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Abstract

This paper considers a series of models and the effect of HIV antibody testing on
the dynamics of the disease. We examine HIV antibody testing in conjunction with
persuasive techniques designed to encourage tested infecteds to behave in a sexually
responsible manner. The population under consideration is a homosexual population.
Analytical methods are used to obtain information about the qualitative behaviour

of the models. Arcas requiring further study are discussed.
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Notation

5(t)
1(t)

Q)
P(1)
A(?)
N(t)

Susceptibles
Infecteds, not tested.
Infecteds, tested, sexually irresponsible.
Infecteds, tested, sexually responsible.
Full-blown AIDS.
Total sexually mature homosexual population,
N(t) = S() + I(t) + Q(t) + P(t) + A(t)
if P and A populations are sexually active.
N(t) = 5() + 1) + Q1)
if P and A abstain from sexual activity.
Rate of initiation into S(t) per unit time.
Transmission probability per sexual act.
Average number of sexual partners per individual
in 5(¢).
Proportion of tested infecteds entering
P(t), that is, tested infecteds who act responsibly.
Proportion of tested infecteds entering
Q(t), that is, tested infecteds who behave irresponsibly
Proportion of the I population who are
tested at time ¢.
Proportion of tested infecteds
(P(t) or Q(t)) entering A(t) at time ¢.
Natural death rate at time t.

AIDS induced death rate at time ¢.
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Chapter 1

INTRODUCTION

1.1 Epidemiology

Epidemiology is the study of the spread of infection in a population. An epi-
demic is a major oatbreak of a disease. A disease is called endemic if it is long term
and maintained at levels of various severity. An endemic disease is usually composed
of many epidemic outbreaks of the disease, with a reduced level of infection between
outbreaks. Often, she terms endemic and epidemic are used interchangeably. Ideally
epidemiologists would like to gain sufficient insight into the dynamics of infectious dis-
eases to allow them to provide guidelines for their eradication. Historically, infectious
diseases have placed an incredible toll on human life. In Europe, in the fourteenth
century, for instance, approximately one quarter of the population was wiped out by
the Black Plague. Over time, much has been learned about diseases, enabling us to
apply preventative techniques like immunization and better health standards, thus
providing us with tools for eradication of once rampant diseases. However, there still
remains a phenomenal number of diseases in today’s society which defy prevention
and for which no cures have been developed.

There are several methods of studying infectious diseases including, clinical,
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biological, ecologiczl and mathematical. It is only with the combined input of these
disciplines, that we can expect to reduce the prevalence of disease in society.

To gain a better understanding of what epidemiology is about we look at a
very simple example. Consider one strain of the common cold virus.! We assume
that initially, we have only a small number of individuals who are suffering from the
disease. If we place these “infected” individuals into a group of people who are not
yet affected by the virus, or in other words, who have not yet contracted the virus,
a certain number of these “susceptibles” would become infected, given appropriate
conditions for the spread of the common cold. The appropriate conditions may include
adequate proximity between the infected and susceptible persons, or poor health
conditions of the clisease free individual. Once an individual has outlived the life-
span of the microparasite involved in this particular strain of the common cold, then
he has developed an immunity to the disease, and is now considered to be a member
of the removed class. That is, he can no longer contribute to the spread of the disease.

We attempt to describe the spread of infectious diseases in the population,
with mathematical models, usiﬁg certain simplifying assumptions appropriate to the
specific disease behaviour and population mixing. With the use of these models we
are often able to ascertain certain information which may lead to control or even
eradication of the disease. The mathematical models may provide sufficient insight
into the likelihood of transmission and spread of infectious disease, as well as the
information required to predict future trends of the epidemic. Mathematical mod-
els are valuable for examining biological aspects, such as degree of infectiousness in
individuals at various times in the course of the disease, or of the life-cycle of the
microparasite beirg considered. In addition, we may be able to ascertain threshold
conditions which indicate what restrictions we need to impose on the population, and
what biological interventions are requisite to eradicate or at least impede the spread
of disease.

As an introduction to mathematical modelling of infectious diseases we look

at earlier stages of development of the theory involved in epidemiology. Our example

IThere are a number of different strains of the common cold but once an individual has suffered
through the course o infection of a particular strain, that individual develops a life-long immunity
to that particular strain.
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of the common cold is very similar to some of the earliest models in epidemiology
developed by Kermack and M°Kendrick (1927), (see [36], [37], and [50]). They divide
the population into three component classes, as we have, in our common cold example.
We assume that each class is disjoint from the others.

These classes are

1. Susceptible (3) - containing non-infected individuals who are capable of con-

tracting the disease.

2. Infected (I) - containing those individuals who are infected and capable of trans-

mitting the disease given appropriate conditions characteristic of the disease.

3. Removed (R - containing those individuals who have developed an immunity
to the diseas: and are no longer capable of being involved in the spread of the
disease. In addition, this class could represent the number of those who have
died in the course of infect}oﬁ or from other causes, or those individuals isolated

from the susceptible population.

Appropriate conditions for the transmission of the infection usually include di-
rect physical contact with an infected individual, inhaling infectious microorganisms,
eating contaminated foods or contact with an agent such as a mosquito. Moreover, the
susceptible individual may or may not possess certain resistance to a disease, through
varying biological or biochemical defences. Once an individual has been infected, he
generally must succumb to the effects of the parasite in the course of its life-cycle.
Very often there is a latency period, in which an infected can not transmit the disease.
The disease at this point is merely developing internally. At some point, however,
the microparasite will have matured enough to make this infected person infectious.
This person is then capable of passing the microorganism onto another unsuspecting
susceptible. Even:ually, the infected will exhibit recognizable symptoms. Formerly,
it was at this poiat that an infected person might be isolated from the susceptible
population until irnmunity had been developed or at least until communication of the
parasite was no longer possible. Frequently, the natural course of the parasite would

involve death of the infected person. More recently, however, due to the high cost
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of medical facilities and the availability of more humane treatments, isolation is not
as common. Other methods are now more frequently used to arrest the spread of
disease. Most models to date incorporate these hypotheses.

Kermack and M¢Kendrick made three basic assumptions as a basis for their

model.

1. The population size is constant, or alternatively, we are only considering a closed

population which excludes birth and mortality information.

2. The rate of new infections is proportional to the number of contacts between S
and I where 1he number of contacts are given as a proportion of the product of
S and [. This hypothesis follows the law of mass action, which assumes uniform

mixing of the population.

3. Infecteds are removed from the infected class at a rate proportional to the

number of in‘ecteds, or in other words, recovery is equally likely among infecteds.

Under these assumptions Kermack and M°Kendrick derived the basic SIR model. The

flow of individuals in their system can be represented schematically as
S— 11— R.

It is assumed that we are dealing with a continuous-infection model involving a very
large population. This allows us to treat the population as a continuum. The equa-
tions with S(t),I(¢), and R(t) representing the respective population sizes at time ¢

are given by,

S'(t) = —rS(t)I(t)
I't)y = rS@I(t) —~I(t) (1.1)
R(t) = ~vI(t)

where, the total population
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N(@t) = S@)+I(t)+ R()
S(0) = S,>0, I0) = I,>0and R(0) = 0.

Note that S’(t) + 1'(t) + R'(t) = N'(t) = 0, thus satisfying assumption 1. Since the
population is constant, N(t) = So+ I, for all ¢. The proportionality constants r and v
are positive, where r > 0 is the infection rate and 4 > 0 is the removal rate. The
first equation in 1.1, indicates that the susceptible population will decrease at a rate
proportional to the number of contacts between the infecteds and the susceptibles.
The constant term. r, can be determined by the history of the transmission of the
microparasite. The second equation respresents the change in I(t) at any time ¢. This
class receives new members equivalent to the number of individuals leaving S(t). The
rate at which class I(¢) loses individuals is given by the parameter 4. The constant
v can be determired through data collection, and represents the rate at which the
disease loses its infective power. The final equation symbolizes the flow into the
recovered class R(t). This amount is identical to the number of persons leaving the
infected class. In ¢ddition, note that there are no terms in the above equations which
include entry into S(t) or exit from R(t).

Kermack and M°Kendrick are credited with the threshold theorm, (see [36]),
that has become invaluable in epidemiology. This theorem states that there exists a
threshold or critical value of the susceptible population size such that if this threshold
value is surpassed, an epidemic will occur. Directly related with this is what we call
the reproductive rumber. If the reproductive number, (see [7]), generally labelled R,,
defined as the nuraber of secondary infections produced when one infected individual
is placed in a wholly susceptible population, is greater than one, than an epidemic
will occur. If this reproductive number is less than one, then the disease will die out.

Although the SIR model presented here furnished researchers with important
results, the model has several limitations. One of these includes the lack of vital
dynamics, accourting for rates of births and deaths in populations. Generally, if
a population is large enough and if the period of time under study is short, then

assuming a constant population with no births or deaths simplifies the model and
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is therefore useful ‘or modelling purposes, since any contributions such as births or
deaths would be nezligible. However, this is not usually the case. More often we must
account for births and deaths in order to improve the predictive capabilities of the
model. The inclusion of vital dynamics becomes a standard issue with mathematical
modellers. However, in order to maintain simplicity it is often assumed that the birth
rate is identical to the mortality rate, hence maintaining a constant population size.

Kermack’s and M°Kendrick’s model is simplistic, but the form of their equa-
tions provides a good base upon which elementary decisions can be made. However,
there is room for expansion of the Kermack/M‘Kendrick model. If the population is
homogeneous, (i.e. uniformly distributed), and random mixing can be assumed then
model 1.1 is a relatively good approximation. However, very often there are other
important factors that enter into the dynamics of the disease. If the population is not
uniform or similarly, if there are geographic or demographic factors contributing to
the spread of the disease, then we cannot assume random or uniform mixing. Thus,
more complicated models have to be develbped to account for these characteristics of
the population.

With Kermrack’s and M¢Kendrick’s model, researchers are equipped with a
noteworthy startirg point. More factors can be incorporated into future models, see
for example [50], [29], [30], [8], and [17]. For instance, it is not such an unmanage-
able task to include more precise characteristics of the infective agent as it progresses
through its life cycle. Some diseases are characterized by a brief period of immunity
following the pericd of infectivity. The immunity eventually wears off and an individ-
ual becomes a susceptible again. Tetanus, smallpox, influenza, cholera and typhoid
fever are examples of a disease of this nature. (See [26]). In this case the general flow

of the population can be represented schematically by
S—I—R—S
If no immunity is developed, then the fé)llowing flowchart is appropriate.
S—I—S

A disease which fells under this category is gonnorhea, a sexually transmitted disease.

Another possibilily is a disease which possesses a long latency period. Chicken pox
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is a disease which could be modelled within this setting. The flow chart for this

progression may be given as
S—FE—I—R

where E represents the population in the latency period.
There are a so a variety of other modelling forms which are presently being
used in research today. (See for example (3] and [4].) The models introduced in this

paper are basically of the SIR form.

1.2 Sexually Transmitted Diseases

Gonnorhea, syphilis, and genital herpes are examples of sexually transmitted
diseases. The mocdels for sexually transmitted diseases differ from those mentioned

in the previous section. Anderson et dl., [7] list four major variations.

1. We need only consider those individuals who are sexually active. Further, the
relative size of the infected population does not determine the degree of the

spread of the infection.

2. There are numerous individuals who do not display any symptoms of the disease,
l.e. carriers, but they are still capable of spreading infection for lengthy periods

of time.

3. Most often, suffering from a sexually transmitted disease does not induce an im-
munity. Thus, once an individual has been treated and recovered, the individual

becomes a ssceptible once more.

4. There are lerge differences in sexual behaviours and this often contributes to

the persistence of the disease in the population.

There are many factors involved in the modelling of sexually transmitted dis-
eases, that we are unable to fully understand. We must account for the social pro-
cesses of sexual irteraction as this is the fundamental means of transmission of sex-

ually transmitted diseases. The inclusion of heterogeneity of behaviour is necessary



0

CHAPTER 1. INTRODUCTION

for a more complete and comprehensive description of the disease in nature. Ini-
tially, though, we examine a homogeneous population in order to get a grasp of the
general dynamics of a system. A homogeneous population can be regarded as a pop-
ulation whose members have uniform behaviours. All susceptible individuals would
have equal probabilities of contracting the disease. Some examples of homogeneous
populations include homosexuals, intravenous drug users, or individuals in a school
classroom. On the other hand, individuals in a heterogeneous population would have
varying degrees of risky behaviour, or susceptibility with respect to disease trans-
mission. For example, individuals, before marriage, are more likely to have a larger
number of sexual partners than after marriage, thus putting them more at risk of
contracting a sexually transmitted disease. ? A heterosexual population is an ex-
ample of a heterogeneous population. Modelling heterogeneous populations tends to
be more accurate than using a homogeneous population in modelling, in light of the
complexity of life. For examples of heterogeneous models see [16], [19], [24], and [45].
Adding a heterogeneous quality immediately makes the models more complicated.

Besides belavioural aspects, math modellers must also include certain bio-
logical aspects of she disease. For instance, the transmission probability per sexual
contact, or variab e behaviour of the virus involved in the disease are biological as-
pects. The life cycle of a sexually transmitted disease virus is considerably different
than for a measles virus or for most of the other diseases mentioned in the previous
section.

As with most epidemiological models, some factors are significant to some
diseases but not to others, for example, the presence of other sexually transmitted
diseases may increase the probability of transmission of another sexually transmitted
disease. In the AIDS epidemic, insertive sexual contact is less likely to result in
infection than is raceptive contact. (See [32]). However, this factor is unlikely to be
important in the transmission of the herpes virus. In modelling, one must be careful
to strike an appropriate balance between complexity and accountability for crucial

parameters.

Generally, due to the means of transmission of a sexually transmitted disease,

20f course, this conparison is necessarily true only if the married couple has noninfected partners.
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and hence the difficulty of surveying the population, there is an extreme lack of
data available for accurately modelling these diseases or for testing the accuracy of
existing models. Data to determine sexual contact frequency, average number of
sexual partners per individual, sexual practices that contribute to the spread of the
disease, length of incubation period, transmission probability per sexual contact, and
the knowledge of other possible relevant social factors would be helpful.

Cooke and “Yorke [17] developed a model describing the gonorrhea epidemic
that provided modellers with an excellent base for studying other sexually transmit-
ted diseases, inclucing the AIDS epidemic. This model was the first mathematical
model for the transmission of a venereal disease, see [46]. (See also [39] and [53].)
More recently, Dietz and Hadeler [19] have presented a model involving eight differ-
ential equations that include a pair formation function incorporating female and male
behaviours in a nonlinear fashion. (See also [24]). May and Anderson [5] have also
been significant contributors in this area of study. They have incorporated different
risk groups according to sexual activity. Many models 'today' employ these methods.
The models menticned here represent few of many available approaches to modelling
sexually transmitted diseases, see for example, (3], [4], [9], [10], [15], [20], and [33].
Schwager et al. [43] provide a brief background on the history of epidemiology, in-
cluding the modelling of sexually transmitted diseases and AIDS.

This paper considers the sexually transmitted disease called the acquired im-
munodeficiency syndrome (AIDS), and the virus associated with it, the human im-
munodeficiency virus (HIV). In the next section we explain some of the important

aspects of this debilitating disease.
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1.3 Acquired Immunodeficiency Syndrome

The acquired immunodeficiency syndrome has become a major concern to soci-
ety today. The occirrence and death rate due to AIDS is increasing at a phenomenal
rate. It’s toll on human life is incredible. Usually, once an individual displays symp-
toms of AIDS he cen be expected to die in approximately one year (see [2]). There are
new drugs, such as AZT which may assist in lengthening lifespans, but even so, death
due to the disease is highly likely. Primarily, deaths are due to the decrease in im-
mune system capabilities, thus inviting many opportunistic diseases directly related
to AIDS (see [32] and [2]). These include Kaposi’s Sarcoma, Pneumocystis carinii
and cryptococcal meningitis.

Much progress has been made in studying the AIDS epidemic, but much still
remains to be discovered. Mathematical modelling provides information about the
epidemic which enables us to more fully understand the dynamics of the disease,
and further, supplies us with a priority scale for future research and data collection.
Allen et al. [1], ccnsider many important issues in the prevention of AIDS and HIV
infection, and priorize some of their suggestions. They emphasize the need for more
research and serosurveillance studies.

AIDS is a sexually transmitted disease with certain unique properties. One ba-
sic difference between AIDS and other sexually transmitted diseases, is that AIDS has
an extraordinarily long incubation period. During this period the infected individual
displays no obvious outward symptoms, although he is still capable of transmitting
the disease. This makes disease control even more difficult, since, unless we know
which individuals are infected, we are often vulnerable.

There are many other unique components inherent in the AIDS epidemic, such
as the high probebility of death due to AIDS, whereas in other venereal or sexually
transmitted diseases, death is generally avoided. The virus associated with AIDS, the
HIV, is a lentivirus, or more specifically a retrovirus, (see [18]). Most viruses involved
in sexually transinitted diseases are not retroviruses.

HIV is coatained and transmitted through bodily fluids especially through
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blood, blood products and semen. We must consider the various activities that in-
volve exchange of these bodily fluids. Contributing factors in the spread of AIDS
can be subdivided into demographic and biological components. At this point, we
consider various social components related to the spread of disease. Sexual activity is
one of the primary mediums for transmission of the HIV. See [52], [7], and [32] for the
following and addi-ional facts concerning the characteristics and determining factors
in the spread of A'DS. Consider the heterogeneity of behaviour involved here. Some
individuals have many different partners, others have few, and still others are absti-
nent. The number of sexual partners an individual has, plays an important role in the
modelling of AIDS. Clearly, the probability of finding an infected partner increases as
the number of different sexual partners increases. A sexual contact with an infected
individual does not guarantee transmission of the HIV due to the low probability of
transmission per sexual act. Hence, the number of different partners a susceptible
individual has is rot the sole determining factor in the spread of AIDS. Frequency
of sexual contacts with the same partner also has a bearing on disease transmission.
The type of sexual contact may also contribute to the probability of infection. Hy-
man and Stanley 32] consider more in depth analysis of sexual contact types. See
also [51] for a survey of sexual contact types. To date, anal receptive sex has the
highest probability of transmission of the virus. This is probably the reason for the
rapid spread of disease in the homosexual population. Further, there is a difference
in transmission probabilities between receptive and insertive sexual contacts. Now,
of course, not everyone behaves alike in sexual behaviour. For instance, most mar-
ried individuals do not behave promiscuously, (although there are exceptions to every
rule), and hence married couples are at less ‘risk’ of contracting the disease than other
sexually active incividuals. This leads to the common modelling technique of divid-
ing the population into various risk groups. A risk group contains individuals who
have similar behaviours, and whose members tend to interact primarily within their
group. Those individuals who have sexual behaviours which invite infection, would be
considered as high risk individuals. Examples of high risk individuals would include
homosexuals and prostitutes. Many young adults, those being highly sexually active,

would fall in a moderately high risk group. High risk individuals are more likely to
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contract the disease, than those individuals who are more conscientious about safe
sexual practices. Safe sexual practices include the use of prophylactics, nonoxynol-9,
or complete abstinence. The higher the risk level the faster the susceptible popula-
tion becomes saturated since high risk groups tend to have less members than low
risk groups. Once a risk group is saturated, that is, once a large proportion of the
individuals in that -isk group become infected, there is a tendency to pass the disease
to lower risk groups. Since in the lower risk groups safer behaviour is practiced, and
since the number o' individuals is greater, the time to saturation is longer, and hence
the slower the spread of disease to lower risk groups. For a more detailed look at
saturation issues refer to [18].

Sexual activity is a primary means of disease transmission but is not the sole
means. Intravenous drug use has been found to be a major cause for concern. Often,
IV drug users will share unsterilized needles, (this is common in shooting galleries)
and since blood products are a medium for transmission of the HIV, then these drug
users are at risk. Many prostitutes, and heterosexuals are drug users and hence there
is great concern for the spread of disease in the heterosexual population. Considering
this, at some point we must consider the interactions between various risk behaviours
and the spread of AIDS. These considerations, of course, would make models very
complicated and for the most part, we are not in a position to examine these combi-
nations. Although much research and headway has been made since the first AIDS
case was diagnosed, much effort is still required in understanding the basics of the
AIDS epidemic.

Other social contributing factors, (see [32] and [52]), in the spread of AIDS and
HIV infection include age, population density, geographical factors, ethnicity and so-
cial groups, and increased probability of infection due to other diseases. Other means
of transmitting the disease is through vertical transmission (from mother to child,
before or during birth) or through accidental exposure to blood or blood products
by health care workers. Prior to the development of the enzyme-linked immunosor-
bent assay (ELISA), which accurately detects HIV antibodies, and prerequisite blood

screening of blood donors, hemophiliacs were at a great risk of contracting the disease

3The concept of saturation was introduced by Hethcote and Yorke [28] in 1984.
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through frequent blood transfusions.

Biological factors are more difficult to control than demographic variables. The
greatest biological contribution to the annihilation of AIDS would be the development
of a vaccine. However, this is unlikely to be obtained in the near future.

In modelling the AIDS epidemic we must consider the probability of trans-
mission of the HIV during a sexual act or other risk behaviour. The probability of
transmission of the HIV is considered by some to be within the range 0.1 to 0.2, (see
[2]). Others, see [32], say that the probability of transmission per sexual act is less
than 0.01.

Inherent in the AIDS epidemic is the long incubation period. Current esti-
mates, (see [2], [44| and [32]), of the length of the incubation period are around an
average of 7 to 8 years. These estimates are getting larger in value as time progresses
and more data is collected. It is hard to determine an accurate average incubation
period owing to th= relative newness of the disease and the lack of time available to
undertake long-ter studies. To further complicate the modelling of AIDS, the infec-
tiousness of individuals varies during the incubation period. According to Hyman and
Stanley [32], and their references therein, there is a short period of high infectivity
immediately after infection, followed by a lengthy period of low infectivity for the
majority of the incubation period, with another period of high infectivity prior to a
full-blown AIDS diagnosis. This variability in infectivity creates another complicated
dimension in the s;udy of AIDS. _

No disease 10 date, has received as much attention as AIDS. Many significant
individuals have devoted much of their recent years to the modelling of the AIDS
epidemic. For instance, Anderson et al. [7] introduced one of the earlier models of the
AIDS epidemic. It is upon this model that many more recent models, including those
presented in this taesis, were developed. Others, such as the Los Alamos group, [48],
(16], [32], [31], [18], have taken different approaches but have done so by extending
the risk models of Anderson et al. (see also [2], [6], [5], and [42]). Anderson et al.
have assumed exponential growth in their modelling efforts while the Los Alamos
group conclude that the growth is more likely to be cubic. Observed data indicates

(18] that the growth is actually cubic but early in the epidemic an exponential growth
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is appropriate.

