EQUIVALENT HYPERTROPHY AND STRENGTH GAINS IN HMB OR LEUCINE SUPPLEMENTED MEN

EQUIVALENT HYPERTROPHY AND STRENGTH GAINS IN HMB OR LEUCINE SUPPLEMENTED MEN

Submitted by

Josephine Jakubowski, B.Sc.

A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the

Requirements for the degree Master of Science

McMaster University

© Copyright by Josephine Jakubowski, August 2018

Master University MASTER OF SCIENCE (2018) Hamilton, Ontario (Kinesiology)

TITLE: EQUIVALENT HYPERTROPHY AND STRENGTH GAINS IN HMB OR LEUCINE SUPPLEMENTED MEN

AUTHOR: Josephine S. Jakubowski, B.Sc. Biology (McMaster University)

SUPERVISOR: Dr. Stuart M. Phillips, Ph.D.

NUMBER OF PAGES: 97

LAY ABSTRACT

Whey protein supplementation following resistance training (RT) is an effective strategy to enhance RT-induced gains in skeletal muscle mass and strength. The anabolic properties of whey protein are attributed, in part, to the branched-chain amino acid leucine. Leucine is a substrate for protein synthesis and a potent signal that turns on the protein synthetic machinery. A metabolite of leucine, β -hydroxy, β -methylbutyrate (HMB) has been claimed to share similar or greater anabolic properties of leucine. Recently, supplementation with HMB during RT has been shown to result in large gains in muscle mass and strength. The purpose of this study was to examine whether HMB, versus leucine, added to whey protein, would result in different muscle hypertrophy and strength gains in young men during RT. Body composition and maximum strength tests were performed before, during and after 12 weeks of RT. Following 12 weeks of RT, both groups experienced similar gains in muscle mass and strength. We observed that HMB is no more effective in stimulating RT-induced hypertrophy and strength gains than its parent amino acid, leucine.

ABSTRACT

Ingestion of proteins with high leucine content during resistance training (RT) can augment hypertrophy. There are data suggesting that a leucine metabolite, β -hydroxy, β methylbutyrate (HMB), may, however, be substantially more anabolic than leucine. **Purpose:** We aimed to test whether supplementation with HMB versus leucine, added to whey protein, would result in different muscle hypertrophy and strength gains in young men performing resistance training (RT). Methods: Twenty-six resistance-trained men $(23 \pm 2 \text{ y})$ performed 12 wk of RT with 3 phases. Phase 1: 8 wk of periodized RT (3 training sessions/wk). Phase 2: 2 wk overreaching period (5 sessions/wk). Phase 3: 2 wk taper (3 sessions/wk). Participants were randomly assigned to twice daily ingestion of: whey protein (25 g) plus HMB (1.5 g) (Whey+HMB; n=13) or whey protein (25 g) plus leucine (1.5 g) (Whey+Leu; n=13). Skeletal muscle biopsies were performed before and after RT. Measures of fat and bone-free mass (FBFM), vastus lateralis (VL) muscle thickness and muscle cross-sectional area (CSA – both by ultrasound), muscle fiber CSA, and 1-repetition maximum (1-RM) strength tests were determined. Results: We observed increases in FBFM, VL muscle thickness, muscle CSA and fiber type CSA and 1-RM strength, with no differences between HMB and leucine at any phase. Furthermore, no differences were observed in hormone concentrations between groups, or in time-bygroup interactions in hormone concentrations at any phase of the RT program. **Conclusion:** HMB did not result in greater increases in any measure of muscle mass.

strength, or hormonal concentration compared to leucine during 12 weeks of RT.

ACKNOWLEDGEMENTS

I would like to thank the following people whose guidance and support have made this thesis possible:

Dr. Stuart Phillips, thank you for your mentorship and the opporutnity to be part of the Phillips lab. Thank you for all the experiences you have given me, be it collaborations, conferences, travel or Phoenix lunches. These last two years under your guidance have been fantastic.

Dr. Maureen MacDonald, Dr. Gianni Pairse, thank you for your guidance, expertise and serving on my committee.

Dr. Janet Pritchard, thank you for the opportunity to be part of your lab. I am beyond grateful to have worked with older adults and the experience of presenting at CNS. To Edwin, Josh, Kevin, Kenny and all the 3RP3s who made training 26 men possible, I could not have done this without you.

To the Phillips lab: Amy, Rob, Kristen, Tanya, Dan, and Sara. Thank you for your friendship, support.

To Chris McGlory, thank you for your guidance, patience and helping develop my writing skills.

To my friends, thank you for always lending an ear or a shoulder to cry on. To my friends who were study participants, and to all study participants, thank you for all your blood, sweat and tears. Your hard work is the reason I am here. To Tanner Stokes, thank you for your motivation (trying to keep up with all your reading is a challenge, but one I am grateful for), you have helped me grow as a scientist and as a human. I can't wait to see what the next chapter brings.

To Mama, Papa C, Nicole, Victoria and Babi, thank you for your support, love and understanding, but ultimately for offically making the "HMB Study" a family event. Mama you are the reason I do what I do, my MSc is for you. I love you always.

TABLE OF CONTENTS

Chapter 1. Overview and Aims	2
1.1 Resistance Exercise	4
1.1.1 Resistance Exercise and Muscle Protein Turnover	4
1.1.2 Lifting Intensity	6
1.1.3 Training volume	8
1.1.4 Periodization	9
1.1.5 Hormonal milieu	. 11
1.1.6 Resistance training program variables to optimize RE-induced hypertrophy	. 12
1.2 Dietary protein	. 13
1.2.1 Protein source	. 15
1.2.2 Protein dose	. 16
1.3 HMB	. 18
1.4 Statement of the problem and hypotheses	. 27
CHAPTER 2: MANUSCRIPT	. 29
2.1 Methods	. 30
2. 1.1 Study Design	. 30
	. 31
2.1.2 Familiarization and 1-RM strength testing	. 31
2.1.3 Dietary Records	. 32
2.1.4 Resistance Training Intervention	. 32
2.1.5 Body composition	. 32
2.1.6. Ultrasound Muscle thickness and Cross-sectional area	. 33
2.1.7. Power testing	. 34
2.1.8 Muscle Fiber and Cross-sectional area	. 35
2.1.9 Blood Analysis	. 36
2.1.10 Statistical analyses	. 37
2.2 RESULTS	. 38
2.2.1 Participant Characteristics	. 38
2.2.2 Body composition	. 40
2.2.3 Ultrasound	. 41
2.3.4 Fiber CSA	. 42
2.2.5 Maximal Strength	. 44
2.2.6 Wingate	. 45
2.2.7 Optojump	. 46
2.2.8 Blood Analysis	. 46
2.3 DISCUSSION	. 48
2.4 References	. 54
Appendix A: Raw Data	. 66
Appendix B: Statistical Outputs	. 86

DECLARATION OF ACADEMIC ACHIEVEMENT

J.S Jakubowski was the principal contributor for the conceptualizing the research question, research hypothesis, experimental design, data collection, data analysis and data interpretation. S.M. Phillips, E. Nunes and C. McGlory assisted with the research question, research hypothesis, experimental design and data interpretation. E. Wong and J. Vanderweerd contributed to the data collection and data interpretation.

LIST OF TABLES AND FIGURES

Figure 1. Leucine Metabolism to HMB (2, 3)

Figure 2.

Elevation of MPS and inhibition of MPB following ingestion of HMB-FA and leucine, Wilkinson et al (1)

Figure 3. Efficacy of HMB supplementation on lean mass gains with resistance training

Figure 4.

Efficacy of HMB supplementation on lean mass gains with resistance training with the removal of studies containing a high risk of bias

Figure 5. Schematic representation of study design

Figure 6.

Absolute values FBFM pre- and post-training and change FBFM following 12 weeks of training

Figure 7. Absolute values and change in *vastus lateralis* muscle thickness and cross-sectional area

Table 1. Participant characteristics

Table 2. Macronutrient distribution

Table 3. Maximal strength (kg) and peak Wingate power (W) pre- and post-training

Table 4.Muscle fiber cross-sectional area and distribution

Table 5.

Serum creatine kinase activity and plasma hormone concentrations during the RT protocol

LIST OF ABBREVIATIONS

MPS	Muscle protein synthesis
MPB	Muscle protein breakdown
RE	Resistance exercise
RT	Resistance training
mTORC-1	Mechanistic target of rapamycin complex 1
ACSM	American College of Sports Medicine
AA	Amino acids
EAA	Essential amino acids
Non-EAA	Non-essential amino acids
HMB	Beta-hydroxy, beta-methylbutryate
HMB-Ca	HMB-Calcium form
HMB-FA	HMB-Free acid
1RM	1 repetition maximum
FBFM	Fat and bone-free mass
CSA	Cross-sectional area
DXA	Dual-energy X-ray absorptiometry
LBM	Lean body mass

CHAPTER 1: STRATEGIES TO OPTIMIZE RESISTANCE EXERCISE-INDUCED

HYPERTROPHY

Chapter 1. Overview and Aims

Skeletal muscle mass is critical for locomotion, is a substantial contributor to basal metabolic rate and post-prandial glucose disposal (4), and is responsible for the production of mechanical force (5). It was discovered in ~1930 through the use of isotopically labeled tracers that skeletal muscle is in a state of dynamic flux (6). Indeed, skeletal muscle mass is maintained by the dynamic processes of muscle protein synthesis (MPS) and muscle protein breakdown (MPB), which oppose each other and yet occur simultaneously (7). The process of MPS describes the incorporation of amino acids, through the translation of mRNA, into newly synthesized proteins and is stimulated in response to nutritional, hormonal, and/or contractile stimuli (7, 8). MPB describes the release of amino acids via proteolytic action of protein structures into the intracellular muscle pool, which can then be reutilized for the synthesis of new muscle proteins, metabolized, or released into systematic circulation to be metabolized by other tissues (7, 8). In the postabsorptive phases of the day MPB predominates (e.g., during sleep and upon waking prior to eating a meal) (9). An important constituent of the diet that stimulates MPS and promotes net anabolism in skeletal muscle is protein (10). The ingestion of protein and subsequent aminoacidemia induces a transient and dose-saturable increase in MPS and suppression of MPB (7, 11). During the day, some limited postabsorptive liberation of amino acids from muscle protein is balanced by the net incorporation of amino acids into muscle protein during feeding, such that net protein balance (defined as the algebraic difference between the rates of MPS and MPB: MPS -MPB = 0) is achieved (9, 12-14).

Skeletal muscle hypertrophy is defined as the radial growth of skeletal muscle fibres and occurs as a result of successive periods of net positive protein balance (MPS>MPB) (15). Positive net protein balance is achieved through ingestion of protein, and the resultant hyperaminoacidemia, as well as participation in resistance exercise (RE). These two stimuli act through different mechanisms, but share similar canonical signaling pathways (16). Performance of RE in the postabsorptive state results in an increase in MPS and MPB, however, net protein remains negative although less so due to a greater relative stimulation of MPS than MPB (8, 14). However, when RE is followed by the ingestion of protein – either through whole-food or supplemental sources – a positive protein balance ensues (7, 17). A popular strategy to enhance RE-induced muscle anabolism has therefore centered around consumption/supplementation with high quality protein during a RE program (18).

Whey protein is a high-quality protein because it contains a full complement of essential amino acids and is highly digestible (19, 20). The anabolic effects of whey protein are well-known and its potency in stimulating MPS is largely attributable to its high leucine content (21-23). Ingestion of leucine alone can independently stimulate the mechanistic target of rapamycin complex-1 (mTORC1), a key protein kinase central to the stimulation of MPS (24-26). Recently, a metabolite of leucine, β -hydroxy- β -methylbutyrate (HMB), has received much attention because it too can stimulate MPS (1, 27), and has been reported to augment resistance training (RT)-induced muscle mass and strength (28-30). Moreover, research has demonstrated substantial increases in lean body mass (LBM) and strength with HMB supplementation, which is available commercially

in a free-acid (HMB-FA) and calcium form (HMB-Ca), during RT, suggesting a potency of HMB that is equivalent to, or greater than, leucine (28, 30). The purpose of Chapter one of this thesis is to discuss extant strategies to optimize RE-induced hypertrophy. To accomplish this objective, the review focuses on: 1) the manipulation of RE program variables purported to enhance gains in muscle mass and strength; 2) the notable benefits of a high leucine containing protein supplement to augment training-induced hypertrophy; and 3) the anabolic potency of the leucine metabolite HMB, and the use of HMB to enhance RT-induced hypertrophy.

1.1 Resistance Exercise

Resistance exercise (RE), defined as the purposeful loaded contractile activity of skeletal muscle (31), is leveraged in athletic and clinical populations to promote muscle hypertrophy and increase strength. The American College of Sports Medicine (ACSM) recommends that healthy adults engage in RE on a minimum of two days per week (32). The mechanisms that underpin the growth of skeletal muscle as a result of RE are now beginning to be understood and are briefly reviewed here.

1.1.1 Resistance Exercise and Muscle Protein Turnover

Skeletal muscle adaptations are specific to the modality of training (33). Briefly, aerobic stimuli, such as moderate-continuous endurance exercise, preferentially stimulates the synthesis of sarcoplasmic and mitochondrial proteins (i.e. those involved in energy flux) that enhance, in part, aerobic capacity (33). Additional adaptations resulting from aerobic exercise training include an increase in skeletal muscle capillary density, which results in a greater capacity to deliver oxygen and nutrients to skeletal muscle (33).

In contrast, mechanical loading of skeletal muscle results in a stimulation of synthesis and the subsequent disposition of primarily contractile proteins (i.e. actin and myosin) that in turn result in radial growth of muscle fibres and an increase muscle strength (34). In response to mechanical loading of skeletal muscle, there is an increase in muscle protein turnover because of a stimulation of MPS and MPB (8, 14). Phillips et al (8) observed that following a bout of RE in untrained (UT) men, MPS was significantly elevated by 112% at 3 hours, 65% at 24 hours, and 34% at 48 hours (8). Whereas MPB was elevated by 31% at 3 hours and 18% at 24 hours but returned to baseline levels by 48 hours (8). Thus, a bout of RE in UT persons induces a sustained increase in MPS (8). To assess protein turnover in response to RE in trained (TR) persons, Phillips et al (35) examined MPS and MPB 4 hours following RE in UT and TR men. The results showed that RE induced a significant increase in MPS in both UT and TR participants, whereas a significant increase in MPB was observed only in UT participants (35). This work was followed by a longitudinal study wherein UT participants trained a single leg for 8 weeks (6 x/week) while the non-exercised leg served as an internal control (36). It was observed that prior RT attenuated the RE-induced increase in MPS and increased muscle protein turnover at rest (36). These investigations did not differentiate between the myofibrillar, sarcoplasmic, and mitochondrial compartments (35, 36). Kim et al (37) examined mixed MPS and myofibrillar protein synthesis following RE in the UT and TR state. Eight UT men engaged in 8 weeks of unilateral RT and following RE, mixed MPS was stimulated in the UT leg, whereas myofibrillar protein synthesis was stimulated to a similar magnitude in the UT and TR leg (37). These data suggest that in the UT state RE induces

a global increase in all protein fractions (37). However, prior RT refines this response such that following a bout of RE there is an increased synthesis of contractile proteins (37). A RT program can be designed based on several variables including training intensity, load, and inter-set rest period (32). The influence of each of these variables on skeletal muscle adaptation is detailed below.

1.1.2 Lifting Intensity

A 1-repetition maximum (1-RM) strength test represents the maximum load an individual can lift in a single repetition (32). Training intensity can be defined as the percentage of 1-RM lifted during each set of an acute bout of RE, in which higher intensities correspond with heavier loads (38). In 1945, Delorme utilized a progressive RT program to increase muscle mass and strength in injured soldiers (39). He observed that heavier loads lifted for a smaller number of repetitions increased muscular strength, whereas he stated that lighter loads lifted for a higher number of repetitions would enhance muscular endurance (39). Since this time, few groups have questioned the notion that high-load, low repetition, training is the most effective strategy to enhance muscle size and strength.

A recent meta-analysis reported on the role of higher-load, lower repetition training vs. lower-load, higher repetition training on muscle strength and hypertrophy (40). Schoenfeld et al (40) concluded that low-load training is sufficient to increase mass and strength in UT persons. However, a trend was observed for greater hypertrophy and strength gains with high loads compared to low loads in TR persons (40). Findings from our laboratory have, however, challenged the view that performing RE at a high

percentage of 1-RM using higher loads is required to induce muscle hypertrophy and improvements in strength in TR participants (41). Morton et al (42) compared high-load, low repetition (75-90% 1-RM, 8-12 reps 3 sets) with low-load, high repetition (30-50% 1-RM, 20-25 reps, 3 sets) training during 12 weeks of whole body RT in young trained men. Both training schemes resulted in muscle hypertrophy with no difference between the loading schemes (42). Although, the strength gains increased in both groups, there was a significant difference between groups for bench press 1-RM. In line with these results, Ogasawara et al (43) observed comparable gains in upper body muscle hypertrophy, but differing gains in strength, following 6 weeks of high-versus low-load resistance training. Thus, there appears to be an influence of training intensity on muscle strength, such that the habitual practice of lifting heavier loads is necessary to stimulate greater strength gains, but this would appear to be a neurological- not a muscle size-based phenomenon (42, 43). The phenotypic changes observed at the whole muscle level with lower load RE are supported at a molecular level as well. Burd et al (44) examined the effect of RE intensity (90% 1-RM vs. 30% 1-RM) on MPS, and observed a similar increase in mixed and myoMPS 4 hrs following training in both groups (44). Interestingly, myofibrillar protein synthesis remained elevated at 24 hrs post-RE only in the 30% 1-RM group (44). Collectively, the extant literature does not support a superior role for higher intensity, higher load training compared to lower intensity, lower load training, at least in regard to muscle hypertrophy; however, there does appear to be an influence of higher loads on muscle strength (40, 42, 43). Thus, many strength coaches

encourage high-load, low repetition training to maximize strength gains (32), which also stimulates muscle growth.

1.1.3 Training volume

Training volume (usually expressed in total kg lifted/training session) is defined as the product of load (kg/rep), number of repetitions (rep/set), and number of sets (set/ training session) performed in a single RE session (32). A similar magnitude of training volume can be achieved with a high-load, low repetition or low-load, high repetition schema (45). It follows that weekly training volume increases in proportion to the number of training sessions completed per week, which usually differs based on the training history of the individual. The ACSM position stand recommends at least two days of recovery in UT persons and one day of rest in TR persons (32), who appear to experience comparably less muscle damage in response to each bout of RE (46). Muscle damage is a result of increased stress on each muscle fibre and is sustained for a longer period of time after a bout of unaccustomed RE (47, 48). A proxy marker of muscle damage is raised levels of creatine kinase (CK). This enzyme normally resides within the muscle cell but is released following RE as a result of a loss of membrane integrity (49). Muscle damage manifests as decreased force production, increased muscle soreness, and reduced range of motion (50).

In addition to rest duration *between* bouts of RE, sufficient recovery *within* a training session is important to limit fatigue and allow sustained performance on subsequent exercise sets (32, 51). To maintain muscular performance between sets, approximately 2-4 minutes of rest is recommended (32, 52). Insufficient rest (\leq 45

seconds) results in a failure to maintain the target repetitions per set when lifting heavy loads, and is thus thought to influence the progression of strength gains (32). If the trainee's goal is to increase muscle size, some have claimed that shorter rest periods are anabolic because they enhance muscle damage and result in increased concentration of purported anabolic hormones (53, 54). Despite data from a recent meta-analysis suggesting that longer rest periods are more advantageous in trained participants (52), the ACSM recommends moderate intensity loads (60-80% 1-RM) with shorter rest periods (1-2 min) for athletes with hypertrophy-centric training goals (32).

A common mode by which athletes manipulate training volume and work:rest ratios during training is to incorporate a period of 'overreaching' into their training programs (55). Overreaching describes a period of increased training volume combined with a planned reduction in rest and recovery and an accepted accompanying decline in performance (55). Overreaching requires significant monitoring because it temporarily blunts strength gains, can result in reduced performance, and is associated with an increased risk of injury (56). However, when followed by a period of adequate recovery and reduced training volume (i.e. a taper phase), an overreaching phase can elicit 'rebound supercompensated' gains in strength (55-57). Despite risks, periodic overreaching is a strategy frequently used by various athletes to allow peak performance for a competition (28, 55).

1.1.4 Periodization

In light of all the RT variables discussed, there is little agreement on the 'optimal' program to elicit muscle hypertrophy and strength development. The ACSM encourages

implementing periodized versus non-periodized RT training programs (32). Periodized training is the planned variation of training intensity, volume and rest with the goal of maximizing performance and minimizing injury (58, 59). During periodized training, manipulation of program variables can occur on a multi-monthly or Macro-cycle (6-9 months), a monthly or Meso-cycle (3-4 weeks) or a Micro-cycle (weekly/daily basis) (60). Non-periodized training, however, is not concerned with program variation and is performed in the absence of such rigorous planning. With regards to eliciting gains in muscle mass and strength, periodized training has been proposed as being superior to non-periodized RT (32, 59).

There are two forms of periodization: linear periodization and undulating periodization. Linear periodization begins with low-intensity, high volume training (60). In 3-4 week cycles, training intensity and volume are manipulated by increasing intensity (% 1-RM) and decreasing volume. In contrast, undulating periodized RT has no baseline requirement of low-intensity, high volume training (61). Rather, undulating periodized RT is characterized by frequent alterations in intensity and volume within a micro cycle (58). The frequent manipulation of training variables is thought to facilitate progressive adaptations in muscle mass and strength (62). In addition to variations on a weekly basis, daily undulating periodized training results in the greatest alterations in volume and intensity between successive training sessions within the same week (60, 61). At present, there is little consensus as to which type of training - linear periodization, undulating periodization or daily undulating periodization - elicits the greatest hypertrophy and strength gains (63).

1.1.5 Hormonal milieu

Hormones, such as testosterone and growth hormone, are regulatory signalling molecules secreted from organs distinct from their target and requiring transport via the blood to target tissues. Hormones play a role in the development of secondary sex characteristics (i.e., estrogen and testosterone) during adolescence or mediate growth during developmental years (i.e., growth hormone). An intense bout of RE elicits increases in serum growth hormone (GH), insulin-like growth hormone (IGF1) and testosterone concentrations (53, 54). The increased hormone concentration following RE has led some to theorize that hormones contribute to RE-induced skeletal muscle hypertrophy (53, 54, 64). Evidence to support the claim that hormones are stimulatory for muscle growth primarily comes, however, from clinical scenarios examining the anabolic effects of exogenous administration of testosterone in healthy and hypogonadal individuals (65). For instance, supraphysiological doses of testosterone have been shown to increase skeletal muscle mass, fibre cross-sectional area and strength (65, 66). At present, the ACSM position stand states that training programs that maximize anabolic hormone secretion enhance muscle hypertrophy (32). As such, the ACSM encourages performance of compound, multi-joint lifts, performed at moderate intensity (~60% 1-RM) with short rest interspersed between sets (32). While anabolism and growth induced by supraphysiological doses of testosterone (65) and growth hormone (66) are not

contested, the role played by 'anabolic hormones' in the adaptations to RE have been challenged (67, 68).

