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Abstract  

In a manufacturing environment, gradual and catastrophic failure of a cutting tool are 

common faults associated with a machining process. Left unmonitored these failures 

exhibit a high likelihood of triggering workpiece surface quality issues and reducing the 

overall productivity of the process. This research offers a comprehensive study of the 

design, development and implementation of a low-cost artificially intelligent (AI) tool 

condition monitoring (TCM) system for the turning operation of different workpiece 

material. As the characteristics of the signals from the fusion of multiple sensors differ from 

each individual sensor, fast Fourier transform (FFT) and wavelet transform (WT) were used 

to identify signal features which provided the most useful information about the cutting 

tool conditions. Pearson correlation coefficients (PCC) and principal component analysis 

(PCA) singled out the most sensitive features from the sensor fusion signals which play a 

pivotal role in monitoring gradual tool wear (flank wear) progression during machining. 

Experimental results indicated that the total harmonic distortion (THD), crest factor of the 

spindle motor current and certain spectral features from the vibration sensor signal had a 

significant correlation with cutting tool flank wear under different cutting conditions and 

when machining different materials. Furthermore, a data-driven artificial neural network 

(ANN) and an adaptive neuro-fuzzy inference system (ANFIS) were studied to investigate 

their prediction accuracy for cutting tool conditions (tool wear). The ANFIS prediction 

model outperformed the ANN prediction in terms of accuracy. As a result, the developed 

(trained and validated) ANFIS based TCM system was implemented in the material turning 
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process. In addition, the adaptability of the supervised ANFIS based TCM system was 

shown to further increase the reliability of tool wear prediction.  
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Chapter 1. Introduction 

 

1.1.  Research Motivation 

Prediction of cutting tool condition (tool wear) during the machining process has been 

a topic of research for decades. Several techniques were introduced and implemented such 

as numeric methods and simulations. Very few methods have been fully validated in 

practice. Even if they were implemented, their reliability was observed to degrade 

compared to lab-based testing in the actual manufacturing environment. In current 

industrial practice, worn out cutting tools are generally removed based on: machining time, 

the operator’s experience, periodic offline measurements of the tool or workpiece surface 

finish many of which are based on recommendations provided by the cutting tool supplier. 

Also, indirect measurement technologies are currently being used in the manufacturing 

industry. However, in most cases, indirect measurement costs, setup or data analytics are 

simply not efficient enough for an automated manufacturing environment. An efficient and 

low-cost based cutting tool wear monitoring system can provide an advantage for small to 

medium scale industries.  

This research investigates a low-cost tool wear monitoring system. It provides a 

solution which uses a comprehensive and adaptive model, that expends minimal effort on 

feature extraction while incorporating real-time sensor data. The goal of this study is to 

propose a standard gradual tool wear monitoring system which could be implemented in 

other material machining processes. 
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1.2.  Research Objectives 

The key goals of this research are 

1. A comprehensive study of an artificial intelligence (AI) based tool condition 

monitoring system for machining applications. 

2. Design & development of a low-cost tool condition monitoring (TCM) system for 

turning operations. 

3. Implementation of the developed tool condition monitoring (TCM) system in 

turning operations of different workpiece material. 

 

1.3.  Dissertation Outline 

This thesis is arranged in eight (8) chapters. The summary of each chapter is as follows: 

CHAPTER 1: Research motivation and objectives. 

CHAPTER 2: Introduction to the concept of the tool condition monitoring (TCM), 

literature review and description of the research potential in this field.  

CHAPTER 3: Outline of the methodology and the architecture of the system. System 

level design using sensor fusion methods.  

CHAPTER 4: Details of the experimental procedure and the data acquisition system. 

The first section of this chapter introduces every element of the TCM system, including the 

design of experiment. The second section highlights the impact of online monitoring on 

cutting tool conditions and explains the effect of cutting tool conditions on the sensor fusion 

signal. 
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CHAPTER 5: Signal processing techniques and feature extraction. In the first section, 

signal processing was applied to evaluate the acquired signal. The next section explains the 

data analytics procedure for feature extraction and dimensionality reduction techniques.   

CHAPTER 6: A comparative study of two artificial intelligence (AI) techniques during 

development of TCM system architecture’s decision-making levels. Comprehensive 

evaluation of the model produced from the sensor fusion signal and cutting tool conditions. 

CHAPTER 7: Implementation of the developed TCM system in machining through 

several case studies. This chapter also demonstrates the wide-ranging adaptability of the 

TCM system. 

CHAPTER 8:  Conclusions drawn from the current research and prospects of its future 

extension. 
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Chapter 2. Literature Review 

 

2.1.  Introduction 

The metal cutting operation is one of the most significant operations in manufacturing 

systems when tight dimensional tolerances and surface finishes are required. Generally, 

metal cutting or machining operation (conventional or non- conventional) can be affected 

by various known or unknown disturbances which can interact in complex ways due to the 

machining process’s inherent non-linearity. Therefore, there is always a necessity for 

efficient decision-making capability to support the machining process operation.  This is 

due to the ever-increasing demand for improved productivity, part quality and process 

reliability. For many decades, the application of automation in decision-making has been a 

focus of considerable research attention in both the manufacturing industry and academia. 

The recent trend of incorporating automation in the process level of machining operations 

has extended to introducing artificial intelligence (AI) based techniques. The decision-

making capabilities of a human operator is the result of long-term training and practice over 

time. In the case of the automated manufacturing system, the training and the practice 

comes from the mathematical model based on the relationship of the sensor data and the 

physics of the metal cutting processes.  

For an automated machining process, monitoring and decision making are fundamental 

functions. Without this functionality, a machining process cannot be adjusted intelligently 

to maintain and improve the machining process over time. Therefore, a machine monitoring 
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and decision-making system are required in a machining setup and named a ‘Tool 

Condition Monitoring System’ or TCM system for the purposes of this thesis.   

 

2.2.  Tool Condition Monitoring (TCM) 

The recent trend of modern machining industries is geared towards reducing production 

costs by targeting higher productivity with reduced cost, particularly in terms of human 

effort. The ultimate goal however is to achieve the most advanced and automated 

manufacturing system in the industry appropriately leveraging human expertise and 

machine capabilities.   

Cutting tools are a critical component of a machining system. A cutting tool can 

undergo two different types of faults during machining, such as, hard faults and soft faults. 

Hard faults are the sudden fault (catastrophic tool failure) while soft faults develop 

gradually over time (i.e. gradual tool wear). Table 1 shows several common sensing 

variables used to monitor these faults in machining. An intelligent manufacturing system 

cannot be possible without a proper tool management system. Cutting tool failure 

influences the quality of the surface finish, dimensions of the machined parts and the 

production time. Tool failure causes significantly interruption to the machining 

environment [1]. Previous research showed that for modern machine tools, cutting tool 

failure can result in approximately 20% downtime in addition to reduced productivity and 

economic losses due to scrapping or reworking of defective parts [2].  A tool condition 

monitoring (TCM) system has two objectives. One is to make an accurate evaluation of the 

tool's condition, and the other is the real-time detection of catastrophic tool failure. Tool 
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wear during machining is a natural part of the material removal process, and it is 

challenging to estimate its level. Catastrophic tool breakage is the most crucial phenomenon 

in machining since it can irreversibly damage the product's surface. Therefore, estimation 

of tool wear leading up to catastrophic failure is also an important part of ensuring 

satisfactory final product surface quality.  

Determining the cutting tool condition also has value for predicting the surface 

roughness of the final product. If tight tolerances are set for the surface quality of the final 

product, these tolerances can be inferred from the tool's cutting condition if it can be 

continuously monitored. Thus, effective tool wear estimation is essential to ensure the tool 

can last until the end of the process. Knowing whether or not the cutting tool can perform 

over the entire process enables manufacturers to determine if the cutting tool or the cutting 

condition need to be changed. 

Table 1: Common sensing variables used to monitor faults in machining 

Sensing Variables for Hard Fault Sensing Variables for Soft Fault 

Noise from cutting tool breakage 

Presence of coolant or not 

Spindle motor current/ power 

Feed drive current 

Force 

Acceleration or vibrations 

Displacement 

Temperature 

Vision System 
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TCM related research has been intensively conducted in recent years. Among several 

possible tool faults, the three most common in machining processes are: 

 Tool wear directly influences the dimension and accuracy of the finished surface. 

Excessive tool wear leads to catastrophic tool breakage which can often render the final 

part unusable.  

Chatter (caused by the instability of the cutting processes) is another phenomenon 

which limits the material removal rate during machining while deteriorating the finish 

surface quality of the workpiece. Figure 1 shows the standard type of tool conditions 

considered during machining. 

 

 
 

Figure 1: Cutting tool conditions during machining 
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Therefore, a tool fault detection system is crucial for rapidly detecting faults to prevent 

workpiece surface damage or machine tool degradation. Traditional analytical methods 

(assumption based) have limited tool wear prediction accuracy since the gradual tool failure 

is a complicated part of the machining process [4]. In general, four components, shown in 

Figure 2  are considered to be the critical features for developing an intelligent tool wear 

monitoring system in machining [5].  

 

 
 

Figure 2: Key features in the TCM system 

 

2.2.1. Sensors  

A sensor transforms a physical quantity into a corresponding electrical signal. Selecting 

the best sensor and process variable is an essential step in TCM. An ideal variable highly 

sensitive to a failure feature, can provide a reliable fault detection system. Applicability 

and reliability in the industrial environment, as well as sensor cost, are the other factors to 

be considered in this regard [6]. Different types of monitoring methods were demonstrated 

in a wide range of TCM related research fields. An offline monitoring method is a direct 

tool wear monitoring system capable of measuring tool wear directly with a vision system. 

However, implementation of offline tool wear monitoring (or, direct) system in a 

manufacturing environment is not an easy task. Indirect methods (use of sensors) can be 
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applied online during the machining process to sense the nature of the wear progression 

and its impact on the measured signal. 

Measurement of machining forces is a way to monitor the tool wear progression. The 

reason for measuring the torque and feed forces is that these dynamic parameters generally 

increase during machining as the cutting tool gradually wears out. In [7], Heinemann et al. 

observed that in the drilling operation, torque and thrust force are the most important 

dynamic parameters for obtaining drill wear information. Their research showed that torque 

monitoring is well suited for tool condition monitoring in drilling. In addition to cutting 

parameters, workpiece and tool materials also affect the cutting forces during machining 

[8]. For example, a faster feed rate generates higher cutting forces, either due to tool wear 

or changes in the cutting conditions. Therefore, it is suggested that the proposed method is 

affected specific experimental conditions. 

Acoustic emission (AE) occurs when a material is displaced from a surface produces 

stress waves from the rapid release of the surface material`s energy [1].  Thus, AE signal 

is a promising candidate for tool wear monitoring. Li’s turning study reported that the 

significant advantage of AE sensor use for tool wear monitoring is that the AE signal’s 

frequency range is much higher than other noise sources during machining and is therefore 

less sensitive to other noise associated with the cutting operation [9]. Jantunen observed 

that AE is limited by multi-path distortion caused by machine tool’s structure joints and the 

need for the mounting location of the AE sensor to be very close to the tool or workpiece 

in machining [1]. 

 



M.A.Sc. Thesis – MS Alam; McMaster University - Mechanical Engineering 

 

 

10 

 

  

Figure 3:  Sources of AE in machining [9] 

 

In metal cutting, vibration data is commonly collected to predict tool wear level and 

assess the process. For example, the vibration signal from an accelerometer has been shown 

to exhibit strong correlation with tool wear during machining. Therefore, they have been 

widely used in the literature as a way to assess tool condition. In addition, machine tool-

workpiece dynamic interactions and the state of machine tool components can also be 

effectively assessed using accelerometers. Dimla’s research indicated that AE is more 

suited for detecting catastrophic tooltip breakage rather than the subtler gradual tool wear 

that commonly occurs during machining. He recommended the vibration signal as being 

the most reliable and prompt responsive factor for developing a tool wear monitoring 

system [11].  

Wang et al. researched vibration signals and used SVM (Support Vector Machine) as 

an online tool condition monitoring system [12]. Also, Rao et al. worked with vibration 

signals in a boring operation using a Doppler vibrometer for tool wear monitoring [13]. 
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Figure 4: Vibration signals in machining (time & frequency domain) [14] 

 

Spindle motor current is also used as a reliable and low-cost sensor as a worn tool 

requires more machining force than a sharp one, which necessitates greater input power. 

The waveform of an electric current signal while cutting with a worn tool is usually 

distorted in comparison with the cutting signal obtained from a sharp tool. Gasca et al. 

studied the spindle current or power in relation to the cutting tool wear in drilling [15]. He 

quantified signal distortion with an asymmetric parameter and stated that the asymmetrical 

properties of the current signal change proportionally with the tool wear condition.  

 

  

(a) Current Signal from a Sharp Tool (b) Current Signal from a Worn Tool 

 

Figure 5: Effect of tool wear on spindle motor current signals [15] 

 



M.A.Sc. Thesis – MS Alam; McMaster University - Mechanical Engineering 

 

 

12 

 

Previous research showed that motor current measurement techniques are widely 

adopted due to their low cost and low disturbance levels during the machining process. 

