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Abstract 

This paper considers a series of models and the effect of HIV antibody testing on 

the dynamics of the disease. We examine HIV antibody testing in conjunction with 

persuasive techni ues designed to encourage tested infecteds to behave in a sexually 

responsible manner. The population under consideration is a homosexual population. 

Analytical methods are used to obtain information about the qualitative behaviour 

of the models. Areas requiring further study are discussed. 
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Notation 


S( t) Susceptibles 

I( t) Infecteds, not tested. 

Q( t) Infecteds, tested, sexually irresponsible. 

P( t) Infecteds, tested, sexually responsible. 

A(t) Full-blown AIDS. 

N(t) Total sexually mature homosexual population, 

N(t) = S(t) + I(t) +Q(t) + P(t) + A(t) 

if P and A populations are sexually active. 

N(t) = S(t) + I(t) +Q(t) 

if P and A abstain from sexual activity. 

A Rate of initiation into S(t) per unit time. 

f3 Transmission probability per sexual act. 

c Average number of sexual partners per individual 

in S(t). 

p Proportion of tested infecteds entering 

P( t), that is, tested infecteds who act responsibly. 

1 ­ p Proportion of tested infecteds entering 

Q( t) , that is, tested infecteds who behave irresponsibly 

w Proportion of the I population who are 

tested at time t. 

v Proportion of tested infecteds 

(P(t) or Q(t)) entering A(t) at timet. 

J-L Natural death rate at time t. 

d AIDS induced death rate at time t. 
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Chapter 1 

INTRO~DUCTION 

1.1 Epide1niology 

Epidemiology is the study of the spread of infection in a population. An epi­

demic is a major oc1tbreak of a disease. A disease is called endemic if it is long term 

and maintained at levels of various severity. An endemic disease is usually composed 

of many epidemic outbreaks of the disease, with a reduced level of infection between 

outbreaks. Often, the terms endemic and epidemic are used interchangeably. Ideally 

epidemiologists would like to gain sufficient insight into the dynamics of infectious dis­

eases to allow them to provide guidelines for their eradication. Historically, infectious 

diseases have placed an incredible toll on human life. In Europe, in the fourteenth 

century, for instance, approximately one quarter of the population was wiped out by 

the Black Plague. Over time, much has been learned about diseases, enabling us to 

apply preventative techniques like immunization and better health standards , thus 

providing us with tools for eradication of once rampant diseases. However, there still 

remains a phenomenal number of diseases in today's society which defy prevention 

and for which no (~ures have been developed. 

There are several methods of studying infectious diseases including , clinical , 

1 




2 CHAPTER 1. INTRODUCTION 

biological, ecologica.l and mathematical. It is only with the combined input of these 

disciplines, that we can expect to reduce the prevalence of disease in society. 

To gain a b ·~tter understanding of what epidemiology is about we look at a 

very simple examp le. Consider one strain of the common cold virus. 1 We assume 

that initially, we have only a small number of individuals who are suffering from the 

disease. If we place these "infected" individuals into a group of people who are not 

yet affected by the virus, or in other words, who have not yet contracted the virus, 

a certain number of these "susceptibles" would become infected, given appropriate 

conditions for the spread of the common cold. The appropriate conditions may include 

adequate proximity between the infected and susceptible persons, or poor health 

conditions of the disease free individual. Once an individual has outlived the life­

span of the microparasite involved in this particular strain of the common cold, then 

he has developed an immunity to the disease, and is now considered to be a member 

of the removed class. That is, he can no longer contribute to the spread of the disease. 

We attempt. to describe the spread of infectious diseases in the population, 

with mathematical models, using certain simplifying assumptions appropriate to the 

specific disease behaviour and population mixing. ·with the use of these models we 

are often able to d,scertain certain information which may lead to control or even 

eradication of the disease. The mathematical models may provide sufficient insight 

into the likelihoo of transmission and spread of infectious disease, as well as the 

information required to predict future trends of the epidemic. Mathematical mod­

els are valuable fo r examining biological aspects, such as degree of infectiousness in 

individuals at various times in the course of the disease, or of the life-cycle of the 

microparasite bei g considered. In addition, we may be able to ascertain threshold 

conditions which indicate what restrictions we need to impose on the population, and 

what biological interventions are requisite to eradicate or at least impede the spread 

of disease. 

As an introduction to mathematical modelling of infectious diseases we look 

at earlier stages of development of the theory involved in epidemiology. Our example 

1There are a number of different strains of the common cold but once an individual has suffered 
through the course o:.· infection of a particular strain , that individual develops a life-long immunity 
to that particular strain . 
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of the common coli is very similar to some of the earliest models in epidemiology 

developed by Kermack and McKendrick (1927), (see [36], [37], and [50]). They divide 

the population into three component classes, as we have, in our common cold example. 

We assume that each class is disJoint from the others. 

These classes are 

1. 	 Susceptible ( 3) - containing non-infected individuals who are capable of con­

tracting the disease. 

2. 	 Infected (I)- containing those individuals who are infected and capable of trans­

mitting the disease given appropriate conditions characteristic of the disease. 

3. 	 Removed (R) - containing those individuals who have developed an immunity 

to the disease and are no longer capable of being involved in the spread of the 

disease. In addition, this class could represent the number of those who have 
-	 . 

died in the course of infection or from other !=auses, or those individuals isolated 

from the susceptible population. 

Appropriate conditions for the transmission of the infection usually include di­

rect physical conta.ct with an infected individual, inhaling infectious microorganisms, 

eating contaminat1~d foods or contact with an agent such as a mosquito. Moreover, the 

susceptible individual may or may not possess certain resistance to a disease, through 

varying biological or biochemical defences. Once an individual has been infected, he 

generally must succumb to the effects of the parasite in the course of its life-cycle. 

Very often there is a latency period, in which an infected can not transmit the disease. 

The disease at this point is merely developing internally. At some point, however, 

the microparasite will have matured enough to make this infected person infectious. 

This person is then capable of passing the microorganism onto another unsuspecting 

susceptible. Even·~ ually, the infected will exhibit recognizable symptoms. Formerly, 

it was at this point that an infected person might be isolated from the susceptible 

population until immunity had been developed or at least until communication of the 

parasite was no longer possible. Frequently, the natural course of the parasite would 

involve death of the infected person. More recently, however, due to the high cost 

http:conta.ct


4 CHAPTER 1. INTRODUCTION 

of medical facilities and the availability of more humane treatments, isolation is not 

as common. Other methods are now more frequently used to arrest the spread of 

disease. Most models to date incorporate these hypotheses. 

Kermack and McKendrick made three basic assumptions as a basis for their 

model. 

1. 	 The population size is constant, or alternatively, we are only considering a closed 

population which excludes birth and mortality information. 

2. 	 The rate of new infections is proportional to the number of contacts between S 

and I where t he number of contacts are given as a proportion of the product of 

S and I. This hypothesis follows the law of mass action, which assumes uniform 

mixing of the population. 

3. Infecteds 	are removed from the infected class at a rate proportional to the 

number of infecteds, or in other words, recovery is equally likely among infecteds. 

Under these assumptions Kermack and McKendrick derived the basic SIR model. The 

flow of individuals in their system can be represented schematically as 

S--+ I--+ R. 

It is assumed that we are dealing with a continuous-infection model involving a very 

large population. This allows us to treat the population as a continuum. The equa­

tions with S(t), I(t) , and R(t) representing the respective population sizes at timet 

are given by, 

S'(t) -rS(t)I(t) 

I' (t) rS(t)I(t) -1I(t) ( 1.1) 

R'(t) 1I(t) 

where, the total population 
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N(t ) S(t) + I(t) + R(t) 


S(O) = So> 0, I(O) - Io > 0 and R(O) 0. 


Note that S'(t) + I' (t) + R'(t) = N'(t) = 0, thus satisfying assumption 1. Since th~ 

population is constant, N(t) = 50 +10 for all t. The proportionality constants rand 1 

are positive, where r > 0 is the infection rate and 1 > 0 is the removal r~te. The 

first equation in l.l, indicates that the susceptible population will decrease at a rate 

proportional to the number of contacts between the infecteds and the susceptibles. 

The constant terrr r, can be determined by the history of the transmission of the 

microparasite. The second equation respresents the change in I( t) at any timet. This 

class receives new members equivalent to the number of individuals leaving S(t). The 

rate at which class I(t) loses individuals is given by the parameter I· The constant 

1 can be determired through data collection, and represents the rate at which the 

disease loses its infective power. The final equation symbolizes the flow into the 

recovered class R(t). This amount is identical to the number of persons leaving the 

infected class. In c,ddition, note that there are no terms in the above equations which 

include entry into S(t) or exit from R(t). 

Kermack and McKendrick are credited with the threshold theorm, (see [36]) , 

that has become invaluable in epidemiology. This theorem states that there exists a 

threshold or critic.:t.l value of the susceptible population size such that if this threshold 

value is surpassed , an epidemic will occur. Directly related with this is what we call 

the reproductive c umber. If the reproductive number, (see [7]), generally labelled Ro, 

defined as the number of secondary infections produced when one infected individual 

is placed in a wholly susceptible population, is greater than one, than an epidemic 

will occur. If this reproductive number is less than one, then the disease will die out. 

Although the SIR model presented here furnished researchers with important 

results, the model has several limitations. One of these includes the lack of vital 

dynamics , accouLting for rates of births and deaths in populations. Generally, if 

a population is large enough and if the period of time under study is short , then 

assuming a constant population with no births or deaths simplifies the model and 
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is therefore useful :'or modelling purposes, since any contributions such as births or 

deaths would be negligible. However, this is not usually the case. More often we must 

account for births and deaths in order to improve the predictive capabilities of the 

model. The inclusion of vital dynamics becomes a standard issue with mathematical 

modellers. Howeve r, in order to maintain simplicity it is often assumed that the birth 

rate is identical to the mortality rate, hence maintaining a constant population size. 

Kermack's and McKendrick's model is simplistic, but the form of their equa­

tions provides a good base upon which elementary decisions can be made. However, 

there is room for expansion of the Kermack/McKendrick model. If the population is 

homogeneous, (i.e. uniformly distributed), and random mixing can be assumed then 

model 1.1 is a relatively good approximation. However, very often there are other 

important factors t hat enter into the dynamics of the disease. If the population is not 

uniform or similarly, if there are geographic or demographic factors contributing to 

the spread of the disease, then we cannot assume random or uniform mixing. Thus, 

more complicated models have to be developed to account for these characteristics of 

the population. 

vVith Kerrr.ack's and McKendrick's model, researchers are equipped with a 

noteworthy startiLg point. More factors can be incorporated into future models , see 

for example [50], [29] , [30], [8], and [17]. For instance, it is not such an unmanage­

able task to include more precise characteristics of the infective agent as it progresses 

through its life cyde. Some diseases are characterized by a brief period of immunity 

following the period of infectivity. The immunity eventually wears off and an individ­

ual becomes a susceptible again. Tetanus, smallpox, influenza, cholera and typhoid 

fever are example~ . of a disease of this nature. (See [26]). In this case the general flow 

of the population can be represented schematically by 

If no immunity is developed, then the following flowchart is appropriate. 

A disease which f Jls under this category is gonnorhea, a sexually transmitted disease. 


Another possibili ty is a disease which possesses a long latency period. Chicken pox 
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is a disease which could be modelled within this setting. The flow chart for this 

progression may be given as 

s~E~I~R 

where E represents the population in the latency period. 

There are a~.so a variety of other modelling forms which are presently being 

used in research today. (See for example [3] and [4].) The models introduced in this 

paper are basically of the SIR form. 

1.2 Sexually Transmitted Diseases 

Gonnorhea, syphilis, and genital herpes are examples of sexually transmitted 

diseases. The models for sexually transmitted diseases differ from those mentioned 

in the previous section. Anderson et al., [7]list four major variations. 

1. 	 We need only consider those individuals who are sexually active. Further, the 

relative size of the infected population does not determine the degree of the 

spread of the infection. 

2. 	 There are numerous individuals who do not display any symptoms of the disease, 

i.e. carriers, but they are still capable of spreading infection for lengthy periods 

of time. 

3. 	 Most often, suffering from a sexually transmitted disease does not induce an im­

munity. Th s, once an individual has been treated and recovered, the individual 

becomes a susceptible once more. 

4. 	 There are la.rge differences in sexual behaviours and this often contributes to 

the persisteJtce of the disease in the population. 

There are many factors involved in the modelling of sexually transmitted dis­

eases , that we arE' unable to fully understand. vVe must account for the social pro­

cesses of sexual ir.teraction as this is the fundamental means of transmission of sex­

ually transmitted diseases. The inclusion of heterogeneity of behaviour is necessary 
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for a more compl te and comprehensive description of the disease in nature. Ini­

tially, though, we examine a homogeneous population in order to get a grasp of the 

general dynamics of a system. A homogeneous population can be regarded as a pop­

ulation whose members have uniform behaviours. All susceptible individuals would 

have equal probab ilities of contracting the disease. Some examples of homogeneous 

populations include homosexuals, intravenous drug users, or individuals in a school 

classroom. On the other hand, individuals in a heterogeneous population would have 

varying degrees of risky behaviour, or susceptibility with respect to disease trans­

mission. For example, individuals, before marriage, are more likely to have a larger 

number of sexual partners than after marriage, thus putting them more at risk of 

contracting a sex ally transmitted disease. 2 A heterosexual population is an ex­

ample of a heterogeneous population. Modelling heterogeneous populations tends to 

be more accurate t han using a homogeneous population in modelling, in light of the 

complexity of life. For examples of heterogeneous models see [16], [19], [24], and [45]. 

Adding a heterogeneous quality immediately makes the models more complicated. 

Besides behavioural aspects, math modellers must also include certain bio­

logical aspects of ~he disease. For instance, the transmission probability per sexual 

contact, or variable behaviour of the virus involved in the disease are biological as­

pects. The life cycle of a sexually transmitted disease virus is considerably different 

than for a measles virus or for most of the other diseases mentioned in the previous 

section. 

As with most epidemiological models, some factors are significant to some 

diseases but not to others, for example, the presence of other sexually transmitted 

diseases may increase the probability of transmission of another sexually transmitted 

disease. In the AIDS epidemic, insertive sexual contact is less likely to result in 

infection than is r~ceptive contact. (See [32]). However, this factor is unlikely to be 

important in the transmission of the herpes virus. In modelling, one must be careful 

to strike an appropriate balance between complexity and accountability for crucial 

parameters. 

Generally, due to the means of transmission of a sexually transmitted disease, 

20f course, this conparison is necessarily true only if the married couple has noninfected partners . 
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and hence the difficulty of surveying the population, there is an extreme lack of 

data available for accurately modelling these diseases or for testing the accuracy of 

existing models. Data to determine sexual contact frequency, average number of 

sexual partners per individual, sexual practices that contribute to the spread of the 

disease, length of incubation period, transmission probability per sexual contact, and 

the knowledge of other possible relevant social factors would be helpful. 

Cooke and {orke [17] developed a model describing the gonorrhea epidemic 

that provided moddlers with an excellent base for studying other sexually transmit­

ted diseases, inclu ing the AIDS epidemic. This model was the first mathematical 

model for the trammission of a venereal disease, see [46]. (See also [39] and [53].) 

More recently, Dietz and Hadeler [19] have presented a model involving eight differ­

enbal equations that include a pair formation function incorporating female and male 

behaviours in a nonlinear fashion . (See also [24]). May and Anderson [5] have also 

been significant contributors in this area of study. They have incorporated different 

risk groups according to sexual activity. Many models today employ these methods. 

The models mentioned here represent few of many available approaches to modelling 

sexually transmitted diseases, see for example, [3], [4], [9], [10], [15], [20], and [33]. 

Schwager et al. [413] provide a brief background on the history of epidemiology, in­

cluding the modell ing of sexually transmitted diseases and AIDS. 

This paper considers the sexually transmitted disease called the acquired im­

munodeficiency syndrome (AIDS), and the virus associated with it, the human im­

munodeficiency virus (HIV). In the next section we explain some of the important 

aspects of this debilitating disease. 
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1.3 Acqui .ed Immunodeficiency Syndrome 

The acquired immunodeficiency syndrome has become a major concern to soci­

ety today. The occurence and death rate due to AIDS is increasing at a phenomenal 

rate. It's toll on htLman life is incredible. Usually, once an individual displays symp­

toms of AIDS he ca.n be expected to die in approximately one year (see [2]). There are 

new drugs, such as AZT which may assist in lengthening lifespans, but even so, death 

due to the disease is highly likely. Primarily, deaths are due to the decrease in im­

mune system capabilities, thus inviting many opportunistic diseases directly related 

to AIDS (see [32] and [2]). These include Kaposi's Sarcoma, Pneumocystis carinii 

and cryptococcal meningitis. 

Much prog1ess has been made in studying the AIDS epidemic, but much still 

remains to be discovered. Mathematical modelling provides information about the 

ep,idemic which enables us to more fully understand the dynamics of the disease, 

and further, supplies us with a priority scale for future research and data collection. 

Allen et al. [1], ccnsider many important issues in the prevention of AIDS and HIV 

infection, and priorize some of their suggestions. They emphasize the need for more 

research and serosurveillance studies. 

AIDS is a sexually transmitted disease with certain unique properties. One ba­

sic difference between AIDS and other sexually transmitted diseases, is that AIDS has 

an extraordinarily long incubation period. During this period the infected individual 

displays no obvio·-.1s outward symptoms, although he is still capable of transmitting 

the disease. This makes disease control even more difficult, since, unless we know 

which individuals are infected, we are often vulnerable. 

There are many other unique components inherent in the AIDS epidemic, such 

as the high prob .bility of death due to AIDS, whereas in other venereal or sexually 

transmitted diseases, death is generally avoided. The virus associated with AIDS, the 

HIV, is a lentivims, or more specifically a retrovirus , (see [18]). Most viruses involved 

in sexually transmitted diseases are not retroviruses. 

HIV is co ntained and transmitted through bodily fluids especially through 

http:obvio�-.1s


11 CHAPTER 1. INTRODUCTION 

blood, blood precincts and semen. vVe must consider the various activities that in­

volve exchange of these bodily fluids. Contributing factors in the spread of AIDS 

can be subdivided into demographic and biological components. At this point, we 

consider various social components related to the spread of disease. Sexual activity is 

one of the primary mediums for transmission of the HIV. See [52], [7], and [32] for the 

following and addi tional facts concerning the characteristics and determining factors 

in the spread of AIDS. Consider the heterogeneity of behaviour involved here. Some 

individuals have many different partners, others have few, and still others are absti­

nent. The number of sexual partners an individual has, plays an important role in the 

modelling of AIDS . Clearly, the probability of finding an infected partner increases as 

the number of different sexual partners increases. A sexual contact with an infected 

individual does no t guarantee transmission of the HIV due to the low probability of 

transmission per sexual act. Hence, the number of different partners a susceptible 

individual has is ot the sole determining factor in the spread of AIDS. Frequency 

of sexual contacts with the same partner also has a bearing on disease transmission. 

The type of sexual contact may also contribute to the probability of infection. Hy­

man and Stanley :32] consider more in depth analysis of sexual contact types. See 

also [51] for a survey of sexual contact types. To date , anal receptive sex has the 

highest probabilit_r of transmission of the virus. This is probably the reason for the 

rapid spread of disease in the homosexual population. Further, there is a difference 

in transmission probabilities between receptive and insertive sexual contacts. Now, 

of course, not everyone behaves alike in sexual behaviour. For instance, most mar­

ried individuals do not behave promiscuously, (although there are exceptions to every 

rule), and hence married couples are at less 'risk' of contracting the disease than other 

sexually active individuals. This leads to the common modelling technique of divid­

ing the population into various risk groups. A risk group contains individuals who 

have similar beha riours, and whose members tend to interact primarily within their 

group. Those individuals who have sexual behaviours which invite infection, would be 

considered as high risk individuals. Examples of high risk individuals would include 

homosexuals and prostitutes. l\hny young adults, those being highly sexually active, 

would fall in a moderately high risk group. High risk individuals are more likely to 



12 CHAPTER 1. INTRODUCTION 

contract the disease, than those individuals who are more conscientious about safe 

sexual practices. S Je sexual practices include the use of prophylactics, nonoxynol-9, 

or complete abstinence. The higher the risk level the faster the susceptible popula­

tion becomes saturated since high risk groups -tend to have less members than low 

risk groups. Once a risk group is saturated, that is, once a large proportion of the 

individuals in that - ~·isk group become infected, there is a tendency to pass the disease 

to lower risk groups. Since in the lower risk groups safer behaviour is practiced, and 

since the number of individuals is greater, the time to saturation is longer, and hence 

the slower the spn:ad of disease to lower risk groups. For a more detailed look at 

saturation issues rEfer to [18].3 

Sexual activity is a primary means of disease transmission but is not the sole 

means. Intravenou'; drug use has been found to be a major cause for concern. Often, 

IV drug users will share unsterilized needles, (this is common in shooting galleries) 

and since blood products are a medium for transmission of the HIV, then these drug 

users are at risk. Many prostitutes, and heterosexuals are drug users and hence there 

is great concern for the spread of disease in the heterosexual population. Considering 

this, at some point we must consider the interactions between various risk behaviours 

and the spread of AIDS. These considerations, of course, would make models very 

complicated and for the most part, we are not in a position to examine these combi­

nations. Although much research and headway has been made since the first AIDS 

case was diagnosed, much effort is still required in understanding the basics of the 

AIDS epidemic. 

Other socia l contributing factors , (see [32] and [52]), in the spread of AIDS and 

HIV infection include age, population density, geographical factors, ethnicity and so­

cial groups, and increased probability of infection due to other diseases. Other means 

of transmitting the disease is through vertical transmission (from mother to child, 

before or during birth) or through accidental exposure to blood or blood products 

by health care workers. Prior to the development of the enzyme-linked immunosor­

bent assay (ELIS A), which accurately detects HIV antibodies , and prerequisite blood 

screening of blood donors , hemophiliacs were at a great risk of contracting the disease 

3 T he concept of s.1turation was introduced by Hethcote and Yorke (28] in 1984. 
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through frequent bbod transfusions. 

Biological factors are more difficult to control than demographic variables. The 

greatest biological contribution to the annihilation of AIDS would be the development 

of a vaccine. Howe 'er, this is unlikely to be obtained in the near future. 

In modelling the AIDS epidemic we must consider the probability of trans­

mission of the HIV during a sexual act or other risk behaviour. The probability of 

transmission of the HIV is considered by some to be within the range 0.1 to 0.2, (see 

[2]). Others, see [32], say that the probability of transmission per sexual act is less 

than 0.01. 

Inherent in the AIDS epidemic is the long incubation period. Current esti­

mates, (see [2], [441and [32]), of the length of the incubation period are around an 

average of 7 to 8 years. These estimates are getting larger in value as time progresses 

and more data is collected. It is hard to determine an accurate average incubation 

period owing to the relative newness of the disease and the lack of time available to 

undertake long-term studies. To further complicate the modelling of AIDS, the infec­

tiousness of individuals varies during the incubation period. According to Hyman and 

Stanley [32], and their references therein, there is a short period of high infectivity 

immediately after infection, followed by a lengthy period of low infectivity for the 

majority of the incubation period, with another period of high infectivity prior to a 

full-blown AIDS diagnosis. This variability in infectivity creates another complicated 

dimension in the smdy of AIDS. 

No disease to date, has received as much attention as AIDS. Many significant 

individuals have devoted much of their recent years to the modelling of the AIDS 

epidemic. For instance, Anderson et al. [7] introduced one of the earlier models of the 

AIDS epidemic. It is upon this model that many more recent models, including those 

presented in this t:1esis, were developed. Others , such as the Los Alamos group, [48], 

[16], [32], [31], [18 1, have taken different approaches but have done ~o by extending 

the risk models of Anderson et al. (see also [2], [6], [5], and [42]). Anderson et al. 

have assumed exponential growth in their modelling efforts while the Los Alamos 

group conclude th at the growth is more likely to be cubic. Observed data indicates 

[18] that the growth is actually cubic but early in the epidemic an exponential growth 
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is appropriate. 

Carlos Castilla-Chavez [11] presents a review of recent modelling efforts paying 

particular attention to the role of long incubation periods, the effects of partnership 

dynamics, and the t!ffects of multiple sexual partners. There has been much activity in 

studying the effect~ of long periods of infectivity. These include the work of Castilla­

Chavez et al. [12], )3], [14], where a series of models are presented, allowing for long 

periods of infectivity while accounting for various risk groups. Thieme et al. [49] 

consider the role of variable infectivity in the spread of the HIV. The issue of risk 

groups is important to understand in our plight to end the AIDS epidemic. Groups 

such as Blythe et 'll. [9], consider like-with-like mixing in creating appropriate risk 

groups. Castilla-Chavez et al. [15] consider age structure, proportionate mixing 

and cross-immunity in their 1989 paper. Not necessarily restricted to the AIDS 

epidemic is the approach taken by Hethcote and van Ark [27], in which they consider 

heterogeneous population mixing. Other significant papers include those by Jacquez 

et al. [33], [34], Koopman et al. [38], and Sattenspiel and Simon [45]. 

Common to most models is the notion of a reproductive number . If this 

number is below one, then an epidemic will be avoided. The problem remains, what 

interventions are necessary to reduce the spread of disease, or that is, what must 

we do to bring the reproductive number below one? As we have little control over 

biological aspects . we must focus on behavioural factors. For instance, reducing 

the number of unsafe sexual practices would aid in eliminating this deadly disease. 

Education plays a major role here. As more individuals become aware of the risks 

involved, the larger the proportion of individuals practicing safe sex or other low risk 

behaviours, and hence there is a slow down in the growth of infected individuals. 

A free supply of [V needles is offered in some places to decrease the risk to drug 

users. Prophylact ics are now being made more accessible in an attempt to promote 

safer sexual practices. Another potential means of reducing the spread of AIDS is 

the practice of HIV antibody testing. Already, all blood donors are screened for the 

HIV, and individ als are notified if the test results are seropositive. The study of the 

effects of HIV testing is an area where little research has been done. lVIcCusker et 

al. [43] assess the effects of HIV antibody testing on future behaviours . They were 
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able to conclude that testing did have an affect on future behaviours, but that t hese 

conclusions could ot be generalized outside of the cohort being studied. Lyter et al. 

