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Abstract

Consider a lossy compression system with ` distributed encoders and a centralized

decoder. Each encoder compresses its observed source and forwards the compressed

data to the decoder for joint reconstruction of the target signals under the mean

squared error distortion constraint. It is assumed that the observed sources can be

expressed as the sum of the target signals and the corruptive noises, which are gen-

erated independently from two (possibly different) symmetric multivariate Gaussian

distributions. Depending on the parameters of such Gaussian distributions, the rate-

distortion limit of this lossy compression system is characterized either completely or

for a subset of distortions (including, but not necessarily limited to, those sufficiently

close to the minimum distortion achievable when the observed sources are directly

available at the decoder). The results are further extended to the robust distributed

compression setting, where the outputs of a subset of encoders may also be used to

produce a non-trivial reconstruction of the corresponding target signals. In particu-

lar, we obtain in the high-resolution regime a precise characterization of the minimum

achievable reconstruction distortion based on the outputs of k + 1 or more encoders

when every k out of all ` encoders are operated collectively in the same mode that is

greedy in the sense of minimizing the distortion incurred by the reconstruction of the

corresponding k target signals with respect to the average rate of these k encoders.
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Notation and abbreviations

E[·] : Expectation Operator

(·)T : Transpose Operator

tr(·) : Trace Operator

det(·) : Determinant Operator

1j : j-Dimensional All-one Row Vector

diag(j)(κ1, · · · , κj) : j × j Diagonal Matrix with Diagonal Entries κ1, · · · , κj

Y n : (Y (1), · · · , Y (n))

A : a1 < · · · < aj

(ωi)i∈A : (ωa1 , · · · , ωaj)

|S| : The Cardinality of a Set S

e : the Base of the Logarithm Function

X : Target Signals

Z : Corruptived Noises

S : Observed Sources

V : Auxiliary Random Vector

Q,U,W : l-Dimensional Zero-mean Gaussian Random Vectors

Θ(j) : Arbitrary Unitary Matrix

a1, a2, b1, b2, c : Nonnegative Parameters
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â1, â2, b̂1, b̂2, ĉ : Nonnegative Parameters

ΓX , ΓZ , ΓS, : Covariance Matrices

ρX , ρZ , ρS, : Correlation Coefficients

γX , γZ , γS, : Variances

RDk : A Rate Distortion Tuple (r, dk, · · · , dl)

l, k : The Number of Encoders

λQ : Unique Positive Number
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Chapter 1

Introduction and Problem

Statement

1.1 Background

Since Shannon laid the foundation of the information and coding theory in 1948, in

the following decades, many researchers devote themselves to develop the efficiency of

the processing under wireless sensor network. The distributed source coding (DSC)

was a ground-breaking theory in the information and coding theory. Nowadays, DSC

theory is widely used in the fields of wireless sensor networks, video streaming and

Multimedia compression. Compressing same source of data, DSC theory delivers

higher compression efficiency and lower computational complexity on encoder side

than traditional coding theory.

Consider a wireless sensor network where potentially noise-corrupted signals are

collected and forwarded to a centralized decoder for further processing. Due to the
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communication constraints, it is often necessary to reduce the amount of the trans-

mitted data by local pre-processing at each sensor. Though the multiterminal source

coding theory, which aims to provide a systematic guideline for the implementation

of such pre-processing, is far from being complete, significant progress has been made

over the past few decades, starting from the seminal work by Slepian and Wolf on the

lossless case [1] to the more recent results on the quadratic Gaussian case [2]-[17].

Arguably the greatest insight offered by this theory is that one can capitalize on the

statistical dependency among the data at different sites to improve the compression

efficiency even when such data need to be compressed in a purely distributed fashion.

However, this performance improvement comes at a price: the compressed data from

different sites might not be separably decodable, instead they need to be gathered

at a central decoder for joint decompression. As a consequence, losing a portion of

distributedly compressed data may render the remaining portion completely useless.

Indeed, such situations are often encountered in practice.

For example, in the aforementioned wireless sensor network, it could happen that

the fusion center fails to gather the complete set of compressed data needed for per-

forming joint decompression due to unexpected sensor malfunctions or undesirable

channel conditions. A natural question thus arises whether a system can harness

the benefits of distributed compression without jeopardizing its functionality in ad-

verse scenarios. Intuitively, there exists a tension between compression efficiency and

system robustness. A good distributed compression system should strike a balance

between these two factors.

The theory intended to characterize the fundamental tradeoff between compres-

sion efficiency and system robustness for the centralized setting is known as multiple

2
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description coding, which has been extensively studied [18]-[36].

There are several algoithms of data compression which may concern the com-

pression efficiency. Such as dictionary algoithm, fixed bit length packing, run length

encoding and Huffman encoding. One can choose the fittable alogithm for the certain

senarios to improve the compression efficiency. Consider of the system robustness,

it is an ability to cope the errors possibly under a certain error-tolerant rate. There

are several methods to determine whether the system is robust or not. For instance,

RouthHurwitz stability criterion, Nyquist stability criterion, root locus and etc.

In contrast, its distributed counterpart is far less developed, and the relevant

literature is rather scarce [37]-[39].

1.2 Project Objectives

In this thesis, there are two theorems for solving the problems that discussed in the

previous section. One is considered about all ` distributed encoders and another is

considered about k encoders out of ` distributed encoone caders to one centralized

decoder. The specific objectives are shown as follows:

1. Balance the compression efficiency and system robustness in a lossy compression

system. In the present work, we consider a lossy compression system with `

distributed encoders and a centralized decoder. Each encoder compresses its

observed source and forwards the compressed data to the decoder(see Fig. 1.1).

Given the data from an arbitrary subset of encoders, the decoder is required to

reconstruct the corresponding target signals within a prescribed mean squared

error distortion threshold (dependent on the cardinality of that subset). It is

assumed that the observed sources can be expressed as the sum of the target

3
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Figure 1.1: A processing from ` distributed encoders to a centralized decoder.

signals and the corruptive noises, which are generated independently from two

(possibly different) symmetric multivariate Gaussian distributions, which this

assumption is not essential for our analysis. It is adopted mainly for the purpose

of making the rate-distortion expressions as explicit as possible. This setting

is similar to that of the robust Gaussian CEO problem studied in [37], [38].

However, there are two major differences: the robust Gaussian CEO problem

imposes the restrictions that 1) the target signal is a scalar process, and 2)

the noises across different encoders are independent. Though these restrictions

could be justified in certain scenarios, they were introduced largely due to the

technical reliance on Oohama’s bounding technique for the scalar Gaussian CEO

problem [3], [6]. In this paper, we shall tackle the more difficult case where

the target signals jointly form a vector process by adapting recently developed

analytical methods in Gaussian multiterminal source coding theory [10], [13]-

[15] to the robust compression setting.

2. Achieve the target signal to vectors by using the Gaussian multiterminal source.

4
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We show that the theoretical difficulty caused by correlated noises can be cir-

cumvented through a coupling argument. Specifically, we introduce a fictitious

signal-noise decomposition of the observed sources such that the resulting noises

are independent across encoders, and couple it with the given decomposition

via a Markov construction. In fact, it will become clear that this coupling ar-

gument can be useful even for analyzing those distributed compression systems

with independent noises.

1.3 Thesis Structure

This thesis consists of four chapters. This first chapter provides the background and

objectives for the robust distributed compression and the structure of this thesis. A

problem definition and the main results of the study is presented in chapter 2. The

proof of theorem 1 and the description of theorem 2 are also shown in chapter 2.

The proof of theorem 2 part 1, part 2 and part 3 are all presented in chapter 3. The

conclusion arising from present work and suggestions for future work are provided

in chapter 4. Appendix A and Appendix B are both provided after then. A list of

reference is provided at the end of the thesis.

5



Chapter 2

Problem Definitions and Main

Results

2.1 Problem Definitions

Let the target signals X , (X1, · · · , X`)
T and the corruptive noises Z , (Z1, · · · , Z`)T

be two mutually independent `-dimensional (` ≥ 2) zero-mean Gaussian random

vectors, and the observed sources S , (S1, · · · , S`)T be their sum (i.e., S = X + Z).

6
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Their respective covariance matrices are given by

ΓX ,



γX ρXγX · · · ρXγX

ρXγX
. . . . . .

...

...
. . . . . . ρXγX

ρXγX · · · ρXγX γX


,

ΓZ ,



γZ ρZγZ · · · ρZγZ

ρZγZ
. . . . . .

...

...
. . . . . . ρZγZ

ρZγZ · · · ρZγZ γZ


,

ΓS ,



γS ρSγS · · · ρSγS

ρSγS
. . . . . .

...

...
. . . . . . ρSγS

ρSγS · · · ρSγS γS


,

and satisfy ΓS = ΓX+ΓZ . Moreover, we construct an i.i.d. process {(X(t), Z(t), S(t))}∞t=1

such that the joint distribution ofX(t) , (X1(t), · · · , X`(t))
T , Z(t) , (Z1(t), · · · , Z`(t))T ,

and S(t) , (S1(t), · · · , S`(t))T is the same as that of X, Z, and S for t = 1, 2, · · · .

