv(o)))

(wp of ;, above calculation)
≡ C.ref ∪ {r} ⊆ ref ∧ (∀o ∈ C.ref − {r} • C::m vPRJ C.m(o)) ∧

wp(C::init(r), true) ∧ (∀o ∈ C.ref − {r} • C :: inv(o)))
(wp of ;, Lemma 4)

For the proof of (b), we first show that r := new C preserves the invariant of C itself:

wp(r := newC,C.inv)
≡ wp(r :/∈ C.ref ; ref := ref ∪ {r},wp(C.init(r), C.inv)) (def. of new, ;)
≡ wp(r :/∈ C.ref ; ref := ref ∪ {r},

C.ref ∪ {r} ⊆ ref ∧ (∀o ∈ C.ref − {r} • C::m vPRJ C.m(o)) ∧
wp(C::init(r), true) ∧ (∀o− {r} ∈ C.ref • C :: inv(o)))

(above calculation)
≡ C.ref ⊆ ref ∧ (∀o ∈ C.ref • C::m vPRJ C.m(o)) ∧

wp(C::init(r), true) ∧ (∀o ∈ C.ref • C :: inv(o)))
(wp of ;, :=, :∈, simplification)

≡ C.inv ∧ wp(r := newC, true) (by def. of C.inv,new)

Hence r := newC preserves C.inv. We continue with determining wp(C::init(r), D′.inv):

wp(C::init(r), D′.inv)
≡ wp(C::init(r), D.ref ⊆ Cref ∧ (∀o ∈ D::inv(o))

∧ (∀o ∈ D.ref • D::m(C::m)(o) vPRJ C.m(o)))
∧ (∀o ∈ D.ref • D::n(o) vPRJ D.n(o))) ∧ C.inv (def of D’.inv)

≡ wp(C::init(r), C.inv) ∧
wp(C::init(r), D.ref ⊆ C.ref ∧ (∀o ∈ D::inv(o))
∧ (∀o ∈ D.ref • D::m(C::m)(o) vPRJ C.m(o)))
∧ (∀o ∈ D.ref • D::n(o) vPRJ D.n(o))) (conjunctivity)

≡ wp(C::init(r), C.inv) (r is not in D.ref, Lemma 3, def. of preserves)
≡ C.ref ⊆ ref ∧ (∀o ∈ C.ref • C::m vPRJ C.m(o)) ∧ wp(C::init(r), true) ∧

(∀o ∈ C.ref − {r} • C::inv(o)) (previous calculation)

Now it is shown that r := newC preserves D′.inv, assuming that the progam is

57



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

well-formed. For readability, DI is defined to be the D′.inv minus the C.inv

DI =̂D.ref ⊆ C.ref ∧
(∀o ∈ D.ref • D :: inv(o)) ∧
(∀o ∈ D.ref • D::m(C::m)(o) vPRJ C.m(o)) ∧
(∀o ∈ D.ref • D::n(o) vPRJ D.n(o))

wp(r := newC,D′.inv)
≡ wp(r := newC,C.inv) ∧ wp(r := newC,DI)) (conjunctivity)
≡ wp(r := newC,C.inv) ∧

wp(r :/∈ C.ref ; ref := ref ∪ {r};
C.ref := C.ref ∪ {r} ; C.m(r) := C::m,wp(C::init(r), DI))

(def. of C.init)
≡ wp(r := newC,C.inv) ∧

wp(r :/∈ C.ref ; ref := ref ∪ {r};C.ref := C.ref ∪ {r} ; C.m(r) := C::m,
C.ref ⊆ ref ∧ (∀o ∈ C.ref • C::m vPRJ C.m(o)) ∧ wp(C::init(r), true) ∧
(∀o ∈ C.ref − {r} • DI) (calculation above)

≡ C.inv ∧ wp(r := newC, true) ∧
C.ref ∪ {r} ⊆ ref ∪ {r} ∧ (∀o ∈ C.ref ∪ {r} • C::m vPRJ C.m(o)) ∧
wp(C::init(r), true) ∧ (∀o ∈ C.ref ∪ {r} − {r} • DI)

(wp of ;, :=, :∈, simplification, Lemma 4, previous calculation)
≡ C.inv ∧ wp(r := newC, true) (simplification,def of C.inv)

Hence r := newC preserves D′.inv. As D′.inv includes C ′.inv, we have that r :=
newC preserves the invariant of all other classes as well.

(1) As the program initialization sets Object and C.ref for all classes C to the empty
set, this follows vacuously.

(2) We need to consider parts (a) to (c) of the definition of class invariant for the
newly created object, as all other objects are unmodified. Method C.new(r)
modifies C.ref and ref such that (a) is preserved and neither variable is modified
elsewhere. For (b), we need to show that for the newly created object r, the
object invariant holds, which holds by condition (a) of well-definedness. For
(c), we observe that C.init(r) and therefore C.new(r) assign C::m to C.m(r).
Thus we need to show C::m vI(C.f(r)) C::m, which follows from C::m preserving

I(C.f(r)), which in turn is given as C is well-defined.

(3) We need to consider parts (a’) to (e’) of the definition of class invariant. Parts
(a’) and (b’) hold for similar reasons as in (2). The key is to see why parts (c’)
and (d’) are preserved for all classes and objects: suppose r, created as a C
object, was extended with E, hence C.m refines D::m. Now, extend r with D

58



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

replaces C.m with D::m(C.m(r)). However, by condition (d’) of well-definedness,
D::m always call C.m, hence refine C.m, and by transitivity part (c’) and (d’)
are preserved. Part (e’) is preserved by the same argument.

(4) As all modifications of object variables, method variables, and field variables
are done within methods that preserve the object invariant, it follows that a
method call preserves all class invariants.

The restriction that field variables C.f are modified only though methods C::m is
stronger than what is required for new methods in class refinement. For example, if
D inherits C, the only requirement for new methods of D is that they preserve the
invariant of C, but they may access the fields directly. This is not allowed when D
needs C, as illustrated in Listing 4.2. The method DirectStack::push2 updates field
Stack.s directly, but Counter only overrides push, so combining these two mixins will
break the invariant of Counter. This would not happen if push2 would call Stack.push
twice instead, as in Listing 4.3 (although with a different meaning here, if d is false,
e could have been pushed once on the stack).

From the non-interference theorem follows non-observability in certain cases: Sup-
pose a program operating on object r of class C is modified at some arbitrary point
to include extend r with D. That object extension modifies D.ref , C.m, D.n but is
otherwise abstractly skip. Provided that the program does not access these variables
directly, it follows from the class invariant that all modified methods C.m refine the
declared ones. Furthermore, since all modified methods have to up-call the original
ones, it follows by induction over the structure of the program that the program with
the object extension is a refinement of the original program. Hence, as in the example
of adding Counter to Stack, the object extension is not observable.

Definition 3 (Class Well-Definedness). Free class C with class invariant P and meth-
ods m is well-defined if

(a) Method init of C abstractly has no effect,

skip vP assume r ∈ C.ref ; C.init(r)

(b) all methods of C preserve P ,

C::m preserves P

If D needs class C, has class invariant Q, overrides methods m, and defines new
methods n, then D is well-defined if

(a’) Method init of C abstractly has no effect,

skip vP assume r ∈ C.ref ; C.init(r)

59



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

(b’) all methods m of D must refine m of C under the assumption that up-calls in
D::m go to C::m:

P ⇒ C::m vQ D::m(C::m)

(c’) all new methods n of D must preserve the class invariant under the assumption
that up-calls in D::n go to C :: m:

P ⇒ D::n(C::m) preserves Q

(d’) calls to C.m must occur only in D::m and D::m always calls C.m.

Conditions (a) and (a’) differ from the standard condition for initialization in class
refinement, which would require that the initialization of D refines the initialization
of C, by requiring that the initialization of D refines skip. This ensures objects can
be extended at any time without the extension being observable. Conditions (b) and
(c’) are the standard condition for classes. Condition (b’) is analogous to the case
when D inherits C and calls C.m in D are super-calls, except that here they may be
bound to a mixin other than C.

Condition (d’) is more subtle. In Listing 4.2, OddStack refines Stack, but restricts
the elements of the stack to only odd integers (we sidestep the issue of the stack
having even elements when OddStack is applied; where an exception could be raised).
Mixin SneakyStack only adds a new method that calls an existing method of Stack.
Now, given a stack object x, if first SneakyStack and then OddStack are applied
to x, the sequence x.alwaysPush(2, d); x.pop(e, d) may cause the assertion to fail.
The reason is that x.alwaysPush(2, d) makes an up-call to Stack::push, shortcutting
OddStack::push, which would prevent 2 to be added to the stack. This problem is
avoided if SneakyStack makes a down-call to self.push instead, as then that call is
dynamically resolved to OddStack.push, see Listing 4.3.

60



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Listing 4.2: Flawed Mixins

class DirectStack extends Stack
method push2(val e : integer, res d : boolean)

s, d := e → e → s, true [] d := false

class OddStack extends Stack
invariant ∀ e ∈ s • odd(e)
method push(val e : integer, res d : boolean)

if odd(e) then Stack.push(e, d) else d := false
method pop(res e : integer, res d : boolean)

Stack.pop(e, d); if d then assert odd(e)

class SneakyStack extends Stack
method alwaysPush(val e : integer, res d : boolean)

Stack.push(e, d)

Listing 4.3: Corrected Mixins

class DirectStack extends Stack
method push2(val e : integer, res d : boolean)

self.push(e, d) ; if d then self.push(e, d)

class OddStack extends Stack
invariant ∀ e ∈ s • odd(e)
method push(val e : integer, res d : boolean)

if odd(e) then Stack.push(e, d) else d := false
method pop(res e : integer, res d : boolean)

Stack.pop(e, d); if d then assert odd(e)

class SneakyStack extends Stack
method alwaysPush(val e : integer, res d : boolean)

self.push(e, d)

61



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Listing 4.4: More Flawed Mixins

class Stack12
var s : seq(integer) := 〈〉
method push(val e : integer)

s := e → s
method push12(val e : integer)

s := e → s [] s := e → e → s

class Only1 extends Stack
method push12(val e : integer)

self.push(e)

class Only2 extends Stack
method push12(val e : integer)

self.push(e) ; self.push(e)

The second part of condition (d’) requires D::m to up-call C.m. In Listing 4.4,
push12 of Stack12 pushes e once or twice on the stack. Mixin Only1 redefines push12
to push only once and mixin Only2 redefines push12 always to push twice. Now,
if Only1 is first mixed into an object of class Stack12 followed by Only2, users of
the object’s Only1 feature would still expect only one push, even if a call to push12
will always push twice. The nondeterminism present in Stack12::push12 must not be
reduced in a mixin, as then different mixins could reduce it differently, resulting in the
described situation. Likewise, a mixin may not enlarge the domain of termination, as
another mixin that would be called first may not do so. Here, both redefinitions of
push12 would have to call Stack12::push12. Hence mixins “cannot refine” the original
behaviour. Mixins can superimpose computation (like Counter) or add new behavior
(like Lock).

4.4 Discussion

Verification with object invariants has been studied extensively, in the context of
behavioural subtyping (America 1990; Liskov and Wing 1994) and in verification lan-
guages such as JML (for Java) and Spec# (for C#), with rules to guide the design
of behaviour preserving subclasses (Barnett, DeLine, Fähndrich, Leino, and Schulte
2004; Chalin, Kiniry, Leavens, and Poll 2006; Dhara and Leavens 1996; Ruby and
Leavens 2000). In particular, the Spec# verification methods allow object invariants
spanning several objects through tree-like ownership structures and layers of abstrac-
tions that prescribe when invariants have to hold (Leino and Müller 2010). When
mimicking mixins in Java or C#, the mixins Stack, Lock and Counter in Listing 4.1
become objects on their own. The Stack object needs to maintain a list of its ex-
tensions which in turn need to refer to each other in order to resolve base calls like

62



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Stack.push(e, d). It is not obvious how these verification techniques can be extended
to such cyclic structures. A dedicated method for the correctness of mixin composition
is called for.

63



Chapter 5

Use Case - Intrusive Data
Structures

Mixins allow the simple implementation of intrusive data structures. Consider the
example of a one-to-one association, which is a relation that allows one object of its
domain to relate to exactly one object of its range (Burton and Sekerinski 2013).
A conventional library implementation would maintain a data structure with each
element storing pointers to the pair of related objects. Looking up an object which a
given object in its domain or range is related to requires traversing that data structure.
With mixins, a separate data structure can be avoided by mixing in a field to a domain
object that points to its range object and vice versa as shown in the module below:

module LinkedAssociations
class Link

var l: Object
class O2O

method add(a: Object, b: Object)
extend a with Link ; a.l := b ;
extend b with Link ; b.l := a

method to(a: Object) b: Object
if a has Link then b := a.l else b := nil

method delete(a: Object)
remove Link from a.l ;
remove Link from a

Such an approach provides the following benefits:

1. The elimination of a separate data structure reduces the number of objects
required to store the structure. With an invasive approach, the number of
objects is equal to the number elements stored.

2. Access to a particular stored object ensures direct access to ones related to it.
Traversal of the data structure is not required.