Our laboratory has performed a series of studies that collectively cast substantial doubt on any significant role of exercise-induced hormone secretion in muscle hypertrophy and strength improvement (42, 67, 69). To investigate the role of REinduced hormones on MPS, West et al (67) had UT participants perform bicep curls in the presence or absence of elevated anabolic hormones. The hormonal milieu was manipulated by performing lower limb exercises prior to upper body training. West et al (67) observed that RE-induced hormones did not enhance fed-state anabolic signaling or myofibrillar protein synthesis. The same group utilized a similar protocol to examine whether anabolic hormones resulted in differential hypertrophy following 15 weeks of RT (68). Despite an increase in hormone availability during RE, there was no difference in strength gains or muscle mass accretion between groups. More recently, Morton et al (42) observed no significant relationships between the acute post-exercise rise in purported anabolic hormones and gains in muscle mass and strength after 12 weeks of RT in TR men. Collectively, these data suggest that there is little effect of anabolic hormones on muscle hypertrophy in either UT or TR participants. Given these data (42, 67, 68), skeletal muscle adaptation is thought to be due to factors intrinsic to the muscle (i.e. signaling induced by contraction and loading) rather than extrinsic variables, such as anabolic hormones (70).

1.1.6 Resistance training program variables to optimize RE-induced hypertrophy

Regardless of a subjects' training status, program variables manipulated, and concentration of anabolic hormones, RE is a potent stimulus to skeletal MPS and ultimately leads to hypertrophy. RE leads to increased MPS and the intracellular utilization of amino acids for incorporation into protein (8). In the absence of exogenous amino acids, an increase in MPB ensues to replenish amino acids within the intracellular pool (7, 8, 14). However, in the presence of exogenous amino acids, MPB is attenuated and MPS predominates, such that protein balance is positive (7). The ingestion of protein is therefore required following RE to achieve a net positive protein balance (7).

1.2 Dietary protein

Skeletal muscle is the largest labile reservoir of amino acids (AA) in the body that can be liberated in times of need (i.e. fasting, disease, or malnutrition). Proteins are composed of twenty amino acids, nine of which are essential and must be consumed in the diet. In 1982, Professor Michael Rennie and colleagues observed positive whole-body protein balance following ingestion of protein, indicating a net retention of protein (10), which was attributed to a large increase in skeletal MPS (10). Bohe et al (11) confirmed this hypothesis by measuring the incorporation of an isotopically-labelled tracer into skeletal muscle following amino acid infusion. The researchers discovered a ~2.8 fold elevation of MPS compared to rest at 2 hours post infusion but, interestingly, MPS rates quickly returned to basal levels thereafter, despite continued hyperaminoacidemia (11). These data suggest that AA are themselves potent stimulators of MPS, but that the MPS response to their elevation is transient (11). This phenomenon has been termed the

'muscle full' effect and has been further characterized (71, 72). Thus, simply ingesting protein in isolation will not induce muscle hypertrophy.

While ingestion of protein or infusion of AA stimulates MPS at rest, the infusion of AA following RE, results in a large and sustained increase in MPS (7). Thus, following RE, infusion of AA is sufficient to induce a positive protein balance (7). To determine if oral supplementation of AA could enhance post-exercise MPS, Tipton et al (17) fed participants 40 g of essential AA (EAA) or a mixed AA supplement (EAA+non-EAA). It was hypothesized that skeletal MPS in response to an oral dose of amino acids was driven primarily by EAA (17). This investigation showed no difference in MPS and it was proposed that the amount of EAA in the mixed supplement (21 g) exceeded the maximal dose required to stimulate MPS (17, 73). When, however, a relatively small dose of EAA (6 g) (73) was compared to a mixed supplement (3 g EAA + 3 g non-EAA) the anabolic effect of EAA would be more pronounced (74). Borsheim et al (75) observed that 6 g of EAA increased net protein balance to a greater extent than previously published data examining the anabolic effects of a mixed drink (3 g EAA + 3 g non-EAA (74). These authors suggested a dose response of EAA in skeletal muscle and that non-EAA contribute little to the stimulation of MPS (75). As a result of the anabolic influence of EAA on protein turnover, this group, and others advocate for the inclusion of EAA into nutrient beverages (73-75).

Although supplementation with EAA can stimulate MPS at rest or following RE, a full complement of amino acids is required to synthesize proteins. Intact proteins that contain all EAA and non-EAA, such as animal and milk proteins, are considered high

quality. Wilkinson et al (76) examined the ingestion of fluid low fat milk compared to an isonitrogrenous isoenergetic soy beverage and demonstrated that milk proteins enhance MPS to a greater extent than soy proteins (76). The acute results observed by Wilkinson (76) were then followed up with a training study and found to be concordant over a 12-week period in which Hartman et al (77) demonstrated superior gains in LBM and type 2 fibre CSA with the consumption of milk versus soy proteins (77).

1.2.1 Protein source

Protein digestion is initiated in the stomach, whereas absorption of free amino acids occurs primarily in the small intestine (19). In a recent investigation, Groen et al (78) demonstrated that 45% of intrinsically-labelled amino acids were absorbed by the splanchnic tissues. Of the 55% available in the peripheral circulation, only 11% of amino acids were used for de novo protein synthesis by skeletal muscle (78, 79).

The speed of amino acid absorption can influence postprandial metabolic responses (19). Bovine milk-derived protein, for example, is composed of two fractions: whey protein which is rapidly digested and, casein protein which clots in the stomach and is slowly digested (19). Tipton et al (20) examined the acute response of muscle protein balance to whey and casein protein following RE. Participants ingested placebo, 20 g whey, or 20 g casein protein one hour following RE (20). Plasma leucine peaked significantly faster after ingesting whey protein, however both protein sources induced a comparable net protein balance. This work was followed by a study from Tang et al (80) who examined the acute MPS response to whey, casein and soy proteins at rest and following RE. MPS was elevated to a greater extent with whey protein at rest (93%

greater than casein), and following RE (122% greater than casein) (80). These data support the utility of whey protein to enhance RE-induced anabolism acutely and over the longer term (81, 82).

1.2.2 Protein dose

In addition to the contribution of protein source to muscle anabolism, protein dose must also be considered. Cuthbertson et al (83) observed a curvilinear saturable dose response of MPS to the ingestion of EAA such that 10 g (~20g of protein) was sufficient to maximally stimulate MPS at rest in young men with no further stimulation beyond that dose. The increase in MPS with EAA is independent of insulin or IGF-1 and is mediated by mTORC1 associated translation initiation and elongation (84). Moore et al (85) examined the MPS response to intact protein at varying doses following RE. Healthy young males ingested 5, 10, 20 and 40 g of egg protein. The authors observed that 20 g of protein was sufficient to maximally stimulate MPS and intake ≥ 20 g resulted in elevated leucine oxidation (85). Witard et al (21) utilized a similar protocol to examine a dose response of myofibrillar protein synthesis to graded intakes of whey protein. In support of the findings of Moore and colleagues (85), the authors demonstrated that 20 g of whey protein maximally stimulated myofibrillar protein synthesis (21). It is therefore wellaccepted that ~ 20 g of high quality protein, which equates to a per meal dose of $\sim 0.25-0.3$ g/kg, is sufficient to enhance RE-induced anabolism (21, 85, 86).

Although all EAA and non-EAA are required to synthesis proteins, protein synthetic machinery can be stimulated by an isolated amino acid. Leucine is a branched-

chain amino acid (BCAA) now thought to be the primary EAA in protein that stimulates skeletal muscle growth processes (24, 25, 74, 87, 88). Preclinical models identified that the ingestion or infusion of leucine alone can independently stimulate mTORC1, which is a key protein kinase that activates MPS (24-26, 87, 88). Ingestion of leucine alone or enriched in an EAA and carbohydrate supplement also stimulates mTORC1 and MPS in humans (84, 89). Fujita et al (84) observed a 94% increase in the rate of MPS following the ingestion of a leucine-rich EAA- and carbohydrate-containing supplement. Of note, ingestion of the same leucine-EAA supplement following RE induced a greater magnitude of MPS (145%) and mTORC1 signaling (89). It is clear that leucine alone or in combination with other nutrients contributes to the anabolism of a nutrient drink consumed following RE (84, 89, 90). Recently, it was shown that a suboptimal dose (i.e., lower than previously shown to be maximally effective in stimulating MPS) of whey protein (6.25 g) enriched with leucine (3 g) stimulated MPS to a similar extent as an optimal dose of whey protein (25 g) (23). Nonetheless, Churchvard-Venne et al (23) demonstrated that an optimal dose of whey protein sustained post-exercise MPS for a longer duration, and may be better suited to increase exercise-induced muscle mass accretion. Although, enriching a suboptimal dose of whey protein with leucine is effective (23), a near optimal dose (16.6 g) of whey protein enriched with leucine (3.4 g) provided little additional stimulation of MPS indicating there is a maximal upper limit to AAinduced stimulation of anabolism (91)

1.3 Beta-hydroxy beta-methylbutyrate (HMB)

Of all AA, leucine is characterized by its ability to enhance muscle anabolism by binding to a protein called sestrin2 that subsequently results in the activation of mTORC1 (92) and MPS (23-26, 84, 87). Research has led to an interest in a metabolite of leucine, beta-hydroxy beta-methylbutyrate (HMB) (2, 3), demonstrated to enhance anabolism in animals and humans. In human skeletal muscle, leucine undergoes rapid but reversible transamination to its keto-acid, α -ketoisocaproate (α -KIC), that is catalyzed by branched chain amino acid transferase. The α -KIC is in rapid equilibrium across the muscle membrane and so its concentration is elevated with leucine ingestion. It is estimated that 5-10% of α -KIC is metabolized in the liver by the hepatocyte cytosolic enzyme KIC

18

dioxygenase generating HMB (2, 3); however, humans have a very low activity of the dioxygenase enzyme (3).

Endogenous HMB derived from leucine is converted to beta-hydroxyl, betamethylglutaryl CoA (HMG-CoA) and serves as a precursor for cholesterol synthesis (Figure 1) (3). The endogenous cholesterol synthesis from HMB is proposed to contribute to the anti-catabolic effects of HMB. HMB supplementation may contribute to enhanced membrane integrity and repair with a reduction in subsequent reduction in exercise induced muscle damage (3).

In addition, as a leucine metabolite, HMB is claimed to be anabolic, but the low endogenous production of HMB, 2-5% of leucine in ruminants and fowl (2) and 0.7% of leucine in humans (93), has led to investigation of HMB supplementation (94). Preclinical models, have demonstrated that HMB attenuates suppression of protein synthesis induced by cachectic stimuli (95-97). As such, the first investigation of HMB supplementation in humans, Nissen et al (94), hypothesized that HMB supplementation would decrease REinduced proteolysis. Support for such a thesis comes from a study of 41 participants that engaged in 3 weeks of RT who were supplemented with 0 g/d (placebo), 1.5 g/d or 3 g/d of HMB. In those ingesting HMB there was an decrease in urinary 3-methylhistidine (an indirect marker of myofibrillar proteolysis) and reduced blood CK activity during RT (94). These authors concluded that HMB suppressed muscle myofibrillar proteolysis and attenuated RE-induced muscle damage (94). Recently, a direct assessment of MPB was used to investigate the role of HMB in muscle protein turnover in humans. Wilkinson et al (1) provided 3.42 g of HMB-FA or 3.42 g of leucine to 8 young men and found that ingestion of HMB attenuated MPB by 57% (1) (Figure 2B). However, the ability of leucine to attenuate MPB was not tested and it could not be deduced whether or not HMB was superior to leucine in this regard (1). However, leucine is an insulinogenic AA and so ingestion of leucine resulted in a relative hyperinsulinemia (1), to which proteolysis is remarkably sensitive (98). To provide mechanistic insight into the changes observed, Wilkinson et al (1) monitored the gene expression of proteolytic components – MuRF1, Mafbx, Beclin 1, Cathepsin L and Calpain 1 – at different times throughout their investigation.

Figure 2 A. Myofibrillar MPS **(A)** and MPB **(B)** following oral ingestion of 3.42 g HMB-FA and 3.42 g leucine (A- only) in young healthy men. From Wilkinson et al (1) Surprisingly, they failed to detect any changes in these gene targets with the ingestion of HMB (1). Thus, although limited data exists to substantiate the claims that HMB prevents increments in MPB (1), future research is required to examine the time course of these effects. In addition to its anti-catabolic effects, HMB is also a purported anabolic

compound (28, 30, 94, 99-102). Early work in chickens and pigs demonstrated that HMB increased body mass, lean mass and improved immune function (103-105). Thus, Nissen et al (94) examined the effects of HMB on RT-induced hypertrophy in humans and observed a trend for a dose response of HMB supplementation on lean mass (p < 0.1) (94). In Study 2, from the same manuscript (94), 37 trained participants consumed CHO or 75 g of protein + 3 g of HMB during 7 weeks of RT. Nissen et al (94) observed slight increases in upper body strength with no pre-post changes in lean body mass. The contribution of HMB to the gains in strength could not be parsed out from this trial (94), since the supplement contained far more protein than what is required to maximally stimulate MPS (106). To separate the influence of protein and HMB, Kreider et al (107) utilized a similar supplementation regime, but provided 28 participants with a nutrient powder (75 g of protein) or the nutrient powder+HMB (75 g protein+ 3 g HMB). Contrary to Nissen (94), the authors reported no differences in mass and strength between groups. Other groups have since examined the utility of HMB to enhance RT-induced hypertrophy with conflicting results (107-111).

Thomson et al (112) reported a 'trivial' (the term applied using magnitude-based inferential statistics used in their analysis) increase in average strength (1.6%) and a negligible effect on body composition (112) after 9 weeks of 3 g of HMB-Ca supplementation in RT men. An international position stand stated that the ability of HMB to enhance RT-induced hypertrophy is dependent on the interaction between the athletes training status (UT or TR) and the rigor of the training program (102). It is suggested that HMB is able to enhance recovery after RE by reducing muscle damage

(102). In the UT state, muscle damage following a bout of RT is high because of the unaccustomed training stimulus (47, 113). For this reason, it is claimed that HMB supplementation in UT persons can attenuate RT-induced muscle damage (102). In TR persons, however, the RT program must be of sufficient intensity to induce muscle damage upon which HMB can be maximally effective (47, 113), such as a supervised periodized RT program for ≥ 6 weeks (102). It has been suggested that the failure of previous investigations (107, 108, 112) to employ a supervised, periodized RT program ≥ 6 weeks in TR participants may explain the inconsistency of RT-induced hypertrophy with HMB (102). The difference in results between studies may also be related to the form in which HMB is delivered.

HMB is available in two forms: a calcium-bound form (HMB-Ca) and a free-acidbound form (HMB-FA). Fuller et al (114) examined the plasma appearance and retention of HMB-Ca vs. HMB-FA. It was observed that HMB-FA resulted in rapid time to peak plasma concentration (30 vs. 120 mins) two times greater in magnitude than HMB-Ca (114). This improved bioavailability of HMB-FA has led some to claim that HMB-FA is more anabolic than HMB-Ca (28, 30, 102). Recently however, Wilkinson et al (1) examined the effect of HMB-FA supplementation on muscle anabolism in humans. HMB-FA and leucine stimulated MPS (70% and 110%, respectively, Figure 2A), and increased mTORC1 and p70S6K signaling to a similar extent. In a similar investigation, Wilkinson et al (27) demonstrated that 3 g of HMB-Ca increased MPS to a similar extent as HMB-FA. Thus, despite differing bioavailability, there is no apparent difference in the acute stimulation of MPS to either HMB-FA or HMB-Ca (1, 27).

Despite similar anabolic effects, at least based on acute MPS results, induced by HMB-Ca or HMB-FA (1, 27), recent investigations have developed a training regime and supplementation protocol purported to maximize the efficacy of HMB supplementation in TR participants. Wilson et al (28) provided 3 g of HMB-FA to TR participants during 12 weeks of a daily undulating periodized RT program. A single bout of RE from this protocol was demonstrated to increase muscle damage and anabolic hormones in TR men (115). Therefore, this design would ensure that TR participants achieve a potent stimulus to induce muscle damage upon which supplementation with HMB-FA would be maximally effective (28, 102). Wilson et al (28) observed substantial increases in LBM compared to a corn syrup-based placebo. However, the increases in mass and strength observed by Wilson et al (28) are difficult to reconcile with extant published reports of what is typical of RT-induced hypertrophy. For instance, a recent meta-analysis from our laboratory (116) showed that, in young participants (<35y; n=624) engaging in ~12 weeks of RT, gains in LBM averaged 1.2 ± 1.1 kg and protein supplementation resulted in only an additional 0.4 kg increase (116). The gains in fat- and bone-free mass (FBFM, often referred to as LBM) reported by Wilson et al (28) amounted to 7.4 kg, which is significantly (6.1 - 4.6 - fold) greater than reports from our recent meta-analysis (1.2 - 1.6)kg) (116). Despite substantial criticism (117, 118), Lowery et al (30) examined 3 g of HMB-FA + 400 mg ATP during 12 weeks of the same RT program in TR participants and observed an 8.5 kg increase in FBFM. The results from both trials were attributed to the efficacy of the training protocol to maximize the anabolic potential of HMB-FA (28, 30). However, the form of HMB likely contributed little to the gains in lean mass reported in Wilson et al (28) and Lowery et al (30) and the results they report simply seem implausible. Similar, to previous reports (28, 30), Kraemer et al (100) provided TR participants with HMB-Ca combined with other nutrients and observed even greater gains in lean mass (~9 kg) during RT in young men. Although data exist supporting substantial anabolic properties of HMB-FA and HMB-Ca (1, 27), the gains reported in these trials (28, 30, 100) greatly exceed that what is typical of RT-induced hypertrophy (31).

To gain a greater understanding of the LBM accretion typically observed following HMB supplementation during RT, a meta-analysis was performed with the aim of examining the efficacy of HMB-Ca and HMB-FA supplementation to augment skeletal muscle mass and strength with training in older and younger adults. A systematic search of Medline, Embase, CINAHK and SportDiscus, from 1996-November 2017 comprised the meta-analysis. All articles met the following eligibility criteria 1) randomized controlled trial (RCT), with resistance exercise training or sprint/high intensity interval training \geq 3 weeks (training sessions at least 2 x/week) and 2) supplementation with β hvdroxy, β-methylbutyrate (HMB) in the calcium (HMB-Ca) or free acid form (HMB-FA) with or without protein or amino acids. Random-effects meta-analyses were performed in RevMan (Review Manager (RevMan), V.5.3 Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014). The present meta-analysis included 8 studies that fit our inclusion criteria, for which data were available or provided on request, and subject to risk of bias assessment. A total of 269 participants were included, and the mean study duration was 9 ± 6 weeks with a training frequency of 3 ± 1

days/week. Data from 5/8 studies included trained participants. Data from 7/8 studies supplemented with HMB-Ca (3 g/d) and 1/8 with HMB-FA (3 g/d).

Figure 3. Forest plot of the results from a random-effects meta-analysis shown as mean difference with 95% CIs on changes in lean mass (kg) in younger and older participants. For each study, the circle represents the mean difference of the intervention effect with the horizontal line intersecting it as the lower and upper limits of the 95% CI. The size of each circle is indicative of the relative weight that study carried in the meta-analysis. The rhombi represent the weighted younger, older and total group's mean difference. Older adults n=67: z=1.18, 0.43 kg (-0.28,1.13) p=0.24. Younger adults n=202; z=2.04, 0.47 kg (0.02, 0.93), p=0.04). Total: n=269, z=2.51, 0.40 kg (0.09, 0.72), p=0.01.
The meta-analysis demonstrated that HMB-FA and HMB-Ca did not significantly influence RT-induced gains in total body mass, 0.43 kg (95% confidence interval [CI]: - 0.22, 1.08; p=0.19), fat mass, -0.01 kg (95% CI: -0.49, 0.47; p=0.97), or 1-RM strength (upper and lower body), 1.76 kg (95% CI: -0.72, 4.25; p=0.16), during resistance training compared to placebo. HMB-Ca and HMB-FA augmented resistance training-induced gains in LBM by 0.40 kg (95% CI: 0.09, 0.72; p=0.01, Figure 3).

Figure 4. Forest plot of the results from a random-effects meta-analysis shown as mean difference with 95% CIs on Lean mass (kg) in younger and older participants. Studies with ≥ 2 criteria of unclear/high risk of bias removed from the analysis. Total: n=137, z=1.72, 0.36 kg (-0.05, 0.76), p=0.09.

However, when studies (5 of 8) containing an unclear/high risk of bias on ≥ 2 categories (specified in RevMan) were removed, the effect of HMB was no longer significant 0.36 kg (95% CI: -0.05, 0.76, p=0.09, Figure 4). This meta-analysis demonstrated that supplementation with HMB-FA or HMB-Ca had no effects on RT-induced gains in total body mass, fat mass or 1-RM strength. The limited number of high quality trials investigating HMB-Ca and HMB-FA complicates the ability to draw conclusions in regard to the effectiveness of the supplement on lean mass. There may be a small effect of HMB to enhance RT-induced gains in LBM, however, a number of trials investigating HMB showed a high risk of bias. Our conclusions are supported by other meta-analyses which reported little or no effect of HMB on LBM gains during RT in TR participants (112).

1.4 Statement of the problem and hypotheses

Based on examination of our own meta-analysis and others (112), we are unable to explain the large gains in LBM reported by Kraemer et al (100), Wilson et al (28) and Lowery et al

(30) that

were ~9 kg,

7.4 kg and 8.5 kg (all in 12 weeks of RT), respectively. In previous investigations (28, 30), the placebo comparator to HMB-FA was simply carbohydrate. In one investigation, the HMB supplement also contained other ingredients (arginine, glutamine, taurine and dextrose) while the placebo was simply maltodextrin (100). A more ecologically valid study rather than a comparison of HMB to placebo would incorporate normal practices of

27

resistance trainees known to be efficacious. Given the knowledge of the beneficial effect that protein (116) and leucine (see section 1.2.1 above) have on hypertrophy and stimulation of MPS combined with the fact that protein supplements are a frequent choice of resistance trainees (119, 120), future research is needed that directly compares the anabolic influence of HMB with protein against protein with equivalent quantities of leucine. Such a comparison would result in generation of new knowledge as to whether HMB is truly more anabolic than its parent metabolite, leucine.

The overarching aim of the study comprising my thesis was to conduct a randomized, double-blind, pragmatic trial comparing the ingestion of whey protein with HMB-Ca, as this form of the supplement was previously reported to result in the greatest gains in FBFM (100), versus whey protein plus the parent compound of HMB, leucine. We assessed muscle hypertrophy using multiple indices, and strength via one repetition-maximum (1-RM), utilizing a highly effective program of undulating periodized RT in young relatively trained men (28, 30). In line with previous investigations (28, 30), we hypothesized that whey protein enriched with HMB would elicit substantially superior gains in lean mass and strength compared to whey protein enriched with leucine.