Also, the current sensor does not require pre-assembly for signal acquisition, unlike other 

sensors which are generally used in the TCM system. Lee et al. used a current sensor to 

monitor the gradual tool wear in the end milling process of SMC45 steel with coated HSS 

(high-speed steel) cutting tool. However, in his research he only used statistical features of 

the current signal to monitor the gradual tool wear progression [16]. Bennett examined the 

use of spindle motor power measurement to detect the end of useful tool life in a milling 

operation. This study also indicated that changes in the cutting tool wear rate are linearly 

related to spectral energy in the fluctuating part of the spindle motor power consumption 

[17].  

 

2.2.2. Signal Processing and Feature Extraction 

To acquire meaningful information from an enormous set of data provided by sensor 

signals, various signal processing techniques have been used. The common dilemma is that 

the more sophisticated techniques require more processing power and are slow to respond 

and thus impractical (tool breakage detection). Conversely, elementary signal processing 

techniques are fast but often fail to extract sufficient information about changes in cutting 

conditions from the data.  

For a successful monitoring system, the choice of signal processing devices is 

significant. Researchers should check the range and measurement resolution according to 
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system requirements. The resolution refers to the number of ADC binary levels that can be 

used to represent a signal.  

 

  
(a) Influence of Bits Per Sample (b) Influence of Sampling Rate 

 

Figure 6: Influence of bits and sampling rate in signal processing [18] 

 

The resolution of the device is determined by the smallest detectable change in this 

signal (Figure 6-a). The sampling frequency should be clearly defined during data 

acquisition and be chosen based on the process. To avoid aliasing, the ‘Nyquist theorem’ 

is applied to ensure a sufficiently high sampling rate is used to measure a specific event. 

Several researchers also suggested sampling at least ten times the maximum frequency of 

interest to be able to recompose the event to better visualize it on a graph ( 

Figure 6-b). 

Several signal processing techniques were used in the past literature. A list of these 

techniques is depicted in Table 2. Compared to frequency domain signals, the time domain 

signal is usually considered to be less informative and not as time-consuming. The time 

domain analysis of force signals does not show a strong correlation with the drilling tool 

wear [1]. However, statistical features from the time domain analysis can provide useful 
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information. The thrust force signal gradient was identified as one such suitable process 

parameter for the prediction of tool failure.  The RMS value of the spindle motor current 

signals also provides essential features for online tool wear prediction. 

The fast Fourier transforms (FFT), short-time Fourier transforms (STFT), and the 

discrete Fourier transforms (DFT) are commonly used in Fourier transform analysis. They 

serve to characterize the frequency content of a measured signal. In particular, when the 

power spectrum of the FFT during signal processing is considered, the power (or 

amplitude) content of the cutting force associated with the high frequencies increases as the 

cutting tool gradually wears out. Therefore, the fast Fourier transform analysis acts as a 

pivotal index to detect the failure of the cutting tool [1]. Liu et al. used FFT in their research 

to detect and avoid vibrational noise in the machining signal. Also, X. Liu et al. used FFT 

to identify unwanted frequencies including interpolation points which causes excessive 

vibration in machining [19]. 

The wavelet transform (WT) analysis was also applied to various TCM related research 

studies with great success, see Table 2. The most prominent feature of the WT is that it can 

provide the most natural shape of the signal, which is more informative compared with the 

sine function used in Fourier analysis. The wavelet transform is usually considered as the 

most effective tool for many applications in tool condition monitoring related research. 

Chen and Li applied wavelet transform analysis while processing the signal from an 

acoustic emission (AE) sensor to monitor the tool wear during the turning operation. They 

used wavelet multi-resolution analysis to obtain the frequency band which contains the 

main energy of AE signals [20]. 
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Figure 7:  Fourier and wavelet transform in signal processing 

 

Table 2: A summary of signal processing techniques from the literature 

Applied Signal Processing Techniques Featured Research Work 

Fourier Transform Analysis 16, 21, 22, 23, 24, 26, 27, 28, 29, 30 

Time Domain Analysis 29, 31, 32, 33, 34, 35, 36  

Wavelet Transform Analysis 4, 15, 20, 23, 37, 38, 39, 40, 41, 42 

Other Signal Processing Analysis 43, 44, 45, 46, 47  

 

2.2.3. Artificial Intelligence (AI) Decision Making Techniques 

A diagnostic tool plays an important role in developing a tool condition monitoring 

system. The decision-making tools or diagnostics tools classify or cluster previously 

acquired and processed signals in the tool condition monitoring system, acting as a human-
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machine interface that can carry out prompt decisions based on conditions of tool wear. 

Different types of machine learning algorithms were introduced in this research field, 

though there remains an ample space for further contribution. An indirect monitoring 

system should be developed based on physical signals which provide information about the 

machining system and its faults. In this regard, a more complex and robust model is needed 

to monitor the machining system in real-time and simultaneously interpret the sensor data. 

Such a model can eliminate unwanted details while identifying signal anomalies to make 

an appropriate decision.   

Fuzzy logic or a fuzzy inference system (FIS) is generally used in specific applications 

where the experimental dataset consists of a relatively small number of samples. The FIS 

model is developed using previously measured data. This approach can be used when the 

system’s knowledge is already established and is sufficient to ensure the model’s 

robustness. The accuracy of this system is generally less than that of a more extensive 

artificial neural network (ANN) (i.e. sometimes the fuzzy system provides a poor tool wear 

classification response). In recent years, ANNs have been successfully used to model the 

complex relationships between input feature sets of sensor signals, cutting conditions and 

tool wear data. ANNs is also promising for data or image clustering related applications. 

Another effective method of modelling dynamic systems is the use of Hidden Markov 

models (HMMs), which are generally used in modern speech-recognition systems. ANN 

can provide more accuracy without requiring prior knowledge of the process in many cases. 

In addition, it can handle a significant amount of sample data for training. Several studies 

reported in the literature mention that the ANN method is suitable for accurate cutting tool 
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flank wear and surface roughness prediction [5][6]. An adaptive neural fuzzy inference 

system (ANFIS) is a hybrid method which incorporates the theory underlying both fuzzy 

logic and artificial neural networks. It has the advantages of both decision-making 

techniques. ANFIS is generally used when previously developed systemic knowledge 

needs to be updated to account for changing system requirements and to extract knowledge 

otherwise concealed in the experimental data. 

A support vector machine (SVM) is a modern machine learning algorithm based on 

statistical learning theory. The basic concept of SVM is to map training samples (which 

cannot be classified by a linear function) into a high-dimensional feature. The SVM is 

developed based on the structural risk minimization (SRM) principle. Currently, the 

support vector-based algorithm has been demonstrated to be proficient for condition 

monitoring since it can handle extensive feature extraction and classification processes. 

Table 3 provides an overview of the diagnostical tools used in past research. 

 

Table 3: A summary of diagnostics tool usage from featured researches 

Applied Diagnostic Techniques Featured Research Work 

Linear Regression 17, 38, 45, 49, 50 

Fuzzy Logic (FL) 36, 42, 49, 51, 52, 53 

Neural Networks (NN) 4, 25, 29, 30, 32, 37, 51, 54, 55  

Support Vector Machine (SVM) 35, 56, 57  

Data Fusion 26, 53 
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2.2.4. Conclusions 

Selection of sensors for tool wear monitoring system is a key decision. The 

implementation of sensor fusion techniques has shown promising results in past research 

studies and been demonstrated as a reliable approach for a condition monitoring system. 

However, a variety of obstacles still limit the implementation of this technology in actual 

manufacturing practice.  

The literature review supports a high potential of introducing a low-cost, adaptive and 

online TCM for sensor fusion implementation, signal processing and decision-making in 

the turning process. However, the most effective and reliable methods of tool wear 

monitoring are poorly suited for detecting tool wear progression or catastrophic tool 

failures, often due to their long processing time. Therefore, a reliable and inexpensive tool 

wear monitoring system is designed and developed in this research to investigate tool wear 

progression in different workpiece materials with the goal of establishing a standard 

monitoring system capable of addressing a wide range of applications.  
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Chapter 3. TCM System Design and Architecture 

 

3.1.  Introduction 

This chapter demonstrates the architecture of the tool condition monitoring (TCM) 

system in the present research. The first section provides an overview of the TCM system. 

The second section exhibits the system framework in terms of components, techniques and 

overall approach. 

 

3.2.  Framework of the TCM System Architecture 

This section will detail the design of the sensor fusion-based tool condition monitoring 

(TCM) system for turning operations. The framework of the proposed system is composed 

of four main components.  

The first component of the system is sensor selection and signal acquisition. Two types 

of monitoring approaches were introduced, online and offline. A sensor fusion approach 

was adopted to acquire the signals for online monitoring. Optical microscopy was used to 

analyze cutting tool conditions for offline monitoring.  Amplifications and preprocessing 

techniques were adopted to improve the acquired signal’s quality. Signal processing is the 

next component of the system. Different sensors were used with each requiring its own 

post-processing. The third component of the system is feature extraction and 

dimensionality reduction. Processed signals are used to extract features which detect faults 

in the system. Several correlation analysis techniques can obtain the best features.  
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The last TCM component is the decision-making system. Based on the condition 

monitoring database and other machining parameters, this component can decide whether 

or not to continue the machining process.  Figure 8 demonstrates the detailed architecture 

of the sensor fusion based TCM system as designed for a turning operation. 

 

 

 

 

 

 

 

Figure 8: Architecture of the designed TCM systems  
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A sensor fusion approach for online monitoring consists of a force dynamometer, a 

vibration sensor and a low-cost sensor (transformer-based) spindle motor current sensor. 

The specifics of the sensor fusion structure are explained in the next section (section 3.3). 

Optical microscopy was used to record tool states (cutting tool flank wear). The tool states 

values were then stored in the TCM database.  

The raw sensor signals are then pre-processed through amplification and signal 

filtering. Low pass (LP) filter (with a cut-off frequency of 200 Hz) were applied for spindle 

motor current sensor. 

The next step is to process the signal for feature generation and extraction. The sensor 

fusion structure is composed of multiple sensors each with different operating principles. 

Therefore, to obtain vital information about the cutting tool state from the signal, more 

insight is required to process it. Selection of time domain, frequency domain and time-

frequency domain analysis are critical aspects of the system.  

In this section, features from a different domain are generated and extracted from the 

processed signal. Extracted features are then correlated with the cutting tool conditions. 

Dimensionality reduction is the critical concern of feature extraction. Pearson correlation 

coefficient analysis and principal component analysis techniques are used to reduce the 

dimension of the extracted features, providing the one best related to the cutting tool state. 

The extracted features are stored in the TCM system database for data training and 

validation. 

The final stage of the design is the decision making or pattern recognition algorithm. 

This stage is the most crucial section of the architecture which best represents the 
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robustness of the monitoring system.  In this section, AI techniques were implemented for 

developing a decision-making system which can predict the cutting tool state (flank wear) 

based on the sensorial data and the cutting parameters. Both an ANN and an ANFIS system 

were implemented as part of this decision-making system. The developed system is then 

applied for online monitoring of other workpiece materials to validate its tool wear 

prediction ability and demonstrate the TCM system’s adaptability. 

 

3.3.  Selection of Sensors/ Sensor Fusions 

During the machining process, changes in the cutting conditions or cutting parameters 

greatly affect the sensitivity and noise of the signal. Therefore, it is always helpful to use 

more than one sensor to avoid the uncertainty and increase reliability of the monitoring 

system. Two different approaches are considered to address this. A multiple sensor system 

without fusion uses multiple sensors with non-complementary information sharing to 

increase the reliability of the monitoring process, whereas a sensor fusion system uses 

multiple sensors with complementary information sharing to enhance robustness. Also, a 

proper sensor fusion system can overcome the disadvantages of one sensor over another 

while monitoring tool wear progression during the machining process. 

This research uses sensor fusion techniques involving a transformer-based AC spindle 

motor current sensor, a vibration sensor (one-axis mechanical shock accelerometer) and a 

piezoelectric dynamometer (3-component force sensor).  
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3.3.1. Three (3)-Component Cutting Force Sensor  

The cutting force sensor used in this research was a Kistler© 9121 three-component 

dynamometer. The piezoelectric dynamometer was used to measure the cutting forces 

(radial force, feed force and tangential force) in the turning operation. Figure 9 shows the 

placement of the tool holder inside the dynamometer fixture with minimum overhang. 

 

   

Figure 9: Three (3)-component dynamometer setup in the turning operation 

 

Table 4: Technical specifications of the three-component dynamometer 

 

Specifications Values 

Force application range Fx, Fy (-3.0 to 3.0 kN); Fz (-6.0 to 6.0 kN) 

Sensitivity Fx, Fy (-7.9 pC/N); Fz (-3.9 pC/N) 

Natural Frequency (clamped) 1000 Hz 

Rigidity Approx. 600 N/µm 

Operating temperature range 0 to 70-degree C 

 

3-Component 

Dynamometer 
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The cutting force dynamometer signal was sampled at a 10kHz sampling rate and 

acquired and amplified by the Kistler© 5010 series dual-mode amplifier. Table 4 presents 

the technical specifications of the Kistler© 9121 dynamometer used in this research. The 

estimated cost of the Kistler© 9121 dynamometer (excluding all accessories) is approx. 