64



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

5.1 Abstract Specification

Using refinement theory described in Chapter 4, we express the one-to-one associations
specification in terms of relations. Writing A↔ B for the type of relations between
A and B, the following specification is defined:

module Associations
abstract class O2O

var r: Object ↔ Object := {}
invariant r = r-1 ∧ r ∩ id = {} ∧ nil /∈ dom r
method add(a: Object, b: Object)

require a 6= nil ∧ b 6= nil ∧ a 6= b ∧
(∀ o ∈ O2O • a, b /∈ dom o.r) then
r := r ⊕ {a 7→ b, b 7→ a}

method to (a: Object) b: Object
if a ∈ dom r then b := r(a) else b := nil

method delete (a: Object)
require a ∈ dom r then

r := {a, r(a)} C− r
invariant injective (∪ o ∈ O2O • o.r)

Class O2O is defined as an abstract class since it is a specification not intended
to be directly compiled into executable code. (It is not abstract in the sense that it
declares methods without bodies.)

The consistency of a given specification is checked by ensuring that invariants are
preserved after the execution of any method in the module.

The class invariant for the example above states that r must be symmetric, that
no element refers to itself, and that it does not relate nil. Method add(a, b) requires
that both a and b must not be nil, that they must be distinct, and that neither a
nor b is in the domain of r of any O2O object. The maplet a 7→ b is a shorthand for
the pair (a, b). The relation q ⊕ r stands for relation q overwritten by relation r and
s C− r stands for set s subtracted from the domain of r. The module invariant, which
ranges over the properties all objects created by that module (Meyer 1997), states
that the union of r of all O2O objects must be an injective relation.

5.2 Specification Refinement

Module LinkedAssociations is now defined as a refinement of Associations:

module LinkedAssociations refines Associations
class Link

var l: Object
class O2O

method add(a: Object, b: Object)

65



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

extend a with Link ; a.l := b ;
extend b with Link ; b.l := a

method to (a: Object) b: Object
if a has Link then b := a.l else b := nil

method delete (a: Object)
remove Link from a.l ;
remove Link from a

invariant
O2O = Associations.O2O ∧
(∀ o ∈ O2O • ∀ a, b ∈ Object • a 7→ b ∈ o.r ⇒ a.l = b) ∧
Link = (∪ o ∈ O2O • dom o.r)

The module invariant of LinkedAssociations is generalized to be the coupling in-
variant of the refinement: it states that LinkedAssociations.O2O = Associations.O2O.
Every O2O object of Associations is implemented by exactly one O2O object of
LinkedAssociations. Thus if o.r relates a to b, then this corresponds to a.l point-
ing to b, for any O2O object o, and that every object that is being related to by o.r,
for some O2O object o, has a corresponding Link mixin.

5.3 Correctness Proof

For the purpose of proofs, the class declarations in Associations are eliminated and
the keywords private var denote that the declared variable is only accessible from
inside the defined module:

module Associations
private var O2O: set(Object) = {}
private var O2O.r: Object → (Object ↔ Object)
invariant

(∀ this ∈ O2O • this.r = this.r-1 ∧ this.r ∩ id = {} ∧
nil /∈ dom this.r) ∧

injective (∪ o ∈ O2O • o.r)
method O2O.new() this: Object

this :/∈ O2O ∪ {nil} ; O2O := O2O ∪ {this} ; this.r := {}
method O2O.add(this: Object, a: Object, b: Object)

require this ∈ O2O ∧ a 6= b ∧ a 6= nil ∧ b 6= nil ∧
(∀ o ∈ O2O • a, b /∈ dom o.r) then
this.r := this.r ⊕ {a 7→ b, b 7→ a}

method O2O.to (this: Object, a: Object) b: Object
require this ∈ O2O then

if a ∈ dom this.r then b := this.r(a) else b := nil
method O2O.delete (this: Object, a: Object)

66



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

require this ∈ O2O ∧ a ∈ dom this.r then
this.r := {a, this.r(a)} C− this.r

For the consistency of module Associations, abbreviated as A, we have to show:

(a) Ainit ⇒ Ainv

(b) Ainv ∧ newpre ⇒ wp(newbody, Ainv)
Ainv ∧ addpre ⇒ wp(addbody, Ainv)
Ainv ∧ topre ⇒ wp(tobody, Ainv)
Ainv ∧ deletepre ⇒ wp(deletebody, Ainv)

Here, the module initialization has to establish the module invariant and the new
method has to preserve it. For example, for O2O.new this is shown by:

wp(O2O.newbody, Ainv)
(by (field update),(wp, seq composition),(wp, choice),(wp, assignment))

≡ ∀this :/∈ O2O ∪ {nil} • Ainv[r\r[this← {}]]
[O2O\O2O ∪ {this}] (by substitution, renaming)

≡ ∀this :/∈ O2O ∪ {nil} •
(∀o ∈ O2O ∪ {this} • o.r[this← {}] = o.r[this← {}]-1 ∧
o.r[this← {}] ∩ id = {} ∧ nil /∈ domo.r[this← {}]) ∧

injective(∪o ∈ O2O ∪ {this} • o.r[this← {}])
(cases o ∈ O2O and o = this, one-point rule)

≡ ∀this :/∈ O2O ∪ {nil} •
(∀o ∈ O2O • o.r = o.r-1 ∧ o.r ∩ id = {} ∧ nil /∈ domo.r)∧
this.r[this← {}] = this.r[this← {}]-1∧
this.r[this← {}] ∩ id = {} ∧ nil /∈ dom this.r[this← {}] ∧
injective((∪o ∈ O2O • o.r) ∪ this.r[this← {}]) (by function modification)

≡ ∀this :/∈ O2O ∪ {nil} •
(∀o ∈ O2O • o.r = o.r-1 ∧ o.r ∩ id = {} ∧ nil /∈ domo.r)∧
injective(∪o ∈ O2O • o.r) (as this does not occur)

≡ Ainv

For the refinement of Associations by LinkedAssociations, abbreviated as LA, we
have to show:

(a) Ainit ∧ LAinit ⇒ LAinv

(b) Ainv ⇒ A.new vLAinv
LA.new

Ainv ⇒ A.add vLAinv
LA.add

Ainv ⇒ A.to vLAinv
LA.to

Ainv ⇒ A.delete vLAinv
LA.delete

67



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

The definition of refinement contains a quantification over all postconditions. This
does not allow wp to be directly applied as for invariant proofs. A large collection
of derived refinement laws that allow the above conditions to be shown are given
in (Back and Wright 1998; Morgan 1998); these allow compact proofs but require
careful selection and instantiations of the laws. More “streamlined” proofs can be
obtained by using an alternative definition of refinement that avoids quantification
over predicates (Chen and Udding 1989), which is also used by the B method (Abrial
1996):

(b’) each method A.m is refined by B.m via Binv under Ainv:

Ainv ∧Binv ∧ A.mpre ⇒ wp(B.m,wp(A.mbody, Binv))

Here wp is the conjugate weakest precondition, defined by wp(S, c) ≡ ¬wp(S,¬c).
Using this rule immediately leads to a proof condition in (first order) logic; we have
applied it to establish the correctness of LinkedAssociations by hand. As expected,
the proofs are lengthy.

5.4 Machine Automated Proofs Using Boogie

To avoid generating lengthy, repetitive proofs by hand, the correctness of this pro-
gram is checked by encoding the translation into an intermediate language called
Boogie (Leino 2008).

Unlike theorem provers such as Isabelle and PVS, the Boogie language explicitly
models statements found in imperative programming languages. In this language,
classes, objects and mixins can be easily encoded as was done in the core language.
The Boogie language also contains constructs to directly embed proof obligations in
a program. The Boogie verifier uses weakest precondition semantics as we do in our
language for correctness checking (Barnett, Chang, DeLine, Jacobs, and Leino 2006)
by discharging all annotated proof obligations. Below, relevant syntax and semantics
are stated.

• type keyword, gives the designer the ability to create custom types. Polymor-
phic types are also allowed.

• const keyword, allows the declaration of symbolic constants.

• requires statement, allows the user to specify preconditions, conditions which
must hold before method execution.

• ensures statement, specifies a method’s postconditions. Multiple requires (or
ensures) expressions are conjoined.

68



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

obj1 true

obj1 true obj1 true

obj1 a b true

obj1 b a true

a b true

b a true

A - abstract specification

LA - refinement

A.O2O A.r

LA.O2O LA.Link LA.l

Figure 5.1: Boogie model of the Associations program. Relations are stored in maps.
This illustrates the case where a single association between objects a and b are stored.

• havoc statement, is used to non-deterministically assign a properly-typed value
to a variable. When used with the assume statement, a developer can further
restrict the range of values that are chosen from.

• function declaration is used to introduce mathematical functions to a program.

• axiom declaration, defines restrictions on the range of values returned by func-
tions.

In this section, the translation of the association example discussion in this chap-
ter is described. Here, both the abstract specification and its refinement are both
coded in the same module. Two sets of proof obligations are defined to check the
correctness of the module. The first set is defined in terms of the specification’s state
space. It ensures that the abstract implementation of the module is correct relative
to its implementation. The second is defined in terms of both the abstract and its
refinement’s state spaces. It defines a coupling invariant used to ensure that both
state spaces are correctly related when the module’s procedure is “executed”.

69



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Types

Sets are represented as a map of elements to booleans where elements mapping to
true are in the set. Object references are of type Object and include the value nil.
An object field can be encoded as a mapping from objects to values as defined in
the Field type declaration below. Since the map value is polymorphic, an object can
contain fields of arbitrary types.

Listing 5.1: Type Definitions in Boogie

type Set α= [α] bool;
type Relation αγ= [α] [γ] bool;
type Object;
const nil: Object;
type Field α= [Object] α;

Variable Declarations

Object references of a particular type or class can be stored in a predefined set. For
this module, object references of type Associations are stored in the A.O2O relation
with concrete objects of the refining class LinkedAssociations being stored in LA.O2O.
Each variable is of type Set and declared to store elements of type Object. In this
model, a reference points to both the abstract and concrete representations of an
object.

The mixin Link is stored in a similar fashion within the LA.Link relation. Classes
and mixins are treated similarily in this model. Class fields are encoded with a relation
from object references to its field values as done with A.r and LA.l. The model is
shown in Figure 5.1.

Listing 5.2: Association Module Variable Declarations

var LA.O2O: Set Object;
var LA.l: Relation Object Object;
var LA.Link: Set Object;

var A.O2O: Set Object;
var A.r: Field (Relation Object Object);

70



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Using Invariants for Verification

The invariants of the program act as proof obligations. They are encapsulated in a
function which can be checked before and after method execution. The verifier uses
a method’s body, preconditions and postconditions to ensure that class and module
invariants are reestablished.

The class invariant found in Listing 5.3 is for verifying the correctness of the
abstract specification.

71



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Listing 5.3: Specification Verification

function classInvariant( specRelSet: Field (Relation Object Object),
specObjSet: Set Object) returns (bool)

{

!specObjSet[nil]

// ∀o ∈ O2O • o.r = o.r-1 (object associations stored separately)
&& (forall t:Object, x:Object, y:Object ::

specObjSet[t] ==> (specRelSet[t][x][y] == specRelSet[t][y][x]))

// r ∩ id = {}, (objects cannot be associated to themselves)
&& (forall t:Object, x:Object, y:Object :: specObjSet[t] ==>

!specRelSet[t][x][y])

// ∪ o ∈ O2O • o.r (objects can only participate in one association)
&& (forall x:Object, y:Object, z:Object, o:Object ::

( ( specObjSet[o] && specRelSet[o][x][z])
&& ( specObjSet[o] && specRelSet[o][y][z])

) ==>
(x == y) )

}

Coupling Invariant

The coupling invariant asserts relationships between the state spaces of both the
abstract specification and its refinement. Listing 5.4 illustrates the coupling invariant
code for this problem.

Listing 5.4: Coupling Invariant Function

function couplingInvariant( relSet: Field (Relation Object Object),
specObjSet: Set Object, refineObjSet: Set Object,
refineCls: Set Object, refineClsAttr: Relation Object Object )
returns (bool)

{
// O2O=IO2O

//(forall x:Object :: specObjSet[x] ¡==¿ refineObjSet[x] )
specObjSet == refineObjSet

72



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

// ∀o∈O2O • ∀a,b ∈ Object • a 7→ b ∈ o.r ⇒ a.l=b
// (ensures that the if the relation exists in the abstract
// state space, it also exists in the concrete one

&& (forall t:Object :: specObjSet[t] ==>
( forall x:Object, y:Object :: relSet[t][x][y] ==> (refineCls[x] && refineClsAttr

[x][y]) )
)

// Link = (∪o ∈ O2O • dom o.r)
// (ensure thats if the relation exists, the object in the domain has beeen extended)
&& (forall o:Object, a:Object, b:Object :: (relSet[o][a][b]) ==> (refineCls[a] &&

refineCls[b]))
}

Creating a New Relation Instance Object

As shown in Listing 5.5, a new O2O object instance is used to store an association.
An unused object reference is selected using the havoc − assume pair of statements.
The havoc a statement nondeterministically chooses an object reference and assigns
it to a. The following assume expression bounds the possible values that can be
chosen. In this case, it guarantees that an unused object reference is selected. This
new object is both an instance of the Associations.O2O and LinkedAssociations.O2O
classes so the reference is stored in the A.O2O and LA.O2O maps respectively.