CHAPTER 2: MANUSCRIPT

Equivalent hypertrophy and strength gains in HMB or leucine supplemented men

Josephine S. Jakubowski¹, Edwin P.T. Wong¹, Everson A. Nunes², Kenneth S. Noguchi¹, Joshua K. Vandeweerd¹, Kevin T. Murphy¹, Robert W. Morton¹, Chris McGlory¹ and Stuart M. Phillips^{1*}

¹Department of Kinesiology, McMaster University, Ontario, Canada and ²Department of Physiological Sciences, Federal University of Santa Catarina, Florianopólis, Brazil Accepted for publication: July 3^{rd,} 2018 Medicine and Science in Sports and Exercise

2.1 Methods

2. 1.1 Study Design

A schematic overview of the study design is shown in (Figure 5). We employed a randomized, double-blind repeated measures design. A third, independent party performed the randomization and codes were not revealed to study personel or participants until all data had been analyzed. Participants were randomized, according to a list generated at randomize.com, with block sizes varying from 2-6 matched for baseline FBFM, to ingest: whey protein (25 g) plus HMB (1.5 g) (Whey+HMB; n=13) or whey protein (25 g) enriched with an equivalent mass of leucine (1.5 g) (Whey+Leu; n=13), twice daily during a 12-week, 3-phase RT program as described extensively previously (28, 30, 100). The RT program was selected as it has been demonstrated to elicit muscle damage in trained participants upon which HMB is maximally effective (28-30, 100). Briefly, phase 1 was 8 weeks of undulating periodized RT thrice weekly; phase 2 was an overreaching phase (5 weekly training sessions); followed by phase 3, which was a two-week taper (3 sessions/week). Body composition and 1-RM strength tests were performed at baseline, weeks 4, 8, 9, 10, and upon completion of the RT program (week 12) as illustrated in Figure

5. Supplements were prepared by Infinit Nutrition (Windsor, ON, Canada) matched for flavor (citrus) and consistency and were in powder form, which dissolved freely into 250

	Phase 1: Week 0-8	Phase 2: Week 9-10	Phase 3: Week 11-12			
	3 x/week	5 x/week	3 x/week			
	Undulating periodized training	Overreaching	Taper			
Week	0 4 8	9 10	12			
<i>Vastus Lateralis</i> Biopsy	t		t			
Blood	t t t	t <u>t</u>	İ			
DXA	t t 1	1	1			
Ultrasound	t		1			
1-RM Strength test	t t 1	1 1	1			
Wingate	t t 1	1 t	1			
Vertical Jump	t 1 1	i t t	1			

mL of water. A sample of the supplement was analyzed using documented ISO17025 accredited LGC (LGC, Queens Road, Teddington, Middlesex, TW11 0LY, UK) methods for the compounds specified within the Service Level Agreement: Nutritional Supplements V2.0. Results, GCMS: None were found, LCMS: None were found. LGC Reference: 204545. On training days, supplements were consumed following training and prior to sleep. On non-training days, supplements were consumed in the morning and prior to sleep.

2.1.2 Familiarization and 1-RM strength testing

One week prior to the start of the training program participants attended a familiarization session at a research dedicated training facility located within McMaster University, and \geq 72 hours later (42), a 1-RM strength test for squat, bench press and deadlift. The 1-RM tests were performed in the same order: squat, bench press and deadlift and followed strict guidelines as established by the National Strength and **Figure 5.** Schematic representation of Study design

Conditioning Association (NSCA). One investigator conducted all strength tests. Strength tests began with a 5-min warm-up on a cycle ergometer, that was followed by 5-8 repetitions at 50%, followed by 3-5 repetitions at 75% of the predicted 1-RM load. Following 5 mins of seated rest the 1-RM load was increased by 10-20 % until 1-RM was achieved. Participants had their form critiqued and adjusted if necessary by qualified personal trainers. Total 1-RM strength was calculated as the sum of mass lifted (kilograms, kg) for 1-RM of squat, bench press and deadlift.

2.1.3 Dietary Records

Protein intake was assessed at weeks 0, 8, and 12, using a 3-day food diary (2 weekdays, 1 weekend day), and was analyzed using the NutriBase dietary analysis software (Nutribase11 Professional Edition, version 11.5, Cybersoft Inc., Phoenix, AZ, USA). Food diaries were completed on both training and non-training days.

2.1.4 Resistance Training Intervention

Replicating a program described extensively elsewhere, (28, 30, 100), participants engaged in a supervised 3-Phase RT program. Our program followed this program exactly with participants performing: Squat, bench press, deadlifts, dumbbell shoulder press, pull-ups/dips, bent over row, biceps curls/lying triceps extensions, with leg press and close-grip bench press performed in weeks 9 and 10. Loads were decreased (5-10%) between sets to ensure participants achieved the prescribed repetition ranges.

2.1.5 Body composition

Body composition was assessed using dual- energy x-ray absorptiometry (DXA; GE Lunar iDXA total body scanner, GE Medical Systems, Madison, WI, USA) between

32

06:00-09:00 following a \geq 10 hour fast and after participants had voided their bladders. Participants refrained from physical activity for \geq 24 hours except during Phase 2 (training 5 x/week). Scans were performed and analyzed with software in the medium scan mode. Total body water was assessed using a Bioelectrical impedance analysis (BIA, BIA-101A; RJL Systems, Mt. Ckemens, MI). All body composition assessments were performed by the same technician to minimize variability. Based on scans of a whole-body phantom (Oscar Jr. Orthometrix, Naples, FL), intra-assay coefficient of variation (CV) of this scanner for FBFM (i.e., the body compartment of interest) is 1.2% and less than 1.7% on inter-assay 12 wks apart.

2.1.6. Ultrasound Muscle thickness and Cross-sectional area

Muscle thickness (MT) of the *vastus lateralis* was assessed by the same investigator using a B-mode ultrasound (Vivid q; GE Medical Systems, Horten, Norway) and a 50 mm, 12.5 linear-array probe. Ultrasound assessments were performed fasted and at the same time as the body composition testing. Participants laid supine for 10 mins with their right leg in full extension in a custom mount. Thickness was assessed at fifty percent of the distance between the greater trochanter and the lateral epicondyle of the knee (121). Tracing paper was used to record the reference point and the probe was placed transversally on the leg. An experienced investigator used water-based gel to ensure good acoustic contact and applied no pressure to the skin to rule out tissue compression as a potential confounding influence (122). A second investigator ensured the images were clear and possessed identifiable superficial/deep aponeurosis and the MT image was stored. To assess muscle cross-sectional area (CSA) sequential images starting at the border of the *rectus femoris* to the border of the *biceps femoris* in the frontal plane were captured resulting in a total of ~8-10 images of the vastus lateralis (123). Images were stored using Echo-PAC, PC Version 110.0.2 (GE Medical Systems, Horten, Norway) and converted from DICOM to JPEG using Sante DICOM Editor (Version 3.1.20; Santesoft Athens, Greece). The MT images were analyzed using AMS II (Version 1.141; Gothenburg, Sweden) at the widest distance between the narrow and deep aponeurosis. Each image was reviewed, and manual corrections were made, if necessary, the algorithm redirected the borders to asssses the thickness accurately (124). The same investigator performed the MT analysis on AMS II software on two separate occasions (intra-class correlation coefficient = 0.96). The muscle CSA images were stitched together using GIMP (GNU Image manipulation program 2.8.22, Creative Common, Mountain View, CA, USA) by aligning the superficial and deep aponeuroses. The muscle CSA was measured using computerized planimetry (i.e., vastus lateralis muscle CSA was manually contoured with an 800-dpi mouse) (Madena 3.2.5, EyePhysics, Los Paladinos, USA). The planimetry software was calibrated with fixed distance scales displayed in the ultrasound images. The ultrasound-based technique for determination of muscle CSA has recently been validated against magnetic resonance imaging (123). The stitched images were downloaded to ImageJ and manually traced to encompass the entire vastus lateralis. Conversion factor of 69 pixels per cm was used to calculate CSA in cm^2 . Two experienced investigators performed the analysis with an interclass correlation of 0.97. 2.1.7. Power testing

Wingate. Participants performed a 2-minute warm-up (50 watts, W) on an electronically braked cycle ergometer (Veletron, RacerMate, Seattle, WA, USA). Participants were instructed to pedal as fast as possible against the ergometers initial resistance for approximately 2 seconds before the appropriate load was applied by a computer interfaced with the ergometer (Wingate software version 1.11, Lode). Similar to previous investigations (125), a 30-second "all out" effort against a resistance equivalent to 0.075 kg/kg body mass was completed. The total body mass used for all power assessments was derived from the DXA. Participants were verbally encouraged throughout the test. Research assistants were trained at the same time and provided with a standardized set of verbal cues to encourage participants. Peak power, mean power and fatigue index were recorded. Participants then engaged in a 5-minute dynamic cool down. OptoJump. Measurements of specific power (W/kg) were made using OptoJump (Microgate, Via Antonio Stradivari, Italy) and analyzed using OptoJump Next systems software (Microgate, Via Antonio Stradivari, Italy). Participants performed one practice countermovement jump to ensure correct form and completed three countermovement jumps. Data were averaged as specific power (W/kg).

2.1.8 Muscle Fiber and Cross-sectional area

Participants arrived overnight fasted and 72 h after their last training session for a muscle biopsy. Muscle biopsies were obtained at baseline and post-training from the *vastus lateralis*. Muscle biopsies were performed under local anesthesia (2% xylocaine) using a 5-mm Bergstom needle that was modified for manual section. Upon excision, the sample was cleared of connective tissue and fat and was oriented longitudinally before

35

being embedded in an optimal cutting temperature medium. The mounted sample was frozen in liquid isopentane, cooled by liquid nitrogen and stored at -80°C for analysis. Cross sections (7 µm thick) were cut on a Microm HM550 Cryostat (Thermo Fisher scientific, Waltham, MA, USA), mounted on glass slides and stained. Fiber type and CSA were assessed via immunofluorescent staining of myosin heavy chain (MHC) isoforms and dystrophin as previously described (126). Primary antibodies against MHC1 (BA-F8), MHC11A (SC-71), MHC11X (6H1) and dystrophin (MANDYs; Developmental Studies Hybridoma Bank, Iowa City, IA, USA) followed by isotope-specific fluorescent secondary antibodies for the identification of Type I, Type I/Type IIA, Type IIA, Type IIA/X and Type IIX fibers. Slides were mounted with Prolong Diamond Antifade Reagent (Life Technologies, Burlington, ON, CAN) and imaged the next day. Images were obtained with a Nikon Eclipse 90i microscope at a magnification of 20X and captured with a Photometric Cool SNAP HQ2 florescent camera (Nikon Instrument, Melville, NY). Analysis was performed using the Nikon NIS element AR software (Nikon Instruments) on a large-scale image. The investigator was blinded to the group and time condition of each participant during all analyses. The CSA data pools Type IIA and Type IIX fibers as Type II, due to the number necessary to analyze the CSA for each fiber type (\sim 50-60) per sample (127). Fiber type was assessed by counting all suitable fibers (mean fibres counted: 239 ± 71) whereas fibers along the periphery and those that were obliquely or longitudinally-oriented were not included.

2.1.9 Blood Analysis

36

Blood samples were obtained to measure creatine kinase and systemic hormones concentrations. A 22-gauge needle was inserted into an antecubital vein and blood was collected and set aside to be allowed to clot and serum was collected after a 10-min spin at 500 *g*, Heparinized-tubes were used to isolate plasma. Whole blood samples were immediately analyzed for creatine kinase (ARCHITECT System, Abbott Laboratories, Abbott Park, IL 60064, USA) while the remaining samples were centrifuged at 4000 g for 10 min at 4° C, aliquoted and frozen at -80°C. Blood samples were analyzed for serum total testosterone (T; ng/dL), free testosterone (fT; ng/dL), cortisol (nM), growth hormone (GH; ng/mL) and insulin-like growth factor 1 (IGF-1; ug/dL) using a two-site chemiluminescence immunometric assays (Immulite; Intermedico, Holliston, MA) or radio-immunoassay (Diagnostics Products Corporation, Los Angeles, CA). The intra- and inter-assay CV for these hormones were all below 5%.

2.1.10 Statistical analyses

All variables were assessed for normality using the Kolmogorov-Smirnov test (p>0.05). Baseline characteristics were assessed using independent-t tests. A two-way (group by time) mixed-model ANOVA was assessed for muscle thickness, fibre CSA, fibre distribution and total 1-RM strength and hormone concentrations. Tukey's HSD was performed in excel when the ANOVA was significant. Significance was set at p<0.05. To compare the changes in body composition (FBFM, MT, CSA) and strength tests (1-RM, Wingate peak power and Optojump) between groups independent t-tests were performed. Intra-class correlation estimates for muscle thickness were calculated based on a single rater, absolute-agreement, 2-way mixed-effects model. The interclass correlation for

muscle cross-sectional area was assessed using a mean-raters (k=2), consistencyagreement, 2-way mixed-effects model. All analysis was performed using SPSS statistical package version 23 (IBM SPSS Statistics for Windows, Version 23.0. Armonk, NY). Values are expressed as means ± standard deviation (SD) or using box and whisker plots to illustrate the full variance of the data.

2.2 RESULTS2.2.1 Participant Characteristics

Baseline anthropometric characteristics are provided in Table 1. There were no significant differences between groups for any study variables (p>0.05, Table 1). Table 1. Participant characteristics

	Whey +HMB	Whey+ Leu	р
Age, years	$\frac{(n=13)}{22 \pm 1}$	(n=13) 23 ± 3	0.73
Height, cm	179 ± 6	180 ± 6	0.89
Body mass, kg	81.6 ± 9.6	83.4 ± 13.1	0.68
Lean mass, kg	63.1 ± 5.7	62.9 ± 8.7	0.95
Total fat mass, kg	15.2 ± 5.2	17.2 ± 6.4	0.39
Percent body fat, %	19.0 ± 4.6	21.1 ± 5.8	0.33
Squat kg/kg BM	1.7 ± 0.2	1.7 ± 0.3	0.64
Bench kg/kg BM	1.2 ± 0.2	1.2 ± 0.3	0.97
Deadlift kg/kg BM	1.9 ± 0.3	1.9 ± 0.2	0.94
Total Strength kg/kg BM	4.8 ± 0.6	4.8 ± 0.7	0.88
Protein intake g/kg/day	1.8 ± 0.4	1.9 ± 0.6	0.40

Abbreviations; Body Mass (BM). Values are mean±SD.

There was no significant difference in dietary protein intake (g/kg/day) between groups at baseline or week 12 (p>0.05, Table 2).

	Whey +HMB (n=13)	Whey+ Leu (n=13)
Baseline		
%PRO	23 ± 5	24 ± 6
%СНО	40 ± 9	43 ± 13
%FAT	37 ± 7	31 ± 9
Post		
%PRO	23 ± 5	23 ± 7
%CHO	43 ± 8	$44 \ \pm \ 10$
%FAT	34 ± 7	34 ± 12
Abrv. PRO: Protein, CHO:	carbohydrates.	

Table 2. Macronutrient distribution

2.2.2 Body composition

FBFM changed in the Whey+HMB from 63.1 ± 5.7 kg to 65.4 ± 5.9 kg. For Whey+Leu, FBFM changed from 62.9 ± 8.7 kg to 65.6 ± 8.6 kg, pre to post-invention, respectively (Figure 6A). The change in FBFM for Whey+HMB (2.3 ± 1.2 kg) and Whey+Leu (2.6 ± 1.9 kg) were not significantly different (p=0.59; Figure 6B). Fat mass remained unchanged (p=0.19) in both groups (Whey+HMB: -0.1 ± 0.9 kg and Whey+Leu: -0.5 ± 1.3 kg; p=0.41). For both groups, total body water remained unchanged throughout the intervention (p=0.62, data not shown).

Figure 6. A) Absolute values pre- and post training and **B)** Change in fat-and bone free mass (FBFM) for Whey+HMB (n=13, open box) and Whey+Leu (n=13, grey box) following 12 weeks of resistance training. Values are presented as median (lines) with the interquartile range (boxes) \pm minimum and maximum values (whiskers) and where + indicates the mean. *Significantly different (p<0.05) from pre-training.

2.2.3 Ultrasound

Whey+HMB and Whey+Leu exhibited comparable changes in MT. Whey+HMB increased from 31 ± 2 mm to 32 ± 2 mm and Whey+Leu increased from 30 ± 3 mm to 32 to 4 mm (5 ± 6 % and 5 ± 6 %, respectively; p=0.97, Figure 7A). The mid-thigh CSA increased from 34.1 ± 4.0 cm² to 36.4 ± 4.8 cm² in Whey+HMB and from 33.9 ± 5.8 cm² to 36.1 ± 6.3 cm² in Whey+Leu (Figure 7C).

Figure 7. A) Absolute values pre- and post-training and B) Change in *vastus lateralis* muscle thickness for Whey+HMB (n=13, open box) and Whey+Leu (n=12, grey box) following 12 weeks of undulating periodized resistance training. C) Absolute change and D) Delta change in *vastus lateralis* cross-sectional area for Whey+HMB and Whey+Leu. Values are presented as median (lines) with the interquartile range (boxes) \pm minimum and maximum values (whiskers) and where + indicates the mean. *Significantly different (p<0.05) from pre-training.

The change in muscle CSA for Whey+HMB ($2.2 \pm 1.4 \text{ cm}^2$) and Whey+Leu (2.3 ± 1.4

cm²) was not different (p=0.96, Figure 7D). The percent for change in CSA for

Whey+HMB (6 \pm 4 %) and Whey+Leu (7 \pm 4 %) in CSA was similar between groups

(p=0.92).

2.3.4 Fiber CSA

Following the intervention, there was an increase in Type 2 CSA with no difference between groups or fibers (p>0.05, Table 3).

		Pre				р	
Type 1 fCSA μm^2							
НМВ	5106	±	572	5450	±	610	0.058
Leu	5152	±	375	5378	±	462	
Type 2 fCSA μm^2							
HMB	5785	±	555	6363	±	573	< 0.01
Leu	6312	±	572	6719	±	603	
Distribution							
Type 1 %							
HMB	36	±	12	41	±	16	0.69
Leu	39	±	16	37	±	7	
Type 2 (2a+2x) %							
HMB	63	±	12	58	±	18	0.79
Leu	60	±	17	63	±	7	
Type 2a %							
HMB	50	±	14	52	±	16	0.15
Leu	57	±	18	58	±	7	
Type 2x %							
НМВ	11	±	9	1	±	2	0.03
Leu	6	±	8	4	±	7	

Table 3. Muscle fiber cross-sectional area and distribution

Abbreviations; Fiber cross-sectional area (fCSA). Values are mean±SD.

There were no group, time or group-by-time interactions for Type 1 or Type 2 fiber-type distributions (p>0.05). A significant shift pre- to post-training in Type 2x from 11 ± 9 %

to 1 ± 2 % in Whey+HMB and 6 ± 8 % to 4 ± 7 % in Whey+Leu; p=0.03, Table 3) was observed.

2.2.5 Maximal Strength

In response to 12 weeks of RT, 1-RM strength for squat, bench press and deadlift increased (p<0.01). There was an increase post-training in squat 1-RM for Whey+HMB $(33 \pm 10 \text{ kg})$ and Whev+Leu $(35 \pm 17 \text{ kg}, \text{ Table 4})$. The increase in bench press 1-RM was similar for Whey+HMB (11 ± 5 kg) and Whey+Leu (11 ± 7 kg, Table 4). The increase in deadlift 1-RM for Whey+HMB (25 ± 12 kg) was similar to Whey+Leu ($34 \pm$ 22 kg, Table 4). There were no significant differences in any 1-RM strength test from baseline to week 12 between for Whev+HMB and Whev+Leu (p>0.05). Following 12 weeks of training, there was a significant increase in total strength for Whey+HMB (70 \pm 21 kg) and Whey+Leu (80 ± 40 kg) with no significant difference between groups (p=0.41). Upon completion of week 1 to week 8 (Phase 1) both groups experienced similar changes in squat 1-RM (21 \pm 11 kg and 27 \pm 11 kg, p=0.24), bench press (10 \pm 4 kg and 10 ± 5 kg, p=0.89) and deadlift (18 ± 7 kg and 25 ± 19 kg, p=0.22) for Whev+HMB and Whev+Leu respectively. Upon completion of Phase 2 (overreaching), both groups experienced similar changes in squat (3 ± 7 kg and -2 ± 9 kg, p=0.24), bench press (-2 ± 4 kg and -1 ± 3 kg, p= 0.43) and deadlift (-2 ± 8 kg and -6 ± 11 kg, p=0.15), Whev+HMB and Whev+Leu, respectively. The decrement in total strength following week 8 to week 10 (overreaching) was 1 ± 12 kg for Whey+HMB and 8 ± 19 kg for Whev+Leu. (p=0.29). Following a 2-week taper (Phase 3), total 1-RM strength recovered similarly between groups (p=0.25) from overreaching: Whey+HMB (20 ± 9 kg) and

Whey+Leu (28 ± 22 kg). There was a significant increase in total 1-RM strength from (Week 8 to Week 12) with no difference in Whey+HMB (21 ± 10 kg) and Whey+Leu (18 ± 18 kg, p=0.59).

Table 4. Maximal strength (kg) and peak Wingate power (W) pre- and post-training

	НМВ											LEU								
	Pre			Post			Δ			Pre			Post			Δ				
SQ	140	±	19	173	±	22*	33	±	10	139	±	24	174	±	28*	35	±	17		
BP	99	±	18	111	±	17*	11	±	5	102	±	19	113	±	23*	11	±	7		
DL	151	±	23	177	±	28*	25	±	12	155	±	24	189	±	28*	34	±	22		
Total	392	±	53	461	±	59*	70	±	21	396	±	61	476	±	72*	80	±	40		
Power	981	±	180	1030	±	180*	49	±	96	954	±	90	1043	±	109*	88	±	92		

Abbreviations; SQ, squat, BP, bench press, DL, deadlift, Total, total 1-RM (kg): SQ+BP+DL, Power, peak power (W) during the Wingate test. Values are means \pm SD. *Significantly different from Pre (p<0.05).

2.2.6 Wingate

There was a significant increase in peak Wingate power (W) following training for Whey+HMB (981 ± 180 W to 1030 ± 180 W) and Whey+Leu (954 ± 90 W to 1043 ± 109 W, p=0.02) with no difference between groups (p=0.39, Table 4). The delta change in peak power was not different between groups (p=0.33), 49 ± 96 W and 88 ± 92 W for Whey+HMB and Whey+Leu, respectively. There was a significant group-by-time interaction in peak power following overreaching (Week 8 to Week 10) for Whey+HMB and Whey+Leu (p=0.03). The decrement in peak power for Whey+HMB was significantly greater (-39 ± 74 W) than Whey+Leu (18 ± 51 W) (p=0.03).

2.2.7 Vertical Jump

Following training, there was a significant increase in Optojump performance (W/kg); Whey+HMB increased from 14.9 ± 1.3 W/kg to 16.1 ± 1.3 W/kg, and Whey+Leu increased from 14.4 ± 1.9 to 15.7 ± 1.9 W/kg (p<0.01), with no difference between groups (p=0.80). There was no change in average power (W/kg) during overreaching for Whey+HMB (15.2 ± 1.3 W/kg to 15.9 ± 1.5 W/kg) or Whey+Leu (16.0 ± 3.0 W/kg to 16.5 ± 1.9 W/kg, p=0.80).

2.2.8 Blood Analysis

There was a significant increase in blood creatine kinase activity from baseline and week 8 to week 9, and week 10 (p<0.05), with no significant differences between groups (Table 5). Following overreaching, CK increased 109 ± 115 % and 72 ± 41 % (p=0.29, Table 5) for Whey+HMB and Whey+Leu, respectively. Following a 2-week taper (week 10 to week 12) both groups experienced similar decrements in CK -26 ± 44 % and -29 ± 57 %, p=0.91 (Table 5, Whey+HMB and Whey+Leu, respectively). There was a significant increase in cortisol from baseline and week 8 to week 9, week 10 (overreaching) and week 12 (p<0.01), with no difference between groups. Both groups showed similar increases following overreaching (47 ± 49 % and 47 ± 43 %, p=0.99) and a two-week taper (-15 ± 34 % and -10 ± 48 %, p=0.74) for Whey+HMB and Whey+Leu, respectively (Table 5). There was no time or group by time effect for IGF-1 (p=0.14). There was no significant group by time effect for GH (p=0.42) but a significant effect of time (p=0.017). In the Whey+HMB and Whey+Leu groups, there was a significant decrease in GH from week 0 to week 10 and week 12 (p<0.05). There was a significant decrease ($p \le 0.05$) in total testosterone from week 0 to week 10, and a significant increase from week 10 to week 12 (p < 0.05) with no between-group differences at any phase. There was a significant increase in free testosterone from baseline to week 8 (p < 0.05) and a significant decrease from week 8 to week 10 (p=0.05).