[41] examined the desire of homosexual and bisexual men to know the results of HIV 

antibody testing. T hey concluded that demographic differences were evident between 

those who wanted their results and those who did not want their results , especially 

between ethnicity, age and educational levels. Judson et al. [35], have looked at 

the effect of the A[DS epidemic on public health policy. They consider a number of 

important issues, including educational target groups, control regulations and laws, 

confidentiality of HIV testing, and need for constant re-evaluation, as additional data 

is collected. 

An excellem way of gaining more information about the dynamics of AIDS is to 

perform HIV antibody tests. More accurate estimates of numbers infected, trends of 

the disease, infectivity levels , and other important factors can be derived with these 

tests. Further, k owledge of seropositive results would help to encourage infected 

individuals to practice safer sex. However, lack of confidentiality of test results could 

deter individuals from becoming tested. The imposition of laws requiring individuals 

to be tested , and legal repercussions enforcing responsible behaviour may be effective 

but may be consic.ered an infringement on our freedom. Laws enforcing responsible 

sexual behaviour 1ay need to be imposed on those individuals who insist on behaving 

irresponsibly. Regarding this idea, we need more data on proportions of individuals 

behaving responsibly or irresponsibly. 

Data collecion is a major problem in controlling the AIDS epidemic. Without 

data, parameter e3timations will be inaccurate, future trends can not accurately be 

predicted, and modelling in general is less effective. Modelling , however, does provide 

us with recognition of many of the necessary areas that require data collection. In 

order to most effectively aim educational attempts , we must know more about finding 

the target groups most likely to benefit from certain types of intervention , or what 

information is req uired, or what educational techniques are most beneficial. 
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1.4 Outline 

In this thesis we consider the effects of HIV antibody testing in a homosexual 

population in conjunction with educational or other persuasive techniques to encour­

age responsible sexual behaviour of tested infected individuals , in reducing the spread 

of AIDS. We also consider some confidentiality and legal issues. The models being 

used are purposely simplistic in nature. Since little research has been done in this 

area, we require a general indication of testing significance. The models in this thesis 

are composed of nonlinear differential equations. Local stability properties are exam­

ined for all models , and global results are obtained in many cases. In Chapter 2 we 

introduce and interpret the general model. In Chapter 3 we introduce and analyze 

the effects of instantaneous testing , by examining the SPA, SQA, and SQPA models. 

Tested infected individuals either behave responsibly or irresponsibly. We are able 

to consider the effects of these behaviours on the O'\ltcome of the disease, prior to 

introducing the partial testing proportions used in Chapter 4. Chapter 4 analyzes 

the most realistic models in this thesis. Here we look at partial testing proportions 

in combination wi Gh responsible or irresponsible sexual behaviours. In Chapter 5 

we provide a comparison and discussion of the models presented in this thesis. The 

appendices include most of the supporting calculations and proofs. 



Chapter 2 

THE MODELS 

The mam purpose of this paper is to introduce and analyze models of the 

AIDS epidemi~ with emphasis on the importance and effectiveness of testing for HIV 

positivity, with respect to curtailing the spread of the disease. It is important to 

note that we are a.ssuming that the procedures for testing seropositivity are very 

accurate and that we are not studying the effectiveness of the tests for determining 

whether or not a person who tests positive actually is HIV positive. If testing is 

confidential, then more people are tested and hence there are fewer untested infectives 

to spread the disease unwaringly. However, testing for the HIV does not cure an 

individual. These tested individuals will either behave responsibly by practicing safe 

sexual behaviours or by abstaining from sexual activity, or will behave irresponsibly, 

and not use preventive techniques to reduce the spread of AIDS. As the number of 

individuals tested increases, the greater the number of responsible or irresponsible 

tested persons. If ·;est results are not confidential between doctor and patient, then 

there will be fewer individuals tested, since there may be a fear of quarantine, loss 

of job security, negative social implications, or imposition of laws involving penalties 

for purposeful transmission. If there are fewer tested infecteds, then there will be 

fewer knowingly irresponsible infected persons . On the other hand , there will be 

more sexually res ponsible individuals due to possible repercussions for irresponsible 

behaviour. There is much controversy as to whether test result confidentiality should 

17 
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be honoured between doctor and patient or whether laws should be created that would 

make it compulsory for doctors to report their patients positivity in certain situations. 

This selective confi:ientiality poses a problem in itself. If some infected individuals are 

reported and others not, then attempts at collecting accurate data would be in vain. 

To make any firm wnclusions about the effect of confidentiality on the course of the 

epidemic would require data giving the probability of being a responsible individual 

rather than an irresponsible one, under voluntary and compulsory conditions, and 

the probability of being tested where confidentiality is practiced versus where lack of 

confidentiality is practiced. Further, a solution to achieve adequate data collection 

would need to be mggested. 

Using one basic model and some variations on it, we are able to analyze many 

significant factors Jf HIV testing. The models are purposely simple to reduce unnec­

essary complexity in analysis, but complex enough to provide some information to 

indicate general trends and potential remedies or reductions in the spread of AIDS. 

However, our res .lts are preliminary, since the models would require considerable 

refining before the predictions should be used by decision makers. 

A schematic diagram providing a general framework for the flow of activity 

through the system, taking testing into account is displayed in figure 2.1. 

The population under study is a sexually active homogeneous population that 

very closely resembles a homosexual population. 1 We subdivide the population into 

five disjoint categories: 

1.) Susceptibles S(t), 

2.) Infecteds, not tested I(t), 

3.) Infecteds, tested, sexually responsible P(t), 

4.) Infecteds, tested, sexually irresponsible Q(t), 

5.) Full-blown AIDS A(t). 

The susceptible class, denoted by S( t) represents those individuals that are 

1 We consider sexual activity as the medium of HIV infection but this is not necessarily required 
in the models presented in this paper. We do require a homogeneous population , but this may be 
any homogeneous pc pulation . For example , a population of IV drug users is also a homogeneous 
population . Since sE·xual activity is the major cause of the spread of AIDS in society today, we 
choose this to be our risk activity under study. 
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Figure 2.1: Schematic Diagram of Partial Testing: SIQPA 
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not infected but are capable of contracting the HIV under appropriate conditions. 

One enters the susceptible population upon one's first sexual act. The number of 

individuals entering the susceptible population is represented by a constant rate A. 

The assumption that A is constant is not too unrealistic, since the population we 

are considering is a homosexual population which is unlikely to produce offspring. 

Further, even if the population were not homosexual, any offspring, would take a 

considerable amount of time to mature into a sexually active individual. Individuals 

leave the susceptible population and enter the infected population through sexual 

contact with members of the infected class at a rate j3c, where j3 represents the 

transmission probability and c represents the average number of sexual contacts per 

individual in S. We assume the law of mass action in that the susceptibles interact 

with the infecteds at a rate proportional to the product of the number of infecteds 

and susceptibles. 

We have subdivided the infected population into three categories usi~g respon­

sibility (or lack of responsibility) in sexual activity and HIV testing as the factors that 

determine to whic class an individual belongs. I(t) represents those individuals who 

are infected with the HIV but have not yet been tested positive. A simplifying as­

sumption in our models is that the latency period, in other words, the period between 

infection and presence of HIV antibodies in the blood, is insignificant, so that if an 

individual has been infected, then testing for antibodies will indicate this. In fact , 

data seems to indicate the latency period is less than six months. All current math­

ematical models of the AIDS epidemic reflect this fact. Individuals in the I( t) class 

will leave this class as determined by the proportions w and fl · The proportion of the 

infecteds in I( t) that are tested at timet is represented by w. The parameter fl is used 

in all populations to represent the natural death rate of individuals. Q(t) represents 

the class of infecteds who have been tested, but have not paid any heed to their con­

dition and remain irr~sponsible sexually, thus putting susceptibles at risk. The last 

subdivision of infe( teds are those individuals who have knowledge of their infectious­

ness and behave responsibly, that is, they practice safe sex or are abstinent. vVe label 

this class P( t ). Finally, we assume that all infecteds eventually develop AIDS at a 

rate v. Once an individual has developed full-blown AIDS , they become a member of 
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the class A(t) and they no longer directly contribute to the epidemic. As this class is 

of interest to us for various reasons, including benefit cost analysis for care of AIDS 

patients, we consider it in our model. 

If sexual ad ivity of infecteds is confined to other infecteds only, then their 

contribution to the epidemic would be insignificant. But we cannot assume total 

knowledge in regards to who may or may not be infected. Confidentiality of testing 

plays a role here smce the limited or complete public knowledge of an individuals 

infectivity would probably provide incentive to refrain from unsafe sexual practices. 

However, total disclosure could conceivably backfire, putting susceptibles at greater 

risk from those infecteds who do not know they are infected and hence seek out only 

those not known to be infected, as their sexual partners. As well, greater confiden­

tiality might encou age more high risk individuals to be tested and thus might result 

in a smaller I(t) c .ass and a larger responsible P(t) class, due to the migration of 

newly tested I(t' individuals into the tested classes, thus reducing the spread of the 

disease. Unfortunately, there is insufficient data available. Moreover, the models do 

indicate that testing may be a key factor in reducing the incidence of AIDS, and thus 

data collection on t his matter should be undertaken. 

The responsible and irresponsible tested infected populations are determined 

by the proportions p and 1 - p, respectively. The parameter p stipulates the per­

centage of tested i fecteds who are responsibly sexually active and 1- p provides the 

proportion of tested infecteds who remain sexually irresponsible. Hence, we should 

consider various alternatives including education, confidentiality issues, and as a last 

resort legal issues, that would increase the parameter p, and therefore decrease the 

number of tested i fected sexually irresponsible individuals contributing to the spread 

of the disease. 

The equati ns describing our system are: 

dS(t) _ ( (Jc(I(t) +Q(t))) S( )\1 ft+ N(t) tdt 

dl( t) (Jc(I(t) +Q(t))) S(t)- ( + )I(t) 
dt ( N(t) fl w 
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dQ(t) 
(1- p)w!(t)- (tt + v)Q(t)

dt 

dP(t) 
pw!(t)- (tt + v)P(t) (2.1)

dt 

dA(t) 
v(P(t) + Q(t))- (tt + d)A(t)

dt 

N(t) S(t) + I(t) + Q(t) + P(t) + A(t) 

where 

S(O) So> 0, 

J(O) fo > 0, 

Q(O) Qo 2 0, 

P(O) = Po 2 0, and 

A(O) Ao 2 0. 

It follows that 

dN (t) dS(t) d!(t) dQ(t) dP(t) dA(t) 
dt --;It +dt +~ +~ + ----;It 

A- ttN(t)- dA(t). 

This model is a generalization of the model in Anderson et al. [7]. Anderson et 

al. develop a continuous-infection model that includes a susceptible class , an infected 

class, a full-blown AIDS class and a recovered class. Their model was developed at 

a very early stage in the study of AIDS . We make the simplifying assumption that 

all individuals who become infected will eventually die of AIDS related causes and 

so we do not include a recovered class in our models. According to current data, a 

very large proportion, if not all of the infected individuals will die from AIDS related 

causes. Otherwise. Anderson et al. have a good introductory approach to modelling 

the AIDS epidemic. We have refined their model since we subdivide the infected 

individuals into the classes I (t) , Q(t), and P(t). Further, we have excluded their 
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removed class Z(t) . as it is no longer appropriate. The use of the law of mass action 

to model interactions between members of the different populations is retained for 

our model, as are the general dynamical qualities of the disease. This format allows 

a good introductory look at the dynamics of the AIDS epidemic as it relates to HIV 

testing. 

The model we developed is well-posed in the sense that all solutions remain 

nonnegative and btmnded. Refer to Appendix G for the proof. 

Before further analyzing the model in equations 2.1, we look at a few variations 

of this model. 



Chapter 3 

INSTAl'~TANEOUS TESTING 

3.1 Prelim inaries 

Alf the models incl~ded in this chapter are derived, under certain simplifying 

assumptions, from our original system given in equations 2.1. We include a series of 

less mathematically complex systems in order to gain some insight into the dynamical 

behaviour of the AlDS disease in certain extreme cases. The models in this chapter 

are not mathematical subsystems of the SIQPA model. The SIQPA model, is not 

properly defined when w = 1 or w = 0. If w = 1, then I'(t) = J3c(~Q) S- (u + 1)I, 

which implies that more than one hundred percent of I (t) is being removed at any 

time. If w = 0, then this implies that Q(t) =0 and P(t) =0, so that the untested 

infecteds all must die of natural causes, and not AIDS related diseases. Thus , we 

have decided, that in order to get a reasonable grasp of the effects of HIV antibody 

testing we would ex.tmine the series of models using the assumption that the untested 

population, I( t) is non-existent. In the first sub-model presented and analyzed in this 

thesis we disregard the non- tested infected class I( t). Thus we make the simplifying 

assumption that test ing is instantaneous, i.e., the instant a person from the susceptible 

class contracts the HIV, he becomes a member of the class P(t) or Q(t) wi th the 

respective probabili t ies p and 1- p. All models included and analyzed in this chapter 

employ the instant;meous testing assumption. Thus, the models are all based on 

24 
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the simplified model, denoted in figure 3.2 , a schematic diagram representing general 

movement between classes. 

The four dimensional system, obtained by making the assumption of instan­

v(P(t) + Q(t))- (J.L + d)A(t) 

taneous testing, is: 

iS(t) 
dt 

A- ( + {3cQ(t) ) S(t) 
J.L N(t) 

dQ(t) 
dt 

(1 _ ){3cQ(t)S(t) _ (J.L + v)Q(t) 
P N(t) 

dP(t) 
dt 

_ P{3cQ(t)S(t) _ (J.L + v)P(t) 
N(t) 

(3 .1 ) 

dA(t) 
dt 

N(t) S(t) + Q(t) + P(t) + A(t) 

with So > 0, Qo > 0, Po > 0 and Ao ~ 0. 

Therefore, 

dN(t) 
-- = A- pN(t)- dA(t).

dt 

The assumption of instantaneous testing is not realistic. However , understand­

ing this extreme ca3e will prove useful for interpreting the effects of testing on the 

AIDS epidemic. The value of p indicates the proportion of the infected population 

who are acting responsibly, and who have not yet developed full-blown AIDS, and 

1 - p indicates the proportion that behave irresponsibly. vVe consider 0 ::; p ::; 1. 

Since pis the coefficient representing the proportion of new individuals entering P(t ), 

of those who were tested from I(t) , and 1- p the equivalent coefficient for Q(t ), then 

an increase in t he , ·alue of p will increase the number of individuals entering P (t) . 

Sim.ilarily a decrea~e in p results in a decrease in the number of persons entering 

P(t). Due to the fact that p + (1- p) = 1, as the number of individuals entering P(t) 
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Figure 3. 2: Schematic Diagram of Instantaneous Testing: SQPA 
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increases, the number of persons entering Q(t) necessarily decreases and vice versa. 

Hence ultimately for a decrease in the sexually irresponsible infected population we 

would like to attai a large value for p. This may be partially achieved using different 

educational techniques aimed at the tested infecteds, or perhaps legal repercussions 

as incentives for te·;ted infecteds to refrain from sexual activity. 

We start our analysis by looking at the two extreme cases, p = 1 and p = 0. 

We consider the case where p = 1 first. If p = 1, then we can interpret the model 

as indicative of no infected sexually irresponsible individuals in the system. Hence, 

we would expect the disease to eventually die out, since testing is 100% effective in 

eliminating the so urce of infection. Disease elimination, of course, is the optimal 

situation. However , it would be very difficult to obtain. There are many factors to 

be taken into consideration when striving for this goal, such as the phenomenal cost 

involved in testing everyone,1 as well as the task of converting peoples moral values, 

or imposing a quarantine on those individuals infected with HIV. Further, it is not an 

easy task to monitor an individual's sexual behaviours, or to collect appropriate data 

due to the private nature of sexual activity. Fortunately, we need not attain this state 

of totally responsible tested infected individuals in order for the disease to die out. 

We shall see in th(! analyses of the various models that there are scenarios in which 

the models predict that the disease will die out. The case where p = 0 is presented 

later. In this latter case the infected population consists of only those individuals 

who are not willing to behave responsibly. 

3 .2 Test ing is 100% Effective: SPA and SPA E 

3.2.1 T he SPA M odel 

The schematic representation for the SPA system, (i.e. when p = 1) , is given 

1The ELISA is a r ~latively low cost test, but if we consider the organization required to test the 
entire population , the cost can become quite large. · 
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in figure 3.3, and the system of equations becomes: 

dS(t) 
= A -f.ls

dt 

dP(t) 
-(f.l +v)P

dt 

dA(t) 
= vP- (f.l + d)A (3.2) 

dt 

N(t) = S(t) +P(t) + A(t) 

with 5(0) = So > 0, P(O) = Po > 0 and A(O) = Ao 2: 0. 

Thus , 

dN(t) 
A- f.lN(t)- dA(t).

dt 

Note that Q(t) is not considered in this model since when p = 1, and Q = 0, no 0 

individuals enter the class Q(t), and hence, Q =0. If there are any members in Q(t) 

at t = 0, in other words if Q0 > 0, these individuals will die out exponentially, so 

again we can consider Q=0. 

Only one equilibrium point exists: 

(3 .3)(~) ( n 
The Jacobia.n for this system, at the fixed point , is given by 

-p 0 

J = 0 - (Jt+ v) (3..±) 
( 

0 v 
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Figure 3. ~1 : Schematic Diagram for 100% Effective Testing: SPA 
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The Jacobian is a t riangular matrix and hence the eigenvalues are the diagonal ele­

ments: 

A1 = -J.L 


A2 -(J.L + v) (3.5) 


,\3 -(J.L +d). 


Since the ei1~envalues are real and all negative and since system 3.2 is linear, 

( .1., 0, 0) is a globally asymptotically stable node. In fact, since the equations in 3.2 
tJ. 

are linear, we are a.ble to solve the system explicitly. 

S(t) 

.P(t) 

A(t) 

The results we obtained are intuitively clear. If there are no sexually active 

irresponsible infected individuals then the disease will not spread, in fact , the disease 

will die out exponentially. 

The assumption used in this section, i.e. p = 1, is, as mentioned previously, 

unrealistic. Only if we were to look at a subpopulation would we possibly have this 

situation arise. That is, there may be a group of individuals living in a certain 

community or household where sexual activity. by infecteds is against moral values 

or is contradictor:r to some other factor. Even so , there still exists the possibility 

of extraneous sou ces of infection , such as IV drug use, transfusions or accidental 

exposures to t he virus. Thus we alter our model to include these sources . 
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3.2.2 Extraneous Sources: SPAf 

The following model takes a look at the introduction of an extraneous input 

that is not due to a sexual transmission of the virus HIV. We label this constant rate 

of input (. vVe are interested in looking at what effects E > 0 has in the long term on 

the AIDS epidemic. Our revised model is then 

dS(t) 
= A- (J.L + E)S(t)

dt 


dP(t) 

ES(t)- (J.L + v )P(t) (3.6)

dt 


dA(t) 

vP(t)- (tt +d)A(t)

dt 

N(t) = S(t) + P(t) + A(t) 

with So > 0, Po 2 0, and Ao 2 0. 

Therefore, 

dN(t)
-;It = A- ttN(t)- dA(t). 

Note that we still assume that Q(t) =0, as we still have p = 1. 

To determine equilibria we set S'(t) = P'(t) = A'(t) = N'(t) = 0. 

There is one fixed point 

p 

Further, 

N = i\ ((It +v) ( fl + d) + E( ll +v + d)) 
(J.L + E)(tt + v)(J.L +d) · 
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The introduction of epsilon results in an endemic equilibrium, rather than a disease 

free equilibrium. 

The Jacobian is: 

-(f-l +c) 

.J(S,P,A) = ~ 
( 

v 

Again we have a triangular matrix, with eigenvalues given by the diagonal elements: 

A1 -(f-l +c) 

A2 -(f-l + v) 

A3 = -(f-l + d) 

As before, the eigenvalues are real and all negative and the revised system is still 

linear, hence the endemic fixed point is a globally asymptotically stable node. The 

explicit solutions are calculated in Appendix A. We obtained: 

P(t) 

vci\
A(t) 

(f-l + d)(f-l + c)(p + v) 

+ (s -~) ( ) e -(J.L+~)tc 
. o p+ c (v -c)(d -c) 

+ (Po- ci\ - c (s -~)) e - (J.L+u)t 

(f-l+c )(f-l+ v) (v-c) 
0 

f-l+c (d - v) 
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For t > 0, S is a decreasing function of t whereas P and A are increasing 

functions of t. From the endemic equilibrium we can deduce that the susceptible 

population will exceed the class of infecteds in P(t), if J.L+v > t, that is, if the removal 

rate J.L + v from P(t) is greater than the rate of new infections t. It is interesting to 

note that the full- blown AIDS class never exceeds the infected class, but will exceed 

the susceptible cla3s if t > (JL+v~JL+d) since J.L + d > v always. Further, we note that 

P +A = (JL:~N~~~~~~d). Thus the uninfected population S( t) will exceed the total 

infected populatio:.1 if t < (JL::)J~~d). A cost analysis of health care given ratios of 

healthy to infecte . individuals would prove interesting at this point, but we are not 

presently equippe ' to carry out an analysis of this type. 

The results in this section indicate that controlling the amount of infectivity 

caused by external sources is important if we wish to control the spread of the disease. 

3.3 Testing is 100% Inneffective: SQA 

3.3.1 Local Asymptotic Stability 

The SQA Model 

The following model represents the extreme case where p = 0. In this case, all those 

who are tested and know they are infected continue to behave in a sexually irrespon­

sible manner. Thus, testing makes no contribution to the reduction of the spread of 

the HIV, and in eJfect P(t) =0. 
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A schematic diagram of this system is provided in figure 3.4. 

The system of equations is given by: 

dS(t) A- ( + f3cQ(t) ) S(t) 
dt Jl N(t) ' 

dQ(t) f3cQ(t)S(t) _ (J-L + v)Q(t) 
dt N(t) ' 

dA(t) 
vQ(t)- (J-L +d)A(t), (3.7)

dt 

N(t) S(t) +Q(t) + A(t), 

with 50 > 0, Qo > 0, and Ao 2:: 0. 

Hence, · 

dN(t)
-;It = A- J-LN(t)- dA(t), 

Due to the law of mass action, these equations are nonlinear. This makes 

finding the explici·G solutions of the system unlikely. Instead , we use linearization 

and stability analy3is to determine the qualitative behaviour of the system. This will 

enable us to obtain local stability properties. 

Equilibria 

This system has two fixed points. Appendix B contains the supporting calculations 

for determining th·~se fixed points. The first is, 

This fixed point represents a disease free situation, that is, the disease will die 

out. We call this the disease free equilibrium. The existence of the second equilibrium 
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Figure 3.4: Schematic Diagram for 100% Ineffective Testing 
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indicates that there is a possibility of an endemic outbreak of HIV. This equilibrium 

point is given by: 
A(!L+d+v) 

.{3c(IL+d)-vd 

Av ) ( .{3c-(!L+v) )
( IL+v .(3c(IL+d)-vd 

where 
- - - - Af3c(tt + v + d)
N=S+Q+A= .

(tt + v) (f3c(tt + d) - vd) 

Existence of the endemic equilibrium in the positive cone, is guaranteed pro­

vided all the components of the endemic equilibrium are positive. This is satisfied if 

Q > 0 or equivalently if f3c > tt + v. Clearly J1. + v > ~'V:d· Thus f3c > J1. + v implies 

that f3c(tt +d) - vd > 0, which shows the positivity of N. 
In the worst case, letting f3c tend to infinity: 

Note that S is a decreasing function of f3c whereas Q and A are increasing functions 

of f3c. Clearly the , the limit as f3c tends to 0 is the disease free equilibrium. 

Local Stability Analysis 

Since the eigenvalues corresponding to the disease free equilibrium are negative 

and all real by th< ~ calculations in Appendix B, the disease free equilibrium is a lo­

cally asymptotical y stable node. Alternatively, the disease free equilibrium is locally 

asymptotically stable if the endemic equilibrium does not exist in the nonnegative 

cone (i.e. f3c < J-t + v), and is an unstable saddle point if the endemic equilibrium 

exists , that is , if f3 c > p + v. 

The fixed point (S, Q, A) exists in the nonnegative cone, and by the Routh 

Hurwitz criteria (H.2), is locally asymptotically stable provided f3c > ll + v . The 
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supporting calculations can be found in Appendix B. In fact, as soon as the endemic 

equilibrium exists it is locally asymptotically stable. 

The reproductive number Ro, for this model is given by 

(Jc
Ro=--. 

fl+V 

If Ro < 1 the disease will die out asymptotically. If Ro > 1 an epidemic will occur. 

Ideally, we would like to reduce (Jc, in an attempt to reach the disease free status. vVe 

have no control, at. least not in the near future, over the probability of transmission 

parameter (3, as it is biological in nature. However, by instructing people to use 

prophylactics and/or other safe sex practices, as well as approaching issues of morality 

and promiscuity we can expect a drop in c, thus decreasing the value of R 0 • 

In summar.r 

EQUILIBRIUM (Jc < ll +v (Jc > ll +v 

(;,o,o) 
Local 

asymptotic 

Exists , 

but is 

stability unstable 

(S,Q,A) 
Does not exist 

in the 

Local 

asymptotic 

nonnegative cone stability 

3.3.2 Global Asymptotic Stability 

\Ve prove that the disease free equilibrium is globally asymptotically stable 

whenever it is locally asymptotically stable, that is, when (Jc < ll + v. 

Define 

9 = {(S, Q, A) E ~3 : S > 0, Q > 0, A> 0} 

9 = {(S, Q, A) E ~3 : S ~ 0, Q ~ 0, A~ 0} 

Further , define V : ~3 ---+ ~. by 
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V(S, Q, A)= Q. 

Then V is C1 (~3 ) and the time derivative 

. 	 ( f3cS )V(S,Q,A) = Q N- (~L+v) . 

Thus V(S, Q, A) ::; 0 on g. Therefore Vis a Liapunov function by definition H.5. V 

is equal to 0 if and only if Q = 0, since f3c < fL + v and ~ :::; 1. 

We define 

£ 	 {(S, Q, A) E g: V = 0} 

{(S,Q,A): Q = O,S 2: O, A 2: 0}. 