This procedure equates to running the constructor of the O2O in the abstract
specification class (Associations) and the refining class (LinkedAssociations). Since
no constructor implementation is provided for either, both are assumed to be skip.

Listing 5.5: New Associations Object

procedure new() returns (result: Object)

requires classInvariant(A.r,A.O2O);
requires couplingInvariant(A.r, A.O2O, LA.O2O, LA.Link, LA.l);

modifies A.O2O; modifies A.r; modifies LA.O2O;

73



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

ensures classInvariant(A.r,A.O2O);
ensures couplingInvariant(A.r, A.O2O, LA.O2O, LA.Link, LA.l);

{
var this: Object;

// non-deterministically select an unused reference
havoc this;
assume ( !A.O2O[this] && (LA.O2O[this]!=true) && (this != nil) );

// record that it is used in both state spaces
A.O2O[this] := true; LA.O2O[this] := true;
A.r[this] := relation empty();

}

Adding Associated Objects to Relation Instance

The code found in Listing 5.6 models the program storing the association between two
objects. In addition to the class and coupling invariants, the preconditions check to
guarantee that the incoming this object is of the O2O type, that the a and b arguments
are not equal and are not nil, and that both objects are not already involved in another
association.

In Boogie, the modifies statement allows the user to specify which global variables
are being modified in a method. This simplifies the work of the verifier, as it will only
check proof obligations relating to these variables.

The abstract specification specifies that the relation a to b and b to a are recorded.
These are added to the A.r map. The extend statement in mix adds a mixin to be
added to a currently existing object. The translation in Boogie equates to adding
the object reference into the appropriate mixin map. Here, both objects a and b are
added to the LA.Link map. The Link.l field is updated in the model by setting the
LA.l where the first element of the map is the object reference extended by Link.

74



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Listing 5.6: Setting Association Object Fields

procedure add(this: Object, a: Object, b: Object )
// preconditions
requires (A.O2O[this]==true); requires (LA.O2O[this]==true);
requires (a!=b);
requires (this != nil); requires (a != nil); requires (b != nil);
requires (forall o:Object :: !(exists y: Object :: A.r[o][a][y] == true) );
requires (forall o:Object :: !(exists x: Object :: A.r[o][x][a] == true) );
requires (forall o:Object :: !(exists y: Object :: A.r[o][b][y] == true) );
requires (forall o:Object :: !(exists x: Object :: A.r[o][x][b] == true) );

requires classInvariant(A.r,A.O2O);
requires couplingInvariant(A.r, A.O2O, LA.O2O, LA.Link, LA.l);

modifies A.r, LA.Link, LA.l;

// postcondition
ensures A.r[this][a][b] == true;
ensures A.r[this][b][a] == true;

ensures classInvariant(A.r,A.O2O);
ensures couplingInvariant(A.r, A.O2O, LA.O2O, LA.Link, LA.l);

{
A.r[this][a][b] := true; A.r[this][b][a] := true;

assume (forall y: Object :: y != b ==> !A.r[this][a][y]);
assume (forall y: Object :: y != a ==> !A.r[this][b][y]);

LA.Link[a] := true; LA.Link[b] := true;
LA.l[a][b] := true; LA.l[b][a] := true;

}

75



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Removing Associated Objects to Relation Instance

The removal of a relation works similarly as shown in Listing 5.7. The preconditions
to the remove function ensure that the O2O object is a valid reference and that the
object a being removed is currently in an association.

The method finds the association by using the havoc statement to find the object b
associated with a. This object b is chosen arbitrarily but the assume statement ensures
that the only object associated with the specified a is selected. The extension of both
objects is eliminated by removing the elements from the Link set. Also, the field l of
both Link objects is removed from the LA.l map.

Listing 5.7: Clearing Association Object Fields

procedure remove(this: Object, a: Object )

// preconditions
requires (A.O2O[this]==true); requires (LA.O2O[this]==true);
requires (exists x:Object :: A.r[this][a][x] && A.r[this][x] [a] );
requires (LA.Link[a]==true);

requires classInvariant(A.r,A.O2O);
requires couplingInvariant(A.r, A.O2O, LA.O2O, LA.Link, LA.l);

modifies A.r, LA.Link, LA.l;

// postcondition
ensures (forall x:Object :: A.r[this][a][x] != true);
ensures (forall x:Object :: A.r[this][x][a] != true);

ensures classInvariant(A.r,A.O2O);
ensures couplingInvariant(A.r, A.O2O, LA.O2O, LA.Link, LA.l);

{
var b: Object;

havoc b;
assume (A.r[this][a][b] && A.r[this][b][a] && LA.Link[b] && LA.l[a][b] && LA.l

[b][a]);

A.r[this][a][b] := false; A.r[this][b][a] := false;
LA.Link[a] := false; LA.Link[b] := false;
LA.l[a][b] := false; LA.l[b][a] := false;

}

76



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

5.5 Discussion

Modelling classes in Boogie relieves a developer from manually doing correctness
proofs for class implementations but currently translation from mix code must be
done explicitly. The translation to Boogie presented resembles the core language that
describes mix as opposed to the programming language itself. Application develop-
ers may find this process tedious and error-prone. The code required to verify this
program was approximately 180 lines long and took 6 seconds for the Boogie veri-
fier to prove its correctness, so scalability may be a concern for larger applications.
Some of the Boogie code, such as object management and field access is “boiler-plate”
code which can be automatically generated so extending mix with specification state-
ments and having its compiler emit Boogie code may further reduce any burden on
application developers. This is left as future work.

77



Chapter 6

Use Case - Implementing Design
Patterns

In sections 6.1-6.4, we use mixin composition idioms discussed thus far to implement
some design patterns documented in (Gamma, Helm, Johnson, and Vlissides 1995).
We focus on object structural and object behavioural patterns as they are used to
provide run-time control over a system’s feature composition and behaviour respec-
tively. This is consistent with mix’s goals of supporting role-based development and
object evolution. The selected examples exploit the composition techniques described
in Chapter 4.

Most of the documented implementations were originally coded in C++ (some
alternate Smalltalk solutions are presented). We translate the pattern implementa-
tions into Java-like syntax so the differences between our proposed mixin-based and
the corresponding documented object composition solutions are clear. The conven-
tion followed for each pattern presentation in this section is as follows. Initially, a
description and summary of the pattern is stated, followed by the object composition
and mixin-based implementations (the object composition one is always on the left)
and is concluded with a short discussion.

Section 6.5 documents related work pertaining to object composition using design
patterns.

The chapter concludes with a critical discussion about the differences between
object and mixin composition.

6.1 Decorator Pattern

Attach additional responsibilities to an object dynamically. Decorators provide a flex-
ible alternative to subclassing for extending functionality.

Objects are dynamically added and removed from a collaboration in order to
modify its behaviour. The objects form a linked list. For a specified method, objects in

78



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

the list contribute to the behaviour by defining an implementation which includes some
object-specific code and an invocation of the method with the same name contained
in the next object in the list. Ultimately, this results in a client’s method call being
transformed into a series of sequential method invocations within the collaboration.

The object composition approach creates a linked list of objects and uses method
combination to deliver the desired functionality. In Listing 6.1, the ConcreteDecora-
torB object contains a reference to a ConcreteDecoratorA which in turn contains a ref-
erence to a ConcreteComponent object. Since the Decorator classes and the Concrete-
Component implement the Component interface, a Decorator’s Operation() method
can call its stored object’s Operation() method. The example results in the follow-
ing calling sequence when cdB.Operation() is called: ConcreteDecoratorB.Operation()
 ConcreteDecoratorA.Operation()  ConcreteComponent.Operation(). The equiv-
alent behaviour in Listing 6.2 is obtained by extending a ConcreteComponent with
Decorator mixins as done in the Client class. The Component.Operation() statement
implicitly invokes the next method in the linearization chain.

The main difference between the two composition techniques is that the object
composition solution relies on the developer explicitly creating the required object
linked list. This does provide more flexibility. The object list can be generalized to
trees where a decorator can spawn methods from multiple objects. The correctness
of the list formation is left to the developer. In particular, she must ensure that no
cycles are inadvertently created and all objects’ “next object” reference pointers are
properly initialized. The mixin-based approach ensures that the mixin list is formed
without cycles. It is also simpler because there is no need to include code which checks
the integrity of the mixin list. Removing decorators at runtime in the mixin-based
approach involves just using the remove statement, unlike the object composition
approach where you would have to modify references embedded in the objects.

Having multiple objects implement the Decorator pattern means that the identity
of the pattern is spread across all participating objects. This makes identifying the
pattern instance complex as one must track each object involved and their relationship
to each other. Since mixin composition results in a single object, its reference uniquely
identifies the pattern instance.

The object composition solution gives the developer the flexibility to easily share
decorators between pattern instances but extra management is required if the decora-
tors rely on state for execution. Finally, another criticism of the object composition
approach is that it results in many small, similar objects.

6.2 Proxy Pattern

Provide a surrogate or placeholder for another object to control access to it.

This pattern gives the designer the ability to separate management of an object’s
access from its core functionality. Examples of management concerns include object

79



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Listing 6.1: Decorator Pattern-Object
Composition Solution

class Component { Operation(); }

class ConcreteComponent implements
Component

Operation() { ... };
...

class Decorator implements
Component

Component comp;
Decorator(Component c) {comp = c
};

Operation() { comp.Operation() };
...

class ConcreteDecoratorA extends
Decorator

ConcreteDecoratorA(Component c) {
super(c); };

Operation() { ... comp.Operation() };
...

class ConcreteDecoratorB extends
Decorator

ConcreteDecoratorB(Component c) {
super(c); };

Operation() { ... comp.Operation() };
...

class Client {
main() {

ConcreteComponent cc = new
ConcreteComponent();

ConcreteDecoratorB cdB = new
ConcreteDecoratorB(new
ConcreteDecoratorA (cc));

cdB.Operation();
...

Listing 6.2: Decorator Pattern-Mixin
Composition Solution

class Component { Operation(); }

class ConcreteComponent implements
Component

Operation() { ... };
...

class DecoratorMixA extends
Component

Operation() { ... Component.
Operation() };

...

class DecoratorMixB extends
Component

Operation() { ... Component.
Operation() };

...

begin
ConcreteComponent cc = new

ConcreteComponent
extend cc with DecoratorMixA;
extend cc with DecoratorMixB;
...
cc.Operation()

end

.

.

.

.

.

.

.

.

.

.

80



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Listing 6.3: Proxy Pattern-Object Com-
position Solution

class Subject
Request() ;
...

class RealSubject implements Subject
Request();
...

class RemoteProxy implements
Subject

Subject rs;
Request()

...
rs.Request() // send request to

remote object

class Client
main()

Subject rs = new RealSubject();
rs.Request();

class NewClient
main()

Subject rp = new RemoteProxy();
rp.Request();

Listing 6.4: Proxy Pattern-Mixin Com-
position Solution

class Subject
Request();

class RealSubject implements Subject
Request();
...

class RemoteProxy implements
Subject

Request()
...
// send request to remote object

class Controller
switchToRemote(Subject s)

implement s with RemoteProxy
switchToLocal(Subject s)

implement s with RealSubject
...

begin
RealSubject rs = new RealSubject()
rs.Request()
Controller sc = new Controller()
sc.switchToRemote(rs as Subject)

end

security, concurrent access or expensive object creation time. In the following exam-
ple, a remote proxy (used to provide access to an object in a different address space)
is presented.

The object composition approach in Listing 6.3 allows a RemoteProxy and a Re-
alSubject object to collaborate. The RemoteProxy object contains a field that holds
a reference to the actual remote object targeted. The NewClient creates the proxy
object and is insulated from interacting with the actual Subject object being used.
Since the RemoteProxy and Subject both implement the same interface, the proxy can
simply forward any client requests to the remote subject. Either the RemoteProxy
and RealSubject mixin is combined with an object upon instantiation when mixin
composition is used to implement this pattern as in Listing 6.4. The object can
morph into a proxy object by atomically removing the RealSubject mixin and adding

81



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

the RemoteProxy one via the implement statement in the Controller class.
The key difference between the two approaches is the fact that when object compo-

sition is used the client code must be changed. Listing 6.3 shows that the Client code
must be changed to instantiate the RemoteProxy object instead of the RealSubject or
the remote access feature must have been anticipated during the original design of
this program. Using mixin composition, RealSubject does not have to be aware of the
remote feature and the Client objects do not have to change to support it. In the
example, the external object Controller allows the remote access feature to be added
or removed transparently.

6.3 Chain of Responsibility Pattern

Avoid coupling the sender of a request to its receiver by giving more than one object
a chance to handle the request. Chain the receiving objects and pass the request along
the chain until an object handles it.

A linked list of objects is created by having each object store the reference of
its successor. When a request is received by the object in the list, the object either
handles the request and returns to the caller or forwards the request to its defined
successor. The last object in the chain has no successor and must handle the request
if no one else does.