Carlos Castillo-Chavez [11] presents a review of recent modelling efforts paying
particular attention to the role of long incubation periods, the effects of partnership
dynamics, and the effects of multiple sexual partners. There has been much activity in
studying the effects of long periods of infectivity. These include the work of Castillo-
Chavez et al. [12], 13], [14], where a series of models are presented, allowing for long
periods of infectivity while accounting for various risk groups. Thieme et al. [49]
consider the role of variable infectivity in the spread of the HIV. The issue of risk
groups is important to understand in our plight to end the AIDS epidemic. Groups
such as Blythe et al. [9], consider like-with-like mixing in creating appropriate risk
groups. Castillo-Chavez et al. [15] consider age structure, proportionate mixing
and cross-immunity in their 1989 paper. Not necessarily restricted to the AIDS
epidemic is the approach taken by Hethcote and van Ark [27], in which they consider
heterogeneous population mixing. Other significant papers include those by Jacquez
et al. [33], [34], Koopman et al. [38], and Sattenspiel and Simon [45]. '

Common to most models is the notion of a reproductive number. If this
number is below one, then an epidemic will be avoided. The problem remains, what
interventions are necessary to reduce the spread of disease, or that is, what must
we do to bring th= reproductive number below one? As we have little control over
biological aspects. we must focus on behavioural factors. For instance, reducing
the number of unsafe sexual practices would aid in eliminating this deadly disease.
Education plays a major role here. As more individuals become aware of the risks
involved, the larger the proportion of individuals practicing safe sex or other low risk
behaviours, and lence there is a slow down in the growth of infected individuals.
A free supply of [V needles is offered in some places to decrease the risk to drug
users. Prophylactics are now being made more accessible in an attempt to promote
safer sexual practices. Another potential means of reducing the spread of AIDS is
the practice of HIV antibody testing. Already, all blood donors are screened for the
HIV, and individuvals are notified if the test results are seropositive. The study of the
effects of HIV testing is an area where little research has been done. McCusker et

al. [43] assess the effects of HIV antibody testing on future behaviours. They were
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able to conclude that testing did have an affect on future behaviours, but that these
conclusions could rot be generalized outside of the cohort being studied. Lyter et al.
[41] examined the desire of homosexual and bisexual men to know the results of HIV
antibody testing. They concluded that demographic differences were evident between
those who wanted their results and those who did not want their results, especially
between ethnicity, age and educational levels. Judson et al. [35], have looked at
the effect of the A[DS epidemic on public health policy. They consider a number of
important issues, including educational target groups, control regulations and laws,
confidentiality of EIV testing, and need for constant re-evaluation, as additional data
is collected.

An excellen’ way of gaining more information about the dynamics of AIDS is to
perform HIV antitody tests. More accurate estimates of numbers infected, trends of
the disease, infectivity levels, and other important factors can be derived with these
tests. Further, knowledge of seropositive results would help to encourage infected
individuals to practice safer sex. However, lack of confidentiality of test results could
deter individuals fr-om becoming tested. The imposition of laws requiring individuals
to be tested, and legal repercussions enforcing responsible behaviour may be effective
but may be consicered an infringement on our freedom. Laws enforcing responsible
sexual behaviour ray need to be imposed on those individuals who insist on behaving
irresponsibly. Regarding this idea, we need more data on proportions of individuals
behaving responsibly or irresponsibly.

Data collecsion is a major problem in controlling the AIDS epidemic. Without
data, parameter estimations will be inaccurate, future trends can not accurately be
predicted, and modelling in general is less effective. Modelling, however, does provide
us with recognition of many of the necessary areas that require data collection. In
order to most effectively aim educational attempts, we must know more about finding
the target groups most likely to benefit from certain types of intervention, or what

information is required, or what educational techniques are most beneficial.
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1.4 Outline

In this thesis we consider the effects of HIV antibody testing in a homosexual
population in conjunction with educational or other persuasive techniques to encour-
age responsible sexual behaviour of tested infected individuals, in reducing the spread
of AIDS. We also consider some confidentiality and legal issues. The models being
used are purposely simplistic in nature. Since little research has been done in this
area, we require a general indication of testing significance. The models in this thesis
are composed of nonlinear differential equations. Local stability properties are exam-
ined for all models, and global results are obtained in many cases. In Chapter 2 we
introduce and inte-pret the general model. In Chapter 3 we introduce and analyze
the effects of instantaneous testing, by examining the SPA, SQA, and SQPA models.
Tested infected inclividuals either behave responsibly or irresponsibly. We are able
to consider the effzcts of these behaviours on the outcome of the disease, prior to
introducing the partial testing proportions used in Chapter 4. Chapter 4 analyzes
the most realistic models in this thesis. Here we look at partial testing proportions
in combination with responsible or irresponsible sexual behaviours. In Chapter 5
we provide a comparison and discussion of the models presented in this thesis. The

appendices include most of the supporting calculations and proofs.



Chapter 2

THE MODELS

The main purpose of this paper is to introduce and analyze models of the
AIDS epidemic with emphasis on the importance and effectiveness of testing for HIV
positivity, with reépect to curtailing the spread of the disease. It is important to
note that we are essuming that the procedures for testing seropositivity are very
accurate and that we are not studying the effectiveness of the tests for determining
whether or not a person who tests positive actually is HIV positive. If testing is
confidential, then more people are tested and hence there are fewer untested infectives
to spread the disease unwaringly. However, testing for the HIV does not cure an
individual. These tested individuals will either behave responsibly by practicing safe
sexual behaviours or by abstaining from sexual activity, or will behave irresponsibly,
and not use preventive techniques to reduce the spread of AIDS. As the number of
individuals tested increases, the greater the number of responsible or irresponsible
tested persons. If sest results are not confidential between doctor and patient, then
there will be fewer individuals tested, since there may be a fear of quarantine, loss
of job security, negative social implications, or imposition of laws involving penalties
for purposeful transmission. If there are fewer tested infecteds, then there will be
fewer knowingly irresponsible infected persons. On the other hand, there will be
more sexually responsible individuals due to possible repercussions for irresponsible

behaviour. There is much controversy as to whether test result confidentiality should

17
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be honoured between doctor and patient or whether laws should be created that would
make it compulsory for doctors to report their patients positivity in certain situations.
This selective confidentiality poses a problem in itself. If some infected individuals are
reported and others not, then attempts at collecting accurate data would be in vain.
To make any firm conclusions about the effect of confidentiality on the course of the
epidemic would require data giving the probability of being a responsible individual
rather than an irrzsponsible one, under voluntary and compulsory conditions, and
the probability of heing tested where confidentiality is practiced versus where lack of
confidentiality is practiced. Further, a solution to achieve adequate data collection
would need to be suggested.

Using one basic model and some variations on it, we are able to analyze many
significant factors of HIV testing. The models are purposely simple to reduce unnec-
essary complexity in analysis, but complex enough to provide some information to
indicate general trends and potential remedies or reductions in the spread of AIDS.
However, our results are preliminary, since the models would require considerable
refining before the predictions should be used by decision makers.

A schematic diagram providing a general framework for the flow of activity
through the systein, taking testing into account is displayed in figure 2.1.

The population under study is a sexually active homogeneous population that
very closely resembles a homosexual population. ! We subdivide the population into
five disjoint categories:

1.) Susceptibles S(t),

2.) Infecteds, not tested I(t),

3.) Infecteds, tested, sexually responsible P(t),

4.) Infecteds, tested, sexually irresponsible Q(t),

5.) Full-blown AIDS A(t).

The susceptible class, denoted by S(t) represents those individuals that are

1We consider sexual activity as the medium of HIV infection but this is not necessarily required
in the models presented in this paper. We do require a homogeneous population, but this may be
any homogeneous pcpulation. For example, a population of IV drug users is also a homogeneous
population. Since sexual activity is the major cause of the spread of AIDS in society today, we
choose this to be our risk activity under study.
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Figure 2.1: Schematic Diagram of Partial Testing: SIQPA
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not infected but are capable of contracting the HIV under appropriate conditions.
One enters the susceptible population upon one’s first sexual act. The number of
individuals enterinz the susceptible population is represented by a constant rate A.
The assumption that A is constant is not too unrealistic, since the population we
are considering is a homosexual population which is unlikely to produce offspring.
Further, even if tte population were not homosexual, any offspring, would take a
considerable amount of time to mature into a sexually active individual. Individuals
leave the susceptible population and enter the infected population through sexual
contact with members of the infected class at a rate B¢, where [ represents the
transmission probability and c represents the average number of sexual contacts per
individual in S. W= assume the law of mass action in that the susceptibles interact
with the infecteds at a rate proportional to the product of the number of infecteds
and susceptibles.

We have sulb-divided the infected population into three categories using respon-
sibility (or lack of raspon‘sibility) in sexual activity and HIV testing as the factors that
determine to which class an individual belongs. I(t) represents those individuals who
are infected with the HIV but have not yet been tested positive. A simplifying as-
sumption in our models is that the latency period, in other words, the period between
infection and presence of HIV antibodies in the blood, is insignificant, so that if an
individual has beea infected, then testing for antibodies will indicate this. In fact,
data seems to indicate the latency period is less than six months. All current math-
ematical models of the AIDS epidemic reflect this fact. Individuals in the I(t) class
will leave this class as determined by the proportions w and u. The proportion of the
infecteds in I(t) that are tested at time ¢ is represented by w. The parameter p is used
in all populations {o represent the natural death rate of individuals. Q(t) represents
the class of infecteds who have been tested, but have not paid any heed to their con-
dition and remain irresponsible sexually, thus putting susceptibles at risk. The last
subdivision of infecteds are those individuals who have knowledge of their infectious-
ness and behave responsibly, that is, they practice safe sex or are abstinent. We label
this class P(t). Finally, we assume that all infecteds eventually develop AIDS at a

rate v. Once an individual has developed full-blown AIDS, they become a member of
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the class A(t) and they no longer directly contribute to the epidemic. As this class is
of interest to us for various reasons, including benefit cost analysis for care of AIDS
patients, we consider it in our model.

If sexual activity of infecteds is confined to other infecteds only, then their
contribution to the epidemic would be insignificant. But we cannot assume total
knowledge in regards to who may or may not be infected. Confidentiality of testing
plays a role here since the limited or complete public knowledge of an individuals
infectivity would p-obably provide incentive to refrain from unsafe sexual practices.
However, total disclosure could conceivably backfire, putting susceptibles at greater
risk from those infecteds who do not know they are infected and hence seek out only
those not known to be infected, as their sexual partners. As well, greater confiden-
tiality might encourage more high risk individuals to be tested and thus might result
in a smaller I(¢) c ass and a larger responsible P(t) class, due to the migration of
newly tested I(t) individuals into the tested classes, thus reducing the spread of the
disease. Unfortunately, there is insufficient data available. Moreover, the models do
indicate that testing may be a key factor in reducing the incidence of AIDS, and thus
data collection on this matter should be undertaken.

The responsible and irresponsible tested infected populations are determined
by the proportions p and 1 — p, respectively. The parameter p stipulates the per-
centage of tested irfecteds who are responsibly sexually active and 1 — p provides the
proportion of tested infecteds who remain sexually irresponsible. Hence, we should
consider various alternatives including education, confidentiality issues, and as a last
resort legal issues, that would increase the parameter p, and therefore decrease the
number of tested infected sexually irresponsible individuals contributing to the spread

of the disease.

The equations describing our system are:

51% _ A_(#+ﬁc(1(t)+Q(t)))S(t)

11 I
% _ (Bc( (j\)'(-:)Q(t))> S(t) — (1 +w)I(t)
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fl?i_t(t_). = (1—pwI(t) — (p+v)Q(t)
fl_%). = pwl(t) —(p+v)P(t) (2.1)
f%§2= v(P(t) +Q(t)) — (4 + d)A(t)

N(t) = S@)+I() + Q) + P(t) + A1)

where
50 = 5:>10
I0) = L;>0
Q) = Q. 20,
P(0) = P,>0, and
A(0) = A,>0.

It follows that

dN(t)  dS(t) | dI(t) | dQ(t) | dP(t) | dA()
& - @t T Ta & a4
= A uN(t) — dA().

This model is a generalization of the model in Anderson et al. [7]. Anderson et
al. develop a continuous-infection model that includes a susceptible class, an infected
class, a full-blown AIDS class and a recovered class. Their model was developed at
a very early stage in the study of AIDS. We make the simplifying assumption that
all individuals who become infected will eventually die of AIDS related causes and
so we do not include a recovered class in our models. According to current data, a
very large proportion, if not all of the infected individuals will die from AIDS related
causes. Otherwise. Anderson et al. have a good introductory approach to modelling
the AIDS epidemic. We have refined their model since we subdivide the infected

individuals into the classes I(t), Q(t), and P(t). Further, we have excluded their
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removed class Z(t). as it is no longer appropriate. The use of the law of mass action
to model interactions between members of the different populations is retained for
our model, as are the general dynamical qualities of the disease. This format allows
a good introductory look at the dynamics of the AIDS epidemic as it relates to HIV
testing.

The model we developed is well-posed in the sense that all solutions remain
nonnegative and bounded. Refer to Appendix G for the proof.

Before further analyzing the model in equations 2.1, we look at a few variations
of this model.



Chapter 3

INSTANTANEOUS TESTING

3.1 Preliminaries

All the models included in this chaptér are derived, under certain simplifying
assumptions, from our original system given in equations 2.1. We include a series of
less mathematically complex systems in order to gain some insight into the dynamical
behaviour of the AIDS disease in certain extreme cases. The models in this chapter
are not mathematical subsystems of the SIQPA model. The SIQPA model, is not
properly defined when w = 1 or w = 0. If w = 1, then I'(t) = B—C(jj—ms —(u+ 1)1,
which implies that more than one hundred percent of I(t) is being removed at any
time. If w = 0, then this implies that Q(t) = 0 and P(¢) = 0, so that the untested
infecteds all must clie of natural causes, and not AIDS related diseases. Thus, we
have decided, that 'n order to get a reasonable grasp of the effects of HIV antibody
testing we would examine the series of models using the assumption that the untested
population, I(¢) is non-existent. In the first sub-model presented and analyzed in this
thesis we disregard the non-tested infected class I(¢). Thus we make the simplifying
assumption that tesiing is instantaneous, i.e., the instant a person from the susceptible
class contracts the HIV, he becomes a member of the class P(t) or Q(t¢) with the
respective probabilities p and 1 — p. All models included and analyzed in this chapter

employ the instantaneous testing assumption. Thus, the models are all based on

24
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the simplified model, denoted in figure 3.2, a schematic diagram representing general
movement between classes.
The four dimensional system, obtained by making the assumption of instan-

taneous testing, is:

el _ g (u ¥ ﬂcQ(t)) S(t)

dt N(t)

L (1-p)ﬂc+‘j§t(§ﬂ—(u+v>@(t)

:i? _ p%@_(ﬁvw(n (3.1)
PO op) + Q) - (u+ )A®)

N(@) = St)+Q()+P(t) + A(?)

with S,>0,Q,>0,P,>0and A, > 0.

Therefore,

ijz—t(fl = A—uN(t)— dA(2).

The assumption of instantaneous testing is not realistic. However, understand-
ing this extreme case will prove useful for interpreting the effects of testing on the
AIDS epidemic. Tle value of p indicates the proportion of the infected population
who are acting responsibly, and who have not yet developed full-blown AIDS, and
1 — p indicates the proportion that behave irresponsibly. We consider 0 < p < 1.
Since p is the coeflicient representing the proportion of new individuals entering P(t),
of those who were tested from I(t), and 1 — p the equivalent coefficient for Q(#), then
an increase in the value of p will increase the number of individuals entering P(t).
Similarily a decrease in p results in a decrease in the number of persons entering

P(t). Due to the fact that p+ (1 — p) = 1, as the number of individuals entering P(t)
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Figure 3.2: Schematic Diagram of Instantaneous Testing: SQPA
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increases, the number of persons entering Q(t) necessarily decreases and vice versa.
Hence ultimately for a decrease in the sexually irresponsible infected population we
would like to attain a large value for p. This may be partially achieved using different
educational techniques aimed at the tested infecteds, or perhaps legal repercussions
as incentives for tested infecteds to refrain from sexual activity.

We start our analysis by looking at the two extreme cases, p = 1 and p = 0.
We consider the case where p = 1 first. If p = 1, then we can interpret the model
as indicative of no infected sexually irresponsible individuals in the system. Hence,
we would expect the disease to eventually die out, since testing is 100% effective in
eliminating the souarce of infection. Disease elimination, of course, is the optimal
situation. However, it would be very difficult to obtain. There are many factors to
be taken into cons deration when striving for this goal, such as the phenomenal cost
involved in testing everyone,! as well as the task of converting peoples moral values,
or imposing a quarantine on those individuals infected with HIV. Further, it is not an
easy task to monitor an individual’s sexual behaviouré, or to collect appropriate data
due to the private nature of sexual activity. Fortunately, we need not attain this state
of totally responsisle tested infected individuals in order for the disease to die out.
We shall see in the analyses of the various models that there are scenarios in which
the models predict that the disease will die out. The case where p = 0 is presented
later. In this latter case the infected population consists of only those individuals

who are not willinz to behave responsibly.

3.2 Testing is 100% Effective: SPA and SPA,

3.2.1 The SPA Model

The schematic representation for the SPA system, (i.e. when p = 1), is given

IThe ELISA is a r2latively low cost test, but if we consider the organization required to test the
entire population, the cost can become quite large. '
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in figure 3.3, and the system of equations becomes:

d—Sdg-Q = A- uS
%ﬁt) = —(p+v)P
df;_it) = wP—(u+d)A ' (3.2)

N@) = S(t)+P(t)+ A(t)

with S(0)=S,>0, P(0)=P,>0 and A(0) = A, > 0.

Thus,

%t(t) = A— pN(t) = dAQt).

Note that @Q(¢) is not considered in this model since when p = 1, and @, = 0, no
individuals enter the class Q(¢), and hence, @ = 0. If there are any members in Q(¢)
at t = 0, in other words if Qo > 0, these individuals will die out exponentially, so
again we can consider @ = 0.

Only one equilibrium point exists:

N VR,
Il

o O x>
7
w
w

The Jacobian for this system, at the fixed point, is given by

— 1 0
J = 0 —(pu+v) 0 (3.4)
0 v —(p +d)
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Figure 3.3: Schematic Diagram for 100% Effective Testing: SPA
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The Jacobian is a sriangular matrix and hence the eigenvalues are the diagonal ele-

ments:
/\1 = —/l
Ay = —(p+v) (3.5)
A3 = —(p+4d).

Since the eizenvalues are real and all negative and since system 3.2 is linear,
(—2—,0,0) is a globally asymptotically stable node. In fact, since the equations in 3.2

are linear, we are zble to solve the system explicitly.

o PO
At) = dvae-<“+”)t + (Ao ~ 7}’3) e~(utd)t

The results we obtained are intuitively clear. If there are no sexually active
irresponsible infected individuals then the disease will not spread, in fact, the disease
will die out exponantially.

The assumption used in this section, i.e. p = 1, is, as mentioned previously,
unrealistic. Only f we were to look at a subpopulation would we possibly have this
situation arise. That is, there may be a group of individuals living in a certain
community or household where sexual activity. by infecteds is against moral values
or is contradictor to some other factor. Even so, there still exists the possibility
of extraneous soucces of infection, such as IV drug use, transfusions or accidental

exposures to the virus. Thus we alter our model to include these sources.
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3.2.2 Extraneous Sources: SPA,

The following model takes a look at the introduction of an extraneous input
that is not due to & sexual transmission of the virus HIV. We label this constant rate
of input e. We are interested in looking at what effects ¢ > 0 has in the long term on

the AIDS epidemic. Our revised model is then

%ﬁ” = A—(u+6)S(t)
d_l;ft_) = eS(t) - (u+v)P(t) (3.6)
O~ wbt) - e+ d)A®)

N(t) = S(t)+ P(t) + A(t)

with el P20, and 4, 2 0.

Therefore,
()
dt
Note that we still assume that Q(¢) = 0, as we still have p = 1.
To determine equilibria we set S’(t) = P'(t) = A’(t) = N'(t) = 0.

There is one fixed point

= A—puN(t) - dA().

I A

S A \
P | = -
F = (n+e)(ntv)

A evA
A (ute)(ptv)(p+d) )

Further,

VoA (w +o)(p+d) +elpt+o+ d))
(1 +e)(u+v)(u+d) '
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The introduction of epsilon results in an endemic equilibrium, rather than a disease

free equilibrium.

The Jacobian is:

~(p+¢€) 0 0
Jis,p,4) = € —(p +v) 0
0 v —(n+d)

Again we have a triangular matrix, with eigenvalues given by the diagonal elements:

Moo= —(pte)
Ay = —(p+v)
A3 = —(p+d)

As before, the eigenvalues are real and all negative and the revised system is still
linear, hence the endemic fixed point is a globally asymptotically stable node. The

explicit solutions are calculated in Appendix A. We obtained:

A A
Sit) = - — —(ute)t
( ) (LL + 6) + (SO ,U + 6) € 9
eA € A
P(t) = - _ —(ute)t
®) w+dw+vY*w—a(& u+Je

eA
-+ Po = e—(u+v)t
( (u+dw+v0

—(utv)t
mE;__(&_ AN
(v—e¢ pte

veA
A = GEDGE+aE Y

’ = A - —(u+e)t
*(& ﬂ+f)Qv—dM—d>e ’

+{p - €A e ( A )) e~ (utu)t
+_< (k+e)ptv) (v—g¢) % p+e)) (d—v)
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) B veA Y
i (A" T PP v)>

‘_ _ A € e—(u+d)t
(5" u+e> ((v v e))

eA € A e~ (utd)t
- (P"+ PRSP e (S"‘ u+e)) @

For € > 0, S is a decreasing function of ¢ whereas P and A are increasing
functions of e. From the endemic equilibrium we can deduce that the susceptible
population will exceed the class of infecteds in P(t),if p+v > €, that is, if the removal
rate u + v from P't) is greater than the rate of new infections e. It is interesting to
note that the full-blown AIDS class never exceeds the infected class, but will exceed
the susceptible class if € > K‘”‘—"%“—*'dl since u + d > v always. Further, we note that
P+ A= —sAwtvtd) _ Thyg the uninfected population S(t) will exceed the total

(utv)(pte)(p+d)
infected population if € < %%dl. A cost analysis of health care given ratios of
healthy to infectec individuals would prove interesting at this point, but we are not
presently equippec to carry out an analysis of this type.
The results in this section indicate that controlling the amount of infectivity

caused by external sources is important if we wish to control the spread of the disease.

3.3 Testing is 100% Inneffective: SQA

3.3.1 Local Asymptotic Stability

The SQA Model

The following model represents the extreme case where p = 0. In this case, all those
who are tested and know they are infected continue to behave in a sexually irrespon-

sible manner. Thus, testing makes no contribution to the reduction of the spread of
the HIV, and in efect P(t) = 0.
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A schematic diagram of this system is provided in figure 3.4.

The system of equations is given by:

BO = a-(wr B s

dt N(t)
Q1) _ BeQU)S(H)
O~ w0 - (u+ AW, (3.7

N(t) = S(t)+Q(t) + A1),

with S,>0, Q,>0, and A, > 0.

Hence,

%t(t) = A—uN(t) - dA(1),

Due to the law of mass action, these equations are nonlinear. This makes
finding the explici: solutions of the system unlikely. Instead, we use linearization
and stability analysis to determine the qualitative behaviour of the system. This will

enable us to obtain local stability properties.

Equilibria

This system has two fixed points. Appendix B contains the supporting calculations

for determining these fixed points. The first is,

O
Il
o o x>

This fixed point represents a disease free situation, that is, the disease will die

out. We call this the disease free equilibrium. The existence of the second equilibrium
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Figure 3.4: Schematic Diagram for 100% Ineffective Testing
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indicates that there is a possibility of an endemic outbreak of HIV. This equilibrium

point is given by:

g A(p+d+v)

Be(p+d)—vd

Q — ( A )(1ﬁC—§u+v))§u+d))

ptv Be(p+d)—vd

Al o\ () () )

ABc(p + v+ d)
(1 +v)(Be(p + d) — vd)’

Existence of the endemic equilibrium in the positive cone, is guaranteed pro-

where
N=S+Q+A=

vided all the components of the endemic equilibrium are positive. This is satisfied if
@ > 0 or equivalently if Bc > u + v. Clearly u + v > ;:fd'
that Bc(u + d) — vd > 0, which shows the positivity of V.

In the worst, case, letting Sc tend to infinity:

Thus Be¢ > p + v implies

S 0
3 ~ . A
ﬁlcl—ronoo Q - utv
V1 A
A e (e

Note that S is a decreasing function of B¢ whereas Q and A are increasing functions

of Be. Clearly then, the limit as B¢ tends to 0 is the disease free equilibrium.

