
Multiperiod Refinery Planning:
Development and Applications



Multiperiod Refinery Planning:
Development and Applications

by

Alexander Nguyen, B. Eng

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science

McMaster University

c© Copyright by Alexander Nguyen, August 2018



MASTER OF APPLIED SCIENCE (2018) McMaster University

(Chemical Engineering) Hamilton, Ontario, Canada

TITLE: Multiperiod Refinery Planning:

Development and Applications

AUTHOR: Alexander Nguyen, B.Eng.

McMaster University, Hamilton, Ontario, Canada

SUPERVISOR: Dr. Christopher L.E. Swartz

NUMBER OF PAGES: xxii, 158

ii



Lay Abstract

Petroleum refineries consist of complex units that serve a certain purpose,

such as separating components of a mixed stream or blending intermediate

products, in order to create final commercial products, e.g. gasoline and diesel.

Due to the complexity and interconnectivity in a refinery, it is difficult to de-

termine the optimal mode of operation. Thus, by formulating the refinery in

mathematical form, optimization techniques may be used to find optimal oper-

ation. Furthermore, optimization problems can be formulated in a multiperiod

fashion, where the problem is repeated over a set time horizon in partitions.

The advantage is a higher detail in the operation of the refinery but this comes

at a cost of higher computation time. In this work, a multiperiod refinery is for-

mulated and studied by exploring model size, computation times, comparison

of solvers, and solution strategies such as decomposition.
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Abstract

The purpose of this work aims to develop and explore a nonlinear multiperiod

petroleum refinery model based on a real-world model. Due to the inherent

complexity and interconnected nature of petroleum refineries, various stud-

ies are implemented to describe the multiperiod model. The model is based

around maximizing the profit of a petroleum refinery, starting from the crude

inputs through the crude distillation unit, to the intermediate product process-

ing through various unit operations, and finally to the blending of the final

products. The model begins as a single period model, and is re-formulated as a

multiperiod model by incorporating intermediate product tanks and dividing

the model into partitions.

In solving the multiperiod model, the termination criteria for convergence was

varied in order to investigate the effect on the solution; it was found that it is

acceptable to terminate at a relaxed tolerance due to minimal differences in

solution. Several case studies, defined as deviations from normal operation,

are implemented in order to draw comparisons between the real-world model

and the model studied in this thesis. The thesis model, solved by CONOPT

and IPOPT, resulted in significant gains over the real-world model.

Next, a Lagrangean decomposition scheme was implemented in an attempt to

decrease computation times. The decomposition was unable to find feasible
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solutions for the subproblems, as the nonlinear and nonconvex nature of the

problem posed difficulty in finding feasibilities. However, in the case of a

failed decomposition, the point where the decomposition ends may be used

as an initial guess to solve the full space problem, regardless of feasibility

of the subproblems. It was found that running the decomposition fewer

times provided better initial guesses due to lower constraint violations from

the infeasibilities, and then combined with the shorter decomposition time

resulted in faster computation times.
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Introduction

1.1 Motivation & Goals . . . . . . . . . . . . . . . . . . . . . 1
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1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . 3
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1.1 Motivation & Goals

Petroleum refineries often consist of complex units that serve a certain purpose,

such as distillation of cuts in crude, separating components of a mixed stream,

or upgrading the qualities of a product. These units are often intertwined and

rely on each other in order to operate. From this connectivity between units,

there are many scenarios that can be studied and modeled using multiperiod

optimization. Multiperiod optimization involves formulation of a problem

spanning over a specified length of time and partitioned into periods; there

1
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must be constraints and variables that link time periods in order to create a

multiperiod problem. This method takes into account dynamics of the system

that may occur between time periods, as opposed to traditional single-period

optimization. Using multiperiod optimization, we are able to explore the

behaviour of the refinery when subject to anomalies in operation, such as the

reduced throughput of a unit, and how intermediate stock tanks will react

to the deviation in operation. Petroleum refineries provide a complex and

interesting model to study, as there are many connections between units, strict

operating bounds, and a large number of properties and compositions to

maintain.

