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Abstract

Electronic devices such as phones and computers use cryptography to achieve informa-

tion security. However, while cryptographic algorithms may be strong theoretically,

their physical implementations in hardware can leak unintentional side information

as a byproduct of performing their computations. A device’s security can be compro-

mised from this leakage through side-channel attacks. Research in hardware security

reveals how dangerous these attacks can be and provides security countermeasures.

This thesis focuses on a category of side-channel attacks called fault attacks, and con-

tributes a new fault attack method that can compromise a cryptographic device more

rapidly than the previous methods when using practical fault injection techniques.

We observe that as a circuit is further overclocked, new faults are often superim-

posed upon previous ones. We analyze the incremental changes rather than the total

sum in order to extract more secret information. Unlike many previous methods,

ours does not require precise fault injection techniques and requires no knowledge

of when the internal state is in a specific algorithmic stage. Results are confirmed

experimentally on hardware implementations of AES-128, 192, and 256.
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Glossary

Encryption: The process of transforming a readable message into a confidential un-

readable form.

Decryption: The process of transforming an encrypted message back into its read-

able form.

Cipher: A series of transformations that perform encryption.

Inverse cipher: A series of transformations that perform decryption.

Plaintext: A decrypted message input to a cipher or output from an inverse cipher.

Ciphertext: An encrypted output from a cipher or input to an inverse cipher.

Cipher key: A large number acting like a password that is required by a ci-

pher/inverse cipher in order to perform encryption and/or decryption.

Fault: A faulty computation occurring in a circuit due to the circuit being stressed.

Fault model: A set of characteristics required in a fault in order to satisfy a certain

fault attack.

Target Fault: A fault that satisfies the fault model.

Ciphertext pair: A pair of ciphertexts resulting from encryptions of the same plain-

text that differ by error propagation resulting from a fault.

Target ciphertext pair: A pair of ciphertexts resulting from encryptions of the

same plaintext that differ by error propagation resulting from a target fault.
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Abbreviations

AES: Advanced Encryption Standard.

DES: Data Encryption Standard.

RSA: Rivest Shamir Adleman.

SPN: Substitution Permutation Network.

IFA: Incremental Fault Analysis.

DFA: Differential Fault Analysis.

FSA: Fault Sensitivity Analysis.

DFIA: Differential Fault Intensity Analysis.

DERA: Differential Error Rate Analysis.

NUFVA: Non-Uniform Faulty Value Analysis.

SPA: Simple Power Analysis.

DPA: Differential Power Analysis.

EMA: Electromagnetic Analysis.
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Chapter 1

Introduction

Modern technology enables fast global communication, which plays a major role in

the advancement of modern society. However, these interactions rely on many infor-

mation security primitives, many of which are implemented through cryptography [1]

[2]. For example, it is now common practice to share credit card information when

shopping online, or to prove your identity when banking online. Online shopping re-

quires the credit card information to be shared securely between two or more parties

without an adversary being able to listen in on the communication and compromise

the credit card information. Online banking requires both the user and bank to prove

their identity before withdrawing or depositing money so that an adversary cannot

compromise another’s funds and a client does not deposit funds to an adversary act-

ing as the bank. Both of these examples require a variety of information security

principles to be implemented, most of which utilize cryptography.
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1.1 Information Security

The applications of information security are far reaching, examples include:

1.1.1 Applications

• Secure Internet Communication: Security is crucial for many aspects of

modern web usage such as online shopping, online banking, etc. Every web-

site with a URL beginning with https is taking measures to ensure a secure

connection between the user and website [3].

• Secure Data Storage: Security is crucial when passwords and other confiden-

tial data is stored on devices such as computers and phones [4].

• Cryptocurrency: Cryptocurrency is a digital currency system that allows for

the payment of goods and services. It serves a similar purpose as physical cur-

rency except that cryptocurrency allows for decentralized, borderless, and more

instantaneous transactions. In 2009 the most widely known cryptocurrency,

Bitcoin, was introduced [5]. There have since been cryptocurrency schemes cre-

ated that improve upon the shortcomings of Bitcoin such as transaction speed

and the energy costs required to maintain its infrastructure.

1.1.2 Objectives

Information security [1] addresses the following objectives that make these applica-

tions possible:

• Confidentiality: To assure the security of confidential information, the infor-

mation must only be readable by the intended user and otherwise unreadable

2
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while being transmitted or stored.

• Identity Authentication: To engage in a secure communication, both parties

need assurance that the other is who they claim to be, and that they are both

currently active.

• Message Authentication: In secure communications, the identity of the

sender must also be bound to their messages in order to continuously ensure

the communication was not intercepted after identity authentication was estab-

lished. This ties into data integrity as well.

• Data Integrity: It is important to ensure that transmitted data is not altered

through interference or by malice. An error introduced during an electronic

funds transfer could cause an incorrect amount of money to be credited or

debited. Data integrity ensures that accidental or intentional modifications to

data is detectable.

• Non-Repudiation: It is important to prevent an entity from denying any

previous actions or commitments. For example, this would avoid a scenario in

which a purchase is made and the seller later denies ever selling the item to the

buyer.

1.2 Cryptography

Cryptography is a means of implementing the information security objectives listed

above. The overall goal is the prevention of malicious activities. A list of primitive

cryptographic building blocks are detailed below that provide the mathematical means

3
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of achieving information security objectives.

1.2.1 Encryption

Encryption provides a means to temporarily transform a message into an unreadable

representation such that the information remains confidential while being communi-

cated or stored. This must be done in a way that the confidential representation of

the message can later be transformed back to its readable representation at a later

time and only by the intended user. Decryption refers to the process of transform-

ing the confidential representation of the message back to its readable representation.

The readable representation of the message is referred to as a plaintext, and the

confidential representation is referred to as a ciphertext. A cipher is an algorithm

that performs encryption, and an inverse cipher is an algorithm that performs de-

cryption. Performing encryption or decryption requires a key that only the intended

user will have access to. A key can be thought of like a password, and is just a very

large number. There are two main categories of encryption schemes discussed below,

symmetric-key and public-key.

1.2.2 Symmetric-Key Encryption

Symmetric-key encryption [6] is an encryption scheme in which the same key

is used for both encryption and decryption. Symmetric-key ciphers typically have

high rates of data throughput and for this reason are used for securing the bulk of a

message’s information. Two types of symmetric-key algorithms are described below.

Block ciphers [7] [8] [9] are one of the essential building blocks of symmetric-key

encryption systems. They work by encrypting multiple characters of a message at a

4
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Plaintext

Encryption

Decryption

Dear All,

I have
submitted
a fix for
the bug ...

xb@aLgm
Xq q 35+
9#2&=$
9 *!Ct3jv
54Tv I*...

Ciphertext

Key

Figure 1.1: Symmetric-key encryption.

time. Block ciphers can be either symmetric-key or public-key (discussed in section

1.2.3), but are typically associated with symmetric-key encryption.

Stream ciphers [10] [11] [12] work by encrypting individual characters of a mes-

sage independently. They typically have faster hardware execution speeds and lower

complexity than block ciphers. They are less susceptible to error propagation which

can be advantageous in scenarios in which transmission errors are more likely. They

can be mandatory in some situations such as telecommunications where characters

must be received and processed individually, or when the communications are sensi-

tive to latency. Stream ciphers can be either symmetric-key or public-key (discussed

in section 1.2.3), but are typically associated with symmetric-key encryption.

1.2.3 Public-Key Encryption

Public-key encryption [13] [14] [15] addresses the following issue with symmetric-

key encryption: If Sally wants to send an encrypted message to Bob, how can she

safely send the symmetric-key to him in order to allow him to decrypt the encrypted

message? If she sends the symmetric-key along with the encrypted message, the

symmetric-key could be observed by a third party and thus be used to decrypt the

5
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Plaintext

Encryption

Decryption

Dear All,

I have
submitted
a fix for
the bug ...

xb@aLgm
Xq q 35+
9#2&=$
9 *!Ct3jv
54Tv I*...

Ciphertext

Secret Key

Public Key

Figure 1.2: Public-key encryption.

message being sent. This is where the use of public-key encryption comes into play.

In public-key encryption, each party has a unique private-key as well as a public-key.

The public-keys are used to encrypt a message which can then only be decrypted

by the private-key of the intended recipient. Public-key encryption typically works

through more computationally demanding mathematical operations and is slower to

execute than symmetric-key encryption. For this reason symmetric-key encryption is

usually used for encrypting core data and public-key encryption is used for encrypting

and sharing the symmetric-keys.

1.2.4 Hash Functions

A hash function is a function that maps a binary string of arbitrary length to a

random binary string of fixed length called a hash-value. The likelihood of two

inputs being mapped to the same hash-value must be unlikely. Furthermore, a hash

function must not be invertible and the input cannot be derived based on the out-

put. Hash-values are commonly used to act as a compact representation of their

corresponding longer input strings. One common application for hash functions is

for digital signatures [16] which are used in authentication, data integrity, and

6
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non-repudiation.

1.3 Cryptanalysis

Cryptanalysis [17] [18] is the study of testing the strength of cryptographic algo-

rithms and their physical implementations. Cryptosystems are tested by trying to

retrieve their encrypted information without having access to the key. A. Kerckhoffs

stated a cryptanalysis principle that cryptosystems are more secure if the complete

details of the cryptographic algorithms used and how they are implemented are public

knowledge [2]. This way, weaknesses can be found and addressed by cryptanalysts

around the world. If cryptanalysts around the world eventually cannot find ways of

compromising a cryptosystem, then a smaller team of adversaries will likely not be

able to either.