Table 5. Serum creatine kinase activity and plasma hormone concentrations during the protocol

	Pre			Week 4 Week 8					W	eek	9	We	eek 1	0	Week 12			
CK, (U	J/L)																	
HMB	247	±	102	240	±	98	201	±	72	*450	±	187	*387	±	180	260	± 174	
Leu	234	±	114	184	±	73	204	±	76	*465	±	268	*349	±	150	227	± 207	,
Cortiso	ol, nM																	
HMB	21	±	3	20	±	3	20	±	2	*30	±	8	*29	±	10	*24	± 7	
Leu	20	±	3	20	±	3	20	±	3	*31	±	9	*29	±	7	*24	± 6	
IGF1,	ug/dL																	
HMB	355	±	108	407	±	124	379	±	102	374	±	116	319	±	92	345	± 126	
Leu	375	±	99	400	±	98	394	±	123	364	±	139	*312	±	114	383	± 116	
GH, ng	g/mL																	
HMB	3.3	±	0.9	3.7	±	0.7	*3.6	±	0.9	3.2	±	0.9	*2.4	±	0.8	*2.9	± 0.8	
Leu	3.7	±	0.8	3.1	±	0.9	3.5	±	0.8	*3.0	±	0.5	*3.2	±	1.1	*3.3	± 0.8	
T, ng/đ	łL																	
HMB	691	±	52	693	±	60	*734	±	42	669	±	60	*521	±	66	704	± 53	
Leu	709	±	66	701	±	45	688	±	66	*645	±	72	*477	±	97	*625	± 143	
fT, ng/	dL																	
HMB	8	±	3	10	±	3	*10	±	3	8	±	2	*6	±	2	*9	± 3	
Leu	10	±	3	11	±	2.6	*9	±	2	*7	±	2	*7	±	2	*8	± 3	

CK (Creatine Kinase), cortisol (nM), insulin-like growth factor 1 (IGF-1; ug/dL), growth hormone (GH; ng/mL) total testosterone (T; ng/dL), free testosterone (fT; ng/dL). *Significantly different from Pre (p<0.05).

2.3 DISCUSSION

We discovered that in young men undertaking an undulating periodized RT program, that the ingestion of whey protein (50 g) with HMB-Ca (3 g daily) versus whey protein with the same amount of leucine (3 g daily) resulted in no differences in traininginduced gains in FBFM, muscle size, strength, or power. We did not detect group differences in blood hormones and serum creatine kinase, an often-used proxy marker of muscle damage. Thus, contrary to our initial hypothesis, and in direct contradiction to several reports using either HMB-Ca (100) or HMB-FA (28, 30), we conclude that HMB ingestion does not lead to an enhancement of hypertrophy or strength in comparison to ingestion of leucine. We observed similar increases in DXA-derived FBFM for Whev+HMB (2.3 ± 1.2 kg) and Whey+Leu (2.6 ± 1.9 kg). We also assessed total body water content at the time of the DXA scan and found no differences between each participant's scans that would have accounted for changes in FBFM. The DXA-measured changes in FBFM we observed were \sim 3-3.7 times lower than the gains previously reported (28, 30, 100). We cannot explain why the gains in FBFM we report are so much lower than these previous studies (28, 30, 100), but suggest that some methodological issues may contribute to the discrepancies (117). We find the lower gains in FBFM we observed versus previous work (28, 30, 100) particularly perplexing given that: we used the identical training program, we ensured our participants had more than adequate dietary protein and energy intake, and we had participants that were of comparable training status, at least based on FBFM and strength measures. However, we view the gains in FBFM we report as being more in line with typical gains in lean mass for

participants engaging in ~12 weeks of resistance training as reported in a recent metaanalysis from our laboratory (128).

Muscle thickness and CSA were assessed using ultrasound, which has been shown to be a reliable alternative to magnetic resonance imaging (121, 129). The Whey+HMB and Whey+Leu groups in our study demonstrated a 5% increase in muscle thickness, which is in-line with a previous 12 wk RT study (121). In contrast to our results, Lowery et al (30) observed ~3 times greater increase in quadriceps muscle thickness of (7.8 ± 0.4 mm) in participants supplemented with 3 g HMB-FA + 400 mg ATP relative to a placebo group (2.4 ± 0.7 mm). The only other investigation to report such dramatic increases in muscle thickness was from the same study in a group receiving HMB-FA alone (28).

There is no real consensus on the ability of HMB to augment RT-induced muscle strength. Some trials report no effect (107, 130, 131), a trivial effect (112, 132) or considerable effect (28, 30, 100) of HMB to augment muscle mass and strength with RT. Previous work demonstrated significantly greater increases in total strength (3 times) for participants supplemented with HMB-FA (77 \pm 18 kg) (28) and HMB+ATP (96 \pm 8 kg) (30) compared to placebo (25 \pm 22 kg). However, using the same training program as used previously (28, 30), we observed similar increases in total strength for Whey+HMB (70 \pm 21 kg) and Whey+Leu (80 \pm 40 kg). Following overreaching, both Whey+HMB and Whey+Leu groups experienced similar decrements in total strength (-0.5 \pm 3 % and - 2 \pm 5 %) and subsequent recovery (5 \pm 2 % and 6 \pm 5 %). In addition, following overreaching, the Whey+HMB group experienced decrements in wingate peak power that were, surprisingly, not observed in the Whey+Leu group indicating a superior ability of

Whey+Leu to protect against declines in performance when overreaching. Again, our results are in sharp contrast with previous investigations (28, 30, 100) in which HMB markedly attenuated the declines in muscle strength and power following overreaching (28, 30). Our data indicate that Whey+HMB and Whey+Leu have a similar ability to augment RT-induced strength gains, attenuate decrements following overreaching, and facilitate recovery during a taper.

We report muscle hypertrophy and strength data that differ from recent investigations that utilized the same RT program (28, 30, 100). Nonetheless, our findings are analogous to previous investigations of HMB-Ca supplementation that did not observe a superior effect on hypertrophy and strength (94, 107). Nissen et al (94) examined HMB-Ca at varying doses 0 g, 1.5 g, 3 g in untrained participants. The authors suggested a dose-response effect on fat-free mass to increasing doses of HMB-Ca (94). Critically, there were no statistically significant increases in fat-free mass following HMB supplementation (94). In a subsequent investigation [Study 2 from (94)], trained participants were supplemented with 3 g HMB-Ca plus a nutrient powder (75 g protein) during 7 weeks of RT. The HMB+nutrient powder group increased fat-free mass on days 14-39 compared to controls (94). Nonetheless, the increase in fat-free mass was not significantly different between groups following training (94). In a separate study, 3 g of HMB-Ca was included in a protein supplement (75 g) given to trained participants, no difference was observed between HMB-Ca or protein groups (107). In spite of these results, the work of Nissen et al (94) is frequently, and incorrectly, cited to illustrate the anabolic effects of HMB (94). An independent effect of HMB on muscle mass accretion,

due to the inclusion of protein in the same supplement, is impossible to elucidate from this trial (94). Critics attribute the discrepancies between these trials (94, 107) to the short supplementation protocol (28 days) and propose a longer period is required to elicit the anabolic effects of HMB (28, 30, 102). Nonetheless, we employed a highly effective training program used previously (28, 30, 100). Our data are in broad agreement with the conclusions of Kreider et al (107) who showed that a protein supplement with HMB does not enhance lean mass, strength or power compared to a protein supplement alone.

The training program used in the present and previous investigations (28, 30) is stated to induce muscle damage and a favourable hormone milieu upon which HMB would be maximally effective (28, 30, 100). The program, adapted from Kraemer et al (100), was designed to increase anabolic hormones by first performing multi-joint, compound lifts, followed by accessory lifts targeting smaller muscle groups. In fact, a single bout of training adapted from this program has been demonstrated to increase systemic hormones (115). Nonetheless, we and others (42, 67, 69) have showed that there is no anabolic effect that arises due to the acute, RT-induced rise in systemic hormones.

In the present investigation, we assessed various hormone concentrations at multiple time points and report no difference in hormones between groups at any phase. In addition, we assessed creatine kinase (CK), a frequently measured, but poor indicator of skeletal muscle damage (49, 133). A recent meta-analysis observed that HMB supplementation was effective in reducing serum levels of CK in studies ≥ 6 weeks (133). However, there is extensive debate as to the validity of CK, as serum levels are subject to substantial variation (49). The appearance of CK may reflect a disturbance to energy

51

control processes and does not independently indicate structural damage to muscle cells (49). Following overreaching, CK (109 % and 72 %) and cortisol (47 % and 47 %) increased similarly in the Whey+HMB and Whey+Leu groups, respectively. The elevations in CK and cortisol recovered similarly during the 2-week taper. Our data support other investigations that have failed to observe any beneficial effect of HMB on CK release or cortisol (110, 130, 134-136).

The principle strengths of the present study stem from the practical applications of our findings. We supplemented participants with whey protein because post-exercise consumption of a high-quality protein, such as whey, is standard nutritional practice (120, 137), and augments hypertrophy (128). We propose that persons undertaking RT to gain strength and muscle mass would not forgo the notable benefits of high-quality protein supplementation (128) and take only an isolated compound such as HMB, alone. Rather, we propose that most resistance exercisers would augment their nutritional program to include a supplement such as HMB in addition to a high-quality protein, especially given the ostensibly substantial anabolic advantage HMB has been shown to provide (28, 30, 100). We used multiple methods to assess changes in muscle: FBFM by DXA, muscle thickness, muscle CSA, and muscle fiber CSA. There are, however, some limitations that are important to acknowledge. In the present analysis, we did not employ a control group. Although the mass and strength in the Whey+HMB and Whey+Leu groups are consistent with previous reports (128), we acknowledge that a non-supplemented control group would have improved the robustness of our findings. Secondly, we recognize that our supplementation protocol differs slightly from what is recommended for HMB: 1 g thrice

52

daily as 30 minutes before exercise (102, 107). Finally, in contrast to previous investigations in which HMB-FA was used (28, 30), we utilized HMB in its calcium form (HMB-Ca), as this was the form associated with the greatest gains in muscle mass of ~ 9 kg versus only ~ 4 kg in the placebo group (100). However, we propose that the form of the HMB likely matters very little since recent work from Wilkinson et al (27) suggests that despite slightly differing bioavailability (114), HMB-Ca and HMB-FA are equivalent in their stimulation of MPS. And critically, HMB as a metabolite of leucine stimulates MPS, and inhibits muscle protein breakdown, through many of the same canonical signaling pathways as leucine (1, 27). Importantly, this is the first investigation to compare HMB to its parent metabolite during RT in young men and not merely a nonprotein (usually carbohydrate) placebo. Indeed, our intention was to mimic the nutritional practices of athletes and recreational exercisers who frequently supplement with highquality protein (120). As a result, our data is of practical relevance to athletes and recreational exercisers who hope to maximize their RT-induced gains through good nutritional and supplementation practices. In conclusion, our results show that there is no benefit of HMB when added to whey compared to whey protein with leucine.

2.4 References

1. Wilkinson DJ, Hossain T, Hill DS, Phillips BE, Crossland H, Williams J, et al. Effects of leucine and its metabolite beta-hydroxy-beta-methylbutyrate on human skeletal muscle protein metabolism. J Physiol. 2013;591(11):2911-23. doi:

10.1113/jphysiol.2013.253203. PubMed PMID: 23551944; PubMed Central PMCID: PMCPMC3690694.

2. Van Koevering M, Nissen S. Oxidation of leucine and alpha-ketoisocaproate to beta-hydroxy-beta-methylbutyrate in vivo. Am J Physiol. 1992;262(1 Pt 1):E27-31. doi: 10.1152/ajpendo.1992.262.1.E27. PubMed PMID: 1733247.

3. Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β -hydroxy β -methylbutyrate (HMB). The Journal of Nutritional Biochemistry. 1997;8(6):300-11.

4. Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93(3):993-1017. doi: 10.1152/physrev.00038.2012. PubMed PMID: 23899560.

5. Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84(3):475-82. doi: 10.1093/ajcn/84.3.475. PubMed PMID: 16960159.

6. Schoenheimer R, Rittenberg D, Foster GL, Keston AS, Ratner S. The Application of the Nitrogen Isotope N15 for the Study of Protein Metabolism. Science.

1938;88(2295):599-600. doi: 10.1126/science.88.2295.599. PubMed PMID: 17831794.
7. Biolo G, Tipton KD, Klein S, Wolfe RR. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol. 1997;273(1 Pt 1):E122-9. PubMed PMID: 9252488.

8. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol. 1997;273(1 Pt 1):E99-107. PubMed PMID: 9252485.

9. Wolfe RR. Regulation of muscle protein by amino acids. J Nutr. 2002;132(10):3219S-24S. doi: 10.1093/jn/131.10.3219S. PubMed PMID: 12368421.

Rennie MJ, Edwards RH, Halliday D, Matthews DE, Wolman SL, Millward DJ.
 Muscle protein synthesis measured by stable isotope techniques in man: the effects of feeding and fasting. Clin Sci (Lond). 1982;63(6):519-23. PubMed PMID: 6181926.

11. Bohe J, Low JF, Wolfe RR, Rennie MJ. Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids. J Physiol. 2001;532(Pt 2):575-9. PubMed PMID: 11306673; PubMed Central PMCID: PMCPMC2278544.

12. Phillips BE, Hill DS, Atherton PJ. Regulation of muscle protein synthesis in humans. Curr Opin Clin Nutr Metab Care. 2012;15(1):58-63. doi:

10.1097/MCO.0b013e32834d19bc. PubMed PMID: 22037010.

13. Atherton PJ, Smith K. Muscle protein synthesis in response to nutrition and exercise. J Physiol. 2012;590(5):1049-57. doi: 10.1113/jphysiol.2011.225003. PubMed PMID: 22289911; PubMed Central PMCID: PMCPMC3381813.

14. Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol. 1995;268(3 Pt 1):E514-20. PubMed PMID: 7900797.

15. Claassen H, Gerber C, Hoppeler H, Luthi JM, Vock P. Muscle filament spacing and short-term heavy-resistance exercise in humans. J Physiol. 1989;409:491-5. PubMed PMID: 2585299; PubMed Central PMCID: PMCPMC1190456.

16. Marcotte GR, West DW, Baar K. The molecular basis for load-induced skeletal muscle hypertrophy. Calcif Tissue Int. 2015;96(3):196-210. doi: 10.1007/s00223-014-9925-9. PubMed PMID: 25359125; PubMed Central PMCID: PMCPMC4809742.

17. Tipton KD, Ferrando AA, Phillips SM, Doyle D, Jr., Wolfe RR. Postexercise net protein synthesis in human muscle from orally administered amino acids. Am J Physiol. 1999;276(4 Pt 1):E628-34. PubMed PMID: 10198297.

18. Phillips SM. Protein requirements and supplementation in strength sports. Nutrition. 2004;20(7-8):689-95. doi: 10.1016/j.nut.2004.04.009. PubMed PMID: 15212752.

19. Dangin M, Guillet C, Garcia-Rodenas C, Gachon P, Bouteloup-Demange C, Reiffers-Magnani K, et al. The rate of protein digestion affects protein gain differently during aging in humans. J Physiol. 2003;549(Pt 2):635-44. doi:

10.1113/jphysiol.2002.036897. PubMed PMID: 12665610; PubMed Central PMCID: PMCPMC2342962.

20. Tipton KD, Elliott TA, Cree MG, Wolf SE, Sanford AP, Wolfe RR. Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Med Sci Sports Exerc. 2004;36(12):2073-81. PubMed PMID: 15570142.

21. Witard OC, Jackman SR, Breen L, Smith K, Selby A, Tipton KD. Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am J Clin Nutr. 2014;99(1):86-95. doi: 10.3945/ajcn.112.055517. PubMed PMID: 24257722.

22. Churchward-Venne TA, Burd NA, Phillips SM. Nutritional regulation of muscle protein synthesis with resistance exercise: strategies to enhance anabolism. Nutr Metab (Lond). 2012;9(1):40. doi: 10.1186/1743-7075-9-40. PubMed PMID: 22594765; PubMed Central PMCID: PMCPMC3464665.

23. Churchward-Venne TA, Burd NA, Mitchell CJ, West DW, Philp A, Marcotte GR, et al. Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. J Physiol. 2012;590(11):2751-65.

24. Anthony JC, Anthony TG, Layman DK. Leucine supplementation enhances skeletal muscle recovery in rats following exercise. J Nutr. 1999;129(6):1102-6. PubMed PMID: 10356072.

 Anthony JC, Yoshizawa F, Anthony TG, Vary TC, Jefferson LS, Kimball SR. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr. 2000;130(10):2413-9. PubMed PMID: 11015466.
 Crozier SJ, Kimball SR, Emmert SW, Anthony JC, Jefferson LS. Oral leucine administration stimulates protein synthesis in rat skeletal muscle. J Nutr. 2005;135(3):376-82. PubMed PMID: 15735066.

27. Wilkinson DJ, Hossain T, Limb MC, Phillips BE, Lund J, Williams JP, et al. Impact of the calcium form of beta-hydroxy-beta-methylbutyrate upon human skeletal muscle protein metabolism. Clin Nutr. 2017. doi: 10.1016/j.clnu.2017.09.024. PubMed PMID: 29097038.

28. Wilson JM, Lowery RP, Joy JM, Andersen JC, Wilson SM, Stout JR, et al. The effects of 12 weeks of beta-hydroxy-beta-methylbutyrate free acid supplementation on muscle mass, strength, and power in resistance-trained individuals: a randomized, double-blind, placebo-controlled study. Eur J Appl Physiol. 2014;114(6):1217-27. doi: 10.1007/s00421-014-2854-5. PubMed PMID: 24599749; PubMed Central PMCID:

PMCPMC4019830.

29. Kraemer WJ, Hatfield DL, Comstock BA, Fragala MS, Davitt PM, Cortis C, et al. Influence of HMB supplementation and resistance training on cytokine responses to resistance exercise. J Am Coll Nutr. 2014;33(4):247-55. doi:

10.1080/07315724.2014.911669. PubMed PMID: 25140763.

30. Lowery RP, Joy JM, Rathmacher JA, Baier SM, Fuller JC, Jr., Shelley MC, 2nd, et al. Interaction of Beta-Hydroxy-Beta-Methylbutyrate Free Acid and Adenosine Triphosphate on Muscle Mass, Strength, and Power in Resistance Trained Individuals. J Strength Cond Res. 2016;30(7):1843-54. doi: 10.1519/JSC.00000000000482. PubMed PMID: 24714541.

31. Folland JP, Williams AG. The adaptations to strength training : morphological and neurological contributions to increased strength. Sports Med. 2007;37(2):145-68. PubMed PMID: 17241104.

32. American College of Sports M. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687-708. doi: 10.1249/MSS.0b013e3181915670. PubMed PMID: 19204579.

33. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162-84. doi: 10.1016/j.cmet.2012.12.012. PubMed PMID: 23395166.

34. Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88(1-2):50-60. doi: 10.1007/s00421-002-0681-6. PubMed PMID: 12436270.

35. Phillips SM, Tipton KD, Ferrando AA, Wolfe RR. Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol. 1999;276(1 Pt 1):E118-24. PubMed PMID: 9886957.

36. Phillips SM, Parise G, Roy BD, Tipton KD, Wolfe RR, Tamopolsky MA. Resistance-training-induced adaptations in skeletal muscle protein turnover in the fed state. Can J Physiol Pharmacol. 2002;80(11):1045-53. PubMed PMID: 12489923.

37. Kim PL, Staron RS, Phillips SM. Fasted-state skeletal muscle protein synthesis after resistance exercise is altered with training. J Physiol. 2005;568(Pt 1):283-90. doi: 10.1113/jphysiol.2005.093708. PubMed PMID: 16051622; PubMed Central PMCID: PMCPMC1474760.

38. Fry AC. The role of resistance exercise intensity on muscle fibre adaptations. Sports Med. 2004;34(10):663-79. PubMed PMID: 15335243.

39. Delorme TL. Restoration of muscle power by heavy-resistance exercises. The Journal of Bone & Joint Surgery. 1945;27(4).

40. Schoenfeld BJ, Wilson JM, Lowery RP, Krieger JW. Muscular adaptations in low- versus high-load resistance training: A meta-analysis. Eur J Sport Sci. 2016;16(1):1-10. doi: 10.1080/17461391.2014.989922. PubMed PMID: 25530577.

41. Burd NA, Tang JE, Moore DR, Phillips SM. Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences. J Appl Physiol (1985). 2009;106(5):1692-701. doi: 10.1152/japplphysiol.91351.2008. PubMed PMID: 19036897.

42. Morton RW, Oikawa SY, Wavell CG, Mazara N, McGlory C, Quadrilatero J, et al. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol (1985). 2016;121(1):129-38. doi: 10.1152/japplphysiol.00154.2016. PubMed PMID: 27174923; PubMed Central PMCID: PMCPMC4967245.

43. Ogasawara. Low-Load Bench Press Training to Fatigue Results in Muscle Hypertrophy Similar to High-Load Bench Press Training. International Journal of Clinical Medicine. 2013;4(4):114-21.

44. Burd NA, West DW, Staples AW, Atherton PJ, Baker JM, Moore DR, et al. Lowload high volume resistance exercise stimulates muscle protein synthesis more than highload low volume resistance exercise in young men. PLoS One. 2010;5(8):e12033. doi: 10.1371/journal.pone.0012033. PubMed PMID: 20711498; PubMed Central PMCID: PMCPMC2918506.

45. Schoenfeld BJ, Ratamess NA, Peterson MD, Contreras B, Sonmez GT, Alvar BA. Effects of different volume-equated resistance training loading strategies on muscular adaptations in well-trained men. J Strength Cond Res. 2014;28(10):2909-18. doi: 10.1519/JSC.00000000000480. PubMed PMID: 24714538.

46. Damas F, Libardi CA, Ugrinowitsch C. The development of skeletal muscle hypertrophy through resistance training: the role of muscle damage and muscle protein synthesis. Eur J Appl Physiol. 2018;118(3):485-500. doi: 10.1007/s00421-017-3792-9. PubMed PMID: 29282529.

47. Newham DJ, Jones DA, Clarkson PM. Repeated high-force eccentric exercise: effects on muscle pain and damage. J Appl Physiol (1985). 1987;63(4):1381-6. doi: 10.1152/jappl.1987.63.4.1381. PubMed PMID: 3693172.

48. Damas F, Phillips SM, Lixandrao ME, Vechin FC, Libardi CA, Roschel H, et al. Early resistance training-induced increases in muscle cross-sectional area are concomitant with edema-induced muscle swelling. Eur J Appl Physiol. 2016;116(1):49-56. doi: 10.1007/s00421-015-3243-4. PubMed PMID: 26280652.

49. Baird MF, Graham SM, Baker JS, Bickerstaff GF. Creatine-kinase- and exerciserelated muscle damage implications for muscle performance and recovery. J Nutr Metab. 2012;2012:960363. doi: 10.1155/2012/960363. PubMed PMID: 22288008; PubMed Central PMCID: PMCPMC3263635.

50. Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil. 2002;81(11 Suppl):S52-69. doi: 10.1097/01.PHM.0000029772.45258.43. PubMed PMID: 12409811.

51. Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Hakkinen K. Short vs. long rest period between the sets in hypertrophic resistance training: influence on muscle strength,

size, and hormonal adaptations in trained men. J Strength Cond Res. 2005;19(3):572-82. doi: 10.1519/15604.1. PubMed PMID: 16095405.

52. Grgic J, Lazinica B, Mikulic P, Krieger JW, Schoenfeld BJ. The effects of short versus long inter-set rest intervals in resistance training on measures of muscle hypertrophy: A systematic review. Eur J Sport Sci. 2017;17(8):983-93. doi: 10.1080/17461391.2017.1340524. PubMed PMID: 28641044.

53. Kraemer WJ, Marchitelli L, Gordon SE, Harman E, Dziados JE, Mello R, et al. Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol (1985). 1990;69(4):1442-50. doi: 10.1152/jappl.1990.69.4.1442. PubMed PMID: 2262468.