The pattern is traditionally implemented with a set of objects that implement a
particular Handler interface as shown in Listing 6.5. All objects except for the last
one, initialize their successor field to be a reference to the next object in the list. The
last one does not have to initialize its successor because it is never used. The last
object will be a Base object. Each object implements its HandleRequest() method
in a manner such that it can determine whether it can handle the request or not. If
it can, its custom handling code is executed, otherwise the same call is made on its
successor. The Base object has no successor so it provides a default handler.

When mixins are used, as in Listing 6.6, successor references are not required,
because the list is implicitly created by the mixin linearization scheme. Each handler
is implemented as a mixin and instead of calling a successor’s handler method, the
Base.HandleRequest() statement is called. This will call the method of the same
name higher in the linearization that implements the interface defined by the Base
class. This implementation allows new handlers to be added by simply extending the
object. Replacing a handler with another will ensure that the added handler will take
the place of the original one in the linearization order.

In the Listing 6.5, the object composition design approach takes into account that
the base object will be extended by handler. If the base object was originally designed
to handle all requests, the Base implementation would not have the Handler class or
the successor field. These would be added after the system required the feature. The
mixin composition approach does not require such prior knowledge. The mixin class

82



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Listing 6.5: CofR Pattern-Object Com-
position Solution

class Handler
Handler successor;
HandleRequest();

class ConcreteHandlerA implements
Handler

ConcreteHandlerA(Handler h) {
successor = h ...}

HandleRequest()
if ("can handle request")

... // code to handle
else

successor.HandleRequest();

class ConcreteHandlerB implements
Handler {

ConcreteHandlerB(Handler h) {
successor = h ...}

HandleRequest()
if ("can handle request")

... // code to handle
else

successor.HandleRequest();

class Base implements Handler
HandleRequest() { ... }

class Client
main()

ConcreteHandlerB chB = new
ConcreteHandlerB(new
ConcreteHandlerA(new Base
(null)));

chB.HandleRequest();
...

Listing 6.6: CofR Pattern-Mixin Compo-
sition Solution

class ConcreteHandlerA extends Base

HandleRequest() {
if ("can handle request") then

... // code to handle
else

Base.HandleRequest();

class ConcreteHandlerB extends Base

HandleRequest() {
if ("can handle request") then

... // code to handle”
else

Base.HandleRequest();

class Base
HandleRequest() { ... }

class Client
main()

Base b = new Base();
extend b with

ConcreteHandlerA;
extend b with

ConcreteHandlerB;
b.HandleRequest()
...
.
.
.
.
.
.
.

83



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Listing 6.7: Strategy Pattern-Object
Composition Solution

class Context
Strategy s;
ContextInterface() { s.

AlgorithmInterface() };

class Strategy
AlgorithmInterface();

class ConcreteStrategyA implements
Strategy

AlgorithmInterface() { ... }

class ConcreteStrategyB implements
Strategy

AlgorithmInterface() { ... }

class Client
main()

Context c = new Context();
c.s = new ConcreteStrategyA();
c.ContextInterface();
...
c.s = new ConcreteStrategyB();

Listing 6.8: Strategy Pattern-Mixin
Composition Solution

class Strategy
AlgorithmInterface();

class ConcreteStrategyA implements
Strategy

AlgorithmInterface() { ... }

class ConcreteStrategyB implements
Strategy

AlgorithmInterface() { ... }

class Client
main()

Strategy s = new
ConcreteStrategyA;

s.AlgorithmInterface()
...
implement ConcreteStrategyA

with ConcreteStrategyB();
s.AlgorithmInterface()
...

.
.

extends the Base class without its knowledge by implementing extensions conforming
to the Base interface.

6.4 Strategy Pattern

Define a family of algorithms, encapsulate each one, and make them interchangeable.
Strategy lets the algorithm vary independently from the clients that use it.

The object that allows a client to initiate an algorithm and retrieve its results is
static. Algorithm execution requests are delegated to a secondary object which does
the actual computation.

Here we use object composition to create an aggregate relationship between the
Context and Strategy objects. The client interface is decoupled from the algorithm as
shown in Listing 6.7. This allows the code implementing the algorithm (the Strategy

84



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

object) to be changed at runtime with minimal changes to the client. In the example,
the client would only have to change code at the point of the instantiation. The
Context code exposes access to the embedded Strategy object so that the algorithm
can be changed and the developer is responsible for ensuring that the ConcreteStrategy
object is available.

Using mixins, both the client interface and algorithm services can be combined
into one object without losing the ability to change the algorithm implementation at
runtime. In Listing 6.8, the algorithm is mixed into client interface’s s object via the
ConcreteStrategyA mixin when it is created. Since its Strategy interface implemen-
tation is needed, ConcreteStrategyA cannot be removed dynamically from the object
unless it is replaced by another one, such as ConcreteStrategyB, that implements it.
This can be done using the implement construct that can be used to switch the
algorithm’s implementation at runtime. The mixin language typing rules ensure that
the new algorithm mixin actually implements the Strategy class, that such a mixin is
always available to the object and a call to the AlgorithmInterface() is safe through-
out a Strategy typed object’s lifetime. If object composition is used to implement this
pattern, safety checking code should be added to ensure that some Strategy imple-
mentation is always available.

6.5 Patterns to Support Object Extension

Patterns have been documented to address the need for object extension at runtime.
Delegation is commonly used to accomplish this in statically typed languages like Java
and C++. In this section, we identify patterns in the literature relevant to supporting
object extension via delegation and discuss their relevance and usage relative to mixin
composition.

6.5.1 Dynamic Object Model Pattern

Allow a system to have new and changing object types without having to reprogram
the system. Representing the object types as objects means that they can be changed at
configuration time or at runtime, which makes it easy to change and adapt the system
to new requirements. (Dirk Riehle and Johnson 2006)

This pattern encodes an object’s type and its attributes into objects separate from
itself. An object instance aggregates these objects and delegates calls to them when
received from clients.

85



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Listing 6.9: Dynamic Object Model
Pattern-Type Code

class ObjectId
String objName
Integer objId
ObjectId(String str, Integer i) {

objName = str, objId = i }

class Type
String typeName;
Integer typeId;
List<String, PropertyType>

typeProperties;

class PropertyType
String name;
Type type;

class Property
PropertyType propType;
Value val;

.

.

.

.

Listing 6.10: Dynamic Object Model
Pattern-Object/Client Code

class GenericObject
Type type;
ObjectId oId;
List<String, Property> properties;

GenericObject(Type t, ObjectId id) {
type = t; oId = id}

Type getType() { return type; }
Property getProperty(String name)

return properties.get(name);
void setProperty(String name,

Property p)
properties.put(name, p);

class Client
main ()

GenericObject obj =
new GenericObject( new

Type() , 20032);
obj.setProperty("some field",

new Property() );
...

This pattern was proposed to allow objects to change their type at runtime and
is an alternative to mixin composition and delegation for object extension. Types
are defined as objects themselves as shown in Listing 6.9. Each type object defines a
collection of PropertyType objects which define and place restrictions on the object’s
fields. State is stored as a collection of Property objects. Here, an object’s identity
(GenericObject) is distinct from its type and state. Method definitions are not in-
cluded in the example but would be contained in the Type objects. This approach
allows an object to morph into any type but checks to ensure that the Value objects
stored in the Property objects are of the correct type. Furthermore, the object must
be checked to ensure all required Property objects are present. The client code must
refer to fields by identifier which is prone to error. With mixin composition, these
safety checks are not required because the type system ensures that the object con-
tains all fields defined in its base class’s definition and the fields are of the correct
type.

An object can be an instance of one type at a time but can have optional fields

86



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

bound to it. However, these fields aren’t grouped via relationship so adding features
as a unit is not easy. Since mixin composition adds object extensions in a modular
fashion, features are easily identified in the code. Furthermore, extending an object
with a mixin ensures that all fields defined in that mixin class are added. A developer
must only ensure that a particular mixin has been added but need not check for the
presence and type of individual fields.

6.5.2 Extension Objects Pattern

Anticipate that an object’s interface needs to be extended in the future. Additional
interfaces are defined by extension objects (Gamma 1997)

When using delegation for object extension, each extension object gives a client a
different view to an object. The availability of an extension interface object is embed-
ded in the base object. At runtime, clients can query to check for an object extension’s
availability and receives a reference to the object implementing that extension.

87



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Listing 6.11: Extension Object Pattern

class SpecificExtension implements Extension
{ ... }

class Subject
Extension GetExtension() { return NULL;}

class ConcreteSubject extends Subject
SpecificExtension specificExtension;
GetExtension(String name)

if ("SpecificExtension" == name)
return specificExtension;

else
Subject::GetExtension(name);

class Client
main()

SpecificExtension ext;
Subject sub = new ConcreteSubject();
ext = (SpecificExtension)

(sub.GetExtension("SpecificExtTypo
") );

class MixClient
main()

SpecificExtension ext;
Subject sub = new ConcreteSubject();
...
if (sub has SpecificExtension)

ext = sub as SpecificExtension
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Listing 6.12: Role Object Pattern

class Component
getRole(String); addRole(String);
removeRole(String); hasRole(String);

class ComponentCore implements
Component

Map<String, ComponentRole> role;
getRole(String roleName) { return role[

roleName]; }
addRole(String roleName)

if (roleName == "ConcreteRoleA")
role[roleName] = new ConcreteRoleA

()
...

class ComponentRole implements Component
ComponentCore core;
Operation() { core.Operation() };
getRole(String roleName) { core.getRole(

roleName); };
addRole(String roleName)

return core.addRole(roleName);
...

class ConcreteRoleA extends ComponentRole
{ ... }

class Client {
main () {

Component cs = new ComponentCore();
cs.addRole("ConcreteRoleA");
ConcreteRoleA cr =

(ConcreteRoleA)cs.getRole("
ConcreteRoleA");

...
cs.removeRole("ConcreteRoleA") ;

class MixClient {
main () {

ComponentCore cs = new
ComponentCore();

extend cs with ConcreteRoleA;
ConcreteRoleA cr = cs as

ConcreteRoleA;
...
remove ConcreteRoleA from cs;

88



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

In Listing 6.11, the ConcreteSubject has been extended by an object of type Speci-
ficExtension. The GetExtension() is provided, so that clients can query for the avail-
ability of this extension using an identifier. Note that any mistake in the identifier
(like the sub.GetExtension("SpecificExtTypo") statement in Client.main()) will not
be detected by the compiler. Any future extensions require modification to the if
statement in the GetExtension() method and the addition of a new field to store the
extension’s reference.

If the solution is designed using mixin composition, the code currently found in
the ConcreteSubject object is not needed. The query can be done using the has and
as keywords as shown in the MixClient. The query is type checked at compile time.
Also, since the composition results in a single object, no reference fields need to be
added if the object type supports future extensions.

6.5.3 Role Object Pattern

Adapt an object to different client’s needs through transparently attached role objects,
each one representing a role the object has to play in that client’s context. The object
manages its role set dynamically. By representing roles as individual objects, different
contexts are kept separate and system configuration is simplified (Bäumer, Riehle,
Siberski, and Wulf 1997).

This has been presented as a systematic way of structuring objects based on the
role they play in pattern collaborations. Here, roles can be acquired and released by
an object at runtime. It has been developed because it is often desirable to have an
object participate in multiple pattern collaborations concurrently (Fowler 1997). This
approach provides an interface for managing associated role objects. All role objects
implement the role management interface functions, so the clients have control over
the roles that are available for each object.

This pattern is similar to the Extension Object but emphasizes that different clients
may require a subject object to take on different roles depending on the current
context. Clients have the ability to add and remove roles to the object. The example
in Listing 6.12 shows that the ComponentCore object has a reference to a container of
extensions indexed by an identifier. This allows the pattern instance to accept future
extensions without new fields. The roles are independent and of type ComponentRole.
This allows the roles such as objects of type ConcreteRoleA to obtain a reference to
its core object (of type ComponentCore) but not to the other roles in the pattern.
This makes method combination difficult to implement using this approach. Clients
use identifiers to index roles and access them via the ComponentCore class. These
identifiers can not be checked by the compiler so run-time errors can occur if the
wrong identifiers are used. By allowing the clients to manage the mixin class directly
as in MixClient, object management functionality such as adding and removing roles
can be type checked by the compiler.

89



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

6.6 Discussion

The examples presented show that mixin composition is a viable alternative to object
composition in many situations. While object composition results in multiple objects
requiring management, mixins place the whole pattern implementation into a single
object, yet entering or leaving the collaboration remains simple.

The patterns presented in Section 6 all benefit when they are implemented using
dynamic mixins for implementation. They eliminate the need to manage the memory
of extension objects. In the Strategy pattern, the core object must ensure that the
strategy extension is always available when a client invokes it. The mixin approach
guarantees this if the core object is defined to need the extension.

Object composition requires that a core object contains fields explicitly defined
to store references to its extensions. This must be done at design time so if object
evolution involves future extensions, the core object code must be modified to support
them. In the Decorator and Chain of Command pattern implementations, method
combinations are formed using these references. When mixin composition is used,
these references are not required so the core object’s class specification need not
change if the original design was not intended to support method combination. This
issue is of particular interest when implementing the Proxy pattern. The object
composition implementation of the Proxy pattern requires clients of a core object to
change their code when proxy functionality was unexpectedly added. Using mixins,
proxy functionality can be added with the modifications being transparent to client
objects.