By the eigenvalue decomposition, every j × j (real) matrix

Γ(j) ,



α β · · · β

β
. . . . . .

...

...
. . . . . . β

β · · · β α



7
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can be written as

Γ(j) = Θ(j)Λ(j)(Θ(j))T , (2.1)

where Θ(j) is an arbitrary (real) unitary matrix with the first column being 1√
j
1Tj ,

and

Λ(j) , diag(j)(α + (j − 1)β, α− β, · · · , α− β).

For j ∈ {1, · · · , `}, let Γ
(j)
X , Γ

(j)
Z , and Γ

(j)
S denote the leading j×j principal submatrices

of ΓX , ΓZ , and ΓS, respectively; in view of (2.1), we have

Γ
(j)
X = Θ(j)Λ

(j)
X (Θ(j))T ,

Γ
(j)
Z = Θ(j)Λ

(j)
Z (Θ(j))T ,

Γ
(j)
S = Θ(j)Λ

(j)
S (Θ(j))T ,

where

Λ
(j)
X , diag(j)(λ

(j)
X,1, λX,2, · · · , λX,2),

Λ
(j)
Z , diag(j)(λ

(j)
Z,1, λZ,2, · · · , λZ,2),

Λ
(j)
S , diag(j)(λ

(j)
S,1, λS,2, · · · , λS,2)

8
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with

λ
(j)
X,1 , (1 + (j − 1)ρX)γX ,

λX,2 , (1− ρX)γX ,

λ
(j)
Z,1 , (1 + (j − 1)ρZ)γZ ,

λZ,2 , (1− ρZ)γZ ,

λ
(j)
S,1 , (1 + (j − 1)ρS)γS,

λS,2 , (1− ρS)γS.

Note that ΓX , ΓZ , and ΓS are positive semidefinite (and consequently are well-

defined covariance matrices) if and only if λ
(`)
X,1 ≥ 0, λX,2 ≥ 0, λ

(`)
Z,1 ≥ 0, λZ,2 ≥ 0,

λ
(`)
S,1 ≥ 0, and λS,2 ≥ 0. Furthermore, we assume that γX > 0 since otherwise the

target signals are not random. It follows by this assumption that γS > 0, λ
(`)
X,1+λX,2 >

0, and λ
(`)
S,1 + λS,2 > 0.

2.1.1 The Case of All ` Encoders

Definition 1 : Given k ∈ {1, · · · , `}, a rate-distortion tuple (r, dk, · · · , d`) is said to

be achievable if, for any ε > 0, there exist encoding functions φ
(n)
i : Rn → C(n)i ,

9



M.A.Sc. Thesis - Xuan Zhang McMaster - Electrical Engineering

i = 1, · · · , `, such that

1

kn

∑
i∈A

log |C(n)i | ≤ r + ε,

A ⊆ {1, · · · , `} with |A| = k, (2.2)

1

|A|n
∑
i∈A

n∑
t=1

E[(Xi(t)− X̂i,A(t))2] ≤ d|A| + ε,

A ⊆ {1, · · · , `} with |A| ≥ k, (2.3)

where X̂i,A(t) , E[Xi(t)|(φ(n)
i′ (Sni′))i′∈A]. The set of all such achievable (r, dk, · · · , d`)

is denoted by RDk.

Remark 1 : Due to the symmetry of the underlying distributions, it can be shown

via a timesharing argument that RDk is not affected if we replace (2.2) with either

of the following constraints

1

n
log |C(n)i | ≤ r + ε, i = 1, · · · , `,

1

`n

∑̀
i=1

log |C(n)i | ≤ r + ε,

and/or replace (2.3) with either of the following constraints

1

n

n∑
t=1

E[(Xi(t)− X̂i,A(t))2] ≤ d|A| + ε,

A ⊆ {1, · · · , `} with |A| ≥ k,

1(
n
j

)
jn

∑
A⊆{1,··· ,`}:|A|=j

∑
i∈A

n∑
t=1

E[(Xi(t)− X̂i,A(t))2]

≤ dj + ε, j = k, · · · , `.

10
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Remark 2 : We show in Appendix A that, for j = k, · · · , `,

d
(j)
min ,

1

j

j∑
i=1

E[(Xi − E[Xi|S1, · · · , Sj])2]

=
1

j
d
(j)
min,1 +

j − 1

j
dmin,2,

where

d
(j)
min,1 ,


0, λ

(j)
S,1 = 0,

λ
(j)
X,1λ

(j)
Z,1

λ
(j)
S,1

, otherwise,

dmin,2 ,

 0, λS,2 = 0,

λX,2λZ,2

λS,2
, otherwise.

It is clear that dj > d
(j)
min, j = k, · · · , `, for any (r, dk, · · · , d`) ∈ RDk. Moreover,

if dj ≥ γX for some j ∈ {k, · · · , `}, then the corresponding distortion constraint is

redundant. Henceforth we shall focus on the case dj ∈ (d
(j)
min, γX), j = k, · · · , `.

2.1.2 The Case of k Out of All ` Encoders

Definition 2 : For d` ∈ (d
(`)
min, γX), let

r(`)(d`) , min{r : (r, d`) ∈ RD`}.

In order to state our main results, we introduce the following quantities. For any

11
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k ∈ {1, · · · , `} and dk ∈ (d
(k)
min, γX), let

r(k)(dk) ,
1

2k
log

(λ
(k)
S,1 + λ

(k)
Q )(λS,2 + λ

(k)
Q )k−1

(λ
(k)
Q )k

,

d
(k)
j (dk) ,

λ
(j)
X,1(λ

(j)
Z,1 + λ

(k)
Q )

j(λ
(j)
S,1 + λ

(k)
Q )

+
(j − 1)λX,2(λZ,2 + λ

(k)
Q )

j(λS,2 + λ
(k)
Q )

, j = k, · · · , `,

where λ
(k)
Q is the unique positive number satisfying

λ
(k)
X,1(λ

(k)
Z,1 + λ

(k)
Q )

k(λ
(k)
S,1 + λ

(k)
Q )

+
(k − 1)λX,2(λZ,2 + λ

(k)
Q )

k(λS,2 + λ
(k)
Q )

= dk. (2.4)

Our first result is a partial characterization of r(`)(d`).

2.2 The Comprehension of Two Theorems

2.2.1 The definition of Theorem 1

Theorem 1 : For d` ∈ (d
(`)
min, γX),

r(`)(d`) = r(`)(d`)

if either of the following conditions is satisfied:

12
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1. ρS ≥ 0 and

(`− 1)λ2X,2(λ
(`)
S,1)

2µ(`)(µ(`) − 1)

+ `(λ
(`)
X,1)

2λ2S,2 ≥ 0, (2.5)

where

µ(`) ,
λS,2 − λS,2(λS,2 + λ

(`)
Q )−1λS,2

λ
(`)
S,1 − λ

(`)
S,1(λ

(`)
S,1 + λ

(`)
Q )−1λ

(`)
S,1

. (2.6)

2. ρS ≤ 0 and

(λ
(`)
X,1)

2λ2S,2ν
(`)(ν(`) − 1) + `λ2X,2(λ

(`)
S,1)

2 ≥ 0, (2.7)

where

ν(`) ,
λ
(`)
S,1 − λ

(`)
S,1(λ

(`)
S,1 + λ

(`)
Q )−1λ

(`)
S,1

λS,2 − λS,2(λS,2 + λ
(`)
Q )−1λS,2

. (2.8)

Remark 3 :

1. Consider the case ρS ≥ 0. When (`−1)λ2X,2(λ
(`)
S,1)

2 ≤ 4`(λ
(`)
X,1)

2λ2S,2, the inequal-

ity (2.5) always holds, and r(`)(d`) is characterized for all d` ∈ (d
(`)
min, γX). When

(`− 1)λ2X,2(λ
(`)
S,1)

2 > 4`(λ
(`)
X,1)

2λ2S,2, the equation (`− 1)λ2X,2(λ
(`)
S,1)

2µ(`)(µ(`)− 1) +

13
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`(λ
(`)
X,1)

2λ2S,2 = 0 has two real roots in the interval [0, 1]:

µ
(`)
1 ,

1

2
− 1

2

√√√√1−
4`(λ

(`)
X,1)

2λ2S,2

(`− 1)λ2X,2(λ
(`)
S,1)

2
,

µ
(`)
2 ,

1

2
+

1

2

√√√√1−
4`(λ

(`)
X,1)

2λ2S,2

(`− 1)λ2X,2(λ
(`)
S,1)

2
.

Therefore, the inequality (2.5) holds if

µ(`) ≤ µ
(`)
1 or µ(`) ≥ µ

(`)
2 . (2.9)

It is easy to verify that (2.9) is satisfied when λ
(`)
S,1 > λS,2 = 0 (which implies

µ(`) = 0) or λ
(`)
S,1 = λS,2 > 0 (which implies µ(`) = 1). When λ

(`)
S,1 > λS,2 > 0, µ(`)

is a strictly decreasing function of d`, converging to 1 as d` → d
(`)
min and to

λS,2

λ
(`)
S,1

as d` → γX ; hence, it suffices to analyze the following four scenarios.