A cryptanalytic attempt is called an attack. The following are some examples of

different categories of cryptanalytic attacks:

• ciphertext-only attacks: The cryptanalyst only has access to the encrypted

ciphertexts of several messages. The goal is to recover the decrypted plaintext

form of the ciphertexts or recover the key in order to decrypt the ciphertexts

to reveal the sensitive information [19].

• Known-plaintext attacks: The cryptanalyst has access to both the encrypted

ciphertexts and the corresponding plaintexts of several messages. The goal in

this case is to deduce the key or deduce some other method to decrypt any new

messages being encrypted with the same key [20].

• Chosen-plaintext attacks: The cryptanalyst not only has access to both the

7



M.A.Sc. Thesis - Trevor E. Pogue McMaster - Electrical Engineering

encrypted ciphertexts and the corresponding plaintexts of several messages, but

also has control over which plaintexts are encrypted. This is more advantageous

because specific plaintext combinations can be chosen that together reveal more

information about the key than any random sequence of plaintexts could. The

goal in this case is to deduce the key or deduce some other method to decrypt

any new messages being encrypted with the same key [21].

• Side-channel attacks: The cryptanalyst has physical access to or is within a

certain proximity of the cryptosystem and has the ability to observe physical

phenomena leaked as a byproduct of the physical implementation performing

its computation. This category of cryptanalysis started gaining attention in the

the 1990’s and is discussed more in section 1.4.

1.4 Side-Channel Attacks

While cryptographic algorithms may be strong theoretically, their physical implemen-

tations in hardware can leak unintentional side information concerning their internal

state [22]. Research in hardware security reveals how dangerous this leakage is and

provides security countermeasures [23]. An attack on a cryptographic system is the

attempt to extract secret information that can be used to decrypt sensitive encrypted

data. A side-channel attack [24] exploits secret information that is leaked as a byprod-

uct of the physical implementation performing its computation. Examples of attacks

leveraging side-channel leakage include power attacks [25] [26], electromagnetic at-

tacks [27] [28], accoustic attacks [29], timing attacks [30] [31], cache attacks [32] [33]

[34] [35], and fault attacks [36] [37] [38] [39] [40] [41] [42].

8
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Figure 1.3: Power consumption of a cryptosystem during an encryption [25].

1.4.1 Power Attacks

The amount of power used by a digital circuit will vary depending on the data being

processed. For example, the transistors that a flip-flop is composed of will draw

different amounts of current depending on if the input is a logic 1 or 0. Simple

Power Analysis (SPA) involves exploiting these power consumption variations in a

cryptographic circuit during execution in order to gain insight on any internal secret

information.

For example, Fig. 1.3 shows the power consumption of a cryptosystem during an

encryption. Details of the time in which the circuit enters different algorithmic stages

can be observed from variations in the power waveform.

Differential Power Analysis (DPA) [25] is the extension of SPA in which power

traces recorded for multiple plaintext inputs are analyzed to recover the cryptographic

key. First the adversary will require a power consumption model of the device to pre-

dict how much power it will consume based on the value of the data it is processing.

For example the Hamming weight of the data is a common power consumption model

used for CMOS-based devices. The power consumption for different key values for

9
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each of the plaintext inputs is then predicted based on this model. The key value that

generates predicted power consumption traces most closely correlating with the mea-

sured power traces throughout all of the different plaintext inputs is then determined

to be the actual key being used in the device.

1.4.2 Electromagnetic Attacks

The electromagnetic radiation that an electronic device emits is directly correlated

with its power consumption [43]. Thus, principles from power analysis can be applied

also by analyzing the electromagnetic (EM) emissions. EM analysis (EMA), however,

has the advantage of being completely non-invasive. This means that EM emissions

from the circuit under attack can be recorded from a distance without any contact

with the device. Power analysis on the other hand will require an intrusive method

for measuring the device’s power consumption such as inserting a resistor in series

between the circuit’s power supply and measuring the voltage difference across the

resistor.

1.4.3 Acoustic Attacks

Computers often emit high-pitched noises while operating as a result of their elec-

tronic components vibrating. This noise is another side-channel leakage that can be

exploited. Keys have been extracted from the sound generated by a computer during

the decryption of chosen ciphertexts in under an hour [29]. This worked when the

acoustic noises were recorded with a mobile phone placed beside the computer, or a

sensitive microphone placed 10 meters away from the computer.

10
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Figure 1.4: An electromagnetic attack using a consumer AM radio receiver placed
near the targeted device and recorded by a smartphone [43].

Figure 1.5: Image of a microphone being used in an acoustic attack [29].

11
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1.4.4 Timing Attacks

The amount of time it takes a cryptosystem to process different inputs can vary

slightly. This can be due to the varying number of RAM cache hits/misses or arith-

metic operations that take different amounts of time to operate for different input.

This behaviour can be exploited in a timing attack. For example, the time t it takes

for an algorithm to execute could be a function of the input p1 and the key k1. As-

sume that only a sub-step of the algorithm is timed in which an XOR is performed

between p1 and k1, then t will be a function of p1 ⊕ k1. The attacker will record t

and also carry out experiments on an implementation in which the key value k2 is

known. The attacker then finds two values k2⊕p2 that take the same time to execute

as p1 ⊕ k1. It can then be concluded that p1 ⊕ k1 = p2 ⊕ k2 and k1 = p1 ⊕ p2 ⊕ k2.

1.4.5 Fault Attacks

A typical fault attack involves encrypting a chosen plaintext twice. One of the en-

cryptions will be performed correctly and the other will have a faulty computation

at some point during execution. Differences in the two resulting ciphertexts can be

exploited to extract the key. A fault attack is considered an active attack, whereas the

previously discussed attacks are considered passive attacks. Active attacks breach the

security of a cryptosystem by altering its computation. Due to this, some sources will

consider active attacks under a different category than side-channel attacks. For the

purposes of this thesis, however, fault attacks will be considered under the category

of side-channel attacks.

12
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1.5 Motivation and Contributions

Physical implementations of cryptographic devices can leak unintentional informa-

tion as a byproduct of them performing their computation. This information leaked

through side-channels can expose clues to the device’s secret information. This thesis

focuses on fault-based attacks, a category of side-channel attacks, and contributes

a new analysis method that improves upon the state-of-the-art in Differential Fault

Analysis while relaxing the number of underlying assumptions related to fault in-

jection. The motivation for this research is to bring to attention these discovered

security flaws in embedded systems so that efforts can be initiated to mitigate these

risks in the future in order to prevent potential malicious activity exploiting these

vulnerabilities.

The rest of this thesis is organized as follows. Chapter 2 provides further back-

ground on fault attacks. Then the new Incremental Fault Analysis method is defined

and detailed in chapter 3. This is followed by experimental validation in chapter 4.

Concluding remarks are given in chapter 5.

13



Chapter 2

Background

The previous chapter introduced the use of cryptography in electronic devices and the

security vulnerabilities introduced by their physical implementations. This chapter

will provide the necessary background required to understand the Incremental Fault

Analysis (IFA) fault attack method that this thesis proposes. First a literature review

of fault attacks is provided as well as a description of the block cipher used to verify

the effectiveness of IFA, the Advanced Encryption Standard (AES) [44].

2.1 Fault Attacks

To mount a fault attack, the adversary stresses a cryptographic circuit until one or

more faults occur, and then leverages the faulty values that propagate to the output

as a result. Examples of how the circuit might be stressed are by providing less

power than the circuit was intended to operate with (undervolting), or increasing the

internal clock frequency (overclocking). The fault can occur during undervolting or

overclocking due to a setup time violation of one or more bits in the circuit’s critical

14
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Figure 2.1: Visualization of signal propagation delay.

datapath. For example, observe Fig. 2.1 which shows a basic digital logic circuit. The

output signals of registers A and B will take a certain amount of time to propagate

to the input of register C. The amount of time they take to propagate must be less

than the period of the clock controlling the registers. By overclocking the circuit, the

signals now have a shorter window of time to propagate than they were designed for.

Once the clock frequency is increased to the point in which there is no longer enough

time for one or more of the signals to propagate across the datapath, a setup time

violation occurs. The circuit might then produce a faulty computation called a fault.

In 1997, Boneh et al. [45] introduced the concept of leveraging hardware faults

that occur during the execution of cryptographic devices in order to compromise their

secret information. The paper describes an attack on RSA (Rivest–Shamir–Adleman),

a widely used public-key algorithm. RSA is a commonly used cryptosystem and was

one of the first public-key cryptography algorithms created. The security of RSA is

based on the difficulty of factoring the product of two large prime numbers.

One of the uses of RSA other than for encryption is for authentication, as discussed

in section 1.1.2. The purpose of authentication is related to proving the identity

of a user, for example when requesting a money withdrawal from a bank. A user

15
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can authenticate their identity through a method called RSA signing. This involves

encrypting a piece of data using an entity’s secret key such that the message can only

be decrypted using their public key. This differs from RSA encryption, where the

entity’s public key is used to encrypt a message that can then only be decrypted by

their private key. One portion of an RSA public key is a large number N that is the

product of two prime numbers, p and q. An attacker would be able to deduce the secret

key if they can factor N into these two prime factors. This is still computationally

infeasible as of today, and thus RSA is still secure.

