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Abstract

Functional data analysis is a statistical framework where data are assumed to follow

some functional form. This method of analysis is commonly applied to time series

data, where time, measured continuously or in discrete intervals, serves as the lo-

cation for a function’s value. In this thesis Gaussian processes, a generalization of

the multivariate normal distribution to function space, are used. When multiple pro-

cesses are observed on a comparable interval, clustering them into sub-populations

can provide significant insights. A modified EM algorithm is developed for cluster-

ing processes. The model presented clusters processes based on how similar their

underlying covariance kernel is. In other words, cluster formation arises from mod-

elling correlation between inputs (as opposed to magnitude between process values).

The method is applied to both simulated data and British Columbia coastal rainfall

patterns. Results show clustering yearly processes can accurately classify extreme

weather patterns.
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Chapter 1

Introduction

Functional data analysis (FDA) is a branch of statistics that deals with modeling

data as a function over some smooth space. The FDA framework models data that

are assumed to take some functional form. Today, more and more streams of data are

generated over continuous or discrete time points, both examples of functional data

(Wang et al., 2016). Thus, methods to analyze such data are becoming increasingly

popular. Specifically, the use of Gaussian processes (GPs) gives a probabilistic start-

ing point. A GP is a stochastic process that generalizes a finite-dimensional normal

distribution to function space. GPs have been used to successfully solve complex

non-linear regression and classification problems (Rasmussen, 2005).

When multiple functions exist on the same interval (usually compact [0, T ] and

finite) it can be useful to classify them into a finite number of mutually exclusive

groups. For example, grouping patients into distinct groups based off of some time

measurement (heart rate, blood pressure, etc.) to specify a more group specific in-

tervention or treatment. Here, the process would be defined on the index set time;

furthermore, in Chapter 4, the months of the year will provide the necessary index. In
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this context, using GPs (as opposed to the multivariate normal distribution) provides

some immediate advantages. First, it allows processes with different index sets to

be compared. Second, the use of a kernel function can model arbitrarily nonlinear

complex pairwise correlation between indexes.

In an unlabelled, non-functional context, mixture models are popular methods

used to estimate clusters where the data is assumed to have a “missing” or latent

variable that explains the inter-group variation. A complete data log likelihood is

then maximized and data are then often assigned to a cluster using maximum a

posteriori classification (MAP).

In this thesis, the mixture model framework is extended to cluster functional

data. In iterative steps, the hyper-parameters that define each GP are optimized

via a Gradient Ascent algorithm. Then, the complete data log likelihood parameters

are maximized. This is continued until some convergence criterion is satisfied. This

method is then applied to rainfall data and results are discussed in the context of

classification.
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Chapter 2

Background

2.1 Gaussian Processes

2.1.1 Kernel Function

In the monograph text by Rasmussen (2005) a GP is defined as: “...a collection of

random variables, any finite number of which have a joint Gaussian distribution”. A

GP, f(x), creates a set of random variables evaluated at x. In essence, a GP is a

distribution over functions, i.e.,

f(x) ∼ GP
(
m(x), k(x,x′)

)
. (2.1)

An example of a GP is given in Figure 2.1.

3
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Figure 2.1: Ten GPs randomly drawn with mean functionm(x) = 0 and SE covariance
kernel.

A GP is defined by its mean function and covariance kernel:

m(x) = E[f(x)], (2.2)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (2.3)

A common GP, and the kernel considered in this thesis, is defined with mean function

0 and squared exponential (SE) covariance function:

k(xi,xj) = σ2
f exp

(
− 1

2l2
|xi − xj|2

)
+ σ2

nδij. (2.4)

The SE kernel is a widely used kernel (Rasmussen, 2005). One convenient property

of the SE kernel is being able to infinitely differentiate it, which is useful because

4
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the first derivative is needed for hyper-parameter estimation. Here, the use of the

term hyper-parameter refers to a set of parameters that make up the “non-parametric

model”. That is, the hyper-parameters only appear in the model’s prior, and as shown

in (2.7), are integrated out of the final model (posterior). The covariance kernel for

example is defined by the following set of hyper-parameters which control the shape

of the process:

σ2
f is the height parameter,

l is the length-scale parameter,

σ2
n is the measurement noise,

δij =


1 if i = j,

0 otherwise

.