Local Stability Analysis

Since the eigenvalues corresponding to the disease free equilibrium are negative
and all real by the calculations in Appendix B, the disease free equilibrium is a lo-
cally asymptotical'y stable node. Alternatively, the disease free equilibrium is locally
asymptotically stable if the endemic equilibrium does not exist in the nonnegative
cone (i.e. fc < g+ v), and is an unstable saddle point if the endemic equilibrium
exists, that is, if ¢ > u + v.

The fixed point (S,Q, A) exists in the nonnegative cone, and by the Routh

Hurwitz criteria (H.2), is locally asymptotically stable provided 8¢ > u + v. The
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supporting calculations can be found in Appendix B. In fact, as soon as the endemic
equilibrium exists it is locally asymptotically stable.
The reproductive number R,, for this model is given by

Be

R, = y
Lt

If R, < 1 the disease will die out asymptotically. If R, > 1 an epidemic will occur.
Ideally, we would l'ke to reduce fBc, in an attempt to reach the disease free status. We
have no control, at least not in the near future, over the probability of transmission
parameter 3, as it is biological in nature. However, by instructing people to use
prophylactics and/or other safe sex practices, as well as approaching issues of morality
and promiscuity we can expect a drop in ¢, thus decreasing the value of R,.

In summary

EmUmmRmM Be<pu+v |Pe>p+v
Local Exists,
(%, 0,0) asymptotic but is
stability unstable
i Does not exist Local
(8, 6.A4) in the asymptotic
B nonnegative cone | stability

3.3.2 Global Asymptotic Stability

We prove that the disease free equilibrium is globally asymptotically stable
whenever it is locally asymptotically stable, that is, when B¢ < p + v.
Define

G={(5,Q,A)eR*:5>0,Q >0,4A>0)}
={(5,Q,A) eR*:5>0,Q>0,4>0}
Further, define V : 2 — R, by
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V(S,Q,4)=Q.
Then V is C'(R?) and the time derivative

. PeS
V(.04 =0 (5 - (et v).
Thus V(S,Q, A) < 0 on G. Therefore V is a Liapunov function by definition H.5. V
is equal to 0 if and only if Q = 0, since fc < g + v and 1%— <l
We define

By the LaSalle Ex:ension Theorem (H.6), every bounded solution of system 3.7, and
hence every solution by H.1(b), converges to M where M is the largest invariant
subset of £.

Consider the system obtained if Q(t) =0 in 3.7.

S = A-uS
A = —(u+d)A (3.8)

We define the largest invariant subset of £ as
M={(5,Q,A) eR,:Q=0,S>0,4>0and (S, A) satisfies 3.8}.

For every solution of 3.8,

S(t) —s %

A(t) — 0.

Therefore, the point (%, 0,0) is in the omega limit set of every solution of 3.7. But.

this point is a locally asymptotically stable critical point and so it must be the only
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point in the omega limit set of any solution of 3.7. Hence, the disease free equilib-
rium is globally asymptotically stable with respect to the solutions initiating in the
nonnegative cone provided fec < p + v.

Today’s society is experiencing an endemic form of the AIDS disease. Although
our model is only representative of a small portion of society it provides us with some
insight into the proolem. It seems that without interventions, provided the parameters
are within a certain range, the disease will tend towards the endemic equilibrium.

We have locked at the four dimensional model with p = 0 and p = 1 and have
gained some insight into the behaviour of the system in these extreme cases. We now
move on to more realistic situations, that is, where 0 < p < 1. Society today is within

this range of values for p.

3.4 Testing is Partially Effective: SQPA

3.4.1 Local Asymptotic Stability

The SQPA Model

The model in this section represents the situation where there is instantaneous
testing and an opportunity to examine the effect of the size of the parameter p on
the outcome of the AIDS epidemic. Both classes, P(t) and Q(¢) will be represented
in the total populetion.

A schematic diagram is provided in figure 3.2 The system of equations is:

i) _ 0
= A= T s

dt
d C S
2 = =280 e

dP(t)  _ BeQ(t)S(t)

T = PR - R (3.9)
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1A(1)

—— = v(P()+Qt) - (k+ A()

N(t) = S(t)+ Q)+ P(t) + A()

with 830, ¢, >0, F 20, and A, =40,

Equilibria

The disease free equilibrium is:

= o O U
Il
o © o=xl>

Deriving the endemic equilibrium is somewhat more complex and the support-

ing calculations can be found in Appendix C. The endemic equilibrium is:

g A(ptv+d)

(u+d)(1—p)Bec—vd

Q [Httt=a) (et
P (Rolatd)) ((Loppe(uty) )

o

() (i)

ptv ) \(p+d)(1—p)Bec—vd

The endemic equilibrium exists in the positive cone if S,Q, P, and A are

positive. This is satisfied if Q > 0, or equivalently if 3¢ > %. The reproductive
number is

o Bl —a)

R,
htv
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As before, if R, < 1 the disease free equilibrium will be obtained. If R, > 1, the

disease will flourish.

Local Stability Analysis

In summary the stability properties are:

[IQUILIBRIUM [ fc < &&2 Be > utv
3 Local Exists,
(5’ Q, P, A) asymptotic but is
stability unstable
B Does not exist Local
(S,Q,P,A) in the asymptotic
B nonnegative cone | stability

3.4.2 Global Asymptotic Stability

We prove that the disease free equilibrium is globally asymptotically stable
whenever it is locelly asymptotically stable, that is, when B¢ < ‘1"_"—:)'.
Define
G ={(S,Q,P,A)eR*:5>0,Q >0,P>0,A> 0}

G={(5,Q,P,A)eR*:5>0,Q>0,P>0,4>0}
Further, define V : ®* — R, by
V(§,Q,P,A) = Q.

Then V is C'(R*) and the time derivative

V(S,Q,P,A):Q(ﬂcs p+v)

N 1—-p)°
Thus V(S, Q, P, A) <0 on G. Therefore V is a Liapunov function by definition H.5.

V is equal to 0 if and only if Q = 0, since B¢ < (’1‘+;’))
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We define

£ = {(5,Q,P,A)eT:V =0}
= {(S’QapaA)Q=0,SZO,P20,AZO}

By the LaSalle Extension Theorem (H.6), every bounded solution, and hence every
solution by H.1(b), of system 3.9 converges to M where M is the largest invariant
subset of £.

Consider the system obtained if @Q(¢) =0 in 3.9.

S = A—uS
P = —(u+v)P (3.10)
A" = vP—(u+d)A

The solutions to 3.10 are:

s = 24 (5,-2) e
p w

P(t) = vP,e" Wt

A(t) _ vh, o~ (u+v)t + (Ao _ vPF, )e—(u+d)t.
d—v d—v

We define the largest invariant subset of £ to be:
M ={(S,Q,P,A) e R} :

Q=0,5§>0,P>0,A>0and (S5, P, A) satisfies 3.10}.

For every solution of 3.10,

S(t) == =
1

P(t) — 0,
A(t) — 0.
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Therefore, the point (%,0,0,0) is in the omega limit set of every solution of 3.9.
But, this point is a locally asymptotically stable critical point and so it must be
the only point in the omega limit set of any solution of 3.9. Hence, the disease free
equilibrium is globally asymptotically stable with respect to the solutions initiating

in the nonnegative cone, provided fc < %Z.



Chapter 4

PARTIAL TESTING OF
INFECTEDS

4.1 Prelirninaries

The models in this chapter present the opportunity to analyze the effects of
partial testing for HIV antibodies on the AIDS epidemic by introducing a parameter
indicating the prooortion of the number of untested infecteds that are tested at time
t. We wish to find the minimal range of values for this parameter that will still
guarantee eradicaiion of the disease. With the introduction of the option to test
different proporticns of the population comes an additional infected class, I(¢). This
class contains those infecteds who are not tested, and hence, are unaware of their
seropositivity, but still consider themselves uninfected and so do not change their
sexual behaviours. It is from this class that we choose those individuals who are
to be tested. We label the parameter indicating the proportion of those infecteds,
I(t), who choose to be tested at time ¢, as w. The parameter can have values in
the range 0 < w < 1. In the previous chapter, we examined the situation where
w =1 (and w = ), since the dynamics of the SQA model are identical to the SIA
model). In this chapter we focus on the more realistic range of values, 0 < w < 1,

as applied to the model found in 2.1. Note that we can realistically assume that

44
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w is significantly larger than v. The average incubation period is around seven or
eight years, but AIDS related symptoms, such as thrush, yeast infections, and slowly
healing wounds begin appearing towards the end of the incubation period. If testing is
voluntary, untested infected individuals will probably not consider being tested until
these symptoms appear. They most likely will however, be tested prior to developing
full-blown AIDS. The parameter v in our models is determined by the inverse of the
average length of the incubation period, i.e. % ~ T or 8 years, so w > v. If testing is
mandatory, then depending on public policy and frequency of tests, we can consider
w>>v.

As in the previous chapter, we will look at the extreme cases of responsible
behaviourindividually, that is, where p = 0 and p = 1. The parameter p has no effect
on the infected class I(¢) but as before determines what proportion of those tested

enter class Q(t) or P(t).

4.2 Partial Testing is 100% Effective: SIPA

4.2.1 Local Asymptotic Stability

The SIPA Model

We start with the system when p = 1, which eliminates the class Q(¢). The
schematic diagram of the SIPA model is available in figure 4.5.
The model is:

dS e
B0 _ oo )

dI c
T2 = () s - o

dP
O~ wr) - (w4 o)) (4.1)
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Figure 4.5: Schematic Diagram of the SIPA Model
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)

= wP(t) - (p+ DA()

N(t) = S(t)+1I(t)+ P(t) + A(t)

with S,>0, I,>0, P,>0, and A, > 0.
Therefore,
M = A—uN(t)—dA(2)
dt
Equilibria

The equilibria are calculated in Appendix D and are provided below:

2 A
X n
I 0
Pl ol
A 0
and
g A((p+vtw)(ptd)+vw)
(u+v)(p+d)(Be— (ptw))+u((p+v+w) (p+d)+vw)
7 A((p+v)(p+d) (Be—(ptw))
ptw
D Aw(p+d)(Be—(ptw))
i ptw
4 Avw(Be—(u+w))
' ptw

The endemic equilibrium exists if all the components are positive. This is true if

I >0, or that is, if B¢ > u + w. The reproductive number is:

Bt
L+ w
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If R, <1 a disease free situation will be asymptotically approached, and if R, > 1
the endemic situation occurs. The supporting calculations for the determination of

the equilibria are found in Appendix D.

Local Stability Analysis

The results of the linear analysis are given below in tabular form. (See Ap-

pendix D for calculations).

[IQUILIBRIUM | fBe<pu+w |fe>p+w
B Local Exists,
(S I,P,A) asymptotic but is
stability unstable
B Does not Local
(S,I,P, A) exist in the asymptotic
B nonnegative cone | stability

4.2.2 Global Asymptotic Stability

We prove taat the disease free equilibrium is globally asymptotically stable
whenever it is locally asymptotically stable, that is, when B¢ < p + w.
Define
G={(S,I,PLA)eR:5>0,1>0,P>0,4A>0}

G={(S,I,P,A)eR:5>0,I>0,P>0,A>0}
Further, define V : £ — R, by

V(S,I,P,A) =1I.

Then V is C'(R*) and the time derivative

BcS

V(S,I,P,A) = (T —{p+ w)) .
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Thus V(S,1,P, A) < 0 on G. Therefore V is a Liapunov function by definition H.5.
dotV is equal to 0 if and only if I = 0, since B¢ < g +w, and % <L
We define

£ = {(S,I,P,A)eG:V =0}
= {(5,1,PA):I=0,8>20,P>0,42>0}

By the LaSalle Extension Theorem (H.6), every bounded solution, and hence every
solution by H.1(b), of system 4.1 converges to M where M is the largest invariant
subset of £.
Consider the system obtained if 7(¢) = 0 in 4.1:

S = A—uS

P = —(p+v)P (4.2)

A" = vP-(p+d)A

The solutions to 3.10 are:

O R A
L

U
D(t) = UPOG_(u+v)t’
A@) = v—Po'e'(”’L“)t + (Ao R )e—(u+d)t.
d—v d—v

We define the larg=st invariant subset of £ to be:
M={(S,I,P,A)eR,:Q=0,S>0,P>0,A4>0 and (S, P, A) satisfies 4.2}.

For every solution of 4.2,
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Therefore, the point (%,0,0,0) is in the omega limit set of every solution of 4.1.
But, this point is a locally asymptotically stable critical point and so it must be
the only point in the omega limit set of any solution of 4.1. Hence, the disease free
equilibrium is globally asymptotically stable with respect to the solutions initiating

in the nonnegative cone, provided fBc < y + w.

4.3 Partial Testing is 100% Ineffective: SIQA

4.3.1 Local Asymptotic Stability

The SIQA Model

In this section we examine the extreme case with p = 0 and in doing so, we

eliminate the class P(t). The model is:

4S(t)

G - R a1
LU w1 - w+vQ0). (4.3)
i)

= vQ(t) — (p + D)A(®).

N@t) = SO +1()+Q(t) + A(t)

with S,>0,1,>0, Q,>0, and A, > 0.

Therefore,
dN(t)
dt

A schematic diagram is provided for your perusal in figure 4.3.1.

= A—puN(t) - dA(2).
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Figure 4.6: Schematic Diagram of the SIQA Model
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Equilibria

There are two equilibria, the disease free equilibrium, and the endemic equi-
librium. The supporting calculations can be found in Appendix E. The disease free

equilibrium is:

& A
g s
1 0
O | o
A 0
The endemic equilibrium is:
g A(p+d)(pt+v+w)+vw
Be(p+v+w)(p+d)—vdw
F A (ﬂc(u+v+w)(u+d)-(u+w)(u+v)(u+d))
ptw Be(pt+v+w)(p+d)—vdw

Aw (ﬁC(u+v+w)(u+d)-(M+W)(#+v)(u+d))

O

(utw)(p+v) Be(ptv+w)(u+d)—vdw
A Awv (ﬁC(u+v+w)(u+éL—(u+w)(u+v)(u+d))
(pt+w)(p+v)(p+d) Be(ptvtw)(pt+d)—vdw

The disease free equilibrium exists always, and the endemic equilibrium exists
in the positive cone if its’ components are positive, i.e. if I is positive. This holds
true if Be(p + v+ w)(p+d) > (¢ + v)(p + w). The reproductive number is:

 Belptvtw)ptd
T (k) tw)
If R, < 1 then the disease free equilibrium will be asymptotically approached.

If R, > 1 then we will experience an endemic situation.

Local Stability Analysis

The calculations accompanying the stability analysis can be found in Appendix

E. To summarize ‘we have:
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[ EQUILIBRIUM 8¢ B¢
< (p+v)(ptw) > (pt+v)(ptw)
|- (utv+w)(p+d) (ptv+w)(u+d)
[ Local Exists
(8,1,Q,A) asymptotic but is
stability unstable
I Does not Local
(S,1,Q,A) exist in asymptotic
nonnegative cone stability

4.3.2 Globzal Asymptotic Stability

We prove shat the disease free equilibrium is globally asymptotically stable
whenever it is locally asymptotically stable, that is, when Be(p + v + w)(p + d) <
(1 + 0) (s + ).

Define
G ={(51,Q,A)eR*:5>0,I >0,Q >0,A >0}

G={(51,Q,A)eR*:5>0,1>0,Q>0,4>0}
Further, define V : ®* — R, by

_ ptw
V(S.1,Q,4) = I+ (HUW) .

Then V' is C*(R%) and the time derivative

V(S,1,Q,4) = (%;Qi_(ﬁw)l)

+ (#i%) (I = (1 +v)Q)

_ o[BS , (1 +w)w
B ]< N _('u+“))+;z+v+w

55 (n+v)(p+w)
+Q(N a4 v+w )
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_ (BS (ptv)(ptw) ﬂﬁ_ju+mw+wq
B I(N - L+v+w >+Q(N L+v+w

Thus V(S,1,Q,A) <0 on G. Therefore V is a Liapunov function by definition H.5.
V is equal to 0 if and only if 7 = 0 and Q = 0, since B¢ < (“i)—(-“—t“—’l and S < 1.

(pt+v+w)
We define

¢ = {(5,1,Q,A) eT:V =0}
= {(S,1,Q,4): I1=0,Q =0,5>0,4>0}.

By the LaSalle Extension Theorem (H.6), every bounded solution, and hence every
solution by H.1(b), of system 4.3 converges to M where M is the largest invariant
subset of £.

Consider the system obtained if I(¢) = 0 and Q(¢) =0 in 4.3.

5 = A-pd
A = —(p+d)A (4.4)

We define the largest invariant subset of £ as:
M ={(5,1,Q,A) e R} :

I=0,0=0,5S>0,4>0and (S, A) satisfies 4.4}.

For every solution of 4.4,
S() — =
—_——
u

A(t) — 0.

Therefore, the point (%,0,0,0) is in the omega limit set of every solution of 4.3.
But, this point is a locally asymptotically stable critical point and so it must be
the only point in the omega limit set of any solution of 4.3. Hence, the disease free

equilibrium is globally asymptotically stable with respect to the solutions initiating

(ptv)(utw)

. ; : ;
in the nonnegative cone, provided B¢ < prrEmn
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4.4 Testing is Partially Effective: SIQPA

4.4.1 Local Asymptotic Stability

The SIQPA Mocel

The model is:
st _ (ﬂ | Bellv) + Q(t))> ”

dt N@)

di(H)  BelI(t) +Q(1))

o B0 o 1),

Lo~ (1= pl(t) - (4 0)Q) (45)
PO = ol = (u+ )P,

dA(t

= vQ(t) = (r +d)A(),
N(t) = S5(t)+1(t) + Q@) + P(?) + A(D),

with S, >0,1; 30,0 20,F, 20, and A, = 0.

Equilibria

There are two equilibria, the disease free equilibrium, and the endemic equi-

librium. The supb orting calculations can be found in Appendix F. The disease free
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equilibrium is:

l—> hU’ <0> ~» O})
Il
O O O O x>

The endemic equilibrium is

kS A((p+v4w) (p+d)+vw
Be(p+d)(pt+v+(1-p)w)—vdw

I A(p+d) (Be(ptv+(1—p)w)—(p+w)(p+v))
(u+w)(Be(p+d) (pt+v+(1—p)w)—vdw)

A(p+d)(1—p)w(Be(ptv+(1-p)w)—(ptw)(utv))

Q|= (aFw) (atv)(Be(p+ d) (ptv+(1—p)w)—vdw)

p | A(u+d) pw(Be(p+v+(1=p)w) — (utw) (utv))
(utw)(p+v)(Be(p+d)(utv+(1-p)w)—vdw)

A Avw(Be(ptv+(1—p)w)—(utw)(ut+v))

(ntw)(pt+v)(Be(ptd)(ptv+(1-p)w)—vdw)

The disease free equilibrium exists always, and the endemic equilibrium exists
in the positive cone if each component population is positive. This is true if I is
positive, that is, i Be(p + v+ (1 — p)w) > (¢ + v)(# + w). The reproductive number

is:
Be(p+v+ (1 —p)w)

(k+v)(p+w)
If R, <1 we will asymptotically approach the disease free equilibrium. If R, > 1 we

o —

will encounter an endemic situation.
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Local

Stability Analysis

To summar ze we have:

EQUILBRIUM | Be(p + v+ (1 — p)w) | Be(p + v+ (1 — p)w)
< (p+o)(p+w) > (p+o)(p+w)
Local Exists
(S’, .f,(:),f’, A) asymptotic but is
stability unstable
Does not Local
(S,1,Q,P, A) exist in asymptotic
nonnegative cone stability

4.4.2 Global Asymptotic Stability

whenever it is locelly asymptotically stable, that is, when B¢ <

Define

We prove that the disease free equilibrium is globally asymptotically stable

Lutv)(utw)

ptvt(l—p)w”

G={(S51,Q,P,A)eR°:5>0,I>0,Q>0,P>0,4A>0}
G={(51,Q,P,A)eR°:5>0,1>0,Q>0,P>0,A>0}
Further, define V : ®° — R, by

V(S,1,Q,P,A) = I + (

ptw

Then V is C*'(R®) and the time derivative

#+v+(1—p)w)Q'

Ut

-

V($,1,Q.P,A) = (ﬁ_c(fT“Qﬁ_(Hw)I)
(1 +w)
! (u +o+(1- p)w) (1= p)wl = (1 +v)Q)

TEERTEEEN
N  p+v+(l-pw
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feS  (ptw)(pto)
(- )

Thus V(S, I,Q,P,A) <0on G. Therefore V is a Liapunov function by definition H.5.

V is equal to 0 if and only if I = 0 and Q = 0, since ¢ < éi—ﬁ_l((l‘%“)}—), and % <1

We define

£ = {(S,I,Q,P,A) €T :V =0}
= {(S,I,Q,P,A)I=O,Q=0,520P20,A20}

By the LaSalle Extension Theorem (H.6), every bounded solution, and hence every
solution by H.1(b), of system 4.5 converges to M where M is the largest invariant
subset of £.

Consider the system obtained if I(¢) = 0 and Q(¢) =0 in 4.5

S = A—uS v
P = —(p+v)P (4.6)
A = vP—(p+d)A.

The solutions to system 4.6 are:

St = 24 (50 _ é) —
K M

Pll) = vP,e~ ()t

A(t) —_ &e—(wv)t 2 (Ao _ vF, )e—(u+d)t.
d—v —v

We define the largest invariant subset of £ to be:

M = {(5,1,Q,P,A) € §Ri :
I-=0,0=0,S>0,P>0,4>0, and (S, P, A) satisfies 4.6}.

For every solution of 4.6,

S(t) — —.
7
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P(t) — 0
A(t) — 0.

Therefore, the point (%,0,0,0,0) is in the omega limit set of every solution of 4.5.
But, this point is a locally asymptotically stable critical point and so it must be
the only point in tle omega limit set of any solution of 4.5. Hence, the disease free

equilibrium is globelly asymptotically stable with respect to the solutions initiating

i . - . p+v)(p+w
in the nonnegative -one, provided fc < '(_u_lu+u+(1-p)u'

4.5 The SIQ/PA Model

4.5.1 Local Asymptotic Stability

The Model

Consider the system in equations 4.5. If we assume that those individuals
in the populations P and A refrain from sexual contacts, then the total sexually
active population consists of N(t) = S(t) + I(t) + Q(t). This assumption is realistic
according to the way we have defined our classes. Individuals from the P and A
classes are assumed to practice safe sexual behaviours or complete abstinence, so
there is no loss of generality in assuming they are not members of the sexually active
population. Under this assumption, P and A do not appear in S’, I’, or Q'. Thus
P’ and A’ can be decoupled from the remainder of the equations. We examine the

equations:

dS(t) Be(I(t) + Q1))
- o (oSt

4 «Mﬂggﬁ“»>ﬂﬂ—uwﬂﬂﬂﬂ

d
L (1= pett) - (u+v)Q), (4.7)
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d_iiﬁ = pwl(t)— (u+v)BG),
d_Agﬁ = o(Q(t) + P(t)) — (u + d)A(t),

N@) = S+ 1) +Q(),

with S, >0,1500,>20,P,>20, and 4, >0
Therefore,
dN(t)
——~ = A—uN(t
= A — pN(t)
Equilibria

There are two equilibria, the disease free equilibrium, and the endemic equi-
librium. The supporting calculations can be found in Appendix G. The disease free

equilibrium is

}_; 'ﬁ> (O> ~> Uy
Il
o O e @ B
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The endemic equil brium is

Acy
5 =

Aca
(utw)e2

~j

Aca!l—p!w
c2(ptw)(ptv)

Qi
Il

Aca pw

c2(ptw)(p+v)

av]]

Acyvw
c2(ptw)(p+v)(u+d)

M

where

a = (p+tv+(l-pw) ,
2 = Pelpt+v+(l-pw)—(p+tw)(p+tv)+ppt+v+(l-pw)
ez = Pelpt+v+(l—-pw)—(p+w)(u+v).