By the LaSalle Ex ;ension Theorem (H.6), every bounded solution of system 3.7, and 


hence every solution by H.l(b), converges to M where M is the largest invariant 


subset of£. 


Consider the system obtained if Q(t) =0 in 3.7. 


S' 


A' (3.8) 


We define the largest invariant subset of £ as 

M = {(S,Q,A) E ~!: Q = O,S 2: O, A ~ 0 and (S, A) satisfies 3.8}. 

For every solution of 3.8 , 
A

S(t ) ~-
IL 

A(t ) ~ 0. 

Therefore, the point (I:!. , 0, 0) is in the omega limi t set of every solu tion of 3.7. But. ,.. 
this point is a locally asymptotically stable cri tical point and so it must be the only 
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point in the omeg . limit set of any solution of 3.7. Hence, the disease free equilib­

rium is globally asymptotically stable with respect to the solutions initiating in the 

nonnegative cone provided f3c < J.l + v. 

Today 's society is experiencing an endemic form of the AIDS disease. Although 

our model is only r·~presentative of a small portion of society it provides us with some 

insight into the pro~lem . It seems that without interventions, provided the parameters 

are within a certain range, the disease will tend towards the endemic equilibrium. 

We have lo ked at the four dimensional model with p = 0 and p = 1 and have 

gained some insigh t into the behaviour of the system in these extreme cases. We now 

move on to more realistic situations, that is , where 0 < p < 1. Society today is within 

this range of value> for p. 

3.4 Testing is Partially Effective: SQPA 

3.4.1 Local Asym ptotic Stability 

The SQPA M odel 

The model in this section represents the situation where there is instantaneous 

testing and an opportunity to examine the effect of the size of the parameter p on 

the outcome of th<! AIDS epidemic. Both classes , P(t) and Q(t) will be represented 

in the total populdion. 

A schematic diagram is provided in figure 3.2 The system of equat ions is: 

dS(t) A- (tt + f3cQ(t)) S(t) 
dt N(t) 

dQ(t) 
dt 

(1 _ p) f3 cQ (t) S (t)
N (t) 

_ ( + ) Q(t)
J.l v 

dP(t) 
dt 

f3 cQ (t )S (t ) 
p N(t) - (ft + v) P(t ) (3 .9) 
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dA(t) 
v(P(t) +Q(t))- (Jl +d)A(t)

dt 

N(t) S(t) + Q(t) + P(t) + A(t) 

with So > 0, Qo > 0, Po 2:: 0, and Ao 2:: 0. 

Equilibria 

The disease free equilibrium is: 

5 
Q 0 
p 0 

A 0 

Deriving the endemic equilibrium is somewhat more complex and the support­

ing calculations can be found in Appendix C. The endemic equilibrium is: 

(ll+d)(l-p ),6c-vd 

A(Il+d)(l-p)) ( (1-p),()c-(Jl+v) )
( Jl+v (ll+d)(1-p),6c-vd 

Ap(Jl+d)) ( (1-p),()c-(Jl+v) )p 
( ll+v (ll+d)(l-p),6c-vd 

Av ) ( (1-p),6c-(Jl+v) )A ( ll+v (ll+d)(l-p ),6c- vd 

The endemic equilibrium exists in the positive cone if S, Q, P, and A are 

positive. This is satisfied if Q > 0, or equivalently if f3c > 'C;. The reproductive 

number is 
Ro = (3c( 1 - p) . 

Jl+V 
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As before, if Ro < 1 the disease free equilibrium will be obtained. If Ro > 1, the 

disease will flourish. 

Local Stability Analysis 

In summary the stability properties are: 

j3c < JL+vID~QUILIBRIUM I 1-p j3c > ~~; II 

(S,Q,P,A) 
Local 

asymptotic 

Exists, 

but is 

stability unstable 

(S,Q,P,A) 
Does not exist 

in the 

Local 

asymptotic 

!:::= 
nonnegative cone stability 

3.4.2 Global Asymptotic Stability 

We prove that the disease free equilibrium is globally asymptotically stable 

whenever it is loccJly asymptotically stable, that is, when j3c < ~~;. 
Define 

g = {(S,Q,P,A) E.lR4
: S > O,Q > O,P > O,A > 0} 

g = {(S,Q,P,A) E lR4
: S 2: O,Q 2: O,P 2: O,A 2: 0} 

Further, define V : lR4 --> lR, by 

V(S,Q,P,A) = Q. 

Then Vis C1 (lR4 
) and the time derivative 

V(S Q p A) - Q (j3cS - f..l +v)
' ' ' - N 1-p _. 

Thus V(S,Q ,P, A)::; 0 on Q. Therefore Vis a Liapunov function by definition H.5. 

V is equal to 0 if and only if Q = 0, since j3c < ~~~~~. 
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vVe define 

£ 	 { ( 5 , Q, P, A) E g : V = 0} 

{(5,Q,P, A): Q = 0,5 2: O,P 2: O, A 2: 0}. 

By the LaSalle Extension Theorem (H.6), every bounded solut ion, and hence every 

solution by H.1(b), of system 3.9 converges to M where M is the largest invariant 

subset of£. 

Consider the system obtained if Q(t) =0 in 3.9. 

5' A-J.L5 

P' - (J.L + v )P (3.1 0) 

A' vP - (J.L + d)A 

The solutions to 3.10 are: 

S(t) = 

P(t) 

We define t he largest invariant subset of£ to be: 

M = {(5,Q ,P,A) E ~t: 

Q = 0,5 2: O,P 2: O,A 2:0 and (5,P, A) satisfies 3.10} . 

For every solution of 3.10, 
A

5(t ) ---+ - , 
J.l 

P(t) ---+ 0, 


A(t) ---+ 0. 
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Therefore, the point (~ ' 0, 0, 0) is in the omega limit set of every solution of 3.9. 

But, this point is a locally asymptotically stable critical point and so it must be 

the only point in t he omega limit set of any solution of 3.9. Hence, the disease free 

equilibrium is globa.lly asymptotically stable with respect to the solutions initiating 

in the nonnegative cone, provided (Jc < l1.+v . 
1-p 



Chaptel~ 4 

PARTii\.L TESTING OF 

INFEC'TEDS 

4.1 P relirninari.es 

The modeh• in this chapter present the opportunity to analyze the effects of 

partial testing for HIV antibodies on the AIDS epidemic by introducing a parameter 

indicating the pro;)ortion of the number of untested infecteds that are tested at time 

t. vVe wish to find the minimal range of values for this parameter that will still 

guarantee eradica·;ion of the disease. With the introduction of the option to test 

different proportions of the population comes an additional infected class , I (t ). This 

class contains those infecteds who are not tested, and hence, are unaware of their 

seropositivity, but still consider themselves uninfected and so do not change their 

sexual behaviours . It is from this class that we choose those individuals who are 

to be tested. We label the parameter indicating the proportion of those infecteds , 

I (t ), who choose to be tested at time t , as w. The parameter can have values in 

the range 0 S w :::; 1. In the previous chapter, we examined the situation where 

w = 1 (and w = J, since the dynamics of the SQA model are identical to the SIA 

model). In t his chapter we focus on t he more realistic range of values, 0 < w < 1, 

as applied to the model found in 2.1. Note that we can realistically assume that 

44 
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w is significantly larger than v. The average incubation period is around seven or 

eight years, but AIDS related symptoms, such as thrush, yeast infections, and slowly 

healing wounds begin appearing towards the end of the incubation period. If testing is 

voluntary, untested infected individuals will probably not consider being tested until 

these symptoms appear. They most likely will however, be tested prior to developing 

full-blown AIDS. T he parameter v in our models is determined by the inverse of the 

average length of the incubation period, i.e. ~ ~ 7 or 8 years, so w > v. If testing is 

mandatory, then depending on public policy and frequency of tests, we can consider 

w >> v. 

As in the previous chapter, we will look at the extreme cases of responsible 

behaviourindividu lly, that is, where p = 0 and p = 1. The parameter p has no effect 

on the infected class I(t) but as before determines what proportion of those tested 

enter class Q(t) or P(t). 

4.2 Partial Testing is 100% Effective: SIPA 

4.2.1 Local Asymptotic Stability 

The SIP A Model 

We start with the system when p = 1, which eliminates the class Q(t). The 

schematic diagram of the SIPA model is available in figure 4.5. 

The model is: 

dS(t) 
dt 

A_ ( {Jcl(t)) S( )11 + N(t) t 

di(t) 
dt ( 

{Jcl(t))
N(t) S(t)- (p +w)I(t) 

dP(t) 
dt 

wl(t)- (J.L + v)P(t) ( 4.1) 
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Figure 4.5: Schematic Diagram of the SIP A Model 
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dA(t) 
vP(t)- (J.l- +d)A(t)

dt 

N(t) S(t) + I(t) + P(t) + A(t) 

with So >0, Io > 0, Po ~ 0, and Ao ~ 0. 

Therefore, 

dN(t) 
A- 11-N(t)- dA(t) 

dt 

Equilibria 

The equilibria are calculated in Appendix D and are provided below: 

s 11. 
J.L 

j 0 

p 0 

A o 

and 

l 

p 

.4 

A( (J.L+v)(J.L+d)(J}c-(J.L+w )) 

J.L+w 


Aw( IL+d)(J)c- (IL+w)) 

IL+W 


Avw(J)c-(IL+w)) 

The endemic equilibrium exists if all the components are positive. This is true if 

l > 0, or that is, if j3c > p +w. The reproductive number is: 
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If Ro < 1 a disease free situation will be asymptotically approached , and if Ro > 1 

the endemic situat ion occurs. The supporting calculations for the determination of 

the equilibria are found in Appendix D. 

Local Stability Analysis 

The results of the linear analysis are given below in tabular form. (See Ap­

pendix D for calculations). 

u:~QUILIBRIUM I f3c < J.l + w I (Jc > tt + w II 
Local Exists, 

(s, i, P, A) asymptotic but is 

stability unstable 

Does not Local 

(S,I, P, A) exist in the asymptotic 

nonnegative cone stability 

4.2.2 Global Asymptotic Stability 

We prove t J.at the disease free equilibrium is globally asymptotically stable 

whenever it is locally asymptotically stable, that is, when f3c < J.l +w. 

Define 

9 = { ( S , I , P, A) E ~4 
: S > 0,I > 0, P > 0, A > 0} 

9 = {(S, I , P,A) E ~4 : S ~ O,I ~ O,P ~ O,A ~ 0} 

Further, define V : ~4 -+ ~ ' by 

V(S, I, P, A)= I. 

Then V is C 1 (~4 ) and the t ime derivative 

· ((3cS )V( S,I, P, A)=I N -(tt+w) . 
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Thus V(S, I, P, A) :::; 0 on Q. Therefore V is a Liapunov function by definition H.5. 

dotV is equal to 0 if and only if I= 0, since f3c < J.L +w, and ~ :::; 1. 

We define 

r 	 {(S, I , P,A) E Q: V = 0} 

{(S, I , P, A): I= 0,5 ~ O, P ~ O,A ~ 0} . 

By the LaSalle Extension Theorem (H.6), every bounded solution, arid hence every 


solution by H.1(b ), of system 4.1 converges to M where M is the largest invariant 


subset of£. 


Consider the system obtained if I(t) = 0 in 4.1: 


S' 

P' 

A' 

- A- J.LS 

-(J.L + v)P 

vP ­ (J.L + d)A 

(4.2) 

The solutions to 3.10 are: 

We define the larg ~st invariant subset of£ to be: 

M = {(S,I, P, I ) E R! : Q = 0, S ~ 0, P ~ 0, A~ 0 and (S, P, A) satisfies 4.2}. 

For every solution of 4.2, 
A

S(t) ~-
J.L 

P(t) ~ 0 

A(t) ~ 0. 
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Therefore, the point (!l, 0, 0, 0) is in the omega limit set of every solution of 4.1. 
f.J. 

But, this point is a locally asymptotically stable critical point and so it must be 

the only point in t he omega limit set of any solution of 4.1. Hence, the disease free 

equilibrium is glob.1lly asymptotically stable with respect to the solutions initiating 

in the nonnegative cone, provided f3c < 1-l +w. 

4.3 Partial Testing is 100% Ineffective: SIQA 

4 .3 .1 Local A.symptotic Stability 

The SIQA Model 

In this section we examine the extreme case with p = 0 and in doing so, we 

eliminate the class P ( t ). The model is: 

dS(t) A _ ( j3c(I(t) +Q(t))) S( ) 
dt 1-l + N(t) t . 

di(t) f3c( I (t) +Q(t)) 
- (!1 +w) I(t).dt N(t) 


dQ(t) 

dt - wi(t)- (!-l + v )Q(t). (4.3) 

dA(t) 
- vQ(t)- (!1 + d)A(t).

dt 

N(t) - S(t) + I(t) +Q(t) + A(t) 

with So > 0, Io > 0, Qo 2 0, and Ao 2 0. 

Therefore, 

dN (t) 
= A- pN(t)- dA(t).

dt 

A schematic diagram is provided for your perusal in figure 4.3.1. 
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Fig,ure 4.6: Schematic Diagram of the SIQA Model 
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Equilibria 

There are two equilibria, the disease free equilibrium, and the endemic equi­

librium. The supporting calculations can be found in Appendix E. The disease free 

equilibrium is: 

s 
j 

J.i. 

0 

Q 0 

A 0 

The endemic equilibrium is: 

A( JJ.+d)(JJ.+v+w )+vw 
,Bc(JJ.+v+w)(JJ.+d)-vdw 

J 

Aw (,Bc(JJ.+v+w)(JJ.+d)-(JJ.+w)(JJ.+v)(JJ.+d)) 
(JJ.+w )(JJ.+v) ,Bc(JJ.+v +w)(JJ.+d) -vdw 

Awv (,Bc(JJ.+v+w)(JJ.+d)-(JJ.+w)(JJ.+v)(JJ.+d)) 
(JJ.+W)(JJ.+v )(JJ.+d) ,Bc(JJ.+v+w )(JJ.+d)-vdw 

The disease free equilibrium exists always, and the endemic equilibrium exists 

in the positive cone if its' components are positive, i.e. if J is positive. This holds 

true if (3c(!-L +v +w) (!-L + d) > (!-L +v) (!-L +w). The reproductive number is: 

Ro = (3c(fL +v +w)(!-L +d). 
(!-L + v) (!-L +w) 

If Ro < 1 then the disease free equilibrium will be asymptotically approached. 

If Ro > 1 then we will experience an endemic situation. 

Local Stability Analysis 

The calculations accompanying the stability analysis can be found in Appendix 

E. To summarize we have: 



53 CHAPTER 4. PARTIAL TESTING OF INFECTEDS 

f3cf3cEQUILIBRIUM 
> (ll+v)(ll+w)< (!l+v)(ll+w) 

(ll+v+w) (ll+d)(ll+v+w )(ll+d) 
-· 

ExistsLocal 

but isasymptotic(S ,i,Q, A) 
stability unstable 

Does not Local 

asymptoticexist in (S,l, Q, A) 
stabilitynonnegative cone 

4.3.2 Global Asymptotic Stability 

We prove ·~hat the disease free equilibrium is globally asymptotically stable 

whenever it is locally asymptotically stable, that is, when f3 c(Jl + v + w)(Jl +d) < 
(Jl + v)(Jl + w). 

Define 

Q = { ( S , I, Q, A) E ?R4 
: S > 0, I > 0, Q > 0, A > 0} 

g·= { ( S, I, Q, A) E ?R4 
: S ~ 0,I ~ 0, Q ~ 0, A ~ 0} 

Further, define V : ?R4 -+ ?R, by 

Jl+W )V(S,I , Q, A) =I+ Q. ( Jl+v+w 

Then V is C 1 (?Rt) and the time derivative 

V(S,I , Q, A) = ( {3 c(IN+ Q)S- (~~.r +w)I). 

+( Jl+w )(wi-(Jl+v)Q)
11+ v +w 

f3 cS ( ) (Jl +w)w)I ( - - fl +w + -'----'-­
N . ft + v +w 

+Q ( f3c S _ (Jl +v) (.u +w)) 
N p+ v + w 
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= I(f3cS _ (JL+v)(JL+w)) +Q (f3cS _ (JL+ v)( JL+w )) 
N JL+v+w N JL+v+w 

Thus V(S, I, Q, A) :::; 0 on 9. Therefore Vis a Liapunov function by definition H.5. 

V is equal to 0 if and only if I = 0 and Q = 0, since f3c < ((~:~~~)) , and 1~ :::; 1. 

We define 

t: 	 = {(S,I, Q, A) E g: V = 0} 

{(S,I,Q,A): I= O,Q = O,S 2: O,A 2: 0} . 

By the LaSalle Extension Theorem (H.6), every bounded solution, and hence every 


solution by H.l(b) , of system 4.3 converges toM where M is the largest invariant 


subset of£. 


Consider the system obtained if I(t) =0 and Q(t) =0 in 4.3. 


S' A- JLS 


A' -(JL +d)A ( 4.4) 


We define the largest invariant subset of£ as: 

M ~= {(S,I ,Q, A) E ~t: 

I= O,Q = O,S 2: O,A 2:0 and (S, A) satisfies 4.4}. 

For every solution of 4.4 , 
A

S(t) ---+­
JL 

A(t) ---+ 0. 

Therefore, the point (~ , 0, 0, 0) is in the omega limit set of every solution of 4.3 . 
J.L 

But , this point is a locally asymptotically stable critical point and so it must be 

the only point in the omega limit set of any solution of 4.3. Hence, the disease free 

equilibrium is globally asymptotically stable with respect to the solutions ini t iat ing 

in the nonnegati ve cone provided f3c < (J.L +v)(J.L+w) . 
' 	 (J.L+ v+w) 
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4.4 Testing is Partially Effective: SIQPA 

4.4.1 Local .Asymptotic Stability 

The SIQPA Mo 'el 

The model is: 

dS( t) A- ( + f3c(I(t) + Q(t))) S(t)-
dt ll N(t) ' 

dl( t) f3c(I(t) + Q(t)) 
= - (tL + w) I(t),

dt N(t) 


dQ(t) 

= (1- p)wl(t)- (tL + v)Q(t), (4.5)

dt 


dP(t) 

- pwl(t)- (tL + v)P(t),

dt 


dA(t) 

= vQ(t)- (tL + d)A(t),

dt 

N(t) - S(t) + I(t) + Q(t) + P(t) + A(t), 

with So > 0, Io > 0, Qo ~ 0, Po ~ 0, and Ao ~ 0. 

Equilibria 

There are t vo equilibria, the disease free equilibrium, and the endemic equi­

librium. The supp::>rting calculations can be found in Appendix F. The disease free 
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equilibrium is: 

s 
j 

Q 
p 

A 

The endemic equilibrium is 

= 


A 
J.L 

0 

0 

0 

0 

,Bc(J.L+d)(J.L+v+(l- p )w )-vdw 

I 

A(J.L+d)(l-p)w(,Bc(J.L+v+(l-p)w)-(J.L+w)(J.L+v)) 
(J.L+w )(J.L+v )(,Bc(J.L+d)(J.L+v+(l-p)w)-vdw) 

p 

Avw(,Bc(J.L+v+(l-p)w)-(J.L+w)(J.L+v))A 
(J.L+w )(J.L+v )(,Bc(J.L+d)(J.L+v+( 1-p )w) - vdw) 

The disease free equilibrium exists always, and the endemic equilibrium exists 

in the positive cone if each component population is positive. This is true if I is 

positive, that is, if f3c(J.l + v + (1- p)w) > (J.l + v)(J.l +w). The reproductive number 

IS: 

Ro = f3 c(J.l + v + ( 1 - p)w) . 
. (J.l + v) (J.l +w) 

If Ro < 1 we will asymptotically approach the disease free equilibrium. If Ro > 1 we 

will encounter an endemic situation. 
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Local Stability Analysis 

To summarize we have: 

EQUILlBRIUM f3c(f.l + v +(1- p)w) 

< (f.l + v)(f.l + w) 

f3c(f.l +v +(1- p)w) 

> (f.l +v) (f.l +w) 

(S, i, c~, P, A) 
Local 

asymptotic 

stability 

Exists 

but is 

unstable 

(S,I, (~, P, A) 
Does not 

exist in 

nonnegative cone 

Local 

asymptotic 

stability 

4.4.2 Global Asymptotic Stability 

We prove that the disease free equilibrium is globally asymptotically stable 

whenever it is loca.lly asymptotically stable, that is, when f3c < ~~~:)l;~Pl~ . 
Define 

9 = {(S,I,Q,P,A) E ~5 : S > O,I > O,Q > O,P > O,A > 0} 

9 = {(S,I,Q,P,A) E ~5 : S ~ O,I ~ O,Q ~ O,P ~ O,A ~ 0} 

Further, define V : ~5 ~~'by 

f.l +w )V(S,I ,Q,P,A)=l+ ( ) Q.( f.l+v+ 1-pw 

Then Vis C1 (~5 ) and the time derivative 

V(S,I,Q :P,A) = (f3c(IN+ Q)S - (~~.,- + w)I). 

+ (f.l + .~:~1w~ p)w) ((1- p)wl- (f.l +v)Q) 

I ( f3 cS _ ( p +w) (f.l + v) ) 
N f.l + v + ( 1 - p)w 
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+Q(j3cS _ (f-L+w)(f-L+v)) 
N f-L +v + ( 1 - p)w 

Thus V(S, I , Q, P, A) ::; 0 on Q. Therefore Vis a Liapunov function by definition H.5. 

V is equal to 0 if and only if I = 0 and Q = 0, since j3c < (~~~:)lt~Pl~), and ~ ::; 1. 

We define 

£ 	 { ( S, I, Q, P, A) E g : V = 0} 

{(S,I,Q,P,A): I= O,Q = O,S ~ OP ~ O, A ~ 0}. 

By the LaSalle Extension Theorem (H.6), every bounded solution, and hence every 

solution by H.l(b), of system 4.5 converges toM where M is the largest invariant 

subset of£. 

Consider t e system obtained if I(t) =0 and Q(t) =0 in 4 .. 5 

S' 

P' 

A' 

A- Jl:B 

-(f-L + v )P 

vP- (f-L +d)A. 

(4.6) 

The solutions to system 4.6 are: 

P(t) 

A(t) = vPo e-(J.L+v)t + (Ao- vPo ) e - (J.L+ d)t . 
d-v d- v 

We define the largest invariant subset of£ to be: 

M = {( 8 ,1, Q, P, A) E 3?~: 

I == 0, Q = 0, S ~ 0, P ~ 0, A ~ 0, and (S, P, A) satisfies 4.6}. 

For every solution of 4.6, 
A

S(t) --t -. 
f-L 
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P(t)-+ 0 


A(t)-+ 0. 


Therefore, the point (~, 0, 0, 0, 0) is in the omega limit set of every solution of 4.5. 

J.L 

But , this point is a locally asymptotically stable critical point and so it must be 

the only point in the omega limit set of any solution of 4.5. Hence, the disease free 

equilibrium is globaJly asymptotically stable with respect to the solutions initiating 

in the nonnegative cone provided ac < (J.L+v)(J.L+w) • 
' fJ J.L+v+(l-p)w 

4.5 The S [Q/PA Model 

4.5.1 Local A.symptotic Stability 

The Model 

Consider th<~ system in equations 4.5. If we assume that those individuals 

in the populations P and A refrain from sexual contacts, then the total sexually 

active population consists of N(t) = S(t) + I(t) + Q(t). This assumption is realistic 

according to the way we have defined our classes. Individuals from the P and A 

classes are assumed to practice safe sexual behaviours or complete abstinence, so 

there is no loss of g nerality in assuming they are not members of the sexually active 

population. Under this assumption, P and A do not appear in S' , I' , or Q'. Thus 

P' and A' can be clecoupled from the remainder of the equations. We examine the 

equations: 

dS(t) A_ ( (3c(I(t) +Q(t))) S( ) 
dt - 11 + N(t) t 

d!(t) ( (3c(I(~~) Q(t) )) S (t ) - (It+ w) I(t)
dt 

dQ (t) 
(1- p)v.:I(t ) - (J.L + v)Q(t ), (4.7)

dt 
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dP(t) 
-

dt 

dA(t) 
= 

dt 

N(t) 

with 

pwl(t)- (!-l + v)P(t), 

v(Q(t) + P(t))- (!-l + d)A(t), 

S(t) + I(t) +Q(t), 

Therefore, 

dN(t) 
A- f-lN(t) . 

dt 

Equilibria 

There are t wo equilibria, the disease free equilibrium, and the endemic equi­

librium. The supporting calculations can be found in Appendix G. The disease free 

equilibrium is 

s A 
Jl. 

j 0 

Q 0 

p 0 

A 0 
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The endemic equihbrium is 

1 

Ac3 (1-p)w 
c2(J.L+w)(~J+v) 

p 

A 

where 

c1 (p +v + ( 1 - p)w) 


c2 (Jc(p + v +(1- p)w)- (J.L +w)(J.L + v) + p(p +v +(1- p)w) 


c3 (Jc( J.L + v + ( 1 - p)w) - (p +w) (p + v) . 


The disease free equilibrium always exists , and the endemic equilibrium exists 

in the positive cone if the components of the endemic equilibrium are all positive. 

This requirement is satisfied if 1 > 0, that is, if (3c(p +v + (1 - p)w) > (p +v)(ft +w). 

The reproductive z:tumber is given by: 

Ro = (3c(p + v + (1- p)w). 
(p + v)(p + w) 

As before, if Ro < 1 then the disease free state will be achieved and if Ro > 1 

we will experience an endemic situation. 
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Local Stability Analysis 

To summarize we have: 

II EQUILIBRIUM f3c(J.L + v +(1- p)w) 

< (J.L+v)(J.L+w) 

f3c(J.L + v +(1- p)w) 

> (J.L + v)(J.L +w) 

(S, i, ~! , P, A) 
Local 

asymptotic 

stability 

Exists 

but is 

unstable 

(S, I,~;, P, A) 
Does not 

exist in 

nonnegative cone 

Local 

asymptotic 

stability 

We now tur:1 to an examination of the global properties of the SIQ/PA model. 