In general, different kernel functions can be used, with the SE being the most

popular. Because the kernel is needed to populate a multivariate normal distribution

covariance matrix, the kernel is restricted to produce positive semi-definite matri-

ces. While the SE covariance kernel is a popular choice, modelling the shape of

the covariance kernel is an open ended problem. One systematic solution can be

formed by considering a Bayesian model selection framework as discussed in Ras-

mussen (2005). For the SE covariance kernel, σ2
f controls the height or the amplitude

of the GP, l controls the length-scale. The hyper-parameter σ2
n adds measurement

noise to the function output y. Where y is the function’s value f with the additive

noise, y = f + σ2
n. If the observed value y is perfectly interpolated from the GP i.e.

y = f then σ2
n = 0.

5
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Figure 2.2: Effect of changing SE kernel hyper-parameters, blue lines generated with
l = 1, red lines generated with l = 5. While σf is held constant for both cases
(σf = 1).

6
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Figure 2.3: Effect of changing SE kernel hyper-parameters. (a) l = 1, σf = 1, (b)
l = 1, σf = 5, (c) l = 5, σf = 1, (d) l = 5, σf = 5.

This kernel is used to construct a matrix, K, which will serve as the variance

covariance matrix in a multivariate normal distribution introduced in the next section

K =


k(x1, x1) · · · k(x1, xn)

...
. . .

...

k(xn, x1) · · · k(xn, xn)

 .

While a GP is defined on the entire real line, we only observe some finite set of real-

izations x = {x1, . . . , xn}, and corresponding y = {y1, . . . , yn}. x is commonly called

the input and represents the location of the the process, i.e. observation yi = f(xi). y

is referred to as the output, and is the function evaluated at location x. This allows

for a generalization to a multivariate normal distribution: f(x) ∼ MVN
(
0, K

)
.

7
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This is possible because marginalizing a Gaussian distribution is trivial: the resulting

distribution is Gaussian and we can ignore the (x, y) pairs that are unobserved or

missing. Here changing the kernel effects the shape of the function, effectively con-

trolling the magnitude of which observations xi and xj are correlated. Formulating

the problem this way we can see the kernel is our prior on the function space, and

the (marginal) likelihood for the GP comes after conditioning on the realized points.

As shown in the next section, the hyper-parameters are often estimated to maximize

the GPs likelihood.

2.1.2 Likelihood

The previous section introduced the kernel function and how it relates to a prior on

function space and how the hyper-parameters effect the correlation between the input

x and outcome y. Here the likelihood for a GP will be introduced and strategies for

choosing the hyper-parameters will be shown. From the definition of a GP, y ∼

N (0,K), which will be shown formally below. First we let f ∼ N (0,K∗), where K∗

is the covariance matrix constructed from the noiseless SE kernel:

k(xi, xj) = σ2
f exp

(
− 1

2l2
|xi − xj|2

)
,

such that K , K∗ + Iσ2
n.

The likelihood for a GP is conditioned on the observed values to obtain a marginal

8
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likelihood, using φ to denote the normal density function:

p(f |x) = φ(f |0,K∗)︸ ︷︷ ︸
function prior

, (2.5)

p(y|f) =
N∏
i=1

φ(yi|fi, σ2
n)︸ ︷︷ ︸

likelihood

. (2.6)

We get the marginal for y by using Bayes’ rule and integrating over f:

p(y|x) =

∫
p(y|f,x) p(f |x)df. (2.7)

Taking the log of (2.7) gives

log p(yi|x) = −1

2

{
yiK

−1y>i + log |K|+N log 2π
}
. (2.8)

This likelihood can be broken down into three main components, the data fit term,

model complexity term, and a constant term:

log p(yi|x) = −1

2

{
yiK

−1y>i︸ ︷︷ ︸
data fit

+ log |K|︸ ︷︷ ︸
complexity

+N log 2π︸ ︷︷ ︸
constant

}
. (2.9)

The data fit and complexity component share an interesting tradeoff. For small

length-scale values l, the model will fit the data well and the data fit component will

be small. However, points will not be considered “near” each other, resulting in a

high model complexity. Conversely, if l is large (suggesting no correlation between

points), then the the complexity will be small but the data fit term will be large.

This is because the SE kernel k(xi,xj) will converge to σ2
f , turning K into a diagonal

9
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matrix. Because GPs have these inherent penalty terms for over-/under-fitting, cross

validation methods are generally not needed.