However, the authors in [45] presented a fault attack method that can be used to

compromise an RSA implementation through its side-channel leakage. They showed

that in order to reduce computational effort, some RSA signing implementations split

up an operation that uses N into two separate operations with p and q and then join

the two results. They describe a theoretical scenario where a fault corrupts only the p

operation and they provide an analysis method that can leverage the resulting faulty

output in order to deduce q and then p. They continue to provide more details on

other variants of the attack and analysis methods targeting RSA.

The fault attack concept from [45] sparked a series of other fault attack method-

ologies on other cipher schemes. An attack labeled Differential Fault Analysis

(DFA) [46] was introduced that targeted DES and other symmetric-key ciphers. DES

is a symmetric-key algorithm developed in the early 1970’s. It is now susceptible to

brute-force attacks and is insecure, but was influential for the development of modern

day symmetric-key algorithms such as the Advanced Encryption Standard (AES).

The term Differential Fault Analysis, also sometimes used interchangeably with

Differential Fault Attack, has since been adopted as a general term for a fault

16
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Figure 2.2: Pseudo code for AES [44].

attack in which analysis is done on sets of two ciphertexts resulting from encryptions

of the same plaintext where one of the plaintexts is correctly encrypted and the other

is an erroneous result of a faulty computation. The two encryptions will have been

executed identically up until the algorithmic stage in which the fault is injected. The

differential output will then be a result of a reduced number of algorithmic stages.

With this knowledge, there is also a reduced set of secret keys mathematically possible

to be in use by the algorithm based on the differential output observed.

2.2 The Advanced Encryption Standard (AES)

AES is a symmetric-key block cipher that encrypts 128 bits of data at a time. The

128 bit data is visualized as a 4 by 4 byte array referred to as the state, shown in

17
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Figure 2.3: The AES state array [44].

Fig. 2.3. The state will consist of the plaintext at the start of encryption. The state

will then go through various rounds of randomization before reaching the output as

the encrypted ciphertext. Each round consists of a series of transformations, each

described below.

• SubBytes (SB): SubBytes, shown in Fig. 2.4, is a non-linear byte substitution

in which each byte of the state is mapped to a different value.

• ShiftRows (SR): ShiftRows, shown in Fig. 2.6, involves each byte of the state

being cyclically shifted left by r positions, where r is the row index (starting at

0).

• MixColumns (MC): MixColumns, shown in Fig. 2.7, performs a matrix mul-

tiplication between the state and a matrix shown in Fig. 2.8.

• AddRoundkey (ARK): AddRoundKey, shown in Fig. 2.9, XORs each byte

of the state with a corresponding byte of the round key.

AES [44] uses a 128, 192, or 256-bit key, called the cipher key. The number of

32-bit words comprising the cipher key is denoted as Nk, which will have the value

4, 6, or 8, respectively. In this thesis we consider all three AES variants. 10-14
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Figure 2.4: SubBytes (SB): A non-linear byte substitution that independently sub-
stitutes each byte of the state using a substitution table (S-box) [44].

Figure 2.5: S-box substitution values for byte xy in hexadecimal format [44].

rounds are executed depending on the value of Nk. The number of rounds executed

is referred to as Nr and is equal to Nk + 6.

Prior to performing the cipher, AES expands the cipher key with an algorithm
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Figure 2.6: ShiftRows (SR): A cyclical shift applied to each row of the state. Each
row r from 0 to 3 is shifted to the left by r bytes [44].

called Key Expansion (KE), shown in Fig. 2.10. The key is expanded from

Nk ∗ 4 bytes to (Nr + 1) ∗ 16 bytes and the expanded cipher key is referred to as

the key schedule. The cipher key is initially XORed with the plaintext and then

the remaining Nr ∗ 16 bytes of the key schedule, w, is then divided into Nr 16-byte

sets called round keys. A different round key is applied in each round during the

AddRoundKey transformation, starting with the first round key in the first round

until the last round key in the last round. The SubWord transformation in the Key

Expansion algorithm is the same as the SubBytes transformation except applied to a

column of the state. RotWord(i) shifts the bytes in a word by i positions. Rcon[i] is

the round constant word array, containing the values [xi−1,{00},{00},{00}].
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Figure 2.7: MixColumns(MC): A matrix multiplication is performed on the state
where each column is considered as a 4-dimensional vector over GF(28) as in [44].

Figure 2.8: MixColumns(MC): A matrix multiplication is performed on the state
where each column is considered as a 4-dimensional vector over GF(28) as in [44].

After Key Expansion, the state is initially XORed with the cipher key through the

ARK operation, after which all Nr rounds are performed sequentially. The rounds

each consist of the transforms mentioned above being applied once in the order they

are listed, except for the last round which omits the MC transformation. An AES-128

cipher key can be reverse engineered from the final round key KNr by performing the
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Figure 2.9: AddRoundKey (ARK): Each byte of the state is bitwise XORed with
the corresponding round key. Each round key is generated from the cipher key [44].

KE in reverse. This is called Inverse Key Expansion (KE−1), and is detailed in

algorithm 1. To recover an AES-192 or AES-256 cipher key, the last two round keys

are both required to perform KE−1. This is because in AES-192 and AES-256, KE

operates on 24 and 32-byte keys, respectively, but each round key is only 16-bytes. To

perform decryption, the cipher operates similarly to encryption but transformations

are performed in reverse order. The fault attacks that this thesis focuses on do not

require an as in-depth understanding of decryption compared to encryption.

2.3 Fault Attacks on AES

There have been a variety of fault attacks published that target AES. In addition to

exploiting faults, some also take advantage of other kinds of physical vulnerabilities

observed in electronic devices. Some of these attacks are summarized below.

Fault Sensitivity Analysis (FSA) [38] exploits the fact that the level of stress
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Figure 2.10: Pseudo code for Key Expansion [44].

required to cause a fault in a cryptosystem depends on the specific value of its internal

state at the time of fault injection. For example, in the case of overclocking, the

amount of time register outputs have to propagate to their destination register inputs

is reduced by increasing the internal clock frequency of the circuit. However, the

time required to allow signals to propagate across a datapath depends on the input

values to the logic elements in the datapath. Therefore, the amount of overclocking
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Algorithm 1 Inverse Key Expansion

Input: Last round key
Ouput: The AES cipher key

1: function Inverse Key Expansion(word key[Nk], word w[4 ∗ (Nr + 1)])
2: word tmp
3: for i = Nr ∗ 4 + 3; i >= Nk; i- - do
4: tmp= w[4 ∗ (i− 1)]
5: if i%Nk == 0 then
6: rot word(tmp);
7: sub word(tmp);
8: tmp = tmp ˆ Rcon(i/Nk)
9: else if (Nk > 6) && (i%Nk == 4)) then
10: sub word(tmp)
11: end if
12: w[4 ∗ (i−Nk)] = w[4 ∗ i]ˆtmp
13: end for
14: for i = 0; i < Nk ∗ 4; i++ do
15: key[i] = w[i];
16: end for
17: Return key
18: end function

necessary to cause a fault will depend on the value of the internal data. FSA takes

advantage of this behaviour by recording the level of overclocking required to cause a

fault in a specific stage of the encryption. This is then correlated with what the key

values being used internally must be to require that specific amount of overclocking

to cause a fault. FSA requires an idea of the gate-level design of the cryptosystem

in order to have an estimate of the design timing. It also requires that the fault is

injected using a clock glitch in the last AES round. This method was successful with

less than 50 fault injections and the fault value does not need to be known.

Differential Fault Intensity Analysis (DFIA) [40] takes advantage of faults being

biased towards affecting only 1 - 3 bits in a byte. DFIA exploits this property by

partially decrypting each faulty/correct ciphertext pair back to the stage of fault
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injection using each possible sub-key hypothesis. Then the adversary records the

hypothetical faults that must have occurred assuming that the hypothesis sub-key

is the actual sub-key being used in the cryptosystem. The only sub-key hypotheses

that are deemed possible are those which point to fault values affecting only 1-3 bits.

Fault injections must be performed in the last round of AES and are injected using

clock glitches. The method was successful after 7 fault injections per byte of the AES

state.

Differential Error Rate Analysis (DERA) [41] uses the inherent bias of the error

rates among different signals. Certain bits on the input of combinational logic will

be connected to longer datapaths with more gates to pass through, and therefore

will require a larger amount of time to propagate to their destination compared to

other bits. This means that when a circuit is overclocked, certain bits of a datapath

will tend to be corrupted more frequently than others. DERA exploits this property

by partially decrypting each faulty/correct ciphertext pair back to the stage of fault

injection using each possible sub-key hypothesis. Then the adversary records the

hypothetical faults that must have occurred assuming that the hypothesis sub-key

is the actual sub-key being used in the cryptosystem. Correct key guesses tend to

return hypothetical faults with corrupted bit occurrence rates biased towards affecting

certain bits and not others, whereas incorrect key guesses tend to return hypothetical

faults with corrupted bit occurrence rates that are distributed more evenly across all

bits. DERA uses a clock glitch fault injection method in the second-last AES round.