(a) µ
(`)
2 ≤

λS,2

λ
(`)
S,1

: µ(`) ≥ µ
(`)
2 is satisfied for all d` ∈ (d

(`)
min, γX).

(b) µ
(`)
1 ≤

λS,2

λ
(`)
S,1

and
λS,2

λ
(`)
S,1

< µ
(`)
2 < 1: µ(`) ≥ µ

(`)
2 is satisfied for all d` sufficiently

close to d
(`)
min.

(c) µ
(`)
1 >

λS,2

λ
(`)
S,1

and µ
(`)
2 < 1: µ(`) ≤ µ

(`)
1 is satisfied for all d` sufficiently close

to γX while µ(`) ≥ µ
(`)
2 is satisfied for all d` sufficiently close to d

(`)
min.

(d) µ
(`)
1 = 0 and µ

(`)
2 = 1: This can happen only when λ

(`)
X,1 = 0.

In view of the above discussion, under the condition ρS ≥ 0, r(`)(d`) is charac-

terized at least for all d` sufficiently close to d
(`)
min unless λ

(`)
X,1 = 0 and λ

(`)
S,1 > λS,2

(note that λ
(`)
X,1 = 0 implies λS,2 > 0).

14
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2. Consider the case ρS ≤ 0. When (λ
(`)
X,1)

2λ2S,2 ≤ 4`λ2X,2(λ
(`)
S,1)

2, the inequality

(2.7) always holds, and r(`)(d`) is characterized for all d` ∈ (d
(`)
min, γX). When

(λ
(`)
X,1)

2λ2S,2 > 4`λ2X,2(λ
(`)
S,1)

2, the equation (λ
(`)
X,1)

2λ2S,2ν
(`)(ν(`)−1)+`λ2X,2(λ

(`)
S,1)

2 =

0 has two real roots in the interval [0, 1]:

ν
(`)
1 ,

1

2
− 1

2

√√√√1−
4`λ2X,2(λ

(`)
S,1)

2

(λ
(`)
X,1)

2λ2S,2
,

ν
(`)
2 ,

1

2
+

1

2

√√√√1−
4`λ2X,2(λ

(`)
S,1)

2

(λ
(`)
X,1)

2λ2S,2
.

Therefore, the inequality (2.7) holds if

ν(`) ≤ ν
(`)
1 or ν(`) ≥ ν

(`)
2 . (2.10)

It is easy to verify that (2.10) is satisfied when λS,2 > λ
(`)
S,1 = 0 (which implies

ν(`) = 0) or λ
(`)
S,1 = λS,2 > 0 (which implies ν(`) = 1). When λS,2 > λ

(`)
S,1 > 0, ν(`)

is a strictly decreasing function of d`, converging to 1 as d` → d
(`)
min and to

λ
(`)
S,1

λS,2

as d` → γX ; hence, it suffices to analyze the following four scenarios.

(a) ν
(`)
2 ≤

λ
(`)
S,1

λS,2
: ν(`) ≥ ν

(`)
2 is satisfied for all d` ∈ (d

(`)
min, γX).

(b) ν
(`)
1 ≤

λ
(`)
S,1

λS,2
and

λ
(`)
S,1

λS,2
< ν

(`)
2 < 1: ν(`) ≥ ν

(`)
2 is satisfied for all d` sufficiently

close to d
(`)
min.

(c) ν
(`)
1 >

λ
(`)
S,1

λS,2
and ν

(`)
2 < 1: ν(`) ≤ ν

(`)
1 is satisfied for all d` sufficiently close to

γX while ν(`) ≥ ν
(`)
2 is satisfied for all d` sufficiently close to d

(`)
min.

(d) ν
(`)
1 = 0 and ν

(`)
2 = 1: This can happen only when λX,2 = 0.

15
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In view of the above discussion, under the condition ρS ≤ 0, r(`)(d`) is charac-

terized at least for all d` sufficiently close to d
(`)
min unless λX,2 = 0 and λS,2 > λ

(`)
S,1

(note that λX,2 = 0 implies λ
(`)
S,1 > 0).

Theorem 1 a special case of the following more general result.

2.2.2 The definition of Theorem 2

Theorem 2 :

1. For dk ∈ (d
(k)
min, γX),

(r(k)(dk), d
(k)
k (dk), · · · , d(k)` (dk)) ∈ RDk.

2. For (r, dk, · · · , d`) ∈ RDk with dk ∈ (d
(k)
min, γX),

r ≥ r(k)(dk)

if either of the following conditions is satisfied:

i) ρS ≥ 0 and

(k − 1)λ2X,2(λ
(k)
S,1)

2µ(k)(µ(k) − 1)

+ k(λ
(k)
X,1)

2λ2S,2 ≥ 0, (2.11)

where µ(k) is defined in (2.6) with ` replaced by k.

16
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ii) ρS ≤ 0 and

(λ
(k)
X,1)

2λ2S,2ν
(k)(ν(k) − 1) + kλ2X,2(λ

(k)
S,1)

2

≥ 0, (2.12)

where ν(k) is defined in (2.8) with ` replaced by k.

(a) For j ∈ {k, · · · , `} and (r, dk, · · · , d`) ∈ RDk with dk ∈ (d
(k)
min, γX) and

r = r(k)(dk), we have

dj ≥ d
(k)
j (dk)

if either of the following conditions is satisfied:

i. Condition i).

ii. ρS ≤ 0, λ
(j)
S,1 > 0, and

(ν(k,j) + (k − 1))(λ
(k)
X,1)

2λ2S,2(ν
(k))2

+ (k − 1)(ν(k,j) − ν(k))λ2X,2(λ
(k)
S,1)

2 ≥ 0, (2.13)

(ν(k,j) − 1)(λ
(k)
X,1)

2λ2S,2(ν
(k))2

+ ((k − 1)ν(k,j) + ν(k))λ2X,2(λ
(k)
S,1)

2 ≥ 0, (2.14)

where

ν(k,j) =
λ
(j)
S,1 − λ

(j)
S,1(λ

(j)
S,1 + λ

(k)
Q )−1λ

(j)
S,1

λS,2 − λS,2(λS,2 + λ
(k)
Q )−1λS,2

.

Proof : See Chapter 3.

17
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Remark 4 :

1. The argument in Remark 3 can be leveraged to prove that, for the case ρS ≥ 0,

the inequality (2.11) holds at least for all dk sufficiently close to d
(k)
min unless

λ
(k)
X,1 = 0 (which can happen only when k = `) and λ

(k)
S,1 > λS,2 (note that

λ
(k)
X,1 = 0 implies λS,2 > 0); similarly, for the case ρS ≤ 0, the inequality (2.12)

holds at least for all dk sufficiently close to d
(k)
min unless λX,2 = 0 and λS,2 > λ

(k)
S,1

(note that λX,2 = 0 implies λ
(k)
S,1 > 0).

2. For the case ρS ≤ 0, the condition λ
(j)
S,1 > 0 can be potentially violated (i.e.,

λ
(j)
S,1 = 0) only when j = `.

3. Consider the case ρS ≤ 0 and λ
(j)
S,1 > 0. If λ

(k)
X,1 > 0, then the inequality

(2.13) holds at least for dk sufficiently close to d
(k)
min; if λ

(k)
X,1 = 0, which implies

k = j = `, then the inequality (2.13) always holds. The inequality (2.14) holds

at least for dk sufficiently close to d
(k)
min unless λX,2 = 0 and λS,2 > λ

(j)
S,1.

2.3 Main Results

Our main results are summarized below.

1. For the case where the decoder is only required to reconstruct the target signals

based on the outputs of all ` encoders, the rate-distortion limit is characterized

either completely or partially, depending on the parameters of signal and noise

distributions.

2. For the case where the outputs of a subset of encoders may also be used to

produce a non-trivial reconstruction of the corresponding target signals, the

18
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minimum achievable reconstruction distortion based on the outputs of k + 1

or more encoders is characterized either completely or partially, depending on

the parameters of signal and noise distributions, when every k out of all `

encoders are operated collectively in the same mode that is greedy in the sense

of minimizing the distortion incurred by the reconstruction of the corresponding

k target signals with respect to the average rate of these k encoders.

19



Chapter 3

Proof of Theorem 2

3.1 Proof of Theorem 2 : Part 1

The following lemma can be obtained by adapting the classical result by Berger [40]

and Tung [41] to the current setting.

Lemma 1 : For any auxiliary random vector V , (V1, · · · , V`)T jointly distributed

with (X,Z, S) such that {X,Z, (Si′)i′∈{1,··· ,`}\{i}, (Vi′)i′∈{1,··· ,`}\{i}} ↔ Si ↔ Vi form a

Markov chain, i = 1, · · · , `, and any (r, dk · · · , d`) such that

r1k ∈ R(A), A ⊆ {1, · · · , `} with |A| = k,

d|A| ≥
1

|A|
∑
i∈A

E[(Xi − E[Xi|(Vi′)i′∈A])2],

A ⊆ {1, · · · , `} with |A| ≥ k,

20
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Figure 3.1: The decomposition of vector V

where R(A) denotes the set of (ri)i∈A satisfying

∑
i∈B

ri ≥ I((Si)i∈B; (Vi)i∈B|(Vi)i∈A\B), ∅ ⊂ B ⊆ A,

we have

(r, dk · · · , d`) ∈ RDk.