28,000 CAD (estimated in December, 2018)   

 

3.3.2. Vibration Sensor 

The vibration sensor used in the experiment was a Kistler© 8742A shock accelerometer 

with a 10-32 threaded connector (Figure 10). This industrial-scale shock accelerometer 

incorporates a stable quartz sensor, which ensures accurate measurement of high-speed 

events with low transverse sensitivity and impedance. Also, to ensure the accurate vibration 

measurement during progressive tool wear or catastrophic tool failure, the sensor was 

placed in several positions on the tool holder to measure the response from all (cutting, feed 

and radial) direction. The most sensitive measurement was achieved from the cutting 

direction of the tool holder (Figure 10). Therefore, through a series of experiments, the 

sensor was placed at a position to measure the cutting direction vibration. Table 5 shows 

the technical specifications of the Kistler© 8742A20 shock accelerometer. The estimated 

cost of the Kistler© 8742A20 shock accelerometer (excluding all accessories) is approx. 

6,500 CAD (estimated in December, 2018)   
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Figure 10: Kistler© 8742A shock accelerometer setup in the turning operation 

 

Table 5: Technical specification of the shock accelerometer 

 

Specifications Values 

Acceleration range ± 20,000 g (g=9.8 m/s2) 

Sensitivity 0.25 mV/g 

Natural frequency (clamped) 100 kHz 

Operating temperature range -55 to 100-degree C 

 

3.3.3. Transformer-based Current Sensor 

A cost-effective transformer-based current sensor was used to acquire the spindle motor 

current signal during the turning process. This technology is well suited to retrofit on a 

machine tool as it is easy to install and does not interfere with the process. The ACT-series 

AcuAMP© split-core current transducer (ACT005-42L-S) was placed over the spindle 

motor wiring. Figure 11 and  Figure 12 shows images of the installed sensor. The estimated 

cost of the current transducer (ACT005-42L-S) (excluding all accessories) is approx. 

220.00 CAD (estimated in December, 2018). 

Vibration 

 Sensor 
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Figure 11: Installation of a split-core AC-current sensor [58] 

 

   

Figure 12: Installed split-core AC-current sensor over spindle motor wiring 

 

Technical specifications of the AC- current sensor are presented in Table 6. 

 

Table 6: Technical specifications of the current sensor (ACT005-42L-S) 

 

Specifications Values 

Output signal 0 to 10 VDC 

Input range 0 to 200 A 

Response time 300 ms 

Frequency range 20 Hz to 100 Hz 

Operating temperature range -20 to 50-degree C 

Current 

 Sensor 
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3.3.4. Sensor Signal Acquisition System 

To acquire the sensor signal for preprocessing and further post-processing, a data 

acquisition system was used in the experimental setup: Kistler© 5010 dual-mode amplifiers 

and National Instrument© 9125 DAQ-board for the signal acquisition system (see Figure 

13). The signal acquisition system allows connecting all channels from the sensor fusion.  

To avoid signal drifting (signal drifting happens due to the charge dissipation) over 

extended periods of time between cutting tests, a secondary switch was connected to reset 

the sensor before each cutting test. In all cases, the sampling rate was 10 kHz with most 

content of interest being limited to 5 kHz (to avoid aliasing, see Figure 22). 

 

Table 7: Technical specifications of the data acquisition system 

 

Specifications Values 

Channels Five analogue input channel (used) 

Resolutions 24 Bits 

Maximum voltage range ± 10V 

 

 

 
 (a) (b) 

 

Figure 13: (a) National Instrument© 9125 DAQ and (b) Kistler© 5010 amplifier 
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Chapter 4. Experimental Work & Data Acquisition 

 

4.1.  Experimental Details 

To start, a dry turning operation was performed, followed by the combination of a dry 

and wet procedure. In the dry turning test tool progression and catastrophic tool failure 

provided the distinguishable conditions and thus the most distinctive signals from the 

sensor.  

A series of tests based on a design of experiments (DOE) (section 4.1.5) was performed 

on a CNC turning centre with the developed sensor fusion setup and data acquisition 

system. These tests were selected based on cutting tool and workpiece specifications for 

the semi-finish turning and final finish-turning operations. 

 

4.1.1. Machine Tools  

The machine tool employed for the experiment test was a Nakamura-Tome (SC-450) 

CNC turning centre (Figure 14). The maximum spindle speed is 2500 RPM. 30/22KW is 

the maximum output of the CNC center’s spindle motor.  

The spindle motor used on the Nakamura-Tome SC450 is a FANUC© A06B-0832 

series αP-50, four pole 3-phase induction motor with a power factor of 77%. 
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Figure 14: Nakamura- Tome CNC turning centre 

 

4.1.2. Workpiece Material & Cutting Tools 

The key goal of the current research is to develop a tool wear monitoring system for a 

turning operation. The development of a data-driven artificial intelligence based TCM 

system requires a series of cutting tests to provide the data for training. Furthermore, the 

application of a TCM system was also considered during the experiment. In this research, 

a TCM system was designed and developed for a hard-turning test of AISI 4340 steel. 

Furthermore, other workpiece materials and cutting tools were used to validate and 

implement the TCM system.  
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Table 8 and Table 9 shows the list of workpiece materials and cutting tools used in this 

research.  

Table 8: List of workpiece materials used in this research 

 

Experiment Criteria Workpiece Material 
Chemical Composition (wt%)  

of the Workpiece Material 

System design & 

development 

AISI 4340 steel  

(50 ± 1.0 HRC) 

0.38% C, 0.2%Mo, 0.15%Si, 0.6%Mn, 

0.7%Cr, 0.17%Ni, Balanced %Fe 

System 

Implementation 

AISI D2 steel  

(46 ± 1.0 HRC) 

1.5%C, 0.28%Mn, 0.32%Si, 11.4%Cr, 

0.73%Mo, 0.3% Ni + Cu  

System 

Implementation 

ASTM A536 ductile iron 

(24 ± 1.0 HRC) 

3.2%C, 0.4%Mn, 0.07%Cr, 0.4%Ni, 

0.6%Cu, 0.03%Mg  

 

Table 9: Tool holders and Cutting tools  

 

Tool Holder Cutting Tools 

Kennametal© DCLNL 16 4D 

Rake angle= -6º;  

Clearance angle= -5º 

Pure alumina (cc620) 

CBN (cubic boron nitride) 

 

 

 

 

 

 

 



M.A.Sc. Thesis – MS Alam; McMaster University - Mechanical Engineering 

 

 

31 

 

4.1.3. Experiment Setup 

The turning experiments were performed on a Nakamura Tome-SC 450 CNC 

machining centre. A similar experiment setup was used during validation tests as well. 

Figure 15 shows the experimental setup with the sensor fusion based TCM system.  

 

   

Figure 15: Experimental setup for the turning operation using sensor fusion 

 

4.1.4. Tool Wear Measurement 

The tool wear measurement during the experiment was performed according to ISO 

3685:1993 [59], the international standard of tool-life testing. This ISO standard defines 

the tool wear on the flank and rake faces of a single-point cutting tool used in turning 

operations. Four different regions of the first cutting edge are considered for wear 

measurements. Region C, B, N and b showed in Figure 16 are the four regions being 

monitored as they impact tool performance the most.  The width of the flank wear land 

Workpiece 

Chuck 

Tailstock 

Dynamometer 

Vibration 

 Sensor 

Tool Holder 

Cutting 

Tool 
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VBB, maximum flank wear VBmax, and notch wear VBN are generally measured during 

tool-life testing. The most common tool wear observed in this research is described below.   

 

  

Figure 16: Types of tool wear [60] 

 

Flank Wear 

Flank wear is the wear on the flank (relief) face that in turn, causes land wear. Due to 

the abrasive wear mechanism, the wear land formation is not generally uniform along the 

cutting edge of the tool. Land wear reduces the dimensional accuracy and the surface 
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integrity of the workpiece material. The functional tool life criterion is generally set to be 

300 µm of flank wear according to ISO 3685: 1993 [59].  

 

 
 

Figure 17: Stages of cutting tool flank wear 

Crater Wear 

During the machining process, the cutting chips flow over the rake face of the tool at a 

high temperature due to the sliding and sticking motion. This phenomenon results in 

diffusion of the tool material into the workpiece material generating crater wear on the 

surface of the tool. As crater wear increases the chance of catastrophic tool failure also 

increases as the support material and thus the strength of the cutting edge is reduced.  
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Notch Wear 

Notch wear at the wear land’s outer edge is the result of either oxidation or the presence 

of hard particles in the surface of the workpiece material. It is associated with the depth of 

cut (the uncut chip thickness). It can also occur due to the strain hardening of previously 

machined surfaces.  

Chipping 

Chipping of the cutting tool results in catastrophic tool failure during machining. 

Discontinuous cutting conditions and the brittleness of the cutting tool are some of the 

major reasons for this type of wear.  

In this research, a KEYANCE VHX-5000 optical microscope was used to measure the 

cutting tool wear (resolution of ±5.0 µm) after each cut and with the tool wear 

measurements stored as offline monitoring data in the TCM database. Figure 18 (a) shows 

the optical microscope setup and a tool wear image measured as 217 µm of flank wear 

under a 200x magnification scale (Figure 18 (b)) from the T9 test outlined in Table 10. 

 

  (a) (b) 

 

Figure 18: Optical microscopy used in this research. 
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4.1.5. Design of Experiment 

The experiment results produce a training and testing dataset for the machine learning 

(ML) procedure. A wide range of cutting parameters were used to perform the hard-turning 

test on AISI 4340 steel with a pure alumina (cc620) ceramic cutting tool. To reduce the 

number of tests and understand the effect of cutting conditions on tool wear, a design of 

experiment (DOE) was undertaken based on a Taguchi L9 orthogonal array (Table 10). To 

improve the reliability of the TCM system database, design of the experiment was carried 

out four times (4x) under a similar experimental setup. The preliminary database of the 

TCM system consisted of 884 sets of data, with each dataset containing information from 

the cutting parameters, signals from all sensors channel and the flank wear values. 

 

Table 10: Design of experiment (Taguchi L9 orthogonal array) 

  

Test Title 

Machining Parameters 

Cutting Speed, Vc 

(m/min) 

Feed Rate, f 

(mm/rev) 

Depth of Cut, doc 

(mm) 

T1 150 0.10 0.20 

T2 150 0.15 0.30 

T3 150 0.20 0.40 

T4 250 0.10 0.20 

T5 250 0.15 0.40 

T6 250 0.20 0.30 

T7 350 0.10 0.40 

T8 350 0.15 0.20 

T9 350 0.20 0.30 
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4.2. Experimental Results and Discussion 

 

4.2.1. Test Reports 

This section contains the offline monitoring test report (Flank wear values). Here, the 

design of experiments was organized based on the cutting conditions. Test 1 (T1) to test 4 

(T4) from Table 10 were separated out as a standard cutting test, while test 5 (T5) to test 9 

(T9) from Table 10 were considered to be cases with severe cutting conditions based on 

the cutting parameters (cutting speed, feed rate and depth of cut).  

The test reports of the tool wear curve in this chapter are plotted against the number of 

cuts (each cut =100 m length of cut) in each test. The tool-wear curves of the standard tests 

(%error of flank wear values= 1.2 to 3.2) and severe cutting tests (%error of flank wear 

values= 1.4 to 5.2%)  are presented in Figure 19 and Figure 20.  

Each test report (maximum flank wear, VBmax) was obtained from a pure alumina 

(cc620) tool flank-wear measurement with optical microscopy according to the ISO 

standard (ISO 3685:1993). Each offline monitoring result (end of the test) from the standard 

and severe cutting tests is given in Table 11 and Table 12. 
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Figure 19: Tool wear curve development from standard tests 
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Table 11: Offline monitoring results (standard cutting tests) 

 

Test 

Title 
Cutting Condition 

Tool Life 

(Number of cuts 

or cutting length) 

Flank Wear Images  

(End of Test) 

T1 
Vc = 150 m/min, f= 0.10 

mm/rev; doc= 0.20 mm 

Total cut = 34 

Cutting Length 

(3400 m) 

 

T2 
Vc = 150 m/min, f= 0.15 

mm/rev; doc= 0.30 mm 

Total cut = 22 

Cutting Length 

(2200 m) 

 

T3 
Vc = 150 m/min, f= 0.20 

mm/rev; doc= 0.40 mm 

Total Cut = 17 

Cutting Length 

(1700 m) 

 

T4 
Vc = 250 m/min, f= 0.10 

mm/rev; doc= 0.20 mm 

Total Cut = 14 

Cutting Length 

(1400 m) 
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Figure 20: Tool wear curve development from severe cutting tests 
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Table 12: Offline monitoring results (severe cutting tests) 

 

Test  

Title  

Cutting Condition Length of Cut 
Flank Wear Images  

(End of Test) 

T5 
Vc= 250 m/min, f= 0.15 

mm/rev; doc= 0.40 mm 

Total cut = 07 

Cutting length 

(700 m) 

 

T6 
Vc= 250 m/min, f= 0.20 

mm/rev; doc= 0.30 mm 

Total cut = 07 

Cutting length 

(700 m) 

 

T7 
Vc= 350 m/min, f= 0.10 

mm/rev; doc= 0.40 mm 

Total cut = 05 

Cutting length 

(500 m) 

 

T8 
Vc= 350 m/min, f= 0.15 

mm/rev; doc= 0.20 mm 

Total cut = 09 

Cutting length 

(900 m) 

 

T9 
Vc= 350 m/min, f= 0.20 

mm/rev; doc= 0.30 mm 

Total cut = 03 

Cutting length 

(300 m) 
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4.2.2. Effect of Tool-wear on Spindle Current 

The induction spindle motor is commonly used in the machine tool industry. Generally, 

an induction motor consists of two components: a stationary stator and a rotating rotor. The 

rotor is separated from the stator by a small air gap. A three-phase set of current flow is a 

result of voltages applied to the stator. These currents create a rotating magnetic field which 

effectively drags the spindle in the direction of the rotating magnetic field. The square of 

the induction motor’s stator current is proportional to the developed torque for an induction 

style motor.  