Patterns are found in the literature that specifically address the problems associ-
ated with extension via object composition. The Dynamic Object Model pattern is
an alternative to mixin composition but most type checking is left to the developer
and treating extensions as distinct features is difficult. Using the Extension Object
pattern requires that its use is anticipated in the original design and the Role Object
pattern can not rely on the type system to verify that client lookup identifiers are
valid. Mixin composition does not suffer from these shortcomings.

Mixins are a useful approach for composition when runtime object evolution is
desired. They are also useful in patterns like the Decorator that may create many
objects. While some patterns benefit from mixin implementation, static patterns like
the Facade or the creational design patterns in (Gamma, Helm, Johnson, and Vlissides
1995) do not exploit the advantages that mixins offer. Also, class based patterns such
as the Template pattern do not benefit from mixin composition because they are
explicitly designed to use subclassing and inheritance. Another known issue with
mixin composition is that mixins cannot retain state after they are removed from an
object. In situations where persistent state is required, object composition is a better
option. Since mixins in a collaboration are embedded in a single object, they cannot
be shared among pattern implementations like objects can. Although this usually
complicates an application, there may be some cases where this possibility is useful

90



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

and object composition would be a more appropriate choice.
We view mixins in the proposed language as a means of providing required services

for an object to be instantiated. They can be swapped out for compatible ones at
runtime in a safe, systematic fashion. Alternatively, they can be used to add optional
features to an object. While safety must be explicitly handled by the programmer,
this allows objects to evolve when modifications were not anticipated.

91



Chapter 7

Conclusion

The goal of this work is to explore the viability of dynamic mixins as a useful software
design element. In particular, the focus was placed on the benefit of reusing mixin
code in different applications.

Mixins allow object extension at runtime without requiring previous design to
support them while ensuring that the object has a single identity. Shortcomings with
dynamic mixins currently include type-safety, performance and unexpected behaviour
changes after mixin composition.

This work takes a multi-pronged approach to addressing these concerns. First
of all, the type safety concern is addressed by proposing a new statically typed lan-
guage mix. The language requires the user to explicitly specify the interface imple-
mentation required when a mixin is bound to a dependent object. This removes the
possibility of run-time typing errors.

Since objects can be extended by an arbitrary number of mixins, a fixed memory
layout is not suitable. Current implementations store extensions in an abstract data
structure which limits the efficiency of method calls. This issue is addressed with
an object model that represents an object with a linked list of memory segments.
This list is managed by the language implementor not the developer and is designed
to optimize method combination required when mixin composition modifies current
behaviour. A compiler which parses mix code was built as part of the project. It uses
the proposed object model when generating executable code. Tests conducted using
the compiler’s generated code show that method calls and field access approach the
performance of statically typed language implementations.

Finally, a criticism of mixins is that linearization can cause unintended method
overriding and that method chaining can be ambiguous. The correct use of interfaces,
however, reduces the chance of accidental overriding and ambiguous method chaining
gives mixins the power to support unexpected object extensions. The rules proposed
in this work give programmers the ability to determine when mixin composition can
be done without compromising program correctness.

92



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

The thesis doesn’t address mixin extensions occurring in a concurrent environ-
ment. In a multithreaded environment, it is possible that a thread relying on a
objects’ mixin has been removed by another one during a task switch. Furthermore,
security implications associated with object extension are not addressed. In the model
proposed, it is possible that an object is extended with malicious code.

Initializing mixins upon object extension is required in some applications. Imple-
mentation of this has been left as future work. Safe object extension is guaranteed
by following the rules mentioned in this work. Automating the enforcement of such
rules so that they can be checked at compile-time is also left as future work.

93



Bibliography

Abrial, J.-R. (1996). The B Book: Assigning Programs to Meanings. Cambridge
University Press.

Allen, E., J. Bannet, and R. Cartwright (2003, October). A first-class approach to
genericity. SIGPLAN Not. 38 (11), 96–114.

America, P. (1990). Designing an object-oriented programming language with be-
havioural subtyping. In J. W. d. Bakker, W. P. d. Roever, and G. Rozenberg
(Eds.), Foundations of Object-Oriented Languages, Volume 489 of Lecture Notes
in Computer Science, pp. 60–90. Springer Berlin Heidelberg.

Ancona, D., G. Lagorio, and E. Zucca (2003, September). Jam—designing a java
extension with mixins. ACM Trans. Program. Lang. Syst. 25, 641–712.

Apel, S., T. Leich, and G. Saake (2006). Aspectual mixin layers: aspects and fea-
tures in concert. In Proceedings of the 28th international conference on Software
engineering, ICSE ’06, New York, NY, USA, pp. 122–131. ACM.

Back, R.-J. and J. v. Wright (1998). Refinement Calculus: A Systematic Introduc-
tion. Springer-Verlag.

Barnett, M., B.-Y. Chang, R. DeLine, B. Jacobs, and K. Leino (2006). Boogie: A
modular reusable verifier for object-oriented programs. In F. de Boer, M. Bon-
sangue, S. Graf, and W.-P. de Roever (Eds.), Formal Methods for Components
and Objects, Volume 4111 of Lecture Notes in Computer Science, pp. 364–387.
Springer Berlin / Heidelberg.

Barnett, M., R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte (2004).
Verification of object-oriented programs with invariants. Journal of Object Tech-
nology 3 (6), 27–56.

Bäumer, D., D. Riehle, W. Siberski, and M. Wulf (1997). The role object pattern. In
Proceedings of Pattern Languages of Programs ’97, Number Technical Report
WUCS-97-34 in PLoP ’97. PLoP: Washington University Dept. of Computer
Science.

Bolz, C. F. (2011, November). Efficiently implementing python object with
maps. http://morepypy.blogspot.ca/2010/11/efficiently-implementing-python-
objects.html.

94



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Bracha, G. and W. Cook (1990). Mixin-based inheritance. In European Confer-
ence on Object-oriented Programming / Object-oriented Programming Systems,
Languages, and Applications, OOPSLA/ECOOP ’90, pp. 303–311. ACM.

Burton, E. and E. Sekerinski (2013). Correctness of intrusive data structures using
mixins. In Proceedings of the 16th International ACM Sigsoft Symposium on
Component-based Software Engineering, CBSE ’13, New York, NY, USA, pp.
53–58. ACM.

Burton, E. and E. Sekerinski (2014). Using dynamic mixins to implement design
patterns. In Proceedings of the 19th European Conference on Pattern Languages
of Programs, EuroPLoP ’14, New York, NY, USA, pp. 14:1–14:19. ACM.

Burton, E. and E. Sekerinski (2015). The safety of dynamic mixin composition. In
Proceedings of the 30th Annual ACM Symposium on Applied Computing, SAC
’15, New York, NY, USA, pp. 1992–1999. ACM.

Burton, E. and E. Sekerinski (2016). An object model for a dynamic mixin based
language. In Proceedings of the 31st Annual ACM Symposium on Applied Com-
puting, SAC ’16, New York, NY, USA, pp. 1986–1992. ACM.

Burton, E. and E. Sekerinski (2017). An object model for dynamic mixins (in print).
Computer Languages, Systems & Structures 2 (12), 1–12.

Ceri, S., F. Daniel, M. Matera, and F. M. Facca (2007, February). Model-driven
development of context-aware web applications. ACM Transactions on Internet
Technology 7 (1), 343–355.

Chalin, P., J. Kiniry, G. Leavens, and E. Poll (2006). Beyond assertions: Advanced
specification and verification with jml and esc/java2. In F. de Boer, M. Bon-
sangue, S. Graf, and W.-P. de Roever (Eds.), Formal Methods for Components
and Objects, Volume 4111 of Lecture Notes in Computer Science, pp. 342–363.
Springer Berlin Heidelberg.

Chambers, C., D. Ungar, and E. Lee (1989, September). An efficient implementa-
tion of self a dynamically-typed object-oriented language based on prototypes.
SIGPLAN Not. 24 (10), 49–70.

Chen, W. and J. T. Udding (1989). Towards a calculus of data refinement. In
J. L. A. v. d. Snepscheut (Ed.), Mathematics of Program Construction, 375th
Anniversary of the Groningen University, Lecture Notes in Computer Science
375, Groningen, The Netherlands, pp. 197–218. Springer-Verlag.

CodeHaus (2014, February). Groovy - runtime mixins. http://groovy-lang.org/.

Dhara, K. K. and G. T. Leavens (1996). Forcing behavioral subtyping through
specification inheritance. In Proceedings of the 18th International Conference
on Software Engineering, ICSE ’96, Washington, DC, USA, pp. 258–267. IEEE
Computer Society.

95



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Dirk Riehle, M. T. and R. Johnson (2006). Pattern Languages of Program Design
5. Addison-Wesley.

Dixon, R., T. McKee, M. Vaughan, and P. Schweizer (1989). A fast method dis-
patcher for compiled languages with multiple inheritance. In Conference pro-
ceedings on Object-oriented programming systems, languages and applications,
OOPSLA ’89, New York, NY, USA, pp. 211–214. ACM.

Ducasse, S., O. Nierstrasz, N. Schärli, R. Wuyts, and A. P. Black (2006, March).
Traits: A mechanism for fine-grained reuse. ACM Trans. Program. Lang.
Syst. 28 (2), 331–388.

Ducournau, R. (2011, May). Coloring, a versatile technique for implementing
object-oriented languages. Softw. Pract. Exper. 41 (6), 627–659.

Fitzgerald, M. (2007). Learning Ruby. O’Reilly Media.

Flatt, M., S. Krishnamurthi, and M. Felleisen (1998a). Classes and mixins. In Pro-
ceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’98, New York, NY, USA, pp. 171–183. ACM.

Flatt, M., S. Krishnamurthi, and M. Felleisen (1998b). Classes and mixins. In
Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’98, New York, NY, USA, pp. 171–183. ACM.

Fowler, M. (1997). Dealing with roles. In Proceedings of PLoP ’97, Number Techni-
cal Report WUCS-97-34 in PLoP ’97. Washington University Dept. of Computer
Science.

Gamma, E. (1997). The extension objects pattern. In R. Martin, D. Riehle, and
F. Buschmann (Eds.), PLoP’96. 3rd Conference on Pattern Languages of Pro-
grams. Addison-Wesley.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995). Design patterns: ele-
ments of reusable object-oriented software. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc.

Goldberg, A. and D. Robson (1983). Smalltalk-80: the language and its implemen-
tation. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Google (2015, December). Design elements - chrome v8.
https://developers.google.com/v8/design.

Harmes, R. and D. Diaz (2007). Pro JavaScript Design Patterns (1 ed.). Apress.

Hirschfeld, R., P. Costanza, and O. Nierstrasz (2008). Context-oriented program-
ming. Journal of Object Technology, March-April 2008, ETH Zurich 7 (3), 125–
151.

Hoare, C. A. R. (1972). Proof of correctness of data representation. Acta Informat-
ica 1 (4), 271–281.

96



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Ishizaki, K., T. Ogasawara, J. Castanos, P. Nagpurkar, D. Edelsohn, and
T. Nakatani (2012, March). Adding dynamically-typed language support to a
statically-typed language compiler: performance evaluation, analysis, and trade-
offs. SIGPLAN Not. 47 (7), 169–180.

Kiczales, G., E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold (2001).
An overview of aspectj. In J. Knudsen (Ed.), ECOOP 2001 — Object-Oriented
Programming, Volume 2072 of Lecture Notes in Computer Science, pp. 327–354.
Springer Berlin / Heidelberg.

Kristensen, B. B. and K. Osterbye (1996, December). Roles: conceptual abstrac-
tion theory and practical language issues. Theory and Practice of Object Sys-
tems 2 (3), 143–160.

Leino, K. R. M. (2008). This is boogie 2.

Leino, K. R. M. and P. Müller (2010). Advanced lectures on software engineering. In
P. Müller (Ed.), Advanced Lectures on Software Engineering: LASER Summer
School 2007/2008, Chapter Using the Spec# Language, Methodology, and Tools
to Write Bug-free Programs, pp. 91–139. Berlin, Heidelberg: Springer-Verlag.

Liskov, B. H. and J. M. Wing (1994). A behavioral notion of subtyping. ACM
Transactions on Programming Languages and Systems 16 (6), 1811–1841.

Lutz, M. (2008). Learning python.

Meyer, B. (1997). Object-Oriented Software Construction (2nd ed.). Prentice-Hall,
Inc.

Mikhajlov, L. and E. Sekerinski (1998). A study of the fragile base class problem.
In E. Jul (Ed.), ECOOP’98 — 12th European Conference on Object-Oriented
Programming, Volume 1445 of Lecture Notes in Computer Science, pp. 355–382.
Springer-Verlag. July 20-24, 1998.

Mikhajlova, A. and E. Sekerinski (1997). Class refinement and interface refine-
ment in object-oriented programs. In J. Fitzgerald, C. Jones, and P. Lucas
(Eds.), FME ’97: Industrial Applications and Strengthened Foundations of For-
mal Methods, Volume 1313 of Lecture Notes in Computer Science, Graz, Austria,
pp. 82–101. Springer-Verlag.