The objective of this thesis is to develop a multiperiod optimization planning

solution in the context of a petroleum refinery using a real-world model, and

to study various scenarios that may occur in a refinery. The thesis aims to

improve current optimization practices at TOTAL by introducing multiperiod

optimization over longer time horizons (e.g. 30 periods over 1 month), ex-

plore alternative nonlinear solvers and solution strategies, and to improve

solution times. By improving solution times, larger problems (i.e. more time

periods) may be studied. Furthermore, decomposition solution strategies can

be implemented in the multiperiod refinery model in order to further decrease

convergence time.

1.2 Thesis Contributions

The contributions that this thesis presents include:

• Review of published literature pertaining to petroleum refinery modeling

(unit operation processes and plant configuration) and their various
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applications in multiperiod and single period optimization.

• Development of a nonlinear multiperiod refinery model based on a real-

world petroleum refinery model, including yield relationships, property

calculations, use of plant data and correlations, and detailed information

regarding feedstocks to the refinery.

• Exploration of various solution strategies to solve the multiperiod refin-

ery model.

• Exploration on the effect of solver tolerance options on the solution of the

multiperiod refinery model and effect on computation time; exploration

of solution times for various sizes of the multiperiod problem.

• Comparison of performance from current practices of solving the opti-

mization model in industry versus using IPOPT and CONOPT.

• Review of the Lagrangean decomposition algorithm and its application

in multiperiod optimization. Formulation and implementation of the

Lagrangean decomposition algorithm in the multiperiod refinery model.

• Investigating the selection of end points at various iterations of the

decomposition as an initial guess for solving the full space model.

1.3 Thesis Overview

Chapter 2 - Literature Review

Chapter 2 presents a review of literature surrounding the work completed in

this thesis. Background is provided on the fundamentals and configuration

of petroleum refining, including descriptions of major unit operations and
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their processes, utility generation in the refinery, blending operations, and

possible configurations of the refinery process. This is followed by optimiza-

tion approaches and application in petroleum refining with context in both

single and multiperiod formulations; studies published in literature regarding

refinery planning and scheduling in nonlinear formulations are discussed.

Next, nonlinear programming in general is discussed, with descriptions of

interior point methods, generalized reduced gradient approaches, IPOPT, and

CONOPT. A description of the model formulation in AMPL is also discussed.

Lastly, Lagrangean decomposition formulation and methods are described

and discussed, as well as discussion on published literature that utilities these

methods in multiperiod problems.

Chapter 3 - Multiperiod Refinery Optimization: Model Formulation

Chapter 3 discusses the formulation of the multiperiod petroleum refinery

model that is studied in the thesis. First, a detailed description of the develop-

ment of the model is discussed. In this section, the process in formulating the

multiperiod model from the single model is described. Next, the mathematical

formulation of the multiperiod refinery model, as well as equation transforma-

tions are presented. Following the mathematical formulation, the intermediate

tanks required for multiperiod optimization are formulated and described.

Chapter 4 - Solution Strategies

Chapter 4 describes the solution strategies proposed in the study. The first

strategy proposed involves taking information from the model development

stage as initial guesses. The next strategy involves the implementation of

Lagrangean decomposition on the multiperiod refinery model, and discusses

the formulation of the decomposition in the study. Lastly, a hybrid method

is proposed, where in the case of an unsuccessful decomposition, the end
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point of the decomposition may pose to be a good initial guess to solve the

remainder of the problem to optimality.

Chapter 5 - Case Studies

Chapter 5 presents various base case (nominal operation) and case study (de-

viations from nominal operation) applications and analysis on the multiperiod

refinery model. First, the effect of termination tolerance of the IPOPT solver

is compared for the refinery model when solving from the initial point to the

nominal operation of the refinery (base case). The next two sections describe

several case studies (deviations from nominal operation) and are compared

to the original model developed by TOTAL. This is to compare the perfor-

mance when solving with IPOPT and CONOPT. Next, the scalability of the

multiperiod model is discussed, where the size of the problem is adjusted (i.e.

changing number of time periods) in order to study the effect of larger prob-

lems on computational solve time. All case studies were compared for various

sizes, and an analysis of the constraint violation and dual infeasibilities are

discussed. Finally, the results of the Lagrangean decomposition are discussed.