Equipped with this lemma, we are in a position to prove Part 1 of Theorem 2.

Let Q , (Q1, · · · , Q`)
T be an `-dimensional zero-mean Gaussian random vector with

covariance matrix

ΛQ , diag(`)(λQ, · · · , λQ) � 0.

Moreover, we assume that Q is independent of (X,Z, S), and let

Vi , Si +Qi, i = 1, · · · , `.

The relation between all the vectors are shown in Fig. 3.1.
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Clearly, V , (V1, · · · , V`)T satisfies the condition specified in Lemma 1. Let

r ,
1

k
I(S1, · · · , Sk;V1, · · · , Vk),

dj ,
1

j

j∑
i=1

E[(Xi − E[Xi|V1, · · · , Vj])2],

j = k, · · · , `.

It is easy to show that r1k ∈ R(A) for all A ⊆ {1, · · · , `} with |A| = k by leveraging

the contra-polymatroid structure [42] of R(A) and the symmetry of the underlying

distributions. Let Λ
(j)
Q denote the leading j×j principal submatrix of ΛQ, j = k, · · · , `.

We have

r =
1

k
(h(V1, · · · , Vk)− h(V1, · · · , Vk|S1, · · · , Sk))

=
1

k
(h(S1 +Q1, · · · , Sk +Qk)− h(Q1, · · · , Qk))

=
1

2k
log

det(Γ
(k)
S + Λ

(k)
Q )

det(Λ
(k)
Q )

=
1

2k
log

det(Λ
(k)
S + Λ

(k)
Q )

det(Λ
(k)
Q )

=
1

2k
log

(λ
(k)
S,1 + λQ)(λS,2 + λQ)k−1

λkQ
.
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Moreover, for j = k, · · · , `,

dj =
1

j
tr(Γ

(j)
X − Γ

(j)
X (Γ

(j)
S + Λ

(j)
Q )−1Γ

(j)
X )

=
1

j
tr(Λ

(j)
X − Λ

(j)
X (Λ

(j)
S + Λ

(j)
Q )−1Λ

(j)
X )

=
λ
(j)
X,1(λ

(j)
Z,1 + λQ)

j(λ
(j)
S,1 + λQ)

+
(j − 1)λX,2(λZ,2 + λQ)

j(λS,2 + λQ)
,

which is a strictly increasing function of λQ, converging to d
(j)
min as λQ → 0 and to γX

as λQ →∞. One can readily complete the proof of Part 1 of Theorem 2 by invoking

Lemma 1.

3.2 Proof of Theorem 2 : Part 2 and Part 3

Now we proceed to prove Part 2 and Part 3 of Theorem 2. Fix k and j with

1 ≤ k ≤ j ≤ `. First consider the case Γ
(j)
S � 0 (i.e., λ

(j)
S,1 > 0 and λS,2 > 0). Let

(S1, · · · , Sj)T = (U1, · · · , Uj)T + (W1, · · · ,Wj)
T be a fictitious signal-noise decom-

position of (S1, · · · , Sj)T , where (U1, · · · , Uj)T and (W1, · · · ,Wj)
T are two mutually

independent j-dimensional zero-mean Gaussian vectors with covariance matrices

Γ
(j)
U � 0,

Λ
(j)
W , diag(j)(λW , · · · , λW ) � 0,

respectively. Moreover, we couple this fictitious decomposition with the given decom-

position (S1, · · · , Sj)T = (X1, · · · , Xj)
T+(Z1, · · · , Zj)T by assuming that ({(U1, · · · , Uj)T ,

(W1, · · · ,Wj)
T} ↔ (S1, · · · , Sj)T ↔ {(X1, · · · , Xj)

T , (Z1, · · · , Zj)T} form a Markov

23
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chain, and construct the auxiliary random processes {(U1(t), · · · , Uj(t))T}∞t=1 and

{(W1(t), · · · ,W`(t))
T}∞t=1 accordingly.

It is worth mentioning that the idea of augmenting the probability space via the

introduction of auxiliary random processes is inspired by [8], [10], [13]-[15], [18], [24],

[26], [28]. Our construction (without the symmetry constraint) can be viewed as a

generalization of that in [10], which is restricted to the special case where the corrup-

tive noises are absent. It should also be contrasted with the conventional approach

where (U1, · · · , Uj)T and (W1, · · · ,Wj)
T are set respectively to be (X1, · · · , Xj)

T and

(Z1, · · · , Zj)T (with the components of (Z1, · · · , Zj)T assumed to be mutually in-

dependent); in general, the Markov coupling allows more flexible constructions and

yields stronger results. Another novelty in our construction is that the fictitious

decomposition is specified for (S1, · · · , Sj)T instead of (S1, · · · , S`)T . As a conse-

quence, we can choose λW from (0,min{λ(j)S,1, λS,2}), which may offer more freedom

than (0,min{λ(`)S,1, λS,2}) since min{λ(j)S,1, λS,2} ≥ min{λ(`)S,1, λS,2} and the inequality is

strict when ρS < 0 and j < `.

In view of Definition 1, for any (r, dk · · · , d`) ∈ RDk and ε > 0, there exist
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encoding functions φ
(n)
i : Rn → C(n)i , i = 1, · · · , j, such that

1

kn

∑
i∈A

log |C(n)i | ≤ r + ε,

A ⊆ {1, · · · , j} with |A| = k, (3.1)

1

kn

∑
i∈A

n∑
t=1

E[(Xi(t)− X̂i,A(t))2] ≤ dk + ε,

A ⊆ {1, · · · , j} with |A| = k, (3.2)

1

jn

j∑
i=1

n∑
t=1

E[(Xi(t)− X̂i,{1,··· ,j}(t))
2] ≤ dj + ε.
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We have

∑
i∈A

log |C(n)i |

≥ H((φ
(n)
i (Sni ))i∈A)

= I((Un
i )i∈A; (φ

(n)
i (Sni ))i∈A)

+H((φ
(n)
i (Sni ))i∈A|(Un

i )i∈A)

= I((Un
i )i∈A; (φ

(n)
i (Sni ))i∈A)

+ I((Sni )i∈A; (φ
(n)
i (Sni ))i∈A|(Un

i )i∈A)

= h((Un
i )i∈A) + h((W n

i )i∈A)

− h((Un
i )i∈A|(φ(n)

i (Sni ))i∈A)

− h((Sni )i∈A|(Un
i )i∈A, (φ

(n)
i (Sni ))i∈A)

=
n

2
log((2πe)k det(Γ

(k)
U )) +

n

2
log((2πe)k det(Λ

(k)
W ))

− h((Un
i )i∈A|(φ(n)

i (Sni ))i∈A)

− h((Sni )i∈A|(Un
i )i∈A, (φ

(n)
i (Sni ))i∈A), (3.3)

where Γ
(k)
U and Λ

(k)
W denote the leading k × k principal submatrices of Γ

(j)
U and Λ

(j)
W ,

respectively. For t = 1, · · · , n, let

ΣA(t) , E[(Ui(t)− Ûi,A(t))Ti∈A(Ui(t)− Ûi,A(t))i∈A],

∆A(t) , E[(Si(t)− S̃i,A(t))Ti∈A(Si(t)− S̃i,A(t))i∈A],
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where

Ûi,A(t) , E[Ui(t)|(φ(n)
i′ (Sni′))i′∈A], i ∈ A,

S̃i,A(t) , E[Si(t)|(Un
i′ )i′∈A, (φ

(n)
i′ (Sni′))i′∈A], i ∈ A.

Moreover, let

ΣA ,
1

n

n∑
t=1

ΣA(t),

∆A ,
1

n

n∑
t=1

∆A(t).

It can be verified that

h((Un
i )i∈A|(φ(n)

i (Sni ))i∈A)

=
n∑
t=1

h((Ui(t))i∈A|(φ(n)
i (Sni ))i∈A, (U

t−1
i )i∈A)

≤
n∑
t=1

h((Ui(t))i∈A|(φ(n)
i (Sni ))i∈A)

=
n∑
t=1

h((Ui(t)− Ûi,A(t))i∈A|(φ(n)
i (Sni ))i∈A)

≤
n∑
t=1

h((Ui(t)− Ûi,A(t))i∈A)

≤
n∑
t=1

1

2
log((2πe)k det(ΣA(t))) (3.4)

≤ n

2
log((2πe)k det(ΣA)), (3.5)

where (3.4) is due to the maximum differential entropy lemma [43, p. 21], and (3.5)
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is due to the concavity of the log-determinant function. Similarly, we have

h((Sni )i∈A|(Un
i )i∈A, (φ

(n)
i (Sni ))i∈A)

≤ n

2
log((2πe)k det(∆A)). (3.6)

Combining (3.1), (3.3), (3.5), and (3.6) gives

1

2k
log

det(Γ
(k)
U ) det(Λ

(k)
W )

det(ΣA) det(∆A)
≤ r + ε. (3.7)

For t = 1, · · · , n, let

DA(t) , E[(Si(t)− Ŝi,A(t))Ti∈A(Si(t)− Ŝi,A(t))i∈A],

where

Ŝi,A(t) , E[Si(t)|(φ(n)
i′ (Sni′))i′∈A], i ∈ A.