It is well known that the occurrence of tool failure causes a rise in cutting force acting 

on the cutting edge during machining. As a result, a considerable variation in torque is 

experienced by the induction motor is a result. Therefore, the stator current of the CNC 

spindle motor is considered to be the sensing signal for monitoring tool wear (or, failure) 

in this research.  

The lathe used in this study has a three-phase four-pole induction spindle motor (Fanuc 

6S-αP50 series). For this induction motor, the stator current signal for each phase is an AC- 

signal generated at the supply frequency. It has the same peak-to-peak amplitude but is 

displaced in time by a phase angle of 120° between each phase. Since all phases move 

synchronously in response to changes in torque only one of the stator current signals was 

measured by the ACT-series AcuAMP© split-core current transducer (ACT005-42L-S).  

The frequency of the stator current 'f ' can be expressed as: 

 F = N*p/ 120 

 

(1) 



M.A.Sc. Thesis – MS Alam; McMaster University - Mechanical Engineering 

 

 

42 

 

Where ′N′ is the synchronous speed (r.p.m.) and ′p′ is the number of poles on the 

rotor. The sensitivity of the stator current was analyzed by creating a transfer function 

between the square of the stator current and the cutting force acting on the tool. Total 

harmonic distortion and crest factor are two key parameters which are generally used for 

analyzing the induction motor current signal. 

Total Harmonic Distortion (THD) 

The harmonic is an integral component of the fundamental frequency. In an electrical 

system, the presence of a harmonic (due to non-linear load variations of any system) distorts 

an ideal sinewave signal. For instance, the presence of the fifth harmonic (300 Hz) (middle 

graph) in a 60Hz signal (top graph) can result in a distorted signal (bottom graph) that is 

depicted in Figure 21. 

Fourier transform analysis can separate the harmonics into a periodic waveform series. 

It should be mentioned that the sampling rate should always be higher than the Nyquist 

frequency for the frequency of interest. Otherwise, the aliasing phenomena could emerge 

during the data acquisition period. Figure 22 shows an under-sampling scenario which 

highlights aliasing.  Due to under-sampling, the high-frequency signal (300 Hz) is reflected 

(circled in Figure 22) into the low-frequency signal (60Hz). These signals became 

indistinguishable from each other because of the aliasing. Either a higher sampling rate or 

an anti-aliasing filter must be used to avoid aliasing during data acquisition. 
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Figure 21: Influence of harmonic in a signal 

 

  

Figure 22: Effect of ‘aliasing’ in signal 

 



M.A.Sc. Thesis – MS Alam; McMaster University - Mechanical Engineering 

 

 

44 

 

Total harmonic distortion (THD) is a widely used measure of signal quality. In an 

electronic system, the term THD is an important parameter mostly used to detect a motor 

bearing fault [61]. THD can be used to represent current or voltage distortion. Generally, 

the measurement unit is in (- dB). THD is calculated as follows: 

 THD (%) =  
√I2

2 + I3
2 + ⋯ +  In

2

I1
 (2) 

Here, 'In' is the magnitude of the nth harmonic and 'I1' is the magnitude of the 

fundamental frequency. If the current waveform is an ideal sine wave, then the THD is 

zero.  

Crest Factor (CF) 

The ratio between the peak of the current (Imax) (or, voltage) and its RMS value (Irms) is 

known as the crest factor. To evaluate the distortion in the waveform of a signal, the crest 

factor (CF) provides another source of measurement. If the signal does not have any 

harmonic distortion (an ideal case), then the current’s peak value will be √2 * Irms. 

Therefore, the crest factor measurement of a pure sinusoidal signal is 1.414. The following 

Equation (3) relates the crest factor of a current signal. 

      Crest Factor, CF =  
Imax

Irms
 (3) 

 

During the cutting process, motor shaft torque affects the motor power/current, 

which provides a comparative analysis for online tool wear monitoring. The higher the crest 

factor, the greater is the energy contained in the higher harmonics. Therefore, the peak 

values of the crest factor and THD are visible when the cutting torque has a sudden increase 
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due to tool wear. Figure 23 show the variation in total harmonic distortion (THD) (%error 

of THD values= 0.12) and Figure 24 present the crest factor (CF) (%error of CF values= 

1.90) variation  in a tool life study (plotted against the number of cuts) of test-1 (T1 from 

Table 10). In both cases, a significant increment of these features (from the motor current 

sensor) is clearly visible, at a time when the tool-wear curve reaches the steady-state wear 

zone and the catastrophic tool failure region, respectively. The THD value was measured 

as 24% during the no-cutting (or air-cutting) condition in T1.  

 

   

Figure 23: Variation of THD in a tool life study (T4) (see Table 10) 
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Figure 24: Crest factor variation in the tool life study ((T4) (see Table 10) 

 

 

4.2.3. Effect of Tool-wear on Forces  

Machining forces increase as the cutting tool gradually wears out, due to the increasing 

friction between the cutting tool and the workpiece. In dry turning, the radial force- Fx 

(%error of Fx values= 4.6) value was observed to be higher than the cutting force- Fz 

(%error of Fz values= 2.6) and feed force- Fy (%error of Fy values= 5.4). The entire force 

curve gradually increases throughout the tool life (Figure 25). The contact area between the 

workpiece and the tooltip grows larger due to sudden breakage, which causes a rapid 

increase in the turning process’s radial forces. Moreover, the contact area gradually 

increases in the stable tool wear region. Finally, catastrophic tool failure promotes a rapid 

rise in the radial and feed forces.  
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Figure 25: Variation of forces in a tool life study (T4) (see Table 10) 

 

4.2.4. Effect of Tool-wear on Vibration 

Vibration content in the cutting direction shows a gradual increase during the tool’s life. 

A sudden increase in tool wear causes a rapid increase in the vibration content associated 

with the cutting direction. For example, when tool flank wear suddenly reaches the second 

stage of tool wear, vibration-rms (%error of vibration-rms values= 4.2) values increased 

(Figure 26). Further catastrophic failure or a rapid increase in tool wear with crater wear 

(i.e. a ceramic tool during the experiment) again increases vibration at the end of the tool-

life study. 
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Figure 26: Variation of vibration (RMS) in a tool life study (T1) (see Table 10) 
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Chapter 5. Signal Processing & Features Extraction 

This chapter summarizes the techniques of sensor signal acquisition, pre- and post- 

signal processing, considering the multifaceted nature of the sensor fusion process 

described in the first section (section 5.1 and section 5.3). The next section (section 5.4) 

offers a feature generation & extraction procedure. In addition, several feature 

dimensionality reduction methods are also presented in this section.  

 

5.1.  Signal Acquisition & Pre-Processing 

Signal acquisition and pre-processing include signal conditioning and event detection 

of the signal acquired from the data acquisition system. During the turning test, the data 

acquisition system acquires the signals from the individual sensors, which are then directed 

to the appropriate Kistler amplifiers and the National Instrument (NI) DAQ board for 

analogue to digital conversion and preliminary signal conditioning. Transducer sensitivity 

and the measurement units (volts) were taken into account for the voltage gain (or loss) 

settings of each sensor signal. The sampling rate was set to 10 kHz (predetermined by 

Nyquist) based on the expected content generated in the cutting process.   

National Instrument LabView© 2014 version software was used for data acquisition. 

The data acquisition software was able to acquire the signal considering the filtering (Low 

pass filter for the current sensor with a cut-off frequency of 200 Hz). In addition, the offset 

from the vibration signal (due to the relative orientation of gravity) was also removed 

during the signal conditioning.  
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The raw signals (Figure 27) from the sensors need to be pre-processed for further signal 

processing and feature extraction. The LabView© software was accordingly programmed 

to distinguish the event (only cutting data) from the acquired signal. 

 

  

Figure 27: An example of sensor fusion raw signals  

 

For example, each sensor fusion signal consists of four (4) segments of data (Figure 

28). No cut (A), entry cut (B), continuous cut (C) and, exit cut (D), compose the segments 

of each raw signal from which only turning test cutting data (C) was obtained by the event 

detection program. Since segments A, B & D emerge from the tool approaching and 

moving away from the workpiece, they do not convey any relevant information about the 

cutting tool conditions (tool wear). 
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Figure 28: Data Segmentation (event detection) of a raw signal 

 

Afterwards, this segmentation technique was carried out for all the acquired signals 

(Figure 29). In this way, all acquired signal segments that do not convey relevant 

information about the actual cutting test were removed. Furthermore, all channel signals 

(spindle motor current, vibration, 3-axis forces) were pre-processed in a likewise manner. 

 

  

Figure 29: An extracted event from the raw signals 

A 

B D C 
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After pre-processing, the next step is to process the signal. The sensor signals can be 

presented in different domains (time, frequency and time-frequency).  Signals from the 

sensors possess different properties. Therefore, to establish the best relationship between 

sensor signals and the tool-state, further signal processing is necessary.  

 

5.2.  Fourier Transforms (FT) 

Fourier transforms (FT) are the most commonly used tools in signal analysis. To 

identify the source of any vibration and noise, FT can be useful because of its representation 

type (frequency-domain). Fourier transform analysis can decompose a limited energy 

signal. A time-domain signal x(t) can be decomposed by the Fourier transform X(ω) as 

follows: 

 X(t) = 1
2π⁄ ∫ X(ω)

+∞

-∞

eiωt dt (4)     

Where, 

 X(ω) = ∫ f(t)
+∞

-∞

e-iωt dt (5) 

Equation (4) presents the Fourier transform whereas Equation (30) presents the inverse 

Fourier transform. In FT, the time-domain signal x(t) is decomposed into a family of 

harmonics eiωt where, X(ω) represents the amplitude of that harmonics. 

Sensor features were also extracted in the time-domain. Figure 30 shows a frequency-

domain (power-spectrum) analysis. Here, vibration signals from cutting test 7 (T7) (see 

Table 10) were plotted in the frequency domain (normalized frequency). Two significant 

frequencies are shown, sourced from the accelerated flank wear (left cursor) and the tool 
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holder (right cursor). Both have a significant impact on accelerated tool wear. The 

′RT7P51′ signal represents tool failure. 

 

 

Figure 30: Power spectrum of the extracted vibration signals (T7) (see Table 10) 

 

 

5.3.  Wavelet Transform (WT) Analysis 

Wavelet transform (WT) analysis is an advanced signal processing tool which 

decomposes the signal into various components at different time windows and frequency 

bands. Analyzing the signal in only the time or frequency domain is not efficient. To 

develop a robust tool-wear monitoring system, wavelet transform (WT) analysis was used 

in this research to acquire more information from the time-frequency domain signal.  

In wavelet transform analysis, wavelets are used as the base component instead of a 

sinusoidal function. This decomposes a signal into sub-levels with different frequency 
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ranges under a time domain. Based on the decomposition level, any component of a signal 

can be obtained by the wavelet’s scale and position. The wavelet transform is defined by 

      H(a ,b)(x) = |a|-1/2 h(x-b
a⁄ )  (6)                 

In Equation (6), a and b represent the frequency and the time shift or ‘location’ 

respectively. The ‘mother wavelet function’ is denoted as h(a,b). Wavelet transform analysis 

restructures the original signal with the following expression: 

      F = C ∫
da

a2
∫ db ⟨h(a, b),f⟩ h(a, b) (7)     

Where ′f ′ represents the original function and ⟨h(a,b),f⟩ are the wavelet’s components. 

 During signal processing with the wavelet transform, signal decomposes in the 

‘approximation coefficient’ (low-frequency component) and ‘detail coefficient’ (high-

frequency component). In the next step (or level), the ‘approximation coefficient’ 

decomposes into the second level of ‘approximation coefficient’ and ‘detail coefficient’. 

Moreover, this process is continued. 

A wavelet packet Wj, n, k is generated from the base function (MathWorks©, 2004) [62]:  

      Wj, n, k (x) = 2-
j
2Wn(2-jx-k) (8)          

Here, j, n, k are the scale, oscillation and time-localization parameters respectively 

considering (j, k)ϵ Z and n=0, 1, 2, 3 …, 2j-1. Generally, the functions of the wavelet packet 

(WP) are defined as follows: 

      W2n(x) = √2 ∑ h(k)

k

Wn(2x-k) (9)     
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           W2n+1(x) = √2 ∑ g(k)

k

Wn(2x-k) (10) 

Here, h(k) is the low-pass and g(k) is the high-pass filter given the scaling and wavelet 

function,  W0(x)=Φ (x) and W1(x)=Ψ(x) respectively. 

In this research, Wavelet Packet Decomposition (WPD) was performed by MATLAB© 

R2017b with a built-in function for 1-D wavelet packet analysis. Mathematically, the 

discrete wavelet packet transform (DWPT) is expressed as 

      Wj+1, 2n=H Wj, n (11) 

      Wj+1, 2n+1=G Wj, n (12) 

Where H={hl} lϵZ are the low-pass filter matrices and G={gl} lϵZ  are the high-pass filter 

matrices. In general, W00 is the measured signal and Wj, n is the wavelet packet in the  jth 

level and nth position. The updated wavelet packet in each decomposition level and position 

can be expressed as follows: 

      Wj, n=H*Wj+1, 2n+ G*Wj+1,  2n+1  (13) 

Here, H* and G* is the conjugate matrix of 'H' and 'G', respectively.  