In this section, exploration of the performance, convergence, and feasibility

of the decomposition method are discussed. Furthermore, the results of the

hybrid method (of solving from the end of the decomposition) are discussed.

Chapter 6 - Conclusions and Recommendations

The thesis is then summarized in this chapter, highlighting the development

and applications of the multiperiod petroleum refinery, the results obtained in

the study, and interpretation of the results. Future developments and work

are outlined and discussed.
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2.1 Refinery Process Description

Refineries can be operated in many different configurations depending on the

plant conditions such as the crude being processed, types of final products,

environmental regulations, or new technology [1]. However, most refineries

share the same major unit operations — the atmospheric crude distillation

unit (CDU), vacuum distillation unit (VDU), hydrocracker (HC), hydrotreater

(HT), and the catalytic reformer and/or cracker. Figure 2.1 shows an example

of a modern refinery [1].

Figure 2.1: A modern petroleum refinery process scheme [1].

In petroleum refinery optimization, there are several examples from literature

with varying levels of detail — detailed models of unit operations, refinery-

focused models, blending models, and supply chain optimization are the

various types of petroleum refinery models used in optimization. All of these
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types of models are encompassed in Figure 2.2 and are often segregated into 3

subproblems: crude-oil scheduling with unloading, mixing, and tank control;

optimization and scheduling of the processing units of the refinery; and final

product blending, tank control, and exports [2].

Figure 2.2: Subproblems of petroleum optimization - crude-oil scheduling, refinery
optimization, and product blending [2].

In this work, the model used in building the optimization problem was based

on an in-house refinery model built by TOTAL and coincides with the second

type of sub-problem denoted by Shah et al. [2] where the optimization is

focused around the operation of the production units in the refinery. This

encompasses crude feed entering the atmospheric distillation unit, to the

export of final products such as gasoline, diesel, fuel oils, and naphthas and

the operation of the units in between.

With the type of refinery optimization model in mind, there are various con-

figurations of a petroleum refinery that can be designed. Depending on the

crude type, product demand, location, and various other end goals specific

to the operator, the refinery may or may not require specific units. However,

the majority of refineries include crude distillation (CDU), hydrotreating (HT),
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and catalytic reforming (CCR) of naphtha based on various textbooks and

literature [3], [1], [4]. A study by Abella and Bergerson [5] investigated the

impact of greenhouse gases and energy use in a petroleum refinery subject to

various crude quality and refinery configurations, and assumed that all config-

urations contain CDU, HT, and CCR units. Other units such as visbreakers,

fluidized catalytic crackers (FCC), and hydrocrackers are then incorporated

based on final product demands, crude inputs, and desired operation of the

refinery. The intermediate streams of a petroleum refinery are subject to vari-

ous transformations - direct to final product blending, upgrading (breaking

high carbon/heavy streams down to higher value intermediates), impurity

removal (e.g. sulfurs, metals, nitrogen), and utility separation (e.g. stripping

hydrogen, refinery fuel gas from intermediate streams).

There are other refinery configurations used in published literature. Figure 2.3

shows the configuration used in a study by Wu et al. [6] which focuses on

bridging the gap between theory and application in short-term scheduling

by using control theory and safe states in order to generate feasible solu-

tions. Note that the configuration also follows the idea of having a CDU, HT,

and CCR. Figure 2.4 shows the optimized topology of a state-task network

(STN)-based superstructure optimization problem from a study by Khor and

Elkamel [7]. The STN representation contains all possible feasible configu-

rations/topologies for a petroleum refinery and is broken down into four

major processing sections: naphtha exiting the CDU; residue to the VDU

from the CDU; vacuum gas oil from the VDU; and heavy oil upgrading. A

mixed-integer linear problem that aims to maximize profit and minimize

environmental impacts is formulated based on the superstructure and sub-

sequently, is solved. A life cycle analysis is incorporated into the problem to

account for the environmental impacts; further details can be found in the

9



M.A.Sc Thesis - A. Nguyen McMaster University - Chemical Engineering

published literature [7].