This method was successful after 70 fault injections.
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Non-Uniform Faulty Value Analysis (NUFVA) [39] assumes the value of the cor-

rupted state after fault injection is non-uniformly distributed. Note that this is dif-

ferent than DFIA and DERA which assume that the differential between the faulty

and non-faulty states is non-uniformly distributed. Most fault attack methods (in-

cluding DFIA and DERA) assume the fault injection is modelled by an XOR, which

is a linear operation. If the state values in which the faulty values are applied to

are unbiased, then they will still be unbiased after a linear operation with a (biased

or unbiased) faulty value. NUFVA assumes that the fault injection is modelled by a

non-linear operation such as an AND or OR operation, thus assuming the corrupted

state is biased after fault injection. This property has been shown to hold for some

types of S-boxes under stress [47]. This method has one powerful advantage over

the previously mentioned methods in which it is not a chosen-plaintext attack. This

means that the same plaintext does not have to be re-applied. The method in [39]

can determine the cipher key with 6 faults. However, the fault model used for this

is particularly impractical to implement in practise. A more practical version of the

fault model in [39] is used in [48] in which it is assumed the corrupted datapath has

some less specific form of bias. Using that fault model, the cipher key is extracted

from as little as 80 fault injections.
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2.4 A Practical Fault Attack on AES

The attacks discussed in section 2.3 overall fall short in practicality because the

adversary is required to know with high certainty that a target fault will occur during

each fault injection attempt. Ensuring this means the faults must occur within a

specific AES round, implying that the circuit’s internal clock frequency must be

briefly increased for only a certain small number of clock cycles. This introduces extra

attack measures, requiring clock glitching equipment such as clock multiplexers that

can briefly increase the clock frequency, and a method for probing the cryptosystem’s

internal state to know during which clock cycles the clock frequency must be increased.

However, in a realistic attack scenario the adversary might not have such control

over the targeted device. A more flexible fault attack on AES was introduced in 2003

by Piret et al. [36]. One of the greatest advantages of this attack is that it can be used

in a practical scenario in which the attacker is not required to distinguish between

which faulty ciphertexts are resulting from target faults and which are resulting from

non-target faults. Rather than requiring a target fault to occur during every fault

injection attempt, it is only required for a small percentage of fault injection attempts

to result in target faults (discussed more in section 2.4.4). The adversary can simply

perform a certain number of encryptions using a cryptosystem kept at a constant

stress level, then analyze all of the faulty ciphertext outputs as a whole while being

otherwise completely blind to the details of the faults that are occurring internally.

Since the circuit does not have to be stressed for a specific brief set of clock cycles,

it is not required to have methods for probing the cryptosystem’s internal state to

know when it is in a target round, or to integrate clock glitching equipment into the

circuit’s internal clock. This practicality is something that has been overlooked in
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recent work, but is essential for realistic attack scenarios.

2.4.1 Attack Procedure

The attack procedure explained in this section hinges on an understanding of AES,

described in section 2.2. The attack method requires injection of randomly valued

faults affecting up to a single-byte near the end of the AES cipher. Methods that

expand upon this one can extract the cipher key with as little as a single fault injection

[37].

First let the following notation and representations be defined:

• SB, SR, MC, ARK: The transformations that AES consists of, as explained

in section 2.2.

• Nr: The number of AES rounds, as explained in section 2.2.

• Superscript Nr−d: XNr−d represents an element or transformation X in

round Nr− d, where d = {0, ..., Nr− 1}. For example, the MC transformation

in round Nr − 1 will be referred to as MCNr−1.

• Subscript i,j: Xi,j represents the byte of an element or transformation X

corresponding to row i and column j of the AES state.

• S: S may be used to represent the AES state at the input of a certain round

and/or at a certain byte index. For example, SNr
1,2 represents the byte in row 1

and column 2 of the state at the input of round Nr.

• K: The AES cipher key.
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• KNr−d: The (Nr−d)th AES round key, where d = {0, ..., Nr−1}. For example,

KNr is the Nrth round key and will be referred to as the last round key.

• C: A ciphertext output from AES encryption.

• C : A faulty ciphertext output from AES encryption. This may also sometimes

be written as C
′
.

• ∆: The differential, or difference, between the faulty and fault-free states

throughout various stages of encryption due to a fault or fault propagation.

Now Consider Fig. 2.11 where a single-byte fault occurs at some point between

MCNr−2 and MCNr−1. The effect of a fault is modelled by an XOR between the

state and the fault value ∆. After fault injection, the differential must initially affect

1 byte of the state. It will then spread to 4 bytes of the state after MCNr−1. Next,

the SB transformation will change the value of the differential because it is a non-

linear transformation and will cause the faulty and fault-free states to differ by a

different amount. Lastly, the SR transformation will shuffle the positioning of the

differential’s bytes in the state. Note that only the MC, SB, and SR transformations

change the value or positioning of the differential. The ARK does not affect the value

(or positioning) of the differential because it is a linear transformation and changes the

value of both the faulty and fault-free states by the same amount, thus not affecting

the differential between them.

The state at the input of round Nr and the ciphertext outputs are related to

each other through the transformations SB and ARK of round Nr. The state at

the input of round Nr can be derived from the ciphertext by partially decrypting the

ciphertext back by 1 round. For example, the fault-free state in row 0 and column 0
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Figure 2.11: Propagation of a single-byte fault injected between MCNr−2 and
MCNr−1.

at the input of round Nr relates to the fault-free ciphertext byte in row 0 and column

0 as follows:

SNr
0,0 = SB−1(ARKNr(C0,0)) = SB−1(C0,0 ⊕KNr

0,0 )

where SB−1 is the inverse of the SB transformation (the ARK inverse is not used

because it is its own inverse).

In the same way, the following relationships can be derived between the 4-byte
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j = 0 j = 1 j = 2 j = 3

a) b) c) d)

Figure 2.12: State positions for the 4 bytes composing a column j sublist of a 16-byte
element or transformation depending on the value of j, where j = {0, 1, 2, 3}.

j’ = 0 j’ = 1 j’ = 2 j’ = 3

a) b) c) d)

Figure 2.13: State positions for the 4 bytes composing a j′ sublist of a 16-byte element
or transformation depending on the value of j′, where j′ = {0, 1, 2, 3}.

differential at the output of MCNr−1, and the 4 output ciphertext bytes in which the

differential propagates to:

∆0,j = SB−1(C0,j ⊕KNr
0,j )⊕ SB−1(C0,j ⊕KNr

0,j ) (2.1)

∆1,j = SB−1(C1,j+3 ⊕KNr
1,j+3)⊕ SB−1(C1,j+3 ⊕KNr

1,j+3) (2.2)

∆2,j = SB−1(C2,j+2 ⊕KNr
2,j+2)⊕ SB−1(C2,j+2 ⊕KNr

2,j+2) (2.3)

∆3,j = SB−1(C3,j+1 ⊕KNr
3,j+1)⊕ SB−1(C3,j+1 ⊕KNr

3,j+1) (2.4)

In order to compress (2.1) - (2.4) into a more compact representation, let the
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following notation be defined:

• Subscript j: Xj represents a certain 4-byte sublist of a 16-byte element or

transformation X. The 4 bytes of X that are included in each j sublist corre-

spond to the column of the element or transformation, as shown in Fig. 2.12 a)

- d).

• Subscript j’: Xj′ represents a certain 4-byte sublist of a 16-byte element or

transformation X. The 4 bytes of X that are included in each j′ sublist are

illustrated in Fig. 2.13 a) - d). The positions correspond to the bytes that a

single-byte fault injected between MCNr−2 and MCNr−1 will propagate to on

the output ciphertext depending on the column j in which the fault was injected

into.

Using this notation, (2.1) - (2.4) can be compressed to the following:

∆j = SB−1j′ (Cj′ ⊕KNr
j′ )⊕ SB−1j′ (Cj′ ⊕KNr

j′ ) (2.5)

where:

∆j = {∆0,j,∆1,j,∆2,j,∆3,j}

KNr
j′ = {KNr

0,j , K
Nr
1,j+3, K

Nr
2,j+2, K

Nr
3,j+1}

Cj′ = {C0,j, C1,j+3, C2,j+2, C3,j+1}

Cj′ = {C0,j, C1,j+3, C2,j+2, C3,j+1}

j = {0, 1, 2, 3}

Next, consider that there are 255 possible values for a single-byte differential ∆ at
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the point of fault injection. The possible values are 1 to 255 (0 is excluded since that

would mean no fault occurred). The MC transformation operates on one column of

the state at a time, and a single-byte differential could enter a MC transformation

on any of 4 possible row positions. This means that there are 255 · 4 = 1020 possible

unique single-byte differential inputs to a MC transformation. Therefore, even though

the MC transformation spreads the single-byte differential across 4 bytes, there are

only 1020 unique 4-byte differentials possible at the output of a MC that can be the

result of a single-byte differential input. These 1020 possible 4-byte differentials form

a list we will refer to as D. This D list must be computed before the attack and will

always be the same, and can then be re-used for each application of the attack.
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For example, D can be computed as follows:

D0 = MC( {01, 00, 00, 00} ) = {02, 01, 01, 03}

D1 = MC( {02, 00, 00, 00} ) = {04, 02, 02, 06}

D2 = MC( {03, 00, 00, 00} ) = {06, 03, 03, 09}

...

D254 = MC( {ff, 00, 00, 00} ) = {e5,ff,ff, 1a}

D255 = MC( {00, 01, 00, 00} ) = {03, 02, 01, 01}

D256 = MC( {00, 02, 00, 00} ) = {06, 04, 02, 02}

...