4.5.2 Globa Stability 

Disease Free Eq ilibrium 

'vVe prove fn.at the disease free equilibrium is globally asymptotically stable 

whenever it is locally asymptotically stable, that is, when f3c < J~~~V;~P)~. As P and 

Q can be decoupled from the remainder of the equations in 4. 7 we do not directly 

include them in ou r calculations, so for the following discussion we need only consider 

the equations: 

dS(t) A_ ( j3c(I(t) +Q(t))) S( ) 
dt J.L + N(t) t 

di(t) f3c( I(t) +Q(t )) ) S(t)- ( + ) I(t) (4.8)
dt ( N(t) J.L w 

u'Q(t) 
(1 - p)wl(t)- (J.L + u)Q(t ),

dt 
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lf(t) = S(t) + I(t) + Q(t) 

The initial conditi ns corresponding to the above equations are the same as those 

provided in 4.7. 

Define 

g = {(S,I,Q) E ?R3 
: S > 0,1 > O,Q > 0} 

g = {(S,I,Q) E ?R3 
: S ~ 0,1 ~ O,Q ~ 0.} 

Further, define V : !R3 ---+ ?R, by 

f.l +w )V(S,I, Q) =I+ ( ) Q.( f.l+v+ 1-pw 

Then V is C1 (?R3 ) and the time dei·ivative 

. 	 ((Jc(IN+ Q)S - (ur +w)I)V(S,I,q) = 

+( (f.L+v)(f.L+w) )((1-p)wi-(f.L+ v)Q) . 
f.L +v +(1- p)w 

_ 1 ( {3cS _ (f.L+w)(f.L+v)) 
N f.l +v + ( 1 - p)w 

+Q ((JcS _ (f.l +w)(f.l + v) ) 
N f.l +v + ( 1 - p)w 

Thus V(S, I , Q) :S: 0 on Q. Therefore Vis a Liapunov function by definition H.5. V 

is equal to 0 if and only if I = 0 and Q = 0, since {Jc < ( (J.L+v)lJ.L+))) and §.... < 1.J.L+v+ 1-p w ' N ­

'vVe define 

£ 	 = {(S,J, Q)EQ:V=O} 

= {(S, I ,Q): I= O,Q = O,S ~ 0}. 
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By the LaSalle Extension Theorem (H.6), every bounded solution, and hence every 

solution by H.l (b), of system 4.8 converges to M where M is the largest invariant 

subset of£. 

Consider the system obtained if I(t) =0 and Q(t) =0 in 4.8. 

S' = A- pS, ( 4.9 ) 

We define the largest invariant subset of£ as: 

M = {(S,I,Q) E ~!:I= O,Q = O,S;:::: 0, and S satisfies 4.9}. 

For every solution of 4.9, 
A

S(t)--+ -. 
J.l 

Therefore, the point (~, 0, 0) is in the omega limit set of every solution of 4.8 . But,
J.l. 

this point is a locally asymptotically stable critical point and so it must be the only 

point in the omega limit set of any solution of 4.8. Hence, the disease free equilib­

rium is globally asymptotically stable with respect to the solutions initiating in the 

nonnegative cone provided ac < (J.t+v)(J.t+w) • 
' fJ J.t+v+(l-p)w 

In section .4, we looked at a Liapunov function for the SIQPA model. This 

function shows that the global stability of the P and A components of the disease 

free equilibrium follow directly. 

Endemic Equilibrium 

Suppose f3c(p + v + (1- p)w) > (J.L + v)(J.L +w). Then we shall show that 

system 4.8 is pers istent with respect to all solutions for which the initial conditions 

are positive. vVe i entify the space (S(t), I(t), Q(t)) with~~- Refer to figure 4.7 for 

the qualitative behaviour of the system on the boundaries of~~. 

Recall from our linear analysis found in Appendix G that there are fi ve eigen­

values associated with the disease free equilibrium of system 4.7. These are listed in 
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Figure 4. 7: Diagram of the Qualitative Behaviour of SIQ on 8~! 
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section G.2.1. To oegin with, we will only be considering the system 4.8. Thus, for 

now we are only concerned with the characteristic equation 

(J-l + -\)(-\2
- ({3c- (2J-L + v +w))-\- (J-l + v)({3c- (J-l +w))- {3c(1- p)w ) 

We always have at least one negative eigenvalue, -\ 1 = -J-L. To determine the stable 

manifold of the disease free equilibrium we must now examine the quadratic factor 

remaining in the characteristic equation. The constant coefficient of the characteristic 

equation is the product of the eigenvalues. We call this coefficient H. Recall that 

from section G.2.1. where we have solved for the eigenvalues, that the discriminant is 

always positive and the eigenvalues always real. Hence we need not consider complex 

conjugates in determining the sign of H. We consider the remaining two cases , firstly 

where H is positive and secondly where H is negative. In the first case, if H > 0, 

then either both A2 and -\3 are positive or both -\ 2 and ,\3 are negative, where 

~ ({3e- (2J-L + v + w)) 


+~/(Be- (2J-L + v +w)) 2 + 4(J-l + v)({3e- (J-l +w)) +4{3e(1- p)w) 


1 

2 ({3e -- (2J-L + v +w)) 


-~V(Be- (2J-l + v +w))2 + 4(J-L + v)(f3e- (J-L +w)) + 4{3e(1- p)w). 


If both eigenvalues are positive, then we need only look at ,\3 > 0 to see a contradiction 

to our assumption that {3e(J-L + v + ( 1 - p)w ) > (J-l + w) (J-l + v), since ,\2 > ,\3 and 

A3 > 0 implies that {3c(J-L + v + (1 - p)w) < (J-l + w)(J-L + v). If -\ 2 and ,\3 are both 

negative, then the disease free equilibrium must be globally stable, a contradiction. 

In the second possibility, H < 0, we must have one negative and one positive 

eigenvalue. Since ; 2 > -\3 then the case to be considered is with -\2 > 0 and ,\3 < 0. 

Solving the inequalities posed by these conditions we arrive at the result {3c(lt+v+(1­

p)w) > (It+ w) which agrees with our assumption that the disease free equilibrium 

is unstable. This implies that if {3c > ~~~~lY'-:)~, there are always two negative 

eigenvalues A1 and -\3 and one positive eigenvalue -\ 2 . Thus, the stable manifold of the 
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disease free equilib rium is of dimension two and the unstable manifold of dimension 

one. 

In order to determine whether or not the stable manifold of the disease free 

equilibrium intersects the interior of ~~ we consider t he eigenvector associated with 

.X3. We will determine that the components of the eigenvector have opposite signs. 

Consider the 2x2 matrix, labelled C, representing the lower matrix of the Jacobian 

for system 4.8, eva~uated at (~' 0, 0), 

C = ( (3c - (!1 + w) (3c ) (4.10)
(1- p)w -(11 + v) 

Then, 

~ (f3c - (!1 +w) + (!1 + v) +VB) (3c ) 
( (1- p)w -~ (f3c- (!1 +w) + (!1 +v)- VB) . 

where 4B2 = ((3c- (2!-l + v +w)) 2 +4(3c(1- p)w +4(!1 + v)(f3c- (!1 +w)). 

Let 

and 

B = ~j(f3c- (2!-l + v +w)) 2 +4(3c(1- p)w + 4(!1 + v)((3c- (!1 +w)). 

Then we may rewn te the matrix C - I .X 3 in a more manageable form as: 

A+ B (3c ) 
( (1- p)w -A+ B 

Let Q = (Vt , vz) be the eigenvector corresponding to this matrix. By definition , 

(C- I .X3)(12.) = 0. That is, 

A+B 
(3c ) ( V t ) 0( (1- p)w -A+ B =v2 



68 CHAPTER 4. PARTIAL TESTING OF INFECTEDS 

Therefore 

(A+ B)v1 + f3ev2 = 0 (4.11) 

(1- p)wv1 + (B- A)v2 - 0 ( 4.12) 

Further, we know that I C - I >. 3 1 = 0 so that 

(A+ B)(B- A) = f3e(1- p)w (4.13) 

Multiplying equation 4.11 by (1- p)w and equation 4.12 by A+ B, we have 

(1- p)w(A + B)v1 + f3e(1- p)wv2 = 0 

and 

(1 - p)w(A + B)v1 +(A+ B)(B- A)v2 · 

= (1- p)w(A + B)v1 + f3e(1- p)wv2 

= 0, 

and thus 

(4.14) 

Let B = !l2p +v -w- ,Bel. Since ,Be(p +v + (1- p)w) > (p +v)(p +w), then B < B. 

This follows immediately from 

4B2 = l2p + v +w - f3el 2 

< (,Be- ( ~~ fl + v +w)) 2 + 4(1t + v)(,Be- (p +w)) + 4f3e(1- p)w = 4B2
. 

If A+ iJ > 0 then A+ B > 0. 

1 1 
A + B 

A 

= 2(,Be - (p +w) + p + v) + 12p + v +w - ,Bel
2
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Note that if A+B > 0 then v1 and v2 have opposite signs, by 4.14. If 2tt+v+w- f3c > 0 

then f3c < 2tt + v -- w, so that 

1
2(f3c- (tt +w) + tL + v + 2tt + v +w- f3c) 

(4.15)tt+v 

> 0 

If 2tt + v +w - f3c < 0 then f3c > 2tt + v +w > fL +w > 0, so that 

1
2(f3c- (tt +w) + tL + v + f3c- (tt +w) - (tt + v)) 

f3c- (tt +w) (4. 16) 

> 0. 

Hen~e by equations 4.15 and 4.16 , A+ B > 0 which implies A+ B > 0 and so 

we may conclude by 4.14 that v1 and v2 have opposite signs. Thus the eigenvector in 
o3 

?R! corresponding to the eigenvalue .\3 , (0 , vll v 2 )t does not intersect ?R+ . 

Now we are in a position to prove system 4.8 is persistent. Let R be a point 

in the interior of ?f~. vVe examine the closed IQ face, the open SQ and SI faces, and 

the S axis , to determine if there are any points on the boundary of the nonnegative 

cone contained in n(R), the omega limit set of R. Consider a point (So, I0 , Qo ) in the 

dosed nonnegative IQ face, i.e. (So,lo , Qo) E {(S, I , Q) : S = 0, I 2:: 0, Q 2:: 0}. On 

this face S' = A > 0 and hence any point on this face will leave the nonnegative cone 

in negative time. This implies that no point on this face is in the D(R). 

We now consider the open nonnegative SI face , and choose some point , 

On this face we have Q' = (1- p)wi > 0. Hence no point on this face can be in D(R) 

since in negative t ime, any point on this face will leave the nonnegative cone. 

The results for the open SQ face are similar. \Ve choose a point, 

(So ,lo,Qo) E {(S,I,Q): S > O, I 2:: O, Q > 0}. 
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On this face , I' = f3~S > 0, and so in negative time any point on this face will exit 

the nonnegative cone. Therefore, there are no points on the open SQ face in the 

O(R). 

Now we need only examine the S-axis, to prove the remainder of the persistence 

argument. To this end, choose a point S > So on the S-axis. Then in negative time 

its orbit becomes unbounded, a contradiction by H.2. Therefore { S} nO(R ) = 0. 
Similarly, if we choose a point S < S0 , then in negative time its orbit leaves the 

nonnegative cone. Thus {S} nn(R) = 0. 
Let ws(P) denote the stable manifold of the disease free equilibrium P = 

(l, 0, 0). Further, let vVu(P) denote the unstable manifold of P. Since two of the eigen­
iJ. 

values of the characteristic equation associated with Pare negative and one is positive, 

then dim(W 8 (P)) = 2. The stable manifold is smooth and contains {(So, 0, 0) E ~t} . 

If we are sufficiently close to P, we are able to approximate the stable manifold with 

the half plane defined by: 

3 v1 }
{ (x1 , x2 , x 3 ) E ~+ : x2 - -x3 = 0, 

v2 

where v1 and v2 are the components of the eigenvector associated with the negative 

eigenvalue A3 defined in equation 4.14. We proved earlier that v1 and v2 were of 

opposite sign, and hence the stable manifold of the disease free equilibrium does not 

intersect the interi r of ~t. 

Suppose P E: n+(R). But P can't be the only point in the forward orbit of R 

since ws(P) n~t = 0. So by the Butler McGehee Lemma, H.4, there exists points 

ps in ws(P) \ {P} and pu in wu(P) \ {P} in O(R). However , we have already proved 

that no points on the S-axis can be in the O(R). Thus, we conclude that there are no 

omega limit points on the boundary of ~t. Therefore system 4.8 is persistent by t he 

definition of persis tence H.3. 

We now tie in the PandA portions of system 4.7 to the persistence argument . 

Note that, given solutions for Q(t) and I(t) , the equations P' and A' are linear. We 

solve these to get: 
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A(t) = ve-(Jt+d)t j e(Jt+d)t(Q(t) + P(t))dt. 

Thus, if we consider the endemic equilibrium to be a solution, (which is very likely), 

then 

pw ­p --I 
f.l+V 

vw ­
A -----I. 

(f.l + v )(f.l +d) 

These values correspond to the earlier calculation of the endemic equilibrium, 

and since the I population is persistent then it follows that at equilibrium, so are the P 

and A populations . Now, if we consider the solutions I(t) = E > 0 and Q(t) = 8 > 0, 

then the soltitions for P (t) and A(t) are: 

P(t) >0 

v 
A(t) = --d(E + 8) > 0 

f.l+ 

Hence, we can conclude that for any solutions I(t) > 0 and Q(t) > 0, the populations 

P and A are persi. tent. Thus the endemic equilibrium of system 4. 7 is persistent. 

Simon and Jacquez, [47] have established global stability of the endemic equi­

librium in various SI models for heterogeneous populations. They state that the 

arguments can be extended to SIR and other models. Thus, we conjecture that the 

endemic equilibrium for the SIQ/PA (and other models in this thesis), is globally 

asymptotically stable. 
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4.5.3 SIQPA. vs. SIQ/PA 

It is interest ing to note the similarity of results between the SIQPA and the 

SIQ/PA models. The equilibria are identical, as are the reproductive numbers. The 

size of the sexuall_r active population is larger for the SIQPA model then it is for 

the SIQ/PA model. This difference in size changes the speed that the populations 

approach the equil tbria. Early in the epidemic, there is little difference between the 

models, as the proportion of the population in the P and A populations is small. 

However, as the d..sease progresses, the difference becomes more evident. Since N 

is smaller for the mQjPA model, there is a faster movement out of the susceptible 

population and into the untested infected population. Hence, if the system is in an 

endemic situation, the endemic equilibrium will be approached faster for the SIQ/PA 

model. The oppo:;ite is true for the disease free equilibrium. If the reproductive 

number is less than 1, the SIQPA model approaches the disease free state faster than · 

the SIQ/PA model. We can interpret these results to indicate that having a P class is 

beneficial to the reduction in the spread of the AIDS disease. This is plausible, since if 

there are more ind ividuals around practicing safe sex, then the susceptibles are more 

likely to choose an uninfected partner than they are if there were only irresponsible 

individuals from which to choose their sexual partners. 

In the SIQP A model, and all other models in this thesis excepting the SIQ/PA 

model, there was no distinction made between sexually active individuals in any of 

the populations. [n the SIQ/PA model, the individual was required to engage in 

unsafe sexual practices, in order to be defined as sexually active. We see by our 

results, that the qualitative behaviour is identical between models . This makes sense 

because there has ultimately been no change in the number of sexual contacts in the 

two models. However, if one were to conduct a cost/benefit analysis of various ratios 

of populations, we would obtain different results for the two models. For instance, if 

we were interested in knowing the ratio of susceptibles to sexually active infecteds, 

so that we could predict future trends of the disease, then the SIQ/PA model would 

probably provide "1. more accurate estimate than the SIQPA model. This follows , 

since, in essence, 1he P and A classes pose no threat to the susceptible population 
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in either of the models. However, if we were to expand the models presented in this 

paper we might find ourselves requiring the totally sexually active population to be 

the same as in the SIQPA model. We leave the options available to us for future 

modelling efforts . 



Chapter 5 

DISCU~;SION 

5.1 Prelirr:Linaries 

In this thesis we introduced a series of models exammmg the dynamics of 

the spread of the AIDS disease. We are interested in examining how HIV antibody 

testing in conjuncti)n with persuasive techniques encouraging safe sexual behaviour 

of these tested infecteds, will influence the dynamics of the system. By first examining 

the extreme cases of the parameters p and w we could more precisely determine the 

effects on the outcome of the AIDS disease of these factors. By performing local, and 

where possible, global analyses on this series of models, we are able to establish the 

importance of HIV :tntibody testing and responsible sexual behaviour. 

We begin our discussion by displaying, in figures 5.8, and 5.9, the stability 

results obtained in each of the sections. Then we will compare the effects of introduc­

ing certain parameters and populations on the outcome of the AIDS epidemic. By 

examining the reproductive numbers of the various models, in the form of the criteria 

as provided in figures 5.8 and 5.9 , we can determine what effects the parameter values 

have on the progression of the AIDS disease. We will first deal with the results of the 

instantaneous testing models , SPA, SQA, and SQPA, and then secondly, with the re­

sults of the partial tEsting models , SIPA, SIQA, SIQPA, and SIQ/PA . Throughout the 

discussion we will c nsider the SIQ/PA model as representative of the SIQPA model, 
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since their dynami cs are very similar. In the final section, we consider shortcomings 

of the models, and suggest applicable future research ideas. 

5.2 SPA, SQA, and SQPA Results 

We first co 1pare the results of the SPA, SQA and the SQPA models. From 

figure 5.8 we see that there is no need to place restrictions on the sexual activity 

levels, or on other ) arameters for the SPA model. We are guaranteed an asymptotic 

approach to the disease free equilibrium, because of its global stability properties, 

provided there are no external factors, (as we had in section 3.2.2). Any combination 

of values will still guarantee a disease free state. This is plausible since we have no 

irresponsible infect4~ds present. 

In all the models presented _in this thesis, eli~n<l:tion of the disease is guaran­

teed provided the c_ iterion for the model is satisfied, since in all cases; we have shown 

global asymptotic stability of the disease free equilibrium. 

After examining the SPA model we moved on to the SQA model. At this 

point an endemic equilibrium was discovered. Thus, introducing the class Q, while 

ignoring the P class , had a significant effect on the dynamics of the system. In fact we 

found that we were now obliged to place restrictions on the parameters to encounter 

a disease free situat ion. For the SQA model we require (3c < f.l + v. Since J.l and v 

are biological factors upon which we have little control, then in this system the only 

way to induce a disease free situation is to influence individuals to have less sexual 

acts. This however , is beyond the scope of this thesis. The effect of having a long 

incubation period is clear in this model, since the shorter the incubation period, i.e. 

the smaller the value of ~, the more the flexibility available for the term (3c. The 

parameters in the SQA model require more severe restrictions than for the SQPA 

model. 

In the SQPA model, the severity of the necessary restrictions caused by the 

irresponsible infected class Q is offset by the effect of reintroducing the responsible 

infected class P. The inclusion of P with Q, and the option to choose a value of 
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Figue 5.8: Summary of SPA, SQA, and SQP A Models 
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Figure 5.9: Summary of SIPA, SIQA, and SIQ/PA Models 
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p between 0 and 1, provides more flexibilty of control. As the value chosen for p 

approaches 1, the restrictions required on parameter values to provide a disease free 

state, become less strict. This is evident in the graph in figure 5.10. The graph 

represents the change in the criterion, (see figure 5.8)· as we scan through the interval 

0 < p < 1. The data in this graph were calculated using the fixed values f-l = 0.02 and 

v = 0.125, corresponding to an average life span of 50 years and an average incubation 

period of 8 years. For equivalent parameter values, the SQA model has a constant 

criterion of 0.145. Clearly, the SQPA model offers more hope. It seems that in reality, 

the value for pis lzxger than 0.7. Hence, if f3c ~ .5 the disease will die out. In figure 

5.10 we can see the definite sensitivity to the higher p values. This implies, that if 

p = 0. 7 then perhaps minimal effort would be required to bring that value up to 0.8, 

which rather dramatically increases our flexibility for f3c. However, it is conceivable 

that in this upper scale no amount of educational persuasion can increase the value of 

p, since perhaps the tested population can no longer benefit from further education. 

Conversely if there were to be a drop in the proportion of responsible· individuals a 

significant drop in f3c would be required for the disease to die out. 

By these three models we can conclude that the value of p has significant effects 

on the outcome of the disease. Thus, some action, whether it be educational, legal 

or other action, should be imposed on the tested infected population to encourage 

responsible behaviour. The educational action might include educating the tested 

infecteds as to the effects of unsafe sex practices, and to encourage responsible sexual 

activity. Imposing legal repercussions on tested individuals who behave irresponsibly 

might provide some incentive for these individuals to practice safe sex. This approach 

has problems in it self. The enforcement of these laws could prove difficult, as in 

actuality there are many ways to become infected and pinpointing a sexual act is 

unlikely. Laws concerning sexual practices increase cost to society and are difficult 

to enforce, but perhaps we will need to expand present laws if educational efforts 

fail, as the disease spreads to a larger and larger population. We conclude that the 

percentage of individuals behaving responsibly has a significant effect on the dynamics 

of the AIDS disease. 

The followi1g section considers the balance of the models presented m this 



79 CHAPTER 5. DISCUSSION 

Figure 5.10: Graph of SQPA Model Results 
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paper. In these models we examine the effects that testing for HIV antibodies have 

on the progress of AIDS. 

5.3 SIPA, SIQA, SIQ / PA Results 

The three models being summarized in this section provided one more param­

eter, w, the proportion of individuals tested in a time period. On introducing w we 

are no longer able to consider v as representative of the incubation period. The length 

of the incubation period is now 

1 1 
X -+­

w v 
v+w 

(5.1) 
vw 

The average incubation period, labelled X, represents the average time from infection, 

i.e. entry into I(t), to the time of development of full -blown AIDS. In the last section, 

we looked at an average incubation period of 8 years. We will continue using this 

value throughout the remainder of this discussion. However, we must keep in mind 

that now v is dep(!ndent on w. We wish to find the optimal affordable value for w, 

in an attempt to reduce the spread of disease. The first of these three models , the 

SIPA model, looks at the effect of testing under the assumption that all individuals , 

once tested , behave responsibly. In this case, p = 1. We note that qualitatively, the 

behaviour of this model, for any specific value of w , is similar to that for the SQA 

model. However, ;ince we can vary the value for w through intervention, we have 

more control over the outcome of the AIDS epidemic. Refer to the graph in figure 

5.11. The SIQA 1odel provides us with the opposite extreme to the SIPA model, 

in that for this m del we consider p = 1. The results are as expected. Regardless of 

the value of w the SIPA model is more likely to attain the disease free state than the 

SIQA model since 11 +w > (JL+w)(JL+v).
' ~"" JL+v+ w 

Finally, we consider the SIQ/PA model , m which we combine the two pa­

rameters 0 < p < 1 and 0 < w < 1. The SIQPA and SIQ/PA models have similar 
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Figure 5.11: Graph of SIPA Model Results 
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results, so we only consider the latter in this discussion, as we have stronger results 

for the SIQ/PA in that we proved persistence of the epidemic within a certain range 

of the parameters, for the SIQ/PA and not for the SIQPA. As was mentioned in 

the SiQ/PA section, we eliminate the P and A classes from the contributing sexu­

ally active population and hence we decouple the P and A populations from the S, 

I, and Q populations. This simplification was done primarily for two reasons , the 

first being a simplification of the analysis, and secondly for a more realistic approach 

in approximating t he actual numbers of sexually active and contributing offenders. 

The criterion for the SIQ/PA model is t]ci~~:~~;:?w). A graph of the criterion for the 

SIQ/PA model is provided in figure 5.12. 

The graph indicate3 that our chances of achieving a disease free state increase as w and 

p increase. By more closely examining this graph, we observe that there is a greater 

sensitivity in flexibility as p approaches 1. For w values, there is more sensitivity to 

changes when w is closer to 0.2 or 0.3. This implies that perhaps we should focus on 

making more responsible the individuals who have been tested·, rather than test.ing 

more untested individuals. This intersting observation deserves further attention in 

future modelling eJforts. 

In considering the optimal values for p and w we must consider practicality 

issues. A benefit/cost analysis would provide us with a better idea of where the opti­

mal practical values of these parameters would be. At this point, we are not equipped 

with sufficient res urces to carry out an analysis of this type. But, for future uses, it 

is important to note that a study in this area would prove beneficial to the reduction 

in the spread of the AIDS epidemic. We require information about proportions of 

the infected populations who behave responsibly, and what effects education or other 

actions imposed on the tested infected populations might have on increasing the re­

sponsible infected population. On the other hand, we need information about the cost 

and practicality of testing large proportions of individuals. ·what is the likelihood of 

a home test being developed? Should there be target populations for testing, such 

as high risk groups or certain age groups? There are many factors entering into this 

analysis but these are well worth considering, since we have shown the importance of 

testing for HIV an tibodies and for encouraging individuals to behave responsi bly. 
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Figure 5.12: Graph of SIQ/PA Model Results 
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5.4 Sumrnary 

We have shown that a combination of testing for HIV antibodies and imposing 

persuasive techniques to encourage safe sexual behaviours of the tested infecteds 

plays a significant role in the reduction of the spread of .AIDS. The extent of these 

benefits are not c:lmpletely evident. However, _we are better equipped to further 

study their effects. For a more complete analysis of the effects of HIV antibody 

testing in combination with various influencing techniques to increase the number 

of responsible tested infected individuals, we should consider the impact of various 

alternatives to the execution of these aspects. For instance, we would be interested 

in studying the ou tcomes of a voluntary versus compulsory nature of testing for HIV 

antibodies. The degree of confidentiality of test results would also contribute to 

the outcome of the disease. Further, means to enforce laws on individuals who fail to 

behave sexually responsible, should be examined for effectiveness. Many problems are 

intrinsic in these options. For instance, a voluntary, confidential testing regime, would 

probably motivate more individuals to become tested. Adding educational methods 

to this combination might result in increasing the responsibility of the sexually active 

tested population. However, if the test results are confidential between doctor and 

patient , then attempts at educating individuals would be in vain. This would lead 

to a larger Q clasE:. If testing was compulsory and complete disclosure of results by 

the doctor was required, then obviously a larger P class would be achieved, but the 

rights of individuals would be violated, and the cost could be extreme. Limiting the 

compulsory testing to certain risk groups may help this situation. Only in continuing 

our study can we ,sain some insight into the effects of these alternatives. 