2.1.3 Predictive Distribution

GPs are commonly used in supervised regression tasks for their ability to non-parametrically

approximate complex functions and solve functional engineering problems (Bin and

Wenlai, 2013). It is often of interest to infer the functions value outside of the paired

training data (x,y). To do this, a predictive distribution can be constructed. Let

y∗ = f(x∗) be the unobserved outputs at locations x∗ to be inferred. The distribution

can easily be derived through probabilistic terms. From properties of joint Gaussians

f(x) ∼ N (0,K(x,x)) , (2.10)

f(x∗) ∼ N (0,K(x∗,x∗)) , (2.11) f(x)

f(x∗)

 ∼ N
0,

K(x,x) K(x,x∗)

K(x∗,x) K(x∗,x∗)


 . (2.12)

Equation 2.12 is the joint distribution of the observed pairs (x,y) and unobserved

f(x∗) at location x∗. The expected value for f(x∗) can be derived using conditional

properties which leads to

f̂(x∗) , E[f(x∗)|x,y,x∗] = K(x∗,x)[K(x,x)]−1y, (2.13)

full derivation is available in Rasmussen (2005). Equation (2.13), is then used to

compute estimates for the function’s value f(x∗) at location x∗.

10
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2.2 Supervised, Unsupervised, and Semi-supervised

Algorithms

Machine learning algorithms may be broken down into three general subcategories:

unsupervised, supervised, and semi-supervised. Which subcategory to use depends

on the data labelling and given problem. If the “label”, the variable we are interested

in predicting, is present in the data then supervised learning is often used (Hastie

et al., 2001). For example, the output or y variable in linear regression acts as the

“labelled” point. Parameters can then be estimated to produce accurate estimates

for ŷ using the independent variables x. Estimates (ŷ) can then be checked against

the true values y, and adjustments can be made (supervision). The labelled data are

often thought of as the training data and the in sample error,
∑N

i=1 (ŷi − yi)2, can

be arbitrarily reduced. Most regression and classification problems can be thought of

as supervised machine learning problems. Unsupervised learning refers to problems

where the data does not have labels. Instead, unlike in supervised learning, we are

interested in modelling the independent variables. Inference is made on variables

without knowing the “true” value, such as group membership, where no confirmation

of the right value exists. Clustering is an example of unsupervised learning. Semi-

supervised learning refers to problems where some proportion of the data are labelled.

11
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2.3 Model-Based Clustering

2.3.1 Clustering

Clustering is an unsupervised machine learning task which attempts to classify unla-

belled data points into distinct groups. Commonly, clustering is defined as assigning

data into groups such that data in the same cluster are more similar to each other

than to data in a different cluster. Initially this definition seems intuitive; however,

practically there are some problems. Namely, grouping each data point into its own

cluster would satisfy this definition. Instead, McNicholas (2016a) provides a definition

not based on similarity:

A cluster is a unimodal component within an appropriate finite mix-

ture model.

The use of the word appropriate here requires consideration of the data:

It means that the model has the necessary flexibility, or parameteriza-

tion, to fit the data

(McNicholas, 2016b). In either case, many methods have been developed to tackle

this problem of unsupervised learning. Model-based refers to using probability dis-

tributions to model the clusters (as opposed to hierarchical, k-means, etc.).

2.3.2 Finite Mixture Model

The finite mixture model is a popular model-based technique that assumes data are

generated in a sequential process: first a random draw chooses which cluster the

12
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data point is generated from with probability πg. Next, a data point is drawn from

distribution g. Formally the density can be written as:

f(y|ϕ) =
G∑

g=1

πgfg(y|θg). (2.14)

Here, the mixing proportion must satisfy the following constraints: πg > 0 and∑G
g=1 πg = 1. The density parameters: θ = (θ1, . . . ,θG) are the density specific

parameters with ϕ = (π,θ), π = (π1, ..., πG). The likelihood is given by

L(ϕ) =
n∏

i=1

G∑
g=1

πg φ(xi | µg,Σg), (2.15)

where ϕ = (π,µ1, ...,µG,Σ1, ...,ΣG). The cluster’s soft probabilities (ẑig ∈ [0, 1]) are

converted into hard classifications, ∈ {0, 1}, by maximum a posteriori classification:

MAP(ẑig) =


1 if g = argmaxh(ẑih),

0 otherwise.