D509 = MC( {00,ff, 00, 00} ) = {1a, e5,ff,ff}

D510 = MC( {00, 00, 01, 00} ) = {01, 03, 02, 01}

D511 = MC( {00, 00, 02, 00} ) = {02, 06, 04, 02}

...

D764 = MC( {00, 00,ff, 00} ) = {ff, 1a, e5,ff}

D765 = MC( {00, 00, 00, 01} ) = {01, 01, 03, 02}

D766 = MC( {00, 00, 00, 02} ) = {02, 02, 06, 04}

...

D1019 = MC( {00, 00, 00,ff} ) = {ff,ff, 1a, e5}

The goal of the adversary is to find the value of the actual last round key sublist

KNr
j′ being used to encrypt the plaintexts. However, they only have the faulty and

fault-free ciphertext outputs available to them. KNr
j′ could be any of 232 possible
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values. However, it is known that ∆j is an element of D, and that there are only

1020 possible values in D. To exploit this, Cj′ and Cj′ are applied to (2.5) for each

of the 232 possible values for KNr
j′ to see which KNr

j′ values map to a ∆j that is an

element of D. On average this occurs for 1036 KNr
j′ values. The adversary has now

reduced the number of possible hypotheses for KNr
j′ from 232 to 1036.

The full last round key consists of 4 KNr
j′ elements, and this analysis must be done

4 times to retrieve the full last round key, once for each j = {0, 1, 2, 3}. For each

j, analysis must be done on ciphertexts resulting from a single-byte fault affecting

column j of the state between MCNr−2 and MCNr−1. For each column j that a single-

byte fault is injected into, the differential will propagate to the j′ byte positions on

the output ciphertext as illustrated in Fig. 2.13 a) - d).

After analysis for each j = {0, 1, 2, 3}, the adversary will have a list of on average

1036 (or ∼210) hypotheses for each KNr
j′ value. The list of hypotheses for the full

last round key KNr can be formed by concatenating all combinations of the 4 KNr
j′

hypotheses lists to form a list of ∼240 hypotheses for the full last round key KNr. The

adversary has now reduced the number of possible values for KNr from 2128 to ∼240.

If this entire process is repeated again, then the adversary will possess 2 lists of

∼240 KNr hypotheses. Each incorrect KNr hypothesis in these lists will be a random

value amongst 2128 possible KNr values. Due to this enormous space, the likelihood

of any incorrect elements in one list overlapping with the other is negligibly low, and

the only overlapping element in each list will be the correct KNr value.

The overlapping last round key hypothesis KNr can be used to generate a ci-

pher key hypothesis K by performing an inverse of the Key Expansion algorithm as

described in Algorithm 1. In order to confirm if the resulting K hypothesis is the
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correct one being used in the cipher, a plaintext can be encrypted using a custom

AES implementation which will use the K hypothesis for encryption. If the resulting

ciphertext is identical to the fault-free ciphertext from the cryptosystem targeted in

the attack, then it is known that this is the correct K being used in the cryptosystem

under attack.

2.4.2 Example

To better understand the relationship exploited by (2.5), consider the two encryp-

tions in Fig. 2.14 which are identical except that the one on the left is a fault-free

encryption, and the one on the right contains a fault occurring between MCNr−2 and

MCNr−1. The propagation of the fault is shown in detail after every transformation

up until it reaches the ciphertext output.

∆j = SB−1j′ (Cj′ ⊕KNr
j′ )⊕ SB−1j′ (Cj′ ⊕KNr

j′ ) (2.5 revisited)

In this example, the parameters in (2.5) (revisited above) would contain the following

values:

∆j = {03, 09, 06, 03}

KNr
j′ = {d0, 63, 0c, 89}

Cj′ = {39, 6a, 85, fb}

Cj′ = {4b, 0d, b3, 2d}

j = 0
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Figure 2.14: Propagation of a single-byte fault injected between MCNr−2 and
MCNr−1.
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2.4.3 An Improvement to the Attack

The number of fault injections required to mount the attack is reduced by considering

a random single-byte fault injected between MCNr−3 and MCNr−2 (1 round earlier

than before), as shown on the right of Fig. 2.15. The encryption on the left of Fig. 2.15

shows also a single-byte fault injected between MCNr−2 and MCNr−1 for reference.

The encryption on the right will automatically set up one single-byte differential in

each column between MCNr−2 and MCNr−1. Analysis can then be done for all j

values from just a single faulty and fault-free ciphertext pair, reducing the number

of fault injections required to just 1 or 2 in order to reduce the number of cipher key

hypotheses to ∼240 or 1.

Furthermore, in 2011 Tunstall et al. [37] exploited further AES relationships to

show that the number of last round key hypotheses returned by this attack based on

a single ciphertext pair can actually be reduced from ∼240 to a mere 28 in the most

ideal scenario.

2.4.4 Non-Target Fault Tolerance

As previously mentioned, this method can still be used even if the attacker has no way

of distinguishing between which faulty ciphertexts resulted from target or non-target

faults. The attack will return a solution after two or more target faults occurring

between MCNr−3 and MCNr−2 occur, or after two or more target faults occurring

between MCNr−2 and MCNr−1 occur for each column of the state.
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Figure 2.15: Propagation of a single-byte fault injected between MCNr−2 to MCNr−1

and MCNr−3 to MCNr−2.
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Identifying Target Faults Between MCNr−2 and MCNr−1

If the adversary is targeting faults that occur between MCNr−2 and MCNr−1, then

non-target faults can be filtered out by only accepting faulty ciphertexts that have

fault propagation on 4 bytes in the j′ positions for one of j = {0, 1, 2, 3}.

To further filter the remaining faulty ciphertexts, let KNr
j′ represent a list of all the

∼1036 KNr
j′ values returned by analyzing a ciphertext pair for a certain j = {0, 1, 2, 3}.

Each ciphertext pair analyzed will return a unique KNr
j′ list. KNr

j′ lists corresponding

to non-target ciphertext pairs will contain ∼1036 incorrect KNr
j′ hypotheses distributed

sparsely across the large space of 232 possible values that each element can take on.

This sparsity ensures that the likelihood of one or more of the elements overlapping

in two incorrect KNr
j′ lists is reasonably low.

However, KNr
j′ lists returned from two target ciphertext pairs will each contain one

element that is the correct KNr
j′ hypothesis which therefore must overlap in the two

target KNr
j′ lists. Thus, the adversary can continue comparing sets of two ciphertext

pairs until they happen to compare two target ciphertext pairs, after which a solution

will be returned.

Identifying Target Faults Between MCNr−3 and MCNr−2

If the adversary is targeting faults that occur between MCNr−3 and MCNr−2, then

non-target faults can be filtered out as follows. Let KNr represent a list of all the ∼240

KNr values returned by analyzing a ciphertext pair. Each ciphertext pair analyzed

will return a unique KNr list. KNr lists corresponding to non-target ciphertext pairs

will contain ∼240 incorrect KNr hypotheses distributed extremely sparsely across the

enormous space of 2128 possible values that each element can take on. This sparsity
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ensures that the likelihood of one or more of the elements overlapping in two incorrect

KNr lists is negligibly low.

However, KNr lists returned from two target ciphertext pairs will each contain one

element that is the correct KNr hypothesis which therefore must overlap in the two

target KNr lists. Thus, the adversary can continue comparing sets of two ciphertext

pairs until they happen to compare two target ciphertext pairs, after which a solution

will be returned.

2.4.5 Extension to AES-256 and AES-192

In AES-128, the cipher key can be recovered once the last round key is known. In

AES-256 and 192, however, the last two round keys, KNr and KNr−1, must be known

in order to recover the cipher key. This is achieved by first applying the attack

described above to obtain the last round key KNr. Faults are then injected in the

same fashion, but one round earlier, between MCNr−3 and MCNr−4. Each ciphertext

pair (C, C ) can then be partially decrypted using KNr to compute a corresponding

partially decrypted ciphertext pair (A, A ) equivalent to the state before the input

to the last MC:

A = MC−1(SR−1(SB−1(C ⊕KNr))) (2.6)

A = MC−1(SR−1(SB−1(C ⊕KNr))) (2.7)

Then the same attack as above is applied except on (A, A ) rather than (C, C ) to

recover MC−1(KNr−1) as shown in (2.8) and 2.9. This can then be transformed into
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KNr−1 using MC as shown in (2.10).

B = MC−1(KNr−1) (2.8)

∆j = SB−1j′ (Aj′ ⊕Bj′)⊕ SB−1j′ (Aj′ ⊕Bj′) (2.9)

KNr−1 = MC(B) (2.10)

Then KNr and KNr−1 can be used by the Inverse Key Expansion algorithm to generate

the cipher key similarly to how it is done for AES-128.

2.5 Summary

This chapter outlined different examples of fault attacks and summarized their strengths

and weaknesses. An overview of AES was provided, and a detailed description and

example were provided for a practical fault attack that targets AES [36]. The next

chapter goes on to describe our improved IFA fault analysis method and demonstrates

the improvements it can provide in comparison to the attack from [36].
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Chapter 3

Incremental Fault Analysis

Incremental Fault Analysis (IFA) generalizes classical differential fault models from

requiring a target fault to occur in isolation during an encryption to also allowing the

target fault to occur incrementally between any two faulty encryptions. This allows

the key to be computed from fewer ciphertexts and introduces a tolerance for faults

occurring prior to the target fault injection round.