The disease free equilibrium always exists, and the endemic equilibrium exists
in the positive cone if the components of the endemic equilibrium are all positive.
This requirement is satisfied if I > 0, that is, if Be(u+v+ (1= p)w) > (p+v)(p+w).

The reproductive aumber is given by:

Be(p+v+ (1 —pw)
(1 +v)(p+w)

As before, if R, < 1 then the disease free state will be achieved and if R, > 1

R, =

we will experience an endemic situation.



Local Stability Analysis

To summarize we have:
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EQUILIBRIUM | Be(p + v+ (1 — p)w) | Be(p + v+ (1 — p)w)
< (n+v)(p+w) > (b +0)(4+w)
Local Exists
(8,1,0,P, A asymptotic but is
stability unstable
Does not Local
(8,442 exist in asymptotic
nonnegative cone stability

We now tura to an examination of the global properties of the SIQ/PA model.

4.5.2 Global Stability

Disease Free Equilibrium

We prove taat the disease free equilibrium is globally asymptotically stable

whenever it is locally asymptotically stable, that is, when B¢ <

lotv)(utw) AP angd

ptv+(l-p)w

Q can be decoupled from the remainder of the equations in 4.7 we do not directly

include them in our calculations, so for the following discussion we need only consider

the equations:

ds(t)
dt
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N(t) = S@E)+1(t)+Q()

The initial conditions corresponding to the above equations are the same as those

provided in 4.7.

Define
G={(S,1,Q)eR*:5>0,1>0,Q >0}

G={(S1,Q)eR*:5>0,1>0,Q >0.}

Further, define V : ®® — R, by

bt w
u+v+(1—p>w>Q'

V(S,I,Q)=I+<

Then V is C'(R?) and the time derivative

V(S,1,0) = (ﬂ—“—;@—s (ot w)f)

( (1 +v)(p+w)
p+v+(1—pw

) (L = gl = {43000

I(BCS_ (ﬂ+w)(u+v))

N p+v+(1l—pw
BeS  (p+w)(u+v)

+Q(N _#+v+(1—p)w)

Thus V(S,1,Q) <0 on G. Therefore V is a Liapunov function by definition H.5. V

is equal to 0 if and only if / = 0 and @ = 0, since fBc < éﬁ%, and & < 1.

We define
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By the LaSalle Extension Theorem (H.6), every bounded solution, and hence every
solution by H.1(b), of system 4.8 converges to M where M is the largest invariant
subset of £.

Consider the system obtained if I(¢) = 0 and Q(¢) =0 in 4.8.

S = A —pS, (4.9)

We define the largest invariant subset of £ as:

M={(S1,Q)eR}:1=0,Q =0,5>0, and S satisfies 4.9}.

For every solution of 4.9,
S(t) — —.
7
Therefore, the point (%, 0,0) is in the omega limit set of every solution of 4.8. But,
this point is a locally asymptotically stable critical point and so it must be the only
point in the omega limit set of any solution of 4.8. Hence, the disease free equilib-

rium is globally asymptotically stable with respect to the solutions initiating in the

nonnegative cone, provided fc < %.
In section 4.4, we looked at a Liapunov function for the SIQPA model. This
function shows that the global stability of the P and A components of the disease

free equilibrium fcllow directly.

Endemic Equilibrium

Suppose Be(p + v + (1 — p)w) > (g + v)(¢ + w). Then we shall show that
system 4.8 is persistent with respect to all solutions for which the initial conditions
are positive. We identify the space (S(t), I(t), Q(t)) with R3. Refer to figure 4.7 for
the qualitative behaviour of the system on the boundaries of ®2.

Recall from our linear analysis found in Appendix G that there are five eigen-

values associated with the disease free equilibrium of system 4.7. These are listed in
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Figure 4 7: Diagram of the Qualitative Behaviour of SIQ on %%
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section G.2.1. To oegin with, we will only be considering the system 4.8. Thus, for

now we are only concerned with the characteristic equation

(14 XN\ = (Be— 2u + v +w))A = (p+v)(Be — (1 + w)) — Be(1 — p)w)

We always have at least one negative eigenvalue, A\; = —u. To determine the stable
manifold of the disease free equilibrium we must now examine the quadratic factor
remaining in the cltaracteristic equation. The constant coefficient of the characteristic
equation is the product of the eigenvalues. We call this coefficient H. Recall that
from section G.2.1. where we have solved for the eigenvalues, that the discriminant is
always positive and the eigenvalues always real. Hence we need not consider complex
conjugates in determining the sign of H. We consider the remaining two cases, firstly
where H is positive and secondly where H is negative. In the first case, if H > 0,

then either both A, and A3 are positive or both A, and A3 are negative, where

M o= (e (2utvtw)

+5/(Be— @+ v+ )+ 4(s + 0)(Be— (1 + @) + 4Bell - p)e)

N = 5 (Be-(2utvtw))

5B 2+ v+ )P+ 4+ 0)(Be — (£ @) + 4Bl — p)).

If both eigenvalues are positive, then we need only look at A3 > 0 to see a contradiction
to our assumption that fBc(p + v + (1 — p)w) > (g + w)(p + v), since Ay > A3 and
Az > 0 implies that Be(p + v+ (1 — p)w) < (g + w)(p + v). If Ay and A3 are both
negative, then the disease free equilibrium must be globally stable, a contradiction.
In the secord possibility, H < 0, we must have one negative and one positive
eigenvalue. Since .\, > A3 then the case to be considered is with A\, > 0 and A\; < 0.
Solving the inequalities posed by these conditions we arrive at the result e(u+v+(1—
p)w) > (pt +w) which agrees with our assumption that the disease free equilibrium
is unstable. This implies that if fc > WtdWtv) —4hore are always two negative

ptvt(l-p)w?
eigenvalues A\; and A; and one positive eigenvalue \,. Thus, the stable manifold of the
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disease free equilibrium is of dimension two and the unstable manifold of dimension
one.

In order to determine whether or not the stable manifold of the disease free
equilibrium intersects the interior of ®3 we consider the eigenvector associated with
A3. We will determine that the components of the eigenvector have opposite signs.
Consider the 2x2 raatrix, labelled C, representing the lower matrix of the Jacobian

for system 4.8, eva uated at (%, 0,0),

0 = (Bc_(”w) fe ) (4.10)
(1=po  —(n+v)

Then,
c_n3=(ﬁc‘(“+‘”“3) Be )

(1= pw (b +v+As)

=(%(Bc—(u+w)+(u+v)+\/§) Be )
(1= p)w —3(Be=(u+w) +(u+v)-VB) )

where 4B? = (Bc — (2p 4+ v+ w))? + 4B8c(1 — p)w + 4(u + v)(Bec — (p + w)).

Let

A= (Bc—(p+w)+ (1 +v))

Do =

and

B = /(B = (2u+ v+ ) + 4Bell — p)o + 4(1 + )(Be— (1 + ).

Then we may rewr.te the matrix C' — I\3 in a more manageable form as:
A+ B Bc
(l1—pw —A+B

Let v = (v1,v2) be the eigenvector corresponding to this matrix. By definition,
(C — IX3)(v) = 0. That is,

[ =) ()
=0
(l—p)w —A+B (%)
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Therefore

(A+ B)vy + fevy = 0 (4.11)
(1 =pwvy+(B—A)v, = 0 (4.12)

Further, we know that |C — IA3] = 0 so that

(A+B)(B-A) = fec(l —pw (4.13)

Multiplying equation 4.11 by (1 — p)w and equation 4.12 by A + B, we have

(1 —p)w(A+ B)vy + Be(l — plwv, = 0

and
(1-p)w(A+ B)vy +(A+ B)(B— A,
= (1-p)w(A+ B)vy + Bc(l — plwv,
= 0,
and thus
g = _AiCsz. (4.14)

Let B = 212p 4+ v+-w — Be. Since Be(p+v+ (1 — p)w) > (p+v)(p+w), then B < B.

This follows immediately from

4B% = |2u + v + w — Bc|?
< (Be—(2p+v+w)) +4(n+v)(Be— (b +w)) + 48e(1 — p)w = 4B%.

IfA+ B >0then A+ B > 0.

| —

A4 B =

N

1
(Be=(u+w)+u+v)+ 512 +v+w— Bl

r
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Note that if A+B >> 0 then v, and v, have opposite signs, by 4.14. If 2u+v+w—8c > 0
then fBc < 2u + v -- w, so that

A 1
A+B = s(fe—(p+w)+p+v+2u+v+w—p)
> 0

If2u+v+w—LPc<0then fc>2p+v+w>p+w>0,so that

A

A+ B = %(ﬂc—(,u+w)+u+v+ﬂc—(p+w)—(u+v))

> 0.

Hence by equations 4.15 and 4.16, A + B > 0 which implies A+ B > 0 and so
we may conclude by 4.14 that v; and v, have opposite signs. Thus the eigenvector in
R3 corresponding to the eigenvalue A3, (0,vy,v;)" does not intersect 8023_ :

Now we are in a position to prove system 4.8 is persistent. Let R be a point
in the interior of 3. We examine the closed IQ face, the open SQ and SI faces, and
the S axis, to determine if there are any points on the boundary of the nonnegative
cone contained in (R), the omega limit set of R. Consider a point (S,, [,, @,) in the
closed nonnegative 1Q face, i.e. (S,,1,,@,) € {(S,1,Q): S =0,1>0,Q > 0}. On
this face S’ = A > 0 and hence any point on this face will leave the nonnegative cone

in negative time. This implies that no point on this face is in the Q(R).

We now consider the open nonnegative SI face, and choose some point,

(8051,,Q5) € {(S,1,Q):8 >0,I>0,Q >0}

On this face we have @' = (1 — p)wI > 0. Hence no point on this face can be in Q(R)
since in negative time, any point on this face will leave the nonnegative cone.

The results for the open SQ face are similar. We choose a point,

(Sor 10y Qo) € {(S,1,Q) : S > 0,1 > 0,Q > 0}.
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On this face, I' = ﬁ_c}g_s > 0, and so in negative time any point on this face will exit
the nonnegative cone. Therefore, there are no points on the open SQ face in the
(R).

Now we need only examine the S-axis, to prove the remainder of the persistence
argument. To this end, choose a point S > S, on the S-axis. Then in negative time
its orbit becomes unbounded, a contradiction by H.2. Therefore {S}NQ(R) = 0.
Similarly, if we choose a point S < Sp, then in negative time its orbit leaves the
nonnegative cone. Thus {S}NQ(R) = 0.

Let W*(P) denote the stable manifold of the disease free equilibrium P =
(%, 0,0). Further, let W*(P) denote the unstable manifold of P. Since two of the eigen-
values of the characteristic equation associated with P are negative and one is positive,
then dim(W*(P)) = 2. The stable manifold is smooth and contains {(5,,0,0) € &3 }.
If we are sufficient y close to P, we are able to approximate the stable manifold with

the half plane defined by:

(3
{(21,22,23) € RS : 2, — 1—)1903 =0,}
2

where v; and v, are the components of the eigenvector associated with the negative
eigenvalue A3 defined in equation 4.14. We proved earlier that v; and v, were of
opposite sign, and hence the stable manifold of the disease free equilibrium does not
intersect the interior of 3.

Suppose P = Qt(R). But P can’t be the only point in the forward orbit of R
since W*(P)N RS = 0. So by the Butler McGehee Lemma, H.4, there exists points
P*in W*(P)\{P} and P* in W*(P)\{P} in Q(R). However, we have already proved
that no points on the S-axis can be in the Q(R). Thus, we conclude that there are no
omega limit points on the boundary of ®3. Therefore system 4.8 is persistent by the
definition of persistence H.3.

We now tie in the P and A portions of system 4.7 to the persistence argument.
Note that, given solutions for Q(¢) and I(t), the equations P’ and A’ are linear. We

solve these to get:

PO) = et [ dria
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A(t) = ve(w+dr / BN Q1) + P(1))dt.

Thus, if we consider the endemic equilibrium to be a solution, (which is very likely),
then

p = X7
w+ v

- VW —

i)

These values correspond to the earlier calculation of the endemic equilibrium,

and since the I population is persistent then it follows that at equilibrium, so are the P
and A populations. Now, if we consider the solutions I(¢) = ¢ > 0 and Q(t) = 6 > 0,
then the solutions for P(t) and A(t) are:

Pt) = 25 >0
ptv

A(t)

;t+d(€+6) >0

Hence, we can conclude that for any solutions I(¢) > 0 and Q(¢) > 0, the populations
P and A are persistent. Thus the endemic equilibrium of system 4.7 is persistent.
Simon and Jacquez, [47] have established global stability of the endemic equi-
librium in various SI models for heterogeneous populations. They state that the
arguments can be extended to SIR and other models. Thus, we conjecture that the
endemic equilibrium for the SIQ/PA (and other models in this thesis), is globally

asymptotically stable.
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4.5.3 SIQPA. vs. SIQ/PA

It is interesiing to note the similarity of results between the SIQPA and the
SIQ/PA models. The equilibria are identical, as are the reproductive numbers. The
size of the sexuallv active population is larger for the SIQPA model then it is for
the SIQ/PA model. This difference in size changes the speed that the populations
approach the equilibria. Early in the epidemic, there is little difference between the
models, as the proportion of the population in the P and A populations is small.
However, as the d sease progresses, the difference becomes more evident. Since N
is smaller for the SIQ/PA model, there is a faster movement out of the susceptible
population and into the untested infected population. Hence, if the system is in an
endemic situation, the endemic equilibrium will be approached faster for the SIQ/PA
model. The opposite is true for the disease free equilibrium. If the reproductive
number is less than 1, the SIQPA model approaches the disease free state faster than
the SIQ/PA model. We can interpret these results to indicate that having a P class is
beneficial to the reduction in the spread of the AIDS disease. This is plausible, since if
there are more individuals around practicing safe sex, then the susceptibles are more
likely to choose an uninfected partner than they are if there were only irresponsible
individuals from which to choose their sexual partners.

In the SIQFA model, and all other models in this thesis excepting the SIQ/PA
model, there was no distinction made between sexually active individuals in any of
the populations. [n the SIQ/PA model, the individual was required to engage in
unsafe sexual practices, in order to be defined as sexually active. We see by our
results, that the qualitative behaviour is identical between models. This makes sense
because there has ultimately been no change in the number of sexual contacts in the
two models. However, if one were to conduct a cost/benefit analysis of various ratios
of populations, we would obtain different results for the two models. For instance, if
we were interested in knowing the ratio of susceptibles to sexually active infecteds,
so that we could predict future trends of the disease, then the SIQ/PA model would
probably provide a more accurate estimate than the SIQPA model. This follows,

since, in essence, the P and A classes pose no threat to the susceptible population
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in either of the models. However, if we were to expand the models presented in this
paper we might find ourselves requiring the totally sexually active population to be
the same as in the SIQPA model. We leave the options available to us for future

modelling efforts.



Chapter 5

DISCUSSION

5.1 Preliminaries

In this thesis we introduced a series’of models examining the dynamics of
the spread of the AIDS disease. We are interested in examining how HIV antibody
testing in conjunction with persuasive techniques encouraging safe sexual behaviour
of these tested infecieds, will influence the dynamics of the system. By first examining
the extreme cases of the parameters p and w we could more precisely determine the
effects on the outcoine of the AIDS disease of these factors. By performing local, and
where possible, global analyses on this series of models, we are able to establish the
importance of HIV antibody testing and responsible sexual behaviour.

We begin our discussion by displaying, in figures 5.8, and 5.9, the stability
results obtained in each of the sections. Then we will compare the effects of introduc-
ing certain parameters and populations on the outcome of the AIDS epidemic. By
examining the reproductive numbers of the various models, in the form of the criteria
as provided in figures 5.8 and 5.9, we can determine what effects the parameter values
have on the progression of the AIDS disease. We will first deal with the results of the
instantaneous testing models, SPA, SQA, and SQPA, and then secondly, with the re-
sults of the partial testing models, SIPA, SIQA, SIQPA, and SIQ/PA. Throughout the
discussion we will consider the SIQ/PA model as representative of the SIQPA model,

4
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since their dynamics are very similar. In the final section, we consider shortcomings

of the models, and suggest applicable future research ideas.

5.2 SPA, SQA, and SQPA Results

We first compare the results of the SPA, SQA and the SQPA models. From
figure 5.8 we see that there is no need to place restrictions on the sexual activity
levels, or on other >arameters for the SPA model. We are guaranteed an asymptotic
approach to the disease free equilibrium, because of its global stability properties,
provided there are no external factors, (as we had in section 3.2.2). Any combination
of values will still guarantee a disease free state. This is plausible since we have no
irresponsible infectzds present.

In all the models presented jn this thesis, elimination of the disease is guaran-
teed provided the criterion for the model is satisfied, since in all cases; we have shown
global asymptotic stability of the disease free equilibrium.

After examiiing the SPA model we moved on to the SQA model. At this
point an endemic equilibrium was discovered. Thus, introducing the class ), while
ignoring the P class, had a significant effect on the dynamics of the system. In fact we
found that we were now obliged to place restrictions on the parameters to encounter
a disease free situasion. For the SQA model we require Sc < pu + v. Since u and v
are biological factors upon which we have little control, then in this system the only
way to induce a disease free situation is to influence individuals to have less sexual
acts. This however, is beyond the scope of this thesis. The effect of having a long
incubation period is clear in this model, since the shorter the incubation period, i.e.
the smaller the valie of %, the more the flexibility available for the term Bc. The
parameters in the SQA model require more severe restrictions than for the SQPA
model.

In the SQPA model, the severity of the necessary restrictions caused by the
irresponsible infected class Q is offset by the effect of reintroducing the responsible

infected class P. The inclusion of P with Q, and the option to choose a value of
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Figure 5.8: Summary of SPA, SQA, and SQPA Models

EQUILIBRIUM CRITERION
: SPA No Restrictions
(5’, P, A) Always Global
Asymptotic Stability
: SQA fe< pu+v Be>pu+v
[ Local Exists but is
(8,0,A) asymptotic unstable
| stability
Does not exist Local
(S,Q,A) in the asymptotic
= nonnegative cone stability
[ SQPA Be < ‘;—"_'f Be > ‘%Z
N Local Exists
(5,@,P,A) asymptotic but is
| stability unstable
Does not exist Local
(S,Q,P,A) in the asymptotic
. nonnegative cone stability
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Figure 5.9: Summary of SIPA, SIQA, and SIQ/PA Models

nonnegative cone

EQUIL(BRIUM CRITERION
SIPA Be<p+w Be>p+w
Local Exists
(8,1 P,A) asymptotic but is
stability unstable
Does not Local
(S,I P,A) exist in the asymptotic
nonnegative cone stability
SIQA Be(p + v + w) Be(p + v+ w)
<(pt+v)(ptw) > (p+v)(p+w)
Local Exists
(8,1,0Q,A) asymptotic but is
stability unstable
Does not Local
(S,1,Q,A4) exist in asymptotic
nonnegative cone stability
SIQ)/PA. Be(p+v+ (1 —plw) Be(p+v+(1-pw)
and SIQPA <(p+v)(p+w) > (p+v)(p+w)
Local Exists
(8,1,Q,P, A) asymptotic but is
stability unstable
Does not Local
(S,1,Q, P, A) exist in asymptotic

stability
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p between 0 and 1, provides more flexibilty of control. As the value chosen for p
approaches 1, the restrictions required on parameter values to provide a disease free
state, become less strict. This is evident in the graph in figure 5.10. The graph
represents the change in the criterion, (see figure 5.8) as we scan through the interval
0 < p < 1. The data in this graph were calculated using the fixed values y = 0.02 and
v = 0.125, corresponding to an average life span of 50 years and an average incubation
period of 8 years. For equivalent parameter values, the SQA model has a constant
criterion of 0.145. Clearly, the SQPA model offers more hope. It seems that in reality,
the value for p is lerger than 0.7. Hence, if Sc ~ .5 the disease will die out. In figure
5.10 we can see th= definite sensitivity to the higher p values. This implies, that if
p = 0.7 then perhaps minimal effort would be required to bring that value up to 0.8,
which rather dramatically increases our flexibility for Sc. However, it is conceivable
that in this upper scale no amount of educational persuasion can increase the value of
p, since perhaps the tested population can no longer benefit from further education.
Conversely if there were to be a drop in the proportion of résponsible' individuals a
significant drop in ¢ would be required for the disease to die out.

By these thiee models we can conclude that the value of p has significant effects
on the outcome of the disease. Thus, some action, whether it be educational, legal
or other action, skould be imposed on the tested infected population to encourage
responsible behaviour. The educational action might include educating the tested
infecteds as to the effects of unsafe sex practices, and to encourage responsible sexual
activity. Imposing legal repercussions on tested individuals who behave irresponsibly
might provide some incentive for these individuals to practice safe sex. This approach
has problems in itself. The enforcement of these laws could prove difficult, as in
actuality there are many ways to become infected and pinpointing a sexual act is
unlikely. Laws coricerning sexual practices increase cost to society and are difficult
to enforce, but perhaps we will need to expand present laws if educational efforts
fail, as the disease spreads to a larger and larger population. We conclude that the
percentage of individuals behaving responsibly has a significant effect on the dynamics

of the AIDS disease.

The followiag section considers the balance of the models presented in this
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Figure 5.10: Graph of SQPA Model Results
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paper. In these models we examine the effects that testing for HIV antibodies have

on the progress of AIDS.

5.3 SIPA, SIQA, SIQ/PA Results

The three models being summarized in this section provided one more param-
eter, w, the proportion of individuals tested in a time period. On introducing w we
are no longer able to consider v as representative of the incubation period. The length

of the incubation period is now

- . (5.1)

vw

The average incubation period, labelled X, represents the average time from infection,
i.e. entry into I(t), to the time of development of full-blown AIDS. In the last section,
we looked at an average incubation period of 8 years. We will continue using this
value throughout the remainder of this discussion. However, we must keep in mind
that now v is dependent on w. We wish to find the optimal affordable value for w,
in an attempt to reduce the spread of disease. The first of these three models, the
SIPA model, looks at the effect of testing under the assumption that all individuals,
once tested, behave responsibly. In this case, p = 1. We note that qualitatively, the
behaviour of this model, for any specific value of w, is similar to that for the SQA
model. However, since we can vary the value for w through intervention, we have
more control over the outcome of the AIDS epidemic. Refer to the graph in figure
5.11. The SIQA model provides us with the opposite extreme to the SIPA model,
in that for this model we consider p = 1. The results are as expected. Regardless of
the value of w the SIPA model is more likely to attain the disease free state than the
SIQA model, since yu + w > %&‘—:ﬂ

Finally, we consider the SIQ/PA model, in which we combine the two pa-

rameters 0 < p < 1 and 0 < w < 1. The SIQPA and SIQ/PA models have similar
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Figure 5.11: Graph of SIPA Model Results
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results, so we only consider the latter in this discussion, as we have stronger results
for the SIQ/PA in that we proved persistence of the epidemic within a certain range
of the parameters, for the SIQ/PA and not for the SIQPA. As was mentioned in
the SIQ/PA section, we eliminate the P and A classes from the contributing sexu-
ally active population and hence we decouple the P and A populations from the S,
I, and Q populations. This simplification was done primarily for two reasons, the
first being a simplification of the analysis, and secondly for a more realistic approach
in approximating the actual numbers of sexually active and contributing offenders.
The criterion for the SIQ/PA model is %@. A graph of the criterion for the
SIQ/PA model is provided in figure 5.12.

The graph indicates that our chances of achieving a disease free state increase as w and
p increase. By more closely examining this graph, we observe that there is a greater
sensitivity in flexibility as p approaches 1. For w values, there is more sensitivity to
changes when w is closer to 0.2 or 0.3. This implies that perhaps we should focus on
making r.nore responsible the individuals who have been tested, rather than testing
more untested ind viduals. This intersting observation deserves further attention in
future modelling e Torts.