54. Kraemer WJ, Gordon SE, Fleck SJ, Marchitelli LJ, Mello R, Dziados JE, et al. Endogenous anabolic hormonal and growth factor responses to heavy resistance exercise in males and females. Int J Sports Med. 1991;12(2):228-35. doi: 10.1055/s-2007-1024673. PubMed PMID: 1860749.

55. Fry AC, Kraemer WJ. Resistance exercise overtraining and overreaching. Neuroendocrine responses. Sports Med. 1997;23(2):106-29. PubMed PMID: 9068095.

56. Coutts A, Reaburn P, Piva TJ, Murphy A. Changes in selected biochemical, muscular strength, power, and endurance measures during deliberate overreaching and tapering in rugby league players. Int J Sports Med. 2007;28(2):116-24. doi: 10.1055/s-2006-924145. PubMed PMID: 16835824.

57. Ratamess NA, Kraemer WJ, Volek JS, Rubin MR, Gomez AL, French DN, et al. The effects of amino acid supplementation on muscular performance during resistance training overreaching. J Strength Cond Res. 2003;17(2):250-8. PubMed PMID: 12741860.

58. Rhea MR, Ball SD, Phillips WT, Burkett LN. A comparison of linear and daily undulating periodized programs with equated volume and intensity for strength. J Strength Cond Res. 2002;16(2):250-5. PubMed PMID: 11991778.

59. Rhea MR, Alderman BL. A meta-analysis of periodized versus nonperiodized strength and power training programs. Res Q Exerc Sport. 2004;75(4):413-22. doi: 10.1080/02701367.2004.10609174. PubMed PMID: 15673040.

60. Simao R, Spineti J, de Salles BF, Matta T, Fernandes L, Fleck SJ, et al. Comparison between nonlinear and linear periodized resistance training: hypertrophic and strength effects. J Strength Cond Res. 2012;26(5):1389-95. doi:

10.1519/JSC.0b013e318231a659. PubMed PMID: 22516910.

61. poliquin. Five steps to increasing the effectiveness of your strength training program. NSCA Journal. 1988;10:34-9.

62. Apel JM, Lacey RM, Kell RT. A comparison of traditional and weekly undulating periodized strength training programs with total volume and intensity equated. J Strength Cond Res. 2011;25(3):694-703. doi: 10.1519/JSC.0b013e3181c69ef6. PubMed PMID: 20581703.

63. Harries SK, Lubans DR, Callister R. Systematic review and meta-analysis of linear and undulating periodized resistance training programs on muscular strength. J Strength Cond Res. 2015;29(4):1113-25. doi: 10.1519/JSC.000000000000712. PubMed PMID: 25268290.

64. Kraemer WJ, Noble BJ, Clark MJ, Culver BW. Physiologic responses to heavyresistance exercise with very short rest periods. Int J Sports Med. 1987;8(4):247-52. doi: 10.1055/s-2008-1025663. PubMed PMID: 3667019.

65. Sinha-Hikim I, Artaza J, Woodhouse L, Gonzalez-Cadavid N, Singh AB, Lee MI, et al. Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy. Am J Physiol Endocrinol Metab. 2002;283(1):E154-64. doi: 10.1152/ajpendo.00502.2001. PubMed PMID: 12067856.

66. Yarasheski KE, Campbell JA, Smith K, Rennie MJ, Holloszy JO, Bier DM. Effect of growth hormone and resistance exercise on muscle growth in young men. Am J Physiol. 1992;262(3 Pt 1):E261-7. doi: 10.1152/ajpendo.1992.262.3.E261. PubMed PMID: 1550219.

67. West DW, Kujbida GW, Moore DR, Atherton P, Burd NA, Padzik JP, et al. Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J Physiol. 2009;587(Pt 21):5239-47. doi: 10.1113/jphysiol.2009.177220. PubMed PMID: 19736298; PubMed Central PMCID: PMCPMC2790261.

68. West DW, Burd NA, Tang JE, Moore DR, Staples AW, Holwerda AM, et al. Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors. J Appl Physiol (1985). 2010;108(1):60-7. doi: 10.1152/japplphysiol.01147.2009. PubMed PMID: 19910330; PubMed Central PMCID: PMCPMC2885075.

69. West DW, Cotie LM, Mitchell CJ, Churchward-Venne TA, MacDonald MJ, Phillips SM. Resistance exercise order does not determine postexercise delivery of testosterone, growth hormone, and IGF-1 to skeletal muscle. Appl Physiol Nutr Metab. 2013;38(2):220-6. doi: 10.1139/apnm-2012-0397. PubMed PMID: 23438236.

70. West DW, Burd NA, Staples AW, Phillips SM. Human exercise-mediated skeletal muscle hypertrophy is an intrinsic process. Int J Biochem Cell Biol. 2010;42(9):1371-5. doi: 10.1016/j.biocel.2010.05.012. PubMed PMID: 20541030.

71. Atherton PJ, Etheridge T, Watt PW, Wilkinson D, Selby A, Rankin D, et al. Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am J Clin Nutr. 2010;92(5):1080-8. doi: 10.3945/ajcn.2010.29819. PubMed PMID: 20844073.

72. Mitchell WK, Phillips BE, Williams JP, Rankin D, Lund JN, Smith K, et al. A dose- rather than delivery profile-dependent mechanism regulates the "muscle-full" effect in response to oral essential amino acid intake in young men. J Nutr. 2015;145(2):207-14. doi: 10.3945/jn.114.199604. PubMed PMID: 25644339; PubMed Central PMCID: PMCPMC4304023.

73. Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR. An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol (1985). 2000;88(2):386-92. doi: 10.1152/jappl.2000.88.2.386. PubMed PMID: 10658002.

74. Miller. Independent and combined effects of Amino acids and Glucose after Resistance exercise. Medicine & Science in Sports & Exercise. 2002;35(3):449-55.

75. Borsheim E, Tipton KD, Wolf SE, Wolfe RR. Essential amino acids and muscle protein recovery from resistance exercise. Am J Physiol Endocrinol Metab.

2002;283(4):E648-57. doi: 10.1152/ajpendo.00466.2001. PubMed PMID: 12217881.
76. Wilkinson SB, Tarnopolsky MA, Macdonald MJ, Macdonald JR, Armstrong D, Phillips SM. Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am J Clin Nutr. 2007;85(4):1031-40. doi: 10.1093/ajcn/85.4.1031. PubMed PMID: 17413102.

77. Hartman JW, Tang JE, Wilkinson SB, Tarnopolsky MA, Lawrence RL, Fullerton AV, et al. Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am J Clin Nutr. 2007;86(2):373-81. doi: 10.1093/ajcn/86.2.373. PubMed PMID: 17684208.

78. Groen BB, Horstman AM, Hamer HM, de Haan M, van Kranenburg J, Bierau J, et al. Post-Prandial Protein Handling: You Are What You Just Ate. PLoS One. 2015;10(11):e0141582. doi: 10.1371/journal.pone.0141582. PubMed PMID: 26556791; PubMed Central PMCID: PMCPMC4640549.

79. Stokes T, Hector AJ, Morton RW, McGlory C, Phillips SM. Recent Perspectives Regarding the Role of Dietary Protein for the Promotion of Muscle Hypertrophy with Resistance Exercise Training. Nutrients. 2018;10(2). doi: 10.3390/nu10020180. PubMed PMID: 29414855; PubMed Central PMCID: PMCPMC5852756.

80. Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol (1985). 2009;107(3):987-92. doi: 10.1152/japplphysiol.00076.2009. PubMed PMID: 19589961.

81. Burke DG, Chilibeck PD, Davidson KS, Candow DG, Farthing J, Smith-Palmer T. The effect of whey protein supplementation with and without creatine monohydrate combined with resistance training on lean tissue mass and muscle strength. Int J Sport Nutr Exerc Metab. 2001;11(3):349-64. PubMed PMID: 11591884.

82. Cribb PJ, Williams AD, Stathis CG, Carey MF, Hayes A. Effects of whey isolate, creatine, and resistance training on muscle hypertrophy. Med Sci Sports Exerc. 2007;39(2):298-307. doi: 10.1249/01.mss.0000247002.32589.ef. PubMed PMID: 17277594.

83. Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P, et al. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J. 2005;19(3):422-4. doi: 10.1096/fj.04-2640fje. PubMed PMID: 15596483.

84. Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Cadenas JG, Yoshizawa F, et al. Nutrient signalling in the regulation of human muscle protein synthesis. J Physiol. 2007;582(Pt 2):813-23. doi: 10.1113/jphysiol.2007.134593. PubMed PMID: 17478528; PubMed Central PMCID: PMCPMC2075348.

85. Moore DR, Robinson MJ, Fry JL, Tang JE, Glover EI, Wilkinson SB, et al. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr. 2009;89(1):161-8. doi: 10.3945/ajcn.2008.26401. PubMed PMID: 19056590. 86. Moore DR, Churchward-Venne TA, Witard O, Breen L, Burd NA, Tipton KD, et al. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol A Biol Sci Med Sci. 2015;70(1):57-62. doi: 10.1093/gerona/glu103. PubMed PMID: 25056502.

87. Anthony JC, Anthony TG, Kimball SR, Vary TC, Jefferson LS. Orally administered leucine stimulates protein synthesis in skeletal muscle of postabsorptive rats in association with increased eIF4F formation. J Nutr. 2000;130(2):139-45. PubMed PMID: 10720160.

88. Anthony TG, Anthony JC, Yoshizawa F, Kimball SR, Jefferson LS. Oral administration of leucine stimulates ribosomal protein mRNA translation but not global rates of protein synthesis in the liver of rats. J Nutr. 2001;131(4):1171-6. PubMed PMID: 11285321.

89. Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, Chinkes DL, et al. Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol Endocrinol Metab. 2008;294(2):E392-400. doi: 10.1152/ajpendo.00582.2007. PubMed PMID: 18056791; PubMed Central PMCID: PMCPMC2706121.

90. Koopman R, Wagenmakers AJ, Manders RJ, Zorenc AH, Senden JM, Gorselink M, et al. Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. Am J Physiol Endocrinol Metab. 2005;288(4):E645-53. doi: 10.1152/ajpendo.00413.2004. PubMed PMID: 15562251.

91. Tipton KD, Elliott TA, Ferrando AA, Aarsland AA, Wolfe RR. Stimulation of muscle anabolism by resistance exercise and ingestion of leucine plus protein. Appl Physiol Nutr Metab. 2009;34(2):151-61. doi: 10.1139/H09-006. PubMed PMID: 19370045.

92. Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR, et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science. 2016;351(6268):43-8. doi: 10.1126/science.aab2674. PubMed PMID: 26449471; PubMed Central PMCID: PMCPMC4698017.

93. Walker. Determination of β -hydroxy- β -methylbutyrate concentration and enrichment in human plasma using chemical ionization gas chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1040:233-8. doi: 10.1016/j.jchromb.2016.11.010.

94. Nissen S, Sharp R, Ray M, Rathmacher JA, Rice D, Fuller JC, Jr., et al. Effect of leucine metabolite beta-hydroxy-beta-methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol (1985). 1996;81(5):2095-104. doi: 10.1152/jappl.1996.81.5.2095. PubMed PMID: 8941534.

95. Eley HL, Russell ST, Baxter JH, Mukerji P, Tisdale MJ. Signaling pathways initiated by beta-hydroxy-beta-methylbutyrate to attenuate the depression of protein synthesis in skeletal muscle in response to cachectic stimuli. Am J Physiol Endocrinol Metab. 2007;293(4):E923-31. doi: 10.1152/ajpendo.00314.2007. PubMed PMID: 17609254.
96. Aversa Z, Bonetto A, Costelli P, Minero VG, Penna F, Baccino FM, et al. betahydroxy-beta-methylbutyrate (HMB) attenuates muscle and body weight loss in experimental cancer cachexia. Int J Oncol. 2011;38(3):713-20. doi: 10.3892/ijo.2010.885. PubMed PMID: 21184031.

97. Townsend JR, Fragala MS, Jajtner AR, Gonzalez AM, Wells AJ, Mangine GT, et al. beta-Hydroxy-beta-methylbutyrate (HMB)-free acid attenuates circulating TNF-alpha and TNFR1 expression postresistance exercise. J Appl Physiol (1985). 2013;115(8):1173-82. doi: 10.1152/japplphysiol.00738.2013. PubMed PMID: 23908318.

98. Greenhaff PL, Karagounis LG, Peirce N, Simpson EJ, Hazell M, Layfield R, et al. Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am J Physiol Endocrinol Metab. 2008;295(3):E595-604. doi: 10.1152/ajpendo.90411.2008. PubMed PMID: 18577697; PubMed Central PMCID: PMCPMC2536736.

99. Wilson GJ, Wilson JM, Manninen AH. Effects of beta-hydroxy-betamethylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience: A review. Nutr Metab (Lond). 2008;5:1. doi: 10.1186/1743-7075-5-1. PubMed PMID: 18173841; PubMed Central PMCID: PMCPMC2245953.

100. Kraemer WJ, Hatfield DL, Volek JS, Fragala MS, Vingren JL, Anderson JM, et al. Effects of Amino Acids Supplement on Physiological Adaptations to Resistance Training. Med Sci Sport Exer. 2009;41(5):1111-21. doi:

10.1249/MSS.0b013e318194cc75. PubMed PMID: WOS:000265324500018.

101. Zanchi NE, Gerlinger-Romero F, Guimaraes-Ferreira L, de Siqueira Filho MA, Felitti V, Lira FS, et al. HMB supplementation: clinical and athletic performance-related effects and mechanisms of action. Amino Acids. 2011;40(4):1015-25. doi: 10.1007/s00726-010-0678-0. PubMed PMID: 20607321.

102. Wilson JM, Fitschen PJ, Campbell B, Wilson GJ, Zanchi N, Taylor L, et al. International Society of Sports Nutrition Position Stand: beta-hydroxy-betamethylbutyrate (HMB). J Int Soc Sports Nutr. 2013;10(1):6. doi: 10.1186/1550-2783-10-6. PubMed PMID: 23374455; PubMed Central PMCID: PMCPMC3568064.

103. Nissen S, Faidley TD, Zimmerman DR, Izard R, Fisher CT. Colostral milk fat percentage and pig performance are enhanced by feeding the leucine metabolite beta-hydroxy-beta-methyl butyrate to sows. J Anim Sci. 1994;72(9):2331-7. PubMed PMID: 8002451.

104. Van Koevering MT, Dolezal HG, Gill DR, Owens FN, Strasia CA, Buchanan DS, et al. Effects of beta-hydroxy-beta-methyl butyrate on performance and carcass quality of feedlot steers. J Anim Sci. 1994;72(8):1927-35. PubMed PMID: 7982819.

105. Nissen S, Fuller JC, Jr., Sell J, Ferket PR, Rives DV. The effect of beta-hydroxybeta-methylbutyrate on growth, mortality, and carcass qualities of broiler chickens. Poult Sci. 1994;73(1):137-55. doi: 10.3382/ps.0730137. PubMed PMID: 8165160.

106. Moore DR, Tang JE, Burd NA, Rerecich T, Tarnopolsky MA, Phillips SM. Differential stimulation of myofibrillar and sarcoplasmic protein synthesis with protein ingestion at rest and after resistance exercise. J Physiol. 2009;587(Pt 4):897-904. doi:

10.1113/jphysiol.2008.164087. PubMed PMID: 19124543; PubMed Central PMCID: PMCPMC2669978.

107. Kreider RB, Ferreira M, Wilson M, Almada AL. Effects of calcium beta-hydroxybeta-methylbutyrate (HMB) supplementation during resistance-training on markers of catabolism, body composition and strength. Int J Sports Med. 1999;20(8):503-9. doi: 10.1055/s-1999-8835. PubMed PMID: 10606212.

108. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite beta-hydroxy-beta-methylbutyrate (hmb) during resistance training. Nutrition. 2000;16(9):734-9.

109. Slater GJ, Jenkins D. Beta-hydroxy-beta-methylbutyrate (HMB) supplementation and the promotion of muscle growth and strength. Sports Med. 2000;30(2):105-16. PubMed PMID: 10966150.

110. Knitter AE, Panton L, Rathmacher JA, Petersen A, Sharp R. Effects of betahydroxy-beta-methylbutyrate on muscle damage after a prolonged run. J Appl Physiol (1985). 2000;89(4):1340-4. doi: 10.1152/jappl.2000.89.4.1340. PubMed PMID: 11007567.

111. Jówko E, Ostaszewski P, Jank M, Sacharuk J, Zieniewicz A, Wilczak J, et al. Creatine and β -hydroxy- β -methylbutyrate (HMB) additively increase lean body mass and muscle strength during a weight-training program. Nutrition. 2001;17(7):558-66.

112. Thomson JS, Watson PE, Rowlands DS. Effects of nine weeks of beta-hydroxybeta- methylbutyrate supplementation on strength and body composition in resistance trained men. J Strength Cond Res. 2009;23(3):827-35. doi:

10.1519/JSC.0b013e3181a00d47. PubMed PMID: 19387396.

113. Faulkner JA, Brooks SV, Opiteck JA. Injury to skeletal muscle fibers during contractions: conditions of occurrence and prevention. Phys Ther. 1993;73(12):911-21. PubMed PMID: 8248299.

114. Fuller JC, Jr., Sharp RL, Angus HF, Baier SM, Rathmacher JA. Free acid gel form of beta-hydroxy-beta-methylbutyrate (HMB) improves HMB clearance from plasma in human subjects compared with the calcium HMB salt. Br J Nutr. 2011;105(3):367-72. doi: 10.1017/S0007114510003582. PubMed PMID: 21134325.

115. Wilson JM, Lowery RP, Joy JM, Walters JA, Baier SM, Fuller JC, Jr., et al. beta-Hydroxy-beta-methylbutyrate free acid reduces markers of exercise-induced muscle damage and improves recovery in resistance-trained men. Br J Nutr. 2013;110(3):538-44. doi: 10.1017/S0007114512005387. PubMed PMID: 23286834.

116. Morton RW, Murphy KT, McKellar SR, Schoenfeld BJ, Henselmans M, Helms E, et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med. 2017. doi: 10.1136/bjsports-2017-097608. PubMed PMID: 28698222.

117. Gentles JA, Phillips SM. Discrepancies in publications related to HMB-FA and ATP supplementation. Nutr Metab (Lond). 2017;14:42. Epub 2017/07/07. doi: 10.1186/s12986-017-0201-7. PubMed PMID: 28680453; PubMed Central PMCID: PMCPMC5496306.

118. Phillips SM, Aragon AA, Arciero PJ, Arent SM, Close GL, Hamilton DL, et al. Changes in body composition and performance with supplemental HMB-FA+ATP. J Strength Cond Res. 2017;31(5):e71-e2. doi: 10.1519/JSC.000000000001760. PubMed PMID: 28301440.

119. Parnell JA, Wiens K, Erdman KA. Evaluation of congruence among dietary supplement use and motivation for supplementation in young, Canadian athletes. J Int Soc Sports Nutr. 2015;12:49. doi: 10.1186/s12970-015-0110-y. PubMed PMID: 26677351; PubMed Central PMCID: PMCPMC4681054.

120. Kristiansen M, Levy-Milne R, Barr S, Flint A. Dietary supplement use by varsity athletes at a Canadian university. Int J Sport Nutr Exerc Metab. 2005;15(2):195-210. PubMed PMID: 16089277.

121. Franchi MV, Longo S, Mallinson J, Quinlan JI, Taylor T, Greenhaff PL, et al. Muscle thickness correlates to muscle cross-sectional area in the assessment of strength training-induced hypertrophy. Scand J Med Sci Sports. 2017. doi: 10.1111/sms.12961. PubMed PMID: 28805932.

122. Ruas CV, Brown LE, Lima CD, Costa PB, Pinto RS. Effect of three different muscle action training protocols on knee strength ratios and performance. J Strength Cond Res. 2017. doi: 10.1519/JSC.00000000002134. PubMed PMID: 28704309.

123. Lixandrao ME, Ugrinowitsch C, Bottaro M, Chacon-Mikahil MP, Cavaglieri CR, Min LL, et al. Vastus lateralis muscle cross-sectional area ultrasonography validity for image fitting in humans. J Strength Cond Res. 2014;28(11):3293-7. doi:

10.1519/JSC.000000000000532. PubMed PMID: 24845210.

124. Shenouda N, Proudfoot NA, Currie KD, Timmons BW, MacDonald MJ. Automated ultrasound edge-tracking software comparable to established semi-automated reference software for carotid intima-media thickness analysis. Clin Physiol Funct Imaging. 2017. doi: 10.1111/cpf.12428. PubMed PMID: 28444941.

125. Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol (1985). 2005;98(6):1985-90. doi: 10.1152/japplphysiol.01095.2004. PubMed PMID: 15705728.

126. Bloemberg D, Quadrilatero J. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS One. 2012;7(4):e35273. doi:

10.1371/journal.pone.0035273. PubMed PMID: 22530000; PubMed Central PMCID: PMCPMC3329435.

127. McGuigan MR, Kraemer WJ, Deschenes MR, Gordon SE, Kitaura T, Scheett TP, et al. Statistical analysis of fiber area in human skeletal muscle. Can J Appl Physiol. 2002;27(4):415-22. PubMed PMID: 12442354.

128. Morton RW, Murphy KT, McKellar SR, Schoenfeld BJ, Henselmans M, Helms E, et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med. 2018;52(6):376–84. Epub 2017/07/13. doi: 10.1136/bjsports-2017-097608. PubMed PMID: 28698222.

129. Reeves ND, Maganaris CN, Narici MV. Ultrasonographic assessment of human skeletal muscle size. Eur J Appl Physiol. 2004;91(1):116-8. doi: 10.1007/s00421-003-0961-9. PubMed PMID: 14639480.

130. Slater G, Jenkins D, Logan P, Lee H, Vukovich M, Rathmacher JA, et al. Betahydroxy-beta-methylbutyrate (HMB) supplementation does not affect changes in strength or body composition during resistance training in trained men. Int J Sport Nutr Exerc Metab. 2001;11(3):384-96. PubMed PMID: 11599506.

131. Paddon-Jones D, Keech A, Jenkins D. Short-term beta-hydroxy-betamethylbutyrate supplementation does not reduce symptoms of eccentric muscle damage. Int J Sport Nutr Exerc Metab. 2001;11(4):442-50. PubMed PMID: 11915779.

 Durkalec-Michalski K, Jeszka J. The Effect of beta-Hydroxy-beta-Methylbutyrate on Aerobic Capacity and Body Composition in Trained Athletes. J Strength Cond Res. 2016;30(9):2617-26. doi: 10.1519/JSC.000000000001361. PubMed PMID: 26849784.
Rahimi MH, Mohammadi H, Eshaghi H, Askari G, Miraghajani M. The Effects of

Beta-Hydroxy-Beta-Methylbutyrate Supplementation on Recovery Following Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis. J Am Coll Nutr. 2018:1-10. doi: 10.1080/07315724.2018.1451789. PubMed PMID: 29676656.

134. Crowe MJ, O'Connor DM, Lukins JE. The effects of beta-hydroxy-betamethylbutyrate (HMB) and HMB/creatine supplementation on indices of health in highly trained athletes. Int J Sport Nutr Exerc Metab. 2003;13(2):184-97. PubMed PMID: 12945829.

135. Durkalec-Michalski K, Jeszka J. The efficacy of a beta-hydroxy-betamethylbutyrate supplementation on physical capacity, body composition and biochemical markers in elite rowers: a randomised, double-blind, placebo-controlled crossover study. J Int Soc Sports Nutr. 2015;12:31. doi: 10.1186/s12970-015-0092-9. PubMed PMID: 26225130; PubMed Central PMCID: PMCPMC4518594.