For the application of IFA explored in this thesis, faults are injected through

overclocking. The circuit is overclocked at a steady frequency throughout the entire

encryption. The frequency is then incrementally increased and the plaintext is en-

crypted again. This process is repeated multiple times and the resulting ciphertexts

are collected after each encryption. Eventually faults will start to occur internally and

propagate to the output. More faults will occur as the circuit is further overclocked.

Three key observations were found experimentally when overclocking:

• Faults often affect one byte of the state at a time

• Faults occurring at clock frequency fm will often continue to occur also at
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frequencies greater than fm

• Faults occurring at higher frequencies are often superimposed upon any fault

propagation resulting from faults occurring at lower frequencies in previous

algorithmic stages

Consider Fig. 3.1, where a circuit is overclocked from frequency f 0 to fn. As

outlined above, it was found based on experimental observation that a fault ∆m

appearing in a round Nr − d at frequency fm will often continue to occur for all

frequencies greater than fm as well. Now consider another fault ∆n occurs in a later

round Nr − 1 at frequency fn, then the faulty ciphertext output Cn
k will contain

fault propagation resulting from both ∆m and ∆n. Even though ∆n in isolation is a

target fault, ∆m is not and corrupts any cipher key information that could have been

extracted from the ciphertext pair (C0
k , Cn

k ).

However, IFA can still extract cipher key information in this scenario by analyzing

the incremental differential between the two faulty ciphertexts (Cm
k , Cn

k ). In

the example shown in 3.1, the notation ∆mn would be used to represent the fault

increment occurring between the two encryptions producing ciphertexts Cm
k and

Cn
k , and in this case is equivalent to ∆n occurring in isolation.

3.1 Attack Procedure

In this section we explain how IFA can be applied to and enhance the practical attack

method described in section 2.4 in order to reduce the number of fault injections

and analysis time required to uncover the secret key. We also describe an improved

algorithmic approach we developed for analyzing the data. The explanations in this

44



M.A.Sc. Thesis - Trevor E. Pogue McMaster - Electrical Engineering
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Pk Pk

C0
k

fn

Pk

Cm
k

Round Nr − 1

∆n

Cn
k
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Figure 3.1: Visualizing an incremental fault.

section hinge on an in depth understanding of section 2.4, which explains the attack

procedure from [36].

In Algorithm 2, each plaintext Pk is encrypted at a steady clock frequency fw for

increasing clock frequencies from f 0 to fwmax . For each plaintext Pk, the attacker must

have the control to reapply this same plaintext. For each plaintext, this produces a

list of ciphertext outputs C containing ciphertexts encrypted at each frequency from
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Algorithm 2 Encrypt And Get Key

Ouput: The cipher key.
1: function Encrypt And Get Key
2: for k = 0 : kmax do
3: Pk = Random Plaintext
4: for w = 0 : wmax do
5: C.append(encrypt(Pk, f

w)) ,
6: end for
7: KNr = Find Key(C)
8: if AES-128 then
9: K = inv key expansion(KNr)
10: else if AES-256 OR AES-192 then
11: C = partial decrypt(C, KNr)
12: KNr−1 = Find Key(C)
13: K = inv key expansion(KNr−1,Nr)
14: end if
15: Ctest = encrypt(Pk, K)
16: if Ctest == C0 then
17: Return K
18: end if
19: end for
20: end function

f 0 to fwmax . Some ciphertexts will have no incremental changes and all duplicate

ciphertexts will be removed from C. C is then passed to algorithm 3 to find the

cipher key.

Algorithm 3 traverses through the list of ciphertexts C, analyzing each unique

ciphertext pair (Cm, Cn) in C as defined below:

C.size−1∑
n=1

n−1∑
m=0

(Cm, Cn)

where Cm or Cn is ciphertext m or n in the list of ciphertexts C. This technique
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Algorithm 3 Find Key

Input: Set C of ciphertexts.
Ouput: The last round key hypothesis KNr.

1: function Find Key(C)
2: D = GetD
3: for n = 1 : C.size−1 do
4: for m = 0 : n− 1 do
5: for j = 0 : 3 do
6: for KNr

j′ = 0 : 232 − 1 do

7: if SB−1j′ (Cm
j′ ⊕KNr

j′ )⊕ SB−1j′ (Cn
j′ ⊕KNr

j′ ) ∈ D then

8: KNr
j′ .append(KNr

j′ )
9: end if
10: end for
11: end for
12: end for
13: end for
14: for j = 0 : 3 do
15: Retrieve highest occurring KNr

j′ in KNr
j′ and place into KNr

16: end for
17: Return KNr

18: end function

Algorithm 4 GetD

Ouput: List D of all 1020 possible 4-byte MC outputs resulting from a 4-byte
input where three out of four bytes are zero, and one has any non-zero value.

1: function GetD
2: for i = 0 : 3 do
3: for B = 1 : 28 − 1 do
4: D.append(MC(B << (8 · i)))
5: end for
6: end for
7: Return D
8: end function

generalizes (2.5) to the following:

∆mn
j = SB−1j′ (Cm

j′ ⊕KNr
j′ )⊕ SB−1j′ (Cn

j′ ⊕KNr
j′ ) (3.1)
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(2.5) analyzes fault propagation that occurs strictly between faulty and fault-free

encryptions, whereas (3.1) also analyzes any incremental fault propagation occurring

between any two increasingly faulty encryptions.

Now consider lines 6 to 10 of algorithm 3. Each ciphertext pair Cm and Cn are

applied to (3.1) for each of the 232 possible values for KNr
j′ . Only the KNr

j′ values

that return a ∆mn
j that is an element of D are stored into a list KNr

j′ of potential KNr
j′

hypotheses. On average, 1036 KNr
j′ values applied to (3.1) will return a ∆mn

j value

that is an element of D. The full last round key KNr consists of 4 KNr
j′ elements,

and can be retrieved after doing this analysis once for each j = {0, 1, 2, 3}, as shown

on line 5 in algorithm 3. After analysis the adversary can form the KNr hypothesis

by concatenating the 4 most commonly occurring KNr
j′ hypotheses in each KNr

j′ list

as shown on line 15 in algorithm 3.

The cipher key hypothesis K is then computed by performing Inverse Key Ex-

pansion on the KNr hypothesis as shown on lines 9 and 13 of algorithm 2. In order

to confirm if the resulting K hypothesis is the correct one being used in the cipher,

the plaintext Pk that was last used to generate the faulty ciphertexts is encrypted

using a custom software AES implementation which will use the K hypothesis for

encryption as shown on line 15 of algorithm 2. If the resulting ciphertext is identical

to the fault-free ciphertext C0 from the cryptosystem targeted in the attack, then it

is known that this is the correct K being used in the cryptosystem under attack.

This application of IFA inherits the same non-target fault tolerance as the method

from [36] as described in section 2.4.4, and can be used even if the attacker has no way

of distinguishing between which faulty ciphertexts resulted from target or non-target

faults.
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Figure 3.2: The number of ciphertext pairs extractable when using IFA compared to
DFA.

The differences between IFA and classical DFA methods from [36] and [37] can

be seen in Algorithm 3 on line 4. For the other methods, this for-loop would only

run one iteration for the m value, with m being equal to zero, such that each faulty

ciphertext is only compared to C0 (the fault-free ciphertext). This along with Fig.

3.2 helps to illustrate how when the number of ciphertext pairs that the DFA method

is able to extract is Θ(n), the number of ciphertext pairs that IFA is able to extract

is proportional to Θ(n2), where n is the number of ciphertexts analyzed.

The time complexity of the algorithm outlined in the provided pseudocode is Θ(n2)

for AES-128, 192, and 256. This is a higher time complexity than when analyzing

the faults using classical DFA methods from [36] and [37], which would use Θ(n) for

AES-128, 192, and 256, however, it has lower runtimes in practice because it is able

to recover the key from analyzing fewer ciphertexts.
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3.2 Example

As discussed above, algorithm 2 is run first to find the cipher key. In lines 3 - 6, a ran-

dom plaintext is generated and then encrypted at different frequencies from frequency

f 0 to fwmax . Consider Fig. 3.3, showing encryptions at two of these frequencies, fma

and fna , both of which contain a fault. The one on the left is a result of a fault

occurring at a frequency ma in an early round such as round 3. Similarly as with ∆m

in Fig. 3.1, this fault has propagated to every byte of the state by round Nr − 1,

leaving all output ciphertexts at frequencies greater than or equal to fma useless for

comparing against the fault-free ciphertext. Consider another fault occurring at a

higher frequency na occurring between MCNr−2 and MCNr−1 as shown in the en-

cryption on the right of Fig. 3.3. Even though ∆na in isolation is a target fault, it

will be superimposed upon the fault propagation resulting from ∆ma , and comparing

its resulting output ciphertext against the fault-free ciphertext will not provide any

cipher key information.

However, using IFA, the fault increment between encryptions at frequency fma

and fna can be analyzed in the same way as the example in section 2.4.2. The

ciphertext pair (Cma , Cna) from the example in Fig. 3.3 will be applied to (3.1) on

lines 6 to 10 in algorithm 3 when m = ma, n = na, and j = 0.