In considering the optimal values for p and w we must consider practicality
issues. A benefit/cost analysis would provide us with a better idea of where the opti-
mal practical values of these parameters would be. At this point, we are not equipped
with sufficient resources to carry out an analysis of this type. But, for future uses, it
is important to note that a study in this area would prove beneficial to the reduction
in the spread of the AIDS epidemic. We require information about proportions of
the infected populations who behave responsibly, and what effects education or other
actions imposed on the tested infected populations might have on increasing the re-
sponsible infected population. On the other hand, we need information about the cost
and practicality of testing large proportions of individuals. What is the likelihood of
a home test being developed? Should there be target populations for testing, such
as high risk groups or certain age groups? There are many factors entering into this
analysis but these are well worth considering, since we have shown the importance of

testing for HIV antibodies and for encouraging individuals to behave responsibly.
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Figure 5.12: Graph of SIQ/PA Model Results
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5.4 Summary

We have shown that a combination of testing for HIV antibodies and imposing
persuasive techniques to encourage safe sexual behaviours of the tested infecteds
plays a significant role in the reduction of the spread of AIDS. The extent of these
benefits are not completely evident. However, we are better equipped to further
study their effects. For a more complete analysis of the effects of HIV antibody
testing in combination with various influencing techniques to increase the number
of responsible tested infected individuals, we should consider the impact of various
alternatives to the execution of these aspects. For instance, we would be interested
in studying the outcomes of a voluntary versus compulsory nature of testing for HIV
antibodies. The degree of confidentiality of test results would also contribute to
the outcome of the disease. Further, means to enforce laws on individuals who fail to
behave sexually responsible, should be examined for effectiveness. Many problems are
intrinsic in these options. For instance, a voluntary, confidential testing regime, would
probably motivate more individuals to become tested. Adding educational methods
to this combinatioa might result in increasing the responsibility of the sexually active
tested population. However, if the test results are confidential between doctor and
patient, then attempts at educating individuals would be in vain. This would lead
to a larger Q class. If testing was compulsory and complete disclosure of results by
the doctor was required, then obviously a larger P class would be achieved, but the
rights of individuals would be violated, and the cost could be extreme. Limiting the
compulsory testing to certain risk groups may help this situation. Only in continuing
our study can we zain some insight into the effects of these alternatives.

Our models are simplistic, and hence they require some refining to more com-
pletely simulate the disease in nature. For instance, in defining our Q and P classes, we
established a clear cut division between responsible and irresponsible sexual behaviour
for every sexual act. Hence, the I and Q populations behaved sexually identically.
This may not necessarily be accurate. In future modelling efforts we must examine

the very likely case of individuals from the Q) class behaving irresponsibly only part
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of the time. For instance, an individual in the Q class may, on average, engage in
unsafe sexual practices in only one out of every ten sexual contacts. Compensating
for this would in =ssence have a positive effect on the disease outcome. We might
solve this problem by combining the Q and P classes while considering a density
function incorporating a continuous drop in activity levels as the disease symptoms
become more evident. Another alternative is to divide the infecteds into progressively
less sexually active groups. The number of groups would depend on the number of
different activity lavels required to satisfy our modelling efforts.

In future modelling efforts we must consider the effects of variable infectivity.
Including this element of uncertainty, could significantly alter the optimal proportion
of infecteds to be sested, and hence the outcome of the epidemic.

A natural extension of our models would also include incorporation of various
risk groups. Within the susceptible population, there are individuals whose behaviour
invites infection. I'or instance, IV drug users are at high risk of contracting the HIV
virus. The inclusion of risk groups in our models would provide a more complete
understanding of the actual dynamics of AIDS. If we are aware of which individuals
are at highest risk. we can focus our testing efforts on these groups, thus cutting down
unnecessary costs.

These and other revisions to our models can now be pursued more easily since
we have an understanding of the basic dynamics of the AIDS epidemic with respect
to HIV antibody testing and persuasive techniques encouraging responsible sexual
behaviour of tested infecteds. With combined efforts and further study we hope that

eradication of the acquired immunodeficiency syndrome will become a reality.



Appendix A

The SPA and SPA: Models

The calculations required for the SPA and most of the SPA, models are straight
forward and a listing of calculations are not required. We do provide the calculations

required for the sclutions of the SPA, model. The model is found in equations 3.6

Applying the integrating factor technique we first find the solution for S(¢).

e(#+c)t5(t) — /Ae(u+c)tdt

A

= (nte)t
= e + ¢;.
nte '
Thus,
A —(ute)t
5(1) = + e where
Hte
A
¢, = So =
B+ €

Using the colution for S(¢) we now solve for P(t).
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eB)tp(t) = /66(“+")t5(t)dt

= / s BTVt 4 o ee? )t

e
eA ci€

_ . (p+v)t 1 v—e)t
= e + —e + co.

(1 +€)(pn+v) v—¢€ ’

Thus,
Py = & + —2E —(utat 4 oy e=(utult where
(pt+e)(p+v) v—e
eA cL€

= P, — —
= hte(ptv) v—e

Combining the solutions for S(¢) and P(¢) we solve for A(t).

A
e(u+d)tA(t) - /v ((N + 66)(,“ + v) i vcieee_(u+c)t * cze‘(“”)t) G
= veA elutad)t _Le(d-s)t
TEDIEDIIET) o= ald—e
_*_&e(d_v)t + c3
d—v
Therefore,
veA veey
A t — + —(#+€)t

O = e toETd  TooE=—9
+%e_(“+“)t + cge_(“"'d)t where

U veA veey Ve,

Wt +au+d (v-od—e d-v



Appendix B

The SQA Model

B.1 Equilibria

For simplicity, in this and all following appendices, the notation indicating
dependence on t is to be assumed where appropriate. The SQA system given in
equations 3.7, has two equilibrium points. We show how these points are derived.

Setting @’ = 0 in equation 3.7 it follows that at equilibrium either

Q =0
or
N(p+v)
S e (B.1)
B.1.1 Disease Free Equilibrium
When @ = 0, the equations 3.7 yield the equilibrium point
& A
I
Q = 0 (B.2)
A 0

88
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This fixed point reosresents a disease free situation and is called the disease free equi-

librium.

B.1.2 The Endemic Equilibrium

When Q # ), then S = ﬂgcﬂl Setting S’ = 0 in 3.7 we solve for Q :

S = A—(u+@-)5

N
3 BeQ\ (N(p+v)
- o= (o ) (%5
N
RPREST
—] 0,
so that
AN
p+v  Bc’

Setting A’ = 0 in equation 3.7 we obtain:

A = vQ—(p+d)A

= 0

1= (3 %)
T \p+d) \p+v  Bec )

Il

and so
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The endem c equilibrium as a funtion of NV is:

Iy \ Ngg:-v)
Q - u?—v - % (B'B)
A ) (ﬁ) (uiv - %)

Using equation B.3 and N = § + @ + A we derive an explicit expression for
N in terms of the parameters of the model:
N(,u-l-v)+ A _Nu_}_(v ) A _Nu)
Be p+v PBe p+d) \p+v Pe

N =

_ ety g v A v
- N( Be ~ Be (u+d)ﬂ6)+u+v(l+u+d>

- vd A p+v+d
N .
(u+d)ﬂc+u+v( w+d )

so that we obtain

v _ ABe(p + v + d)
b= oG o =

Substituting N in equation B.4, into equation B.3, we derive expressions for
the endemic equil brium in terms of the parameters of the system:

B = [ tBltetd ) (pin)
(b +0)(Be(p +d) —vd) ] \ Be

Alp+v+d)
Be(p + d) —vd’

Qi
|

A _ﬂ( ABe(p + v+ d) )
ptv Be\(p+v)(Be(p+d) —vd)

( A ) ((36—(u+v))(u+d)>
u+v Be(p + d) — vd '
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and

pN
ii

(7)) (oo =)
p+d) \p+vpBe) \(p+v)(Be(p+ d) —vd)

(ﬂAfv> (ﬂg(cu;( l;)+—vt))d ) '

We record these in vector form:

5, A!u+d+v!

Be(p+d)—vd

0| = | (&) (Lol (B.5)

utv Be(p+d)—vd

A Av Be—(ptv)

A (u+v> (ﬂC(u+d)—vd)
Note that the encemic equilibrium in equation B.5 exists if and only if fc > p + v.
This inequality wes derived by restricting the values of the components of the endemic

equilibrium to the positive cone.

B.2 Local Stability Properties

It is useful, in the subsequent analysis, to note the relationships in the equi-
librium, (S,Q,A)

S 5 - td)(Be—(p+v)) o

pto) 5 _
Be N, and @@= Be(u + v+ d)

Furthermore, to aid in simplifying calculations we use the substitutions,

m = p+v,
n = p+d,
M = ﬁc—(,u—{—'v), (B.6)

D = Be(p+v+d).
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We now proceed to look at the local analysis of these two fixed points.

The Jacobian is:
as’ \
£

(s}
gl

as’
aQ

J=| 22 29 2
oS 9Q

24’ 94’ aA'/
35S 2Q 94

~k+BWN-5) -FEN-Q 53

=| FON-5 FE-Q-@+vr) -5

B.2.1 Disezase Free Equilibrium

The Jacobian at the disease free equilibrium (%, 0,0) is:

—p —Be
J(%,O,O) = 0 ﬁc—(,u+v) 0 )
v —(p+4d)
and thus,
—(u+X) —fBc
]J(%'O,O)—)\H: 0 Be—(p+v+A) 0
0 v —(p+d+A)

The eigenvalues for the disease free fixed point are:

Moo= —p
Ay = Be—(p+v)
Na = —(u+d)
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Since px and d are positive, we need only be concerned with the sign of A, for local
stability of the point (ﬁ-, 0,0). We conclude that the disease free equilibrium is locally
asymptotically stable if

Be < p+ v.

B.2.2 Endemic Equilibrium

The Jacobizn at the endemic fixed point (S, @, A), using the substitutions B.6,

1s:

~(n+53(N-9) -HWN-Q ¥

Joan = | RE-H  BE-Q-m -
0 . .

We continue by simplifying the components:

Q A p

N mN fec

A (m(nﬂc— mn 4 p(m +d>)) p

m ABe(m + d) B ;3—0-
_ n(Bc—m)
~ Be(m+d)
_ nM
=

BQIN=S) _ . Q( S
V2 = JCN(I_N>

nM [Bec—m
ey (257)
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nM?

BeS(N-Q) _ m
7 = (D -nM).

)

Therefore,
[J5.0.4) — M| =
~(r+4E+))  —B(D-nM) s
n1})42 2(D—nM)—(m+ ) _ mnM
¥ v —(n+ )

nM? mnM n2m?M3
- Y ”+D+/\(D)_ D?

+(n+ ) ((u + "ng + A) (%(D —nM)—(m+ M))

_(n+ ) (”%me - nM)) .

This gives the characteristic equation

nD +nM?+ mnM + pD 32
D
+_vmn1W +n2M?* 4+ mn?M 4+ nuD + pmnM + nM?*m
D
vmnM p + pmn?M + n*M?*m
+ = .

0 = AN+

A
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We use the Routh-Hurwitz criteria (H.2) to determine the local stability of our
system. The criteria for all the roots of a cubic polynomial to have their real parts
negative is ag > 0,a; > 0,a2 > 0,a3 > 0 and in addition the determinant condition
ayay — azag > 0, where a; for i = 0,1,2,3 are the coefficients of the A3~* terms of the
characteristic equation. Note that the parameters p,v,d,m,n, M, D, 3, and c are all

positive. Thus,
ag = 1 > 0,

D+nM? M
a, = nD+n -Em'n. +uD > 0’

Gy = vmn]l[+n21\12+mn2All-)}-nuD+umnM+nM2m > 0’

M 2M4+n2M?
3 = vmn u,+umg +n m = 0’

and

ayaq9 — A30g =

nu(n -+ p)
+n2mM(v +n)+n*M?+2n°Mpu(m + M) + numM(p +n+ M)
D
+n21V3m2 +n?M(n+m) + 203 M3m + n’m?*M?*(M + m + n)
D2

» 0.

Therefore the endemic equilibrium exists and is locally asymptotically stable if F¢ >

W+ .



Appendix C

The SQPA Model

C.1 SQPA Equilibria

Calculations in this appendix refer to model 3.9. The "equilibria for 3.9 are

found by setting the differential equations to 0. Setting @'(¢) = 0 in 3.9 we have

either
Q = 0,
or
N(p+v)
S T )5 (C.1)

C.1.1 Disease Free Equilibrium

If Q@ =0, then § = %, P= 0, and A = 0. The disease free equilibrium is then,

:}>) hU><©> Ty
(eme T v S wur i - =0
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C.1.2 The Endemic Equilibrium

In this section we perform the necessary calculations to determine the endemic

equilibrium. If Q s¢ 0, then by setting S’ = 0 in 3.9, we can solve for Q.

F = A—(u-{-ﬂjch)S

) BeQ\ ( Niu+v)
= A‘(“ N)((l—p)ﬂc)

_pN(p+v) Qu+tv)
(L=p)Bc  (1-p)

= i

= 0,

so that

Qi
Il

(1-p) pN (g + v)
ED (A‘ (T— )pe )

(L—p)A pN
(p+v)  Be’

Setting P’ = 0 in equation (2.16) we obtain

Po= o (utup
pBc (N(u+v)\ ((L—=p)A uN
N ((l—p)ﬂ6>< ptv ﬁC)—(/Hv)P
pleto) (L=p)AY _plpto)uN
=) ( Htv ) si-p) M
pA — oDl +) (e +v)P

Be(l —p)



APPENDIX C. THE SQPA MODEL 98

_ (Aﬂc(l —p) = uN(p +v)
g Be(1 = p)

= 0,

and hence

v

- () (s
B ( +v ﬂcl—p))

A is derived by setting A’ = 0 in equation 3.9, which gives:

A= +d(Q+P)
_ v ((1~p)A_uN pA  puN )
ptd\ ptv Be  p+v  Be(l—p)

v A uN p
- - -
ﬂ+d(ﬂ+v ﬁc(+1—p>>

_ v (A _ uN )
T opt+d\p+v Be(l-p))°

Therefore, the encemic equilibrium, as a function of N, is:

51 N!u.+v!
(1—p)Bc

Q (1—p!A _ ulN

putv Be

= (C.2)

D A ulN
P p (uT B @c(l—p))
A v A ulN
A ptd <u+v - BC(I—p))
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Using equation C.2 and the fact that N = S+ Q + P + A, we derive an explicit

expression for N in terms of the parameters of the model:

g’(u +v) a A uN ( A uN )

N = st P e P e " Ba-p)

v (A uN )
T Ekd L ate  fdl—g
E’( ptv o g po )
- (1=p)Bc  Be  Be(l—p)  Pe(l —p)(u+d)

()
p+v p+d

& ((# +v)(p+d) —p(l —p)(p+d) — pu(p+d) - #U>
Be(l — p)(u+d)

-

Alp+v+d)
(b +v)(p+d)

_ Ap+v+d) . vd
CEDIET (56(1 —p)(p+ d))

so that

vd _ Alp+v+d)
N<1_ﬁc(#+d)(1—ﬂ)> (et (p+d)

and therefore,

=

(k+v)(p+d)) \(g+d) (1l - p)Bc—vd

Alp +v+d)(1 - p)Be
(t40)((p+d)(1 = p)Bc—vd))

(A(u+v+d))< (1 +d)(1 - p)Be )

We now substitute V, as it is in equation C.3 into our endemic equilibrium in equation

C.2, and we obtair the following expressions for the endemic equilibrium in terms of
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the parameters of the model:

s _ Nty
* = Be(i=p)
B Alp+v+d)
~ (u+d)(1 - p)Be—vd
) - (L=ph_u¥
¢ = L+ Be
(L-p)A p

______( Ap +v+d)(1—p)Be )
Wtv  Be\(u+0)((u+d)(1 - p)fc—vd)

_ A ('(1 —p)((r+d)(1 = p)Bc—vd) — p(p +v+d)(1 —p))
(1 +v)((1 +d)(1 = p)Bc—vd)

pBe+ dBc — ppPec — dpfec — vd — p* — pv —ud> |
(k+v)((1 + d)(1 = p)Bec—vd)

— A(—)p) (—(u +d)(u +v) — pBe(p +d) + Be(p + d))
(1 +v)((# + d)(1 = p)Bc — vd)

— A (((1 —p)Be—(p+v)(p+d)(1 - p))

- A(]—p)(

(1 +0)(( + d)(1 = p)Bec — vd)

~Noi
I
’b
I

l=p

Y. ((u+d)((1—p)ﬂc—(u+v)))
(1 +v) (1 +d)(1 = p)Bec—vd

RN
Il
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Therefore, the end=mic equilibrium is given by:

/ g A(putv+d)
(u+d)(1—p)Bc—vd
A A(p+d)(1-p) (1—p)Be—(u+v)
Q ( (utv) ) ((u+d)(1—p)ﬁc—vd)
= (C.4)
D Ap(p+d) (1—p)Be—(pt+v)
P~ ( ptv ) ((u+d)(1—p)ﬁc—vd)
A Av (1—p)Be—(u+v)
4 (u_+‘) ((u+d)(1—p)ﬁc—vd)

The endemic equilibrium exists in the positive cone if and only if all components of

the endemic equilibrium are positive. This is satisfied if I > 0, or equivalently if

ptv
Bc > "

L]

C.2 Local stability analysis

In the subsequent analysis we use the above information, the substitutions

m = f4+v
n = ,u-l-d
D = Be(p+v+d) (C.5)

T = Be(l—p)—m,

and the relations

N(p+v)
(1—p)Be

Nm
S — (O
(T—pBec

91
Il
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Q _ (U_—/’)_‘§_i)
i i to)R  Bo

_ —pA <m<n(1 _ g)Be— vd)) o
B m A(1—=p)D Be

n(l—p)Be—vd p

D Be
_ Ben(l —p) —vd —p(p+v+d)
- D
_
= 5

Therefore, we can simplify:

(

2 = (i) (- 5)

- (1712;)) (D ;)Tn)
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We are now able to perform a linear analysis on the system of equations in 3.9. The

Jacobian is:

55 aQ OP 9A
09 99 99 99’
S °9Q B8P DA
J =
2P 2P 9P’ P!
35 0Q OoP 9A
24! 9A' Al pA!
35 9Q 0P BA
—qy — BRIN=S) _BeS(N-Q BeQS BeQs
K Nz N2 N2 N2
Be(1=2)Q(N=S)  Be(1-p)S(N-Q) _ .. _Bc(1-p)QS  _ Be(1-p)@S
NZ NZ NZ Nz
G S(N=S S(N- S
MJ_Nz =) Bep Ng Q) ___ﬁCI;\}2 . _ﬂcXﬂS
0 v v —n
C.2.1 Disease Free Equilibrium
At the disease free equilibrium (%, 0,0,0) the Jacobian is:
— i —Bc 0 0
(1 =p)Bc—(p+v) 0 0
J(A,o,o,o) = )
# pBe —(p +v) 0
v v —(p+d)


http:dise3.se
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so that

|J(%,0,o,o) - M| =

—(p+A) ~e.
0 (1=p)Bc—(n+v+]) 0
0 pBe —(p+v+2) 0
0 v v —(p+d+A)
(L—p)Bec—(p+v+2A) 0
=—(p+A) pBe —(p+v+2A) 0
v v —(p+d+A)

This is a triangular matrix, so the eigenvalues can be determined directly from the

diagonal elements. Hence the characteristic equation is

(B+A)((1=p)Bc—(p+v)=AN)((r+v)+A)(k+d)+ 1) =0

which yields the following eigenvalues

Moo= -

A2 = (1-p)Bc—(p+v)
Az = —(p+0v)

Ay = —(p+d)

The eigenvalues are real and with the exception of A3, are all negative. Therefore, we
must impose a restriction that will make A3 < 0, to guarantee local stability of the
disease free equilitrium. To this end, we require

ptv

< :
Be T,
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C.2.2 Endernic Equilibrium

The Jacobian at the endemic equilibrium (S, Q, P, A) is provided below using
substitutions C.5.

o nT? __m (D—nT) mnT mnT
KF=T=pD ~T-» \" D 1-p)D A-p)D
T2 D—nT mnT T
G LS

Jis.0.p.5 =

pnT? pm (D—nT) __pmnT m — pmnT
(1-p)D (1-p) D (1-p)D (1-p)D

0 v v =T

The characteristic 2quation, using row and column operations to simplify the form of
the determinant, is derived as follows:

J(S’Q’P,A) — ;xI =
2T2 m D-nT mnT mnT
L=Gogp — A~ ( D ) -»D -»D
nT? D—-nT mnT mnT
5 m (23ZL) —m — A = -5
ﬂlz_ pm D—-nT __pmnT _ _ ___pmnT
(-»)D =) ( D ) -0 — ™= A ~{D
0 v v —n— A
(C3 —C3-C4)
-t = nT? _ __m D-nT mnT
H (0-p)D A -7 ( D ) 0 1-»)D
L % m (——DB"T> —m—=A 0 —mT?T
- pnT? pm D—nT pmnT
(1-p)D =0 ( D ) -m—=X —455p
0 v v+n+A —n-=—2\




106

APPENDIX C. THE SQPA MODEL

(R3 — —R3 — R1)

nT? m D-nT mnT
—-n-p-r i (55 0 -
I (2 O T B
1L+/\+%i m(D;)"T m+ A —"‘T?T
0 v v+n+X —n—-2A
(R3 — R3 — R2)
)
) nT? m D—nT mnT
—F = @=pD A T (1-»p) ( D ) 0 (1-p)D
_ n_gz_ m(DI)nT) —m =\ 0 __mBT
w4+ A m+ A m+ A 0
0 v v+n+A —n—-2A
(C2 « C2-0C3)
nT? m D—-nT mnT
== -0~ 4 =g ( D ) 0 (-nD
n D-nT mn
_ _1T3‘ m (—-—D ) -_m-—=A 0 =i
L+ A 0 m+ A 0
0 —n— A v+n+A —n-—2A
(C2 — C2-C14)
e S o B i 0 _mnT_
H (G-pD 1-7) 1-p)D
nT mnT
_ B S\ 0 e
T ) 0 m+ A 0
0 0 v4+n+A —n-—2X

The characteristic equation and the Routh-Hurwitz criteria (H.2), are derived with

the use of MAPLE. A program listing and results are provided for your perusal in

figures C.13 and C.14.
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Figure C.13: Program for Routh-Hurwitz criteria: SQPA

#

#The determinant elements, where s=1-p.
#
al:=-u-n*T"2/(s*D)-r:
a2:=-m/s:

a3:=0:

a4 :=T*n*m/(s*xD) :
b1l:=n*T~2/D:

b2:=-r:

b3:=0:

b4 :=-T*n*m/D:
cl:=u+r:

c2:=0:

c3:=m+r:

c4:=0:

d1:=0:

d2:=0:

d3:=m+d+r:

d4:=-n-r:

#

#Calculate the characteristic equation and simplify.
#We can factor out (m+r).

#
ceqn:=simplify(-d3*(c1*(a2*b4-b2*ad))+c3*(-(n+r)*(al*b2-bi*a2))):
ceqn:=ceqn*s*D/ (m+r) :

ceqn:=collect(ceqn,r);

#

#The coefficients of the characteristic equation.

#

kO:=-coeff(ceqn,r,3);

k1:=-coeff(ceqn,r,2);

k2:=-coeff(ceqn,r,1);

k3:=-coeff(ceqn,r,0);

#

#The final Routh-Hurwitz condition, k1k2-k3kO.