Figure 2.3: Refinery process model used by Wu et al. for short-term scheduling using
control theory [6].

Figure 2.4: Optimized topology of a state-task network superstructure used in by
Khor and Elkamel [7].
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The following section will describe the possible major unit operations in a

petroleum refinery in more detail. Again, the configuration of the refinery

depends on the product desired, crude oil processed, and operational variables

that may be desired or necessary. For example, a refinery may not utilize a

visbreaker and/or delayed/fluid coker if the refinery plans on selling the

vacuum residue as is and it is not beneficial to further upgrade the residue.

These decisions are primarily based on operator and process designer expertise

and knowledge, and is often kept proprietary to the company as to maintain

an advantage over other producers [5].

2.1.1 Major Unit Operations

2.1.1.1 Crude Distillation Unit

The crude distillation unit (CDU) is located at the front of the refinery and

is the first unit that processes the crude inputs to the plant. Before the crude

enters the CDU, sediment and free water are separated out in storage tanks

by gravity and it is then sent through the cold side of various heat exchangers

(which use CDU products as hot side streams) and heated to 120 to 150◦C. The

stream heads into a desalting unit to remove dissolved salts, and is then sent

to a furnace to be heated up to 330 to 385◦C [1].

The separation of the crude occurs in the distillation column, often consisting

of multiple columns for each product, as shown in Figure 2.5 [8]. The high

temperature crude feed enters near the bottom of the column where it is

flashed into higher ends and residue drops to the bottom of the column. Steam

injection occurs at the bottom of the column, where the steam strips lighter

hydrocarbons out of the residue and lowers the partial pressure and boiling
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point of the hydrocarbons [1]. The column then extracts the products based

on boiling point as side draws and generates products such as (in ascending

order based on weight): light ends and naphtha (LN), heavy naphtha (HN),

kerosene, and light and heavy gas oils (LGO and HGO, respectively). The

products are then stripped in a column with steam injection to remove light

ends from the heavier streams and reintroduced into the CDU.
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Figure 2.5: Crude distillation unit (CDU) model with stage numbers, product streams,
and smaller fractionation units [8].

There have been various mathematical formulations of the crude distillation

unit, such as fixed-yield equations, multicomponent (swing-cut) formulations,

and nonlinear steady-state models. In fixed-yield equations, parameters are

determined beforehand and the outlet products are linearly related for the
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inlet flow rate, as shown below [9]:

STout
j,k, fs

= ak,i,j, fs ∗ STin
i,k, fs

(2.1)

where STin
i,k, fs

and STout
j,k, fs

are the inlet and outlet flow rates, respectively, and

ak,i,j, fs is the yield parameter for unit k ∈ K (i.e. the CDU), inlet and outlet

streams to k for i ∈ I and j ∈ J, respectively, and crude fed to unit k for fs ∈ F

A swing cut formulation is built upon the fixed-yield relation by introducing

swing cuts and cut points. Crude cut points can be used to determine how

much of each product is produced; each product is produced within a range

of temperatures, with cut points separating each the boiling point of each

product. By shifting the cut point of a product, there will be an increase or

decrease in the product yield with inverse effects on its adjacent product cuts.

For example, if the cut point of kerosene is lowered, resulting in a decrease

in kerosene yield, then the light gas oil can increase its yield by widening its

operating range [1]. Swing cuts represent the allowable change in cut point of

a product, and equation (2.1) can be re-formulated as [9]:

STj,k, fs = ak,i,j, fs ∗ STi,k, fs + bk,j, fs, f ront + bk,j, fs,back (2.2)

SwC = bk,j, fs, f ront + bk,j, fs,back (2.3)

where bk,j, fs, f ront and bk,j, fs,back are variables that represent the front and back

of the swing cut, respectively, for unit k ∈ K, outlet stream from k for j ∈ J,

and crude feed fs ∈ F, and SwC is a fixed value.