Moon, D. A. (1986, June). Object-oriented programming with Flavors. SIGPLAN
Notices 21, 1–8.

Morgan, C. C. (1998). Programming from Specifications (2nd ed.). Prentice Hall.

Myers, A. C. (1995). Bidirectional object layout for separate compilation. In Pro-
ceedings of the tenth annual conference on Object-oriented programming systems,
languages, and applications, OOPSLA ’95, New York, NY, USA, pp. 124–139.
ACM.

97



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Naumann, D. A. (1995, October). Predicate transformers and higher-order pro-
grams. Theoretical Computer Science 150 (1), 111–159.

Neumann, G. and U. Zdun (1999). Enhancing object-based system composition
through per-object mixins. In IN PROCEEDINGS OF ASIAPACIFIC SOFT-
WARE ENGINEERING CONFERENCE (APSEC.

Ossher, H., M. Kaplan, A. Katz, W. H. Harrison, and V. J. Kruskal (1996). Speci-
fying subject-oriented composition. TAPOS 2 (3), 179–202.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into
modules. Communications of the ACM 15, 1053–1058.

Prehofer, C. (2001). Feature-oriented programming: A new way of object composi-
tion. Concurrency and Computation: Practice and Experience 13 (6), 465–501.

Pugh, W. and G. Weddell (1990, June). Two-directional record layout for multiple
inheritance. SIGPLAN Not. 25 (6), 85–91.

Ressia, J., T. Gı̂rba, O. Nierstrasz, F. Perin, and L. Renggli (2014, April). Tal-
ents: An environment for dynamically composing units of reuse. Softw. Pract.
Exper. 44 (4), 413–432.

Ruby, C. and G. T. Leavens (2000, October). Safely creating correct subclasses
without seeing superclass code. SIGPLAN Notices 35 (10), 208–228.

Salehie, M. and L. Tahvildari (2009, May). Self-adaptive software: Landscape
and research challenges. ACM Transactions on Autonomous and Adaptive Sys-
tems 4 (2), 14:1–14:42.

Simons, A. J. H. (2004). The theory of classification part 15: Mixins and the
superclass interface. Journal of Object Technology 3 (10), 7–18.

Stroustrup, B. (1999). Multiple inheritance for c++.

Subramaniam, V. (2008). Programming Groovy: Dynamic Productivity for the Java
Developer. Pragmatic Bookshelf.

Szyperski, C. A. (1992). Import is not inheritance - why we need both: Modules
and classes. In Proceedings of the European Conference on Object-Oriented Pro-
gramming, London, UK, pp. 19–32. Springer-Verlag.

Templ, J. (1993, April). A systematic approach to multiple inheritance implemen-
tation. SIGPLAN Not. 28 (4), 61–66.

Ungar, D. and R. B. Smith (1991). Self: The power of simplicity. Lisp and Symbolic
Computation 4 (3), 187–205.

Van Limberghen, M. and T. Mens (1996). Encapsulation and composition as or-
thogonal operators on mixins: A solution to multiple inheritance problems.
Object Oriented Systems 3, 1–30.

98



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

VanHilst, M. and D. Notkin (1996, October). Using role components in implement
collaboration-based designs. SIGPLAN Notices 31 (10), 359–369.

Zibin, Y. and J. Gil (2003). Two-dimensional bi-directional object layout. In
L. Cardelli (Ed.), ECOOP 2003 – Object-Oriented Programming, Volume 2743
of Lecture Notes in Computer Science, pp. 329–350. Springer Berlin Heidelberg.

99



Appendix A

mix Concrete Syntax

This section describes the concrete grammar of mix. It adds tokens to the abstract
syntax found in Section 2.2 needed to correctly parse program input. Non-executable
statements are removed and standard result parameter passing is done. Levels of
indentation can be used as delimiters and to group statements as in Python. Here,
INDENT stands for having more spaces then the previous line. This sets a new level
of indentation. NL stands for a new line and retaining the same level of indenta-
tion as the previous line. DEDENT stands for setting the level of indentation to the
previous level. Here token sequences enclosed in curly braces, { } , may occur zero
to many times. Tabs are not supported. Tokens in bold are keywords in the language.

〈compilation unit〉 ::= 〈package〉 | 〈program〉

〈package〉 ::= package 〈id〉 INDENT 〈class〉 {NL 〈class〉} DEDENT

〈program〉 ::= program 〈id〉 INDENT 〈class〉 {NL 〈class〉} begin 〈statement suite〉 end
DEDENT

〈class〉 ::= class 〈id〉 [extends idList] [implements idList] INDENT 〈member〉 {NL 〈member〉 }
DEDENT

〈member〉 ::= 〈constant〉 | 〈variable〉 | 〈method〉 | 〈init〉

〈constant〉 ::= const 〈id〉 [":" 〈type〉] "=" 〈expression〉

〈variable〉 ::= var 〈idList〉 ":" 〈type〉

〈local variable〉 ::= 〈constant〉 | 〈variable〉

〈init〉 ::= initialization [〈formals〉] 〈statement suite〉

〈method〉 ::= method 〈id〉 [〈formals〉] [":" 〈type〉] [〈statement suite〉]

〈statement suite〉 ::= 〈simple statement list〉 | INDENT 〈statement〉 {NL 〈statement〉 } DEDENT

100



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

〈statement〉 ::= 〈simple statement list〉 | 〈compound statement〉

〈simple statement list〉 ::= 〈simple statement〉 {";" 〈simple statement〉}

〈simple statement〉 ::= abort
| 〈designator〉 [":=" 〈expression〉 ]
| return [〈expression〉]
| extend 〈designator〉 with 〈id〉
| implement 〈id〉 with 〈id〉 in 〈designator〉

〈compound statement〉 ::= if 〈expression〉 then 〈statement suite〉 [else 〈statement suite〉]
| while 〈expression〉 do 〈statement suite〉
| 〈local variable〉 {NL 〈local variable〉} 〈statement suite〉

〈formals〉 ::= "(" 〈idList〉 ":" 〈type〉 {"," 〈idList〉 ":" 〈type〉 } ")"

〈idList〉 ::= 〈id〉 {"," 〈id〉}

〈type〉 ::= {array of} ( integer | boolean | 〈type〉 | 〈id〉 )

〈digit〉 ::= 0 | 1 | . . .
〈char〉 ::= "a" | "b" | . . .
〈integer〉 ::= 〈digit〉 { 〈digit〉 }
〈id〉 ::= 〈char〉 {〈char〉 | 〈digit〉 }
〈boolean〉 ::= true | false

〈expression〉 ::= 〈conjunction〉 {or 〈conjunction〉 }
〈conjunction〉 ::= 〈relational〉 {and 〈relational〉 }
〈relational〉 ::= 〈additive〉 [("<" | ">" | "≤" | "≥" | "=" | "6=") 〈additive〉 ]
〈additive〉 ::= 〈multiplicative〉 {("+" | "−") 〈multiplicative〉}
〈multiplicative〉 ::= 〈unary〉 {("*" | "/" | "div" | "mod") 〈unary〉}
〈unary〉 ::= ["-" | "¬ | "+"] 〈primary〉

〈primary〉 ::= nil | 〈boolean〉 | 〈integer〉
| new 〈id〉 [〈expression〉 | 〈actuals〉]
| 〈designator〉 [〈actuals〉] [(as | has) 〈id〉]
| 〈designator〉 "(" 〈expression〉 ")"

〈designator〉 ::= 〈id〉 {"." 〈id〉 | "[" 〈expression〉 {, 〈expression〉} "]" }

〈actuals〉 ::= "(" 〈expression〉 { ["," ] 〈expression〉 } ")"
〈intList〉 ::= 〈integer〉 {"," 〈integer〉 }

101



Appendix B

mix Program Generated Code

This section contains code generated by the compiler that was built for this work.
Note that indentation and comments were added for improved readability.

Listing B.1: C Code Generated by Compiler of Point Class Example in Listing 3.1

#include <stdlib.h>
#include <stdio.h>
void∗ object MethodTable;
struct Object Interface;
typedef struct {

void (∗print)(struct Object Interface∗);
} Object Methods;

typedef struct Object Interface {
Object Methods∗ methods;
struct Object Interface∗ Object cycle;

} Object Interface;

void Object print(Object Interface∗ self) {
printf("%p", self);

}

Object Interface∗ findBottom(Object Interface∗ p, void∗ t) {
short type found = 0;
Object Interface∗ q = p;
Object Interface∗ bottom = NULL;
do {

if (q−>methods == t) type found = 1;
if (q−>Object cycle−>methods == object MethodTable) bottom = q;
q = q−>Object cycle;

} while(p != q);
if (type found) return bottom;
return 0;

}

102



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

void∗ castObject(void∗ m, void∗ t) {
Object Interface∗ temp = ((Object Interface∗) m)−>Object cycle;

while ((temp−>methods != object MethodTable) && (temp−>methods != t))
temp = temp−>Object cycle;

if ((temp−>methods == object MethodTable) && (t != object MethodTable)) {
printf("exception");
return NULL;

}
return temp;

}

void Object init() {

object MethodTable = malloc(sizeof(Object Methods));
((Object Methods∗) object MethodTable)−>print = &Object print;

}

Object Interface∗ Object new() {
Object Interface∗ x = (Object Interface ∗) malloc(sizeof(Object Interface));
x−>methods = (Object Methods∗) object MethodTable;
x−>Object cycle = (Object Interface∗) x;
return (Object Interface∗) x;

}

void∗ point MethodTable;
void∗ multipoint MethodTable;
void∗ arraypoint MethodTable;
void∗ member MethodTable;

// structure holds pointers to methods for class Point
// along with type of class that it extends, implements or inherits
// also used identify type of segment
typedef struct Point Methods {

void∗ extends;
void∗ implements;
void∗ inherits;
void (∗construct)(void∗, int y0 , int x0);
void (∗move)(void∗, int y0 , int x0);

} Point Methods;

typedef struct Point Impl {
Point Methods∗ methods;
Object Interface∗ Object cycle;
struct Point Impl∗ Point bottom;
int x;
int y;

} Point Impl;

103



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

void Point construct ( Point Impl∗ self, int y0 , int x0){
self−>x = x0;
self−>y = y0;

}
void Point move ( Point Impl∗ self, int y0 , int x0){

self−>x = self−>x+x0;
self−>y = self−>y+y0;

}

void Point init() {
point MethodTable = malloc(sizeof(Point Methods));
((Point Methods∗)point MethodTable)−>construct = (void(∗)(void ∗, int y0 , int x0))

&Point construct;
((Point Methods∗)point MethodTable)−>move = (void(∗)(void ∗, int y0 , int x0)) &

Point move;
}

void Point bottomdateSelfPointers(Object Interface∗ p, void∗ e) {
}

Point Impl∗ Point extend(Object Interface∗ object arg) {
Point Impl∗ x = (Point Impl∗) malloc(sizeof(Point Impl));
Object Interface∗ bottom = findBottom(object arg, object MethodTable);
Object Interface∗ root = bottom−>Object cycle;
x−>methods = point MethodTable;

x−>Point bottom = (struct Point Impl∗) x;
bottom−>Object cycle = (Object Interface∗) x;
x−>Object cycle = root;

return ( Point Impl∗ ) x;
}

Point Impl∗ Point implement(Object Interface∗ object arg) {

//allocate memory for new segment, set segment type
Point Impl∗ x = (Point Impl∗) malloc(sizeof(Point Impl));
Object Interface∗ bottom = findBottom(object arg, point MethodTable);
Object Interface∗ root = bottom−>Object cycle;
x−>methods = point MethodTable;

Object Interface∗ r = object arg;
// if found, update segment’s cycle, bottom, and implements attribute
if (r != root) {

x−>Object cycle = r−>Object cycle;
x−>Point bottom = ( (Point Impl∗ ) r)−>Point bottom;

}

// if this is not the bottom of the chain,

104



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

// update up pointer of next one in the extends chain
do {

r = r−>Object cycle;
}
while ((r != object arg) && (( ( (Point Methods∗) (r−>methods))−>extends) ==

point MethodTable) );
if (r != object arg) {

x−>Point bottom = ( (Point Impl∗)r)−>Point bottom;
};

// call convert routine with r and x has parameters ,
// then finally dispose r
free(r);
return ( Point Impl∗ ) x;

}

// create new object of type Point
// allocate root object segment, call extend to add Point segment
Point Impl∗ Point new() {

Object Interface∗ o = Object new();
return (Point Impl∗) Point extend(o);

}

int Point has(Object Interface∗ object arg) {
Object Interface∗ r = object arg;
do {
// inspect each object segment type
do {

if (
p−>methods==arraypoint MethodTable

)
return true;

r = r−>Object cycle;
} while (r != object arg);
return false;

}

// structure holds pointers to methods for class MultiPoint
// along with type of class that it extends, implements or inherits
// also used identify type of segment
typedef struct MultiPoint Methods {

void∗ extends;
void∗ implements;
void∗ inherits;
void (∗construct)(void∗,int sz2);
void (∗setMultiplier)(void∗,int sm);
void (∗move)(void∗, int y0 , int x0);