(2.16)

2.3.3 Expectation-Maximization

Model-based clustering requires estimating the unknown model parameters from the

mixture density in (2.14). The expectation-maximization (EM) algorithm provides a

good starting point for this problem. The two-step algorithm, introduced by Demp-

ster et al. (1977) first starts by computing the expectation of the complete-data

log-likelihood — which often amounts to taking the expectation of sufficient statis-

tics of the latent variables conditioned on the data — then maximizes the expecta-

tion of the complete-data log-likelihood. Consider a Gaussian model-based clustering

13
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complete-data likelihood, denoted by Lc, where the latent variable that denotes group

membership zi = (zi1, . . . , ziG) has been added:

Lc(ϕ) =
n∏

i=1

G∑
g=1

[πg φ(xi | µg,Σg)]
zig , (2.17)

where zig = 1 if observation i belongs to cluster g, and zig = 0 otherwise. Now,

if z1, . . . , zn were known, then Lc could easily be maximized by splitting the data

into their respective groups and MLE estimates or some continuous optimizer could

be used. However, because z1, . . . , zn is unknown the EM algorithm can be used to

handle the missing variable zi. In the first step (“expectation” step), the expected

value of each zig is calculated:

ẑig := E[zig| xi] =
π̂gφ(xi | µ̂g, Σ̂g)∑G
h=1 π̂hφ(xi | µ̂h, Σ̂h)

. (2.18)

Next, in the “maximization” step, the parameters are updated. This amounts to

estimating the covariance matrix and mean vector for a Gaussian mixture model. As

McNicholas (2016a) illustrates, the updates are weighted MLE estimates of µk and

Σk,

µ̂g =
1

ng

n∑
i=1

ẑigxi, (2.19)

Σ̂g =
1

ng

n∑
i=1

ẑig(xi − µ̂g)(xi − µ̂g)
>, (2.20)

where ng =
∑n

i=1 ẑig.

14
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2.4 Gradient Based Optimization

Commonly, in machine learning tasks maxima and minima of some functions need

to be found. When a function’s gradient can be found in closed form and is uncon-

strained, an approach called gradient ascent is often used (Murphy, 2012). Gradient

ascent is an algorithm that searches for a function’s local maximum. In each itera-

tion, the algorithm moves closer to the maximum by taking steps along the function’s

gradient. Let f be a function of θ, and let g be its gradient. Then, gradient ascent

updates the move along θ by

θi+1 = θi + λgi, (2.21)

where λ is the “step size” or “learning rate”. It controls how big of a step the update

will take. Choosing the correct step size λ effects how efficiently the method will

converge. If λ is too small, then it will take many iterations and will be slow to

converge as shown in Murphy (2012). If the step size is too large, then the method

might diverge and not find a solution. The algorithm stops when it has found a

sufficiently close value to the maximum (when the gradient approaches zero, a local

optimum).

An illustration of gradient ascent, on a convex likelihood, is given in Figure 2.4.

15
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Figure 2.4: Illustration of gradient ascent on a convex likelihood function.
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Chapter 3

Methods

3.1 Model

From the previous section we saw that the log-likelihood for a GP with the observed

output vector y and corresponding input vector x was distributed according to a

multivariate Gaussian (Equation 2.8). When clustering GPs, the goal will be to find

clusters that contain processes which have similiar paths. The meaning of similar

path refers to how close two processes values are but also how similar their shape is

to one another (smooth, wiggly, etc.). Now let us define the notation used for the

model, the ith GP will have the output vector yi and input vector xi, and

log p(yi|θi,xi) = −1

2

{
yiK

−1yᵀ
i + log |K|+N log 2π

}
. (3.22)

17
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This will be the likelihood used in the finite mixture model shown next:

p(yi|θ,xi) =
G∑

g=1

πgpg(yi|θg,xi), (3.23)

where θg = {lg, σfg, σng} is the set of hyper-parameters for the gth cluster, πg is the

mixing proportion for cluster g, π = (π1, . . . , πG), and θ = (θ1, . . . ,θG) is a vector

of G kernel hyper-parameters sets. Because the likelihood of a GP is a Gaussian

distribution with covariance matrix K, the complete-data likelihood is given by

Lc(ϕ) =
n∏

i=1

G∑
g=1

[πgφ(yi |0,Kg)]
zig , (3.24)

where Kg is the covariance matrix corresponding to cluster g and φ is the Gaussian

density function. A SE covariance kernel is used as the prior on the function space

k(xi,xj) = σ2
f exp

(
− 1

2l2
|xi − xj|2

)
+ σ2

nδij. (3.25)

This means that observations are not perfectly interpolated from the GP; instead,

they are corrupted by i.i.d. noise σ2
n. The goal is to recover the G sets of kernel

hyper-parameters θg = (lg, σ
2
fg, σ

2
ng) and the mixing parameters π = (π1, ..., πG) to

estimate the latent variables z1, . . . ,zn.