Moreover, let

DA ,
1

n

n∑
t=1

DA(t).

Clearly, we have

0 ≺ DA � Γ
(k)
S . (3.8)
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Furthermore, as shown in Appendix B,

ΣA = Γ
(k)
U (Γ

(k)
S )−1DA(Γ

(k)
S )−1Γ

(k)
U + Γ

(k)
U

− Γ
(k)
U (Γ

(k)
S )−1Γ

(k)
U , (3.9)

∆A � (D−1A + (Λ
(k)
W )−1 − (Γ

(k)
S )−1)−1. (3.10)

The argument for (3.9) can also be leveraged to prove

1

n

∑
i∈A

n∑
t=1

E[(Xi(t)− X̂i,A(t))2]

= tr(Γ
(k)
X (Γ

(k)
S )−1DA(Γ

(k)
S )−1Γ

(k)
X + Γ

(k)
X

− Γ
(k)
X (Γ

(k)
S )−1Γ

(k)
X ),

which, together with (3.2), implies

tr(Γ
(k)
X (Γ

(k)
S )−1DA(Γ

(k)
S )−1Γ

(k)
X + Γ

(k)
X

− Γ
(k)
X (Γ

(k)
S )−1Γ

(k)
X ) ≤ k(dk + ε). (3.11)
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For t = 1, · · · , n, let

∆{1,··· ,j}(t)

, E[(S1(t)− S̃1,{1,··· ,j}(t), · · · , Sj(t)− S̃j,{1,··· ,j}(t))T

(S1(t)− S̃1,{1,··· ,j}(t), · · · , Sj(t)− S̃j,{1,··· ,j}(t))],

D{1,··· ,j}(t)

, E[(S1(t)− Ŝ1,{1,··· ,j}(t), · · · , Sj(t)− Ŝj,{1,··· ,j}(t))T

(S1(t)− Ŝ1,{1,··· ,j}(t), · · · , Sj(t)− Ŝj,{1,··· ,j}(t))],

δi(t) , E[(Si(t)− S̃i(t))2], i = 1, · · · , j,

where

S̃i,{1,··· ,j}(t)

, E[Si(t)|Un
1 , · · · , Un

j , φ
(n)
1 (Sn1 ), · · · , φ(n)

j (Snj )],

i = 1, · · · , j,

Ŝi,{1,··· ,j}(t) , E[Si(t)|φ(n)
1 (Sn1 ), · · · , φ(n)

j (Snj )],

i = 1, · · · , j,

S̃i(t) , E[Si(t)|Un
i , φ

(n)
i (Sni )], i = 1, · · · , j.
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Moreover, let

∆{1,··· ,j} ,
1

n

n∑
t=1

∆{1,··· ,j}(t),

D{1,··· ,j} ,
1

n

n∑
t=1

D{1,··· ,j}(t),

δi ,
n∑
t=1

δi(t), i = 1, · · · , j.

The argument for (3.10) and (3.11) can be leveraged to show that

∆{1,··· ,j} � (D−1{1,··· ,j} + (Λ
(j)
W )−1 − (Γ

(j)
S )−1)−1, (3.12)

tr(Γ
(j)
X (Γ

(j)
S )−1D{1,··· ,j}(Γ

(j)
S )−1Γ

(j)
X + Γ

(j)
X

− Γ
(j)
X (Γ

(j)
S )−1Γ

(j)
X ) ≤ j(dj + ε). (3.13)

It is also clear that

0 < δi, i = 1, · · · , `. (3.14)

Furthermore, in view of the fact that Sni = Un
i + W n

i , i = 1, · · · , j, and that

(Un
1 , · · · , Un

j ), (W n
1 , · · · ,W n

j ) are mutually independent, we must have

∆A = diag(k)(δi)i∈A, (3.15)

∆{1,··· ,j} = diag(j)(δ1, · · · , δj). (3.16)

Combining (3.7)–(3.16), sending ε→ 0, and invoking a symmetrization and convexity

argument shows that there exist D(k), D(j), and δ satisfying the following set of
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inequalities

1

2k
log

det(Γ
(k)
U )

det(Σ(k))
+

1

2
log

λW
δ
≤ r, (3.17)

0 ≺ D(k) � Γ
(k)
S , (3.18)

0 < δ, (3.19)

diag(k)(δ, · · · , δ)

� ((D(k))−1 + (Λ
(k)
W )−1 − (Γ

(k)
S )−1)−1, (3.20)

tr(Γ
(k)
X (Γ

(k)
S )−1D(k)(Γ

(k)
S )−1Γ

(k)
X + Γ

(k)
X

− Γ
(k)
X (Γ

(k)
S )−1Γ

(k)
X ) ≤ kdk, (3.21)

diag(j)(δ, · · · , δ)

� ((D(j))−1 + (Λ
(j)
W )−1 − (Γ

(j)
S )−1)−1, (3.22)

tr(Γ
(j)
X (Γ

(j)
S )−1D(j)(Γ

(j)
S )−1Γ

(j)
X + Γ

(j)
X

− Γ
(j)
X (Γ

(j)
S )−1Γ

(j)
X ) ≤ jdj, (3.23)

where

D(k) = Θ(k)diag(k)(d
(k)
1 , d

(k)
2 , · · · , d(k)2 )(Θ(k))T ,

D(j) = Θ(j)diag(j)(d
(j)
1 , d

(j)
2 , · · · , d(j)2 )(Θ(j))T

for some d
(k)
1 , d

(k)
2 , d

(j)
1 , d

(j)
2 , and

Σ(k) , Γ
(k)
U (Γ

(k)
S )−1D(k)(Γ

(k)
S )−1Γ

(k)
U + Γ

(k)
U

− Γ
(k)
U (Γ

(k)
S )−1Γ

(k)
U .
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Equivalently, (3.17)–(3.23) can be written as

1

2k
log

(λ
(k)
S,1)

2

(λ
(k)
S,1 − λW )d

(k)
1 + λ

(k)
S,1λW

+
k − 1

2k
log

λ2S,2

(λS,2 − λW )d
(k)
2 + λS,2λW

+
1

2
log

λW
δ

≤ r, (3.24)

0 < d
(k)
1 ≤ λ

(k)
S,1, (3.25)

0 < d
(k)
2 ≤ λS,2, (3.26)

0 < δ, (3.27)

δ ≤ ((d
(k)
1 )−1 + λ−1W − (λ

(k)
S,1)
−1)−1, (3.28)

δ ≤ ((d
(k)
2 )−1 + λ−1W − λ

−1
S,2)
−1, (3.29)

(λ
(k)
X,1)

2(λ
(k)
S,1)
−2d

(k)
1 + λ

(k)
X,1 − (λ

(k)
X,1)

2(λ
(k)
S,1)
−1

+ (k − 1)(λ2X,2λ
−2
S,2d

(k)
2 + λX,2 − λ2X,2λ−1S,2)

≤ kdk, (3.30)

δ ≤ ((d
(j)
1 )−1 + λ−1W − (λ

(j)
S,1)
−1)−1, (3.31)

δ ≤ ((d
(j)
2 )−1 + λ−1W − λ

−1
S,2)
−1, (3.32)

(λ
(j)
X,1)

2(λ
(j)
S,1)
−2d

(j)
1 + λ

(j)
X,1 − (λ

(j)
X,1)

2(λ
(j)
S,1)
−1

+ (j − 1)(λ2X,2λ
−2
S,2d

(j)
2 + λX,2 − λ2X,2λ−1S,2)

≤ jdj. (3.33)

When λ
(j)
S,1 ≥ λS,2 > 0, we can send λW → λS,2 and deduce from (3.24), (3.28),
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(3.29), (3.31), and (3.32) that

η(d
(k)
1 , d

(k)
2 , δ) ≤ r, (3.34)

δ ≤ ((d
(k)
1 )−1 + λ−1S,2 − (λ

(k)
S,1)
−1)−1, (3.35)

δ ≤ d
(k)
2 , (3.36)

δ ≤ ((d
(j)
1 )−1 + λ−1S,2 − (λ

(j)
S,1)
−1)−1, (3.37)

δ ≤ d
(j)
2 , (3.38)

where

η(d
(k)
1 , d

(k)
2 , δ)

,
1

2k
log

(λ
(k)
S,1)

2

(λ
(k)
S,1 − λS,2)d

(k)
1 + λ

(k)
S,1λS,2

+
1

2
log

λS,2
δ
.