Finally, a fractionation-index model is used to model the CDU in a non-linear
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fashion, where
xtop,i

xbottom,i
= αFI

io
xtop,o

xbottom,o
(2.4)

is used to calculate the composition of the product streams and cut point

temperatures. x represents the mole fraction of component i to a reference

component o and αFI
io represents the relative volatility between the components.

As well, the component equilibrium constant K can be used in place of αFI
io as

an approximation [10]. A full derivation of the fractionation-index model for

CDU is described in Alattas et al. [9].

2.1.1.2 Vacuum Distillation Unit

The residue from the CDU must be further processed in the vacuum distillation

unit (VDU) in order to extract distillates; the products that the VDU produces

are the heavy, medium, light, and very light gas oils (HVGO, MVGO, LVGO,

LLVGO), and vacuum residue. The defining characteristic of the VDU is

that it operates at a lower pressure in order to process the residue at a lower

temperature to prevent thermal cracking and the formation of petroleum coke.

A general schematic of the VDU in relation to the CDU is shown in Figure 2.5

and a detailed diagram of the VDU is shown in Figure 2.6.
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Figure 2.6: Detailed diagram of the vacuum distillation unit (VDU) process [1].

Before the atmospheric residue is fed into the VDU, it is heated up between

380 and 415◦C with steam injection in the furnace to prevent thermal cracking.

It then enters near the bottom of the VDU and operates similarly to the CDU

and the vacuum gas oils are extracted as side streams. Steam is injected at the

bottom of the unit to strip lighter ends from the residue, but is also maintained

at a temperature of 365◦C to prevent coking [11].

Defining characteristics of the VDU include design components that generate

the vacuum pressure and components that reduce pressure drop throughout

the column. Packing in the fractionation and heat exchange areas are an

example of the latter. A vacuum is generated using either ejectors and liquid

ring pumps or ejectors alone [1].
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2.1.1.3 Visbreaker & Delayed/Fluid Coking

In order to make use of the residue from the CDU and VDU, the residue

must be broken down or in other words, cracked, at high temperatures. This

cracking reaction can be performed in three different types of units/processes

— listed in order of increasing temperature tolerances: visbreaking, delayed

coking, and fluid coking.

The visbreaker unit employs a mild form of thermal cracking (i.e. the reactions

are stopped before completion using quenching) and is fed both atmospheric

residue and vacuum residue from the CDU and VDU, respectively, and pro-

duces the following products, in ascending yield [1]:

• gases (C4) at 2-4 total weight percent

• naphtha (C5) at 5-7 total weight percent

• gas oils at 10-15 total weight percent

• residue at 75-85 total weight percent

The visbreaker unit operates at a temperature range of 455 to 510◦C at a

pressure of 50 to 300 psi [12]; these conditions depend on the configuration

of the visbreaker: coil visbreaker (cracking occurs in the furnace coil) or soak

visbreaker (cracking occurs in a soak drum), shown in Figure 2.7. Panel A

in Figure 2.7 shows the coil visbreaker configuration, where the feed is first

heated then cracked in the furnace at a temperature of 450 to 480◦C and 43

to 145 psi. The stream is then quenched (i.e. mixed with a cold stream often

comprised of gas oil and visbreaker residue) to stop the reaction — this is

to prevent coke from forming in the fractionation tower. In the fractionation
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tower, the gases, naphtha (gasoline), gas oil, and residue are separated out and

either sent to downstream blending, units, or as a quench stream [1]. Panel B

shows the soak visbreaker configuration, similar to that of the coil visbreaker,

with the difference being a soaker vessel placed between the furnace and the

fractionation tower. With this configuration, the process has a longer residence

time, as the product conversion is maintained at a reaction temperature in

the soaker vessel instead of the furnace and thus, can be operated at a lower

temperature. Soak visbreakers can be thought of as low temperature-high

residence time, whereas coil visbreakers as high temperature-low residence

time [12].