Our model8 are simplistic, and hence they require some refining to more com­

pletely simulate the disease in nature. For instance, in defining our Qand P classes , we 

established a clear cut division between responsible and irresponsible sexual behaviour 

for every sexual act. Hence, the I and Q populations behaved sexually identically. 

This may not necessarily be accurate. In future modelling efforts we must examine 

the very likely case of individuals from the Q class behaving irresponsibly only part 
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of the time. For instance, an individual in the Q class may, on average, engage m 

unsafe sexual practices in only one out of every ten sexual contacts. Compensating 

for this would in essence have a positive effect on the disease outcome. We might 

solve this problem by combining the Q and P classes while considering a density 

function incorporating a continuous drop in activity levels as the disease symptoms 

become more evident. Another alternative is to divide the infecteds into progressively 

less sexually active groups. The number of groups would depend on the number of 

different activity l<~vels required to satisfy our modelling efforts. 

In future modelling efforts we must consider the effects of variable infectivity. 

Including this element of uncertainty, could significantly alter the optimal proportion 

of infecteds to be cested, and hence the outcome of the epidemic. 

A natural extension of our models would also include incorporation of various 

risk groups. Within the susceptible population, there are individuals whose behaviour 

invites infection. For instance, IV drug users are at high risk of contracting the HIV 

virus. The inclus10n of risk groups in our models would provide a more complete 

understanding of t he actual dynamics of AIDS. If we are aware of which individuals 

are at highest risk we can focus our testing efforts on these groups, thus cutting down 

unnecessary costs. 

These and other revisions to our models can now be pursued more easily since 

we have an understanding of the basic dynamics of the AIDS epidemic with respect 

to HIV antibody testing and persuasive techniques encouraging responsible sexual 

behaviour of testei infecteds. With combined efforts and further study we hope that 

eradication of the acquired immunodeficiency syndrome will become a reality. 



Appendlix A 

The SP.A and SPAE Models 

The calculations required for the SPA and most of the SPA( models are straight 

forward and a listing of calculations are not required. We do provide the calculations 

reqU:ired for the sclutions of the SPA( model. The model is found in equations 3.6 

Applying the integrating factor technique we first find the solution for S (t). 

Thus, 

S(t) where 

Using the fo lution for S(t) we now solve for P(t). 

86 




---

87 APPENDIX A. 'THE SPA AND SPA( MODELS 

j te(IL+v)t S(t)dt 

Thus, 

P(t) = where 

Combining the solutions for S(t) and P(t) we solve for A(t). 

e(tL+d)t A(t) 

= 

+ vc2 (d-v)t +--e c3d-v 

Therefore, 

A(t) ­

where 

A _ vtA vtc1 vc2 
0 

(!-l + v )(1-t + t)(tt +d) (v-t)(d-t) d- v 



Appenclix B 

The SQ:A Model 

B .1 Equi ibria 

For simplicity, in this and all following appendices, the notation indicafing 

dependence on t is to be assumed where appropriate. The SQA system given in 

equations 3.7, has two equilibrium points. We show how these points are derived. 

Setting Q' = 0 in equation 3.7 it follows that at equilibrium either 

Q = 0 

or 

N(tt +v)s - (B.l)
f3c 

B.l.l Disease Free Equilibrium 

vVhen Q = 0, the equations 3.7 yield the equilibrium point 

(B.2)(~) ( n 
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This fixed point re:)resents a disease free situation and is called the disease free equi­

librium. 

B.1.2 The Endemic Equilibrium 

When Q f ), then S = N(~:v). Setting S' = 0 in 3.7 we solve for Q : 

S' = A - (Jl + ,B~Q ) S 

= A- (Jl + ,B~Q) CV(~: v)) 

A- Jl(Jl + v)N + (Jl + v)Q
,Be 

0, 

so that 

Setting A' = 0 in equation 3.7 we obtain: 

A' = vQ - (Jl + d)A 

0 

and so 
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The endem1c equilibrium as a funtion of N is: 

N(J.L+v) 
{3c 

(B.3) 


Using equation B.3 and N = S + Q +A we derive an explicit expression for 

N in terms of the parameters of the model: 

11 
N ( ~ v - ;c - (11 :~)J)c ) + 11 ~ v ( 1 + 11: d) 

N . vd + A (11 + v +d) 
(11 + d)J)c 11 +v 11 + d 

so that we obtain 

Aj3c(11 + v + d)
f.l - (B.4) 

(11 + v) (j3c(11 + d) - vd) · 

Substituting N in equation B.4, into equation B.3, we derive expressions for 

the endemic equil tbrium in terms of the parameters of the system: 

AjJc(11 + v +d) ) (11 + v ) s = ( (11 + v )(j3c(11 +d) - vd) J)c 

A(11 + v +d) 
j3c(11 + d) - vd' 

A 11 ( AjJc(11 + v + d) )Q 
11 + v J)c (11 +v )(jJc(p +d) - vd) 

_ A_) ( (jJc - (11 + v))( l1 +d))
( f.l + v J)c( p + d) - vd ' 
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and 

v ) ( A f-L ) ( Aj3c(p + v + d) )
( f-L + d f-L + v j3c (p + v)( j3c(p +d)- vd) 

Av) ( j3c-(p+v))
( f-L + v j3c(p + d) - vd · 


We record these in vector form: 


A(ll+d+v) 
{3c(Jl+d)-vd 

(B.5) 

Av ) ( {3c- ll+ v ) )
( ll+ v {3c ll+d)- v d 

Note that the en ernie equilibrium in equation B.5 exists if and only if j3c > f-L + v . 

This inequality wa.s derived by restricting the values of the components of the endemic 

equilibrium to the positive cone. 

B.2 Local Stability Properties 

It is useful , in the subsequent analysis, to note the relationships in the equi­

librium, (S,Q,A) : 

- (p +v) - Q= (p+d)( j3c- (p+ v))N.S :::::: N, and
j3c j3c(p + v +d) 

Furthermore, to aid in simplifying calculations we use the substitutions, 

m p+ v, 

n p+ d, 

J\J j3c - (p + v), (B.6) 

D j3c( p + v +d). 
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vVe now proceed to look at the local analysis of these two fixed points. 

The Jacobian is: 

1= 

- :11- + ~(N- S)) 

~(N- S) 

0 

as' as' as' as aQ a A 

~ ~ ~ 
as aQ a A 

aA' aA' aA' as aQ a A 

-P.j#(N- Q) {3~~s 

{3cQSP.j#(N- Q)- (Jl. + v) -Jij2 

v - (Jl. +d) 

B.2.1 Disea.se Free Equilibrium 

The Jacobian at the disease free equilibrium ( ~' 0, 0) is: 

-j3c 


j3c- (Jl. + v) 


v 


and thus, 

-(p +.\) -j3c 

0 )0 ' 
-(Jl. +d) 

IJ(~OO) - .\II= 0 j3c - (Jl. + v +.\)
JJ.'' 

0 v 

The eigenvalues for the disease free fixed point are: 

At - J1. 

.\2 {3c - (Jl. +v) 

/\3 - (It+ d) 

http:Disea.se
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Since 11 and d are positive, we need only be concerned with the sign of >. 2 for local 

stability of the point ( ;, 0, 0). We conclude that the disease free equilibrium is locally 

asymptotically stable if 

(3c < 11 + v. 

B.2.2 Ende1nic Equilibrium 

The Jacobia.n at the endemic fixed point (S, Q, A), using the substitutions B.6 , 

lS: 

{JcQ (fl- S) ~(fl- Q)- m _f3Rqsw ­

0 v -n 

We continue by simplifying the components: 

Q A 11 
N mN (3c 

~ (m(nf3c- mn + 11(m +d))) _ !!:_ 
m A(3c(m +d) (3c 

n((3c - m) 
(3c(m +d) 

nl\11 
n· 

(3cQ(N- S) 
(3c Q (1- ~)N2 N N 
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f3cS(N- Q) rn 
D(D- nA1).N2 

Therefore, 

IJ(S,Q,A) --\II = 

-~(D- nM) 

~(D- nM)- (m + -\) mnM----v­

0 v -(n + ,\) 

This gives the characteristic equation 

0 = 
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We use the Routh-Hurwitz criteria (H.2) to determine the local stability of our 

system. The crite ria for all the roots of a cubic polynomial to have their real parts 

negative is a0 > 0, a1 > 0, a2 > 0, a3 > 0 and in addition the determinant condition 

- > 0, where a; fori = 0, 1, 2, 3 are the coefficients of the >. 3-i terms of thea1a2 a3 a0 

characteristic equa tion. Note that the parameters f.L, v, d, m, n, M, D , (3, and c are all 

positive. Thus, 

oo 1 > 0, 

> 0, 


vmn!vf+n2 1112 +mn2 M+nJ.LD+J.LmnM+nlvi2 m 
D > 0, 

vmnMJL+JLmn2 11'l+n2 M 2 m 
·3 = D > 0, 

and 

nJ.L(n + J.L) 

n 2 m M(v + n) + n3 M 2 +2n2 Mf..L(m + M) + nJ.LmM(J.L + n + M ) 
+-- D 

n 2 jvf3 m 2 + n 2 j\tf4(n +m) + 2n3 .NI3 m +n2m2 M 2 (M + m +n) 
+ D2 


> 0. 


Therefore the endemic equilibrium exists and is locally asymptotically stable if f3 c > 

f.L + v. 



Appendlix C 

The SQPA Model 

C.l SQP1\ Equilibria 

· Calculations in this appendix refer to model 3.9. The equilibria for 3.9 are 

found by setting 1he differential equations to 0. Setting Q'(t) = 0 in 3.9 we have 

either 

Q 0, 

or 

S = N(J-l+v)_ (C.l)
(1- p){3c 

C.l.l Disease Free Equilibrium 

If Q = 0, then S = ~, P = 0, and A= 0. The disease free equilibrium is then,
11­

s 
Q 
p 

A 

A 
11­

0 

0 

0 
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C.1.2 The Endemic Equilibrium 


In this section we perform the necessary calculations to determine the endemic 

equilibrium. If Q 1~ 0, then by setting S' = 0 in 3.9, we can solve for Q. 

S' ( jJcQ)= A- Jl.+N s 

A_ 	(f.l. + jJcQ) ( N(Jl. +v))= N (1-p)jJc 

A- J1.N(J1.+v) _ Q(Jl.+v)= (1-p){Jc (1-p) 

= 0, 

so that 

Q = (1-p) (A-f.l.N(Jl.+v)) 
(Jl.+v) (1-p)jJc 

(1- p)A J1.N 
= (Jl. +v) - {Jc · 

Setting P' = 0 in equation (2.16) we obtain 

4 cQS
P' 	 = p-P-- (f.l. + v)P

N 

= 	 p{Jc (N(Jl. +v)) ((1- p)A _ J1.N) _ ( +v)P 
N (1 - p)jJc f.1. +v {Jc f.1. 

= p(f.l. +v) ((1- p)A) _ p(f.l. +v)Jl.N _ (ft +v)P 
(1-p) Jl.+v j3c(1-p) 

= 	 A f.l.p N(p+ v) ( )P 
p - {Jc(1-p) - Jl.+ v 
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A,Bc(l- p)- f-IN(f-1 + v)) _ ( v)P 
p ( ,Bc(l - p) f-l + 

0, 

and hence 

p ' ( p ) (A f-lN(f-l+v))
f-l+v ,Bc(l-p) 

A f-lN ) 
= p ( f-l +v - ,Bc(l - p) · 

A is derived by se tting A' = 0 in equation 3.9, which gives: 

v ( A f-lN )
f-l+d f-l+v- ,Bc(l-p) · 

Therefore, the endemic equilibrium, as a function of N, is: 

s 

Q 

p 

A 

N(J.L+v) 
(1-p)!)c 

(1-p)A _ J.LN 

J.L+V !)c 


(C.2) 
( A J.L N )p J.L+v - ,Bc(1 -p) 

_ v (-L-~)
J.L+d J.L+ v !)c(1-p) 
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Using equal ion C.2 and the fact that N = S + Q + P +A, we derive an explicit 

expression for N in terms of the parameters of the model: 

N( p + v) A pN ( A pN )R = ~:---"7" + ( 1 - p)-- - - + p -- - -::--::---"7"
f3c(1-p) p+v f3c p+v f3c(1-p) 

v ( A pN ) 
+ p + d p + v - f3c(1- p) 

- . ( f.L + v f.L Pf.L f.LV ) 
- !v (1- p)f3c- f3c- f3c(1- p) - f3c(1- p)(p +d) 

+-A- ( 1 + _v_)
p+v p+d 

= A ((p + v)(p +d)- p(1- p)(p +d)- pp(p +d)- pv) 
f3c(1- p)(p +d) 

A(p + v +d) 
+(p + v)(p +d) 

A(p + v + d) N ( vd ) 
(Jt + v)(p +d) + f3c(1- p)(p +d) 

so that 

A(p + v +d)
N- ( 1- vd ) ­

f3c(p + d)(1- p) (p + v )(p +d)' 

and therefore, 

N = ( A(p + v +d) ) ( (p + d)(1 - p)f3c ) 
(p + v)(p +d) (p + d)(1- p)f3c- vd 

A(p + v +d)(1- p)f3c 
= (C.3)

(p + v) ((p +d)(1- p)f3c- vd)) · 

We now substitute N, as it is in equation C.3 into our endemic equilibrium in equation 

C.2, and we obtain the following expressions for the endemic equilibrium in terms of 
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the parameters of the model: 

N(tt + v)s ­
,Bc(1-p) 

A(tt + v +d) 
= 

(tt +d)(1- p),Be- vd 

(1- p)A ttNQ = ----­
p +v ,Be 

(1 - p) A tt ( A ( tt + v + d) (1 - p) ,Be )
= 

f1 + v ,Be (tt + v)((tt + d)(1- p),Be- vd) 

A ((1- p)((tt +d)(1- p),Be- vd)- tt(tt +v + d)(1- p))
= 

. (tt + v)((tt + d)(1- p) ,Be - vd) 

A.(J _ p) ( tt,Be + d,Be- J-Lp,Bc- dp,Be- vd- tt2 
- J-LV - ttd)

-
(tt + v)((Ji + d)(1- p),Be- vd) 

A(l _ p) ( -(tt + d)(tt + v)- p,Be(tt +d)+ ,Be(tt +d))
= 

(tt + v)((tt + d)(1- p),Be- vd) 


A ( ((1- p),Be- (tt + v))(tt + d)(1- p))

= 

(tt + v)((tt + d)(1- p),Be- vd) 

p p Q­
- · 1- p 

Ap ((tt + d)((1- p),Be- (tt + v))) 
(tt + v) (tt +d)(1- p),Be- vd 

v pA = 
p(J-t +d) 

i\v ( (1-p),Be - (tt+v) )
= 

(tt + v) (tt + d)(1- p),Be- vd 
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Therefore, the endemic equilibrium is given by: 

(~t+d)(1- p),6c-vd 

( A(~t+d)(1-p)) ( (1-p),Bc-(~t+v) )Q (~t+v) (~t+d)(1-p),6c-vd 

(C.4) 

( AP(~t+d)) ( (1-p),Bc-(~t+v) ) 
~t+v (~t+d)(1-p ),6c-vd

p 

Av ) ( (1-p),Bc-(~t+v) )
( ~t+v (~t+d)(1- p),6c-vd 

The endemic equil [brium exists in the positive cone if and only if all components of 

the endemic equilibrium are positive. This is satisfied if l > 0, or equivalently if 

f3c > ~t+v. 
1-p 

C.2 Local stability analysis 

In the subsequent analysis we use the above information, the substitutions 

m J-L+V 

n J-L+d 

D f3c(J-L + v + d) (C.5) 

T f3c(1- p)- m, 

and the relations 

N(J-L + v)s 
(1-p)f3c 

Nm 
and 

(1- p) f3 c' 
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Q ((1-p)A 11)= N (11 + v)N (3c 

(1- p)A ( m(n(1- p)(3c- vd)) _ !!:_ 
= m A(1- p)D (3c 

n(1- p)(3c- vd 11 
-

D (3c 

(3cn(1 - p)- vd -11(11 + v +d) 
-

D 

nT 
- n· 

Therefore1 we can simplify: 

(1-p)D' 

Tnm 
= 

D(1- p)' 
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We are now able to perform a linear analysis on the system of equations in 3.9 . The 

Jacobian is: 
as' as' as' as' 
as aQ aP a A 

~ ~ ~ ~ 
as aQ aP a A 

J= 
aP' aP' aP' aP' as aQ aP 8A 

a A' aA' aA' aA' as aQ aP 8A 

-11- {3cQ{N-S)
N2 

{3cS(N-Q) 
N2 

~ 
N2 

~ 
N2 

{3c(l- o)Q(N­
N2 

S) f3c{ l-p)S(N -Q) 
N2 -m - f3c {!-p)QS 

N2 
{3c (l-p)QS 

N2 

{3cpqS(N-S) 
N2 

{3cpS{N-Q) 
N2 

_ {3cpQS
N2 

- ·m 

0 v v -n 

C.2.1 Disease Free Equilibrium 

At the dise3.se free equilibrium (.;,o,O,O) the Jacobian is: 

-11 - (3c 0 0 

0 (1- p)(3c- (11 + v) 0 0 
](!:!.. 000) = 

J.'' I I 0 p(3c -(11+v) 0 

0 v v -(11 +d) 

http:dise3.se


104 APPENDIX C. THE SQPA MODEL 

so that 

IJ(~,O,O,O) - .\II = 

-(J.L + ,\) - (3c 0 0 

0 (1- p)(Jc- (J.L + v + -\) 0 0 

0 p(Jc -(!L + v +,\) 0 

0 v v -(J.L + d + -\) 

(1- p)(Jc- (J.L + v +-\) 0 0 


= -(J.L + ,\ ) 
 p(Jc -(J.L + v + -\) 0 

v v -(J.L + d + -\) 

This is a triangular matrix, so the eigenvalues can be determined directly from the 

diagonal elements. Hence the characteristic equation is 

(J.L + -\) ((1- p)(Jc- (J.L +v)- -\) ((J.L + v) + -\) ((J.L +d)+-\)= 0 

which yields the following eigenvalues 

At -J.L 

-\2 (1 -p)(Jc - (J.L+v) 

A3 -(J.L + v) 

,\4 - (J.L + d) 

The eigenvalues are real and with the exception of -\3 , are all negative. Therefore, we 

must impose a restriction that will make ,\3 < 0, to guarantee local stability of the 

disease free equilil:rium. To this end, we require 

J.L+v(3 c< --. 
1-p 
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C.2.2 Endemic Equilibrium 

The Jacobian at the endemic equilibrium (S, Q, P, A) is provided below using 

substitutions C.5. 
mnT mnT

-fl- (1~~~D - (1:p) ( DDnT) (1-p)D (1.-p)D 

mnT mnTnJ: m (DDnT) _ m ----v- ----v-
J(S,Q,P,A) = 

...e:::I!.._ _ pmnT _ m _ pmnT_E!!!:_ (D-nT)
(1-p)D (1-p) D (1-p)D (1-p)D 

0 v v -n 

The characteristic ::!quation , using row and column operations to simplify the form of 

the determinant, is de~ived as follows: 

,_T2 A m ( D-nT) mnT mnT
-fl- (1-p)D - -(1-p) -D- (1 - p) D (1-p)D 

nT2 mnT mnTm ( DDnT) - m - A-iJ ----v- ----v­

p11T 2 
_..f!!!:._ ( D-nT) - pmnT - m- A pmnT 

{1- p)D (1-p) D (1-p)D - (1-p)D 

0 v v -n-A 

(C3 +- C3- C4) 

nT2 A mnT
-fl- (1-p)D - _ (l:p) ( DDnT ) 0 (l - p)D 

nT2 
m ( DDnT) - m - A 0 mnT 

D ----v­
pnT2 pmnT 

(l - p)D (;~) ( DDnT) -m-A - (l- p)D 

0 v - n - A 
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(R3 ~ -R3- Rl) 

mnTnT2 A m ( D-nT) 0-p. - (1-p)D - -(1-p) -D- (1-p)D 
nT2 mnTm ( DDnT) - m - A 0 -[)[')" 

mnT 
fL +A+ nJ/ m (DDnT) m+A -[) 

0 v v+n+,.\ -n- A 

(R3 ~ R3- R2) 

nT2 A m (D-nT) 	 mnT -p----	 0 . 	 (1-p)D -(1-p) -D- (1-p)D 
nT2 mnTm(DDnT) -m-A 0 -[)[')" 

p+A m+A m+A 0 

0 v v+n+A -n- A 

(C2 ~ C2- C3) 

nT2 \ 	 mnT
-ft - (1-p)D -A _ (1:p) ( DDnT) 0 (1-p)D 

nT2 mnTm ( DDnT) - m - A 0 -[)[')" 

p+A 0 m+A 0 

0 -n-A v + n +A -n- A 

(C2 ~ C2- C4) 

nT2 A m 	 mnT 
-p- (1-p)D - - (1-p) 0 (1 - p)D 

nT2 mnT-A 0 -[)D 
p+A 0 m+A 0 

0 0 v+n+/\ -n- A 

The characteristic equation and the Routh-Hurwitz criteria (H.2), are derived with 

the use of MAPLE. A program listing and results are provided for your perusal in 

figures C.l3 and C.l4. 
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Figure C.l3: Program for Routh-Hurwitz criteria: SQPA 

# 
#The determinant elements, ~here s=1-p. 
# 

al:=-u-n*T-2/(s*D)-r: 
a2:=-m/s: 
a3:=0: 
a4:=T*n*m/(s*D): 
b1:=n*T-2/D: 
b2:=-r: 
b3:=0: 
b4:=-T*n*m/D: 
c1 :=u+r: 
c2:=0: 
c3:=m+r: 
c4:=0: 
d1:=0: 
d2:=0: 
d3:=m+d+r: 
d4:=-n-r: 
# 

#Calculate the characteristic equation and simplify. 
#We can factor out (m+r). 
# 

ceqn:=simplify(-d3*(c1*(a2*b4-b2*a4))+c3*(-(n+r)*(a1*b2-b1*a2))): 
ceqn:=ceqn*s*D/(m+r): 
ceqn:=collect(ceqn,r); 
# 

#The coefficients of the characteristic equation. 
# 

k0:=-coeff(ceqn,r,3); 
k1:=-coeff(ceqn,r,2); 
k2:=-coeff(ceqn,r,1); 
k3:=-coeff(ceqn,r,O); 
# 

#The final Routh-Hur~itz condition, k1k2-k3k0. 
# 

rhc:=simplify(k1*k2-k3*k0); 
quit 
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Note that a factor <::>f m +,\ is contained in the characteristic equation, and so we only 

need to use the Routh-Hurwitz criteria for a cubic polynomial. The characters used 

in the program are not identical to those used in the analysis . These substitutions 

include those listed in C.5, the symbols ki, for i = 0, 1, 2, 3 corresponding to the 

coefficients of .\3 - i as well as the substitutions 

u J.L, 

r .\, and 

s (1-p). 

Since the Routh-Hurwitz criteria are satisfied, we can conclude that the en­

demic equilibrium is locally asymptotically stable provided f3c > c~. 
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Figure C.l4: Results for Routh-Hurwi tz criteria: SQPA 

#Calculate the ct aracteristic equation and simplify . 

#We can factor ou.t (m+r). 

# 


2 2 2 
ceqn .- - m u T n - n T m - d u m T n 

2 2 2 2 

+(-d m T n - u m T n - m T n - n u s D - n T - n T m) r 


2 2 3 
+ (- n s D - u s D - n T - m T n) r - s D r 

# 

#The coefficients of the characteristic equation. 
# 

kO 	 : = s D 

2 


kl . - n s D + u s D + n T .+ m T n 


2 2 2 2 
k2 . - d m T n + u m T n + m T n + n u s D + n T + n T m 

2 2 	 2 
k3 := m u T n + n T m + d u m T n 

# 

#The final Routh- Hurvitz condition . 
# 

2 2 2 2 22 2 
rhc :=n s D d m T ~ 2 n s D u m T + n s D m T + n s D u 

3 2 2 	 2 2 2 2 2 
+ n s D T + u s ) m T n + u s D n + 2 u s D n T 

2 2 3 2 3 2 3 2 3 4 
+ u s D n T m + n T d m + n T u m + 2 n T m + n T 

2 4 2 2 2 2 2 2 3 2 2 3 3 
+ n T m + m T n d + m T n u + m T n + m T n 

# 
# All terms are positive . 
# 



Appenclix D 

The SI1:>A Model 

D.l Equilibria 

. . . 
The calculations in this Appendix are for the model appearing in equations 4.1. 

We begin our linear analysis by solving for the equilibria. We use the substitutions: 

(D.l ) 

X mn+nw+vw 

Setting I' = 0, in equation 4.1, we obtain: 

f3cS )
( N- (J.L +w) I 0 

so that we have only 

or 

110 
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D.l.l The Disease Free Equilibrium 

If I= 0 then P= 0, 	 A= 0 and S = ~ so that the disease free equilibrium is: 
J1. 

s ~ 
J1. 

I 0 
p 0 

A 0 

D.1.2 The Endemic Equilibrium 

If I f. 0 then S = ~~ . 	 SettingS'= 0, in equation 4.1, we have: 


O = A _ (J.l + (3cl) Nl

N (3c 

= A__: J1Nl- Il 
(3c 

so that, 

A 11NI=--­
1 (3c 

Setting P' = 0, in equation 4.1, we obtain: 

wl = (J.l+v) P 

(D.2) 

so that 

wlp 
m 

-w (A---11R) 
m l (3c 

Setting A' = 0, in equation 4.1, we have: 

vP = (J.l + d)A 



----
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and hence 

vwl 

mn 

vw (A f.lfl) 
mn l j3c 

The endemic ~quili brium, as a function of fl, is then: 

s 

l 

p 

A 

Nl 
{3c 

A 11-N 
T- Tc 

(D.3) 
~ (~- 11-N)
m I {3c 

~ (~- 11-N)
mn I {3c 

Using equation D. , we obtain a value for N in terms of the parameters of the system: 

fll ( w vw) (A f.lfl)-+ 1+-+- --­
j3c m mn l j3c 


- ( l f.l ( w vw ) ) A ( w vw )
N --- 1+-+- +- 1+-+­
j3c j3c m mn l m mn 

N (~) + A (mn + nw + vw) . 
j3cmn l mn 

Let X be as in eq ation D.1 so that: 

N _ A ( j3cX ) (D.-±)
- l j3cmn - vdw 
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We now can solve, using equation D.4 the coordinates of the endemic equilib­

rium, in equation D.3 in terms of the parameters of the system. 