Furthermore, combining (3.33), (3.37), and (3.38) gives

dj ≥
1

j
((λ

(j)
X,1)

2(λ
(j)
S,1)
−2(δ−1 + (λ

(j)
S,1)
−1 − λ−1S,2)

−1

+ λ
(j)
X,1 − (λ

(j)
X,1)

2(λ
(j)
S,1)
−1)

+
j − 1

j
(λ2X,2λ

−2
S,2δ + λX,2 − λ2X,2λ−1S,2). (3.39)

Now consider the following convex optimization problem:

min
d
(k)
1 ,d

(k)
2 ,δ

η(d
(k)
1 , d

(k)
2 , δ) (P)
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subject to (3.25), (3.26), (3.27), (3.35), (3.36), and (3.30). According to the Karush-

Kuhn-Tucker conditions, (d
(k)
1 , d

(k)
2 , δ) is a minimizer of the convex optimization prob-

lem (P) if and only if (3.25), (3.26), (3.27), (3.35), (3.36), and (3.30) are satisfied,

and there exist nonnegative a1, a2, b1, b2, c such that

λS,2 − λ(k)S,1
2k((λ

(k)
S,1 − λ

(k)
S,2)d

(k)
1 + λ

(k)
S,1λS,2)

+ a1

− b1(1 + λ−1S,2d
(k)
1 − (λ

(k)
S,1)
−1d

(k)
1 )−2

+ c(λ
(k)
X,1)

2(λ
(k)
S,1)
−2 = 0, (3.40)

a2 − b2 + c(k − 1)λ2X,2λ
−2
S,2 = 0, (3.41)

− 1

2δ
+ b1 + b2 = 0, (3.42)

a1(d
(k)
1 − λ

(k)
S,1) = 0, (3.43)

a2(d
(k)
2 − λS,2) = 0, , (3.44)

b1(δ − ((d
(k)
1 )−1 + λ−1S,2 − (λ

(k)
S,1)
−1)−1) = 0, (3.45)

b2(δ − d(k)2 ) = 0, (3.46)

c((λ
(k)
X,1)

2(λ
(k)
S,1)
−2d

(k)
1 + λ

(k)
X,1 − (λ

(k)
X,1)

2(λ
(k)
S,1)
−1

+ (k − 1)(λ2X,2λ
−2
S,2d

(k)
2 + λX,2 − λ2X,2λ−1S,2)− kdk)

= 0. (3.47)

Assume dk ∈ (d
(k)
min, γX). It can be verified via algebraic manipulations that η(d

(k)
1 , d

(k)
2 , δ) =
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r(dk) for

d
(k)
1 , ((λ

(k)
S,1)
−1 + (λ

(k)
Q )−1)−1,

d
(k)
2 , (λ−1S,2 + (λ

(k)
Q )−1)−1,

δ , (λ−1S,2 + (λ
(k)
Q )−1)−1, (3.48)

where λ
(k)
Q is given by (2.4). We shall identify the condition under which this specific

(d
(k)
1 , d

(k)
2 , δ) is a minimizer of (P). Clearly, (3.45)–(3.47) are satisfied. Moreover, in

view of (3.43), (3.44) as well as the fact that d
(k)
1 < λ

(k)
S,1 and d

(k)
2 < λS,2, we must have

am = 0, m = 1, 2,

which, together with (3.40)–(3.42), implies

b1 =
d
(k)
2 − d

(k)
1 + 2kc(λ

(k)
X,1)

2(λ
(k)
S,1)
−2(d

(k)
1 )2

2k(d
(k)
2 )2

,

b2 = (k − 1)cλ2X,2λ
−2
S,2,

c =
d
(k)
1 + (k − 1)d

(k)
2

(λ
(k)
X,1)

2(λ
(k)
S,1)
−2(d

(k)
1 )2 + (k − 1)λ2X,2λ

−2
S,2(d

(k)
2 )2

× 1

2k
.

It is obvious that b2 and c are nonnegative. Therefore, it suffices to have b1 ≥ 0, which

is equivalent to condition (2.11). Moreover, under this condition, every minimizer

(d
(k)
1 , d

(k)
2 , δ) of (P) must satisfy (3.48) due to the fact that 1

2
log

λS,2
δ

is a strictly

convex function of δ (in other words, (3.34), (3.25), (3.26), (3.27), (3.35), (3.36), and

(3.30) imply that δ is uniquely determined and is given by (3.48) when r = r(dk)).
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Hence, under condition (2.11), when r = r(dk), we can deduce dj ≥ d
(k)
j (dk) by

substituting (3.48) into (3.39).

When λS,2 ≥ λ
(j)
S,1 > 0, we can send λW → λ

(j)
S,1 and deduce from (3.24), (3.28),

(3.29), (3.31), and (3.32) that

η̂(d
(k)
1 , d

(k)
2 , δ) ≤ r, (3.49)

δ ≤ ((d
(k)
1 )−1 + (λ

(j)
S,1)
−1 − (λ

(k)
S,1)
−1)−1, (3.50)

δ ≤ ((d
(k)
2 )−1 + (λ

(j)
S,1)
−1 − λ−1S,2)

−1, (3.51)

δ ≤ d
(j)
1 , (3.52)

δ ≤ ((d
(j)
2 )−1 + (λ

(j)
S,1)
−1 − λ−1S,2)

−1, (3.53)

where

η̂(d
(k)
1 , d

(k)
2 , δ)

,
1

2k
log

(λ
(k)
S,1)

2

(λ
(k)
S,1 − λ

(j)
S,1)d

(k)
1 + λ

(k)
S,1λ

(j)
S,1

+
k − 1

2k
log

λ2S,2

(λS,2 − λ(j)S,1)d
(k)
2 + λS,2λ

(j)
S,1

+
1

2
log

λ
(j)
S,1

δ
.

Furthermore, combining (3.33), (3.52), and (3.53) gives

dj ≥
1

j
((λ

(j)
X,1)

2(λ
(j)
S,1)
−2δ + λ

(j)
X,1 − (λ

(j)
X,1)

2(λ
(j)
S,1)
−1)

+
j − 1

j
(λ2X,2λ

−2
S,2(δ

−1 + λ−1S,2 − (λ
(j)
S,1)
−1)−1

+ λX,2 − λ2X,2λ−1S,2). (3.54)
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Now consider the following convex optimization problem:

min
d
(k)
1 ,d

(k)
2 ,δ

η̂(d
(k)
1 , d

(k)
2 , δ) (P̂)

subject to (3.25), (3.26), (3.27), (3.50), (3.51), and (3.30). According to the Karush-

Kuhn-Tucker conditions, (d
(k)
1 , d

(k)
2 , δ) is a minimizer of the convex optimization prob-

lem (P̂) if and only if (3.25), (3.26), (3.27), (3.50), (3.51), and (3.30) are satisfied,
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and there exist nonnegative â1, â2, b̂1, b̂2, ĉ such that

λ
(j)
S,1 − λ

(k)
S,1

2k((λ
(k)
S,1 − λ

(j)
S,1)d

(k)
1 + λ

(k)
S,1λ

(j)
S,1)

+ â1

− b̂1(1 + (λ
(j)
S,1)
−1d

(k)
1 − (λ

(k)
S,1)
−1d

(k)
1 )−2

+ ĉ(λ
(k)
X,1)

2(λ
(k)
S,1)
−2 = 0, (3.55)

(k − 1)(λ
(j)
S,1 − λS,2)

2k((λS,2 − λ(j)S,1)d
(k)
2 + λS,2λ

(j)
S,1)

+ â2

− b̂2(1 + (λ
(j)
S,1)
−1d

(k)
2 − λ−1S,2d

(k)
2 )−2

+ ĉ(k − 1)λ2X,2λ
−2
S,2 = 0, (3.56)

− 1

2δ
+ b̂1 + b̂2 = 0, (3.57)

â1(d
(k)
1 − λ

(k)
S,1) = 0, (3.58)

â2(d
(k)
2 − λS,2) = 0, , (3.59)

b̂1(δ − ((d
(k)
1 )−1 + (λ

(j)
S,1)
−1 − (λ

(k)
S,1)
−1)−1) = 0, (3.60)

b̂2(δ − ((d
(k)
2 )−1 + (λ

(j)
S,1)
−1 − λ−1S,2)

−1) = 0, (3.61)

ĉ((λ
(k)
X,1)

2(λ
(k)
S,1)
−2d

(k)
1 + λ

(k)
X,1 − (λ

(k)
X,1)

2(λ
(k)
S,1)
−1

+ (k − 1)(λ2X,2λ
−2
S,2d

(k)
2 + λX,2 − λ2X,2λ−1S,2)− kdk)

= 0. (3.62)

Assume dk ∈ (d
(k)
min, γX). It can be verified via algebraic manipulations that η̂(d

(k)
1 , d

(k)
2 , δ) =
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r(dk) for

d
(k)
1 , ((λ

(k)
S,1)
−1 + (λ

(k)
Q )−1)−1,

d
(k)
2 , (λ−1S,2 + (λ

(k)
Q )−1)−1,

δ , ((λ
(j)
S,1)
−1 + (λ

(k)
Q )−1)−1, (3.63)

where λ
(k)
Q is given by (2.4). We shall identify the conditions under which this specific

(d
(k)
1 , d

(k)
2 , δ) is a minimizer of (P̂). Clearly, (3.60)–(3.62) are satisfied. Moreover, in

view of (3.58), (3.59) as well as the fact that d
(k)
1 < λ

(k)
S,1 and d

(k)
2 < λS,2, we must have

âm = 0, m = 1, 2,

which, together with (3.55)–(3.57), implies

b̂1 =
δ − d(k)1 + 2kĉ(λ

(k)
X,1)

2(λ
(k)
S,1)
−2(d

(k)
1 )2

2kδ2
,

b̂2 =
(k − 1)(δ − d(k)2 ) + 2k(k − 1)ĉλ2X,2λ

−2
S,2(d

(k)
2 )2

2kδ2
,

ĉ =
d
(k)
1 + (k − 1)d

(k)
2

(λ
(k)
X,1)

2(λ
(k)
S,1)
−2(d

(k)
1 )2 + (k − 1)λ2X,2λ

−2
S,2(d

(k)
2 )2

× 1

2k
.