} MultiPoint Methods;

105



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

typedef struct MultiPoint Impl {
MultiPoint Methods∗ methods;
Object Interface∗ Object cycle; // ∗possibly∗ a pointer to a needed object

Point Impl∗ Point bottom;
Point Impl∗ Point up;
struct MultiPoint Impl∗ MultiPoint bottom; // pointer to latest mixed methods

int m;
} MultiPoint Impl;

void MultiPoint construct ( MultiPoint Impl∗ self,int sz2){
self−>m = sz2;

}
void MultiPoint setMultiplier ( MultiPoint Impl∗ self,int sm){

self−>m = sm;
}
void MultiPoint move ( MultiPoint Impl∗ self, int y0 , int x0){

int x1;
int y1;
x1 = x0∗self−>m;
y1 = y0∗self−>m;
(((Point Methods∗)(self−>Point up)−>methods)−>move(self−>Point up,x1 , y1));

}

void MultiPoint init() {
multipoint MethodTable = malloc(sizeof(MultiPoint Methods));
((MultiPoint Methods∗)multipoint MethodTable)−>construct = (void(∗)(void ∗,int sz2))

&MultiPoint construct;
((MultiPoint Methods∗)multipoint MethodTable)−>setMultiplier = (void(∗)(void ∗,int

sm)) &MultiPoint setMultiplier;
((MultiPoint Methods∗)multipoint MethodTable)−>move = (void(∗)(void ∗, int y0 , int

x0)) &MultiPoint move;
}

void MultiPoint bottomdateSelfPointers(Object Interface∗ p, void∗ e) {
if (

p−>methods==multipoint MethodTable ||
p−>methods==arraypoint MethodTable ||
p−>methods==point MethodTable

)
((MultiPoint Impl∗) p)−>Point bottom=e;

Point bottomdateSelfPointers(p,e);
}

MultiPoint Impl∗ MultiPoint extend(Object Interface∗ object arg) {
MultiPoint Impl∗ x = (MultiPoint Impl∗) malloc(sizeof(MultiPoint Impl));

106



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Object Interface∗ bottom = findBottom(object arg, point MethodTable);
Object Interface∗ root = bottom−>Object cycle;
x−>methods = multipoint MethodTable;

x−>Point bottom = (Point Impl∗) x;
x−>MultiPoint bottom = (struct MultiPoint Impl∗) x;

Object Interface∗ r = root−>Object cycle;
do {

MultiPoint bottomdateSelfPointers(r, x);

if (0||
r−>methods==point MethodTable||
r−>methods==multipoint MethodTable||
r−>methods==arraypoint MethodTable
) {

( (MultiPoint Impl∗) x) −> Point up = (Point Impl∗) r;
}
r = r−>Object cycle;

} while (r != root);

bottom−>Object cycle = (Object Interface∗) x;
x−>Object cycle = root;

return ( MultiPoint Impl∗ ) x;
}

MultiPoint Impl∗ MultiPoint implement(Object Interface∗ object arg) {

//allocate memory for new segment, set segment type
MultiPoint Impl∗ x = (MultiPoint Impl∗) malloc(sizeof(MultiPoint Impl));
Object Interface∗ bottom = findBottom(object arg, multipoint MethodTable);
Object Interface∗ root = bottom−>Object cycle;
x−>methods = multipoint MethodTable;

Object Interface∗ r = object arg;
// if found, update segment’s cycle, bottom, and implements attribute
if (r != root) {

x−>Object cycle = r−>Object cycle;
x−>MultiPoint bottom = ( (MultiPoint Impl∗ ) r)−>MultiPoint bottom;

}

// if this is not the bottom of the chain,
// update up pointer of next one in the extends chain
do {

r = r−>Object cycle;
}

107



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

while ((r != object arg) && (( ( (MultiPoint Methods∗) (r−>methods))−>extends) ==
multipoint MethodTable) );

if (r != object arg) {
x−>MultiPoint bottom = ( (MultiPoint Impl∗)r)−>MultiPoint bottom;

};

// call convert routine with r and x has parameters ,
// then finally dispose r
free(r);
return ( MultiPoint Impl∗ ) x;

}

int MultiPoint has(Object Interface∗ object arg) {
Object Interface∗ r = object arg;
do {

if (r−>methods==multipoint MethodTable) return true;
r = r−>Object cycle;

} while (r != object arg);
return false;

}

// structure holds pointers to methods for class ArrayPoint
// along with type of class that it extends, implements or inherits
// also used identify type of segment
typedef struct ArrayPoint Methods {

void∗ extends;
void∗ implements;
void∗ inherits;
void (∗construct)(void∗, int y0 , int x0);
void (∗move)(void∗, int y0 , int x0);

} ArrayPoint Methods;

typedef struct ArrayPoint Impl {
ArrayPoint Methods∗ methods;
Object Interface∗ Object cycle; // ∗possibly∗ a pointer to a needed object

struct Point Impl∗ Point bottom; // pointer to latest mixed methods

int∗ ar;
} ArrayPoint Impl;

void ArrayPoint construct ( ArrayPoint Impl∗ self, int y0 , int x0){
self−>ar = (void∗)calloc(2,sizeof(void∗));
self−>ar[1] = y0;
self−>ar[0] = x0;

}
void ArrayPoint move ( ArrayPoint Impl∗ self, int y0 , int x0){

108



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

self−>ar[0] = self−>ar[0]+x0;
self−>ar[1] = self−>ar[1]+y0;

}

void ArrayPoint init() {
arraypoint MethodTable = malloc(sizeof(ArrayPoint Methods));
((ArrayPoint Methods∗)arraypoint MethodTable)−>construct = (void(∗)(void ∗, int y0 ,

int x0)) &ArrayPoint construct;
((ArrayPoint Methods∗)arraypoint MethodTable)−>move = (void(∗)(void ∗, int y0 , int

x0)) &ArrayPoint move;
}

void ArrayPoint bottomdateSelfPointers(Object Interface∗ p, void∗ e) {
}

ArrayPoint Impl∗ ArrayPoint extend(Object Interface∗ object arg) {
ArrayPoint Impl∗ x = (ArrayPoint Impl∗) malloc(sizeof(ArrayPoint Impl));
Object Interface∗ bottom = findBottom(object arg, object MethodTable);
Object Interface∗ root = bottom−>Object cycle;
x−>methods = arraypoint MethodTable;

x−>Point bottom = (struct Point Impl∗) x;
bottom−>Object cycle = (Object Interface∗) x;
x−>Object cycle = root;

return ( ArrayPoint Impl∗ ) x;
}

ArrayPoint Impl∗ ArrayPoint implement(Object Interface∗ object arg) {

//allocate memory for new segment, set segment type
ArrayPoint Impl∗ x = (ArrayPoint Impl∗) malloc(sizeof(ArrayPoint Impl));
Object Interface∗ bottom = findBottom(object arg, arraypoint MethodTable);
Object Interface∗ root = bottom−>Object cycle;
x−>methods = arraypoint MethodTable;

Object Interface∗ r = object arg;
// if found, update segment’s cycle, bottom, and implements attribute
if (r != root) {

x−>Object cycle = r−>Object cycle;
x−>Point bottom = ( (Point Impl∗ ) r)−>Point bottom;

}

// if this is not the bottom of the chain,
// update up pointer of next one in the extends chain
do {

109



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

r = r−>Object cycle;
}
while ((r != object arg) && (( ( (ArrayPoint Methods∗) (r−>methods))−>extends) ==

point MethodTable) );
if (r != object arg) {

x−>Point bottom = ( (Point Impl∗)r)−>Point bottom;
};

// call convert routine with r and x has parameters ,
// then finally dispose r
free(r);
return ( ArrayPoint Impl∗ ) x;

}

// create new object of type ArrayPoint
// allocate root object segment, call extend to add ArrayPoint segment
ArrayPoint Impl∗ ArrayPoint new() {

Object Interface∗ o = Object new();
return (ArrayPoint Impl∗) ArrayPoint extend(o);

}

int ArrayPoint has(Object Interface∗ object arg) {
Object Interface∗ r = object arg;
do {

if (r−>methods==arraypoint MethodTable) return true;
r = r−>Object cycle;

} while (r != object arg);
return false;

}

// structure holds pointers to methods for class Member
// along with type of class that it extends, implements or inherits
// also used identify type of segment
typedef struct Member Methods {

void∗ extends;
void∗ implements;
void∗ inherits;
void (∗setg)(void∗,short x);

} Member Methods;

typedef struct Member Impl {
Member Methods∗ methods;
Object Interface∗ Object cycle; // ∗possibly∗ a pointer to a needed object

struct Member Impl∗ Member bottom; // pointer to latest mixed methods

short g;

110



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

} Member Impl;

void Member setg ( Member Impl∗ self,short x){
self−>g = x;

}

void Member init() {
member MethodTable = malloc(sizeof(Member Methods));
((Member Methods∗)member MethodTable)−>setg = (void(∗)(void ∗,short x)) &

Member setg;
}

void Member bottomdateSelfPointers(Object Interface∗ p, void∗ e) {
}

Member Impl∗ Member extend(Object Interface∗ object arg) {
Member Impl∗ x = (Member Impl∗) malloc(sizeof(Member Impl));
Object Interface∗ bottom = findBottom(object arg, object MethodTable);
Object Interface∗ root = bottom−>Object cycle;
x−>methods = member MethodTable;

x−>Member bottom = (struct Member Impl∗) x;
bottom−>Object cycle = (Object Interface∗) x;
x−>Object cycle = root;

return ( Member Impl∗ ) x;
}

Member Impl∗ Member implement(Object Interface∗ object arg) {

//allocate memory for new segment, set segment type
Member Impl∗ x = (Member Impl∗) malloc(sizeof(Member Impl));
Object Interface∗ bottom = findBottom(object arg, member MethodTable);
Object Interface∗ root = bottom−>Object cycle;
x−>methods = member MethodTable;

Object Interface∗ r = object arg;
// if found, update segment’s cycle, bottom, and implements attribute
if (r != root) {

x−>Object cycle = r−>Object cycle;
x−>Member bottom = ( (Member Impl∗ ) r)−>Member bottom;

}

// if this is not the bottom of the chain,
// update up pointer of next one in the extends chain
do {

111



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

r = r−>Object cycle;
}
while ((r != object arg) && (( ( (Member Methods∗) (r−>methods))−>extends) ==

member MethodTable) );
if (r != object arg) {

x−>Member bottom = ( (Member Impl∗)r)−>Member bottom;
};

// call convert routine with r and x has parameters ,
// then finally dispose r
free(r);
return ( Member Impl∗ ) x;

}

// create new object of type Member
// allocate root object segment, call extend to add Member segment
Member Impl∗ Member new() {

Object Interface∗ o = Object new();
return (Member Impl∗) Member extend(o);

}

int Member has(Object Interface∗ object arg) {
Object Interface∗ r = object arg;
do {

if (r−>methods==member MethodTable) return true;
r = r−>Object cycle;

} while (r != object arg);
return false;

}

int main() {
Object init();
Point init();
MultiPoint init();
ArrayPoint init();
Member init();
Point Impl∗ p;
Member Impl∗ m;
p = Point new();
Member extend((Object Interface ∗)p);
MultiPoint extend((Object Interface ∗)p);
ArrayPoint implement((Object Interface ∗)p);
(((Point Methods∗)(p−>Point bottom)−>methods)−>move(p−>Point bottom,5 , 7));
m = (Member Impl ∗) castObject( (void ∗) p,member MethodTable);
(((Member Methods∗)(m−>Member bottom)−>methods)−>setg(m−>Member bottom,1)

);
}

112



Appendix C

Code Used to Gather Timing
Results

Enclosed is the source code used to obtain the timing results. The code is for a method
call length of 2, but can easily be extrapolated to the lengths of 4 and 8 shown as
shown in the work.