18
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3.2 Parameter Estimation

3.2.1 GP Kernel Hyperparameters

The first step is to estimate each GP’s kernel hyperparameters. The set of kernel

hyper-parameters for GP i is denoted by: Θi = {li, σfi, and σni}. In this step,

the maximized kernel hyper-parameters for each GP — lmax
i , σ max

fi , and σ max
ni — are

estimated. To find these maximized hyper-parameters, a MLE solution is found using

gradient ascent, starting with the log-likelihood i.e.,

log p(yi|x,Θi) = −1

2

{
yiK

−1y>i + log |K|+N log 2π
}
. (3.26)

The derivative is then taken w.r.t. to the kernel hyper-parameters

∂

∂Θi

log p(y|x,Θi) =
1

2
y>K−1 ∂K

∂Θi

K−1y − 1

2
tr

(
K−1 ∂K

∂Θi

)
=

1

2
tr

([
αα> −K−1

] ∂K

∂Θi

)
,

(3.27)
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where α = K−1y. The partial derivatives for li, σfi, and σni are calculated from the

first derivatives of the kernel function:

∂K

∂li
= σ2

fi exp
{
− 1

2l2i
(xi − xj)2

}
(xi − xj)2l−3

i , (3.28)

∂K

∂σfi
= 2σfi exp

{
− 1

2l2
(xi − xj)2

}
(xi − xj)2, (3.29)

∂K

∂σni
=


2σni if xi = xj,

0 otherwise.

(3.30)

After finding the gradient for the likelihood, a gradient ascent algorithm is used to

find a sufficiently close solution. This algorithm is given by repeating the following

until a convergence criterion is attained:

lupdate
i := lold

i + λ
∂

∂li
log p(yi|x, lold

i ) (3.31)

σupdate
fi := σold

fi + λ
∂

∂σfi
log p(yi|x, σold

fi )

σupdate
ni := σold

ni + λ
∂

∂σni
log p(yi|x, σold

ni ).

After maximizing the kernel hyper-parameters, we have

Θ̂ = {Θ̂1, Θ̂2, . . . , Θ̂N},

where Θ̂1 = {l max
1 , σ max

f1 , σ max
n1 } , Θ̂1 is the maximized kernel hyper-parameters for

the first GP, Θ̂2 is the hyper-parameters for GP 2, and so on.
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3.2.2 Cluster Parameters

The model seeks to cluster the processes and make inferences on the latent variables.

A modified EM approach is used. First, the mixing proportion and cluster hyper-

parameters are initialized randomly:

πππ ← Initialize;

lll ← Initialize;

σσσf ← Initialize;

σσσn ← Initialize;

Where l = {l1, l2, . . . , lG},σf = {σf1, σf2, . . . , σfG},σn = {σn1, σn2, . . . , σnG}. Next,

each GPs (GP1, . . . ,GPN) responsibilities are calculated for each of the G clusters to

get N ×G responsibilities

r̂ig =
πg φ(yi|0,Kg)∑G

h=1 πh φ(yi|0,Kh)
, (3.32)

where r̂ig represents the responsibility, or conditional expected value, of the ith process

belonging to the gth cluster, r̂ig , ẑig. After the responsibilities are calculated, the

mixing proportions π are conditionally maximized on these responsibilities:

mg =
N∑
i=1

rig, (3.33)

πg =
mg

m
, (3.34)

where mg is the responsibility for cluster g and πg is the gth mixing proportion with

m =
∑G

g=1mg. The kernel hyper-parameters specific for each cluster: lg, σfg, and

σng are then updated, where lg is the length-scale parameter for cluster g, σfg is the

21



M.Sc. Thesis - Forrest Paton McMaster - Statistics

height parameter for cluster g, and σng is the noise parameter for cluster g:

lg =
1

mg

N∑
i=1

r̂ig l
max
i , (3.35)

σfg =
1

mg

N∑
i=1

r̂ig σ
max

fi , (3.36)

σng =
1

mg

N∑
i=1

r̂ig σ
max

ni . (3.37)

This is done by weighting the maximized hyper-parameters — σ max
fi , lmax

i , and σ max
ni

— by their respective cluster responsibility r̂ig.