It is obvious that ĉ is nonnegative. Therefore, it suffices to have b̂1 ≥ 0 and b̂2 ≥ 0,

which are equivalent to conditions (2.13) and (2.14), respectively (note that, when

j = k, condition (2.13) is redundant and condition (2.14) is simplified to condition

(2.12)). Moreover, under these conditions, every minimizer (d
(k)
1 , d

(k)
2 , δ) of (P̂) must

satisfy (3.63) due to the fact that 1
2

log
λ
(j)
S,1

δ
is a strictly convex function of δ (in other
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words, (3.49), (3.25), (3.26), (3.27), (3.50), (3.51), and (3.30) imply that δ is uniquely

determined and is given by (3.63) when r = r(dk)). Hence, under conditions (2.13)

and (2.14), when r = r(dk), we can deduce dj ≥ d
(k)
j (dk) by substituting (3.63) into

(3.54).

For the degenerate case λ
(j)
S,1 > λS,2 = 0, we have

r(k)(dk) =
1

2k
log

γ2X
γSdk − γXγZ

,

d
(k)
j (dk) =

(j − k)γ2XγZ + (kγS − jγZ)γXdk
(jγS − kγZ)γX − (j − k)γSdk

.

The desired conclusion that r ≥ r(k)(dk) and that dj ≥ d
(k)
j (dk) when r = r(k)(dk)

follows from the corresponding result for the quadratic Gaussian multiple description

problem [26], [35]. Note that (k − 1)λ2X,2(λ
(k)
S,1)µ

(k)(µ(k) − 1) + k(λ
(k)
X,1)

2λ2S,2 = 0 (con-

sequently, condition (2.11) is satisfied) when λ
(j)
S,1 > λS,2 = 0. Finally, consider the

degenerate case λS,2 > λ
(`)
S,1 = 0. It can be verified that

r(`)(d`) =
`− 1

2`
log

(`− 1)λ2X,2
`λS,2d` − (`− 1)λX,2λZ,2

,

which coincides with the rate-distortion function (normalized by `) of the correspond-

ing centralized remote source coding problem. Therefore, we must have r ≥ r(`)(d`).

Also, note that (λ
(`)
X,1)

2λ2S,2ν
(`)(ν(`) − 1) + `λ2X,2(λ

(`)
S,1)

2 = 0 (consequently, condition

(2.12) is satisfied for k = `) when λS,2 > λ
(`)
S,1 = 0. This completes the proof of

Theorem 2.
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Chapter 4

Conclusion And Future Work

We have studied the problem of robust distributed compression of correlated Gaussian

sources in a symmetric setting and obtained a characterization of certain extremal

points of the rate-distortion region. The following conclusions of the thesis were

drawn from the studies.

1. For the case of all ` encoders, when the correlation coefficient ρs of the convari-

ance matrix is a non-negative real number, r(`)(d`) is characterized at least for

all d` sufficiently close to d
(`)
min unless λ

(`)
X,1 = 0 and λ

(`)
S,1 > λS,2.

2. For the case of all ` encoders, when ρs is a non-positive real number, r(`)(d`)

is characterized at least for all d` sufficiently close to d
(`)
min unless λ

(`)
X,2 = 0 and

λS,2 > λ
(`)
S,1.

3. For the case of k encoders out of ` encoders, when ρs is a non-negative real

number, the condition (2.11) in chapter 2 holds at least for all dk sufficiently

close to d
(k)
min unless λ

(k)
X,1 = 0 and λ

(k)
S,1 > λS,2.
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4. For the case of k encoders out of ` encoders, when ρs is a non-positive real

number, the condition (2.12) holds at least for all dk sufficiently close to d
(k)
min

unless λX,2 = 0 and λS,2 > λ
(k)
S,1.

5. For the case of k encoders out of ` encoders, when ρs is a non-positive real

number, the condition λ
(j)
S,1 > 0 can be potentially violated ( λ

(j)
S,1 = 0) only

when j = `.

6. For the case of k encoders out of ` encoders, when ρs is a non-positive real

number and λ
(j)
S,1 > 0, if λ

(k)
X,1 > 0, then the condition (2.13) holds at least for dk

sufficiently close to d
(k)
min; if λ

(k)
X,1 = 0, which implies k = j = `, then the condition

(2.13) always holds. The condition (2.14) holds at least for dk sufficiently close

to d
(k)
min unless λX,2 = 0 and λS,2 > λ

(j)
S,1.

For the future work of the related study, it is expected that one can make fur-

ther progress by integrating our techniques with those developed for the quadratic

Gaussian multiple description problem.
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Appendix A

Calculation of d
(j)
min

Assuming Γ
(j)
S � 0 (i.e., λ

(j)
S,1 > 0 and λS,2 > 0), we have

j∑
i=1

E[(Xi − E[Xi|S1, · · · , Sj])2]]

= tr(Γ
(j)
X − Γ

(j)
X (Γ

(j)
S )−1Γ

(j)
X )

= tr(Λ
(j)
X − Λ

(j)
X (Λ

(j)
S )−1Λ

(j)
X )

=
λ
(j)
X,1λ

(j)
Z,1

λ
(j)
S,1

+ (j − 1)
λX,2λZ,2
λS,2

,

from which the desired result follows immediately. The degenerate case λ
(j)
S,1 = 0 or

λS,2 = 0 can be handled by performing the above analysis in a suitable subspace.
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Appendix B

Proof of (3.9) and (3.10)

For t = 1, · · · , n,

(Gi,A(t))Ti∈A , (Ui(t))
T
i∈A − E[(Ui(t))

T
i∈A|(Si(t))Ti∈A]

= (Ui(t))
T
i∈A − Γ

(k)
U (Γ

(k)
S )−1(Si(t))

T
i∈A,

which is an k-dimensional zero-mean Gaussian random vector with covariance Γ
(k)
U −

Γ
(k)
U (Γ

(k)
S )−1Γ

(k)
U and is independent of (Sni )Ti∈A. As a consequence,

(Ûi,A(t))Ti∈A = Γ
(k)
U (Γ

(k)
S )−1(Ŝi,A(t))Ti∈A,

t = 1, · · · , n.
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Now it can be readily verified that

ΣA(t) = Γ
(k)
U (Γ

(k)
S )−1DA(t)(Γ

(k)
S )−1Γ

(k)
U

+ E[(Gi,A(t))Ti∈A(Gi,A(t))i∈A]

= Γ
(k)
U (Γ

(k)
S )−1DA(t)(Γ

(k)
S )−1Γ

(k)
U + Γ

(k)
U

− Γ
(k)
U (Γ

(k)
S )−1Γ

(k)
U , t = 1, · · · , n,

from which (3.9) follows immediately.

For t = 1, · · · , n, we have

∆A(t) � E[(Si(t)− S̃ ′i,A(t))Ti∈A(Si(t)− S̃ ′i,A(t))i∈A]

= ((DA(t))−1 + (Λ
(k)
W )−1 − (Γ

(k)
S )−1)−1, (B.1)

where (S̃ ′i,A(t))Ti∈A denotes the linear MMSE estimator of (Si(t))
T
i∈A based on (Ŝi,A(t))Ti∈A

and (Ui(t))
T
i∈A. Since (A−1 +B−1)−1 is matrix concave in A for A � 0 and B � 0, it

follows that

1

n

n∑
t=1

((DA(t))−1 + (Λ
(k)
W )−1 − (Γ

(k)
S )−1)−1

� (D−1A + (Λ
(k)
W )−1 − (Γ

(k)
S )−1)−1. (B.2)

Combing (B.1) and (B.2) proves (3.10).

46



Bibliography

[1] D. Slepian and J. K. Wolf. “noiseless coding of correlated information sources,”.

IEEE Trans. Inf. Theory, vol. IT-19, no. 4, pp. 471-480, Jul. 1973.

[2] Y. Oohama. “Gaussian multiterminal source coding,”. IEEE Trans. Inf. Theory,

vol. 43, no. 6, pp. 1912-1923, Nov. 1997.

[3] Y. Oohama. “The rate-distortion function for the quadratic Gaussian CEO

problem,”. IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 1057-1070, May. 1998.

[4] D. Tse V. Prabhakaran and K. Ramchandran. “Rate region of the quadratic

Gaussian CEO problem,”. IEEE Int. Symp. Inform. Theory (ISIT), p. 117,

Jun/Jul. 2004.

[5] T. Berger J. Chen, X. Zhang and S. B. Wicker. “An upper bound on the sum-rate

distortion function and its corresponding rate allocation schemes for the CEO

problem,”. IEEE J. Sel. Areas Commun, vol. 22, no. 6, pp. 977-987, Aug. 2004.