136. Durkalec-Michalski K, Jeszka J, Podgorski T. The Effect of a 12-Week Betahydroxy-beta-methylbutyrate (HMB) Supplementation on Highly-Trained Combat Sports Athletes: A Randomised, Double-Blind, Placebo-Controlled Crossover Study. Nutrients. 2017;9(7). doi: 10.3390/nu9070753. PubMed PMID: 28708126; PubMed Central PMCID: PMCPMC5537867.

137. Froiland K, Koszewski W, Hingst J, Kopecky L. Nutritional supplement use among college athletes and their sources of information. Int J Sport Nutr Exerc Metab. 2004;14(1):104-20. PubMed PMID: 15129934.

Appendix A: Raw Data

Table 1. Baseline Characteristics assessed by DXA

ID	Code	Age	Height	BM_kg_BL	FBFM_kg_BL	FatMass_kg_BL
H02	2	29.00	178.00	70.50	57.30	12.80
H03	1	23.00	189.00	89.90	67.90	17.60
H04	2	21.00	181.00	79.40	57.96	18.40
H05	1	22.00	182.00	75.60	59.30	13.30
H07	1	26.00	179.00	89.00	71.38	12.80
H09	1	22.00	171.00	67.10	55.96	8.50
H10	1	22.00	177.00	78.60	58.28	16.90
H11	2	19.00	176.00	80.10	53.94	22.60
H12	1	22.00	180.00	72.60	62.99	6.34
H13	2	22.00	184.00	88.40	66.51	17.92
H14	1	22.00	173.00	75.60	58.09	14.87
H15	2	27.00	176.00	80.00	55.76	21.56
H16	2	22.00	183.00	94.60	77.72	13.71
H17	1	22.00	180.00	74.90	56.94	14.47
H18	1	22.00	188.00	87.60	63.96	19.73
H19	2	22.00	168.00	71.70	52.42	16.60
H20	1	20.00	177.00	95.87	71.42	24.45
H21	2	25.00	175.00	85.40	65.06	16.45
H23	2	23.00	190.00	112.60	76.15	31.55
H24	1	23.00	171.00	73.20	59.84	10.59
H25	1	23.00	177.00	82.90	63.27	16.29
H26	2	22.00	175.00	69.70	57.89	8.35
H28	2	20.00	182.00	74.10	59.87	10.99
H29	2	20.00	183.00	75.60	62.08	10.07
H30	1	22.00	185.00	97.40	71.29	22.15
H32	2	23.00	182.00	102.50	75.55	22.77

ID	Code	Squat kg/kg BM	Bench kg/kg BM	Deadlift kg/kg BM	Total kg/kg BM
H02	2	2.22	1.67	2.22	6.11
H03	1	1.44	0.78	1.74	3.96
H04	2	1.34	1.23	1.94	4.51
H05	1	1.68	1.05	1.95	4.68
H07	1	1.76	1.35	1.99	5.10
H09	1	1.79	1.45	2.27	5.51
H10	1	1.50	1.18	1.30	3.98
H11	2	1.44	1.05	1.81	4.30
H12	1	2.03	1.28	1.84	5.16
H13	2	1.72	1.15	1.62	4.49
H14	1	1.71	1.44	1.89	5.04
H15	2	1.45	0.99	1.79	4.23
H16	2	1.94	1.37	2.18	5.49
H17	1	1.79	1.24	1.79	4.82
H18	1	1.42	1.06	1.48	3.96
H19	2	1.74	1.23	1.87	4.84
H20	1	1.87	1.44	2.01	5.32
H21	2	1.99	1.67	2.26	5.92
H23	2	1.43	0.95	1.47	3.85
H24	1	2.26	1.36	2.26	5.89
H25	1	1.72	1.40	2.00	5.12
H26	2	1.92	1.27	1.66	4.85
H28	2	1.50	1.13	1.99	4.62
H29	2	1.89	1.50	1.89	5.28
H30	1	1.56	1.00	1.70	4.26
H32	2	1.31	0.86	1.62	3.78

Table 2. Baseline Strength normalized to body mass (kg/kg body mass)

Table 3. Baseline Strength (kg)

ID	Code	Squat_BL	Bench_BL	Deads_BL	Total_BL
H02	2	156.53	117.97	156.53	431.03
H03	1	129.31	70.33	156.53	356.17
H04	2	106.62	97.55	154.26	358.44
H05	1	127.04	79.40	147.46	353.90
H07	1	156.53	120.24	176.95	453.72
H09	1	120.24	97.55	152.00	369.78
H10	1	117.97	93.01	102.09	313.07
H11	2	115.70	83.94	145.19	344.83
H12	1	147.46	93.01	133.85	374.32
H13	2	152.00	102.09	142.92	397.01
H14	1	129.31	108.89	142.92	381.13
H15	2	115.70	79.40	142.92	338.02
H16	2	183.76	129.31	206.44	519.51
H17	1	133.85	93.01	133.85	360.71
H18	1	124.77	93.01	129.31	347.10
H19	2	124.77	88.48	133.85	347.10
H20	1	179.22	138.38	192.83	510.44
H21	2	170.15	142.92	192.83	505.90
H23	2	161.07	106.62	165.61	433.30
H24	1	165.61	99.82	165.61	431.03
H25	1	142.92	115.70	165.61	424.23
H26	2	133.85	88.48	115.70	338.02
H28	2	111.16	83.94	147.46	342.56
H29	2	142.92	113.43	142.92	399.27
H30	1	152.00	97.55	165.61	415.15
H32	2	133.85	88.48	165.61	387.93

ID	BM_kg_BL	BM_kg_W4	BM_kg_W8	BM_kg_W10	BM_kg_W12
H02	70.50	74.10	73.80	73.80	74.00
H03	89.90	94.30	94.40	93.10	92.60
H04	79.40	79.60	81.30	80.80	80.50
H05	75.60	79.20	80.20	81.10	79.00
H07	89.00	88.90	89.00	91.40	91.00
H09	67.10	69.70	68.60	70.80	69.70
H10	78.60	80.30	79.90	80.00	79.80
H11	80.10	82.78	79.50	85.76	85.43
H12	72.60	73.60	72.10	74.80	75.20
H13	88.40	87.30	88.40	88.00	87.50
H14	75.60	76.70	75.60	76.80	77.70
H15	80.00	84.20	80.00	85.40	86.00
H16	94.60	95.50	94.60	98.80	96.20
H17	74.90	76.60	74.90	77.60	76.80
H18	87.60	88.80	87.90	88.00	87.20
H19	71.70	72.70	71.70	74.90	74.60
H20	95.87	101.50	98.80	102.80	103.10
H21	85.40	86.30	85.00	87.90	86.90
H23	112.60	115.90	112.60	117.10	116.30
H24	73.20	72.90	74.10	73.60	74.40
H25	82.90	82.80	83.80	82.90	82.80
H26	69.70	71.60	73.60	74.20	73.40
H28	74.10	74.70	73.90	74.50	72.70
H29	75.60	77.50	80.00	81.80	89.30
H30	97.40	97.80	98.70	99.80	100.10
H32	102.50	100.60	99.80	101.40	100.20

Table 4. Body Mass assessed by DXA (kg)

ID	FBFM_kg_BL	FBFM_kg_W4	FBFM_kg_W8	FBFM_kg_W10	FBFM_kg_W12
H02	57.30	57.65	58.00	57.77	58.55
H03	67.90	72.10	72.03	71.46	71.13
H04	57.96	59.07	60.57	59.60	59.63
H05	59.30	62.25	63.20	64.24	62.56
H07	71.38	72.25	72.07	73.16	73.09
H09	55.96	58.16	56.83	58.63	57.27
H10	58.28	60.08	59.95	60.25	60.33
H11	53.94	56.93	57.05	58.52	57.92
H12	62.99	64.09	64.78	65.47	66.08
H13	66.51	65.61	65.83	66.93	65.88
H14	58.09	60.24	60.56	60.51	61.27
H15	55.76	60.13	58.46	59.77	60.06
H16	77.72	78.99	79.28	81.33	79.58
H17	56.94	58.45	60.25	60.07	59.83
H18	63.96	65.28	66.19	65.49	67.79
H19	52.42	54.05	56.08	56.58	56.71
H20	71.42	72.48	71.23	74.28	73.96
H21	65.06	65.80	66.57	67.28	66.47
H23	76.15	80.20	81.28	82.53	80.70
H24	59.84	59.10	59.57	59.37	59.67
H25	63.27	63.01	64.22	63.70	63.53
H26	57.89	60.08	61.95	62.92	62.31
H28	59.87	60.76	60.47	61.04	59.63
H29	62.08	63.44	64.73	65.48	66.44
H30	71.29	72.35	71.80	74.77	73.85
H32	75.55	76.28	77.09	79.06	78.48

Table 5. Fat and Bone free mass (FBFM) assessed by DXA (kg)

ID	FatMass_kg_BL	FatMass_kg_W4	FatMass_kg_W8	FatMass_kg_W10	FatMass_kg_W12
H02	12.80	13.45	13.17	13.06	12.51
H03	17.60	18.18	18.19	17.64	17.39
H04	18.40	17.39	17.75	18.04	17.68
H05	13.30	13.53	13.54	13.40	12.97
H07	12.80	12.66	13.02	14.18	13.87
H09	8.50	8.50	9.05	9.11	9.29
H10	16.90	16.72	16.66	16.16	15.98
H11	22.60	22.52	22.75	23.87	24.11
H12	6.34	6.24	6.09	6.03	5.87
H13	17.92	17.75	17.29	17.15	17.69
H14	14.87	13.64	13.11	13.44	13.57
H15	21.56	21.07	21.76	22.57	22.86
H16	13.71	12.56	12.91	13.46	12.63
H17	14.47	14.52	14.03	13.91	13.42
H18	19.73	19.50	18.85	18.56	18.45
H19	16.60	15.75	15.54	15.45	14.97
H20	24.45	25.66	26.90	25.25	25.82
H21	16.45	16.60	16.74	16.73	16.55
H23	31.55	31.77	31.15	30.71	31.77
H24	10.59	11.02	11.69	11.43	11.87
H25	16.29	16.46	16.23	15.87	15.88
H26	8.35	8.04	8.11	7.77	7.61
H28	10.99	10.62	10.15	10.15	9.75
H29	10.07	10.68	11.85	12.82	10.09
H30	22.15	21.52	22.82	21.04	22.21
H32	21.06	20.16	18.59	18.19	17.59

Table 6. Fat mass (kg) assessed by DXA (kg)

ID	MT BL	MT W4	MT W8	MT W10	MT W12	Delta	%increase
H02	27.6	27.5	27.0	27.5	26.8	-0.8	-2.9
H03	31.5	32.3	34.2	33.5	33.7	2.2	7.1
H04	26.3	28.6	29.6	29.5	27.8	1.5	5.8
H05	27.3	31.1	32.4	33.8	31.7	4.4	16.3
H07	30.1	32.2	32.5	33.5	33.1	3.1	10.2
H09	28.8	30.4	30.1	29.8	29.5	0.7	2.4
H10	29.6	31.0	32.0	32.3	30.3	0.7	2.3
H11	32.1	34.3	35.9	36.2	34.8	2.7	8.4
H12	30.0	32.0	34.7	35.0	33.1	3.1	10.5
H13	27.6	30.1	29.0	28.7	28.3	0.8	2.9
H14	33.8	33.7	33.9	29.9	32.8	-1.0	-2.8
H15	26.1	25.7	26.4	26.2	27.3	1.2	4.6
H16	33.1	34.3	33.2	35.8	33.8	0.8	2.4
H17	30.2	33.9	33.4	35.1	34.6	4.5	14.8
H18	29.7	28.9	30.2	32.2	30.9	1.3	4.3
H19	27.6	30.0	33.0	32.6	33.0	5.5	19.8
H20	33.4	34.7	33.6	34.7	34.3	0.9	2.6
H21	31.3	31.9	34.6	32.0	33.2	1.9	6.0
H23	34.3	37.2	37.2	35.7	37.2	2.9	8.4
H24	32.9	31.7	33.4	33.7	32.4	-0.5	-1.5
H25	30.5	29.8	30.5	31.0	30.5	0.0	0.1
H26	32.2	33.4	35.6	35.7	34.5	2.3	7.3
H28	30.2	28.7	32.5	32.1	30.1	-0.2	-0.6
H29	33.0	33.0	34.5	33.5	33.3	0.4	1.2
H30	33.6	32.2	33.0	33.6	33.7	0.1	0.2
H32		33.2	34.6	31.9	33.6		

Table 7. Muscle Thickness assessed by Ultrasound (mm)

Participant ID	Avrg_Pre	Avrg_Post	Percent_change
H02	30.3	31.3	1.0
H04	28.1	29.9	1.8
H11	35.5	37.1	1.5
H13	30.2	32.0	1.8
H15	21.7	24.3	2.6
H16	37.3	39.1	1.8
H19	32.4	36.9	4.5
H21	34.7	35.1	0.4
H23	44.3	49.1	4.7
H26	36.8	40.5	3.8
H28	37.4	38.3	1.0
H29	37.8	40.1	2.3
H03	28.8	31.1	2.4
H05	31.8	34.1	2.3
H07	38.5	39.5	1.0
H09	30.4	32.1	1.8
H10	30.5	31.7	1.2
H12	36.1	39.7	3.6
H14	31.1	32.0	0.9
H17	33.4	38.1	4.7
H18	32.3	33.0	0.8
H20	43.5	48.3	4.8
H24	36.0	38.5	2.6
H25	34.7	35.7	1.0
H30	36.8	38.8	2.0

Table 8. Muscle CSA assessed by ultrasound (cm²)

ID	PP BL	PPW4	PPW8	PPW9	PPW10	PPW12
H02	940.00	965.00	887.00	908.00	934.00	971.00
H03	1087.00	1239.00	1242.00	1169.00	1191.00	1177.00
H04	941.00	1007.00	1028.00	1169.00	1031.00	968.00
H05	932.00	980.00	1043.00	1055.00	930.00	918.00
H07	1189.00	1191.00	1141.00	1084.00	1046.00	1095.00
H09	772.00	902.00	713.00	809.00	732.00	815.00
H10	1020.00	1017.00	1009.00	933.00	968.00	1049.00
H11	1018.00	1103.00	1075.00	1025.00	988.00	1108.00
H12	807.00	772.00	779.00	836.00	847.00	860.00
H13	1128.00	1133.00	1139.00	1028.00	1154.00	1061.00
H14	820.00	903.00	897.00	894.00	972.00	921.00
H15	890.00	994.00	989.00	999.00	1063.00	1130.00
H16	985.00	1066.00	1060.00	1043.00	1018.00	1118.00
H17	813.00	913.00	887.00	1008.00	888.00	754.00
H18	950.00	1041.00	1123.00	1119.00	987.00	1241.00
H19	909.00	947.00	918.00	985.00	991.00	
H20	1259.00	1312.00	1324.00	1360.00	1355.00	1231.00
H21	942.00	1014.00	994.00	1043.00	1068.00	1019.00
H23		1218.00	1154.00	1160.00	1219.00	1343.00
H24	794.00	871.00	882.00	764.00	818.00	921.00
H25	1056.00	949.00	1250.00	1072.00	1100.00	1095.00
H26	809.00	807.00	920.00	912.00	924.00	822.00
H28	819.00	905.00	958.00	889.00	918.00	
H29	870.00	942.00	912.00	945.00	935.00	1022.00
H30	1265.00	1236.00	1313.00	1225.00	1266.00	1322.00
H32	1026.00	1185.00	1283.00	1253.00	1312.00	1213.00

Table 9. Wingate Peak Power (W)

Table 10. Squat 1-RM (kg)

ID	Squat_BL	Squat_W4	Squat_W8	Squat_W9	Squat_W10	Squat_W12
H02	156.53	165.61	172.41	174.68	174.68	174.68
H03	129.31	154.26	167.88	167.88	167.88	172.41
H04	106.62	129.31	136.12	136.12	129.31	133.85
H05	127.04	156.53	163.34	167.88	172.41	172.41
H07	156.53	176.95	183.76	179.22	183.76	192.83
H09	120.24	140.65	149.73	156.53	145.19	156.53
H10	117.97	127.04	142.92	142.92	133.85	142.92
H11	115.70	142.92	142.92	147.46	152.00	156.53
H12	147.46	152.00	156.53	142.92	156.53	165.61
H13	152.00	156.53	156.53	156.53	142.92	156.53
H14	129.31	142.92	152.00	152.00	156.53	156.53
H15	115.70	142.92	147.46	142.92	133.85	156.53
H16	183.76	204.17	208.71	208.71	208.71	210.98
H17	133.85	142.92	138.38	142.92	142.92	152.00
H18	124.77	133.85	142.92	133.85	142.92	152.00
H19	124.77	138.38	149.73	149.73	152.00	165.61
H20	179.22	188.29	192.83	192.83	197.37	206.44
H21	170.15	188.29	195.10	197.37	190.56	210.98
H23	161.07	183.76	206.44	188.29	206.44	215.52
H24	165.61	174.68	174.68	183.76	188.29	199.64
H25	142.92	156.53	170.15	165.61	174.68	179.22
H26	133.85	172.41	183.76	188.29	197.37	206.44
H28	111.16	120.24	142.92	136.12	136.12	133.85
H29	142.92	154.26	161.07	156.53	149.73	176.95
H30	152.00	172.41	174.68	179.22	188.29	204.17
H32	133.85	142.92	156.53	152.00	161.07	170.15

ID	Bench_BL	Bench_W4	Bench_W8	Bench_W9	Bench_W10	Bench_W12
H02	117.97	117.97			106.62	120.24
H03	70.33	79.40	83.94	83.94	83.94	86.21
H04	97.55	102.09	104.36	104.36	108.89	106.62
H05	79.40	83.94	95.28	97.55	97.55	97.55
H07	120.24	124.77	129.31	124.77	129.31	133.85
H09	97.55	102.09	106.62	102.09	106.62	106.62
H10	93.01	102.09	108.89	111.16	106.62	106.62
H11	83.94	88.48	93.01	111.16	97.55	97.55
H12	93.01	102.09	102.09	102.09	102.09	108.89
H13	102.09	97.55	106.62	106.62	102.09	106.62
H14	108.89	117.97	124.77	124.77	115.70	122.50
H15	79.40	83.94	86.21	83.94	83.94	88.48
H16	129.31	129.31	133.85	133.85	129.31	136.12
H17	93.01	97.55	106.62	102.09	102.09	106.62
H18	93.01	95.28	97.55	93.01	93.01	95.28
H19	88.48	93.01	102.09	102.09	97.55	102.09
H20	138.38	142.92	152.00	147.46	142.92	152.00
H21	142.92	152.00	161.07	156.53	161.07	172.41
H23	106.62	124.77	124.77	120.24	124.77	124.77
H24	99.82	102.09	104.36	104.36	104.36	102.09
H25	115.70	120.24	122.50	122.50	122.50	122.50
H26	88.48	97.55	102.09	102.09	102.09	102.09
H28	83.94	88.48	90.74	88.48	90.74	88.48
H29	113.43	117.97	120.24	115.70	120.24	122.50
H30	97.55	106.62	102.09	106.62	108.89	108.89
H32	88.48	97.55	102.09	97.55	97.55	99.82

Table 11. Bench 1-RM (kg)

Table 12. Deadlift1-RM (kg)

ID	Deads_BL	Deads_W4	Deads_W8	Deads_W9	Deads_W10	Deads_W12
H02	156.53	172.41	179.22	156.53	165.61	174.68
H03	156.53	174.68	174.68	179.22	165.61	170.15
H04	154.26	147.46	156.53	167.88	167.88	183.76
H05	147.46	165.61	172.41	174.68	183.76	190.56
H07	176.95	197.37	201.91	197.37	206.44	210.98
H09	152.00	165.61	170.15	174.68	170.15	176.95
H10	102.09	124.77	129.31	138.38	124.77	138.38
H11	145.19	158.80	170.15	138.38	179.22	183.76
H12	133.85	120.24	142.92	142.92	124.77	142.92
H13	142.92	152.00	165.61	165.61	142.92	174.68
H14	142.92	142.92	158.80	142.92	152.00	161.07
H15	142.92	165.61	179.22	165.61	161.07	179.22
H16	206.44	224.59	231.40	231.40	231.40	235.93
H17	133.85	138.38	142.92	142.92	142.92	147.46
H18	129.31	138.38	138.38	133.85	133.85	142.92
H19	133.85	152.00	156.53	152.00	156.53	163.34
H20	192.83	206.44	210.98	197.37	206.44	215.52
H21	192.83	199.64	204.17	206.44	197.37	215.52
H23	165.61	206.44	215.52	215.52	215.52	233.67
H24	165.61	170.15	183.76	183.76	183.76	186.03
H25	165.61	174.68	183.76	201.91	192.83	206.44
H26	115.70	170.15	183.76	183.76	183.76	188.29
H28	147.46	152.00	142.92	147.46	142.92	133.85
H29	142.92	156.53	174.68	152.00	152.00	192.83
H30	165.61	183.76	192.83	192.83	183.76	206.44
H32	165.61	174.68	183.76	174.68	174.68	192.83

ID	Total_BL	Total_W4	Total_W8	Total_W9	Total_W10	Total_W12
H02	431.03	455.99			446.91	469.60
H03	356.17	408.35	426.50	431.03	417.42	428.77
H04	358.44	378.86	397.01	408.35	406.08	424.23
H05	353.90	406.08	431.03	440.11	453.72	460.53
H07	453.72	499.09	514.97	501.36	519.51	537.66
H09	369.78	408.35	426.50	433.30	421.96	440.11
H10	313.07	353.90	381.13	392.47	365.25	387.93
H11	344.83	390.20	406.08	397.01	428.77	437.84
H12	374.32	374.32	401.54	387.93	383.39	417.42
H13	397.01	406.08	428.77	428.77	387.93	437.84
H14	381.13	403.81	435.57	419.69	424.23	440.11
H15	338.02	392.47	412.89	392.47	378.86	424.23
H16	519.51	558.08	573.96	573.96	569.42	583.03
H17	360.71	378.86	387.93	387.93	387.93	406.08
H18	347.10	367.51	378.86	360.71	369.78	390.20
H19	347.10	383.39	408.35	403.81	406.08	431.03
H20	510.44	537.66	555.81	537.66	546.73	573.96
H21	505.90	539.93	560.34	560.34	549.00	598.91
H23	433.30	514.97	546.73	524.05	546.73	573.96
H24	431.03	446.91	462.79	471.87	476.41	487.75
H25	424.23	451.45	476.41	490.02	490.02	508.17
H26	338.02	440.11	469.60	474.14	483.21	496.82
H28	342.56	360.71	376.59	372.05	369.78	356.17
H29	399.27	428.77	455.99	424.23	421.96	492.29
H30	415.15	462.79	469.60	478.68	480.94	519.51
H32	387.93	415.15	442.38	424.23	433.30	462.79

Table 13. Total Strength (sum of Squat, Bench press and Deadlift) 1-RM (kg)

Participant			
ID	Apower_W0	W8	W9
H02	13.7	13.6	13.7
H03	13.9	14.7	14.5
H04	13.1	18.3	16.0
H05	17.6	17.5	18.0
H07	14.6	14.7	14.7
H09	13.8	13.2	15.3
H10	13.6	14.0	13.2
H11	12.9	13.4	14.1
H12	14.8	16.3	16.9
H13	11.7	14.3	13.9
H14	14.5	14.9	15.2
H15	13.8	13.4	12.7
H16	15.3	24.5	16.6
H17	13.8	15.6	18.1
H18	14.6	16.9	15.7
H19	18.3	17.2	18.9
H20	15.6	16.0	15.9
H21	15.3	15.5	15.6
H23	11.9	14.5	14.9
H24	16.0	14.0	15.4
H25	15.1	15.7	15.8
H26	14.8	17.6	19.0
H28	14.7	14.8	15.5
H29	17.3	15.9	15.8
H30	16.8	14.0	18.0
H32	14.6	15.4	15.1