This scheme, of calculating the responsibilities then updating the cluster parame-

ters, is repeated until some convergence criterion is met. In this case when the change

in likelihood (3.24) between iterations becomes small, i.e., until

|Lc(ϕϕϕi−1))− Lc(ϕϕϕi)| < ε.

3.3 Numerical Issues

At each iteration of gradient ascent the GP’s likelihood gradient needs to be com-

puted:

∂

∂Θi

log p(yi|x,Θi) =
1

2
tr
([
αα> −K−1

] ∂K

∂Θi

)
. (3.38)

This operation requires inverting a t × t matrix K−1. Inverting large matrices are

notoriously computationally unstable. This is especially true when matrices are not

full rank (or sufficiently close) and eigenvalues become very large or very small. One
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solution is to first decompose the matrix into lower triangular form:

K = LL>. (3.39)

The lower triangle L is then inverted:

K−1 = (L−1)>L−1. (3.40)

The R (R Core Team, 2017) package used is FastGP (Gopalan and Bornn, 2016),

which implements the package RcppEigen to invert the decomposed matrix.
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Chapter 4

Analyses

4.1 Overview

This section will first look at two cases of simulated data. The hyper-parameters

θ = {l,σf} and the mixing proportions π will vary on the simulated sets. The

method from Chapter 3 will then be applied to recover the hyper-parameters and

classify each GP into their respective groups. For the two simulation studies, noise-

less squared exponential covariance functions will be used. Meaning, a perfectly

interpolated, noiseless process is observed for the simulation. Finally, rainfall data

from the coastal region of Tofino, British Columbia will be modelled and analyzed.

The rainfall analyses will use a squared exponential covariance function, with ad-

ditive measurement noise assumed to be present. Thus, for the real data analysis,

θ = {l,σf ,σn} will be estimated and modelled. The observed outputs y will be

(incorrectly) connected by lines for illustrative purposes.
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4.2 Simulated Data

4.2.1 Simulation I

The first simulation starts with generating 30 GPs. The processes are generated on

the interval [0, 10] with T = 7 evenly spaced realizations, i.e., each process has seven

values spread evenly on the interval. In all, 10 of the 30 GPs are generated from a

multivariate normal distribution (using the R package: mvrnorm) where the covariance

matrix was constructed using an SE covariance kernel with hyper-parameters l = 1

and σf = 3. The remaining 20 were generated similarly but with a covariance matrix

constructed with hyper-parameters l = 3 and σf = 3.

Figure 4.1: The 30 GPs from Simulation I, generated from two different kernel hyper-
parameter settings.

25



M.Sc. Thesis - Forrest Paton McMaster - Statistics

After running the algorithm described in Chapter 3, estimates for the set of hyper-

parameters and mixing proportion were recorded (Table 4.1). The mixing proportion

is easily identified and accurately estimated. Using the MAP classification, the algo-

rithm was able to correctly classify each process. Table 4.1 gives the mean parameter

estimates and standard errors. This was done by randomly (initializing the param-

eters from a random uniform draw) starting the algorithm 10 times and calculating

the mean and standard error from these 10 restarts.

Table 4.1: Simulation I, mean value for recovered hyper-parameters with standard

error. Calculated by randomly restarting the algorithm 10 times.

Parameter Truth Mean Estimate Standard Error

π1 0.33 0.33 0

π2 0.67 0.67 0

l1 1 1.22 0.005

l2 3 3.08 0.02

σf1 3 2.09 0.028

σf2 1 1.32 0.049

Once the processes are coloured by their MAP classification (Figure 4.1), one can

visually see the difference between the two process clusters. The processes (g = 2,

blue) with the larger length-scale l = 3 are smoother compared to those generated

from the process with length-scale l = 1. The length-scale parameter l was also readily

recovered in this scenario, producing similar estimates to the true hyper-parameter.

The hyper-parameter σf1, which as a reminder controls the functions variance (in y),

is not near the true parameter value. One reason for this could because this cluster

has a comparatively small length-scale l = 1, which models the relative correlation
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Figure 4.2: The 30 GPs from Simulation I, coloured by MAP classification. Red lines
are cluster g = 1 and blue lines are cluster g = 2.

between the points. If this is true, preference to model the processes height variation

is modelled more precisely with l than with σf .