Nls 
j3c 

AX (D.5)
j3cmn- vdw' 

A J.LNl -- ­
j3c 

A ( j3cmn- vdw - J.Lmn- J.LnW- J.LVW) 
l j3cmn - vdw 

Amn ( j3c -l ) (D.6)
-~- j3cmn - vdw ' 

Anw ( j3c -l ) (D.7)
-~- j3cmn - vdw ' 

and 

vw J.LN)(AA --- ­
mn l j3c 


Avw ( j3c - l ) 
 (D.8) 
-~- j3cmn - vdw · 

Replacing the substitutions listed in equation D.l into equations D.5, D:6, D.7 , 

and D.8 we obtain the endemic equilibrium in terms of the parameters of the system: 
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A(JL+v)(JL+d) (,6c- (JL+w))I (JL+w )(,6c(JL+v)(JL+d)- vdw) 

p 

Avw(,Bc-(JL+w))A (JL+w) (,6c(JL+v) (JL+d)- vdw) 

D.2 Locall Stability Analysis 

The Jacobian for the SIPA model is: 

-p­ ,6cl{N-S) 
N2 

,BcS(N-l) 
N2 

(3clS 
N2 

(3clS 
N2 

,Bcl(N-S) 
N2 

,6cS(N-l) -lN2 
,6clS

-712 
,BciS

-712 

J -­-­

0 w -m 0 

0 0 v -n 

where we have again made the substitutions as in D.l . 
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D.2.1 Disea3e Free Equilibrium 

The Jacobian calculated at the disease free equilibrium ( f}_' 0, 0, 0), is: 
J.1. 

-tt -f3c 0 0 

0 f3c - l 0 0 
](!::.. 0 0 0) = 

~ ' ' ' 0 w -m 0 

0 0 v -n 

The characteristic equation is: 

-tt->. -f3c 0 0 

ll(;,o,u,o)- ,\1, = 
0 

0 

f3c - l-).. 

w 

0 

-m->. 

0 

0 

0 0 v -n-).. 

-(p + )..) f3c 0 

= -(n + >..) 0 f3c-(l+)..) 0 

0 w - (m + >..) 

= (n + ,\)(m + ,\)(tt + ,\)((f3c- l)- ,\) = 0. 

Thus , 

)..1 -n , 

)..2 -m, 

)..3 = -p , and 

)..4 f3c- l. 
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Since the eigenvalues are real and excepting ..\4 , all negative, the disease free equilib­

rium is locally asymptotically stable provided 

f3c > Jl + w, 

and is unstable if 

f3c < JL + w. 

D.2.2 The Endemic Equilibrium 

The Jacobian calculated at the·endemic·equilibrium, (where we omit thebar 

notation for convenience), is: 

/3cl(N -S) -..\ {3cS(N-I) {3c!S /3ciS
-jl­ N2 N2 712 712 

/3cl(N -S) {3cS(N-I) -1- ,\ f3c!S {3c!S 
N2 N2 -712 -712 

0 w -m-..\ 0 

0 0 v -n- ,.\ 

(Rl <-- Rl + R2) 
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-


-(p +A) -(l +A) 0 

!3ciW-S) 
N2 

{JcS(N-l) -l- AN2 _f3;Jl 

0 w -(m +A) 

0 0 v 

-(p +A) -(l +A) 

/3ciW-S) /3cSW-I) -l- A-v N2 N2 ­

0 w 

-(p +A) -(l +A) 

{Jcl(N-S) {JcS(N-l) -l- A-(n +A) N2 N2 

0 w 

0 

{JciS . 
-7J'2 

0 

-(n +A) 

0 

(3c!S

N2 


0 

0 

{Jc!S 
-7J'2 

-(m +A) 

PdS ( PdS)= vw(p + A)f:i2'" + (n +A) w(p + A)f:i2'" 

+ (n + A)(m + A)(p +A) (z +A- PcS~2- I)) 
+ (n + A)(m + A)(l +A) (Pd(z2- s)) . 

Let 

PeS 
N 
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l' 

(3ciS 
N2 
l 

(3c R3, 

lmn ((3c _ l) 
(3cX 

Further, let C represent the characteristic equation. 

C - (R 1 - R2)f.1mn + f.1lmn + f.1nwR2 

+ rwwR2 + (R3-'- R2)lmn 

+ (-(Rt- R2)(f.1(m + n) + mn) + f.ll(m + n) + mn(f.l + l))A 

+(w(m + n)R2+ (R3 - R2)(l(m + n) + mn))A 

+ (-(Rt- R2)(f.1 + m + n) + f.ll + mn + (f.l + l)(m + n))A2 

+ (wR2 + (R3- R2)(1 + m + n))A2 

+ (- (Rt - R2) + m + n + f.1 + l + R3 - R2) A 3 

+ A4 (D .9) 

We denote the co efficients of the characteristic equation in a manner similar to pre­

vious sections, that is where a; is the coefficient of A4 - i. 

By the Routh-Hurwitz criteria we require the coefficients of the characteristic 

equation, as well as the determinant condition, a3 (a1a 2 - a 3 ) - aia4 to be positive. 

To this end 

ao 1 
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a2 -l(J-L +m + n) + R2 (J-L +m + n) + J-Ll +mn + J-L(m + n) 

+l(m +n) +wR2 + R3(l +m +n) - Rz (l +m + n) 

mn + J-L(m +n) + R3(l + m +n) 

a3 	 -(R1 - R2 )(J-L(m + n) +mn) + J-Ll(m +n) + mn(J-L + l) 

+w(m +n)R2 + (R3 - R2 )(l(m +n) +mn) 

-R1 (J-Lm + J-Ln +mn) + R2 (J-Lm + J-Ln +mn) + J-Ll(m +n) 

+mn(J-L + l) +w(m +n)R2 + R3(lm + ln +mn) 

-R2 (J-Lm + J-Ln +mn)- R2w(m + n) 

j.Lmn + R3(lm + ln +mn) 

a4 	 -(R1 - Rz)J-Lmn + J-Llmn + J-LnWRz 


+J-LvWRz + (R3- Rz)lmn 


R2 (J-Lmn + J-Lnw + J-LVW) + (R3- Rz)lmn 


R2 J-LX + lmnR3 (,8~: 1) 

1 	 (,Be-l) J-LXl
.mnR3 	~ + ,Be R3. 

Since all the parameters are positive then, by the above, all the components 

of the a;'s are pot itive. Thus the first conditions of the Routh-Hurwitz criteria are 

satisfied. That is , a ; > 0, for i = 0, 1, 2, 3, 4. The final Routh- Hurwitz condition is 

calculated below, beginning with the simplification of a 1a2 - a3 • 

(R3 + J-L + m +n) (mn + J-L (m +n) + R3(l + m + n )) 

-pmn- R3l(m + n)- R3mn 
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Figure D.l5: Program Listing for SIPA Model 

det:=R3*(m*n+u* (m+n)+R3*(l+m+n)): 

det:=det+u*(u*(m+n)+R3*(l+m+n)): 

det:=det+m*(m*n+u*(m+n)+R3*m) : 

det:=det+n*(m*n+u*(m+n)+R3*(m+n)): 

a3 : =u*m*n+R3* (l ~ :m+l*n+m*n): 

a1:=R3+u+m+n: 

a4:=l*m*n*R3-1A 2*m*n*R3/B+u*l*(m*n+n*w+v*w)*R3/B: 

rhc:=collect(expand(det*a3-a1A2*a4),R3); 

quit 


R3(mn + J.l(m +n) +R3(l +m +n)) 

+f.l(J.l(m +n) +R3(l + rri +n)) 

+m(mn + J.l(m +n) + R3m) 

+n(mn + J.l(m +n) +R3(m +n)) 

vVe now deal with the determinant condition a3 (a 1a2 - a3 ) - aia4 as required. vVe 

employ MAPLE for a simplification. The program is listed in figure D.l5, and the 

MAPLE output follows. 

2 3 2 3 3 2 2 3 3 2 

rhc := m n u + u n m + m n u + u m n + u m n 

2 2 2 3 2 

+ 2 u m n + u n m 
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2 2 2 2 2 2 2 2 2 2 

+ (4 m n u + 3 u n m + 3 u m n + u m 1 + u n 1 

3 3 3 3 2 3 

+ u m 1 + 2 u m n + u n 1 + 2 u n m + m n 

3 2 2 2 2 

+ m n + 2 u m 1 n + u m 1 n + u m n 1 

** 1 ** ** 1 ** ** 1 ** ** 1 ** 

2 2 3 3 3 

u 1 m n u 1m n u 1 n w u 1 v w 

+ -------- - -- - ---------- - ---------- - ---------­

B B B" B 

2 ' 2** ~ * ** 2 ** ** ** 

2 2 2 2 2 

u m 1 n u m 1 n u m 1 n w 

+ 2 ----------- - 2 ----------- - 2 -----------­
B B B 

** 2 ** ** 3 ** ** 3 ** 

2 2 

u m 1 v w m n u 1 w m n u 1 v w 

- 2 ------------ - 2 ------------ - 2 ------------­

B B B 
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** 4 ** ** 4 ** ** 4 ** ** 4 ** 

3 2 3 3 2 

n 1 m n u 1 m n u 1 w n u 1 v w 

+ --------- - --- - -~---- - ---------- - ----------- ­

B B B B 

** 5 *I< ** 5 ** ** 5 ** 

2 2 2 2 2 2 

u n L m u n 1m u n 1 w 

+ 	2 ----------- - 2 ----------- - 2 ---------- ­

B B B 

** 5 '~ * ** 6 ** ** 6 ** 

2 3 2 3 

u n .. v w m 1 n m u 1 n 

- 2 ------ ··----- + ------- -- - --------- ­

II B B 

3 


2 2 2 2 2 


m u 1 r . w m u 1 v w m n 1 


** 6 * ~ ' ** 6 ** ** ** 

- ------------ - ------------ + 2 ---------­
B B 	 B 
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** 3 ** 
2 2 

m n u l 

- 2 ------- ----) R3 

B 

2 2 2 2 2 

+ (3 u m n + 3 u n m + 2 u n l + 2 u m l + m n l 

2 2 2 2 2 

+ m n l + u l m + u l n + 4 u l m n + 2 m n 

** 7 ** 
2 

3 3 3 u l m n 

+ m l + n m + n l + m n - 2 ---------­

B 

** 7 '~ * ** 7 ** ** 8 ** 
2 2 2 2 

u l ll v u l v v m l n 

- 2 ------ --·--­ - 2 ---------­ + 2 --------­
B B B 
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** 9 )' ( * ** 7 ** ** 8 ** 
2 2 2 2 

n 1 m u 1 m n m u 1 n 

+ 2 ------ -· -­ + 2 ---------­ - 2 ---------­
B B B 

** 8 ** ** 8 ** ** 9 ** 
2 

m u 1 n w m u 1 v w n u 1 m 

- 2 ------ ­·---­ - 2 ----------­ - 2 ---------­
B B B 

** 9 ~* ** 9 ** 
2 

n u ] w n u 1 v w 2 

- 2 ---------­ - 2 -----------) R3 

B B 

** 10 ** ** 10 ** ** 10 ** 
u 1 n w u 1 m n 2 u 1 v w 2 

+ (­ --------­ - --------­ + n 1 - --------­ + 1 m 

B B B 

** 10 ** 
2 

1 m n 2 2 2 2 3 

+ -------- + 1 n + m 1 + 2 1 m n + m n + m n ) R3 

B 
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The numbe~ing for the simplifications below correspond to the numbering used 

in the output. We begin by cancelling all negative coefficients of R3 . 

112[ 
- (lmn- ttmn- ttnw- f1VW)
(3c 

J.L 2 lvdw 

(3c 

J.Llm 
= 2--(lmn- J.Lmn- J.LnW- J.LVW)

(3c 
J.Llmvdw 

2 
(3c 

lmn 
2--(lmn- ttmn- J.LnW -ttvw)

(3c 
lmnvdw 

2 
(3c 

[n2 
- (lmn- J.Lmn- J.Lnw- J.LVW)
(3c 
ln2vdw 

(3c 

J.Lln 
2-(lmn -ttmn -ttnw- J.LVW)

(3c 
J.Lnlvdw 

2 
(3c 

[m2 
- (lmn- ttmn- J.Lnw- J.LVW)
(3c 

lm2vdw 

(3c 

vVe now simplify t e negative coefficients of R~. 
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plvdw
2-­

f3c 

lm
2-(lmn- pmn- pnw- pvw)

f3c 
Zmvdw 

2 
f3c 

ln 
2-(lmn- pmn- pnw- pvw)

f3c 
Znvdw 

2 
f3c 

Finally, we simplify the negative coefficients of R~. 

l 
-(lmn- pmn- pnw- pvw)* * 10 * * f3c 
lvdw 

- (k" 

Therefore, 3ince we have proved that all the negative coefficients of all the pow­

ers of R3 simplify, the determinant condition of the Routh Hurwitz criteria is satisfied. 

Recall that the co efficients of the characteristic equation were also all positive. Thus, 

by the Routh-Hurwitz condition, the endemic equilibrium is locally asymptotically 

stable provided f3c > f.l +w. 



Appendlix E 

The SI<~A Model 

E.l Equilibria 

The model beirig analyzed in this section is found in equation 4.3 . We begin 

our linear analysis by solving for the equilibria. vVe use the substitutions: 

m tt + v 

n tt + d 

l tt+w (E.l ) 

f m+w 

Setting I' = 0, in equation 4.3 , we obtain: 

0 

so that we have only 

or S = lmN 
(3c( m +w) 

127 
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E.l.l Diseaf;e Free Equilibrium 

If I= 0 then Q= 0, A= 0 and S = ~. Thus the disease free equilibrium is : 
f.J. 

s 
j 0 

Q 0 

A. 0 

E.1.2 Endernic Equilibrium 

If l f. 0 then S = 1"J"c~. Setting Q' = 0, in equation 4.3, we obtain: 

wl = (JL + v)Q. 

Setting S' = 0, in equation 4.3, we have: 

0 = A - ( JL +~~S) 
A_ JLlmN - !I 

f3cf 

so that, 

A JLmNl - - -­
1 f3cf 

Then 

wl 
m 

w (i\- --JLmN) 
m l f3cf 



-----
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Setting A'= 0, in equation 4.3 , we have: 


vQ = (f.l +d)A 


and hence 

vwl
A 

mn 

(Avw 1-lmf.l) 
mn l (3cf 

Therefore, the endemic equilibrium, as a function of f.l, is: 

s 

I 

Q 


A 


lmN 
{Jcf 

~ _ emfi 

I {Jcf 


(E.2) 
~ (~ _ ttmR) 
m I {Jcf 

~ (~ _ ttmN) 
mn I {Jcf 

Using equation E.2, we obtain a value for f.l in terms of the parameters of the system: 

f.l S+l+Q+A 

lmf.l + (1+ ~ + vw) (A _ 1-lmf.l) 
(3cf m mn l (3cf 

f.l (~~ - ;:~ ( 1 + : + ::)) 

+A (1+ ~ + vw)
l m mn 

f.l (lmn- pmn -{tnW- f.l VW) +A (mn + nw + vw ). 
;3cf n l mn 
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so that 

A(nf + vw) ( f3cf ) 
l mnf3cf - lm2n + flm( nf + vw) 

Af3cf(nf +vw) 
(E.3) 

lm(f3cfn- lmn + flnf + fLVW) 

We now can solve, using equation E.3 the coordinates of the endemic equilib­

rium, in equation E.2, in terms of the parameters of the system. 

lmN 

f3cf 


lm ( Af3cf(nf +vw) ) 

f3cf lm(f3cfn- lmn + flnf + fLVW) 


A(nf + vw) 
(E.4)

f3cfn -lmn + fL(nf + vw) ' . 

A 	 fLmN
l --- ­

f3cf 

= 	 A flm ( Af3cf(nf + vw) ) 
l f3cf lm(f3cfn- lmn + flnf + fLVW) 

An ( f3cf - lm ) (E.5)
l f3cfn -lmn + !-l(nf + vw) ' 

Q (Aw fLmN) 
m 	 l- f3cf · 

Anw ( f3cf - lm ) (E.6)
lm f3cfn -lmn + !-l(nf + vw) ' 

and 

A 	 vw (A fLm.N) 
mn l ~ f3cf 

Avw ( f3cf- lm ) 
(E.7 )

lm f3cfn- lmn + ft(nf + vw) ' 
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Replacing the substitutions in equation E.1 into equations E.4 , E.5, E.6 , and 

E.7 and using the fact that f3cfn- lmn + f.L(nf +vw) = j3cfn- vdw , we obtain the 

endemic equilibrium: 

A((JL+v+w )(JL+d)+vw)s {1c(JL+v+w )(JL+d) -vdw 

I 

Aw(JL+d) 
(JL+v )(JL+w) 

AvwA 
(JL+v )(JL+w) 

The endemic equilibrium exists if j3c > 

( {1c(JL+v+w)-(JL+w)(JL+v)) 
/1c(JL+v+w )(JL+d)-vdw 

(11c(JL+v+w)-(JL+w)(JL+v)) 
{1c(JL+v+w )(JL+d) -vdw 

lm+ • m w 

E.2 Local Stability Analysis 

The Jacobian for the SIQA model is: 

_ _ {1c(l+Q)(N-S) _{1cS(N-(l+Q)) _/1c(N-(l+Q))S {1c(l+Q)S 

J= 


11 r N2 N2 N2 N2 

{1c( f+Q)(N-S) {1cS(N-(l+Q)) / {1c(N-(I+Q))S {1c(l+Q)S 
- N2 N2 - N2 N2 

0 w -m 0 

0 0 v -n 

where we have again made the substitutions as in E.l. 
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E.2.1 Diseaf'e Free Equilibrium 

The Jacobian calculated at the disease free equilibrium ( ; , 0, 0, 0) , is: 

- !1 - (3c - {3c 0 

0 (3c- l (3c 0 
J(f:!. 000) = 

~A' '' 0 w -m 0 

0 0 v -n 

The characteristic equation is: 

-!1-). - {3c - (3c 0 

0 (3c - l-). (3c 0 
IJ(%,O,J,O) - ).JI = 

0 w -m-). 0 

0 0 v -n-). 

- (!1 + >.) {3c - {3c 

:::: -(n + >.) 0 (3c-(l+>.) (3c 

0 w - (m + >. ) 

== (n + >.)(!1 + >.)((m + >.)(l +).- (3c) - (3cw) = 0 

Two of the eigenvalues are easily determined. They are >. 1 = -n and ). 2 = - 11. The 

other two eigenvalues are determined by solving the quadratic equation (derived from 

the quadratic factor of the characteristic equation) >. 2 +(m+(l-(3c))>.+m(l- (3c) - (3cw. 

Thus 

AJ,-t 
(3c - l- m 

2 
1. 1± 2Y (m + (l- (3c))2 + -±m({3c- l ) +-±/Jew 

(3c - l - m 

2 

1 1± 2,Y ((3c - l +m)2 + 4{3cw . 
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Cleary, the discriminant is always positive, and hence we will always have real roots . 

For stability of the disease free equilibrium we require A3 and A4 to be negative. Since 

A3 > A4 then this [s satisfied if A3 < 0. To this end, A3 < 0 provided 

which implies 

(3c < 
lm 

m+w 

Thus 

(3c-l-m) 1 1A3- . +2y(f3c-l+m)2+4(3cw.
2 

(3c-l-m) 1 1A4 - - 2y ((3c- l + m )2 + 4(3cw.
2 

By the above discussion and since At and A2 are negative, the disease free equilibrium 

is locally asympt tically stable provided 

and is unstable if 

(3c> (ft+w)(ft+v). 
~L+v+w 

E.2.2 Endemic Equilibrium 

The Jacob [an calculated at the endemic equilibrium provides the equations 

leading to the characteristic equation . 'vVe assume in the following calculations that 

mention of the pcpulations refers to equilibrium populations. 



134 APPENDIX E. THE SIQA MODEL 

,6cS(N-f+Q)) ,6c(l+Q)(N-S) ,6c( l+Q)S 
- N N2 JV2 

,6c( l+Q)(N-S) ,6cS(NNf+Q)) _ l _A ,6c(N-(l+Q))S _.Bc( I+Q)S
N2 N2 JV2 

0 w -m- A 0 

0 0 v -n- A 

...:. (J.L +A) ·-(l+A) 0 0 

,6c( l+Q)(N-S} ,6cS(N- (l+Q}) ,6c(N -(l+Q))S ,6c(I+Q}S- (l +A) ­N2 N2 N2 N2 

0 w -(m +A) 0 

0 0 v -(n +A) 

We use the following substitutions to simplify calculations: 

{3c(I + Q)(N- S) 
N2 

~~ (N - (I +Q)) 

{3c(I +Q)S 
N2 

U {3cf -lm 

(E.9) 
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Using the substitut ions in E.9 we solve for the characteristic equation, which we have 

labelled C: 

-(J.L + ,\) -(I+,\) 0 0 

W1 vV2- (1 + -\) W2 -W3c 	 - ­
0 w -(m + ,\) 0 

0 0 v -(n+-\) 

W2- (l + -\) W2 -W3 

- -(J.L + ,\) w -(m + ,\) 0 

0 v -(n + ,\) 

wl W2 -W3 


+(l +,\) 
 0 -(m + ,\) 0 

0 v -(n + ,\) 

= 	 -(J.L + ,\) (-vwvV3 + (n + -\)((m + -\)(vV2 - (l + -\)) + wvV2)) 

+vV1 (l + -\)(m + -\)(n + ,\) 

- vV1 (l + -\)(mn + (m + n),\ + ,\2
) 

+J.Lv.vW3- J.L(n + ,\)(m + -\)W2 

+J.L(n + ,\)(m + ,\)(l + ,\)- J.L(n + -\)wvV2 

-,\(n + ,\)(m + ,\)vV2 + ,\(n + -\)(m + -\)(l + ,\) 

--\(n + -\)wW2 + vwW3 

- W1lmn + J.LVwvV3 - J.LmnvV2 + J.Llmn- J.LnwvV2 

+-\ (W1(l(m + n) + mn)- J.L(n + m)W2 + p(l(m + n) + mn )) 

+-\ (lmn- (pw + nf)vV2 + vwvV3 ) 

+-\2 ((vV1 - lV2 )(l + m + n) + J.L(/ + m + n) + l(m + n ) + mn) 

+,\3 
( vV1+ J.L + l + m + n - l'V2) 


+-\4 




---
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Therefore the coefficients ai for i = 0, 1, 2, 3, 4 corresponding to the ,\(4- i )th term 

of the characterist [c equation are: 

a0 = 	 1 

a2 W 1 (l + m + n)- (l + m + n)vV2 + J.L(/ + m + n) + l(m + n ) + m n 

a3 W 1 (l (m + n ) + mn)- J.l(n + m)W2 + J.L(/(m + n) + mn) 

- (J.L"J + nm + wn)W2 + lmn + vwW3 

At this point we are prepared to check the Routh-Hurwitz criteria for t he SIQA 

model. We must replace the substitutions given in E .9 in terms of the parameters of 

the system. 

I A J.lm 
N IN {3cf 

_ J.lm +A (lm( f3cfn -lmn + J.Lnf + J.l VW)) 
f3cf l Af3cf(nf+vw) 

mn( f3cf- lm) 

f3cf(nf + vw) 

{3c(I + 	Q)( N - S) 
N 2 

~ ( f3 cf;:: lm) 

nU2 

f3c f (n f + vw) 
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~; (N - (I +Q)) 

lm lmnU 

f f3cf(nf + vw) 

lm (f3c(nf +vw) - nf3cf + lmn) 
f f3c(nf + vw) 

lm ( (3cvw + lmn) 
f f3c(nf + vw) 

f3c(I + Q)S 

li 

N 

lmn(f3cf - lm) 
f3cf( nf + vw) 

lmnU 

f3cf( nf + vw) 

The Routh -Hurwitz criteria for a four dimensional system requires that ai > 0 

fori = 0, 1, 2, 3, 4 as well as the determinant condition a3 (a1a 2 - a3)- aia4 . We 

start by examinin~ the coefficients of the characteristic equation. 