∆mn
j = SB−1j′ (Cm

j′ ⊕KNr
j′ )⊕ SB−1j′ (Cn

j′ ⊕KNr
j′ ) (3.1 revisited)

In the example from Fig. 3.3 the parameters in (3.1) (revisited above) would contain

the following values:
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Figure 3.3: Propagation of a single-byte fault injected between MCNr−2 and MCNr−1.
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∆mn
j = {03, 09, 06, 03}

KNr
j′ = {d0, 63, 0c, 89}

Cm
j′ = {39, 6a, 85, fb}

Cn
j′ = {4b, 0d, b3, 2d}

j = 0

3.3 Summary

This chapter detailed Incremental Fault Analysis (IFA), our proposed fault analysis

method. IFA is demonstrated by applying it to the attack from [36] and developing

an algorithm to analyze the faulty ciphertexts using IFA in order to more efficiently

extract the cipher key. The next chapter goes on to explain experimental results and

provide quantitative measurements of how much improvement IFA provides when

applied to the attack from [36].

52



Chapter 4

Experimental Results

To empirically justify the IFA attack method, the attack from [36] was tested both

with and without IFA applied. The results shown in section 4.4 show that when using

IFA, cipher keys could be deduced with over 14 times less faulty ciphertexts and after

over 6.4 times less computational time. Attack success rates were 100% when using

IFA, and 92% without. It is then outlined in section 4.5 how IFA applied to the

attack from [36] is more practical to execute than other state-of-the-art fault attacks.

4.1 Experimental Framework for Attacks on Cus-

tom Hardware Architectures for AES

Experiments were conducted on the Intel Arria 10 SoC Development Kit [49]. Hard-

ware implementations of the Advanced Encryption Standard (AES) [44] were tested

on the Arria 10 FPGA [49].

Two different architectures were tested for both AES-128 and AES-256, and one
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Figure 4.1: Intel Arria 10 SoC Development Kit [49].

architecture for AES-192. The first architecture used for all AES variants was self

designed, and the second was an open source design [50]. We did not test an open

source design for AES-192 because it is less popular and it was more difficult to find

an open source implementation for.
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Figure 4.2: Self designed AES architecture.

4.1.1 Architecture Overview

The self designed architecture, shown in Fig. 4.2, has a throughput of encrypting

one plaintext per 16 ·Nr clock cycles, with a 5 clock cycle latency, and uses minimal

hardware resources. Key Expansion is performed prior to encryption and only needs

to be performed once every time a new cipher key is chosen. The state and round

keys are each stored in separate dual port RAMs with one byte stored per memory

location. The architecture works on the state column by column, loading each byte in

a column into a shift register, shown on the left of Fig. 4.2, in order to buffer a state

column every 4 clock cycles. One round is performed every 16 clock cycles and the

same hardware is used in every round. Prior to round 1, an initial ARK is applied

between the state and cipher key as per the AES specification [44]. Additionally, MC

is not applied in the last round as per the AES specification [44]. Other than these

two special cases, every round is executed identically. Prior to buffering each column,
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Figure 4.3: Open source AES architecture.

SB is applied individually to each byte being loaded into the shift register on the left

of Fig. 4.2. Once a full column is loaded, SR and MC are applied to the column and

the result is loaded into the column shift register on the right of Fig. 4.2. ARK is

then applied to each byte before being stored back into the state DPRAM.

The open source architecture, shown in Fig. 4.3, utilizes significantly more hard-

ware resources but has an impressive throughput of encrypting 1 ciphertext per clock

cycle, with an Nr clock cycle latency. It has Nr instantiations of hardware modules

capable of executing an AES round in one clock cycle. Thus a new plaintext can

be fed to the input every clock cycle, and the corresponding ciphertexts will start

appearing on the output Nr clock cycles later, with each new ciphertext appearing

every clock cycle thereafter.
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4.1.2 Critical Paths

The critical paths of the designs were analyzed through Intel Quartus II TimeQuest

Timing Analyzer [51] and are discussed below.

For the self designed architecture, the critical path (shown in red in Fig. 4.2) in

which faults are likely to occur while overclocking is between the read data of the

state DPRAM and the first column buffer, S0,j. The path delay is increased due to

the fact that the state DPRAM may be located further away from the rest of the

encryption logic, and due to the S-box which is an 8-bit to 8-bit look up table.

In the open source architecture, Key Expansion is performed in combinational

logic and the resulting round keys are fed straight into the ARK transformations

without buffering them in registers first. The critical path resides between the register

holding the key value, and the state register containing the output of the last round

as highlighted in red in Fig. 4.3. However, in our experimental setup, this path does

not get exercised because the value in the key register does not change for a sufficient

number of clock cycles prior to encryption. After this, the next most critical paths

lie between the state registers on the input and output of each round for rounds 1 to

Nr − 1. The critical paths for rounds 1 and Nr − 1 are shown in blue and green in

Fig. 4.3. These input and output registers are 128-256 bits each and the propagation

delay is similar for each source bit to the corresponding destination bits. The first

of these paths to cause a fault will be dependent on the plaintext input. Each path

travels through SB, SR, MC, ARK. A fault will occur once one of these paths does

not have enough time to propagate to up to one byte of one of the state registers

containing the inputs to rounds Nr − 2 or Nr − 1. Prior to encrypting a plaintext,

the plaintext input to the cipher is set to a different value for a number of clock cycles
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until the transition propagates to the output. This allows faults to occur between

rounds 1 to Nr − 1 because a fault can only occur during a round if its input state

register receives a different input, and there is not enough time for the transition to

propagate through SB, SR, MC, and ARK to reach the round’s output state register.

However, if the input state registers to each round are kept static, then faults cannot

occur during the rounds because there are no transitions to be received by the output

state registers.

4.2 Software/Processor Attacks

We experimented with overclocking-based fault attacks on a software/processor-based

implementation using the Intel Nios II soft processor [52] on the Arria 10 FPGA.

However, the attacks were less successful because the critical path was found to be in

the control path, whereas the hardware implementations discussed above contained

critical paths in the datapath. If the control path is corrupted with a fault then

the effect on the datapath can be much more catastrophic and undetermined. For

example, the processor’s program counter might get corrupted, which keeps track of

the current address of the instruction being executed. In this case the program would

jump to a undetermined instruction or location possibly not even containing a valid

instruction, and the remainder of the intended instructions may never get executed.

4.3 Analysis Software Implementation

All analysis software was efficiently implemented using C++. The C++ code was

compiled using the -O3 option to turn on all compilation optimizations [53]. This
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increased the execution speed by approximately 3 times.

Intel Advanced Encryption Standard (AES) New Instructions (AES-NI) [54] were

used to speed up lines 10 to 14 and line 15 in algorithm 2. These instructions im-

plement some of the complex and performance intensive steps of the AES algorithm

using custom hardware in the CPU. This can accelerate the performance of an AES

software implementation by 3 to 10 times.

Dense hash maps were used to implement the KNr
j′ hypotheses lists that keep track

of the number of occurrences for each KNr
j′ hypothesis that has been returned.

The for-loop on line 6 in Algorithm 3 appears to have time complexity of 232,

but is written as such for conceptual purposes only. In the implementation this time

constant was reduced to an insignificant value by analyzing KNr
j′ one byte at a time

when applying it to (3.1). Each ∆mn
j is then computed one byte at a time for each

KNr
j′ byte, and the ∆mn

j byte that each KNr
j′ byte maps to is recorded. After this is

done for all KNr
j′ values, D is then traversed and each time one of its elements matches

a recorded ∆mn
j in which all 4 bytes were generated from the same KNr

j′ element, the

corresponding KNr
j′ element is stored into the KNr

j′ hypotheses list.

4.4 Experiments and Analysis

Experiments were conducted on the Intel Arria 10 SoC Development Kit [49]. The

AES hardware implementations outlined above were tested on the Arria 10 FPGA.

Frequency stepping was conducted using the Silicon Labs Si5338 Programmable Clock

Generator [55] provided on the FPGA board. The attack from [36] was tested both
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with and without IFA applied by encrypting plaintexts at a steady frequency for mul-

tiple clock frequencies, incrementing by 0.1 MHz at a time. The first 10 unique ci-

phertext outputs resulting from each plaintext frequency sweep were analyzed. Faults

were injected into the self designed architectures by overclocking from 300 MHz to

350 MHz. Faults were injected into the open source architectures by overclocking

from 200 MHz to 250 MHz.

Testing the Occurrence Rate of Target Faults

Before testing the success of the attacks, we tested how often target faults will occur

while using the analysis method in [36] without IFA compared when using it with

IFA. Faults were recorded across 1000 overclocked encryptions for each AES variant.

Target faults for the analysis method in [36] are single-byte faults occurring be-

tween MCr−3 and MCr−1. To test the occurrence rate for these we created a list Cf

of ciphertexts resulting from all possible single-byte faults of all values in all state

positions in all rounds. The overclocked ciphertexts, Ck, were then compared to Cf

and whenever a ciphertext from Ck matched one from Cf , it was concluded that this

was the result of a single-byte fault occurring in the overclocked circuit. If a single-

byte fault occurred between MCr−3 and MCr−1, then this was recorded as a target

fault occurrence.

Next, we compared this to the proposed IFA fault model. Target faults when

using IFA are single-byte faults between MCr−3 and MCr−1 occurring incrementally

between any two ciphertexts. To test the occurrence rate for this we compared Cf

to the same list of ciphertexts, Ck, except we analyzed each unique ciphertext pair
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Table 4.1: Number of target faults produced.

DFA IFA
# Target ∆’s Total # ∆’s # Target ∆’s Total # ∆’s

AES-128 11 900 65 4500
AES-192 13 900 65 4500
AES-256 9 900 51 4500

Average: 11 900 60 4500

(Cm, Cn) in Ck as defined below:

Ck.size−1∑
n=1

n−1∑
m=0

(Cm, Cn)

where Cm or Cn is ciphertext m or n in the list of ciphertexts Ck.