#

rhc:=simplify (k1*k2-k3*k0);

quit
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Note that a factor of m+ A is contained in the characteristic equation, and so we only
need to use the Routh-Hurwitz criteria for a cubic polynomial. The characters used
in the program are not identical to those used in the analysis. These substitutions
include those listed in C.5, the symbols kz, for z = 0,1,2,3 corresponding to the

coefficients of A3~% as well as the substitutions

u = g,
f = A, and
s = (1-p).

Since the Routh-Hurwitz criteria are satisfied, we can conclude that the en-

demic equilibrium is locally asymptotically stable provided Bc > fl‘%;i.
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Figure C.14: Results for Routh-Hurwitz criteria: SQPA

#Calculate the claracteristic equation and simplify.
#We can factor out (m+r).
#
2 2 2
ceqn :=-m uTn-n T m-dumTn

2 2 2 2
+(-dmTn-umTn-mTn-nusD-nT-nTmnm)r

2 2 3
+(-nsD-usD-nT -mTn)r -sDr
#
#The coefficients of the characteristic equation.
#
kO :=s D
2
kit =nsD+usD+nT +mTn
2 ' 5.9 2
k2 :=dmTn+umTn+m Tn+nusD+n T +nT m
2 2 2
k3:=m uTn+n T m+dumTn
#
#The final Routh-Hurwitz condition.
&
2 2 2 2 242 2

tThc:=n s DdmT+2nsDumT+nsDmT+nsDu

3 2 2 222 2 2
+nsDT +us)mTn+usDn+2usDnT

2 2 3 23 232 3 4
+usDnTm+nTdm+nTum+2nTm +nT

2 4 2 2 2 222 322 33
+nTm+mTnd+mTnu+mTn +mTn

]

All terms are positive.



Appendix D

The SIPA Model

D.1 Equilibria

The calculations in this Appendix are for the model appearing in equations 4.1. -

We begin our linear analysis by solving for the equilibria. We use the substitutions:

m = pu+v

n = p+d

l = p+w (D.1)
X = mn+nw+ow

Setting I’ = 0, in equation 4.1, we obtain:

(5—;,5—(/1+w))1 =0

so that we have only

I=0 or S:—

110
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D.1.1 The Disease Free Equilibrium

If/=0then P=0, A=0and 5= % so that the disease free equilibrium is:

o T o~ Uy
o O O x>

D.1.2 The Endemic Equilibrium

If I #0then S = % Setting S’ = 0, in equation 4.1, we have:

_ Bel\ Nl
0 = A- (u + N ) B
=" A Be Il
so that,
& A uN
= 7%

Setting P’ = 0, in equation 4.1, we obtain:

wl = (p+v)P

so that

~
I
3|5

= 2(8 i
T m\l Be

Setting A’ = 0, in equation 4.1, we have:

vP = (p+d)A
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and hence
A = vwl
mn
W é uN
~ mn \[l Bc

The endemic equilibrium, as a function of NV, is then:

S &
f posf
N (D.3)
P o (4 _al)
A 2 (4 )

N = S+I+P+A

- N L_i(1+i+£) +é(l+f_+_vi>
Bec Bc m  mn l m  mn
— [ vdw
= N
(ﬂcmn) u
Let X be as in equation D.1 so that:

N = %(—Bc}( ) (Di)

Bemn — vdw

~| >

(mn + nw + vw>

mn
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We now can solve, using equation D.4 the coordinates of the endemic equilib-

rium, in equation 1).3 in terms of the parameters of the system.

= Ni

* = B
AX

Bemn — vdw’

- A uN

I = ———

l Be

A [Bemn —vdw — pmn — pnw — pow
B Bemn — vdw

_ Amn Be—1
B l (chn—vdw)’ ' : \D8)

p - w(A_pN
i o m(l ﬂc)

Anw ( Be—1 ) ’ (D7)

l Bemn — vdw
and

mn \ [ Bc

_. Avw ( Pe—1 ) . (D.3)

[ Bemn — vdw

i = L“’(ﬁ_ﬂ)

Replacing the substitutions listed in equation D.1 into equations D.5, D:6, D.7,

and D.8 we obtain the endemic equilibrium in terms of the parameters of the system:
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IS A((ptvtw)(ptd)+vw)
Be(p+v)(p+d)—vdw)

I A(utv) (utd)(Be—(utw))
(utw)(Be(utv)(utd)—vdw)

P Aw(p+d)(Be—(p+w))
(u+w)(Be(ptv) (utd)—vdw)

Avw(Be—(p+w))
(ntw)(Be(ptv)(ptd)—vdw)

h N

D.2 Local Stability Analysis

The Jacobian for the SIPA model is:

BeI(N—-S) BeS(N=I)  BeIS — BelS
—H = TRz —T Nz N2 N2
BeI(N-=S) BeS(N-=1I) l BelS BelS
N2 N2 - —"N2 T N2
J ==
0 w —-m 0
\ 0 0 v —-n

where we have aguin made the substitutions as in D.1.

114
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D.2.1 Disease Free Equilibrium

The Jacobian calculated at the disease free equilibrium (%, 0,0,0), is:

—pu =P 0 0
0 Be—-1l 0 0
0 w -m 0

0 0 v —n

J (%,o,o,o) =

The characteristic equation is:

—p— A —fec 0 0
0 Be—1-=2X 0
Toao, —/\I‘z
} (5:000) w -m— A 0
0 0 v —n = A
—(p+A) Be
= —(n+\) 0 Be—(1+)) 0
w —(m+ )

=(n+N)(m+ AN (u+A)((Be=1) = A) =0.

Thus,
)\1 = —n,
/\2 = =T,
Az = —pu, and
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Since the eigenvalues are real and excepting A4, all negative, the disease free equilib-

rium is locally asyrnptotically stable provided

Be > p+w,
and is unstable if

Be < p+ w.

D.2.2 The Endemic Equilibrium

The Jacobian calculated at the-endemic-equilibrium, (where we omit the bar

notation for converience), is:

J(s,1,p,4) — )J|
e BER 5 _BeS(N= sels sets
gel(=5) peS(V-D) _y_ )\ _gdls s
) 0 w —-_m = 0
0 0 v = X

'Rl «— R1+ R2)
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—(u+2) —(l+X) 0 0
Bl(N-S) peS(N=I) _j_ ) S _gels
) 0 w —(m + ) 0
0 0 v —(n+A)
—(e+X)  =(+N 0

cI(N-S c - c
Bl(N=5) peSN=1) _j_ ) _BelS

0 w 0
—W+A). —(I+X) g
“(nA)| ElN=S) peSNoD gy _gels
. @ —(m+ )
= vuw(p+ A)ﬂcIS (w ﬁcIS)
+(n+A)(m +A) u+A)(1+/\ 565 ))

+m+an+nz+x(&”N Sv

Let
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R, =

Bel

R3=N

Further, let C represent the characteristic equation.

C = —=(R;— Ry)pmn + plmn 4+ unwR,
+vwRy + (Rs — Rz)lmn
+ (=(Ry — R2)(p(m + n) + mn) + pl(m + n) + mn(p + 1))\
+(w(m 4+ n)Ry + (R3 — Ry)(I(m + n) + mn))A
+ (=(Ry — Ry)(p+ m+n) + pl + mn + (u + 1)(m + n))\°
+(wRy + (R3 — Ry)(I4+m +n))A\?
+(=(Ri—R))+m+n+pu+1+ Ry — Ry)N®
+ A (D.9)

We denote the co=fficients of the characteristic equation in a manner similar to pre-
vious sections, that is where a; is the coefficient of A*~.
By the Routh-Hurwitz criteria we require the coefficients of the characteristic

equation, as well as the determinant condition, az(aja; — a3) — a?ay to be positive.

To this end

ag = 1
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aqa = Rz+pu+m+n

a3 = —l(p+m+n)+ Ry(p+m+n)+pl+mn+ pu(m+n)
+H(m+n)+wRy+ R3(l+m+n) — Ry(l+m +n)
= mn+um+n)+ Ry(l+m+n) .

a3 = —(Ri— Rp)(p(m +n)+mn)+ pl(m+n)+mn(p+1)
+w(m +n)Ry + (R3 — Ry)(I(m + n) + mn)
= —Ry(pm + pn + mn) + Ry(pm + pn + mn) 4+ pl(m +n)
+mn(p + 1) + w(m + n)Ry + R3(Im + In + mn)
= —Ry(pm + pn +mn) — Ryw(m +n)
= umn+ R3(lm + In + mn)

ag = —(Ry— Ry)pmn + plmn + pnwR,
t+pvwRy + (R3 — Ry)lmn
= Ry(pmn + pnw + pvw) + (R3 — Ry)lmn

-1
= RouX + ImnR; (ﬂc )

Be
= 'mnRs (ﬂcﬁz l) + ﬂ,;\;le-

Since all the parameters are positive then, by the above, all the components
of the a;’s are positive. Thus the first conditions of the Routh-Hurwitz criteria are
satisfied. That is, a; > 0, for 7 = 0,1,2,3,4. The final Routh-Hurwitz condition is

calculated below, beginning with the simplification of a,a; — as.

ajaz —az = (Rz+p+m+n)(mn+pu(m+n)+ By(l+m+n))

—pmn — R3l(m + n) — Rymn
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Figure D.15: Program Listing for SIPA Model

det :=R3* (m*n+u*(m+n)+R3*(1l+m+n)):

det :=det+u* (u*x (m+n)+R3* (1+m+n)) :

det :=det+m* (m*n+u* (m+n)+R3*m) :

det :=det+n* (m*n+u*(m+n)+R3*(m+n)) :

a3:=u*m*n+R3* (l¥m+1*n+m*n) :

al:=R3+u+m+n:

a4 :=1*m*n*R3-1"2*m*n*R3/B+u*x1* (m*n+n*w+v*w)*R3/B:
rhc:=collect (expand(det*a3-al~2%a4) ,R3);

quit

= Rs(mn+ p(m+n)+ Rs(l+m +n))
+u(p(m +n) + R3(I + m +n))
+m(mn + u(m+ n) + Rzm)
+n(mn + p(m + n) + Rz(m + n))

We now deal with the determinant condition as(a;a; — a3) — a?ay as required. We
employ MAPLE for a simplification. The program is listed in figure D.15, and the
MAPLE output follows.

2 3 2 3 3 2 2 3 3 2

rhc¢ = m n u+u n m+m n u+u m n+u m n

+2u m n +u nnm
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2 2 2 2 2 2 2 2 2 2

+(4m n u+3u n m+3u mn+u m 1l+u n 1

3 3 3 3 2 3

+um 1+2um n+un l+2un m+m n

3 2 2 2 2

+mn +2u mln+um ln+umn 1

*% 1 kk *% 1 kxk *k 1 kx k% 1 k%
2 2 3 3 3
u 1 mn u lmn u lnw u lvw
$ mecccmccmren - Cnememeceos - EEEEEEweEE - -
B B B B
*k D Ak *k D kk *k 2 kk
2 2 2 2 2
um 1 n u m 1ln u mlnw
+ 2 e -2 mmmm——————— -2 mmmmmmm—— e
B B B
*k 2 kk *% 3 kxk *k 3 kxk
2 2
u mlvw mn ulw mnulvw
- 2 mmmmmm— e - 2 e -2 mmmmmmm— e
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k% 4 kk *x 4 k% *k 4 %% *k 4 %k
3 2 3 3 2
n 1 o n ulm n ulw n ulvw
+ mmmmmmcee - cce—- Fmm—— - EEmcem—e-—e—- - E——-————————
B B B B
*%k 5 k% k% 5 ckxk kk 5 okxk
2 2 2 2 2 2
un L m un lm u n lw
+ 2 mmmmm—em—ee - 2 mmmmmmee e - 2 mmmmm——————
B B B
*% 5 kxk *%x 6 k% *%x 6 kk
2 3 2 3
u n v w m 1 n m uln
- D mmmmmmiim—— - + mmmmcccce - cccccccca-
B B B
k% 6 ki kk 6 kk *kk 3 okk
2 2 2 2 2
m ulrw m ulvw m n 1
- eememccccc e, - cememee——————— 4+ 2 mmmmm—— e
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2 2 2 2 2

+ (3um n+3un m+2un 1l+2um 1l+mn 1

2 2 2 2 2

+m nl+ul m+ul n+4ulmn+2mn

*¥ T kk
2
3 3 3 3 u lmn
+*m l+n m+n 1+m n= 2 ss5sscssess
B
*xxk T ek % T k% *x 8 %k
2 2 2 2
u lnw u lvw m 1 n
% Q) e —— = D mm————— F D emmm———
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*k 9 ek k% T kxk *k 8 k%
2 2 2 2
n 1l m ul mn m uln
+ 2 mmmm——me VI R — S T
B B B
*xk 8 kK xk 8 kk *xk 9 k%
2
mulnw mulvw n ulm
= D S - 2 memmeem———— = 2 sreesee——-
B B B
*kk 9 Ak *k Q9 kxk
N .
n ulw nulvw 2
= D e - 2 mmmmmeme——- ) R3
B B
*x 10 *% *%x 10 *% *%k 10 *%
ulnw ulmn 2 ulvw 2
¥ (= e c———— +n 1 - -—=-=e==- +1 m
B B B
*xk 10 *%
2
l1 mn 2 2 2 2
+ —mmmeeeo +1 n+m 1+21mn+m n+mn) R3

3
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The numbe-ing for the simplifications below correspond to the numbering used

in the output. We begin by cancelling all negative coefficients of R;.

]
k% 1xx = —(Imn—pmn — pnw — pvw)

Be
pilvdw

Bc

*k 2% % = Z#ﬁ—(lmn— pmn — pnw — pow)
c

(),ulmvdw

= g

l
*kJkk = QE(lmn—umn—ynw—-pvw)

Be

Imnvdw

Be

In?
*x*xdxkx = ﬂ—(lmn——,umn—;mw—;ww)
c

In%vdw

Be

l
*x5xk = 2”—72(lmn — pmn — pnw — pow)

Be
2/,mlvdw

Be

Im?
*%Bex = T(lmn—umn—,unw—,uvw)
c

Im*vdw
Be

We now simplify the negative coefficients of R3.

/
% T**x = 2:3—(lmn — pumn — pnw — pow)
c
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plvdw
Be

2

*¥hBre = QBLn-(lmn — pmn — pnw — povw)
c

5 Imvdw

Be

l
ok Qaew = Q—E(lmn—umn—ynw——,uvw)

Be

nvdw

Be

Finally, we simplify the negative coefficients of R3.

= 2

[
*x*10*x%x = —(Imn —pumn — pnw — pow)

Be
lvdw

Be

Therefore, since we have proved that all the negative coefficients of all the pow-

ers of R3 simplify, the determinant condition of the Routh Hurwitz criteria is satisfied.
Recall that the co=flicients of the characteristic equation were also all positive. Thus,
by the Routh-Hurwitz condition, the endemic equilibrium is locally asymptotically

stable provided B¢ > p + w.
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The SIQA Model

E.1 Equilibria

The model being analyzed in this section is found in equation 4.3. We bégin

our linear analysis by solving for the equilibria. We use the substitutions:

m = p+v
n = p+d
l = ptw (E.1)
f = m+tw

Setting I’ = 0, in 2quation 4.3, we obtain:
3cS
(%—(p+w)) P =D

so that we have only

ImN
"~ Be(m 4 w)

127
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E.1.1 Disease Free Equilibrium

A

If I =0 thea Q =0, A=0and S = % Thus the disease free equilibrium is:

o o o x>

E.1.2 Endemic Equilibrium

If I #0 then S = lgl—cjfv- Setting @' = 0, in equation 4.3, we obtain:

oI = (n+v)Q.

Setting S’ = 0, in squation 4.3, we have:

0 = A- (;t + ﬂchS')

mN
plmN
A - -1
Bef
so that,
P i FEE
I Bef
Then
s w—
Q==
m —
_ w (A pmN
 om Bef
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Setting A’ == 0, in equation 4.3, we have:

vQ = (p+d)A
and hence
A = vwl
mn $ &
s B
~ mn \ [ Bef

Therefore, the endemic equilibrium, as a function of IV, is:

Qi

e
P e~
i

I

SE
e P
Nt

b

{4

¢
>
1>

|

=

3
2
Mg

Using equation E.2, we obtain a value for N in terms of the parameters of the system:

N = §+71+Q+A

_ Ik g B (& et
B 5cf+<1+m+mn>(l Bcf)

m  mn

_ (lmn — pmn — pnw — povw A (mn + nw + ’Uw)

= ] + L
Befn

mn
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so that

N =

A(nf + ww) ( Bef )
[ mnfef — Im?n + pym(nf + vw)

ABef(nf +vw)
Im(Befn — Imn + unf + pow) (E.3)

We now can solve, using equation E.3 the coordinates of the endemic equilib-

rium, in equation E.2, in terms of the parameters of the system.

e ImN
* = e
_Im ( ABef(nf + vw) )
~ Bef \Um(Befn — Imn + pnf + pow)
A(nf + vw)
Befn —Ilmn + p(nf +vw)’

(E4)

A pumN
T T T Bef
A pm ( ABef(nf +vw)
I Bef \Um(Befn —Ilmn + unf + ,uvw))
An Bef —Im
El (,3cfn—lmn+;t(nf+vw))

(E.5)

Qi
Il

w (A  umN

5(7‘ Bcf)'

_ Anw Bef —lm

— Im (ﬂcfn—lmn+u(nf+vw))’

(E.6)

and

BN
Il

vw (A umN
m_n<7— 5Cf)

Avw ( Bef —Im

Im ﬁcfn—lmn—i—,u(nf—+—v¢.u)>7
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Replacing the substitutions in equation E.1 into equations E.4, E.5, E.6, and
E.7 and using the fact that Bcfn — Imn + p(nf + vw) = Befn — vdw, we obtain the

endemic equilibrium:

& A((p+v+w)(p+d)+vw)
Be(p+v+w)(p+d)—vdw
I A(p+d) (ﬁC(u+v+w)—(u+w)(u+v))
(p+w) Be(ptv+w)(pt+d)—vdw
Q Aw(u+d) (5C(u+v+w)-(#+u/)(u+v))
(s+v)(p+w) \ Be(pt+v+w)(p+d)—vdw
A Avw (ﬁC(u+v+W)—(u+W)(u+v))
(u+v)(ptw) \ Be(pt+v+w)(p+d)—vdw

The endemic equilibrium exists if fe > =2,
m+w

E.2 Local Stability Analysis

The Jacobian for the SIQA model is:

., _ BeU+Q)(N-S) _ BeS(N-(I+Q)) _ Be(N-(I+Q))S  Bc(I+Q)S
K N2 N2 N?

N2
Be I+Q2:(N—S) BeS(N—(I+Q)) Be(N—(I+Q))S Be(I+Q)S
T N Nz -l == : N C(N2
J =
0 w —-m 0
0 0 v —-n

where we have again made the substitutions as in E.1.
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E.2.1 Disease Free Equilibrium

The Jacobian calculated at the disease free equilibrium (%, 0,0,0), is:

—p —Pc —Pe
7 0 Bc—=1l Bc O
(ganem) 0 w -m 0

0 0 v —n

The characteristic equation is:

—p—=A —Be —fec
0 Be—1— A Be
igasm = = o med
0 0 v —n—A
—(p+2X) Be —Be
= —(n+ ) 0 Be—(I+X) Be
0 w —(m+A)

= (n+ N + A ((m + NI + A = Be) - few) = 0

Two of the eigenvalues are easily determined. They are A\; = —n and A\, = —pu. The
other two eigenvalues are determined by solving the quadratic equation (derived from
the quadratic factor of the characteristic equation) A?+(m+({—B¢))A\+m(l—Bc)—Pew.
Thus

Be—1l—m

1
Mg = —— & =\ /(m+ (1= Be))? + 4m(Be — 1) + 13w
-1 - 1
= ﬁch 5\/(5c —l+m)? +4[cw.
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Cleary, the discriminant is always positive, and hence we will always have real roots.
For stability of the disease free equilibrium we require A3 and A4 to be negative. Since
A3 > A4 then this is satisfied if A3 < 0. To this end, A3 < 0 provided

(Be—1+m)* +48cw < (m+1—Bc)?

which implies

Im
fe < m+ w
Thus
Al = —n
/\2 = —u
c—1l—m 1 . .
Ay = B—c%m)—%\/(ﬂc—l+m)2+4ﬂcu

By the above discussion and since A, and A, are negative, the disease free equilibrium

is locally asymptotically stable provided

B (k+w)(p+v)
pL+v+w

b

and is unstable if

Be> (htw)(ptv)
pL+v+w

E.2.2 Endemic Equilibrium

The Jacobian calculated at the endemic equilibrium provides the equations
leading to the characteristic equation. We assume in the following calculations that

mention of the pcpulations refers to equilibrium populations.
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Je1a.4 - M| =
g @Hc]gvng—S) 1 _ﬁcS(NA—ﬂ(I+Q)) ,Bc(I+1QV)2(N—S) ﬁc({\-};Q)S
@_H?V)gzv—.q BeS(N=(I+Q)) _ | _ » ﬁc(N-IslI;Q))S _ﬁc(%cg)s
0 w -m— A 0
0 0 v —-n—A
(R — R1+ Ry)
(4 + ) =+ 0 0
ﬁ_cﬂ+c§,)2(N—S) ﬂcswh—pmo)) —(I+ ) ﬁC(N—JSII;Q))S _ﬁc(lj;;@)s
i 0 w —(m+ A) 0
0 0 v —(n+A)

We use the following substitutions to simplify calculations:

Bl + Q)N - S)

W, =

N2
BcS
W = 5z (N=-(1+Q))
Be(I +Q)S
W, - B+

U = Bef—Im
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Using the substitutions in E.9 we solve for the characteristic equation, which we have

labelled C:

—(p+A)  =(I+X 0 0
o - Wi Wao—(I+ ) W, —Ws
w —(m+ ) 0
0 0 v —(n+ M)
Wao—(1+A) W, —Ws
= —(p+A) w —(m+ A) 0
0 v —(n+A)
Wi W, —Ws
+(-+A)| 0 —(m+ ) 0
v —(n+ )

= (4 + ) (—voWs + (n + N ((m + N(Wa — (I + 1)) + wW2))
+Wi(l4+ X)) (m+ A)(n+ A)

= Wi(i+ A)(mn + (m +n)) + 1)
+uvoWs — u(n + A)(m + \)W,
+u(n+ A)(m+ )1+ A) — p(n + A)wW,
—A(+A)(m + )Wy + An + A)(m + A) (14 )
—A(n + NwWs + vwWs

= Wilmn + powW; — umnW, + plmn — pnwW,
A (Wi(l(m + n) + mn) — pu(n + m)Ws + pu(l(m + n) + mn))
+A (Imn — (pw + nf)Ws + vwWs)
(W =W)({+m+n)+u(l+m+n)+(m+n)+mn)
FR Wit p+l+man—W,) |
+A*
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Therefore the coefficients a; for i = 0, 1, 2, 3, 4 corresponding to the A4=9% term

of the characteristic equation are:

Qag

ay

az

as

Ay

1

Wit p+l+m+n-W,

Wil+m+n)—({+m+n)Wo+pu(l+m+n)+1(m+n)+mn

Wi(llm +n) + mn) — p(n + m)W, + u(l(m + n) + mn)
—(per + nm 4+ wn) W, + Imn 4+ vwWs

Wilmn + pvwWs; — pmnWy 4+ plmn — unwW,

At this point we are prepared to check the Routh-Hurwitz criteria for the SIQA

model. We must 1eplace the substitutions given in E.9 in terms of the parameters of

the system.