4.2.2 Simulation II

The second simulation was done by first generating 20 GPs. Ten were generated from

an SE covariance kernel with hyper-parameters l = 1 and σf = 1. The remaining

10 GPs were generated from a covariance kernel with hyper-parameters l = 2 and

σf = 2. Similarly to Simulation I, the GPs were generated first by constructing the

covariance matrix, then by generating random samples using the R package mvrnorm.

In all, T = 9 equally spaced observed values were recorded for each GP (Figure 4.3).

Based on the plot in Figure 4.3, there seem to be no clear distinction or natural
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Figure 4.3: The 20 GPs from Simulation II, generated from two different kernel
hyper-parameter settings.

groups of processes. After coloring the processes by their (correct) classifications

(Figure 4.4), there is still ambiguity about the two groups separation.

Again, the method accurately recovers the mixing parameter and length-scale

(Table 4.2). However, for cluster 1, the length-scale l is slightly overestimated and the

method inflates σf to account for the height variance in y. The parameter estimates

were calculated by randomly restarting the algorithm 10 times and using the mean

estimate. The processes also look very similar between groups, and this solution

might be unconvincing if true group labels were unknown.
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Figure 4.4: The 20 GPs from Simulation II, classified by their MAP. Red lines are
cluster 1, blue lines are cluster 2.

Table 4.2: Simulation II, mean value for recovered hyper-parameters with standard

error. Calculated by randomly restarting the algorithm 10 times.

Parameter Truth Mean Estimate Standard Error

π1 0.5 0.52 0.002

π2 0.5 0.48 0.002

l1 1 1.33 0.016

l2 2 2.06 0.008

σf 1 1 1.82 0.034

σf 2 2 1.84 0.031
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4.3 Tofino Rainfall Data

4.3.1 El Niño and La Niña

El Niño and La Niña are irregular recurring weather patterns lasting roughly a year

in the Pacific Ocean and coastal region. El Niño is characterized by warming ocean

temperatures and is officially classified using the Oceanic Niño Index (ONI), an index

that measures positive increases in ocean temperature over a three month moving

average (NOAA, 2018a). La Niña, the extreme opposite of El Niño, is characterized

by cooling ocean temperatures and is also classified using ONI. A period of El Niño

is often followed by a La Niña year. Apart from the significant impact these weather

events have on precipitation and temperature, these events can drastically alter food

prices and cause forest fires, leading to lasting economic and political consequences

(NOAA, 2018b).

4.3.2 Analysis

This section will look at historical monthly precipitation data for the British Columbia

(B.C.) coastal region of Tofino. Data is recorded by the Government of Canada

(Government of Canada, 2007) and collected from the weather station Tofino A. Total

monthly precipitation was recorded from January 1990 to December 2000 (Figure 4.5;

Table 4.3). The ten years will be treated as independent GPs.

First, the data are centered and scaled such that the mean is 0 and standard devi-

ation is 1. The maximized hyper-parameters are fitted as shown in Figure 4.6. There

seem to be two groups emerging, six with a smaller length-scale (years 1991, 1992,

1993, 1996, 1997, 2000) and four years with a larger length-scale (years 1994,1995,1997,
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Figure 4.5: Monthly precipitation for the Tofino coastal region of B.C., Canada. The
points are (incorrectly) connected between months for illustrative purposes, there are
12 measurements per year.

1998), where a smaller length-scale suggests time points are less correlated relative

to time (month). In this case, the years with a smaller length-scale suggest monthly

rainfall are less correlated month to month than those with a larger length-scale.

After clustering, the ten years are grouped by their MAP classification into two

groups. Group two (“irregular”, π2 = 0.16) contains the years 1995 and 1998, and

the rest are classified into group one (“regular”, π1 = 0.84). This is illustrated in

Figure 4.7, where the years are coloured by their MAP classifications.

Cluster two contains only years where there was a change from El Niño to La

Niña, i.e. the year started with warm enough ocean temperatures to classify it as an

El Niño period, and by the end of the year the ocean had cooled enough to be classified

as La Niña. The two years (1995, 1998) picked from the classification as belonging
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Table 4.3: Year with their MAP classification, related weather events, and their
cluster soft classification.