Table 14. OptoJump Values (W/kg)

ID	CK_BL	CK_W4	CK_W8	CK_W9	CK_W10	CK_W12
H02	200	226	190	333	376	887
H03	262	239	265	514	413	749
H04	124	150	154	250	174	223
H05	100	130	188	366	257	231
H07	153	320	155	332	182	202
H09	273	210	232	625	450	248
H10	292	261	272	414	523	205
H11	225	366	337	389	431	274
H12		298	235	710	576	277
H13	132	69	93	216	155	142
H14	250	133	124	217	96	130
H15	199	134	147	220	290	155
H16	439	132	207	424	240	196
H17	262	144	127	350	251	136
H18	249	169	89	177	310	135
H19	225	240	228	535	476	230
H20	185	264	271	731	428	225
H21	248	235	275	551	513	159
H23	114	161	135	233	267	137
H24	437	237	288	782	607	218
H25	394	514	264	473	405	201
H26	478	167	263	816	664	254
H28	128	230	320	861	436	89
H29	228	184	168	987	305	104
H30	107	203	138	422	725	443
H32	302	105	136	231	210	105

Table 15. Activity levels of CK

ID	Cortisol_BL	Cortisol_W4	Cortisol_W8	Cortisol_W9	Cortisol_W10	Cortisol_W12
H02	20.8	24.6	21	37	19	18.9
H03	24.2	19.4	22.1	21.4	42.8	18
H04	15.2	19.3	23.7	36	22.1	26.5
H05	15.9	20.3	19.2	23.4	28.5	30.1
H07	19.7	21.9	23.5	23.1	32.3	34
H09	23.2	23.4	20.2	44.2	24.2	30.1
H10	16.3	21.2	21.6	43.4	21.3	15.3
H11	24.4	15.2	17.4	40.6	36.1	16.4
H12	24.6	23.9	19.5	39.6	34.9	26.1
H13	17.9	22.7	24.3	44.1	18.6	23.7
H14	23.5	16.2	20.2	24.8	44.7	23.3
H15	24.4	18.5	22.5	24.3	25.7	18.4
H16	21.9	18.3	15.9	32.8	22.8	32.8
H17	21	23.1	23.6	36.3	44.6	15.3
H18	17.9	16.1	17	30	21.9	30.6
H19	19.4	23.5	20.1	20.6	33.4	17.5
H20	21.3	15.7	18.3	24.5	23.8	20.5
H21	20.7	21.5	18.5	17.6	32	29.7
H23	20	20.6	19.7	31.8	28.9	22.9
H24	18.1	19.6	21.9	30.8	15.8	17.8
H25	23.5	18	21.7	27.2	17.4	18.9
H26	15.7	19.3	18.2	33.5	28.3	26.1
H28	21.2	19.6	18.4	40.5	39.3	24.6
H29	20.1	16.6	24.1	15.8	41.2	32.8
H30	18.8	22.9	15.8	23.4	33.8	29.3
H32	15.6	23.5	18.9	26.2	31.1	27.7

Table 16. Concentration of Cortisol (nM)

Table 17. Growth Hormone

ID	GH_BL	GH_W4	GH_W8	GH_W9	GH_W10	GH_W12
H03	3.80	3.00	4.20	2.00	1.10	2.20
H05	2.30	4.70	3.80	2.60	2.60	2.90
H07	4.00	3.40	3.30	3.80	4.00	2.10
H09	4.80	3.30	4.70	3.30	3.40	2.30
H10	3.80	2.60	4.60	4.80	1.50	4.00
H12	2.40	3.80	4.50	2.60	2.40	3.90
H14	3.00	3.70	3.30	3.50	2.00	4.80
H17	2.20	4.70	2.40	3.30	2.00	2.10
H18	4.20	3.60	3.00	2.00	3.50	2.70
H20	3.90	4.40	2.90	2.70	2.90	2.20
H24	2.40	4.70	2.50	4.90	2.20	3.10
H25	3.70	2.80	2.60	3.70	2.30	3.10
H30	2.50	4.10	4.60	2.90	1.80	2.80
H02	2.80	2.20	3.80	2.40	2.30	2.50
H04	2.60	3.10	2.90	3.20	2.40	3.70
H11	2.90	2.10	4.20	2.60	3.60	2.20
H13	3.50	2.00	4.10	3.70	3.00	3.10
H15	4.70	2.80	3.60	3.50	4.70	2.70
H16	3.20	3.90	4.60	3.50	4.60	3.70
H19	4.90	4.60	2.30	2.40	4.10	4.30
H21	4.30	3.20	2.70	2.70	4.30	4.40
H23	4.40	4.10	3.60	3.20	4.30	3.10
H26	4.30	3.10	3.70	2.80	2.60	4.80
H28	3.40	4.90	4.70	2.50	2.00	2.40
H29	3.70	2.10	3.40	3.10	1.30	2.70
H32	3.30	2.40	2.30	3.60	2.00	2.80

Table 18. IGF1

ID	IGF1_BL	IGF1_W4	IGF1_W8	IGF1_W9	IGF1_W10	IGF1_W12
H03	405.00	204.10	424.20	468.10	293.20	256.00
H05	328.70	417.90	328.30	302.50	435.90	221.30
H07	363.10	270.50	450.30	543.90	456.00	556.30
H09	326.40	507.00	316.50	366.30	166.50	272.50
H10	434.50	310.30	479.20	295.50	291.30	281.50
H12	233.20	303.20	252.40	379.80	347.00	491.90
H14	238.90	527.80	259.80	213.70	324.60	479.30
H17	299.70	283.20	547.20	280.50	186.10	279.40
H18	340.50	586.80	209.70	231.10	214.60	245.80
H20	575.60	350.50	337.30	389.50	294.40	266.80
H24	202.20	412.50	450.50	326.70	393.80	259.70
H25	514.90	576.70	442.20	478.60	331.20	321.80
H30	354.90	537.20	439.20	581.10	409.70	557.60
H02	437.50	463.50	572.80	260.40	257.90	404.20
H04	333.00	261.40	313.70	320.60	371.90	379.60
H11	519.90	327.70	203.60	244.10	198.00	256.40
H13	345.10	520.60	472.00	484.60	407.10	486.80
H15	456.40	217.80	591.60	228.30	448.50	238.60
H16	254.40	341.30	467.80	235.60	182.70	263.20
H19	520.80	526.60	419.00	589.30	367.80	534.20
H21	332.90	372.00	320.70	563.20	193.90	369.90
H23	359.70	402.90	387.70	359.50	296.60	365.50
H26	478.00	373.30	233.70	557.00	172.00	335.50
H28	231.90	387.00	259.30	372.40	478.80	575.20
H29	334.10	456.10	401.90	201.80	454.90	249.40
H32	266.80	554.90	472.80	312.30	231.40	516.90

Table 19. Total testosterone

	Total Test					
ID	BL	W4	W8	W9	W10	W12
H03	657.70	637.40	797.90	704.10	524.10	715.20
H05	753.70	768.20	758.90	732.70	521.40	640.00
H07	630.40	775.60	720.30	692.50	581.70	657.10
H09	659.10	723.50	656.20	650.30	406.60	795.70
H10	730.40	662.20	760.60	561.70	575.10	751.30
H12	621.90	788.00	743.30	632.50	444.60	769.50
H14	780.30	737.10	677.70	768.50	580.50	696.50
H17	708.20	606.00	773.80	651.70	570.50	734.60
H18	614.20	675.60	714.00	663.30	546.70	642.90
H20	723.30	600.50	712.70	564.90	548.80	640.40
H24	684.30	710.20	780.50	676.40	591.10	725.50
H25	694.90	645.20	752.30	680.20	446.60	657.90
H30	608.80	724.60	630.10	622.10	410.60	294.50
H02	792.40	719.60	612.40	711.40	514.80	644.10
H04	763.00	756.50	622.50	696.90	387.60	454.40
H11	619.60	647.60	796.90	654.60	221.10	702.70
H13	756.00	700.70	716.70	718.70	447.50	699.10
H15	653.70	655.20	793.40	762.10	564.60	784.50
H16	731.20	662.70	610.60	624.50	472.90	430.10
H19	790.10	770.40	715.40	603.30	581.90	676.50
H21	700.50	690.50	730.20	664.00	520.50	708.70
H23	632.60	736.40	643.50	510.20	534.50	762.90
H26	659.80	644.90	675.50	647.80	533.20	654.50
H28	750.60	755.50	750.40	643.30	457.50	660.90
H29	760.20	644.10	653.40	521.60	557.30	647.50
H32	727.10	682.50	698.80	716.80	430.30	725.30

Table 20. free testosterone

ID	freeTest BL	freeTest W4	freeTest W8	freeTest W9	freeTest W10	freeTest W12
H03	9.60	14.70	9.50	7.50	9.40	10.00
H05	5.20	7.50	9.20	6.80	6.20	10.90
H07	7.80	10.40	13.90	9.20	3.60	14.40
H09	9.10	11.20	9.60	7.90	4.90	13.00
H10	5.90	13.80	13.10	8.90	8.30	9.00
H12	12.10	13.70	14.90	9.10	4.80	7.80
H14	14.70	5.30	8.50	8.30	9.20	12.90
H17	8.00	11.00	6.50	9.30	3.70	11.90
H18	7.00	12.10	5.60	3.30	5.20	10.70
H20	5.30	6.40	8.30	5.80	7.50	5.20
H24	5.20	5.00	6.40	9.10	4.30	5.40
H25	6.50	12.10	7.50	4.40	6.10	5.50
H30	13.50	5.10	14.30	8.70	4.80	6.00
H02	12.00	13.60	5.10	6.90	8.90	5.70
H04	9.60	10.00	12.60	3.50	8.40	8.00
H11	8.20	9.10	8.70	9.30	6.40	5.80
H13	5.00	10.80	6.00	6.60	8.10	9.20
H15	7.30	10.10	10.70	7.30	9.60	6.70
H16	14.70	13.40	5.10	8.30	8.30	7.10
H19	13.20	12.40	8.10	7.40	6.40	5.70
H21	14.90	7.10	14.30	9.40	7.70	8.80
H23	9.40	9.70	8.80	7.40	5.40	9.50
H26	10.30	13.10	6.60	5.90	3.40	6.50
H28	10.40	13.50	12.60	9.20	3.90	12.80
H29	6.10	5.30	6.40	3.10	4.20	9.70
H32	13.70	13.50	14.70	7.80	7.20	14.70

Appendix B: Statistical Outputs

Objective 1. Baseline characteristics: Body composition

	Independent Samples Test													
		Levene's Test Varia	for Equality of nces			1	t-test for Equality	/ of Means						
					Sig. (2- Mean Std. Error 95% Confidence Interval of the Difference		ce Interval of erence							
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper				
Age	Equal variances assumed	4.608	.042	354	24	.726	30769	.86915	-2.10153	1.48615				
	Equal variances not assumed			354	16.991	.728	30769	.86915	-2.14152	1.52613				
Height	Equal variances assumed	.001	.971	138	24	.891	30769	2.22590	-4.90173	4.28634				
	Equal variances not assumed			138	23.952	.891	30769	2.22590	-4.90221	4.28682				
DXA_BM_kg_BL	Equal variances assumed	.680	.418	416	24	.681	-1.87154	4.49425	-11.14722	7.40415				
	Equal variances not assumed			416	22.014	.681	-1.87154	4.49425	-11.19170	7.44863				
DXA_FBFM_kg_BL	Equal variances assumed	2.636	.117	.064	24	.949	.18538	2.88197	-5.76271	6.13348				
	Equal variances not assumed			.064	20.740	.949	.18538	2.88197	-5.81258	6.18335				
DXA_FatMass_kg _BL	Equal variances assumed	.416	.525	872	24	.392	-1.98308	2.27321	-6.67474	2.70859				
	Equal variances not assumed			872	22.997	.392	-1.98308	2.27321	-6.68560	2.71945				
DXA_FatM_perce nt_BL	Equal variances assumed	1.183	.288	-1.000	24	.327	-2.06923	2.06899	-6.33942	2.20095				
	Equal variances not assumed			-1.000	22.851	.328	-2.06923	2.06899	-6.35081	2.21234				

Objective 1.1. Baseline characteristics: Strength and Strength normalized to Body Mass

		Levene's Test Varia	for Equality of nces			1	t-test for Equality	of Means		
						Sia. (2-	Mean	Std. Error	95% Confiden the Diff	ce Interval of erence
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
Squat_BL	Equal variances assumed	1.252	.274	.164	24	.871	1.39615	8.52292	-16.19429	18.98660
	Equal variances not assumed			.164	22.522	.871	1.39615	8.52292	-16.25557	19.04788
Bench_BL	Equal variances assumed	.436	.515	240	24	.813	-1.74692	7.28453	-16.78146	13.28761
	Equal variances not assumed			240	23.757	.813	-1.74692	7.28453	-16.78960	13.29576
Deads_BL	Equal variances assumed	.012	.913	394	24	.697	-3.66308	9.30636	-22.87046	15.54431
	Equal variances not assumed			394	23.991	.697	-3.66308	9.30636	-22.87085	15.54469
Total_BL	Equal variances assumed	.180	.675	177	24	.861	-4.01308	22.62341	-50.70549	42.67934
	Equal variances not assumed			177	23.452	.861	-4.01308	22.62341	-50.76332	42.73717
Squat_kg_kg_BM_ BL	Equal variances assumed	2.131	.157	.474	24	.640	.04923	.10388	16517	.26363
	Equal variances not assumed			.474	22.970	.640	.04923	.10388	16568	.26414
Bench_kg_kg_BM _BL	Equal variances assumed	.355	.557	033	24	.974	00308	.09202	19300	.18684
	Equal variances not assumed			033	22.939	.974	00308	.09202	19346	.18731
Deadlift_kg_kg_B M_BL	Equal variances assumed	.033	.858	075	24	.941	00769	.10218	21858	.20320
	Equal variances not assumed			075	23.742	.941	00769	.10218	21870	.20332
TotalVol_kg_kg_B M_BL	Equal variances assumed	.196	.662	.153	24	.880	.04077	.26711	51051	.59205
	Equal variances not assumed			.153	23.459	.880	.04077	.26711	51119	.59273

Objective 2. Change in FBFM following Training

	Independent Samples Test													
Levene's Test for Equality of Variances				t-test for Equality of Means										
						Sig. (2-	Mean	Std. Error	95% Confidence Interval of the Difference					
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper				
Delta_FBFM	Equal variances assumed	4.865	.037	553	24	.586	33923	.61397	-1.60640	.92794				
	Equal variances not assumed			553	20.715	.587	33923	.61397	-1.61712	.93866				

Objective 2.1 Repeated Measures ANOVA (time within, groups between) FBFM

				Hypothesis		
Effect		Value	F	df	Error df	Sig.
Time	Pillai's Trace	.728	64.121 ^b	1.000	24.000	.000
	Wilks' Lambda	.272	64.121 ^b	1.000	24.000	.000
	Hotelling's Trace	2.672	64.121 ^b	1.000	24.000	.000
	Roy's Largest Root	2.672	64.121 ^b	1.000	24.000	.000
Time * Code	Pillai's Trace	.013	.306 ^b	1.000	24.000	.586
	Wilks' Lambda	.987	.306 ^b	1.000	24.000	.586
	Hotelling's Trace	.013	.306 ^b	1.000	24.000	.586
	Roy's Largest Root	.013	.306 ^b	1.000	24.000	.586

Multivariate Tests^a

a. Design: Intercept + Code Within Subjects Design: Time

b. Exact statistic

Tests of Within-Subjects Effects

Measure: ME	ASURE_1					
Source		Type III Sum of Squares	df	Mean Square	F	Sig.
Time	Sphericity Assumed	78.499	1	78.499	64.121	.000
	Greenhouse- Geisser	78.499	1.000	78.499	64.121	.000
	Huynh–Feldt	78.499	1.000	78.499	64.121	.000
	Lower-bound	78.499	1.000	78.499	64.121	.000
Time * Code	Sphericity Assumed	.374	1	.374	.306	.586
	Greenhouse- Geisser	.374	1.000	.374	.306	.586
	Huynh–Feldt	.374	1.000	.374	.306	.586
	Lower-bound	.374	1.000	.374	.306	.586
Error(Time)	Sphericity Assumed	29.381	24	1.224		
	Greenhouse- Geisser	29.381	24.000	1.224		
	Huynh–Feldt	29.381	24.000	1.224		
	Lower-bound	29.381	24.000	1.224		

MSc. Thesis | J.S. Jakubowski | McMaster University | Department of Kinesiology

Measure: MEASURE_1

Source	Time	Type III Sum of Squares	df	Mean Square	F	Sig.
Time	Linear	78.499	1	78.499	64.121	.000
Time * Code	Linear	.374	1	.374	.306	.586
Error(Time)	Linear	29.381	24	1.224		

Objective 2.2 Change in vastus lateralis muscle thickness and CSA following training

Muscle Thickness

Levene's Test for Equality of Variances				t-test for Equality of Means						
						Sig. (2-	Mean	Std. Error	95% Confidence Interval of the Difference	
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
Delta_Image6_BL W12	Equal variances assumed	.552	.465	118	23	.907	08186	.69561	-1.52083	1.35712
	Equal variances not assumed			118	23.000	.907	08186	.69318	-1.51580	1.35209
Percent_Increase _BLW12	Equal variances assumed	.612	.442	069	23	.946	16538	2.39784	-5.12570	4.79493
	Equal variances not assumed			069	22.989	.945	16538	2.39167	-5.11306	4.78229

Indonondont Samplas Test

Objective 2.3 ICC estimates for Muscle Thickness

Table 2.3

ICC estimates and their 95% confident intervals were calculated using SPSS statistical package version 23 (SPSS Inc, Chicago, IL) based on a single rater, absolute-agreement, 2-way mixed-effects model. (*) Significantly different from baseline ($p \le 0.01$).

		95 % Confid	95 % Confidence Interval			F Test with True Value 0		
	Intraclass	Lower	Upper	Value	df1	df2	Sig	
	Correlation	Bound	Bound					
Single	.863	.811	.901	13.25	128	128	.000	
measures								

Source		Type III Sum	df	Mean Square	F	Sia
300100	<u> </u>	or oquareo	ai	Mean Square	'	Sig.
Time	Sphericity Assumed	62.462	1	62.462	64.112	.000
	Greenhouse– Geisser	62.462	1.000	62.462	64.112	.000
	Huynh–Feldt	62.462	1.000	62.462	64.112	.000
	Lower-bound	62.462	1.000	62.462	64.112	.000
Time * Code	Sphericity Assumed	.011	1	.011	.011	.917
	Greenhouse– Geisser	.011	1.000	.011	.011	.917
	Huynh–Feldt	.011	1.000	.011	.011	.917
	Lower-bound	.011	1.000	.011	.011	.917
Error(Time)	Sphericity Assumed	22.408	23	.974		
	Greenhouse- Geisser	22.408	23.000	.974		
	Huynh–Feldt	22.408	23.000	.974		
	Lower-bound	22.408	23.000	.974		

Objective 2.4 Repeated Measures ANOVA (time within, groups between) vastus lateralis CSA

Tests of Within-Subjects Effects

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed	Variable:	Average
-------------	-----------	---------

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Intercept	61604.193	1	61604.193	1122.447	.000
Code	.729	1	.729	.013	.909
Error	1262.328	23	54.884		

Objective 2.5 Change in vastus lateralis CSA following training

	Independent Samples Test									
Levene's Test for Equality of Variances t-test for Equality of Means										
						Sig. (2-	Mean	Std. Error	95% Confiden the Diff	ce Interval of erence
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
Delta	Equal variances assumed	.005	.945	051	23	.960	02821	.55494	-1.17618	1.11977
	Equal variances not assumed			051	22.810	.960	02821	.55511	-1.17707	1.12066

Objective 2.5 Repeated Measures ANOVA (time within, groups between) Type 1 Fibre CSA

Effect		Value	F	Hypothesis df	Error df	Sig.
Time	Pillai's Trace	.219	4.196 ^b	1.000	15.000	.058
	Wilks' Lambda	.781	4.196 ^b	1.000	15.000	.058
	Hotelling's Trace	.280	4.196 ^b	1.000	15.000	.058
	Roy's Largest Root	.280	4.196 ^b	1.000	15.000	.058
Time * Code	Pillai's Trace	.012	.180 ^b	1.000	15.000	.678
	Wilks' Lambda	.988	.180 ^b	1.000	15.000	.678
	Hotelling's Trace	.012	.180 ^b	1.000	15.000	.678
	Roy's Largest Root	.012	.180 ^b	1.000	15.000	.678

Tests	of Within–Subjects	Effects
-------	--------------------	---------

Measure: ME	ASURE_1					
Source		Type III Sum of Squares	df	Mean Square	F	Sig.
Time	Sphericity Assumed	686582.520	1	686582.520	4.196	.058
	Greenhouse– Geisser	686582.520	1.000	686582.520	4.196	.058
	Huynh–Feldt	686582.520	1.000	686582.520	4.196	.058
	Lower-bound	686582.520	1.000	686582.520	4.196	.058
Time * Code	Sphericity Assumed	29409.814	1	29409.814	.180	.678
	Greenhouse- Geisser	29409.814	1.000	29409.814	.180	.678
	Huynh–Feldt	29409.814	1.000	29409.814	.180	.678
	Lower-bound	29409.814	1.000	29409.814	.180	.678
Error(Time)	Sphericity Assumed	2454582.72	15	163638.848		
	Greenhouse- Geisser	2454582.72	15.000	163638.848		
	Huynh–Feldt	2454582.72	15.000	163638.848		
	Lower-bound	2454582.72	15.000	163638.848		

Tests of Between-Subjects Effects

Measure: MEASURE_1 Transformed Variable: Average

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Intercept	941644947	1	941644947	2309.013	.000
Code	1504.314	1	1504.314	.004	.952
Error	6117190.22	15	407812.681		

Objective 2.7 Repeated Measures ANOVA (time within, groups between) Type 2 Fibre CSA

multivariate rests	Mu	ltiva	riate	Tes	ts ^a
--------------------	----	-------	-------	-----	-----------------

		Value	F	Hypothesis	Error df	Ci a
Effect		value	F	ui	Error di	sig.
Time	Pillai's Trace	.391	9.623 ^b	1.000	15.000	.007
	Wilks' Lambda	.609	9.623 ^b	1.000	15.000	.007
	Hotelling's Trace	.642	9.623 ^b	1.000	15.000	.007
	Roy's Largest Root	.642	9.623 ^b	1.000	15.000	.007
Time * Code	Pillai's Trace	.019	.287 ^b	1.000	15.000	.600
	Wilks' Lambda	.981	.287 ^b	1.000	15.000	.600
	Hotelling's Trace	.019	.287 ^b	1.000	15.000	.600
	Roy's Largest Root	.019	.287 ^b	1.000	15.000	.600

Tests of Within-Subjects Effects

Measure: MEASURE_1							
Source		Type III Sum of Squares	df	Mean Square	F	Sig.	
Time	Sphericity Assumed	2053377.53	1	2053377.53	9.623	.007	
	Greenhouse- Geisser	2053377.53	1.000	2053377.53	9.623	.007	
	Huynh–Feldt	2053377.53	1.000	2053377.53	9.623	.007	
	Lower-bound	2053377.53	1.000	2053377.53	9.623	.007	
Time * Code	Sphericity Assumed	61230.004	1	61230.004	.287	.600	
	Greenhouse- Geisser	61230.004	1.000	61230.004	.287	.600	
	Huynh–Feldt	61230.004	1.000	61230.004	.287	.600	
	Lower-bound	61230.004	1.000	61230.004	.287	.600	
Error(Time)	Sphericity Assumed	3200767.94	15	213384.529			
	Greenhouse- Geisser	3200767.94	15.000	213384.529			
	Huynh–Feldt	3200767.94	15.000	213384.529			
	Lower-bound	3200767.94	15.000	213384.529			