The advantage of the visbreaker unit is the low cost (low fuel requirements)

and relatively low severity compared to other coking units for the upgrading

of petroleum residue. However, drawbacks regarding the visbreaker are the

potential for unstable products, as thermal cracking at lower pressures can

yield olefins in the naphtha product which can undergo further reactions to

produce tar and other heavy compounds. Furthermore, visbreaking leaves

behind a large fraction of residue that is not converted into other products

[12].
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Figure 2.7: Two configurations of the visbreaker unit: Panel A shows a coil visbreaker
configuration; Panel B shows a soak visbreaker configuration [1].

Similar to the visbreaker, the delayed coker unit can process high density

streams but with the added benefit of being able to process streams with high

metal content. The delayed coker operates in a two-stage fashion, where the

thermal energy is supplied by the furnace, and then coking (the deposition

of carbon solids) occurs in the drum. This two-stage process reduces the
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residence time required in the furnace while allowing sufficient time in the

drum [1]. This configuration is shown in Figure 2.8 where the feed stream

enters the fractionation tower, the light ends are separated and the bottoms of

the tower (heavy streams, residues) are sent to the furnace, where the cracking

reaction occurs. The furnace operates between 480 to 515◦C and the heated

residue is sent to the coking drums, which operate between 415 to 465◦C at

0.1 to 0.4 MPa. As the reaction proceeds, the overhead products (the cracked

products) re-enter the fractionation tower and residue deposits in the interior

of the coking drum. For continuous operation, two drums are used — one is

used for the reaction while the other drum undergoes cleaning [13].

Vacuum residue is often the feed stream for the delayed coker unit, but can also

process visbreaker residue and bottoms product (slurry) from the fluidized

catalytic cracker (FCC). The product streams of the delayed coker also differ

from the visbreaker, which are unsaturated gases (C1 to C4), olefins (C2 to C4),

and isobutane (iC4).

Figure 2.8: Two stage delayed coker process [13].
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The third type of thermal cracking occurs in the fluid coking unit. The fluid

coker consists of a fluidized bed reactor followed by a fluidized bed burner,

where the reactor is used for the main cracking reactions, and the burner is

used for taking coke from the reactor and sending it back to the reactor at

a higher temperature to provide energy. The process starts with the residue

feed at a temperature of 260◦C that is injected into the fluidized section of the

reactor operating at 500-600◦C as shown in Figure 2.9 [14]. The feed is then

cracked, depositing coke on the fluidized bed and sending lighter fractions

into a scrubber and then onto a fractionation tower. The deposited coke is

then fluidized by steam injection and then sinks through a stripper, where any

interstitial lighter carbons are stripped out. The remainder of the coke is sent

to the burner unit which operates at a temperature of 593 to 677◦C [1]. In the

burner, the fluidized coke is injected with steam where flue gas is produced

and the hot coke is sent back to the reactor to provide heat.

Figure 2.9: Fluid coking process [14].
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2.1.1.4 Fluidized Catalytic Cracker

One of the most valuable unit operations in a refinery, the fluidized catalytic

cracker (FCC), converts gas oils produced by the visbreaker/coking units into

high value (high octane) products used for gasoline blending. The FCC also

produces olefin feedstock for alkylation units, which in turn, produce more

products for gasoline blending.