A um
IN ~ Bef
um " A <lm(ﬂcfn —Imn+ unf + ;ww))
Bef 1 ABef(nf + vw)
mn(fPecf — Ilm)
Bef(nf +ww)

BT+ Q)N =15)
W, = N2

~ L(/Bcf—lm)

£
N

N m
nU?
Bef(nf + vw)
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"VQ =

Wy =

BcS
(V= (1 +Q))

Im ImnU

J 7 Bef(nf +ww)

Im (Be(nf + vw) —nfef + Imn
7 )
Im (ﬂcvw — lmn)

J \Be(nf +wvw)

Be(I +Q)S
N2

11

N

Imn(Bef — Im)

Bef(nf +vw)
ImnU

Bef(nf + vw)

The Routh-Hurwitz criteria for a four dimensional system requires that a; > 0

for: =0, 1, 2, 3, 4 as well as the determinant condition as(a;a; — a3z) — a?ay. We

start by examining the coefficients of the characteristic equation.

Qg

ay

Vi+p+l4+m+n-W,
Bef(nf + vw) — mPBevw — lm2n>
Bef(nf + vw)

'/V1+p+m+n+l(

. Befmn + Befwn + Bevw? — Im?n

V1+;t+m+n+l< Bef(nf T v0) )

. mn(Bef — Ilm) + Bew(nf + vw)

/V1+/t+m+n+l( T )
ImnU lw

Wi+t p+m+ndt
0.

Bef(nftva) T T
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Wy =Wo)(l+m+n)+u(l+m+n)+i(m+n)+mn

Vi(l+m+n)+mn+ pu(m+n)
. B ulm [ Bevw + Ilmn
! (“l 7 (ﬂc(nf—i- vw)))
vim (ﬁcvw + lmn)
[ \Be(nf +vw)

_‘lzm (ﬂcvw - lmn)
[ \Be(nf +vw)

" (In 3 Imn (ﬂcvw + lmn))
[ \Be(nf +w)
Wi(l+m+n)+mn+ pu(m+n)
el (ﬁcf-2n + Befow — Bemvw — lmzn)
g Bef(nf + vw)
+Im (ﬁcfzn + Befvw — Beviw — Imnv — Belvw — lzmn)
Bef(nf +vw)

o (ﬁcfzn + Befow — Bemvw — lm2n>
" Bef(nf +ww)

+Ilm —

Wi(l+m+n)+mn+ p(m +n)

PR .. PO TS Y
Bef(nf +vw) f f

0.

Wi(l(m +n) + mn) — p(n + m)Ws + p(l(m + n) + mn)
—(pw + nm + wn)W, + Imn + vwWs

VA(l(m + n) + mn) + pmn — Wa(pf + nf + pn)

138
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+vwWs + Imn + pml + pln

= Wi({(m +n)+ mn) + pmn + vwWs
(,uml <ﬂcvw - lmn))
Be(nf + vw)
4 (lmn (ﬂcvw—{-lmn))
Be(nf + vw)
ulmn Bevw + Imn
+ un- 57 (o))
Ben f + Bevw — Pevw — Ilmn

- i (PR =0 )
+imn (ﬁcnf + Bevw — Bevw — lmn)

-

Be(nf + vw)
e (Bcfzn + Befow — Bemvw — lm2n>
T Bef(nf + )
+Wi(l(m 4+ n) + mn) + pmn + vwWs

ulmnU 4 Imn*U
Be(nf +wvw) = Be(nf +ww)

+ Uu)Wg

= Wi(l(lm +n) 4+ mn) + pmn +

_ pln*mU plnw
T Befnfo0) 7

ay = ImnW; 4+ pvwWs — unfW, + plmn

= ImnW; + L ( . Mlmnf(ﬂcvw+lmn)>
o pef(nf + vw ) pimin Bef(nf + vw)
= ImnW; + ﬂl;nc;U
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We are now in a position to examine the determinant condition. At this juncture,
we employ the use of MAPLE, to perform this analysis. Included in figure E.16
and following pages, are the MAPLE program and the output. We have used the

simplifications anc substitutions

ImnU
Ul = —m8mMmM
Bef(nf + w)
W =W
u = W
w = w
det = a)ap — as
3 2 3 2 3 2 2 3 2 3
rTh:=u m n+41 mn +um n +u m n+um n
2 3 2 2 2
+u mn +2u m n
3 2 2 3 2 2 3 2 2 3

+W (m n +m n +m lu +m lu+n lu +n 1lu

2 2 2 2 3 3

+3m nu +3mn u +2m nu+2mn u

2 2 2 2 2

+4m n u+2mlu n+mlun +m lun
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Calculate the Routh Hurwitz determinant

al:=W+u+m+n+Ul+1l*w/f:

a2:=W* (1+m+n) +m*n+u* (m+n) +U1* (1+m+n) +1*w/f* (u+n) :
a3:=Wx (1*(m+n) +m*n) +wkmkn+u*f*U1+n*£*Ul+uxn*U1:
a3:=a3+wkn*x1kw/f+vw*U1l:

a4 : =l mkn*xW+u* (n*f+vrw)*U1:
=collect(expand(ai*a2-a3),W):
=det+uxfxUl+n*f*xUl+v*xw*Ul:
=det-wkm*xUl-u*1*Ul-n*m*Ul-n*x1*xUl-m*x1*U1:
=det+u”2*xUl+ukn*Ul+uwx1xUl+wkv*xUl:

det:
det:
det:
det:

Collect the Routh Hurwitz determinant and simplify.

rhc:=collect (expand(a3*det-ai1~2%a4),W):
WO:=collect(coeff(rhc,W,0),U1):
Wi:=collect(coeff(rhc,W,1),U1):
W2:=collect(coeff(rhc,W,2),U1):
W3:=collect(coeff(rhc,W,3),U1):
:=coeff(W0,U1,0):

=coeff(WO,U1,1):

=coeff(WO,U1,2):

=coeff(W1,U1,0):

=coeff(W1,U1,1):

=coeff(W1,U1,2):

=coeff(W2,U1,0):

:=coeff(W2,U1,1):

=coeff(W2,U1,2):

=coeff(W3,U1,0):

=coeff(W3,U1,1):

=coeff(W3,U1,2):
rh:=UW00+U1*UWO1+U1~2xUWO2+W* (UW10+U1*UW11+U1"2%xUW12) :
rh:=rh+W 2% (UW2C+U1*xUW21+U1~2%UW22) :
rh:=rh+W~3* (UW3C+U1xUW31+U1"2*UW32) ;

UwWwoo

UWo1:
Uwo2:
UW10:
UWi1l:
UW12:
UW20:

Uw21

Uw22:
UW30:
UW31:
Uw32:

quit

Figure E.16: Program Results for SIQA Model

141
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2 3 2 2 2
ml unw ml w u n 1 uw
+ 3 mememmmm e + —eemmee e + 2 =mmmmm————
£ £°2 f
3 2 3 2 2 2
nl w u n 1 w ml wn
R 4 mmmmm— 4+ mmmmmmmee
£-2 £ f
2 2 2 2 2 2
m 1 wu ml wu mnl w u
+ 2 mmmemmeee- + —mmmm——— - + 2 mmmmm———e e
f £ -2
3 2 2 2
mn 1w m n lw m nlwau
+ mmmm—e———— + 2 e + 4 cemmmmeeee e
£ p i £
2 2 2 2 2 3 2
mn 1 w mnlwau n 1 w
I + 4 —mmmmmmme e 4 mmmmmmmmeo
2 f 2
£ f
2 2 2 3
nl wu mn ulw un 1w
+ 2 e + 6 mmmmm—m—————— + mmm———————
f £ f
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+(2ur +2nfl+n 1l+nl +2umn

2 2

+2nmnln+2nfm+mn +m 1+ 2vwm

2 2

+2vwn+m n+2n f+2ufm+2u-fl

*k 1 Kk *k 1 kk
2 2
+2vwl+2unl+ml -2uvw Ul

3 3 3 3 2 2 3

+(m 1+n 1l+m n+mn +2m n +n f

3 2 2 2 2 2

+un +2u n +mln +ml u+m 1lu
2 2 2 2

+m ln+nl u+2n lu+6mn u

2 ml wu m 1 w

+4nmn nu+4mlun + -=---=-=-=- $ mm—mmmm—
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3 2 3
ml w nl wu nl w
+ ———m———e + 4 cmmemeeee + e
f f ; i
2 2
ml wn mnlwau m nlw
+ 2 mmmm—————a + 4 e + mmm——————
f : o £
2 2 2 2
mn 1w n 1l w un l1lw
Y O R — T T —— + 4 cmmmeeeee
f £ T
2 2 2 2 2

+ufm +ufn +2u fm+u f1l+u 1w

2 2 2 2 2

+ul] w+nfm +2n lw+2n fm+nl w

2 2 2 2

+3Ut nm+2u nl+vwm +vVvwn

Xk 2 kK XK 2 KK
2 2

-2vwu +mlu +2ufmn+nful

+nlwm+ulwn+ulwm+ ----------
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% 3 kK *k 3 k%
2 2
vw lu vw 1ln
# Y Wl L = smemseeaax ¥ D) Sem—m—mme
£ f
2 2 2
vw 1 vw 1lm
+2vwmn + --------- ¥ i ————— +mluv
f f

+nluv+mnuv)Ul)

2 3 3 3 3 2 2 2 2

+W(m 1+n 1l+m n+mn +2m n +mln +ml u

2 2 2 2 2

+2m lu+m ln+nl u+2n lu+3mn u

2 2 2
2 ml wu m 1 w
+3m nu+4mlun + -—-c-me--- * mmmm————
f £
3 2 3 2
ml w nl wu nl w ml wn
+ mm—————— + 2 mmmmmm—eem 4 mmm————— 4 2 mmmmmmee -
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2 2 2 2 2

+ 2ml +un +2n 1+2m 1+2m n

xk 4 kK *k 4 k%
2 2

+2mn -~-uvw+n f+ufl+ufm
+4nln+nfl+nfm+unl+umn

2

+2nl1l 4 vwl+vwm+vwn)Ul)

2 2 2 2 2 3
u mn 1w u mnl w umn 1w
+ 4 cmmmmmm—e— e + 3 e + 2 mmmmmm—ee e
£ £°2 f
2 2 2 2 2 2 2
um n 1w u m nlw umn 1 w
+ 3 e e + 3 e + 3 e
g i 55 2
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3 3 2 2 3
u mnluw un lw u n lw
+ 2 mmmmeemeee e L Y S —
Dl 5 f
2 2 2 2 2 3 3 3 2 2
un 1l w u nl w un 1 w
+ 2 mmmmmmme e e + mmmmme—— e + e
£-2 £-3 £=2
2 3 3 3 2 2
un 1 w u nl w
e — + mmmmme———eo
£°3 £°2
2 2 2 2 2 2 3

+(ml +2mln+nl +n l+m 1l+m n+mn)W

3 3 2 2 3 2 2

+(n f+un +2u n +u n+3mn u+2m nu

2
3 nl wu mnlwu
+u f+mlun+ 2 ---==ceeev + 2 —memmmmmea-
£ 1
2
un L w 2 2 2
+ 3 == === 4 nfuv+t+ufm +ufo +4 £fmn
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2 2 2 2 2 2

+u fn+u fl+u lw+u fv+ul w+nifm

2 2 2 2 2

&

2n lw+2n fm+nl w+u nm+u nl

ik 6 kk  kk 5 kk *%k 5 ok

2 2 2 2 2

+u nv+vwm +vwn +V wu-vwu +ufmn

+nful+nlwm+ulwn+ulwm+ -—---=-=----

*k 6 kk  kk T okk *kk T k% 5

-vwum+vwul - ---------- & 2 s

+(u n +u n +2m nu +4mn u +m nu

3 2 2 2 2

+2mn u+3mn u+mlu n+ufmn
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2
ml unw
S +
f
2
m nlwu
SIS ——
£
2
mn ulw
F e s
£
2 2 2
u nl w
B D e
-2
2 2

+u mnv+2n mlw+

*k 8 ¥k
3 2

+u fm+u fnm

2

2

+n fnmn

+n fm+n 1w

149



APPENDIX E. THE SIQA MODEL 150

*k 8 kk
2 2 2
3 u l w 2
- U V W+ ———mmm———— +ulwn +2umlwn
f
2 3 2 2 2

+2u mlw+u lw+ufmn +u fmn+u nlw

*xk 9 kk *x 10 *x
2 2 2
ul w n u nlwyv 2 2
t mmmememoa—— $ ~emsem—————— -VWu m-vVwu n
£ f
¥k 9 kx *x 10 *x *x 11 *%
2 2 2
2 2 vw 1ln vw mln
+VWmn+vwmn + ----------- # 2 SemSeEsSSRss
£ f
*k 11 %k
3 2 2 2
vw 1 n vw lu
+ —mmccmcccne - cemmcecee-e- ) U1
2 f
f

Listed below are the supporting simplifying calculations as they correspond

with the marked terms in the output.
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#xlxx = 2wl —2uvw
= 2uw?
*x*2%x*% = 2ufmn— ‘th.u,u2

= 2u’mn 4+ 2pvmn + 2u’nw + 2uvdw

vw?pl

f

**xJ*x*x = vwul —

pulvwm

f

xkdx*x = pfl— pvw

**5xx = vwn®—vwpu’
= vwd(p +n)
**6%* = vwm?® — vwum
= viwm
2
*kThk*x = vw,ul—vw#l
hd
plvwm

y

**8** = /1,3fm—#3vw

= ,uBm2 + ;z4w

**9xx = vwm?n —vwu™
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Ot
o

= wvwpdm + viwmn

k10 %% = vwmn? —vwu’n

= viwn? 4+ vwpdn

*x 1l xx = =

f f
2
_ vwfld(“ i)

We have thus shown by the above simplifications that the Routh-Hurwitz
criteria holds for the endemic equilibrium of the SIQA model, provided Scf —Im > 0.
Therefore, we can conclude that the endemic equilibrium is locally asymptotically

stable whenever B¢ f —Im > 0.
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The SIQPA Model

F.1 Equilibria

The SIQPA system, given in equation 2.1, has two equilibrium points.

By examining Q' =0, P’ =0, and A’ = 0 in 2.1 we see that

(1 —pw

S el . ik
Q e
P o= o I, and
B+v
vw

A =

Groaid

Setting I’ = 0 it follows that at equilibrium, either

or
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F.1.1 Disease Free Equilibrium

When I = 0, the disease free equilibrium is
5 m
I 0
Ql =10
P 0
A 0

F.1.2 The Endemic Equilibrium

We use the substitutions found in C.5 as well as

X = mn+nw+ow
k= p+v+(1-pw.
When [ # 0, then S = IB%I-CM Setting S’ = 0 in 2.1 we solve for I :

s BckS -
A—puS = mNI

7 A umN

l Beck
It follows that
0 (1-pw /_\_ pmN
N m l Bck
_ pw (A umN
P = —|—=-
m <l Bck )




(@1}
Ot
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The endemic equilibrium as a function of N is:

S B

I 4 end

g | = | =232 (F.1)
P ==

A 2=y~

Using equation F.1 and N = S+ I+ Q+ P+ A we derive an explicit expression

for N in terms of the parameters of the model:

- ImN
W= Bck
é pmN
l Bck
(L= p)o) (A _ ¥
m l Bck
Lo (A _ym
m \ [ Bck
w (A pm)N
mn \ |  Bck
B ImN 3 uXN + AX
Bck  PBckn  Im
so that we obtain
N - AXpck (F.2)

Im(Bckn + puX — lmn)’

Substituting N into equation F.1, we derive expressions for the endemic equi-

librium in terms o’ the parameters of the system. Note that X — Imn = —vdw.
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1951
|

Im [ Bck AX
Bck \ Im Bckn — vdw

AX
Bckn — vdw

7 é um [ Bck AX
~ 1 Bek \Im Bckn — lmn + pX

B ﬂz_ Bck — Ilm
l \ Bckn — vdw

&
Il

An(l — p)w [ Bck —Im
Im Bckn — vdw

P - Anpw [ Bck —Im
~ Im \Bckn — vdw

and

i = Avw [ Bck —Im
Ilm \ Bckn — vdw
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We record ihese in tabular form:

S

P

\ A4

AX

Bckn—vdw

Bck—Im )

An ( _Bek—lm_
1 Beckn—vdw

An(l—p)w Beck—Im
Im Beckn—vdw
Anpw ( Bck—Im
Im Bekn—vdw
Avw ( Beck—1m )
Im \ Bckn—vdw

)

Note that the endemic equilibrium exists if and only if Bck > Im.

F.2 Local Stability Properties

We now proceed to look at the local analysis of these two fixed points.

The Jacobian is:

—p = &y
Zy
0

where

-7, —Zy Zs
Zy—1l Zy, —Z3
(1—pw —-m 0
pw 0 -m
0 v v
Be(I +Q)(N - 5)
N2
Be(N —(I+Q))S
N2
Be(I +Q)S

N 2

Z3
el
0
0

—-n
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F.2.1 Disease Free Equilibrium

The Jacobian at the disease free equilibrium (%,0,0, 0,0) is:

—u —Bc  —pe 0
0 Be—1 pc 0O 0
](%,o,o,o,o) - 0 l-pw —-m 0 0 ’
0 pw 0 -m O
\ 0 0 v v —n
and thus,
IJ(%,O,O,O,() - /\I| =
“(u+)) B —Be 0
0 Be—(1+X) Be 0
0 (-pw —(m+X) 0 0
0 pw 0 —(m+A) 0
0 0 v v —(n+A)

= R+ N (p+AN)m+N)((Be=1=X)(m+ )+ Bc(l —p)w)

We can solve imrnediately for three of the eigenvalues, those being \; = —n, Ay =
—m, andA3 = —p. These three eigenvalues are negative. Solving the quadratic part

of the characteristic equation we have

Aas _,?c—zl—-—m i %\/(ﬁc —l—m)24+4(Bc—U)m+48c(1 — p)w
= izc_;—_m - %\/(&_ [ +m)? + 48c(1 — p)w.

Clearly the discriminant is positive and Ay and A5 are negative if the larger one, say

Ay, is negative. To this end,

(Be—1+m)2+48c(1 —pw < (I+m— Bec)?



APPENDIX F.

if

THE SIQPA MODEL 159

Be(m + (1 — p)w) < Im.

Thus, the eigenvalues,

M
A2
A3
A

As

— —Tl,
—=3 —m’

= —4,
= éf—:;——m + %\/(,Bc— [+ m)?+48¢(1l — p)w,

,Bc—ul—m

- Em_ S JBe= T+ m)? +48e(1 - p)e,

are real and all negative provided Bck < Im. Therefore the disease free equilibrium is

locally asymptotically provided fec < —2

m+(l—p)w”

F.2.2 Endernic Equilibrium

We assume that Z;, Z5, and Z3 are calculated at the endemic equilibrium. We

now derive the characteristic equation.

\Js1.0p4— M| =
—p—=2Z;— A —Z, —Z Zs3 Zs3
Zy Zy—1—A Zy —2Z3 —2Zs
0 (I1—pw —m-—2A 0 0
pw 0 —-m— A 0
0 0 v v —n— A
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—u+A) =(+X) 0 0 0
Zy Zy— (14 X) Z —Zs — 27
= 0 (I=pw —=(m+2A) 0 0
pw 0 —(m+ ) 0
0 v v —(n+A)

We simplify using MAPLE. The program listing and results can be found in figure
F.17 and following pages.

ceqn ;= -upwZ2n-ulmn-1Zimn-uwvZ3
+uwZ2n-upwiZ23in+uZ2mn
+(-prQn—121n-upw.Z‘2+22mn-lZlm
+uZ2m+uZ2n-Zimn-ulm-uln
—-umn-wviZ3+uwZ2-1mn-upwli2Z3
wZ2n)r

-pwiZ3n +

Z2 -un-121-2Z21m-2Z1n

+
=

+ (Z2m-1n

+22n-ul-pwZ3-um-pwZ2-mn-1m

+wZ2) r

+(Z2-m-u-1-n-21)r -r
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#

# We begin by entering the nonzero matrix elements.

#

Als
A2:
:=Z1:
B2:
B3:
B4:
B5:
C2:
C3:
D2:
D4:
E3:
E4:
E5:

B1

#

# Calculate the characteristic equation, factor out (m+r),

Figure I'.17: Program listing for characteristic equation: SIQPA

=-u-r:
=-1-r:

=Z2-1-r:
=Z2:
=-Z3:
=-Z3:
=(1-p)*w:
=-m-r:
=p*w:
=-m-r:
=v:

=v:
=-n-r:

# and collect with respect to r.

#

ceqn:=A1*%D2% (~CZ)* (B4*E5-E4*B5) :
ceqn:=ceqn+A1*D4* (B2*C3*E5-C2* (B3*ES-E3*B5) ) :
ceqn:=ceqn-A2*B1*C3*D4x*ES5:
ceqn:=collect(ceqn,r);

ceqn:=simplify(ceqn);

quit

161
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Notice that (m + A) can be factored out of the characteristic equation, so we

need only use the Routh- Hurwitz criteria as it applies to a quartic polynomial. The

coefficients of the characteristic equation are:

ag =

a, =

ag =

ay =

1
p+l+m4n+2, -7,

In+un+({+m+n)Z— Z)
+ul + pm +mn + Ilm + pw(Zy + Z3)

pwZon + InZy + ppwZy — Zoymn + lm 2,
—pmZy — pnZy + mnZy + plm + pln + pmn
+va3 — pwZy + lmn + ppwZs + pwnZz — wnZs

ppwnzs + plmn + ImnZ; + pwvZs — pwnZ,
+upwnzs — pmnZ,.

By the Routh-Hurwitz criteria we require these coefficients to be positive. We ex-

amine each one individually, but begin by rewriting Z; for : = 1,2,3 in terms of

the parameters of the system. It is assumed that we are working with the endemic

equilibrium even though we omit the bar notation.