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Intercept	1.343E+9	1	1.343E+9	2970.211	.000
Code	1652612.76	1	1652612.76	3.656	.075
Error	6780694.72	15	452046.314		

Objective 2.8 Repeated Measures ANOVA (time within, groups between) Fibre Type 1 Distribution

Effect		Value	F	Hypothesis df	Error df	Sig.
Time	Pillai's Trace	.010	.156 ^b	1.000	15.000	.698
	Wilks' Lambda	.990	.156 ^b	1.000	15.000	.698
	Hotelling's Trace	.010	.156 ^b	1.000	15.000	.698
	Roy's Largest Root	.010	.156 ^b	1.000	15.000	.698
Time * CODE	Pillai's Trace	.065	1.037 ^b	1.000	15.000	.325
	Wilks' Lambda	.935	1.037 ^b	1.000	15.000	.325
	Hotelling's Trace	.069	1.037 ^b	1.000	15.000	.325
	Roy's Largest Root	.069	1.037 ^b	1.000	15.000	.325

Multivariate Tests^a

Tests	of	Within-	Suhi	ierts	Effects
16363	U 1	WW I CI I I I I	Jub	ecto	LITELLS

Measure: ME	Measure: MEASURE_1							
Source		Type III Sum of Squares	df	Mean Square	F	Sig.		
Time	Sphericity Assumed	17.117	1	17.117	.156	.698		
	Greenhouse- Geisser	17.117	1.000	17.117	.156	.698		
	Huynh–Feldt	17.117	1.000	17.117	.156	.698		
	Lower-bound	17.117	1.000	17.117	.156	.698		
Time * CODE	Sphericity Assumed	113.839	1	113.839	1.037	.325		
	Greenhouse- Geisser	113.839	1.000	113.839	1.037	.325		
	Huynh–Feldt	113.839	1.000	113.839	1.037	.325		
	Lower-bound	113.839	1.000	113.839	1.037	.325		
Error(Time)	Sphericity Assumed	1645.965	15	109.731				
	Greenhouse– Geisser	1645.965	15.000	109.731				
	Huynh–Feldt	1645.965	15.000	109.731				
	Lower-bound	1645.965	15.000	109.731				

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Intercept	49886.598	1	49886.598	201.006	.000
CODE	4.393	1	4.393	.018	.896
Error	3722.767	15	248.184		

Objective 2.9 Repeated Measures ANOVA (time within, groups between) Fibre Type T2A Distribution

Effect		Value	F	Hypothesis df	Error df	Sig.
Time	Pillai's Trace	.135	2.336 ^b	1.000	15.000	.147
	Wilks' Lambda	.865	2.336 ^b	1.000	15.000	.147
	Hotelling's Trace	.156	2.336 ^b	1.000	15.000	.147
	Roy's Largest Root	.156	2.336 ^b	1.000	15.000	.147
Time * CODE	Pillai's Trace	.000	.000 ^b	1.000	15.000	.992
	Wilks' Lambda	1.000	.000 ^b	1.000	15.000	.992
	Hotelling's Trace	.000	.000 ^b	1.000	15.000	.992
	Roy's Largest Root	.000	.000 ^b	1.000	15.000	.992

Multivariate Tests^a

Tests of Within-Subjects Effects

Measure: ME	Measure: MEASURE_1							
Source		Type III Sum of Squares	df	Mean Square	F	Sig.		
Time	Sphericity Assumed	346.052	1	346.052	2.336	.147		
	Greenhouse- Geisser	346.052	1.000	346.052	2.336	.147		
	Huynh–Feldt	346.052	1.000	346.052	2.336	.147		
	Lower-bound	346.052	1.000	346.052	2.336	.147		
Time * CODE	Sphericity Assumed	.015	1	.015	.000	.992		
	Greenhouse- Geisser	.015	1.000	.015	.000	.992		
	Huynh–Feldt	.015	1.000	.015	.000	.992		
	Lower-bound	.015	1.000	.015	.000	.992		
Error(Time)	Sphericity Assumed	2222.190	15	148.146				
	Greenhouse- Geisser	2222.190	15.000	148.146				
	Huynh–Feldt	2222.190	15.000	148.146				
	Lower-bound	2222.190	15.000	148.146				

Tests of Between-Subjects Effects

Measure: MEASURE_1 Transformed Variable: Average

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Intercept	99518.852	1	99518.852	402.761	.000
CODE	22.829	1	22.829	.092	.765
Error	3706.370	15	247.091		

Objective 2.10 Repeated Measures ANOVA (time within, groups between) Fibre Type 1T2X Distribution

Effect		Value	F	Hypothesis df	Error df	Sig.
Time	Pillai's Trace	.287	6.038 ^b	1.000	15.000	.027
	Wilks' Lambda	.713	6.038 ^b	1.000	15.000	.027
	Hotelling's Trace	.403	6.038 ^b	1.000	15.000	.027
	Roy's Largest Root	.403	6.038 ^b	1.000	15.000	.027
Time * CODE	Pillai's Trace	.155	2.748 ^b	1.000	15.000	.118
	Wilks' Lambda	.845	2.748 ^b	1.000	15.000	.118
	Hotelling's Trace	.183	2.748 ^b	1.000	15.000	.118
	Roy's Largest Root	.183	2.748 ^b	1.000	15.000	.118

Multivariate Tests^a

Tests of Within-Subjects Effects

Measure: MEASURE_1								
Source		Type III Sum of Squares	df	Mean Square	F	Sig.		
Time	Sphericity Assumed	292.299	1	292.299	6.038	.027		
	Greenhouse- Geisser	292.299	1.000	292.299	6.038	.027		
	Huynh–Feldt	292.299	1.000	292.299	6.038	.027		
	Lower-bound	292.299	1.000	292.299	6.038	.027		
Time * CODE	Sphericity Assumed	133.047	1	133.047	2.748	.118		
	Greenhouse- Geisser	133.047	1.000	133.047	2.748	.118		
	Huynh–Feldt	133.047	1.000	133.047	2.748	.118		
	Lower-bound	133.047	1.000	133.047	2.748	.118		
Error(Time)	Sphericity Assumed	726.124	15	48.408				
	Greenhouse- Geisser	726.124	15.000	48.408				
	Huynh–Feldt	726.124	15.000	48.408				
	Lower-bound	726.124	15.000	48.408				

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Intercept	1021.192	1	1021.192	19.941	.000
CODE	2.634	1	2.634	.051	.824
Error	768.167	15	51.211		

	Multivariate Tests ^a								
Effect		Value	F	Hypothesis df	Error df	Sig.			
Time	Pillai's Trace	.860	147.100 ^b	1.000	24.000	.000			
	Wilks' Lambda	.140	147.100 ^b	1.000	24.000	.000			
	Hotelling's Trace	6.129	147.100 ^b	1.000	24.000	.000			
	Roy's Largest Root	6.129	147.100 ^b	1.000	24.000	.000			
Time * Code	Pillai's Trace	.030	.738 ^b	1.000	24.000	.399			
	Wilks' Lambda	.970	.738 ^b	1.000	24.000	.399			
	Hotelling's Trace	.031	.738 ^b	1.000	24.000	.399			
	Roy's Largest Root	.031	.738 ^b	1.000	24.000	.399			

Objective 3. Change in Total Strength Repeated Measures ANOVA (time within, groups between)

Tests of Within-Subjects Effects

Measure: ME	ASURE_1					
Source		Type III Sum of Squares	df	Mean Square	F	Sig.
Time	Sphericity Assumed	73370.456	1	73370.456	147.100	.000
	Greenhouse- Geisser	73370.456	1.000	73370.456	147.100	.000
	Huynh–Feldt	73370.456	1.000	73370.456	147.100	.000
	Lower-bound	73370.456	1.000	73370.456	147.100	.000
Time * Code	Sphericity Assumed	368.197	1	368.197	.738	.399
	Greenhouse- Geisser	368.197	1.000	368.197	.738	.399
	Huynh–Feldt	368.197	1.000	368.197	.738	.399
	Lower-bound	368.197	1.000	368.197	.738	.399
Error(Time)	Sphericity Assumed	11970.734	24	498.781		
	Greenhouse– Geisser	11970.734	24.000	498.781		
	Huynh–Feldt	11970.734	24.000	498.781		
	Lower-bound	11970.734	24.000	498.781		

Tests of Between-Subjects Effects

Measure: MEASURE_1 Transformed Variable: Average

Transform	Transformed variable. Average									
Source	Type III Sum of Squares	df	Mean Square	F	Sig.					
Intercept	9666995.25	1	9666995.25	1350.630	.000					
Code	1132.849	1	1132.849	.158	.694					
Error	171777.531	24	7157.397							

Objective 3.1 Change in Total strength following training

Independent Samples Test

		Levene's Test Varia	for Equality of inces	t-test for Equality of Means						
						Sig. (2 -	Mean	Std. Error	95% Confiden the Diff	ce Interval of Ference
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
PrePostTotal	Equal variances assumed	2.271	.145	859	24	.399	-10.64385	12.38779	-36.21099	14.92330
	Equal variances not assumed			859	18.358	.401	-10.64385	12.38779	-36.63330	15.34561

	Independent Samples Test										
		Levene's Test for Equality of Variances			t-test for Equality of Means						
						Sig. (2-	Mean	n Std Error 95% Confidence Inter the Difference		ce Interval of erence	
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper	
W8W10perc_Squ at	Equal variances assumed	1.817	.190	1.693	24	.103	3.14615	1.85801	68858	6.98089	
	Equal variances not assumed			1.693	22.214	.104	3.14615	1.85801	70497	6.99728	
W8W10perc_Ben ch	Equal variances assumed	.185	.671	253	23	.802	352	1.389	-3.225	2.521	
	Equal variances not assumed			255	22.848	.801	352	1.379	-3.206	2.502	
W8W10_pre_dea d	Equal variances assumed	1.435	.243	.608	24	.549	1.37692	2.26312	-3.29392	6.04777	
	Equal variances not assumed			.608	22.362	.549	1.37692	2.26312	-3.31209	6.06594	

Objective 3.2 Percent change in Squat, Bench press and Deadlift following overreaching

Objective 4. CK activity Repeated Measures ANOVA (time within, groups between) (Tukey's performed in excel)

Multivariate	Tests ^a
--------------	--------------------

Effect		Value	F	Hypothesis df	Error df	Sig.
Time	Pillai's Trace	.755	11.741 ^b	5.000	19.000	.000
	Wilks' Lambda	.245	11.741 ^b	5.000	19.000	.000
	Hotelling's Trace	3.090	11.741 ^b	5.000	19.000	.000
	Roy's Largest Root	3.090	11.741 ^b	5.000	19.000	.000
Time * Code	Pillai's Trace	.166	.755 ^b	5.000	19.000	.593
	Wilks' Lambda	.834	.755 ^b	5.000	19.000	.593
	Hotelling's Trace	.199	.755 ^b	5.000	19.000	.593
	Roy's Largest Root	.199	.755 ^b	5.000	19.000	.593
-	Те	sts of With	in–Subjects	Effects	•	•

Measure: MEASURE_1

Source		Type III Sum of Squares	df	Mean Square	F	Sig.
Time	Sphericity Assumed	1317966.24	5	263593.249	14.394	.000
	Greenhouse- Geisser	1317966.24	2.818	467623.239	14.394	.000
	Huynh–Feldt	1317966.24	3.392	388522.768	14.394	.000
	Lower-bound	1317966.24	1.000	1317966.24	14.394	.001
Time * Code	Sphericity Assumed	20206.192	5	4041.238	.221	.953
	Greenhouse- Geisser	20206.192	2.818	7169.292	.221	.871
	Huynh–Feldt	20206.192	3.392	5956.576	.221	.902
	Lower-bound	20206.192	1.000	20206.192	.221	.643
Error(Time)	Sphericity Assumed	2105910.57	115	18312.266		
	Greenhouse- Geisser	2105910.57	64.824	32486.572		
	Huynh-Feldt	2105910.57	78.022	26991.329		
	Lower-bound	2105910.57	23.000	91561.329		

MSc. Thesis | J.S. Jakubowski | McMaster University | Department of Kinesiology

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average								
Source	Type III Sum of Squares	df	Mean Square	F	Sig.			
Intercept	2057323.38	1	2057323.38	234.798	.000			
Code	2379.525	1	2379.525	.272	.607			
Error	201528.602	23	8762.113					

Objective 4.1	Cortisol horm	one concentration	(nM) Repeate	d Measures	ANOVA (†	time within,	groups
between)							

(Tukey's performed in excel)

Effect		Value	F	Hypothesis df	Error df	Sig.
Time	Pillai's Trace	.837	20.479 ^b	5.000	20.000	.000
	Wilks' Lambda	.163	20.479 ^b	5.000	20.000	.000
	Hotelling's Trace	5.120	20.479 ^b	5.000	20.000	.000
	Roy's Largest Root	5.120	20.479 ^b	5.000	20.000	.000
Time * Code	Pillai's Trace	.020	.080 ^b	5.000	20.000	.995
	Wilks' Lambda	.980	.080 ^b	5.000	20.000	.995
	Hotelling's Trace	.020	.080 ^b	5.000	20.000	.995
	Roy's Largest Root	.020	.080 ^b	5.000	20.000	.995

Multivariate Tests^a

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source		Type III Sum of Squares	df	Mean Square	F	Sig.
Time	Sphericity Assumed	2966.790	5	593.358	15.818	.000
	Greenhouse- Geisser	2966.790	2.642	1123.040	15.818	.000
	Huynh–Feldt	2966.790	3.122	950.213	15.818	.000
	Lower-bound	2966.790	1.000	2966.790	15.818	.001
Time * Code	Sphericity Assumed	12.605	5	2.521	.067	.997
	Greenhouse- Geisser	12.605	2.642	4.772	.067	.967
	Huynh–Feldt	12.605	3.122	4.037	.067	.980
	Lower-bound	12.605	1.000	12.605	.067	.798
Error(Time)	Sphericity Assumed	4501.292	120	37.511		
	Greenhouse- Geisser	4501.292	63.402	70.996		
	Huynh–Feldt	4501.292	74.934	60.070		
	Lower-bound	4501.292	24.000	187.554		
Tests of Between-Subjects Effects

Measure: MEASURE_1 Transformed Variable: Average

ITalisteriii									
Source	Type III Sum of Squares	df	Mean Square	F	Sig.				
Intercept	15121.954	1	15121.954	3566.611	.000				
Code	.002	1	.002	.000	.985				
Error	101.757	24	4.240						

Objective 4.2 Percent change in CK activity and Cortisol following overreaching

Independent Samples Test

		Levene's Test Varia	for Equality of nces	t-test for Equality of Means						
						Sig. (2-	Mean	Std. Error	95% Confidence Interval the Difference	
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
CKW8W10	Equal variances assumed	3.101	.091	1.070	24	.295	36.46154	34.06217	-33.83934	106.76241
	Equal variances not assumed			1.070	14.979	.301	36.46154	34.06217	-36.14905	109.07213
CortW8W10	Equal variances assumed	.449	.509	013	24	.990	23077	18.09549	-37.57802	37.11649
	Equal variances not assumed			013	23.610	.990	23077	18.09549	-37.61069	37.14915

Objective 4.3 Testosterone concentration	(ng/dL) Repeated Measures	ANOVA (time	within,	groups
between)				

(Tukey's performed in excel)

Effect		Value	F	Hypothesis df	Error df	Sig.
Time	Pillai's Trace	.894	33.583 ^b	5.000	20.000	.000
	Wilks' Lambda	.106	33.583 ^b	5.000	20.000	.000
	Hotelling's Trace	8.396	33.583 ^b	5.000	20.000	.000
	Roy's Largest Root	8.396	33.583 ^b	5.000	20.000	.000
Time * Code	Pillai's Trace	.225	1.158 ^b	5.000	20.000	.364
	Wilks' Lambda	.775	1.158 ^b	5.000	20.000	.364
	Hotelling's Trace	.290	1.158 ^b	5.000	20.000	.364
	Roy's Largest Root	.290	1.158 ^b	5.000	20.000	.364

Multivariate Tests^a

Measure: ME	ASURE_1					
Source		Type III Sum of Squares	df	Mean Square	F	Sig.
Time	Sphericity Assumed	817342.233	5	163468.447	32.155	.000
	Greenhouse– Geisser	817342.233	3.614	226147.642	32.155	.000
	Huynh–Feldt	817342.233	4.511	181171.407	32.155	.000
	Lower-bound	817342.233	1.000	817342.233	32.155	.000
Time * Code	Sphericity Assumed	42708.329	5	8541.666	1.680	.144
	Greenhouse- Geisser	42708.329	3.614	11816.822	1.680	.168
	Huynh–Feldt	42708.329	4.511	9466.693	1.680	.152
	Lower-bound	42708.329	1.000	42708.329	1.680	.207
Error(Time)	Sphericity Assumed	610045.080	120	5083.709		
	Greenhouse- Geisser	610045.080	86.741	7032.971		
	Huynh–Feldt	610045.080	108.274	5634.254		
	Lower-bound	610045.080	24.000	25418.545		

Tests of Within-Subjects Effects

Tests of Between-Subjects Effects

Measure: MEASURE_1 Transformed Variable: Average

Hanstonned Vallable. Average									
Source	Type III Sum of Squares	df	Mean Square	F	Sig.				
Intercept	11146595.0	1	11146595.0	9322.008	.000				
Code	5062.921	1	5062.921	4.234	.051				
Error	28697.496	24	1195.729						

Objective 4.4 free Testosterone concentration (ng/dL) Repeated Measures ANOVA (time within, groups between)

(Tukey's performed in excel)

Multivariate Tests^a

Effect		Value	F	Hypothesis df	Error df	Sig.
Time	Pillai's Trace	.693	9.010 ^b	5.000	20.000	.000
	Wilks' Lambda	.307	9.010 ^b	5.000	20.000	.000
	Hotelling's Trace	2.253	9.010 ^b	5.000	20.000	.000
	Roy's Largest Root	2.253	9.010 ^b	5.000	20.000	.000
Time * Code	Pillai's Trace	.199	.993 ^b	5.000	20.000	.447
	Wilks' Lambda	.801	.993 ^b	5.000	20.000	.447
	Hotelling's Trace	.248	.993 ^b	5.000	20.000	.447
	Roy's Largest Root	.248	.993 ^b	5.000	20.000	.447

- Destant laterated Code

Measure: ME	Measure: MEASURE_1									
Source		Type III Sum of Squares	df	Mean Square	F	Sig.				
Time	Sphericity Assumed	293.861	5	58.772	8.580	.000				
	Greenhouse- Geisser	293.861	4.353	67.502	8.580	.000				
	Huynh–Feldt	293.861	5.000	58.772	8.580	.000				
	Lower-bound	293.861	1.000	293.861	8.580	.007				
Time * Code	Sphericity Assumed	41.083	5	8.217	1.199	.314				
	Greenhouse– Geisser	41.083	4.353	9.437	1.199	.315				
	Huynh–Feldt	41.083	5.000	8.217	1.199	.314				
	Lower-bound	41.083	1.000	41.083	1.199	.284				
Error(Time)	Sphericity Assumed	822.003	120	6.850						
	Greenhouse- Geisser	822.003	104.481	7.867						
	Huynh–Feldt	822.003	120.000	6.850						
	Lower-bound	822.003	24.000	34.250						

Tests of Within-Subjects Effects

Objective 4.5 Insulin-like growth factor 1 (IGF-1; ug/dL) Repeated Measures ANOVA (time within, groups between)

(Tukey's performed in excel)

Effect		Value	F	Hypothesis df	Error df	Sig.
Time	Pillai's Trace	.321	1.887 ^b	5.000	20.000	.142
	Wilks' Lambda	.679	1.887 ^b	5.000	20.000	.142
	Hotelling's Trace	.472	1.887 ^b	5.000	20.000	.142
	Roy's Largest Root	.472	1.887 ^b	5.000	20.000	.142
Time * Code	Pillai's Trace	.108	.483 ^b	5.000	20.000	.784
	Wilks' Lambda	.892	.483 ^b	5.000	20.000	.784
	Hotelling's Trace	.121	.483 ^b	5.000	20.000	.784
	Roy's Largest Root	.121	.483 ^b	5.000	20.000	.784

Multivariate Tests^a

Measure: MEASURE_1									
Source		Type III Sum of Squares	df	Mean Square	F	Sig.			
Time	Sphericity Assumed	113902.942	5	22780.588	1.898	.100			
	Greenhouse– Geisser	113902.942	4.160	27379.724	1.898	.114			
	Huynh–Feldt	113902.942	5.000	22780.588	1.898	.100			
	Lower-bound	113902.942	1.000	113902.942	1.898	.181			
Time * Code	Sphericity Assumed	11426.526	5	2285.305	.190	.966			
	Greenhouse- Geisser	11426.526	4.160	2746.682	.190	.947			
	Huynh–Feldt	11426.526	5.000	2285.305	.190	.966			
	Lower-bound	11426.526	1.000	11426.526	.190	.666			
Error(Time)	Sphericity Assumed	1440188.75	120	12001.573					
	Greenhouse– Geisser	1440188.75	99.843	14424.551					
	Huynh–Feldt	1440188.75	120.000	12001.573					
	Lower-bound	1440188.75	24.000	60007.865					

Tests of Within-Subjects Effects

Tests of Between-Subjects Effects

Measure: MEASURE_1 Transformed Variable: Average

Transformed Variable. Average								
Source	Type III Sum of Squares	df	Mean Square	F	Sig.			
Intercept	21040707.4	1	21040707.4	1124.232	.000			
Code	2500.802	1	2500.802	.134	.718			
Error	449174.947	24	18715.623					

Objective 4.6 Growth Hormone (GH; ng/mL) Repeated Measures ANOVA (time within, groups between) (Tukey's performed in excel)

Effect		Value	F	Hypothesis df	Error df	Sig.
Time	Pillai's Trace	.421	3.823 ^b	4.000	21.000	.017
	Wilks' Lambda	.579	3.823 ^b	4.000	21.000	.017
	Hotelling's Trace	.728	3.823 ^b	4.000	21.000	.017
	Roy's Largest Root	.728	3.823 ^b	4.000	21.000	.017
Time * Code	Pillai's Trace	.162	1.016 ^b	4.000	21.000	.422
	Wilks' Lambda	.838	1.016 ^b	4.000	21.000	.422
	Hotelling's Trace	.193	1.016 ^b	4.000	21.000	.422
	Roy's Largest Root	.193	1.016 ^b	4.000	21.000	.422

Multivariate Tests^a

Tests	of	Within–Su	bjects	Effects
-------	----	-----------	--------	---------

Measure: MEASURE_1									
Source		Type III Sum of Squares	df	Mean Square	F	Sig.			
Time	Sphericity Assumed	9.970	4	2.493	3.587	.009			
	Greenhouse– Geisser	9.970	3.557	2.803	3.587	.012			
	Huynh–Feldt	9.970	4.000	2.493	3.587	.009			
	Lower-bound	9.970	1.000	9.970	3.587	.070			
Time * Code	Sphericity Assumed	3.644	4	.911	1.311	.271			
	Greenhouse- Geisser	3.644	3.557	1.024	1.311	.274			
	Huynh–Feldt	3.644	4.000	.911	1.311	.271			
	Lower-bound	3.644	1.000	3.644	1.311	.264			
Error(Time)	Sphericity Assumed	66.706	96	.695					
	Greenhouse– Geisser	66.706	85.364	.781					
	Huynh–Feldt	66.706	96.000	.695					
	Lower-bound	66.706	24.000	2.779					