The ′Haar′ mother wavelet was used to estimate the wavelet packet coefficient. Figure 

31 presents the third level of the extracted signal’s wavelet packet decomposition tree. The 

signal acquired with a sample rate 10 kHz (i.e. 5 kHz useful bandwidth in the wavelet 

packet) is denoted as W00 and the 8-wavelet packets in the third level (j=3) of 

decomposition are denoted as W30, W31,… ,W37 respectively. To describe the tool wear 

condition, two types of information were extracted in this analysis. The RMS value of the 
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wavelet coefficients (approximation-level and detail-level) and the Shannon entropy of that 

signal at that decomposition level. 

 

 

Figure 31: 3-level of wavelet packet decomposition tree of the measured signal 

 

Figure 32 and Figure 33 represent the decomposition of the acquired signal into 8 

(eight) frequency bands (8-wavelet packets) with 3 (three) levels of decomposition each. 

Both signals were acquired from the same machining condition test (Test 9 from Table 10). 

Figure 32 was the decomposed vibration signal when the tool flank wear was measured to 

be 124µm, and Figure 33 is the decomposed vibration signal at a flank wear of 411µm. The 

‘approximation coefficient’ is denoted as 'a' , the ‘detail coefficient’ is 'd' and the final 

decomposed signal is 's'. Both results show a significant difference at the 3rd - level of 

decomposition, especially in the approximation-level '𝑎3'.  
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Figure 32: 3-level WPD of the vibration signal at flank wear 124µm  

 

In Figure 33, the approximation-level 'a3' of the decomposed signal significantly rises 

to the maximum amplitude (vibration = +8g, here g= 9.8 ms−2) whereas in Figure 32, the 

vibration level was quite low (in the decomposed signal of  a3) at a flank wear of 124µm. 
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Figure 33: 3-level WPD of the vibration signal at flank wear 411µm 

 

 

5.4.  Feature Extraction & Dimensionality Reduction 

During the cutting test, the sensor’s online measurements can act as an indirect indicator 

of the tool wear condition. Generally, it is always arduous to develop a relationship between 

the raw signal and the tool wear state, due to the low signal-to-noise ratio (SNR) of the 

acquired signal. Relevant features need to be extracted from the processed signal. It is 

important to note that tool wear can be different in two wear tests under identical machining 

conditions, cutting length and cutting time. However, with efficient feature extraction and 

a trained machine learning algorithm, it is possible to correlate the same features with a 
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similar amount of tool wear. Therefore, effective features need to be extracted from the 

processed signal and mapped to obtain a relationship (correlation) with the tool wear state.  

In this research, custom MATLAB© code was implemented to generate and extract 

features from the processed signal acquired from all of the (5-channel) sensor channels. 

The different features from the different domains generated from the dataset are 

summarised in Table 13.   

These listed features were extracted from the 5 channel signals (Spindle Motor Current, 

Vibration, Fx, Fy, Fz) of the data which were previously stored in the database. Seven (7) 

typical statistical features were selected. In frequency domain analysis, the power spectrum 

density, S(fi) was calculated by using the Welch method [63]. In all cases, total harmonic 

distortion, THD (frequency-domain), crest factor (CF) and peak-to-peak (statistical 

features) were extracted only from the spindle motor current channel signals. These three 

features were considered to be special features coming from motor current signals in this 

research.  

Time-frequency domain analysis gives another perspective of the tool wear condition, 

which statistical features and frequency-domain features can’t express as well. Further 

signal processing analysis (Fourier and wavelet transforms) were involved in extracting 

these features.  

From the spindle motor current - channel, 7 (seven) statistical, 3 (three) frequency-

domain and 2 (two) time-frequency domain features and from the vibration - channel, 5 

(five) statistical, 2 (two) frequency-domain and 2 (two) time-frequency domain features 

were extracted.  
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Table 13: List of extracted features from the processed sensor signal 

  Feature Type Features Mathematical Expression 

Statistical    

Features 

Mean x̅ = 1
N⁄ ∑ |xi|

N

i=1
 

Variance xvar = 1
N⁄ ∑(xi − x̅)2

N

 

RMS xrms = √1
n⁄ (x1

2 + x2
2 + ⋯ + xn

2) 

Kurtosis xkurt =
1

n
∑ (

xi−μ

σ
)

4

n

 

Skewness 
xskew =

1
n⁄ ∑ (xi − x̅)3n

i=1

(√1
n⁄ ∑ (xi − x̅)2n

i=1 )

3 

CF (peak2rms) 
xpeak2rms =

‖x‖∞

√1
N⁄ ∑ |xn|2N

n=1

 

peak2peak xpeak2peak = (xmax − xmin) 

    Frequency-   

    Domain   

    Features 

Spectral mean 
f̅ =

√∑ fi
2k

i=1 S(fi)

∑ S(fi)
k
i=1

 

       Spectral kurtosis fkurtosis = ∑ (
fi − f̅

σ
)

4
k

i=1
S(fi) 

       Total Harmonic     

       Distortion  

 

THD (%) =
√I2

2 + I3
2 + ⋯ + In

2

Ifundamental

 

Time-

Frequency   

Domain 

Features 

Shannon entropy E(x) = − ∑ Sk
2

N

k=1

log(Sk
2) 

Wavelet energy EWT =
∑ wN

i=1 tφ
2 (i)

N
 

Wavelet energy    

        ratio RWT =
EWT

Y

EWT
Z
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Again, 5 (five) statistical, 2 (two) frequency-domain and 3 (three) time-frequency 

domain features were extracted from the Fx - channel. Furthermore, from the Fy and Fz - 

channel, 5 (five) statistical, 2 (two) frequency-domain and 2 (two) time-frequency domain 

features were extracted. As a result, in a total of 49 features were extracted and stored in 

the database for further analysis (dimensionality reduction). 

Dimensionality reduction is the next post-processing step for implementing artificial 

intelligence (AI) techniques. The complexity of any AI algorithm depends on the number 

of input variables and the data sample size. The selection of the input variable number 

affects the computation time and space. Therefore, reducing the number of redundant input 

variables results in less data processing time.  

In general, dimensionality reduction techniques may reduce certain features which are 

more responsive to the output variable. The objective is to acquire the best and least 

combination of input features that provide a strong relationship with the output variable.  

For example, suppose the original dimension of the extracted feature is m. The 

objective of the dimensionality reduction technique is to derive a new set of  n (where, n <

m) dimensions given the most information and the leftover set (m − n). This research 

study uses two types of feature selection techniques. The first is a supervised technique 

(Pearson Correlation co-efficient) & the second is an unsupervised technique, principal 

component analysis (PCA). 
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5.4.1. Pearson’s Correlation Coefficient (PCC) Analysis 

Pearson’s correlation coefficient was employed to evaluate the correlation between the 

extracted feature and the tool wear condition. This method measures the independence of 

two or more random variables providing a coefficient value (Pearson’s correlation 

coefficient) called  ′r′ with a level of significance ′p′. In this study, the correlation analysis 

was calculated as follows: 

      r=  
∑ (xi-x̅)(yi-y̅)n

i=1

√∑ (xi-x̅)2n
i=1 √∑ (yi-y̅)2n

i=1

 (14) 

            

Where  ′x′ is the feature and ′y′ is the condition of the tool (i.e. flank wear). The value 

of ′r′ categorizes the correlation level according to class: weak correlation (0 < r < 0.3), 

moderate correlation (0.3 < r < 0.5), strong correlation (0.5 < r < 1.0). Features were 

selected based on strong to medium correlations. Table 14 represents the PCC analysis on 

extracted features with the common used ‘statistical significant’ level (p < 0.05).  

The extracted features that show a strong correlation with tool wear propagation 

(𝑟 > 0.5) are: motor current (crest factor, THD, Shannon entropy, wavelet energy), 

vibration (mean, wavelet energy), Fx (mean, Shannon entropy), and Fy (variance, energy 

ratio). In this way, the 10 best features out of 49 were selected for the decision-making 

algorithm due to their strong correlation with the tool wear state. Furthermore, the extracted 

features that have a medium or greater correlation (0.3 < 𝑟 < 0.5) are: motor current 

(mean), vibration (rms, spectral mean), Fx (variance, rms, wavelet energy), Fy (mean, rms, 

Shannon entropy), and Fz (variance, skewness, wavelet energy). In total, 12 out of 49 
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features have an average correlation with the tool wear state. These features will also be 

considered in the next chapter for further comparison. 

 

Table 14: Correlations between extracted features and cutting tool wear 

Extracted Features Motor Current Vibration Fx 

 

Fy Fz 

Statistical  

       features 

Mean 0.46 

 

0.66 

 

0.87 

 

0.39 

 

0.29 

 
Variance 0.20 

 

0.20 

 

0.48 

 

0.76 

 

0.42 

 
RMS 0.28 

 

0.33 

 

0.33 

 

0.47 

 

0.15 

 Kurtosis 0.24 0.21 0.21 0.18 0.18 

Skewness 0.18 0.21 0.28 0.15 0.32 

Crest factor 
0.76 

 
 

Peak to Peak 0.41 

 
 

Frequency- domain     

       features 

Spectral mean 0.26 0.44 0.2 0.2 0.2 

Spectral kurtosis 0.22 0.18 0.18 0.18 0.2 

THD 0.89 

 
 

Time-frequency    

       domain features 

Shannon entropy 0.65 0.19 0.76 0.4 0.19 

Wavelet  

energy 
0.51 0.54 0.35 0.21 0.35 

Energy  

ratio (Fx/Fz) 
  

0.65 

 
  

 

 

5.4.2.  Principal Component Analysis (PCA) 

Principal component analysis (PCA), an unsupervised linear projection-based feature 

extraction method, is used to further reduce the dimensionality. It is one of the most widely 

used statistical techniques that converts a set of matrices with correlated variables into a set 
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of independent variables, known as principal components. In general, the first component 

has the highest possible variance. The analysis is mathematically derived from an 

orthogonal linear transformation that converts a data set into a new coordinate system, 

where the projected data with the greatest variance falls into the first component (first 

coordinate in the coordinate system), the second highest variance data falls into the second 

component (second coordinate in the coordinate system) and so on accordingly.  PCA has 

the following goals: 

• Extract the essential information from the dataset 

• Reduce the size of the dataset considering important information 

• Analyze the structure of the extracted features by simplifying the dataset. 

The following mathematical expression can be developed according to the PCA 

algorithm presented in the literature [64].  

A data matrix, Y = {y1, y2, … , yN } , where yi
T = {Fij, j = 1,2,3, . . , m}, can be 

constructed, given ′N′ training samples consisting of ′m′ dimensional features vectors (in 

this dataset, m= 49). RY is the corresponding covariance matrix which is as follows: 

      RY = ∑ (yi-

N

I =1

y̅)(yi-y̅)T (15) 

Where, y̅ is the mean feature vector of all samples of ′Y′ and ′T′ represents the 

transposition 

      Y̅=
1

N
∑ yI

N

I =1

 (16) 
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The corresponding ′Y′ matrix’s eigenvalues can be obtained from the following 

equations: 

      λ v=RY v (17) 

Where ′λ′are the eigenvalues and ′v’ is the eigenvector of RY  respectively. During 

calculation, the eigenvalues are usually listed in descending order (λ1 ≥ λ2 ≥ ⋯ ≥ λd)  

whereas the corresponding eigenvector of λj (j = 1,2, … , m) is denoted as vj(j =

1,2, … , m) . Therefore, the jth -principal component feature ′Fij′ of a sample pattern ′yi
′ , 

can be obtained as follows: 

      Fij=vj
T(yi-y̅) (18) 

To classify the tool condition, each principal component score can be evaluated based 

on its contribution to the response (tool condition). In general, first ′n′ principal 

components are selected based on the eigenvalues. This method is called the accumulative 

contribution rate (ACR) which can be defined as [65]:  

      Rn= 
∑ λi

n
i=1

∑ λI
m
i=1

 (19) 

Where, ′Rn
′   is the percentage of the total variance which is explained by the first ′n′ 

component.  According to the ACR method, the first ′n′ principal components are then 

selected as the updated (new) feature vectors. 

In summary, the ′n′ principal components are selected to represent ′m′features 

extracted from the machining test by the matrix transformation formula (Equation (18)) 

without any loss of information from the dataset. The flowchart in  Figure 34 summarises 

the principal component analysis (PCA) procedure described in this chapter. 
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Figure 34: PCA analysis procedure 

 

Principal component analysis from all datasets produced a scree plot (Figure 35) which 

envisions the size of the eigenvalues in relation to the number of principal components 

(eigenvalues as a function of principal components). The scree plot determines the number 

of components based on the size of the eigenvalues.  

 

 

Figure 35: Scree plot (based on all dataset) 
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The results from the scree plot show that the first 11 principal component have 

eigenvalues greater than 1 (one). These components generally explain the highest variation 

in the dataset. The remaining principal components account for a decidedly lesser portion 

of the variability (close to zero) and are thus far less important for modelling.  

The score plot (Figure 36) represents the first and second principal component scores. 

It assesses the data structure and detects the cluster of tool conditions (tool wear state). 

From the clustering distribution, it is evident that the 2nd principal component can better 

indicate more separate clusters in the dataset compared to the 1st principal component, but 

the first two components from PCA failed to classify a few critical clusters.  