I
N

_ A um
T IN  Bck
_ A Im Beckn 4+ pX — Imn um
= 1\ Bck AX  Bek

mn(fBck — lm)
Bck X
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_ B+ Q)N -95)
N2

_ Bek (mn(Bck —1m) g Im
T om BekX  Bek

n(Bck — Im)?
BckX

BeS(N - (1 +Q))
N2

Belm ! kmn(Bck — lm)
 Bck - mpBck X

lm Imn
= ﬁckX(ﬁCk = lm)

_ BeI+Q)S
%= TN

Imn
= ﬂckX(ﬂck —Im)

Be(I + QN =S) BeS(N —(I+Q))

I =2Zy = N2 N2

n Im
Y(ﬂck —Im) — T

Zi+ 72y = Be(I + 612\/)2(N -9) o ﬁc(lj\;Q)s

- %mk — Im)

163
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Let

n
Y = Y(ﬂck—lm)
s = (1-p)

We now examine the coefficients.

p+l+m+n+ 2, — 2,

1

n Im
= p+m+n+l+-)?(ﬂck—lm)—T

= u+m+n+l(k_Tm>+-%(ﬂck—lm)

l
= p+mtn+(l-p) 7+ (Bck - im)

lsw
— Y+_k‘—+ﬂ+m+n

az = In+un+ ({+m+n)(Z, - Z,)
+ul + pm + mn + Ilm + pw(Z; + Z3)

= In+un+(l+m+n) (Y—%)
pwlm

+ul + pm + mn + lm + 7

l
= (l+m+n)Y—l(,u+m+n)%—+—l(y+n+m)
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as

pwlm
+,un+,um+mn+—k-
lsw wlm
= (l+m+n)Y+T(,u+m+n)—T
pwlm
+;m+pm+mn+-—T
lsw
= (l+m+n)Y+—k—(p+n)+,u(n+m)+mn
> 0

pwion + InZy + upwZy — Zymn + lm 2,
—pmZy — unZy + mnZy + plm + pln + pmn
+wvZs — pwZs + Imn + ppwZs + pwnZs — wnz,

pln + plm + pmn + Ilmn + Zy(In + Im + mn)
—Zy(mn 4+ pm + pn + pw + wn) + (Z2 + Z3)pw(p + n) + Zzvw
pln 4+ plm + pmn + Imn + vwY + lm%{(,u +n)
+(7Zy — Zy)(In + mn + pm + pw)
pln + plm + pmn + Imn 4+ Y (In + lm + mn) + lm%(u +n)
hn
——}‘—(ln + mn + pm + pw)
Im? Impw
pln +Im(p +n) — T(H +n) + pmn + —k'—(ﬂ +n)

Im

+Y(In + Im 4+ mn) : (In + pw)
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= pin+ l_n’;:_w_(u +n)+ pmn + Y (In 4+ Im 4+ mn)

Iinpun  Imw Impw
e R R e VR
plnsw

—— + pmn + Y(In 4+ Im + mn)

ay = ppwnZy+ plmn +ImnZ; + pwvZs — pwnz,
+ppwnZs — pmnss

= plmn 4+ ImnZ; + (ppwn — pwn — pmn)Zy + (pvw + ppwn)Zs

plmnk
k

= plmn + ImnZ, — + punkZs + (pvw + ppwn)Zs
= uranZ, + pwnZ, + vdwZ + pvw(Zy + Zs)
+ppwnZs + pmnZs + punsws

= prnY + pwnZ; + vdwZ; + powY + pwZs

Bck — Im

= pXY 4+ vdwY ek

Thus we have shown that all the coefficients of the characteristic equation are positive.
We now prove the determinant condition of the Routh-Hurwitz criteria. That is, we

show as(aa; — a;) — a®ay > 0. We begin by simplifying a,a; — as.
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ayaz —

13 =
ls
<l+m+n kw(p+n)+,u(n+m)+mn)
+m

((l+m+n)Y+IT(;t+n)+,u(n+m)-|-mn>

n((l+m+n)Y+lsTw(p—}-n)+p(n+m)+mn)

l
+£S—w((1+m+n)Y+—§£

’ k(u+n)+ﬂ(n+m)+mn>

[
+Y((l+m+n)Y+-ffj—(u+n)+y(n+m)+mn>

(ulnsw

k +pumn+Y(ln+Im + mn))

{
=;(u+m+MY+%%+um+mﬂ

lsw
+m (mY + —2—-(;1 +n)+p(n+m)+ mn)

l
+n ((m +n)Y + i:-J-(p +n)+ pu(n+m)+ mn)
ls

l
((l+m+n)}’+£

(-t )+ -+ m) 4

+Y ((l+m+n)Y+%(,u+n)+,u(n+m)+mn>

With the use of MAPLE, we look next at the determinant condition and proceed to
simplify. A program listing and results are provided in figure F.18 and the following
pages. The symbols Y0, Y1, Y2, and Y3 represent the resultant powers of Y. Other
symbols besides tiose previously mentioned in this section, that are used in the

programming, include,

w o= w,

u = pu, and
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Figure F.18: Program listing for Routh Hurwitz condition: SIQPA

al:=Y+1l*s*w/k+utm+n:
a2:=(1l+m+n)*Y+1*s*w/k* (u+n)+u* (n+m) +m*n:
a3:=u*xl*n*s*w/k+rusmkn+Y* (l*n+l*m+m*n) :

a4 =wkXxY+vkd*wkY*G:

det :=expand (al*a2-uxlxs*wkn/k-m* (1+n)*Y-n*x1*xY-u*m*n) :
rhc:=collect (ex»and(a3*det-al~2%*a4),Y):
Y0:=coeff(rhc,Y,0);

Y1:=coeff(rhc,Y,1);

Y2:=coeff(rhc,Y,2);

Y3:=coeff(rhe,Y,3);

quit
ck —Ilm
g o Bek—im
Bck
2 2 2 3 3
uln swnmn u ln sw uln swm
YO = 8 smmemmsem e T — ¥ 1D
k k k
2 2 2 2 3 2 3 3 2
+2u m n +*u mn +um n +u m n
2 2 2 2 2 2
u 1 ns w m 3 2 u 1ln swmn
+ 3 s +um n + 4 -~
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2 3 3 2 u lnswn

+1U m ANFU MO +# 3 =s-r—mesccsenes

3 2 2 2 2 2 3 3 2

Y1:=2umn +4umn +3u mn +m n +m n

¥k 1 kxk k% 1 k%

3 2 ulnswm 3

=u X +3uw mnl#® G ——=====ss=cm== +2um n
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x% 6 k%

3 3

+n lu+n 1m

2 2 2
2 2 ul ns w m
+0 1u # 2 css-scsmesssasss
k=2
2 2
uln swm u 1ln
+ 6 mmmmmmmmm————— + 4 —mmmmmee
k k
*k T kk Xk 2 k%
2
umnl sw 2 2
¥ b ee=meescsssm=s +2n 1m
k
3 2 2
uln sw u ln sw
4 mmmmmm— - - 4+ 2 mmmmmmmm——ee
k k
3 2 2 2 2
ul ns W u 1 ns
+ 2 mmmmmmerim e + mmmmm——e—-
k=2 k=2
*% 4 k% *% 3 k%
2 2 2

2 2
u l nsw
e Y A T e
k
2 2 2 2 2 2
W ul n s w
..... § 1Y Ssess s
k=2
2 32" 2
2 n 1 s w

+3nlum +3n lum+m 1lu + =————cocmmmea-
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*xk 8 i % 5 k%
2 2 3 2
n 1 svm n 1l sw 3 3
* J Smmmmemmsenme + mmmsssmso—— +m lu+m 1n
k k
Xk 2 Kk ik 4 k% kk 5 k% k% B *kx
2 2
2 2 2 2 n 1 usw
=21 nX~=21u nX=m uX=n nX+2 s--osccaiea
k
Xk Q Kk
3 2 2 3 2 2 2 2
ml s w u ml s w n m 1l swau
4 e m e 4 mmmmmm——— - + 2 mmmmmmm——— e
2 2 k
k k
*% 10 >k
2 2 2 2 2 2 2 2
m 1 swn ml swau mn 1 s w
+ 2 mmmmmmmm—ime I 4 e
k k 2
k
*k T k%
2 2 3 2
m n 1sw mn 1lsw lswu X
+ 2 cmmemccm—cima + cmemmccm e - 2 mmmmmmme— e
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Y2

o

xk T ok Xk 8 k%
2
lsw uvdgaG lswnuX
D vt L P e
k k
xk 8 K¢ xk Q9 Kk ok Q9 kX
2 2 2 2 2 2 3
lsw nvdGaG l1 s w uX l s w vdagéG
S D e A [ e e e
k 2 2
k k
¥k 1 kx % 5 Kk *k B Kk *% 10 %%
2 2 2 lswmuX

-u vdwGG-m vdwG-n vdwgG -2 —=——cemmmeea-

k
xx 10 k% *k D kX Xk 3 kk
2
lsw mvdaG
= 2 sesssoscsemesme -2mnvdwG-2unvdwaéG
k
*x% 4 Kk

2umvdwaG

2 2 2 3 3 3 3

:(=3um n+2mn +m 1l+n l+mn +m n
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*k 11 %% *k 12 k%
2 2 ulnswn

2u X¥*3umn #6UMmnl #2 sessnscmnanas

*%k 12 Kk kk 12 kx *k 13 sk
2 2 2 2

-2muX+3nlm +2n lu+3n lm+nl u

2 2 2 2
ul nsw uln sw n 1 sw
# 2 e + —mmme——e———— * 2 mmmmmee————
k k k
*x 14 %
3 2
2 2 nl sw nl swn
+2m lu+nl u+ -c-c------ * 1§ =pme=—ms=s
k k
3 2 2 2 2
ml sw m 1 sw ml swu m nlsw
+ mmmm—————— 4 mmmmem————- + e B T ——
k k k k
*k 13 kxk *k 14 kxk *k 14 *x
2
lswuX lsw vdaé
=2n 0 X = 2 s emmmmmess = 2 SeEmssssssesEs
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*k 12 *kxk *% 13 k%
2
mn 1lsw
+ 2 semmmsmmosae -2mvdwG-2nvdwaéG
k
*% 11 *%
- 2uvdwaéG
*% 15 %k *% 15 %% 15 %%
2 2 2 2
Y3:=m 1 +m 2a+3nlm+n 1l-uX-vdwG+mn
2 2

+nl +ml

The simplifications required to determine positivity follow, and are matched

with the numberir g system used in the computer results.

x*x 1*x*x = 2u%lmn + p*(Imn — pmn — pnw — pow) — p*vdwG
Zvdwl
= 2utlmn — plvdw + i + pvdw
Bck
2Imvdw
= 9 2[ I
e
*x2%*x = 2n%lm® — 2mnuX — 2mnudwG
2lnvd
= 2nm(Ilmn — pX) — 2mnvdw + o NVEY
Bck
**x3x*x = plmn® 4 2ulmn® — 2u*nX — 2unvdwG
Imud.
= plmn® + 2un(lmn — pX) — 2unvdw + iR T

Bck
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Imudw
= plmn? 4+ 22202
P e

xxdxx = plm?n+ 2ulm’n — 2u*mX — 2pmvdwG

Im?vd
= plm*n + 2um(Imn — pX) — 2umvdw + g n;c: =
Im?vdw
= plmin 42022
MR TS
xx5%% = m3ln —m?uX — m*vdwG
1
= m*(lmn — pX) — m*vdw + it
Bck

_ m3lvdw

N Bck
*xxBxx = n3lm'-n2,uX—n2vde

_ n?lmvdw

N Bck
s Tee — pmnl?sw 3 2lsw;ﬂX 3 2lsw2pvdG

k k k
_ 3llmr;l2sw 4 23w212m2;wd
¢ Bck
[2swmn? lswnuX lswinvd

x*x8xx = 3 - = p = k G

_ Pswmn? Ol2sw2mnvd

N K © Bck?

Bs2wimn  Ps?0?uX  Ps*wivd

**x ok k= = - 7 = =) G

_ Pms’o’ud

B Bck3

el i 2127n2swn B _ZIsw/sz B ‘)lstm.vdG

k k e
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B 2l2m23w
B Bck?
% 11*%x = 6ulmn —2p* — 2pvdwG
Imvd
= 4plmn + gle

Bck

**12x% = 3Im’n —2umX — 2mvdwG
Im?vdw

Bck

= Im*n+2

x4 13 %% = 3lmn? —2unX — 2nvdwG
Imnvdw

_ 2
= Imn°*+2 Bek

: 2
* 414 kx = 4"1 -zwm — QIsw:X _l2 lswk vdG
nl?swm Psw?muod
k Bck?

*¥:15%%x = 3lmn — puX —vdwG
Imvdw

Bck

= 2lmn +

Thus, since all negative terms have been accounted for, az(aja; — a3) — ajay > 0.
Therefore, we have proved the Routh Hurwitz criteria hold for the endemic equilib-
rium of the SIQPA model, and so this equilibrium is locally asymptotically stable

whenever Gc > ;,_(Ifn_ e




Appendix G

The SIQ/PA Model

G.1 Equilibria

The model under consideration is listed in equations 4.7. The SIQ/PA system
given in equation 4.8, has two equilibrium points. They have a similar form as for
the SIQPA model, however, with the new definition for N(¢) there are some minor

variations.

G.1.1 Disease Free Equilibrium

When I = 0, in equation 4.8

o T O~ U
Il
o o o o x>

177
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G.1.2 The Endemic Equilibrium

We use the substitutions found in E.1 as well as

k=p+v+(1l-pw.

When I # 0, then § = 2% Setting S’ = 0 in 4.8 we solve for T :

Beck

5 _ BckS
A—uS = m./VI

7 A umN

I Bck
Further,
g - (U= (A i
- m I Bck
p o 2ol pmk
m \ [ Bck

mn \ [  Bck

i- E(é ﬂmN)

The enderric equilibrium as a function of N is:

G ImN
S Bck
I A _ pmN
i Bck
A _ (1-p)w (A umN
Q - m (T ~ Bk )
p pw (A _ pmN
' m (l = Bk )

N
[~
5
~
s
|
=
3
P
f g

178
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Using equation G.1 and N = § + I + @ we derive an explicit expression for N

in terms of the parameters of the model:

ImN A pumN

Bk .1 Dok
(1=pw) (A pmN

T (7 - ﬂ‘)

N =

ImN k-
= +—1
Be m

— [lm — pk Ak
N N( Bck )+Fn_

so that we obtain

N - M Bck
~ Im \Bck—Im+ pk )’

Substituting NV into equation G.1, we derive expressions for the endemic equi-

librium in terms of the parameters of the system.

5 Im [ Bck Ak
~ Bck \Im Beck — Im + uk
Ak '

Beck — Ilm + uk

um [ Beck Ak
Bek \ lm Bek — Im + uk

A
1
A Bck — Im
-7 (ﬁck— lm+uk>

A(l = p)w Bck — Im
Im Bek — Im + uk

Qi
Il

- Apw Bck — Im
£
Im \ Beck —Im + pk


http:N(lm-J.Lk
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and

A =

Avw Bck — Im
Imn \ Bck — Im + pk

We summarize these below.

& Ak

S Bek—=Im+uk

I‘ L\.( Beck—Im )
I \ Bck—=Im+uk

Q _ A(l—p)w( Lck—Im )

== Im Bck—Im+uk

P pr( Bek—Im )
Im \ Bck=Im+uk

A Avw( Bek—=Im )
Imn \ Bck—Im+uk

lutw)(utv)

Note that the endemic equilibrium exists if and only if Bck > Im, i.e. fc > e e

G.2 Local Stability Properties

We now proceed to look at the local analysis of these two fixed points. The

Jacobian is:

—pu— 27 —Zy =2, 0
A Zy—1 Zy 0 0
0 (1—=pw —-m 0 0
pw 0 -m 0
0 0 v v —n

where,
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Bel + Q)N - 5)

by = N2 , and
5 _ BN -(I+Q)S
2 = N? .

G.2.1 Disease Free Equilibrium

The Jacobian at the disease free equilibrium, (%, 0,0,0,0), is identical to that
for the SIQPA model. Recall the eigenvalues,

Moo= —p
ks = ﬂL—zl;m+%\/(ﬂc—l+m)2+4ﬂc(l—p)w
A3 = w-%\/(ﬁc—l-i-m)z-i-ﬂk(l—p)w
A = —-n
As = —m

As in previous sections, note that the eigenvalues are real and all negative, provided

Bck < Im. There'ore the disease free equilibrium is locally asymptotically provided

Im
Pe < v
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G.2.2 Endemic Equilibrium

The characteristic equation is derived first.

|Jis.1.0,p,4 — M| =

—(p+A) -2, —Z3 —2Z3 0
Z, Zy— (14 )) Z, 0
0 (1—pw —(m+2A) 0 0
pw 0 —(m+ ) 0
0 v v —(n+A)

(R1 — Rl + R2)

—(p-+X) =1+ 0 0

Z.  Zy—(I+1X) Zy 0

= 0 (I1=pw —(m+2A) 0 0

0 pw 0 —(m 4+ A) 0

0 0 v v —(n+A)
—(p+A)  =(I+N 0
= (n+A)(m+]) Z Zy— (14 ) Zy
0 (-p —(m+))

= —(r+ )M+ A (Zi(1+A)(m+ ) = (k+A)((Z: =1 = N)(m + X))
+p+AN)(n+A)(m+A)Z2(1 - p)w

At this point we see that two of the eigenvalues,

/\4=—Tl
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/\5 = —m, (GQ)

those corresponding to the P and A populations, are negative. Thus we need only ex-
amine the remaining cubic polynomial of the characteristic equation for local stability
properties of the endemic equilibrium.

Collecting the cubic polynomial with respect to A we have,

0 = N+ Npu—-2+1+m+2y)
+AX(I+m)Z; + Im — Zok + p(l +m) — uZ,)
+,ulm + lle - ﬂk‘ZQ

We now simplify the terms Z; and Z,.

A pm

¥
N IN ~ Bek

_ A lm um
= = (—Akﬂck) (Bck — Im + pk) — ek

m
= 7o Bck — m)

Be(I + Q)(N - 5)

Zl = ]\('2
_ BcklI BekI\ S
- mN \mN /N
_ Bek [ m Im
= _nT(kﬁck(ﬂCk_lm)) (1—M>
_ (Bck —Im)?
N kBck
Z Be(N — (I +Q))S

N2
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Substituting these values for Z; and Z, into the characteristic equation, we derive

the coefficients a; for i = 0, 1, 2, 3 corresponding to A3~

L 2 P2
o = u+l+m+(ﬁ6k Im) lm(lm)

kBck  k \Bck

Bck(Bck — 2Im) + *’m? — Pm?
‘kBck :

= p+l+m+

k

k—1 l
= u+m+ﬂc—kz+z(1—p)w

az = (l-{-m)Zl-{—lm-{-u(l-{-m)—(,u-{—k)lTm (%)

.2 2 _ 2 _ 2
= (I+m)Zy +pm+1 Bek?u + Bek*m — plm?® — kim
kBck

= (l+m)Zl+ﬂm+'ul(l+p)w

" Belum — plm? 4+ Bek?m — klm?
kBck

pl(l — plw 2 Im(p + k)(Bck — Im)
k kBck

= (I+m)Zy +pm +
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l
a3 = plm+1ImZ; — ukl—n—L (ﬂ)

k—1
= wulm (%ﬁ) +ImZ,.

Thus, all coefficients of the characteristic equation are positive. To satisfy the Routh-

Hurwitz requirements we have left to show, that the determinant condition a,a;—as >

0.

a1a9 — az =

Bck —
k
(1 - plw
7

(1 = plw 5 Im(p + k)(Bck —Im)
k kBck

((z 4m)Z 4 pm 4 L) Il l;c)ﬁ(fkk - lm))

pl(1 = pw N Im(u + k)(Beck — Im)
k kBck

pl(l = plw  Im(p + k)(Bck — Im)
m((l+m)Z1+;Lm-|— : - FBok )

— <,ulm (-ﬁ—dﬂc;km) - lle>

k — .
= pe m((l+m)Z1—+—,um+

((l +m)Z; + pm +

s ((1 b m)Zs + pm +

k k kBck
WJd=g by pl(1=plw  Im(p + k)(Bek — Im)
((l-l- )Z1 + pm + 7 + e )

k
( l+m)Z, + pum + pl(1 ; p)w " lm,u(,f;lzl;— lm))

(1 = plw 1 Im(pu + k)(Bek — Im)
k kBck

pl(l = plw P Im(p + k)(Bek — lm))
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Thus, the Routh-Hurwitz criteria are satisfied for the cubic polynomial of the char-
acteristic equation and since A;; in G.2 are negative, we can conclude that the en-
demic equilibrium for the SIQ/PA model is locally asymptotically stable provided

Im
ﬁc > m+(l—p)w’



Appendix H

Supporting Proofs and
Background Theory

H.1 Boundedness

We require that our models be well-posed, that is, solutions must remain pos-

itive and bounded. The proofs are provided below.

Theorem H.1 All solutions S(t),1(t),Q(t), P(t), A(t) of 2.1 are (a) positive and (b)
bounded fort > 0.

Proof of (a): S, > 0. By definition, S(t) is continuous. Suppose there exists ¢ > 0
such that S(¢) > 0 for 0 < t < ¢ and S(¢) = 0. Then S’(¢) < 0. However, by (2.1),
S(t) = 0 implies that S’(¢) = A > 0, a contradiction. Therefore S(¢) > 0 for all ¢ > 0.

Qo = 0 and I, > 0. By definition, I(¢) and Q(t) are continuous. Suppose
there exists ¢ > 0 such that I(¢) > 0 and Q(¢) > 0 for 0 < ¢t < £,Q(f) > 0 and
I(t) = 0. Then ./(¢¥) < 0. However, by (2.1), I(f) = 0 and Q(Z) > 0 implies that

I'(t) = ﬁcQ(t')S(ﬂ >> 0, a contradiction.

We obtain a contradiction similarly if we assume Q(¢) = 0 and I(¢) > 0, with
Q(t)>0and I(t) >0for 0 <t < L.

187
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Now suppose that I(t) and Q(t) are as above for 0 < ¢ < ¢, but I(¢) = Q(t) = 0.
Then I(t) = Q(¢) = 0 for all ¢ > ¢. But, this contradicts uniqueness of solutions.
I(t) = 0 must be a solution for all time, and if I(¢) > 0 for some time 0 <t < t, < ¢,
(since I, > 0) then there are two solutions I(t) = 0 and I(¢) > 0 for 0 < ¢ < t,,
a contradiction tc uniqueness of solution. Thus I(t) > 0 and Q(¢) > 0 for all time
t>0.

Using positivity of I(t) and Q(t), the arguments for P(¢) and A(t¢) follow
similarly. Therefore all solutions S(t), I(t), Q(t), P(t), and A(t) are positive.

Proof of (b): Recall that

N'(t) = A—puN(t)—dA()
< A—pN(t)

Therefore

N(t) < [N(O) - %] e M + %

If N(0) < £ then N(t) < 2, otherwise N(t) < N(0). Since N(t) = S(¢) + I(t) +
Q(t) + P(t) + A(%), then

S()+ 1) +Q() + P(t) + A1) < { Wil sy }

N, otherwise.

Since all colutions are positive by (a), then all solutions of system 2.1 are

bounded.

We can similarly show that all the models in this thesis have bounded and

positive solutions.
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H.2 Background Theory

H.2: Routh-Hurwitz Criteria [23] Consider

pla = A,a"+ Aja™ t + ...+ Ao+ A, with A, >0

Define
4 A A A, O
A. = Alv A? = Al AO ‘7 AB = A3 A2 Al
s As Ay As
In general, define
A] Ao 0 0 0
A: Ay Aq A, s &
Ny = A Ay As A, Ay A, 0 woe U {n
A2n—1 A2n—2 A2n—3 A2n—4 A2n—5 A?n—ﬁ A?n—7 ¢ wn An

where A; = 0 for j > n. In particular, A, = 4, A, .

A necessary and sufficient condition for all of the roots of p(a) to have their

real parts negativz is that all the determinants A;, : = 1,...,n, be positive.

H.3: Persistence [22]

A population p(?) is said to persist in R™ if p(0) > 0 and lim inf,_ ., p(¢) > 0. A
system is said to be persistent if each component population persists. For ecological
dynamical systems, a solution with initial conditions in the positive cone will persist

if there are no {)- limit points on the boundary of 7.
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H.4: The Butler-McGehee Lemma [22]

Let P be ar isolated equilibrium with nonzero eigenvalues in the omega limit
set Q(R) of an orbit O(R) through the point R. Then either Q(R) = {P} or there
exist points P°, P* in Q(R) with P* € W?*(P)\ {P} and P* € W*(P)\ {P}.

H.5: Lyapunov Function [40]

Consider the general system of differential equations

2 = f(z) (H.1)

Here f(z) is a vector-valued function, continuous in z for = € ¢/G where G is an open
subset of ®". The function V mapping R" to R is said to be a Lyapunov Function
in G for H.1 if it satisfies the following properties:

1. V(z) is continuous on clG.

2. V=(VV)-f<0inG.

H.6: La Salle’s Extension Theorem [40]

Let V be a Lyapunov function in G for H.1. Then each bounded orbit of H.1
approaches M where M is the largest invariant subset of {z € ¢lG: V = 0}.

H.3 Substitutions

Throughout the thesis we use many simplifying substitutions. These are pro-

vided below:
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m = pu+v
n = pt+d
| = pt+w

M = fec—(p+v)
= Be(l—p)—(n+v)
= Be(p+v+d
= mn+nw + vw

T
D
X
f = mtw
U
k
Y

= Bo—(p+w)
= m+(l-pw
n
.= g:fd-?—lm)
Beo= o7
Bel
B =0
. _ B+QW =5
1 = NE
g _ B -(I+Q)s
y = N?
B=(I +Q)S
= BAIQS

w th appropriate values for N in models SIQPA and SIQ/PA

All other substitutions that are used in this thesis are listed in the appropriate

sections.
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