Figure 2.10 shows the FCC process from the feed through to the fractionation

tower. First, the feed and steam heated to 316 to 427◦C and are mixed with

regenerated catalyst (649 to 760◦C) and fed to the riser at the bottom of the

reactor. Vapourization of the feed occurs in the riser as soon as the catalyst

contacts the feed/steam stream and the endothermic cracking reaction begins

as the vapourized stream rises. The residence time of the reaction in the riser

is typically between 2-5 seconds [15]. Once the stream enters the reactor vessel,

otherwise known as the disengagement zone, the cracked vapours enter the

fractionation tower and the remaining product (heavy ends) and catalyst flow

into the disengagement zone. The heavy ends are then stripped using steam

and physically separated using cyclones in the reactor and the spent catalyst

is then sent back to the regenerator. In the regenerator, excess air is introduced

to burn off the residual coke formed on the catalyst [16].

The products that leave the fractionation tower consist of light and heavy cycle

gas oils, heavy and light naphtha, decant slurry, and smaller carbon cuts such

as C3 and C4 [1].
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Figure 2.10: Fluidized catalytic cracker (FCC) unit and fractionation tower [1].

2.1.1.5 Alkylation

The alkylation process is used to convert olefins (C3, C4, C5, and iC4) from

the refinery gas plant, coking units, and the FCC into alkylates for gasoline

blending. There are several types of alkylation processes with various configu-

rations depending on the refinery. The sulphuric acid alkylation process has

two commonly used configurations — the auto-refrigeration process by Exxon

and effluent refrigeration by Stratford. The hydrofluoric acid alkylation also

has two available processes — the Phillip process and UOP process. Finally,

solid catalyst alkylation techniques are developed but are not employed on an

industrial scale [17].

In the aqueous alkylation process, the reaction is driven by a strong acid (sul-

phuric acid or hydrofluoric acid) due to the high temperatures and pressures
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required in the absence of a catalyst (50◦C and less than 3000 kPa versus 500◦C

and 20,000 to 40,000 kPa). Figure 2.11 shows the general alkylation scheme;

once the reaction has completed, the products are sent to a settler where the

acid is recycled back and the products continue on to be separated [1].

In the sulphuric acid processes, the Exxon and Stratford processes are similar

except for differences in the reactor design. In the Exxon process, the reaction

emulsion is cooled by the evaporation of isobutane and butylene, whereas in

the Stratford process, a separate refrigeration unit provides the cooling. As

well, the Exxon reactor operates at 5◦C and 90 kPag whereas the Stratford

reactor operates at 10◦C and 420 kPag to prevent evaporation.

In the hydrofluoric acid processes, there are few differences between the

Phillip and UOP processes. Isobutane is highly soluble in hydrofluoric acid

and is injected through nozzles at the bottom of the reactor — due to the high

solubility, no mechanical mixing is required. Reaction temperatures for the

processes are 30 to 40◦C and residence time ranges from 10 to 30 seconds; the

higher temperature allows use of cooling water as coolant.

There are several advantages of using either acid catalyst. In using sulphuric

acid, the production of dimethylhexane, an undesirable product, is lower

than using hydrofluoric acid and thus, higher quality alkylates are produced.

Additionally, propane and n-butane are not produced using sulphuric acid as

the catalyst and thus, isobutane is not wasted in this reaction [18]. Therefore,

less isobutane is required as feed and costs to recover and recycle the isobutane

are lower. Most importantly, sulphuric acid is safer than hydrofluoric acid and

is attractive from a safety standpoint [19]. In using hydrofluoric acid, required

temperatures are higher (30 to 40◦C versus 5 to 10◦C) so less energy is needed

to cool down the reactors (cooling water instead of refrigeration). Hydrofluoric
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acid reactors are much smaller and have a lower residence time (compare 10 to

30 seconds versus 20 to 30 minutes [20]). As well, hydrofluoric acid has a lower

viscosity than sulphuric acid which allows easier dispersion and mechanical

stirring is not required (whereas sulphuric acid processes must use agitation)

[17].

Figure 2.11: Alkylation process - products from various unit operations in the plant
feed into this process. Sulphuric acid processes include the Exxon and Stratford
processes; hydrofluoric acid processes include the Phillip and UOP processes [1].