> 0 

a 1 l1V1 + J.1- + l +m + n - W2 

liV l (f3cf(nf + vw) - mf3cvw- lm
2
n)

1 + J.1- +m +n + f3c f (n f + vw) 

l/V l (f3cfmn + f3cfwn + f3cvw
2 

- lm
2
n)

1 + J.1- + m +n + f3cf(nf + vw) 

liV l (mn(f3cf -lm) + f3cw(nf + vw))
1 + J.1- +m + n + (3cf (nf + vw) 

TV lmnU lw 
1 1 + J.1- +m +n + f3c f (n f + vw) + f 


> 0. 
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a 2 (H'1 - vV2 )(l + m + n) + 11(/ +m + n) + l(m + n) + mn 

= W 1 (l+m+n)+mn+tL(m+n) 

_ 11/m ( f3cvw + lmn))+ (111 
f f3c(nf + vw) 

+lm _ vlm ( f3cvw + lmn) 

f f3c(nf + vw) 


-· Pm ( f3cvw + lmn) 

f f3c(nf+vw) 


+ (zn _ lmn ( f3cvw + lmn )) 

f f3c(nf + vw) 


= vV1 (l+m+n)+mn+tL(m+n) 
2

+ tLl (f3cPn + f3cfvw- f3cmvw- lm n) 
f3cf(nf + vw) 

+ lm (f3cj2n + f3cfvw- f3cv
2
w- lmnv- f3clvw- l

2
mn) 

f3 cf (n f + vw) 

-ln (f3cj2n + f3cfvw- f3cmvw- lm
2
n) 

f3cf( nf + vw) 

vV1 (l + m + n) + mn + 11(m + n) 
lmnU lnw 11/w 

- f3cf(nf + vw) (l + m + n) + f + f 

> 

a3 = !I(l(m + n) + mn) -tL(n + m)W2 + 11(/(m + n) + mn) 

- ·(tLw + nm +wn)W2 + lmn + vwW3 
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+vwW3 + lmn + f-Lml + f-Lln 

vV1 (l(m + n) +mn) + f-Lmn + vwvV3 


l- l ({3cvw + lmn))
+ ( f-L1n f-L1n {3 ( f )c n +vw 

{3cvw + lmn ) ) 
+ ( lmn- lmn ( {3c(nf + vw) 

f-Llmn ( {3cvw + lmn))l+ f-Ln--­( f {3c(nf + vw) 

f-Llm ({3cnf + {3cvw- {3cvw- lmn) 

{3c(nf +vw) 


+lmn ({3cnf + {3cvw- {3cvw- lmn) 

{3c(nf + vw) 


f3cPn + {3cfvw- {3cmvw- lm2n)

+f..L ln ( . {3cf(nf + vw) 


+W1(l(m +n) +mn) + f-Lmn + vwW3 


f-LlmnU lmn 2U 
- w1 (l( m + n) +mn) + f-L1nn + {3 ( f ) + {3 ( f )c n + vw c n + vw 

> 0. 


l W f-LVwlmnUm n 1 + 
{3 c f (nJ + vw) 

( l+ f-L mn ­ f-Llmnf({3cvw + lmn));_________.;:........:.;____ _____:_ 
{3 cJ(nJ + vw) 

l W 
f-LlmnU 

mn 1 + {3cf 

> 0. 
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vVe are now in a position to examine the determinant condition. At this juncture, 

we employ the use of MAPLE, to perform this analysis. Included in figure E.l6 

and following pag·~s, are the MAPLE program and the output. We have used the 

simplifications an substitutions 

lmnU 
Ul = 

(3cf(nf + vw) 

w wl 
u 1-l 

w = w 

det a 1a 2 - a3 

3 2 3 2 3 2 2 3 2 3 

rh .- u m n + m n + u m n + u m n + u m n 

2 3 2 2 2 

+ u m n + 2 u m n 

3 2 2 3 2 2 3 2 2 3 

+ w (m n + m n + m l u + m l u + n l u + n l u 

2 2 2 2 3 3 

+ 3 m Cl u + 3 m n u +2m n u + 2 m n u 

2 2 2 2 2 

+ 4 m Cl u + 2 m l u n + m l u n + m l u n 
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Figure E.l6: Program Results for SIQA Model 

Calculate the Routh Hurwitz determinant 


a1 :=W+u+m+n+U1+l*w/f: 

a2:=W*(l+m+n)+m*n+u*(m+n)+U1*(l+m+n)+l*w/f*(u+n): 

a3:=W*(l*(m+n)+m*n)+u*m*n+u*f*U1+n*f*U1+u*n*U1: 

a3:=a3+u*n*l*w/f+v*w*U1: 

a4:=l*m*n*W+u*(n*f+v*W)*U1: 

det:=collect(expand(a1*a2-a3),W): 

det:=det+u*f*U1+n*f*U1+v*w*U1: 

det:=det-u*m*U1-u*l*U1-n*m*U1-n*l*U1-m*l*U1: 

det:=det+u-2*U1+u*n*U1+u*l*U1+u*v*U1: 


Collect the Routh Hurwitz determinant and simplify. 


rhc:=collect(expand(a3*det-a1-2*a4),W): 

WO:=collect(coeff(rhc,W,O),U1): 

W1:=collect(coeff(rhc,W,1),U1): 

W2:=collect(coeff(rhc,W,2),U1) : 

W3:=collect(coeff(rhc,W,3),U1): 

UWOO:=coeff(WO, 1,0): 

UW01:=coeff(WO, 1,1): 

UW02:=coeff(WO, 1,2): 

UW10:=coeff(W1, U1,0): 

UW11:=coeff(W1, 1,1): 

UW12:=coeff(W1, U1,2): 

UW20:=coeff(W2, 1,0): 

UW21:=coeff(W2, U1,1): 

UW22:=coeff(W2, U1,2): 

UW30:=coeff(W3, U1,0): 

UW31: =coeff (W3, U1,1): 

UW32:=coeff(W3, ~1,2): 

rh:=UWOO+U1*UW01+U1-2*UW02+W*(UW10+U1*UW11+U1-2*UW12): 

rh :=rh+W-2*(UW2C+U1*UW21+U1-2*UW22): 

rh:=rh+W-3*(UW3C+U1*UW31+U1-2*UW32); 

quit 
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2 3 2 2 2 

m 1 u n v ml v u n l uv 

+ 	3 ---- -------- + ----------- + 2 ---------- ­

f f-2 f 

3 2 3 2 2 2 

n L v u n l v ml vn 

+ 	 2 ----------- + --------- + ---------- ­

f f 

2 2 2 2 2 2 

m l vu ml vu mnl v u 

+ 2 ----------- + ----------- + 2 ------------ ­

f 	 f 

3 2 2 2 

mnlv mnlv mnlvu 

+ ---------- + 2 ----------- + 4 ----------- ­

f f f 

2 2 2 2 2 3 2 

m n l v m n l v u n l v 

+ -------- ­ -- ­ + 4 ------ ­ ---- ­ + 

2 f 2 

f f 

2 2 2 3 

n l v u m n u l v u n l v 

+ 	 2 ----------- + 6 ------------ + --------- ­

. f f f 
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+ 2 

2 2 

u n 1 w 

----------­

f 

2 2 2 

u n 1 w 

+ -----------­ + 2 

2 2 2 

u n 1 w 

-----------­

+ (2 u 

2 

~ + 2 n f 1 

2 

+ n 1 

2 

+ n 1 + 2 u m n 

+ 2 m 1 n + 2 n f 

2 

m + m n 

2 

+ m 1 + 2 v w m 

+ 2 v w n 

2 

+ m n 

2 

+ 2 n f + 2 u f m + 2 u f 1 

** 1 ** 

+ 2 v w 1 + 2 u n 1 

2 

+ m 1 

** 1 ** 

- 2 u v w) 

2 

U1 

+ 

3 

(m 1 + 

3 

n 1 

3 

+ m 

3 

n + m n 

2 

+ 2 m 

2 

n 

3 

+ n f 

+ u ll 

3 2 

+ 2 u 

2 

n 

2 

+ m 1 n 

2 

+ m 1 u + m 

2 

1 u 

2 

+ m 1 n + 

2 

n 1 u 

2 

+ 2 n 1 u + 

2 

6 m n u 

+ 4 Il 

2 

n u + 4 m 1 u n + 

2 

m 1 w u 

---------­

f 

+ 

2 

m 

2 

1 

f 

w 
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+ 

3 

m 1 v 

-------­

f 

+ 4 

2 

n 1 v u 

---------­

f 

3 

n 1 v 

+ -------­

f 

+ 2 

2 

m 1 v n 

---------­

f 

+ 4 

m n 1 v u 

----------­

f 

2 

m n 1 v 

+ ---------­

f 

+ 2 

2 

m n 1 v 

---------­

f 

+ 2 

2 2 

n 1 v 

--------­

f 

+ 4 

2 

u n 1 v 

---------­

f 

+ u f 

2 

m + u f 

2 

n + 2 

2 

u f m + 

2 

u f 1 

2 

+ u 1 v 

+ u 

2 

] v + n f 

2 

m + 2 

2 

n 1 v + 2 

2 

n f m + n 

2 

1 v 

+ 3 

2 

u. n m + 2 

2 

u n 1 

2 

+ v v m 

2 

+ v w n 

-

** 

2 

2 ** 
2 

w u 

2 

+ m 1 u 

** 2 

+ 2 u f 

** 

m n + n f u 1 

+ n 1 w m + u 1 w n + u 1 w m + 

2 

u n 1 w 

---------­

f 
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** 3 ** ** 3 	 ** 
2 2 

v w 1 u v w 1 n 

+ 	v w u 1 - ---------- + 2 --------- ­

f f 

2 2 2 

v w 1 v w 1 m 

+ 	 2 v w m n + --------- + ---------- + m 1 u v 

f f 

+ n 1 u v + m n u 	v) U1) 

2 3 3 3 3 2 2 2 2 

+W (m 1 + n 1 + m n + m n + 2 m n + m 1 n + m 1 u 

2 2 2 2 2 

+ 2 m 1 u + m 1 	 n + n 1 u + 2 n 1 u + 3 m n u 

2 2 2 

2 m1 wu m 1 w 

+ 3 m n u + 4 m 1 u n + ---------- + -------- ­

f f 

3 2 3 2 

m 1 w n 1 w u n 1 w m 1 w n 

+ -------- + 2 ---------- + -------- + 2 --------- ­

f 	 f f f 
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2 2 

m n 1 v u m n 1 v m n 1 v 

+ 2 --­- ------­ + ---------­ + 2 ---------­

f f f 

2 2 2 

n 1 v u n 1 v 

+ 2 --­ ··----­ + ---------­

f f 

2 2 2 2 2 

+ (2 m 1 + u n + 2 n 1 + 2 m 1 + 2 m n 

** 4 ** ** 4 ** 
2 2 

+ 2 m n - u v v + n f + u f 1 + u f m 

+ 4 ~ 1 n + n f 1 + n f m + u n 1 + u m n 

2 

+ 2 n 1 + v w 1 + v w m + v v n) U1) 

2 2 2 2 2 3 

u m n 1 w u m n 1 v u m n 1 w 

+ 4 ------------­ + 3 -------------­ + 2 -----------­
f r2 f 

2 2 2 2 2 2 2 

u m n 1 w u m n 1 ljl u m n 1 w 

+ 3 ------------­ + 3 ------------­ + 3 -------------­
f f 2 

f 
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3 3 2 2 3 


u m n 1 ~ u n 1 ~ u n 1 ~ 


+ 2 ------------ + ----------- + ---------- ­

f f 	 f 

2 2 2 2 2 3 3 3 2 2 

u n 1 ~ u n 1 ~ u n 1 ~ 

+ 2 ------------- + ------------ + ----------- ­

2 3 3 3 2 2 

u n 1 ~ u n 1 ~ 

+ ----------- - + ----------- ­

2 	 2 2 2 2 2 3 

+ (m 1 + 2 m 1 n + n 1 + n 1 + m 1 + m n + m n ) W 

3 ~~ 22 3 2 2 

+ (n f + u n + 2 u n + u n + 3 m n u + 2 m n u 

2 

3 n 1 ~ u m n 1 ~ u 

+ 	u f+m1un+2 + 2 


f f 


2 

u n 2 2 2 

+ 3 ------- --- + n f u v + u f m + u f n + u f m 

f 
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2 2 2 2 2 2 

+ u f n + u f l + u l v + u f v + u l v + n f m 

2 2 2 2 2 

+ 2 n l w + 2 n f m + n l w + u n m + u n l 

~ : * 6 ** ** 5 ** ** 5 ** 
2 2 2 2 2 

+ u n v + v w m + v w n + v v u - v w u + u f m n 

2 

u n l w 

+ n f u l + n l w m + u l w n + u l v m + --------- ­

f 

** 6 ** ** 7 ** ** 7 ** 
2 2 


v w l u v w l n 


- v v u m ~ v w u l - ---------- + 2 --------- ­

f f 

2 2 2 

v w l v w l m 2 

+ 2 v w m ~ + --------- + ----------) U1 

f f 

32 23 2 2 22 3 

+ (u n + u n + 2 m n u + 4 m n u + m n u 

3 2 2 2 2 

+ 2 m n u + 3 m n u + m l u n + u f m n 
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2 3 2 2 2 

m 1 u n w n 1 w u m n 1 w u 

+ ------------ + ----------- + ------------ ­

f r2 r2 

2 2 2 2 

m n 1 w u m n 1 w u n 1 w u 

+ 2 ------------ + 4 ------------ + ----------­
f 	 f f 

2 3 2 2 


m n u 1 w u n 1 w u n 1 w 


+ 	6 ------------ + 2 ---------- + 4 ---------- ­

f f f 

2 2 2 2 2 2 3 

u n 1 w u n 1 w u n 1 w 

+ 2 ------------ + 3 ---- - ------- + 2 --------- ­

f 

2 2 2 

2 2 n 1 w 3 

+ 	u mnv+2n m 1 w + ---------- + 2 u m n 

f 

** 8 ** 
3 2 2 2 2 3 3 

+ u f m + u f m + n f m + 	n f m + n 1 w 
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** 8 ** 
2 2 2 

3 u 1 w 2 

- u v w + ---------- + u 1 w n + 2 u m 1 w n 

f 

2 3 2 2 2 

+ 2 u m 1 w + u 1 w + u f m n + u f m n + u n 1 w 

** 9 ** ** 10 ** 
2 2 2 

u 1 w n u n 1 w v 2 2 

+ -------- - -- + ------------ - v w u m - v w u n 

f f 

** 9 ** ** 10 ** ** 11 ** 
2 2 2 

2 2 v w 1 n v w m 1 n 

+ v w m n + v w m n + ----------- + 2 -----------­

f f 

** 11 ** 

3 2 2 2 

v w 1 n v w 1 u 

+ --------- -- - -----------) U1 
2 f 

f 

Listed below are the supporting simplifying calculations as they correspond 

with the marked terms in the output. 
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2vwl- 2flVW 

2flfmn- 2vwft2 

2fl2 mn + 2ftvmn +2fl 2 nw +2flvdw 

**5** 	 vwn 2 - VWfl 2 

vwd(fl +n) 

**6** vwm 2 - VWflm 

2 v wm 

vw 2fll
**7** VWfll- -­

f 
ftlvwm 

f 

**8** 	 fl 3 jm- fl 3VW 

fl37n2 + fl4W 

**9** 	 vwm2n- VWflm 
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* +: 10 * * vwmn2 - VWJ-L 2n 

v 2wn2 + VWJ-Ldn 

**11** 

We have thus shown by the above simplifications that the Routh-Hurwitz 

criteria holds for the endemic equilibrium of the SIQA model, provided f3cf -lm > 0. 

Therefore, we can conclude that the endemic equilibrium is locally asymptotically 

stable whenever f3cf- lm > 0. 



Appenclix F 

The SIC~PA Model 

F .1 Equilibria 

The SIQPA system, given in equation 2.1, has two equilibrium points. 

By examining Q' = 0, P' = 0, and A' = 0 in 2.1 we see that 

Q = (1- p)w I 
f.l+V ' 

pwp --I, and 
f.l+V 

A = vw I 
(f-t+ v)(f.l+d) · 

Setting I' == 0 it follows that at equilibrium, either 

I = 0 

or 

(J.l +w)( f.l +v)Ns 
{3 C(J.L +V +(1 - p)w)" 

153 
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F .1.1 Disea~3e Free Equilibrium 

When I= 0, the disease free equilibrium is 

s A 
J1. 

I 0 

Q 0 
p 0 

A 0 

F .1.2 The Endemic Equilibrium 

We use the substitutions found in C.5 as well as 

X mn+nw+vw 

k = f.l + v + ( 1 - p)w. 

vVhen I =f. 0, then S = 1r;~. Setting 5' = 0 in 2.1 we solve for l: 

A - f.ls = f3ck_S l 
mN 

l 

It follows that 

(1- p)w (A _f.lmN) 
m l f3ck 

p pw (A f.l,mN) 
m l f3ck 

vw (A f.lmN) 
mn l f3ck 
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The endemic equilibrium as a function of N is: 

s 

1 

Q 

p 

A 

lmN 
{3ck 

A 11-mfil 
T - {3ck 

(1-p)w ( fl _ 11-mfil) (F .1)
m I {3ck 

pw ( fl _ 11-mfil) 
m I {3ck 

~ ( fl _ 11-mfil) 
mn I {3ck 

Using equation F .1 and N = S + 1+ Q+ P +A we derive an explicit expression 

for N in terms of the parameters of the model: 

lmNN = 
{3ck 

A fJ.mN 
+z- f3ck 

+((1- p)w) (A_ fJ.mN) 
m l {3ck 

+pw (A_ fJ.mN) 
m l {3ck 

+ vw (A. _ fJ.m)N) 
mn l {3ck 

lmN f.lXN AX
-----+­
{3ck {3ckn lm 

so that we obtain 

A.X{3ck 
(F.2)

lm({3ckn + pX - lmn) · 

Substituting N into equation F.1 , we derive expressions for the endemic equi­

librium in terms o the parameters of the system. Note that f.lX- lmn = - vclw . 
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lm (f3ck) ( AX ) 
f3ck lm f3ckn - vdw 

AX 
= 

f3ckn- vdw 

A 11m (f3ck) ( AX )l 
l f3ck lm f3ckn - lmn +11X 

An ( f3ck - lm ) 
l f3ckn- vdw 

An(l .-p)w ( f3ck-lm)Q 
lm f3ckn - vdw 

Anpw ( f3ck - lm )p 
lm f3ckn - vdw 

and 

Avw ( f3ck- lm ) 
lm f3ckn - vdw 
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We record t hese in tabular form: 
AX 

f3ckn-vdw 

An ( {Jck-lm )I T f3ckn - vdw 

An(l-p)w ( f3 ck-lm ) 
lm f3ckn -vdw 

Anpw ( {3ck-lm ) 
lm f3ckn-vdw

p 

Avw ( (3ck-lm ) 
lm {Jckn - vdw 

Note that the endemic equilibrium exists if and only if f3ck > lm. 

F .2 Loca . Stability Properties 

vVe now pr:)ceed to look at the local analysis of these two fixed points. 

The Jacobian is: 

-J.L- z1 -Z2 -Z2 z3 z3 

z1 z2 -l z2 -Z3 -Z3 

0 (1- p)w -m 0 0 

0 pw 0 -m 0 

0 0 v v -n 

where 

f3c(I +	Q)(N- S) 
N2 

f3c(N - (I+ Q))S 
N2 

f3 c(I + Q)S 
N2 
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F .2.1 Disease Free Equilibrium 

The Jacobian at the disease free equilibrium ( ~ , 0, 0, 0, 0) is: 
J..L 

-jL -j3c -j3c 0 0 

0 j3c- l j3c 0 0 

]A = 0 (1- p)w -m 0 0( i',o,o,o,o) 

0 pw 0 -m 0 

0 0 v v -n 

and thus, 

!J(~ ,o , o ,o,c)- Alj = 

- (JL +A) -j3c -j3c 0 0 

0 f3c- (l +A) f3c 0 0 

0 (1 - p)w -(m +A) 0 0 

0 pw 0 -(m +A) 0 

0 0 v v -(n +A ) 

(n + A)(JL + A)(m + A)((f3c- l- A)(m +A)+ j3c(1- p)w) 

We can solve immediately for three of the eigenvalues, those being A1 = - n, Az = 

-m, andA3 = - Jl, . These three eigenvalues are negative. Solving the quadratic part 

of the characteris tic equation we have 

13c -!- m 1 . 1A4 ,5 = ± 2Y (j3c- l- m) 2 + 4(j3c- l)m + 4/3c(1- p)w
2 

13c -I- m 1 j± 2 (f3c- l +m) 2 + 4j3c(l- p)w. 
2 

Clearly the discriminant is positive and A4 and A5 are negative if the larger one, say 

A4 , is negative. To this end , 

(j3c - l +m) 2 + 4j3c(1- p)w < (l +m- j3c) 2 
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if 

f3c(m +(1- p)w) < lm. 

Thus, the eigenvalues, 

-n, 

-m, 

-J.L , 
f3c -l- m 1. I;_______ + -y (f3c -l +m)2 +4f3c(1- p)w,

2 2 
f3c -l- m 1 . 1- "2Y (f3c- l +m)2 +4f3c(1- p)w,

2 

are real and all negat ive provided f3ck < lm. Therefore the disease free equilibrium is 

locally asymptotically provided f3c < m+g·~p)w. 

F .2.2 Endernic Equilibrium 

We assume that Z1, Z2, and Z3 are calculated at the endemic equilibrium. We 

now derive the characteristic equation. 

ll(s ,I,Q ,P,A- All = 

-J.L- Z1- A -Z2 -Z2 z3 

Z1 Z2 -Z- A Z2 -Z3 

0 (1- p)w -m-A 0 

0 pw 0 -m-A 

0 0 v v 

(R1 R1 + R2)f-­
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- :p+,\) - (l + ,\) 0 0 0 

Z1 Z2- (l + ,\) z2 -Z3 -Z3 

0 (1 - p)w - (m + ,\) 0 0 

0 pw 0 - (m + ,\) 0 

0 0 v v - (n + ,\) 

We simplify using MAPLE. The program listing and results can be found in figure 

F.17 and following pages. 

ceqn - u p w Z2 n - u l rn n - l Z1 rn n - u w v Z3 

+ u w Z2 n - u p w Z3 n + 	u Z2 rn n 

+ (- p w Z2 n - l Z1 n - u p w Z2 + Z2 rn n - l Z1 rn 

+ u Z2 rn · u Z2 n - Z1 rn n - u l rn - u l n 


- u rn n - w v Z3 + u w Z2 - l rn n - u p w Z3 


- p w Z3 ll + w Z2 n) r 


+ (Z2 rn - l ll + u Z2 - u n - l Z1 - Z1 rn - Z1 n 

+ Z2 n - u l - p w Z3 - u 	 rn - p w Z2 - rn n - l rn 

..'J 

+ 	w Z2) r 


3 4 


+ (Z2 - rn - u - l - n - Z1) r - r 
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Figure F.17: Program listing for characteristic equation: SIQPA 

# 


# We begin by ent ering the nonzero matrix elements. 

# 


Al:=-u-r: 

A2:=-l-r: 

Bl:=Zl: 

B2:=Z2-l-r: 

B3:=Z2: 

B4:=-Z3: 

B5:=-Z3: 

C2:=(1-p)*w: 

C3:=-m-r: 

D2:=p*w: 

D4:=-m-r: 

E3:=v: 

E4:=v: 

ES:=-n-r: 

# 


#Calculate the characteristic equation. factor out (m+r). 

# and collect with respect to r. 

# 


ceqn:=A1*D2*(-C2)*(B4*E5-E4*B5): 

ceqn:=ceqn+A1*D4*(B2*C3*E5-C2*(B3*E5-E3*B5)): 

ceqn:=ceqn-A2*B1*C3*D4*E5: 

ceqn:=collect(c~qn,r); 

ceqn:=sirnplify( c.eqn); 
quit 
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Notice that. (m + ..\) can be factored out of the characteristic equation, so we 

need only use the Routh- Hurwitz criteria as it applies to a quartic polynomiaL The 

coefficients of the characteristic equation are: 

ao = 	 1 

a2 = 	 ln+tJn+(l+m+n)(Z1-Z2) 

+tJl + tJm +mn + lm + pw(Z2 + Z3) 

a3 	 pwZ2n + lnZ1 + fJpwZ2- Z2mn + lmZ1 

-tJmZ2- tJn~2 +mnZ1 + !Jlm_ +!Jln + tJmn 

+wvZ3	 - tJWZ2 + lmn + fJpwZ3 + pwnZ3 - wnZ2 

a 4 	 fJpwnZ2 + tJlmn + lmnZ1 + fJWVZ3 - tJWnZ2 

+tJpwnZ3 - tJmnZ2. 

By the Routh-Hurwitz criteria we require these coefficients to be positive. We ex­

amine each one individually, but begin by rewriting Zi for i = 1, 2, 3 in terms of 

the parameters of the system. It is assumed that we are working with the endemic 

equilibrium even though we omit the bar notation. 

I 
N 

A tJm 
-- ­
lN (3ck 

A (!!!!__) ((3ckn + tJX - lmn) 
l {3ck AX 

_ pm 
{3ck 

mn((3ck - lm) 

{3ckX 
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j3c(I +Q)(N- S)
z1 = N2 

f3ck ( mn(f3ck - lm)) ( 1 _ !!!::_)= m f3ckX f3ck 

n(f3ck - lm )2 

= f3ckX 

j3cS(N- (I+ Q))
Z2 = N2 

f3clm ( _ kmn(f3ck - lm))= 1
f3ck mf3ckX 

lm lmn 
= ----· (f3ck -lm)

k f3ckX 

f3c(I +Q)S 

N2 


lmn 
- f3ckX (j3ck - lm) 

j3c(I +Q)(N- S) j3cS(N- (I+ Q)) 
N2 N2 

j3c(I +Q)(N- S) j3c(I +Q)S 
= N2 + N2 

n 
= x(f3ck-lm) 
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Let 

ny -(f3ck- lm)
X 

s (1- p) 

We now examine the coefficients. 

n 	 lm 
f.l +m 	+n + l + -(f3ck -lm)-­

X k 

k- m) n
f.l +m +n + l ( k + x(f3ck -lm) 

wl n 
f.L+m+n+(l-p)k+ x(f3ck-lm) 

> 0. 

a2 = 	 ln+f.ln+(l+m+n)(Z1 -Z2 ) 

+f.ll + f.Lm +mn + lm +pw(Z2 + Z3 ) 

= ln + f.ln + ( l +m +n) ( y- z;) 
pwlm

+1tl +pm +mn + lm +--,;:-­

lm 
= (l+m+n)Y-l(f.L+m+n)k+l(f.L+n+m) 
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pwlm
+1.m + ttm + mn + -k­

lsw 	 wlm 
(l + m + n)Y + k(tt + m + n)- -k­

pwlm 
+ttn + ttm + mn + -k­

lsw 
(l + m + n)Y + k(tt + n) + tt(n + m) + mn 

> 0. 

a3 	 pw Z2n + lnZ1 + J.LpwZ2 - Z2mn + lmZ1 

-ttmZ2- ttnZ2 + mnZ1 + ttlm + ttln + ttmn 

+wvZ3- J.LWZ2 + lmn + J.LpwZ3 + pwnZ3 - wnZ2 

ttln + ttlm + ttmn + lmn + Z1 (ln + lm + mn) 


-Z2(mn + ttm + ttn + J.LW + wn) + (Z2 + Z3)pw(tt + n) + Z3vw 


lmpw
ttln + ttlm + ttmn + lmn + vwY + -k-(tt + n) 

+(Zl - Z2)(ln + mn + ttm + J.LW) 

lmpw
ttln + ttlm + ttmn + lmn + Y(ln + lm + mn) + --(tt + n)

k 
lm 

--c (ln 	+ mn + flffi + J.LW) 

lm2 	 lmpw
ttln + lm(tt + n)- -(tt + n) + ttmn + --(tt + n)

k 	 k 

+Y(ln + lm + mn)- lm(ln + flW )
k 
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lmsw 
f.Lln + --(f.l + n) + f.lmn + Y(ln + lm + mn)

k 
lmf.ln lmw ( ) lmpw ( ) 

------ f.l+n +-- f.L+n
k k k . 

f.Lln sw 
:___J._: - + f.Lmn + Y(ln + lm + mn) 

> 0. 

a4 f.L pwnZ2 + f.Llmn + lmnZ1 + f.LWVZ3- f.LWnZ2 

+JtpwnZ3- f.lmnZ2 

f.LrrmZ1 + f.LWnZ1 + vdwZ1 + f.LVw(Zt + Z3) 

+ f1, pwnZ3 + f.LmnZ3 + f.lnswZ3 

(3ck- lm 

f.l-''( 

r 

Y +vdwY (3ck 


> 0. 