Year Cluster Special Event Certainty/ P(cluster)
1991 1 El Niño 0.99
1992 1 El Niño 0.84
1993 1 None 1
1994 1 El Niño 0.93
1995 2 El Niño to La Niña 0.71
1996 1 La Niña 1
1997 1 El Niño 0.99
1998 2 El Niño to La Niña 0.80
1999 1 La Niña 0.73
2000 1 La Niña 1

to a different cluster correspond to years where rainfall patterns had comparatively

larger length-scale parameters. Some years (1992, 1994, and 1999) had comparatively

neutral optimized length-scale parameters (0.72 ≤ l ≤ 0.84), which is in the middle

of the two clusters estimated length-scale parameters lll = {l1 = 0.7, l2 = 1.02}. The

two clusters shared similar height variation (σf ) and noise (σn) parameters as shown

in Table 4.4. The parameter estimates shown represent the mean value and standard

error after running the algorithm 10 times, randomly starting the parameters, θ =

{l,σf ,σn}, with different values.

In Figure 4.8 two years are plotted side by side along with their predictive distri-

bution f∗ from Equation 2.13, the estimated function for unobserved values between

data points. The blue line (1998, cluster two) is comparatively smoother, the length-

scale is larger and changes in output (rainfall) can be accounted for by measurement

noise. This is shown as the blue line passes nearby (but not through) some red crosses.

Oppositely, the green line (1993, cluster one) is characterized with a smaller length-

scale l and smaller noise σn. With a smaller l, the function has more flexibility to
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Figure 4.6: Optimized hyper-parameters for the ten years of precipitation data. Red
dots are the l parameter, blue dots are σf . The years 1995 and 1998 were classified
into a separate cluster, they’re the only years in which σf is less than l.

model the sharp increases/decreases with little noise and, therefore, passes through

the points very precisely.

From further consideration of the estimated cluster parameters in Table 4.4, clus-

ter two’s years tend towards a larger length-scale compared to cluster one. This sug-

gests years where El Niño changes to La Niña, rainfall patterns change more smoothly

(i.e., are more correlated) across months as opposed to regular weather years.
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Table 4.4: Clustering results, parameters recovered. These estimates are the mean
and standard error calculated by running the algorithm 10 times from random start
points. The clusters differed mainly with their length-scale parameter l. The ir-
regular cluster, which only contained years where ocean temperatures changed from
irregularly warm (El Niño) to irregularly cold (La Niña).

Parameter Mean Estimate Standard Error
π1 0.84 0.011
π2 0.16 0.011
l1 0.7 0.002
l2 1.02 0.008
σf1 0.93 0.001
σf2 0.89 0.001
σn1 0.043 0.001
σn2 0.055 0.001

Figure 4.7: Tofino monthly precipitation coloured by their MAP classification.
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Figure 4.8: Two years of data plotted alongside their predictive distribution. The
blue line (year 1998) is smoother than the green line (year 1993). Mainly because its
characterized by a higher noise parameter (σ2

n), which is able to account for change
in height as measurement noise independent of the underlying function. Whereas the
green line must move quicker (through a smaller length-scale) to fit the points.
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Chapter 5

Conclusions

5.1 Discussion

This thesis presented a method for clustering functional data. First, the hyper-

parameters that make up a GP where optimized through a gradient-based maximum

likelihood optimizer. The EM algorithm for finite Gaussian mixture models was then

modified. Instead of maximizing the standard covariance matrix, hyper-parameters

for a kernel function that measures correlation in x were optimized. The covariance

matrix was then constructed from the optimal kernel parameters. In this thesis G

was considered known; however, future work should consider unknown number of

groups using methods such as entropy. It is also noted that missing, or incomplete

data can be handled by the model. Either by using the predictive distribution to

impute the missing data or by ignoring the missing values. This is possible because

the model makes inference on the underlying hyper-parameters of the kernel, and not

the particular index set of the process.

Two simulation studies were performed. When GPs from different distributions
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had a large difference in their length-scale parameter l (i.e., 1 and 3), parameters were

readily recovered. When GPs had similar length-scale parameters, l was recovered

but σf tended to shrink towards a common estimate between both clusters.

The methods developed were then applied to rainfall data from the coastal region

of Tofino, B.C. The method discovered two groups of years, one which contained

“regular” years and the other “irregular” years. The irregular years consisted only of

years that had both El Niño and La Niña events. These results suggest El Niño events

can be classified based on their kernel hyper-parameters. The data were standardized

to have a zero mean function, implying correlation between rainfall patterns month-

to-month can discriminate El Niño events (as apposed to magnitude of rainfall).
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