Furthermore, several outliers from the data set are also visible at the bottom of the plot, 

which represents the anomalies of a specific cluster of features in the dataset. Therefore, 

this study considered scores up until the 11th principal component, based on the scree and 

score plot results.  

 

 

Figure 36: Score plot of the 1st and 2nd principal components (based on all dataset) 
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The results of the PCA procedure are summarised in Table 15. The table represents 

significant feature variables corresponding to the 1st, 2nd,..,11th principal component, 

respectively. 

 

Table 15: List of significant features based on PCA score 

 

Principal Components Significant Features 

1st component Motor Current (THD) 

2nd component Motor Current (CF) 

3rd component Motor Current (peak2peak) 

4th component Motor Current (Shannon entropy) 

5th component Vibration (Mean) 

6th component Vibration (Spectral mean) 

7th component Vibration (Wavelet energy) 

8th component Fx (Mean) 

9th component Fy (Variance) 

10th component Fz (Spectral mean) 

11th component Wavelet energy ratio (Fx/Fz) 
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5.5.  Discussion 

This chapter analyzes the features recorded in the sensor database. Features from the 

sensor signal were extracted in a different domain. Fast Fourier transform (FFT) and 

wavelet transform analysis (WT) were employed to extract the signal. To reduce the feature 

dimensionality of the dataset, two types of techniques, PCC and PCA, were adopted. 

Correlation analysis describes each feature’s relationship with the system response, which 

in this case is the cutting tool state (tool-wear). In this analysis, 10 features were selected 

based on the coefficient score. PCA was employed to reduce the features’ dimension. 

Further PCA analysis showed that 11 features can be selected to identify systemic faults 

(tool wear classifier).  

In both cases, features from the motor current signal and vibration sensor show 

promising correlations with tool wear states. The spindle motor current sensor is a 

promising candidate for combination with the vibration sensor during a turning test, due to 

its low cost and simple installation.  
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Chapter 6. AI-based Decision-Making Module  

 

 6.1. Introduction to Artificial Intelligence (AI) in Machining 

 In the manufacturing process, various factors such as machining process parameters, 

fault characteristics, environmental factors and human error can influence the result of 

expected productivity, tooling cost and part-scrap rate. An indirect monitoring system can 

sometimes mislead by providing wrong information. In general, the relationship between 

features extracted from the sensor signal is difficult to investigate due to its complexity and 

non-linear nature of the process. Visualization of the sensor data is insufficient for a 

decision-making system due to this complexity. Therefore, it is necessary to design a wear 

monitoring method that can learn from previously established information and transmit the 

learned knowledge into a new cutting test dataset. Artificial intelligence (AI) methods have 

tremendous potential to perform such tasks. 

In this chapter, two types of AI techniques were implemented to develop a data-driven 

tool wear monitoring system. In addition, background information of these techniques is 

provided in this chapter with detailed evaluations of input features. Finally, the best AI 

techniques identified using experimental data were selected for further validation and 

implementation in the machining process. 

 

 6.2. Multi-layer Perceptron based Artificial Neural Network 

The multi-layer perceptron artificial neural network (MLP-ANN) is the most 

widespread machine learning technique that uses the feed-forward artificial neural network 
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model structure and the backpropagation method for establishing the parameters (weights). 

The feed-forward neural network (FFNN) consists of an input layer with some hidden 

layers and an output layer. The network’s functional direction is oriented from the input to 

the output layer without forming any loop inside the network. Each node is connected to 

the next layer with a specific connection weight. Several training functions are available 

that modify the connection weights of the process. This method also adopts the 

backpropagation algorithm to train the neural network. The basic working principle of the 

feed-forward-back-propagation neural network (FF-BPNN) using the MATLAB ′transig′ 

transfer function is described below [66]. 

If,  Wxy represents the weight values between the input and the hidden layer and Wyz is 

are the weights between the hidden layer and the output layer, then the first stage (feed-

forward stage) of the operation can be expressed as follows: 

      V(n)=Wyz (n) b(n)  (20) 

      o(n)= φ(v (n))= 
2

1+ e[-2v(n)]
 (21) 

Here, the iteration number is expressed as ‘n’, the output as ‘o’, the hidden layer output 

as ‘b’ and the activation function as ‘φ’. The output network for the present weights is 

derived with Equation (21). The second stage is called the back-propagation (BP) stage 

which is expressed by the following Equation (22). 

      Δ(n)=e(n). φ[v(n)]=[d(n)-o(n)]. [o(n)]. [1-o(n)] (22) 
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Where ‘δ’ is the local gradient function with error function ‘e’. Also, the actual and 

desired output is represented as ‘o’ and ‘d’ respectively. The final stage is the weighted 

value modification stage. The expression of this stage is: 

      Wxy(n+1)= Wx y(n)+ΔWxy(n)=Wxy(n)+ η δ(n). o(n) (23) 

Here, ′η′ represents the learning rate of the training. During neural network training, 

these three stages repeat. The entire procedure is usually concluded when the error function 

values reach either zero or any constant value indicating that the network is not benefiting 

from further training.  

 

  

Figure 37: Three-layer feed-forward neural network 

 

In this research, a 3-layered feedforward neural network with a backpropagation 

method was employed on the extracted features. The neural network implements several 
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input nodes, a single hidden layer with multiple neurons and an output layer for the 

prediction result. Figure 37 shows the basic structure of the neural network used in this 

study. 

 

6.2.1. Comprehensive Evaluation of Major Clusters from PCC and PCA 

In this section, the performance and effectiveness of the AI method (Artificial Neural 

Network) are investigated based on significant clusters of features extracted from the sensor 

signals (Section 5.4.1 and section 5.4.2). These clusters were obtained from the correlation 

analysis (Pearson correlation analysis) and PCA (Principal Component Analysis). Two 

types of clusters (Figure 38) from the correlation analysis and, three (3)- types from PCA 

were constructed (Figure 39) to use as the input dataset of the decision-making algorithm 

(AI techniques).  

The clusters from each feature extraction method were used in the input dataset’s (each 

dataset represented one machining cycle) of the Neural Network (NN). Each dataset 

consists of each machining cycle’s cut five-channel signal (sensor set). The dataset’s (a 

total of 884 datasets) was structured in such a way that 60% was assigned for training, 20% 

for testing and the remaining 20% to validate the model. Before training and testing, the 

input dataset was normalized to improve the training process. In addition, the dataset 

contained different machining parameters. Therefore, each training and testing process of 

the Neural Network (NN) algorithm contained three (3) machining parameters (cutting 

speed, feed, depth of cut) and the corresponding cluster of extracted features. 
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Figure 38: Major clusters from PCC analysis 

 

 

 

Figure 39: Major Clusters based on PCA 
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The comprehensive analysis was performed with a machine learning algorithm, the 

multi-layer perception based Neural Network (NN) in MATLAB©. Several characteristics 

played an important role in the investigation, such as the training algorithm, number of 

hidden layer nodes and corresponding clusters from the PCC analysis (Figure 38) and the 

PCA (Figure 39). 

Training algorithm 

To train the feed-forward neural networks, several machine learning training algorithms 

are available in MATLAB©. However, it is always difficult to identify which training 

algorithm is faster and will provide the best results for any given problem. This depends on 

many factors, such as input and output parameter, number of weights and biases, the error 

percentage and the objective of the training (pattern recognition or function optimization). 

Therefore, to identify the best training algorithm for this study, three types of machine 

learning training algorithms were employed, they are Levenberg-Marquardt (LM) [67], 

scaled conjugate gradient (SCG) [68] and gradient descent with momentum and adaptive 

learning rate backpropagation (GDX) [69]. 

The hidden layer node 

Three different types of hidden layer node were also used, denoted as 10x, 15x, 20x 

number of nodes. 

Statistics summary: 

The effect of using the different machine learning algorithms and the hidden layer node 

number were considered as essential variables for the comparison analysis. The neural 

network success rate (NNSR%) determines the effectiveness of the model for data 
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prediction. Therefore, an overview of the NNSR% from the entire neural network model 

was presented in Figure 42. Extensive comparison analysis was conducted in this section 

based on the clusters from PCC (Figure 38) and PCA (Figure 39). 

The objective of the analysis is to identify which machine learning algorithm and 

hidden layer node number provides a prediction model with the highest NNSR% and lowest 

RMSE (root mean squared error)- µm. 

The Neural Network (NN) was trained with the cutting parameters (cutting speed, feed 

rate and depth of cut) and clusters 1 (Figure 38) and cluster 2 (Figure 38) from the PCC 

analysis, respectively. 

• In all cases (different ML algorithm), cluster-1 from PCC analysis showed the higher 

NNSR (averaging 88.2%) and cluster-2 was observed to be lower (averaging 73.87%) 

(Figure 40) 

• The effect of the hidden layer node number can be explained by Figure 41. In most 

cases, the 20x hidden layer node showed a promising rate of success. Though the higher 

hidden layer node number shows the highest level of NNSR%, the 10x hidden layer 

node number (LM algorithm) of cluster-1 reached the highest success rate (97.20 

NNSR%). In general, cluster-1 of PCC based features showed a tremendous success 

rate in all types of hidden layer node numbers (Figure 42). 
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Figure 40: Effect of ML algorithms on the NN success rate 

 

  

Figure 41: Effect of hidden layer node number on NN success rate 
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Figure 42: Evaluation of PCC based clusters in the Neural Network (NN) 
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To evaluate the PCA based clusters (Figure 39) used in the Neural Network (NN) 

training, a summary of NN modelling results (with NNSR%) is shown in Figure 44. In this 

study, the cutting parameters (cutting speed, feed rate and depth of cut) and cluster 1, cluster 

2 and cluster 3 from the PCA analysis (Figure 39) were used as inputs for the NN model. 

The objective of this analysis was to monitor tool wear based on the clusters obtained from 

the PCA.   

In most cases (ML algorithm and hidden layer nodes), the PCA cluster-2 showed the 

highest NN success rate (93.80% NNSR) (Figure 43). Cluster-2 from PCA is a combination 

of the features extracted from the spindle motor current sensor and the vibration sensor.  

 

  

Figure 43: Effect of cluster type on NN success rate 
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85.57% NNSR) under all types of PCA based cluster analysis in the neural network 

(NN) modelling (Figure 44). 

 

  

Figure 44: Evaluation of PCA based clusters in the Neural Network (NN) 
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• Cluster-1 attained the highest level of NNSR% in the (LM-10X) validation test (84% 

NNSR%). A neural network prediction model based on cluster-1 can provide a 

considerable amount of monitoring success. Therefore, a low-cost based spindle motor 

current sensor shows considerable potential for use in a tool wear monitoring system. 

However, system could be more successful under a cluster-2 based NN prediction 

model (Figure 44).  

• Cluster-2 based NN validation results showed the highest level of success in 

comparison with Cluster-1 and Cluster-3. The LM training algorithm with 15x or 20x 

number of hidden layers was found to achieve the best success level (96.3% NNSR or 

94.0% NNSR) (Figure 44). 

• The RMSE (root-mean-square error) from the dataset validation was varied in all cases. 

Based on RMSE (√∑ (Predictedi-Experimentali)2N
i=1

N
), cluster-1 (with LM based ML training 

algorithm) achieved the lowest level of error (RMSE= 1.43 µm) whereas, the PCA 

based cluster-1 had the highest level of error (RMSE= 11.1 µm) (Figure 45). 

• In all cases, LM and SCG machine learning (ML) algorithms showed minimal RMSE 

compared with the GDX training algorithm (Figure 45).  

• Based on RMSE analysis, PCC based cluster-1 input features and PCA based cluster-2 

input features can be further studied during the model’s implementation (Figure 45). 
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Figure 45: RMSE based evaluation of all cluster in NN modelling 
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logical interpretation with membership functions and ANFIS rules based on the input 

dataset (trained and clustered) to predict the output variable.  

 

  

Figure 46: ANFIS architecture 

 

The ANFIS architecture consists of several interconnected nodes that are characterised 

by fixed and adjustable parameters (Figure 46). The output signals from each layer are 

processed by the node functions. The ANFIS model processed by the node functions in 

each layer of the ANFIS architecture is explained below [70]: 

Layer-1 

The first layer’s node consists of adaptive node functions. These nodes are typically 

used to fuzzify the inputs, ‘x’ and ‘y’, into the corresponding fuzzy linguistic values (small, 
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medium or high) using fuzzy membership functions (MFs). The fuzzified output from the 

1st layer can be expressed by Equation (24). 

      Oi
1=μAi(x) ; where,  i=1, 2.  (24) 

Where, μAi(x) defines the membership functions of the corresponding linguistic values 

for the first input. Each MF has parameters which depend on their respective curves 

(triangular, trapezoidal, bell-shaped, Gaussian or sigmoid). 

Layer-2 

In this layer, the fixed node function provides strength for the output signal rules by 

multiplying each of the input signals from the first layer with one another. The output signal 

rules, Oi
2 are expressed in Equation (25). 

      Oi
2=ωi=μAi(x) × μBi(y)  ; where, i=1, 2.  (25) 

Here, ωi is the output signal from the 2nd layer and μBi(y) are the corresponding MF’s 

linguistic values for the second input. 

Layer-3 

The third layer calculates the normalized strength of the fuzzy rules, ωi̅̅ ̅ which is 

obtained from the previous layer (2nd layer). This can be calculated as: 

      ωi̅̅ ̅= ωi ∑ ωi

n

i=1

⁄   ; where,  i=1,2. (26) 
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Layer-4 

In this layer, the defuzzification process is performed to solve the overall weighted 

output, ωi̅̅ ̅fi using the normalized firing strength, ωi̅̅ ̅. The defuzzification is accomplished 

through Equation (27). 