113



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Listing C.1: C++ Sample

#include <iostream>
#include <time.h>

using namespace std;

class C0 {
public:

int c0;
C0() {c0 = 1;}
virtual void m(int d) {c0 = (c0 + d) % 99;}
};

class C1: public C0 {
public:

int c1;
C1() {c1 = 1;}
virtual void m(int d) {C0::m(d); c1 = (c1 + d) % 99;}
};

class C2: public C1 {
public:

int c2;
C2() {c2 = 1;}
virtual void m(int d) {C1::m(d); c2 = (c2 + d) % 99;}
};

int main(){
clock t start, end;
double cpu time used;

start = clock();
C2∗ x = new C2();
for (int i = 0; i < 10000000; i++) {

x−>m(i);
}
end = clock();
cpu time used = ((double) (end − start)) / CLOCKS PER SEC;
cout << cpu time used;
}

114



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Listing C.2: Java Sample

class C0 {
int c0;
C0() {c0 = 1;}
void m(int d) {c0 = (c0 + d) % 99;}
};

class C1 extends C0 {
int c1;
C1() {super(); c1 = 1;}
void m(int d) {super.m(d); c1 = (c1 + d) % 99;}
};

class C2 extends C1 {
int c2;
C2() {super(); c2 = 1;}
void m(int d) {super.m(d); c2 = (c2 + d) % 99;}
};

class chaininheritance {
public static void main(String[] args) {

final long start = System.currentTimeMillis();

C2 x = new C2();
for (int i = 0; i < 10000000; i++) {

x.m(i);
}

final long end = System.currentTimeMillis();
System.out.println((end − start) + " milliseconds");
}
}

115



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Listing C.3: Python Inheritance Sample

class C0:
def init (self):

self.c0 = 1
def m(self, d):

self.c0 = (self.c0 + d) % 99

class C1(C0):
def init (self):

C0. init (self)
self.c1 = 1

def m(self, d):
C0.m(self, d)
self.c1 = (self.c1 + d) % 99

class C2(C1):
def init (self):

C1. init (self)
self.c2 = 1

def m(self, d):
C1.m(self, d)
self.c2 = (self.c2 + d) % 99

def main():
x = C2()
for i in range(10000000):

x.m(i)

import timeit
print(timeit.timeit("main()", setup="from __main__ import main", number=1))

116



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Listing C.4: Python Mixin Sample

from types import MethodType

class C0:
def init (self):

self.c0 = 1
def m(self, d):

self.c0 = (self.c0 + d) % 99

def C1 m(self, d):
self.C1 m0(d)
self.c1 = (self.c1 + d) % 99

def C1 extend(x):
x.c1 = 1
x.C1 m0 = x.m
x.m = MethodType(C1 m, x)

def C2 m(self, d):
self.C2 m0(d)
self.c2 = (self.c2 + d) % 99

def C2 extend(x):
x.c2 = 1
x.C2 m0 = x.m
x.m = MethodType(C2 m, x)

def main():
global x
x = C0()
C1 extend(x)
C2 extend(x)
for i in range(10000000):

x.m(i)

import timeit
print(timeit.timeit("main()", setup="from __main__ import main", number=1))

117



Appendix D

Proofs

This section outlines proofs of the lemmata used in Section 4.

Lemma 1 (Preservation Over Structure). For statements S, T and predicates b, p, q:

(a) skip preserves p
(b) (b⇒ S preserves p) ≡ assume b ; S preserves p
(c) (b⇒ S preserves p) ≡ assert b ; S preserves p
(d) (p⇒ p[x\e]) ≡ x := e preserves p
(e) (p⇒ (∀x ∈ e • p)) ≡ x :∈ e preserves p
(f) (S preserves p) ∧ (T preserves p) ⇒ (S [] T preserves p)
(g) (S preserves p) ∧ (T preserves p) ⇒ (S ; T preserves p)
(h) (T [x\e] preserves p) ≡ (constx = e inT preserves p)
(i) (∀x : X • b⇒ T preserves p) ⇒ (var x : X | b inT preserves p)

Proof. For (a), we observe that by definition, skip preserves any predicate. For (b)
we have:

assume b ; S preserves p
≡ p ∧ (b⇒ wp(S, true))⇒ (b⇒ wp(S, p)) def. of preserves, wp of ;, assume
≡ b⇒ S preserves p logic, def. of preserves

For (c) we have:

assert b ; S preserves p
≡ p ∧ b ∧ wp(S, true)⇒ b ∧ wp(S, p) def. of preserves, wp of ;, assert
≡ b⇒ S preserves p logic, def. of preserves

118



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

For (d) we have:

x := e preserves p
≡ p ∧ wp(x := e, true)⇒ wp(x := e, p) def. of preserves, wp of :=
≡ p⇒ p[x\e] wp of :=

For (e) we have:

x :∈ e preserves p
≡ p ∧ wp(x :∈ e, true)⇒ wp(x :∈ e, p) def. of preserves
≡ p ∧ (∀x ∈ e • true)⇒ (∀x ∈ e • p) wp of :∈
≡ p⇒ (∀x ∈ e • p) logic

For (f) we have:

S [] T preserves p
≡ p ∧ wp(S, true) ∧ wp(T, true)⇒ wp(S, p) ∧ wp(T, p) definitions
⇐ (p ∧ wp(S, true)⇒ wp(S, p)) ∧ (p ∧ wp(T, true)⇒ wp(T, p)) logic
≡ (S preserves p) ∧ (T preserves p) definitions

For (g), assuming S preserves p and T preserves p, we have:

S ; T preserves p
≡ p ∧ wp(S,wp(T, true))⇒ wp(S,wp(T, p)) definitions
⇐ p ∧ wp(S,wp(T, true))⇒ wp(S, p ∧ wp(T, true)) as T preserves p
≡ p ∧ wp(S,wp(T, true))⇒ wp(S, p) ∧ wp(S,wp(T, true)) conjunctivity
≡ p ∧ wp(S,wp(T, true))⇒ wp(S, p) logic
⇐ p ∧ wp(S, true)⇒ wp(S, p) monotonicity
⇐ true as S preserves p

For (h), we note that by definition of equality of statements, constx = e inT =
T [x\e]; hence (h) follows immediately. For (i) we have:

var x : X | b inT preserves p
≡ p ∧ wp(var x : X | b inT, true)⇒ wp(var x : X | b inT, p) definition
≡ p⇒ ((∀x : X • b⇒ wp(T, true))⇒ (∀x : X • b⇒ wp(T, p))) logic, definition
⇐ p⇒ (∀x : X • (b⇒ wp(T, true))⇒ (b⇒ wp(T, p))) logic
≡ (∀x : X • p⇒ (b⇒ (wp(T, true)⇒ wp(T, p)))) logic
≡ (∀x : X • b⇒ T preserves p) logic, definition

119



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Lemma 2 (Piecewise Preservation). For statements S, T and predicates p, q:

(a) (S preserves p) ∧ (S preserves q)⇒ (S preserves p ∧ q)
(b) (q ⇒ S preserves p) ∧ (p⇒ S preserves q)⇒ (S preserves p ∧ q)

Proof. Implication (a) follows from (b), as the antecedent of (a) is weaker. For (b),
we continue:

(S preserves p) ∧ (p⇒ S preserves q)
≡ (q ∧ p ∧ wp(S, true)⇒ wp(S, p)) ∧ (p ∧ q ∧ wp(S, true)⇒ wp(S, q))

def. of preserves, logic
⇒ p ∧ q ∧ wp(S, true)⇒ wp(S, p) ∧ wp(S, q) logic, conjunctivity
≡ S preserves p ∧ q def. of preserves

Lemma 4 (Statement Updating a Function). For statement S, variable f of function
type, and boolean function p, assume that S modifies f only at d, that S does not
modify s, and that S establishes p(f(d)):

(∀i ∈ s− {d} • p(f(i))) ∧ wp(S, true) ⇒ wp(S,∀i ∈ s • p(f(i)))

Proof.

wp(S,∀i ∈ s • p(f(i)))
≡ wp(S, (∀i ∈ s− {d} • p(f(i))) ∧ p(f(d))) case analysis
⇐ wp(S,∀i ∈ s− {d} • p(f(i))) ∧ wp(S, true)

conjunctivity, S establishes p(f(r))
⇐ (∀i ∈ s− {d} • p(f(i))) ∧ wp(S, true) as S modifies f only at d

Lemma 5 (Refinement Laws). Let S be a statement over variables that include x,
the abstract variables, let T be a statement over variables that include y, the concrete
variables, let R(x, y) relate x and y, and let z be among the global variables:

(R(x, y)⇒ R(e, f)) ≡ x := e vR y := f (a)
(R(x, y)⇒ e = f) ≡ z := e vR z := f (b)

(R(x, y) ∧ x ∈ e⇒ (∀y ∈ f • R(x, y)) ≡ x :∈ e vR y :∈ f (c)
(R(x, y)⇒ e ⊇ f) ≡ x :∈ e vR y :∈ f (d)

(S1 vR T1) ∧ (S2 vR T2) ⇒ S1 [] S2 vR T1 [] T2 (e)
(S1 vR T1) ∧ (S2 vR T2) ⇒ S1 ; S2 vR T1 ; T2 (f)

120



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

Proof. For (a):

x := e vR y := f
≡ ∀q • R(x, y) ∧ wp(x := e, q)⇒ wp(y := f, ∃y • R(x, y) ∧ q) def. of vR

≡ ∀q • R(x, y) ∧ q[x\e]⇒ (∃x • R(x, f) ∧ q) wp of :=, y not in q
≡ ∀q • R(x, y) ∧ q[x\e]⇒ R(e, f) ∧ q[x\e] logic
≡ R(x, y)⇒ R(e, f) logic

For (b):

z := e vR z := f
≡ ∀q • R(x, y) ∧ wp(z := e, q)⇒ wp(z := f, ∃y • R(x, y) ∧ q) def. of vR

≡ ∀q • R(x, y) ∧ q[z\e]⇒ (∃x • R(x, y) ∧ q[z\f ]) wp of :=
≡ R(x, y)⇒ e = f mutual implication

For (c):

x :∈ e vR y :∈ f
≡ ∀q • R(x, y) ∧ wp(x :∈ e, q)⇒ wp(y :∈ f, ∃x • R(x, y) ∧ q) def. of vR

≡ ∀q • R(x, y) ∧ (∀x ∈ e • q)⇒ (∀y ∈ f • ∃x • R(x, y) ∧ q) def. of :∈
≡ R(x, y) ∧ x ∈ e⇒ (∀y ∈ f • R(x, y)) mutual implication

For (d):

z :∈ e vR z :∈ f
≡ ∀q • R(x, y) ∧ wp(z :∈ e, q)⇒ wp(z :∈ f, ∃x • R(x, y) ∧ q) def. of vR

≡ ∀q • R(x, y) ∧ (∀z ∈ e • q)⇒ (∀z ∈ f • ∃x • R(x, y) ∧ q) def. of :∈
≡ R(x, y)⇒ e ⊇ f mutual implication

For (e):

S1 [] S2 vR T1 [] T2

≡ ∀q • R(x, y) ∧ wp(S1, q) ∧ wp(S2, q)⇒
wp(T1,∃x • R(x, y) ∧ q) ∧ wp(T2,∃x • R(x, y) ∧ q) def. of vR, []

⇐ (∀q • R(x, y) ∧ wp(S1, q)⇒ wp(T1,∃x • R(x, y) ∧ q)) ∧
(∀q • R(x, y) ∧ wp(S2, q)⇒ wp(T2,∃x • R(x, y) ∧ q)) logic

≡ (S1 vR T1) ∧ (S2 vR T2) def. of vR

For (f), we start with:

S1 ; S2 vR T1 ; T2

≡ ∀q • R(x, y) ∧ wp(S1,wp(S2, q))⇒
wp(T1,wp(T2,∃x • R(x, y) ∧ q)) def. of vR, ;

For the hypotheses, we observe that x does not occur in wp(T2,∃x • R(x, y)∧ q), as T
by assumption is not over x. This allows to move the implicit universal quantification

121



Ph.D. Thesis - Ronald Eden Burton McMaster - Computing and Software

of x as an existential quantification into the antecedent and hence we have:

S1 vR T1 ≡ ∀q • R(x, y) ∧ wp(S1, q)⇒ wp(T1,∃x • R(x, y) ∧ q)
S2 vR T2 ≡ ∀q • (∃x • R(x, y) ∧ wp(S2, q))⇒ wp(T2,∃x • R(x, y) ∧ q)

We continue for any q:

wp(T1,wp(T2,∃x • R(x, y) ∧ q))
⇐ wp(T1,∃x • R(x, y) ∧ wp(S2, q)) as S2 vR T2

⇐ R(x, y) ∧ wp(S1,wp(S2, q)) as S1 vR T1

Hence S1 ; S2 vR T1 ; T2 follows.

122


	Abstract
	Acknowledgements
	Declaration of Academic Achievement
	Introduction
	Object Composition to Facilitate Code Reuse
	Alternatives to Object Composition
	Mixins as a Reuse Tool
	Current Issues with Mixins
	Type Safety
	Interference
	Inefficient Method Lookup

	Summary of Contributions

	mix, a Statically Typed Language for Dynamic Mixins
	Language Goals
	mix Abstract Syntax
	Language Definition
	Differentiating Language Features
	Formal Definition of mix
	Abstract Syntax for Core Language
	Core Language Semantics
	Translation of Classes and Modules


	mix Implementation
	Memory Layout
	Program Initialization
	Object Creation
	Object Extension
	Type Test and Type Cast
	Method Calls
	Analysis
	Translation to Executable Code
	Related Work
	Evaluation
	Discussion

	Program Correctness
	Module Consistency
	Mixin Refinement
	Correctness of Mixin Composition
	Refinement and Augmentation
	Class Invariants
	Compositional Reasoning with Dynamic Mixins

	Discussion

	Use Case - Intrusive Data Structures
	Abstract Specification
	Specification Refinement
	Correctness Proof
	Machine Automated Proofs Using Boogie
	Discussion

	Use Case - Implementing Design Patterns
	Decorator Pattern
	Proxy Pattern
	Chain of Responsibility Pattern
	Strategy Pattern
	Patterns to Support Object Extension
	Dynamic Object Model Pattern
	Extension Objects Pattern
	Role Object Pattern

	Discussion

	Conclusion
	mix Concrete Syntax
	mix Program Generated Code
	Code Used to Gather Timing Results
	Proofs