[6] Y. Oohama. “Rate-distortion theory for Gaussian multiterminal source coding

systems with several side informations at the decoder,”. IEEE Trans. Inf. Theory,

vol. 51, no. 7, pp. 2577-2593, Jul. 2005.

47



M.A.Sc. Thesis - Xuan Zhang McMaster - Electrical Engineering

[7] J. Chen and T. Berger. “Successive Wyner-Ziv coding scheme and its application

to the quadratic Gaussian CEO problem,”. IEEE Trans. Inf. Theory, vol. 54,

no. 4, pp. 1586-1603, Apr. 2008.

[8] S. Tavildar A. B. Wagner and P. Viswanath. “Rate region of the quadratic

Gaussian two-encoder source-coding problem,”. IEEE Trans. Inf. Theory, vol.

54, no. 5, pp. 1938-1961, May. 2008.

[9] P. Viswanath S. Tavildar and A. B. Wagner. “The Gaussian many-help-one

distributed source coding problem,”. IEEE Trans. Inf. Theory, vol. 56, no. 1,

pp. 564-581, Jan. 2010.

[10] J. Chen J. Wang and X. Wu. “On the sum rate of Gaussian multiterminal source

coding: New proofs and results,”. IEEE Trans. Inf. Theory, vol. 56, no. 8, pp.

3946-3960, Aug. 2010.

[11] Y. Yang and Z. Xiong. “On the generalized Gaussian CEO problem,”. IEEE

Trans. Inf. Theory, vol. 58, no. 6, pp. 3350-3372, Jun. 2012.

[12] Y. Zhang Y. Yang and Z. Xiong. “A new sufficient condition for sum-rate tight-

ness in quadratic Gaussian multiterminal source coding,”. IEEE Trans. Inf.

Theory, vol. 59, no. 1, pp. 408-423, Jan. 2013.

[13] J. Wang and J. Chen. “Vector Gaussian two-terminal source coding,”. IEEE

Trans. Inf. Theory, vol. 59, no. 6, pp. 3693–3708, Jun. 2013.

[14] J. Wang and J. Chen. “Vector Gaussian multiterminal source coding,”. IEEE

Trans. Inf. Theory, vol. 60, no. 9, pp. 5533–5552, Sep. 2014.

48



M.A.Sc. Thesis - Xuan Zhang McMaster - Electrical Engineering

[15] Y. Oohama. “Indirect and direct Gaussian distributed source coding problems,”.

IEEE Trans. Inf. Theory, vol. 60, no. 12, pp. 7506–7539, Dec. 2014.

[16] F. Etezadi J. Chen and A. Khisti. “Generalized Gaussian multiterminal source

coding and probabilistic graphical models,”. IEEE Int. Symp. Inform. Theory

(ISIT), pp. 719–723, Jun. 25 - 30, 2017.

[17] Y. Chang J. Wang J. Chen, L. Xie and Y. Wang. “Generalized Gaussian multi-

terminal source coding: The symmetric case,”. IEEE Int. Symp. Inform. Theory

(ISIT), arXiv:1710.04750.

[18] L. Ozarow. “On a source-coding problem with two channels and three receivers,”.

Bell Syst. Tech. J, vol. 59, no. 10, pp. 1909–1921, Dec. 1980.

[19] A. A. El Gamal and T. M. Cover. “Achievable rates for multiple descriptions,”.

IEEE Trans. Inf. Theory, vol. 28, no. 6, pp. 851–857, Nov. 1982.

[20] G. Kramer R. Venkataramani and V. K. Goyal. “Multiple description coding

with many channels,”. IEEE Trans. Inf. Theory, vol. 49, no. 9, pp. 2106–2114,

Sep. 2003.

[21] R. Puri S. S. Pradhan and K. Ramchandran. “n-channel symmetric multiple

descriptions—Part I: (n, k) source-channel erasure codes,”. IEEE Trans. Inf.

Theory, vol. 50, no. 1, pp. 47–61, Jan. 2004.

[22] S. S. Pradhan R. Puri and K. Ramchandran. “n-channel symmetric multiple

descriptions—Part II: An achievable rate-distortion region,”. IEEE Trans. Inf.

Theory, vol. 51, no. 4, pp. 1377–1392, Apr. 2005.

49



M.A.Sc. Thesis - Xuan Zhang McMaster - Electrical Engineering

[23] T. Berger J. Chen, C. Tian and S. S. Hemami. “Multiple description quantization

via Gram-Schmidt orthogonalization,”. IEEE Trans. Inf. Theory, vol. 52, no. 12,

pp. 5197–5217, Dec. 2006.

[24] H. Wang and P. Viswanath. “Vector Gaussian multiple description with in-

dividual and central receivers,”. IEEE Trans. Inf. Theory, vol. 53, no. 6, pp.

2133–2153, Jun. 2007.

[25] J. Chen C. Tian and S. Diggavi. “Multiuser successive refinement and multiple

description coding,”. IEEE Trans. Inf. Theory, vol. 54, no. 2, pp. 921–931, Feb.

2008.

[26] Wang and P. Viswanath. “Vector Gaussian multiple description with two levels

of receivers,”. IEEE Trans. Inf. Theory, vol. 55, no. 1, pp. 401–410, Jan. 2009.

[27] C. Tian J. Chen and S. Diggavi. “Multiple description coding for stationary

Gaussian sources,”. IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2868–2881, Jun.

2009.

[28] J. Chen. “Rate region of Gaussian multiple description coding with individual

and central distortion constraints,”. IEEE Trans. Inf. Theory, vol. 55, no. 9, pp.

3991–4005, Sep. 2009.

[29] C. Tian and J. Chen. “New coding schemes for the symmetric K-description

problem,”. IEEE Trans. Inf. Theory, vol. 56, no. 10, pp. 5344–5365, Oct. 2010.

[30] Y. Zhang J. Chen, S. Dumitrescu and J. Wang. “Robust multiresolution coding,”.

IEEE Trans. Commun, vol. 58, no. 11, pp. 3186–3195, Nov. 2010.

50



M.A.Sc. Thesis - Xuan Zhang McMaster - Electrical Engineering

[31] L. Zhao P. Cuff J. Wang, J. Chen and H. Permuter. “On the role of the refinement

layer in multiple description coding and scalable coding,”. IEEE Trans. Inf.

Theory, vol. 57, no. 3, pp. 1443–1456, Mar. 2011.

[32] Y. Zhang J. Chen and S. Dumitrescu. “Gaussian multiple description coding

with low-density generator matrix codes,”. IEEE Trans. Commun, vol. 60, no.

3, pp. 676–687, Mar. 2012.

[33] J. Chen Y. Zhang, S. Dumitrescu and Z. Sun. “LDGM-based multiple description

coding for finite alphabet sources,”. IEEE Trans. Commun, vol. 60, no. 12, pp.

3671–3682, Dec. 2012.

[34] J. Sun Y. Fan, J. Wang and J. Chen. “On the generalization of natural type

selection to multiple description coding,”. IEEE Trans. Commun, vol. 61, pp.

1361–1373, Apr. 2013.

[35] S. Shao L. Song and J. Chen. “A lower bound on the sum rate of multiple

description coding with symmetric distortion constraints,”. IEEE Trans. Inf.

Theory, vol. 60, no. 12, pp. 7547–7567, Dec. 2014.

[36] J. Chen Y. Xu and Q. Wang. “The sum rate of vector Gaussian multiple de-

scription coding with tree-structured covariance distortion constraints,”. IEEE

Trans. Inf. Theory, vol. 63, no. 10, pp. 6547–6560, Oct. 2017.

[37] K. Ramchandran P. Ishwar, R. Puri and S. S. Pradhan. “On rate-constrained

distributed estimation in unreliable sensor networks,”. IEEE J. Sel. Areas Com-

mun, vol. 23, no. 4, pp. 765–775, Apr. 2005.

51



M.A.Sc. Thesis - Xuan Zhang McMaster - Electrical Engineering

[38] J. Chen and T. Berger. “Robust distributed source coding,”. IEEE Trans. Inf.

Theory, vol. 54, no. 8, pp. 3385–3398, Aug. 2008.

[39] J. Chen and A. B. Wagner. “A semicontinuity theorem and its application to

network source coding,”. IEEE Int. Symp. Inform. Theory (ISIT)y, pp. 429–433,

Jul. 6 - 11, 2008.

[40] T. Berger. “Multiterminal source coding,”. The Information Theory Approach

to Communications, (CISM International Centre for Mechanical Sciences). vol.

229, G. Longo, Ed. New York, NY, USA: Springer-Verlag, pp. 171–231, 1978.

[41] S.-Y. Tung. “Multiterminal source coding,”. Ph.D. dissertation, School Electr.

Eng., Cornell Univ., Ithaca, NY, USA, 1978.

[42] S. B. Wicker X. Zhang, J. Chen and T. Berger. “Successive coding in multiuser

information theory,”. IEEE Trans. Inf. Theory, vol. 53, no. 6, pp. 2246–2254,

Jun. 2007.

[43] A. El Gamal and Y.-H. Kim. Network Information Theory, Cambridge, U.K.:

Cambridge University Press, 2011.

52