      ωi̅̅ ̅fi=  ωi̅̅ ̅(pix+qiy+ri)    ; where,  i=1,2. (27) 

 

Layer-5 

The sum of all weighted signals from the 4th layer is used to calculate the overall output 

′f ′ in the 5th layer, which is given by Equation (28). 

      

 f = ω1̅̅ ̅̅ f1+ ω2̅̅ ̅̅ f2  

   = (ω1̅̅ ̅̅ x)p1+(ω1̅̅ ̅̅ y)q1+(ω1̅̅ ̅̅ )r1+(ω2̅̅ ̅̅ x)p2+(ω2̅̅ ̅̅ y)q2+(ω2̅̅ ̅̅ )r2 

 

 

(28) 

Where, f1 and f2 are Takagi–Sugeno first order linear functions and p1, q1,p2,  q2 are 

the linear coefficients of those functions. The network implements the first order Sugeno 

type fuzzy reasoning for learning and fine tuning. The first order Takagi–Sugeno fuzzy 

rules are shown in the Equation (29) and Equation (30). 

      
 R1: IF x is  A1 AND y is  B1 THEN z is f1(x, y);  

where, f1 = (p1x + q1y + r1) 

(29) 

     

 

Where x and y are two inputs,  Ri and fi are the fuzzy rule base and the corresponding 

output. Meanwhile, A1, A2, B1, B2 are the linear or nonlinear parameters or fuzzy sets of 

      
 R2: IF x is  A2 AND y is  B2 THEN z is f2(x, y);  

Where, f2 = (p2x + q2y + r2) 

(30) 



M.A.Sc. Thesis – MS Alam; McMaster University - Mechanical Engineering 

 

 

86 

 

the MFs. These parameters are typically represented in terms of linguistic variables (words) 

of SMALL, MEDIUM or HIGH based on the selected MFs curves. Finally, p1, p2, q1, q2, r1 

and r2 are linear coefficients of the Takagi–Sugeno first order models, f1 and f2 Figure 47 

presents the flowchart of ANFIS modelling. 

 

 
 

Figure 47: Flowchart of ANFIS modelling 

 

 In this study, MATLAB© software was used to develop the ANFIS model. The 

graphical user interface (GUI) of ANFIS in the software were used for training and testing 
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the experimental dataset from the turning test. Due to multivariant nature of the 

experimental data, ′gaussmf′ was selected as the input membership function and a constant 

membership function was selected for the output data. The ANFIS model used a hybrid 

learning method to update the parameters of input & output data. The sub-clustering 

method (anfis2) was adopted instead of the grid-partition method (anfis1) due to the higher 

dimension clustering issues of the dataset during the training. The training process was 

continued until it reached the desired minimum RMSE output. Figure 48(a) represents the 

membership function (gaussmf) viewer of the input dataset and Figure 48(b) is the rule 

viewer of the ANFIS interface in MATLAB©.  

 

 (a) Membership Function viewer (dataset are normalised) 

 (b) Rule viewer (all dataset are normalised) at flank wear 124µm  

(T9, see Table 10) 

 

Figure 48: A general overview of the ANFIS interface 
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Table 16 shows the general overview of the ANFIS learning structure (based on all 

datasets) 

 

Table 16: ANFIS Learning Structure 

 

Maximum Number of nodes 456 

Number of linear parameters 84 

Maximum number of nonlinear parameters 156 

Maximum number of parameters 240 

Number of training data pairs 242 

Number of fuzzy rules 84 

 

 

6.3.1. Comprehensive Evaluation of Major Clusters from PCC and PCA 

This section demonstrates the performance and effectiveness of the AI method 

(Adaptive Neuro-Fuzzy Inference System) based on the significant extracted feature 

clusters (Figure 38 and Figure 39) from the fusion of the sensor signal (section 5.4.1 and 

section 5.4.2). 

During ANFIS training, the input dataset was consisted of feature cluster’s (PCC or 

PCA) and the cutting condition (cutting speed, feed rate, depth of cut) and the predicted 

output (tool wear value) was compared with the actual test result’s (offline results). In this 
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analysis, RMSE (root mean squared error) was used to account for training and validation 

error.  

Figure 49 (a) shows that the ANFIS prediction error (RMSE) is 0.018 µm while cluster-

1 of PCC (see Figure 38) based sensor features were used as an input variable. However, 

cluster-3 from PCA (Figure 39) based sensor features increased the error (RMSE= 0.20 

µm) of ANFIS prediction (Figure 49 (b)). In Figure 49, ‘index’ refers to the number of cuts 

(each machining pass during the turning operation).  

 

 (a) ANFIS output from Cluster-1 (PCC) with RMSE= 0.018 µm 

 

 (b) ANFIS output from Cluster-3 (PCA) with RMSE= 0.20 µm 

 

Figure 49: ANFIS validation results with RMSE 
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Though, PCC based cluster-3 features combines the features from all the sensors 

(sensor fusion), it shows higher prediction error. The reason for this discrepancy can be 

explained based on the PCC (Pearson correlation coefficient) analysis (see Table 14). Few 

features (especially from the Force channels) showed less sensitivity with the tool wear 

progression. Therefore, it results in higher prediction error when the PCA based cluster-3 

were taken as input variable in ANFIS modelling. The ANFIS model was evaluated based 

on the structure provided depicted in Table 17.  

 

Table 17: ANFIS structure Information 

 

 Cluster Type 

ANFIS Parameter Type 
PCC 

cluster-1 

PCC 

cluster-2 

PCA 

cluster-1 

PCA 

cluster-2 

PCA 

cluster-3 

Number of input 

(with machining parameters) 
14 16 7 10 14 

Number of membership functions 9 7 9 6 5 

Membership functions type Gaussian Curve 

Fuzzy clustering type Sub. Clustering (anfis2) 

Squash factor 0.15 

Epoch number 50 

Number of Fuzzy Rules 84 

RMSE (µm) 0.011 0.032 0.017 0.45 0.219 
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The model showed significant performance variations based on several factors, such as 

data sample, membership functions type and number. These factors play an essential role 

in evaluating the training and testing dataset that correlates the input membership functions 

with the output value. 

The evaluation results of PCC and PCA cluster based ANFIS training and validation 

(RMSE) is presented in Figure 50. The purpose of this analysis is to represent the sensor 

fusion application in tool wear monitoring based on the input features (with cutting 

parameters) of different cluster type (Figure 38 and Figure 39) obtained from PCC analysis 

and PCA.  

The input features obtained from PCC analysis (Figure 38) showed excellent results 

compared to PCA based features and (Figure 39) in ANFIS modelling. The average RMSE 

value (RMSE =0.02 µm) of PCC based features is significantly less in comparison with the 

average RMSE (Avg. RMSE= 0.23 µm) of PCA based features (Figure 50).  

Cluster-1 and cluster-2 inputs from PCC based features (Figure 38) showed promising 

RMSE value. Cluster-1 (high correlations-based features) showed lowest RMSE 

(RMSE=0.0108 µm). Just as in NN modelling, the cluster-1 dataset from PCC analysis 

predominantly influences the ANFIS prediction model (Figure 50).  

Cluster-1 input dataset from PCA (Figure 39) shows promising results compared to 

other PCA clusters. The features from this cluster (cluster-1 from PCA) were obtained only 

from the spindle current sensor and it shows a promising impact in ANFIS prediction. 
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Figure 50: Evaluation of PCC and PCA based cluster on ANFIS modelling 

 

 

6.4. Comparison between AI Techniques for TCM 

A comparison of AI techniques presented in section 6.2 and section 6.3 is given in this 

section of the chapter. The purpose of this section is to obtain an AI-based data-driven tool-

wear prediction model which can best predict the output result with minimum RMSE and 

maximum success rate (SR%). Two separate AI prediction models were developed based 

on the cutting test datasets. Figure 51 provides a comparison of AI techniques used in this 

research. This comparison draws from the entire cluster-based input dataset in these 

models. This input dataset also contains the machining conditions (cutting speed, feed rate 

and depth of cut).  
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Results reveal that the ANFIS model outperforms other artificial neural network-based 

prediction models.  The ANFIS model with PCC based cluster-1 input features (Figure 38) 

showed the best overall result (RMSE= 0.013 µm). It should be noted that most of the PCC 

based cluster-1 features are from the motor current & vibration signal (Figure 38). As was 

shown earlier (section 5.4.1), most of the features from the spindle motor current sensor 

signal (i.e. THD, crest factor, mean) exhibit a strong correlation with the output result (tool 

wear). Moreover, PCA based cluster-1 which only consist of features from the spindle 

motor current sensor, also shows promising results (RMSE= 0.17 µm). The maximum 

RMSE (RMSE= 0.45 µm) ANFIS model was obtained with PCA cluster-2 input features 

(Figure 39). 

Out of all ANN based prediction models, the PCA cluster-2 (Figure 39)  input features 

showed the minimum error (RMSE= 2.46 µm). This cluster was constructed with the 

features obtained from the current and vibration sensors. The overall error in the ANN-

based prediction model was comparatively higher than in the ANFIS model. Although the 

LM training algorithm-based ANN model showed the minimum RMSE (RMSE= 1.43 µm), 

whereas other ANN models were not as reliable (Figure 51).  
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Figure 51: Comparison among AI based prediction model 
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Chapter 7. Implementation of the Developed TCM System 

 

7.1. Introduction 

In this study, an Artificial Intelligence (AI) based tool wear diagnosis and prognosis 

system was developed based on sensor fusion signal and indirect measurement of cutting 

tool wear (flank wear) during a turning operation. The experimental methodology of this 

research was carried out by a series of semi-finish turning and final-finish turning 

operations of AISI 4340 steel, along with online measurement of sensor fusion signals. 

Further expansion of this research was carried out on other material machining processes 

using a successful AI technique-based decision-making system. This chapter validates and 

implements the developed data-driven TCM system for other applications (different 

workpiece materials and cutting tools).   

 

7.2. Implementation Methodology of the TCM System  

To expand the developed TCM system, it is necessary to implement and validate it for 

different applications, cutting conditions and workpiece materials. Several factors were 

considered for implementing the TCM system, which reflects the main objectives and 

industrial applications of this research. 

• A low-cost tool wear monitoring system. 

• A supervised (previously trained system) AI-technique based tool wear monitoring 

system for different cutting tool material.  
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• A supervised (previously trained system) AI-technique based tool wear monitoring 

system for different workpiece material.  

 

Therefore, the experimental design for the implementation test takes considered all 

these factors. The same experiment setup, machine tools and cutting tool holder 

(Kennametal© DCLNL 16 4D) was used for the designed system (Figure 52). Only the 

workpiece and cutting tool materials were different. In this chapter, the implementation test 

is listed as case study-1 and case study-2 (Table 18). The experiment details of the 

implementation and validation test are depicted in  Table 18. 

 

 

  

Figure 52: Experiment setup for validation (including tool holder) 
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Table 18: Experiment details for the TCM system implementation 

 

Experiment Details Case Study-1 Case Study-2 

Workpiece Material ASTM A536 Ductile Iron 

(24 ± 1.0 HRC) 

AISI D2 Steel 

(46 ± 1.0 HRC) 

Cutting Tool CBN (Cubic Boron Nitride) Pure Alumina (CC620) 

Cutting Speed, Vc  250 m/min 120 m/min 

Feed Rate, f 0.15 mm/rev 0.10 mm/rev 

Depth of Cut, doc 0.25 mm 0.50 mm 

Cutting Condition Wet Dry 

 

Figure 53 flowchart shows the procedure of the developed TCM system implementation 

in both case scenario’s (study-1 and study-2).  

 

 

 

Figure 53: TCM system implementation flowchart 
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7.3.  TCM System for Different Workpiece Material 

In this section of the chapter, the data-driven AI based TCM system is implemented in 

two different case scenarios. Each test was carried out according to the flowchart shown in  

Figure 53. The first stage of each study was to extract the online monitoring dataset from 

the sensor fusion signal. These datasets represent the conditions of the cutting tool (flank 

wear). While analyzing the online signals from the sensors, the input features (Figure 38 

and Figure 39)  was selected based on the PCC result from section 5.4.1 and PCA result 

from the section 5.4.2. The input cluster (PCC based cluster-1 and (PCA based cluster-1) 

was extracted to be feed into the data-driven TCM system to predict the output of each cut 

(one-pass in turning test).  

 

  

Figure 54: The architecture of the data-driven TCM system  
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Finally, the predicted data (flank wear value) given by the supervised data-driven 

ANFIS model were compared with offline monitoring results (flank wear value) through 

optical microscopy. Figure 54 shows the basic overview of the implementation procedure 

of the developed ANFIS- TCM system (in MATLAB© 2017) used for tool wear prediction 

(PCC based cluster-1 input features). 

 

7.3.1. Case Study- 1  

This case study’s objective was to investigate the implementation of the data-driven AI 

based TCM system in the wet turning of ductile cast iron with a CBN tool. According to 

the industrial requirement, the cutting operation was semi-finish turning where the tool life 

was quantified as the number of cuts (total pass) accumulated when the maximum flank 

wear reaches 200 µm.  