Thus we have shown that all the coefficients of the characteristic equation are positive. 

We now prove the determinant condition of the Routh-Hurwitz criteria. That is , \\·e 

show a3 (a 1a2 - a2.)- aia4 > 0. We begin by simplifying a1a 2 - a3 . 
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a 1a2- Z3 = 

lsw )tt (l +m +n)Y + k(tt + n) + tt(n +m) +mn( 

lsw )+m (l +m +n)Y + k(IL +n) + tt(n +m) + mn( 

lsw )+n (l +m +n)Y +k(tt + n) + tt(n + m) + mn( 

lsw ( lsw )+k (l+m+n)Y+k(tt+n)+tt(n+m)+mn 

lsw )+Y (l +m +n)Y + k(tt + n) + tt(n + m) + mn( 

ttlnsw )
- · k +ttmn+Y(ln+lm+mn)( 

= tt ( (l +m+n) Y + l~w tt + tt (n +m)) 

+m (mY+ l~w (tt + n) + tt(n +m) +mn) 

-\-n ((m +n)Y + l~w (tt + n) + tt(n +m) +mn) 

+l~w ( (l + m +n) Y + l~w (tt +n) + tt (n +m) + mn) 

-t-Y (u +m +n)Y + l~w (tt +n) + tt(n + m) +mn) 

With the use of MAPLE, we look next at the determinant condition and proceed to 

simplify. A program listing and results are provided in figure F.lS and the following 

pages. The symbo ls YO, Yl, Y2, and Y3 represent the resultant powers of Y. Other 

symbols besides those previously mentioned in this section, that are used in t he 

programming, incl ude, 

w w , 

u f-l , and 
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Figure F. l8: Program listing for Routh Hurwitz condition: SIQPA 

a1:=Y+l*s*Y/k+u+m+n: 

a2:=(l+m+n)*Y+l*s*Y/k*(u+n)+u*(n+m)+m*n: 

a3:=u*l*n*s*Y/k+u*m*n+Y*(l*n+l*m+m*n): 

a4:=u*X*Y+v*d*Y*Y*G: 

det:=expand(a1*a2-u*l*s*Y*n/k-m*(l+n)*Y-n*l*Y-u*m*n): 

rhc:=collect(expand(a3*det-a1-2*a4),Y): 

YO:=coeff(rhc,Y,O); 

Y1:=coeff(rhc,Y,1); 

Y2:=coeff(rhc,Y,2); 

Y3:=coeff(rhc,Y,3); 

quit 


f3ck- lm 
G 

f3ck 

2 2 2 3 3 

u 1 n s v m u 1 n s v u 1 n s v m 

YO .- 3 -------- ­ ----- ­ + + 2 

k k k 

2 2 2 2 3 2 3 3 2 

+ 2 u m n -• u m n + urn n + u m n 

2 2 2 2 2 2 

u 1 n s v m 3 2 u 1 n s v m 
+ 3 ----------------- + u m n + 4 --------------­

k- 2 k 
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2 2 


2 3 ~ ~ 2 u l n s 'll m 


+ u m n + u m n + 3 --------------­
k 

2 2 2 2 3 2 3 2 2 2 

u l n ,,.. 'll m u l n s 'll u l n s w 

+ 3 ---------··------- + ------ ------- + -------------- ­

2 k 2 

k k 

3 2 3 3 2 2 2 2 2 2 3 2 2 

u l n s w u l n s w u l n s w 

+ --------------- + 2 ---------------- + -------------- ­

3 2 2 

k k k 

2 3 3 3 3 


u l n s w u lnswm 


+ ----------- - --- + 2 ------------- ­

3 2 2 2 2 2 3 3 2 

Y1 .- 2 u m n + 4 u m n + 3 u m n + m n + m n 

** 1 ** ** 1 ** 
2 


3 2 u l n s w m 3 


- u X + 3 u m n l + 4 -------------- + 2 u m n 


k 
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2 2 2 


2 2 u l n s w m 2 2 


+ 	n l u + 2 ---------------- + 3 u m n 

k-2 

2 2 ** 2 ** 
u l n s w m u l n s w m 

+ 	6 -------------- + 4 -------------- - 2 m n u X 

k k 

** 7 ** ** 2 ** ** 6 ** 
2 

umnl sw 2 2 3 3 

+ 5 -------------- + 2 n l m + n l u + n l m 

k 

3 2 2 2 2 


u l n s i ' u l n s w u l n s w 


+ ------------ + 2 ------------- + 2 ------------ ­

k k 	 k 

3 2 2 2 2 2 2 2 2 2 2 

u l n s w u l n s w u l n s w 

+ 	2 -------- - ----- + + 2 -------------- ­

k-2 k-2 

** 4 ** ** 3 ** 
2 3 2 2 

2 2 2 2 n l s w 

+ 	3 n l u m + 3 n l u m + m l u + ------------ ­

k-2 
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** 8 *~ ** 5 ** 
2 2 3 2 

n 1 s v m n 1 s w 3 3 

+ 3 ---------­ --­ + ----------­ + m 1 u + m 1 n 

k k 

** 2 ** ~ * 4 ** ** 5 ** ** 6 ** 
2 2 

2 2 2 2 n 1 u s w 

- 2 u n X ­ 2 u m X ­ m u X ­ n u X + 2 ------------­

k 

** 9 ** 
3 2 2 3 2 2 2 2 

m 1 s w u m 1 s w n m 1 s w u 

+ ----------­ - -­ + -------------­ + 2 ------------­

2 2 k 

k k 

** 10 "'* 
2 2 2 2 2 2 2 2 

m 1 s w n m 1 s w u m n 1 s w 

+ 2 ---------­ --­ + ------------­ + 

k k 2 

k 

** 7 ** 
2 2 3 2 

m n 1 s w m n 1 s w 1 s w u X 

+ 2 ---------- --­ + - 2 

k k k 
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** 7 t:* ** 8 ** 

2 


1 s w u v d G 1 s w n u X 


- 2 ---------··------ - 2 ------------­
k k 

8 9 9** *" ** ** ** ** 
2 2 2 2 2 2 3 

1 s w n v d G 1 s w u X 1 s w v d G 

- 2 ----------------- - -------------- - --------------- ­

k 2 2 

k k 

** 1 ** ** 5 ** ** 6 ** ** 10 ** 
2 2 2 1 s w m u X 

- u v d w G - m v d w G - n v d w G - 2 ------------ ­

k 

** 10 ** ** 2 ** ** 3 ** 
2 

1 s w m v d G 

- 2 ---------------- - 2 m n v d w G - 2 u n v d w G 

k 

** 4 ** 
- 2 u m v d w G 

2 2 2 3 3 3 3 

Y2 . - 3 u m n + 2 m n + m 1 + n 1 + m n + m n 
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** 

- 2 

11 

2 

u 

** 

X + 3 

2 

u m n 

** 12 ** 

+ 6 u m n 1 + 2 

u 1 n s w m 

------------­

k 

** 12 

- 2 m u 

** 

X + 

*~ 12 ** 
2 

3 n 1 m + 2 

2 

n 1 u 

** 13 ** 
2 

+ 3 n 1 m + 

2 

n 1 u 

+ 2 

2 

u 1 n s w 

---------- -­

k 

2 

u 1 n s w 

+ -----------­

k 

+ 2 

2 2 

n 1 s w 

----------­

k 

+ 2 

2 

m 1 u + Irl 

2 

1 u 

3 

n 1 s 'll 

+ ---------- + 

k 

4 

** 14 ** 
2 

n 1 s 'll m 

-----------­
k 

3 

m 1 s w 

+ ---------­

k 

2 2 

m 1 s w 

+ ----------­

k 

2 

m 1 s w u 

+ -----------­

k 

+ 

2 

m n 1 

k 

s w 

** 13 

- 2 n u 

** 

X - 2 

** 14 ** 

1 s 'll u X 

----------­
k 

- 2 

** 14 ** 
2 

1 s 'll v d G 

-------------­
k 
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** 12 ** ** 13 ** 

2 


m n 1 s 'll 


+ 2 ------------ - 2 m v d 'll G - 2 n v d 'll G 

k 

** 11 ** 

- 2 u v d w G 


** 15 ** ** 15 ** 15 ** 
2 2 2 2 

Y3 := m 1 + m n + 3 n 1 m + n 1 - u X - v d 'll G + m n 

2 2 

+ n 1 + m 1 

The simplifications required to determine positivity follow , and are matched 

with the numbering system used in the computer results. 

2p 2 lmn + p 2 (lmn- pmn -J.tnW- pvw)- p2vdwG 

p2vdwlm2 22p
2
lmn- J.t vdw + (3ck + p vdw 

p2 lmvdw212p mn + (3ck 

2n2 /m2 
- 2mnpX- 2mnvdwG 

m 2 lnvdw 
2nm(lmn- pX)- 2mnvdw +2--­

(Jck 

plmn2 + 2J.tlmn2 
- 2J.t 2nX- 2pnvdwG 

2 _ pnlmvdw 
1-tlrnn + 2pn( lmn - p)()- 2pnvdw + 2'------ ­

(Jck 
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2 ') J.Lnlmvdw 

tL lmn + ~ {3ck 


* * 4 * * - J.Llm2n + 2J.Llm2n- 2J.L 2mX- 2J.LmvdwG 
J.Llm 2vdw 

J.Llm2n + 2J.Lm(lmn- J.LX) - 2J.Lmvdw + 2 {3ck 

2 J.Llm2vdw 

tL lm n + 2 {3ck 


m 3 ln- m 2J.LX- m 2vdwG 
m 3 lvdw 

m 2(lmn- J.LX)- m 
2
vdw + {3ck 

m 3 lvdw 


{3ck 


n 3lm-:- n 2J.LX- n2vdwG 
n 2lmvdw 

{3ck 

Fswmn2 lswnJ.LX lsw2nvdG
3 -2 -2--­

k k k 

[3 s2w2mn [2 s2w2 tLX 

k2 k2 
l3 ms 2w3vd 

{3ck3 

* t 10 * * 

http:lswnJ.LX
http:2J.Lm(lmn-J.LX
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6plmn-- 2px- 2pvdwG**11** 
plmvdw 

4plmn +2 {3 ck 

* * 12 * * 3lm2n - 2pmX - 2mvdwG 

2 lm2vdw 
lm n + 2 {3ck 

* ~ 13 * * 3lmn2
- 2pnX- 2nvdwG 

2 lmnvdw 
lmn +2 {3ck 

* *-14 * * 
= 

4 
nl2swm 

k 
_ 

2
ZswpX 

k 
_ 

2
zsw 2vd G 

k 
nl2swm !2sw2mvd. 

2 k + 2 {3ck2 

* " 15 * * 	 3lmn - pX - vdwG 
lmvdw 

21mn + {3ck 

Thus , since all negative terms have been accounted for , a3(a 1a2 - a3) - aia4 > 0. 

Therefore, we ha\e proved the Routh Hurwitz criteria hold for the endemic equilib­

rium of the SIQPA model, and so this equilibrium is locally asymptotically stable 

whenever {3c > ;;:,_[';·~P )w. 



Appendlix G 

The SIQ/PA Model 

G.l Equilibria 

The m~del under consideration is listed in equations 4. 7. The SIQ/PA system 

given in equation 4.8, has two equilibrium points. They have a similar form as for 

the SIQPA model, however, with the new definition for N(t) there are some minor 

variations. 

G.l.l Disease Free Equilibrium 

When I = 0, in equation 4.8 

s 
j 0 

Q 0 
p 0 

A. 0 

177 
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G.1.2 The Endemic Equilibrium 

We use the substitutions found in E.1 as well as 

k = {l + v + ( 1 - p)w. 

When I -=f. 0, then S = 1flc~. Setting S' = 0 in 4.8 we solve for I: 

A - f.LS = f3ck_S I 
mN 

I 


Further, 

(1- p)w (A _{lmN ) 
m l f3ck 

p 	 pw (A f.LmN) 
m l f3ck 

1;'he endemic equilibrium as a function of N is: 

s 

I 

Q 

p 

A 

lmN 

{3ck 


!:!_ _ Jl:mN 

I {3ck 


(1- p)w ( !:!_ _ J.LmN) (G.l ) m I {3ck 


pw (!:!. _ J.LmN) 

m I {3ck 


~ (!:!. _ J.LmN) 

mn I {3ck 
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Using equat ion G.l and N = S + 1+ Q we derive an explicit expression fo r N 
in terms of the parameters of the model: 

lmN A · J.LmN
N 	 = --+---­

(3ck l (3ck 

+ ((1 - p)w) (A_ J.LmN) 
m l (3ck 

lmN k ­
-	 --+­ 1 

(3ck m 

N(lm-J.Lk )+i\k 
(3ck lm 

so that we obtain 

N 	 _ i\k ( (3ck ) 
- lm (3ck - ·Zm + {lk · 

Substituti g N into equation G.l , we derive expressions for the endemic equi ­

librium in terms of the parameters of the system. 

(3ck - lm + J.Lk 

A(l- p)w ( (3ck- lm )Q 
lm (3ck - lm + ttk 

i\pw ( (3ck - lm )p 
lm (3ck - lm + {lk 

http:N(lm-J.Lk


180 APPENDIX G. THE SIQ/PA MODEL 

and 

Avw ( {Jck - lm )A l~n {Jck - lm + 11k 

We summarize these below. 

s 

l 

Q 

p 

A 

Ak 
{3ck -lm+IJ.k 

A ( (3ck-lm )
T {3ck-lm+11-k 

A(l-p)w ( (3ck-lm ) 
lm {3ck -lm+11-k 

Apw ( {3ck -lm ) 
lm {3ck-lm+11-k 

Avw ( {3ck- lm ) 
lmn {3ck-lm+IJ.k 

Note that the endemic equilibrium exists if and only if {Jck > lm, i.e. {Jc > ~~~~~~~:)~. 

G.2 Local Stability Properties 

We now proceed to look at the local analysis of these two fixed points. The 

Jacobian is: 
-11- Z1 -Z2 -Z2 0 0 

z1 z2 -z z2 0 0 

0 (1 - p)w -m 0 0 

0 pw 0 -m 0 

0 0 v v -n 

where, 



181 APPENDIX G. THE SIQ/PA MODEL 

f3c(I +Q)(N- S) 
andN2 

f3c(N - (I+ Q))S 
N2 

G.2.1 Disease Free Equilibrium 

The Jacobian at the disease free equilibrium, ( ;, 0, 0, 0, 0), is identical to that 

for the SIQPA model. Recall the eigenvalues, 

f3c- l- m 1. 1A2 + 2y (f3c -l +m) 2 +4f3c(1- p)w
2 

f3c -I- m 1. 1A3 - 2Y (f3c- l + m)2 + 4f3c(l- p)w
2 

As -m 

As in previous sections, note that the eigenvalues are real and all negative, provided 

f3ck < lm. Therer"ore the disease free equilibrium is locally asymptotically provided 

f3 c < lm 
m+(l-p)w" 
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G.2.2 Endernic Equilibrium 

The characteristic equation is derived first. 

IJ(S,I,Q,P,A) -.\II = 

-(f.t +.A)- z1 -Z2 -Z2 0 0 

Z1 Z2- (l +.A) z2 0 0 

0 (1- p)w -(m + .\) 0 0 

0 pw 0 -(m + .\) 0 

0 0 v v -(n + .\) 

(R1 --+ R1 + R2) 

-(f.t + .\) -(l + .\) 0 0 0 

ZJ. z2- (l +.A) z2 0 0 

- 0 (1- p)w -(m + .\) 0 0 

0 pw 0 -(m + .\) 0 

0 0 v v -(n + .\) 

-(f.t +.\) -(l + ,\) 0 

- (n+.\)(m+.\) 

0 ( 1 - p)w - ( m + .\) 

= -(n + .\)(m + .\) (Z1 (1 + .\)(m + .\)- (f.t + .\)((Z2 - l- .\)(m + .\)) 

+(f.t + .\)(n + .\)(m + .\)Z2(1- p)w 

At this point we see that two of the eigenvalues, 
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A5 = -m, 	 (G.2) 

those corresponding to the P and A populations, are negative. Thus we need only ex­

amine the remaining cubic polynomial of the characteristic equation for local stability 

properties of the endemic equilibrium. 

Collecting the cu hie polynomial with respect to A we have, 

0 = 	 A3 + A2(fl- Z2 + l + m + ZI) 

+A((l + m)Z1 + lm- Z2k + fl(l + m) - 11Z2) 

+11/m + lmZ1 - 11kZ2. 

We now simplify the terms Z1 and Z2 . 

I A 11m 

N IN j3ck 


_ A ( lm ) 	 11mT Akf3ck (j3ck- lm + flk) - f3ck 

m 
kj3ck (f3ck - lm) 

j3c(I +	Q)(N- S) 
N2 

j3cki (j3cki) S 
mN mN N 

-j3ck ( - m ) ( 1 lm )(j3ck-lm) - ­
m kj3ck 	 j3ck 

(j3ck - lm )2 

kf3ck 

j3c(N - (I+ Q))S 
N2 
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= (3c (~) (1 - _!!__)
(3ck mN 

lm ( lm) 
k (3ck 

Substituting these values for Z1 and Z2 into the characteristic equation, we derive 

the coefficients ai for i = 0, 1, 2, 3 corresponding to ,\3
-i. 

ao - 1 

2 
a = l ((3ck- lm) lm ( lm. ) 

1 J1 + + m + kf3ck - k {3ck 

(3ck - lm l ( k ­ m)
Ji+m+ k + k 

(3ck- lm l 
J1 +m + k + k(1 - p)w 

lm ( lm)(l+m)Z1 +lm+J1(l+m)-(J1+k)-k ­
~ (3 ck 

= (l + m)Zt +Jim+ J1l(1 ~ p)w 

+l (f3clJ1m- J1lm2 + (3cPm- klm 2 
) 

k f3 ck 

J1l(1-p )w lm(p+k)( f3ck-lm)
(l )z= + m 1 + pm + k + kf3 ck 
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a 3 - 1tlm + lmZ1 - 11k z; (~:) 
= 11lm ({1c~~k lm) + lmZ1. 

Thus, all coefficie ts of the characteristic equation are positive. To satisfy the Routh­

Hurwitz requirements we have left to show, that the determinant condition a1 a2 -a3 > 
0. 

{1ck -lm ((t )Z p/(1- p)w lm(p + k)(f1ck -lm)) 
k + m 1 + 11m + k + k{1ck 

1(1 - p)w ((t )Z 11!(1 - p)w lm(11 + k )({1ck - lm))
+--k- + m 1 + 11m + k + kfjck 

11!(1-p)w lm(11+k)([1ck-lm))(([ )z+11 + m 1 +11m+ k + kfjck 

[ )Z f1l(1-p)w lm(p+k)(fjck-lm))
((+m + m 1 + 11m + k + kfjck 


{1ck- lm) )

- ( 11lm ( {1ck + lmZ1 

= {1ck- /m ((t )Z 11!(1- p)w lm(11 + k)([jck -lm))
k . + m 1 + llm + k + k{1ck 

!(1- p)w ((z )Z 11!(1- p)w lm(p + k)(f'ck -lm))+ k + m 1 + 11m + k + k{1ck 

+ ((l+m)Z m 11!(1-p)w lm11(f1ck-lm))11 1 + 11 + k + k[jck 

pl(1-p)w lm(11+k)([1ck-lm))m mZ1 + 11m + + _..:..:....__..:.....:.______:_+ ( k k{1ck 

> 0. 
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Thus, the Routh-Hurwitz criteria are satisfied for the cubic polynomial of the char­

acteristic equation and since .\1 ,2 in G.2 are negative, we can conclude that the en­

demic equilibrium for the SIQ/PA model is locally asymptotically stable provided 

f3 c > lm 
m+(l-p)w' 



Appenclix H 

Support ing Proofs and 

Backgr(Jund Theory 

H.l Boundedness 

We require that our models be well-posed, that is , solutions must remain pos­

itive and bounded. The proofs are provided below. 

T heorem H. l All solutions S(t), I (t), Q(t) , P(t) , A(t) of 2. 1 are (a) positive and (b) 

bounded for t > 0 . 

Proof of (a): So > 0. By definition , S(t) is continuous. Suppose there exist s t > 0 

such that S (t) > 0 for 0 :s; t < t and S(t) = 0. Then S'(t) :s; 0. However, by (2. 1), 

S(t) = 0 implies that S'(t) = A > 0, a contradiction . Therefore S(t) > 0 for all t ;:::: 0. 

Qo ;:::: 0 and 10 > 0. By definition, I(t) and Q(t) are continuous. Suppose 

there exists t > 0 such that I(t) > 0 and Q(t) ;:::: 0 for 0 :s; t < t, Q(t) > 0 and 

I (t) = 0. Then / '(f) :s; 0. However, by (2 .1) , I(t) = 0 and Q(t) > 0 implies that 

I' (t) = .Oc~~(f) > 0, a contradiction. 

We obtain a contradiction similarly if we assume Q(t) = 0 and J (f) > 0, with 

Q(t ) ;:::: 0 and I(t ) > 0 for 0 :s; t <f. 

187 
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Now suppo>e that I(t) and Q(t) are as above for 0:::; t <[,but I(l) = Q(l) = 0. 

Then I(t) = Q(t ) =0 for all t > t. But, this contradicts uniqueness of solutions. 

I(t) =0 must be a solution for all time, and if I(t) > 0 for some time 0 :::; t < t~ :::; l , 

(since 10 > 0) then there are two solutions I(t) = 0 and I(t) > 0 for 0 < t < t~ , 

a contradiction t uniqueness of solution. Thus I(t) > 0 and Q(t) 2: 0 for all time 

t 2: 0. 

Using posi tivity of I(t) and Q(t), the arguments for P(t) and A(t) follow 

similarly. Therefore all solutions S(t), I(t), Q(t), P(t), and A(t) are positive. 

Proof of (b): Recall that 

N'(t) A- pN(t)- dA(t) 

< A- pN(t) 

Therefore 

If N(O) < ; then N(t) < ;, otherwise N(t) :::; N(O) . Since N(t) = S(t) + I (t ) + 
Q(t) + P(t) +AU), then 

ll if N < ll }S (t. ) + I(t) +Q(t) + P(t) + A(t) :::; ~' o - :
{ No otherwise. 

Since all wlutions are positive by (a), then all solutions of system 2.1 are 

bounded. 

vVe can sinlilarly show that all the models in this thesis have bounded and 

positive solutions . 
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H.2 Background Theory 

H.2: Routh-Hurwitz Criteria [23] Consider 

Define 

A1 Ao 0 
A1 Ao 

~3= A3 A2 A1~ l =AI, ~2= ' A3 A2 
As A4 A3 

In general, define 

A1 Ao 0 0 0 0 · 0 0 

A2. A2 A1 Ao 0 0 0 0 

A f A4 A3 A2 A1 Ao 0 0 

A2n-l A2n-2 A2n-3 A2n-4 A2n-5 A2n-6 A2n-7 

~n= 

where Aj = 0 for j > n. In particular, ~n =An ~n-1 . 

A necessary and sufficient condition for all of the roots of p( a) to have their 

real parts negativ.:~ is that all the determinants ~i, i = 1, ... , n, be positive. 

H.3: Persistence [22] 

A population p( t) is said to persist in ?Rn if p( 0) > 0 and lim inft--+oo p( t) > 0. A 

system is said to be persistent if each component population persists. For ecological 

dynamical systems, a solution with initial conditions in the positive cone will persist 

if there are no n- limit points on the boundary of ?R~. 
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H.4: The Butler-McGehee Lemma [22] 

Let P be an isolated equilibrium with nonzero eigenvalues in the omega limit 

set D.(R) of an orbit O(R) through the point R. Then either D.(R) = {P} or there 

exist points ps, P'-' in D.(R) with p s E Ws(P) \ {P} and pu E Wu(P) \ {P}. 

H.5: Lyapunov Eunction [40] 

Consider t e general system of differential equations 

x'=f(x) (H.l ) 

Here f(x) is a vector-valued function, continuous in x for x E c!Q where g is an open 

subset of ~n. The· fu"nttion V map:ping ~n to ~ is said to be a Lyapunov Function 

in g for H.l if it satisfies the following properties: 

1. V(x) is continuous on clQ. 

2. V = (\7V) · f :::; 0 in g. 

H.6: La Salle's "Extension Theorem [ 40] 

Let V be a Lyapunov function in g for H.l. Then each bounded orbit of H.l 

approaches M where M is the largest invariant subset of {x E c!Q: V = 0}. 

H.3 Substitutions 

Throughout the thesis we use many simplifying substitutions. These are pro­

vided below: 
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!vi f3c- (J-L + v) 


T f3 c(1- p)- (J-L + v) 


D f3 -(J-L + v +d) 


X m.n + nw + vw 


f m +w 


u !3 ~ - (J-L + w) 


k m +(1- p)w 

Tly x(f3ck- lm) 


f3 cS 

N 

f3 c!S 
.V2 

f3 _J 

N 

j3 -(I+ Q)(N- S) 


N2 

f3~(N - (I +Q) )S 


N2 

f3 c(I +Q)S 


N2 

WJth appropriate values for N in models SIQPA and SIQ/PA 

All other substitutions that are used in this thesis are listed in the appropriate 

sections. 
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