IFA applied to [36] produced 5.5 more extractable target faults on average com-

pared to the classical Differential Fault Analysis (DFA) methods from [36]. These

results are summarized in Table 4.1.

Testing the Attacks

The attack from [36] was tested both with and without IFA applied. Tables 4.2 to

4.6 show the number of ciphertexts required to extract the cipher key in each of

these cases. DFA # ciphertexts is the number of ciphertexts required to extract the

cipher key using the classical DFA analysis method from [36] and IFA # ciphertexts

is the number of ciphertexts required to extract the cipher key using the proposed

IFA method.

The results in tables 4.2 to 4.6 show that when using IFA, the AES cipher keys

are deduced with over 14 times less faulty ciphertexts and after over 6.4 times less
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Table 4.2: Results for self designed AES-128 architecture.

DFA IFA
# ciphertexts Runtime (s) # ciphertexts Runtime (s)

260 0.20 10 0.17
40 0.026 10 0.0056

380 4.20 20 0.030
130 0.43 20 0.040
90 0.11 10 0.0055

130 0.30 10 0.024
110 0.095 30 0.059
90 0.074 10 0.0059

540 0.45 10 0.012
190 0.26 40 0.078

Average: 196 0.61 17 0.043

computational time compared to when using the DFA attack from [36]. Attack suc-

cess rates were 100% when using IFA, and 92% without. Cipher key extraction was

attempted on up to a maximum of 1000 ciphertexts before giving up when using the

DFA method.

4.5 Comparison to Recent Work

Recent work such as Differential Fault Intensity Analysis (DFIA) [40], Fault Intensity

Analysis (FSA) [38], Differential Error Rate Analysis (DERA) [41], and Non-Uniform

Faulty Value Analysis NUFVA [39] require precise fault injection methods such as

clock glitching, requiring specialized equipment. Furthermore, they require knowledge

of when the internal state is in a specific round through other side-channel information

such as power or time measurements in order to inject faults only in a specific stage of

the encryption. More practical fault injection techniques have been explored [56] [57]
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Table 4.3: Results for open source AES-128 architecture.

DFA IFA
# ciphertexts Runtime (s) # ciphertexts Runtime (s)

30 0.0052 10 0.0021
10 0.0014 10 0.0011
40 0.0097 10 0.0021
20 0.0032 10 0.0017
40 0.0048 30 0.016
20 0.0062 10 0.0032
30 0.0045 20 0.0044
30 0.0082 20 0.0063
30 0.0088 20 0.0088
20 0.0024 10 0.0011

Average: 27 0.0054 15 0.0048

Table 4.4: Results for self designed AES-192 architecture.

DFA IFA
# ciphertexts Runtime (s) # ciphertexts Runtime (s)

>1000 >9.31 50 0.99
600 2.94 20 0.093
730 5.63 30 0.62
180 1.17 50 0.55
490 2.41 40 0.13
760 4.45 240 0.98
380 1.86 210 0.89
290 1.90 30 0.45

>1000 >6.66 40 0.35
320 1.24 150 1.072

Average: >575 >3.76 86 0.614
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Table 4.5: Results for self designed AES-256 architecture.

DFA IFA
# ciphertexts Runtime (s) # ciphertexts Runtime (s)

630 1.91 30 0.64
340 1.17 50 0.69
570 2.43 60 0.26

>1000 >7.86 60 1.01
880 6.66 60 1.16
760 6.84 40 0.87
530 3.19 60 0.78

>1000 >7.03 60 0.84
710 3.17 10 0.048
720 4.84 40 0.91

Average: >714 >4.51 15 0.72

Table 4.6: Results for open source AES-256 architecture.

DFA IFA
# ciphertexts Runtime (s) # ciphertexts Runtime (s)

30 0.038 10 0.026
140 0.26 50 0.087
70 0.061 50 0.11
70 0.20 40 0.070

100 0.38 10 0.027
90 0.53 40 0.073
40 0.34 10 0.029
50 0.52 10 0.023

200 0.47 140 0.28
60 0.49 30 0.055

Average: 85 0.33 39 0.079
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[48] but use classical DFA analysis methods from [36], and thus require more faulty

encryptions than IFA applied to [36].

In contrast, IFA allows faults to be injected using a practical overclocking-based

fault injection method in which the entire encryption is overclocked at a steady fre-

quency, after which the cipher key can be extractable without knowing any details of

the internal state or faults occurring. IFA has no need for specialized clock glitching

equipment or extra side-channel information to know when the cipher is in a specific

round. The faults can be analyzed blindly without the attacker needing to distinguish

which faulty ciphertexts are a result from target or non-target faults, which is a prac-

ticality not possible with the other methods mentioned above. This is possible due

to the non-target fault tolerance in the method from [36] that this application of IFA

inherits, as described in section 2.4.4. This is shown in our results by extracting the

cipher key with a success rate of 100% using the first 16, 86, and 27 target/non-target

ciphertexts outputted on average for AES-128, 192, and 256, respectively. This was

over 14 times less ciphertexts than when using the method we based ours on in [36]

without IFA. If the methods in comparison were applied using the proposed relaxed

fault injection techniques, these methods would likely not be feasible to execute even

with infinite ciphertexts. This is affirmed from the use of more precise fault injection

methods in these papers which use clock glitching and require precise knowledge of

which stages the internal state is at during encryption in order to isolate fault injec-

tion to a specific round. If injection of a target fault is guaranteed, the methods in

comparison are able to extract the cipher key after 6 or more target fault injections.

However, assuming the same conditions, IFA applied to [36] would be able to extract

the cipher key with a single target fault injection for AES-128, or two target fault
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injections for AES-192 and 256 (followed by a trivial exhaustive search from 28 KNr

hypotheses using the analysis techniques from [37]).

Furthermore, the papers mentioned above run experiments only on AES-128. We

also conducted experiments on AES-192 and AES-256. These later two are more

difficult to mount attacks on because the last two round keys have to be found in two

steps, where the second step is dependent on the correctness of the first.

4.6 Summary

In this chapter, experiments were conducted on different AES 128, 192, and 256

architectures on the Intel Arria 10 SoC Development Kit in order to validate our IFA

attack method. The results shown in section 4.4 show that when applying IFA to [36],

the AES cipher keys could be deduced from over 14 times less faulty ciphertexts and

after over 6.4 times less computational time. Attack success rates were 100% when

using IFA, and 92% without. It was then outlined in section 4.5 how IFA applied

to the method from [36] is more practical to execute than other state-of-the-art fault

attacks.
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Chapter 5

Conclusion and Future Work

This thesis proposes a new fault analysis method called Incremental Fault Analy-

sis (IFA) that allows cipher keys to be compromised more quickly and efficiently

compared to existing methods when using practical fault injection methods. The

effectiveness of our method comes from analyzing incremental fault differences be-

tween ciphertexts encrypted at increasing stress levels. Our analysis requires as few

as 2 target faults to occur for successful cipher key extraction, and without need for

distinguishing between which faulty ciphertexts resulted from target or non-target

faults. This allows for practical fault injection methods not requiring clock glitching

in which encryptions are overclocked at steady frequencies over all algorithmic stages.

To empirically justify the IFA attack method, experiments were conducted on

Advanced Encryption Standard (AES) 128, 192, and 256 architectures. The attack

from [36] was tested both with and without IFA applied. Our results show that

when applying IFA, AES cipher keys could be deduced from over 14 times less faulty

ciphertexts and after over 6.4 times less computational time. Attack success rates were

100% when using IFA, and 92% without. Furthermore, IFA applied to the method
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from [36] is more practical to execute than other state-of-the-art fault attacks such

as DFIA, FSA, DERA, and NUFVA.

5.1 Future Work

Topics for consideration in future work are to apply IFA with a fault injection method

involving undervolting the cryptosystem under attack rather than overclocking as in

[56].

IFA applied to attacks on block ciphers other than AES could be explored as

in [36]. [36] describes how their attack could work theoretically on all Substitution

Permutation Network (SPN) structures and mounts their attack on AES as well as

the KHAZAD block cipher [58].

Counter measures for the IFA attack method could be addressed. For example,

a possible countermeasure would be to design a cryptosystem in such a way that

incremental faults are always triggered across multiple bytes in multiple cipher rounds.

This would render the incremental fault changes useless for analysis.

IFA could also be applied to attacks other than [36] in order to improve their

effectiveness. For example, consider Fig. 5.1 which shows two different faults, ∆01

and ∆10, that were injected into a certain cipher round with fault differential values

of 01 and 10. Each of these are a unique fault relatively to the fault free state shown

at the bottom and the resulting faulty output from each can be analyzed relatively

to the fault-free output. However, a third unique fault relationship also exists by

analyzing the incremental differential between ∆01 and ∆10. This differential would

contain a value of 0x11 since ∆01 differs from ∆10 by a value of 0x11. While there

are only 2 faults that have occurred, the information of 3 faults exists and can be
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∆ = 10

01 10

∆ = 01
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00

Figure 5.1: Extracting information of 3 faults from 2 using IFA.

extracted through IFA. Generally speaking, IFA allows more secret information to

be extracted from the same amount of data when compared to classical Differential

Fault Analysis (DFA) methods.
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