The input features were the PCC based cluster-1 (Figure 38), PCA based cluster1 

features (Figure 39) obtained from the real-time sensor fusion signal and the cutting 

parameters (cutting speed, feed rate, depth of cut). The output values (predicted flank wear) 

were obtained from the data-driven TCM system (Figure 54) and compared with the offline 

monitoring dataset (flank wear values from optical microscopy) (Figure 55 and Figure 56).  
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Figure 55: Prediction comparison of the TCM system (PCC-cluster-1 based)  

 

  

Figure 56: Prediction comparison of the TCM system (PCA-cluster-1 based) 
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7.3.2. Case Study- 2 

The second case study was to investigate the implementation of the data-driven AI 

based TCM system in hard turning of AISI D2 steel with a pure alumina ceramic tool 

(cc620). In this experiment, the cutting tool life was quantified as the accumulated number 

of cut (total pass) upon reaching the maximum flank wear of 300 µm (tool failure). PCC 

based cluster-1 (Figure 38), PCA based cluster-1 features (Figure 39) ) from the real-time 

sensor fusion signal and the cutting parameters (cutting speed, feed rate, depth of cut). The 

output values (predicted flank wear) were obtained from the data-drive TCM system 

(Figure 54) and compared with the dataset of offline monitoring (Figure 57 and Figure 58). 

 

  

Figure 57: Prediction comparison of the TCM system (PCC-cluster-1 based) 
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Figure 58: Prediction comparison of the TCM system (PCA-cluster-1 based) 
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The data-driven AI technique based TCM system was implemented in two different 

case studies. In both cases, the developed TCM system’s implementation and procedure 

were the same. Also, predicted values of tool wear (flank wear) were compared with the 

offline monitoring data, and the error was calculated for comparative analysis.  

In case study-1, Figure 55 and Figure 56 compare the predicted and offline data for PCC 

cluster-1 (Figure 38) and  PCA cluster-1 (Figure 39) respectively. PCC based cluster-2 
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In case study-2, the developed TCM system was more successful than in case study-1. 

In each case, the RMSE value showed that promising results could be achieved using both 

types of clusters (Figure 57 and Figure 58).  

Table 19 summarizes the offline monitoring results from the different case studies. The 

offline monitoring result shows that the wear progression is aggressive in case study-2 

compared to the wear progression in case study-1. It should be noted that the hardness of 

the workpiece material (46±1.0 HRC) of the case study-2 was close to the hardness of the 

workpiece material (50±1.0 HRC) which were used to design and develop the TCM system. 

 

Table 19: Summary of the offline monitoring results 

 

 
Case Study-1 Case Study-2 

Cutting Conditions 
Vc= 250 m/min; f= 0.15 mm/rev; 

doc= 0.25 mm 

Vc= 120 m/min; f= 0.10 mm/rev; 

doc= 0.5 mm 

 

Offline Monitoring 

(From Optical 

Microscopy) 

  

Flank Wear CBN Cutting Tool 

(Flank wear, VBmax = 204 µm) 

Pure Alumina Ceramic (cc620) 

Flank wear, VBmax = 303 µm 

End of Case Study Total cut numbers= 31 

 

Total cut numbers= 16  

  

Figure 59 summarizes the comparison between these studies. In case study-2, the TCM 

system accuracy (prediction of tool wear) is higher than in study-1. The RMSE values 
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indicate the implementation accuracy of the system. Cluster-1 (PCC) based features (Figure 

39)  are sourced from the spindle motor current and the vibration sensor, which showed a 

promising result while the TCM system was implemented in study-2 (lowest RMSE). It’s 

worth remarking that the maximum features from Cluster-1 (PCC) came from the current 

sensor and vibration sensor. Therefore, combination of the motor current sensor and 

vibration sensor can play a important role (low cost-based) in tool wear monitoring of 

different workpiece material during machining. Furthermore, PCA cluster-1 features are 

obtained from the current sensor only which also showed promising result in study 2. 

Further adaptability of the developed TCM system can reduce the prediction error in this 

case.  

The overall accuracy of the developed system under different workpiece material 

turning operations means that it can play a promising role in industrial applications. Ideally, 

it can become a standard TCM system for turning operation of different workpiece 

materials.  
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Figure 59: Error comparison of the TCM system  

 

7.4.  Adaptability of the TCM System 

This section provides a general overview of the developed TCM system’s adaptability 

for different workpiece material turning process. It demonstrates that the application of the 

TCM system can be wider due to its adaptive properties. The key objective of this research 

is to develop a low-cost TCM system which can be implemented for different workpiece 

machining processes. The case studies showed a promising result which can be carried out 

under different cutting conditions, cutting tools and materials during a turning operation.  

Based on the result obtained from case studies, the further the existing TCM system can 

be trained (which means, more supervision of the developed TCM system), the more 

reliable it will become for further applications.  

0

2

4

6

Case Study- 1 Case Study- 2

2.4

2.9

4.0

2.1

R
M

S
E

 (
µ

m
)-

S
y

st
em

 P
re

d
ic

ti
o

n

Case Study Type

TCM System Error Comparison in Case Studies

Cluster-1 (PCC) Cluster-2 (PCA)



M.A.Sc. Thesis – MS Alam; McMaster University - Mechanical Engineering 

 

 

106 

 

Furthermore, Material- 1, Material- 2 and Material-3 can be all used together to train 

the developed ANFIS based TCM system, which is defined as the ‘supervised learning’ of 

the developed TCM system. In this research, 65% of the entire online dataset from these 

workpiece materials were used to further train (Optimised training method used, hybrid) 

the model. 

The supervised learning (training) modifies the membership functions (input-

membership functions (gaussmf) which resulted in the lowest RMSE during the TCM 

system’s validation. 

With the lowest RMSE, the supervised system can be implemented to online monitor 

tool wear in the machining of different workpiece materials. Therefore, the adaptability of 

the developed TCM system will increase its reliability and can establish it as the standard 

tool wear monitoring system for different workpiece materials.  

Figure 60 provides a general guideline about the adaptability of the developed TCM 

system. The adaptability of the developed TCM system with reduced system RMSE can be 

further implemented in different workpiece material turning processes. 
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Figure 60: Adaptability of the Supervised TCM system 
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Chapter 8. Conclusions and Future Work 

 

8.1.  Summary of the Research 

This research investigates the system level design and development of an automated, 

reliable tool condition monitoring system in the turning process using sensor fusion 

methodology, signal processing and artificially intelligent (AI) methods.  

The research framework and the system level design are explained in Chapter 3. The 

main components of the TCM system’s level design are: feature extraction, signal 

processing, dimensionality reduction and the AI-based decision making. This chapter 

describes the sensor fusion function, signal acquisition and preprocessing of the acquired 

signal. 

Chapter 4 describes experimental work based on the design of experiment (DOE). A 

data acquisition system was used to detect the sensor fusion signals (five-channels) in every 

cutting test to generate a homogeneous dataset. All offline test results (tool flank wear 

measurement from the optical microscopy) were also presented in this chapter. Moreover, 

the effect of the cutting tool conditions on the sensor signals was also investigated to 

understand the relationship between sensor data and cutting tool conditions (tool flank 

wear).  

Chapter 5 is composed of two sections. The first section investigates the application of 

modern digital signal processing in metal cutting processes. The current sensor, vibration 

sensor and force sensor were used in the sensor fusion setup of this research. Generally, 

these sensors have different properties and operating principles. Therefore, more insight is 
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required to build a complementary relationship between these sensors. Use of signal 

processing played a significant role here to transmit the information from the sensor fusion 

to a standard platform. Time-domain, frequency-domain and time-frequency domain 

analysis were implemented in this chapter to generate and extract the information from 

sensor.  

The next section explores feature generation and extraction techniques from the 

acquired signal. A large number of features was extracted prior to analysis, which required 

dimensionality reduction techniques. Two types of dimensionality reduction techniques 

were implemented. Among them, PCC analysis provided the best result in this study. PCA 

results also considered that prompted further analysis. This chapter provided several 

cluster-based essential features from the extracted signal to serve as the basis for the 

decision-making system.  

Chapter 6 investigates the application of artificial intelligence (AI) in the machining 

process. Two types of AI techniques were introduced in this chapter. Cluster-based features 

from the PCC analysis (Figure 38) and PCA (Figure 39) were used in this model. The AI 

techniques were comprehensively evaluated based on these different types of clustered 

features. The PCC based cluster-1 (Figure 38) comprised of features with the greatest 

correlation to cutting tool conditions. On the other hand, PCA features (Figure 39) consisted 

of signals obtained from the motor current sensor, combination of the motor current and 

vibration sensor and the combination of all sensors, respectively. In the first section, the 

ANN-based model was introduced based on the relationship between the extracted signal 

and the tool conditions (flank wear value). In the next section, the ANFIS based model was 
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introduced. Comparison analysis showed that the ANFIS model outperformed the ANN 

model in predicting the cutting tool conditions. The ANFIS model with the PCC based 

cluster-1(Figure 38)  input provided the best result with the lowest RMSE (0.013 µm) 

compared to the other model. 

Moreover, the PCA based cluster-1 (Figure 39) showed a promising result (RMSE= 

0.017 µm). This cluster only consists of spindle motor current sensor data and shows good 

reliability in tool wear prediction. Therefore, while using the ANFIS model, a low-cost 

current sensor can reliably detect the cutting tool conditions during the machining process.   

Finally, the last chapter (Chapter 7) In this chapter, the developed TCM system based 

on the AISI 4340 steel hard-turning database was implemented to detect the cutting tool 

conditions in the turning operation of different material. The TCM system accuracy was 

analyzed in two case studies. In both cases, the TCM system based on the PCC based 

cluster-1 (Figure 38) type input (with machining conditions) and the ANFIS modelling 

showed high prediction accuracy.  

The developed sensor fusion based TCM system can be applied for machining different 

materials under similar kinds of machining processes. The TCM system’s adaptability 

ensures its successful implementation regardless of the workpiece material used in the 

turning process. 

However, there are some limitations to this research. Only flank wear was considered. 

Though the pure alumina ceramic tool and CBN tool showed aggressive flank wear 

progression, other types of tool wear were also observed, such as crater wear and chipping 

in some cases. Also, the combinations of workpiece material and cutting tool were selected 
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based on the similar type of wear mechanism of the cutting tool. However, further study is 

currently ongoing in the stainless steel turning process (with a cemented carbide cutting 

tool) where the build-up edge (BUE), adhesion and chipping wear are significant wear 

criteria. Apart from flank wear prediction, the developed TCM system is currently being 

implemented to predict the build-up-edge during wet turning operation of stainless steel.  

 

8.2.  The contribution of the Research 

The most significant contribution of this research work is introducing a low-cost tool 

condition monitoring (TCM) system for use as a standard at McMaster Manufacturing 

Research Institute (MMRI). Various aspects from different fields were applied in this 

research to investigate their relationship with the physics of the machining processes. 

Signal processing, data analytics and the application of AI techniques were used for design 

and development at the systemic level of tool condition monitoring.  

The main contribution of this work is summarised as: 

• Investigation of a multi sensor system tool wear monitor and comparative analysis of 

single, multiple and sensor fusions.  

• Proposal of different data fusion strategies to obtain the most efficient sensor fusion 

setup, based on dimensionality reduction and correlation analysis results.  

• Comprehensive cluster analysis of features extracted from the sensor fusion setup. 

Establishment of a standard data analysis procedure which will reduce the data analysis 

time in the future. 



M.A.Sc. Thesis – MS Alam; McMaster University - Mechanical Engineering 

 

 

112 

 

• Investigation of two AI decision-making algorithms. The results showed a promising 

outcome of ANFIS modelling implemented in the TCM system for machining different 

workpiece materials. 

• Design of a low-cost TCM system for different workpiece materials in the turning 

process.  

• Developing a standard method, via sensitivity analysis in which a combination of these 

sensors (particularly the motor current) can reliably monitor the progression of tool 

wear in machining. This development can significantly contribute to low cost and 

convenient monitoring of the cutting tool condition in the manufacturing environment. 

• Design and development of a TCM system in the turning operation. The preliminary 

database was created from the cutting parameters of semi-finishing to finishing 

operations. A wide range of machining parameters was adopted in all experimental tests 

in this research to broaden the scope of the developed TCM system’s implementation 

for a wide range of machining applications for different types of cutting tools and 

workpiece materials.  

• Furthermore, it provides a standard tool wear monitoring guideline to be implemented 

online with the data acquisition software LabView©. Such as, the cluster-based features 

and successful prediction model can be used for monitoring parameter and data 

analytics during online tool wear monitoring through the LabView©. 
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8.3.  Future Work and Recommendations 

There are several directions in which the present research could be extended. The most 

relevant direction is to integrate the system into online monitoring program through 

LabView© data acquisition software and feedback control (based on decision-making 

system) of the machine. In this case, the decision from the TCM system can be conveyed 

to the machine without any presence of a human operator. This approach will extend the 

potential industrial applications of this research in a much broader way.  

New advancements in the field of machine learning can also be adopted in the current 

research to enhance the model’s adaptability to a highly dynamic manufacturing 

environment. In addition, further data analytic, big data training capability and smarter IoT 

hardware can be integrated into the TCM system. 

Several material properties can be considered such as: the surface roughness, hardness, 

percentage of carbon (in steel) and stiffness of the material (which affects the measured 

current signal due to the change of non-linear loading) at a much wider scale. As a result, 

the developed TCM system can be implemented in the manufacturing industry considering 

reliability of the material properties in the same inventory lot.  
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