2.1.1.6 Hydrotreater

In order to further break down product streams from the CDU, these inter-

mediate products must be removed of impurities and other compounds that

may inhibit effective conversion in other units (e.g. catalyst poisoning in the

catalytic cracker or reformer). The hydrotreater has various objectives:

• removing impurities such as sulphur, nitrogen, aromatics, and metals for

various streams such as naphtha, vacuum gas oil, and hydrocracker feed

• saturation of olefins for product stability

• removal of aromatics in kerosene within cetane number specifications

Due to the importance of the hydrotreater in conditioning feed streams to
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other units, the hydrotreater is located before the reformer, hydrocracker, FCC,

and various product streams as shown in Figure 2.12 [1]. Hydrotreaters are

sometimes referred to by their specific function [3]:

• sulphur removal/hydrodesulphurization (HDS)

• nitrogen removal/hydrodenitrogenation (HDN)

• metal removal/hydrodemetallation (HDM)

• aromatic saturation/hydrodearomatization (HDA)

Figure 2.12: Various locations that the hydrotreater (HT) may be placed in a petroleum
refinery process. The HT removes impurities (as well as other objectives), and is
important in pre-processing streams before catalyst units [1].
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In the hydrotreating process, the feed is mixed with hydrogen and enters

the reactor at a high pressure of 300 to 1800 psig. The reactor contains fixed-

bed catalysts, which are commonly porous alumina embedded with cobalt-

molybdenum (Co-Mo), nickel-molybdenum (Ni-Mo), or nickel-tungsten (Ni-

W) [1]. The feed/hydrogen mixture passes through the catalyst beds, where an

exothermic reaction occurs and hydrogen sulphide (HDS), ammonia (HDN),

or other impurities are produced. As the reaction is exothermic, hydrogen-

rich quench gas streams are injected in the reactor in order to control the

reaction temperatures. The products are then separated and the hydrogen gas

is recycled back to the reactors [3].

Figure 2.13: Hydrotreater (HT) process and configuration [3].

The hydrotreater must operate under strict conditions such as pressure, temper-
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ature, catalyst loading, throughput, and hydrogen partial pressure to ensure

correct operation. While higher temperatures increase reaction rates, thermal

cracking and subsequently, coke formation will occur if temperatures are too

high. Additionally, hydrogen partial pressure must be higher than the hydro-

carbon partial pressure to ensure sufficient impurity removal and lower coke

formation [1].

2.1.1.7 Hydrocracker

The hydrocracker is a crucial component of a petroleum refinery, as it is de-

signed to take high molecular weight compounds and break them down into

smaller products. Products that the hydrocracker yields, such as kerosene,

diesel, and heavy naphtha, are sent directly to blending or for further process-

ing in units such as the catalytic reformer. There are several configurations

of hydrocrackers, mainly single-stage, once through, two-stage, and separate

hydrotreat hydrocracking.

Figure 2.14 shows the configuration of a single-stage hydrocracker with and

without a recycle (once through) [1]. In this configuration, the feed (often

vacuum gas oil (VGO) and atmospheric gas oil) may be mixed with recycle

oil, then is mixed with recycled and fresh hydrogen. The feed is hydrotreated

if necessary, and is fed into the hydrocracking reactor, where the operation is

similar to that of the hydrotreater — the mixture passes downward through

the catalyst bed and the conversion rate is usually between 40 and 70 percent

per volume [21]. The product stream is then sent to a fractionator where the

lighter ends are sent to blending or further processing and the bottoms are

sent to blends or units and/or recycled and mixed with fresh feed. The benefit

to using once through configuration (no recycle), is that the unconverted oil
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can be upgraded in another unit downstream such as the catalytic cracker; this

is especially important when the recycle stream does not benefit from further

hydrocracking and can occur in cases when the feed is heavily reliant on heavy

VGO and gas oils from coking units [21].

Figure 2.14: Single-stage hydrocracker (HC) process with an optional recycle (denoted
by the dotted line) [1].

Two-stage hydrocracking processes are different than one-stage where the

bottoms of the fractionator are first sent to a separator and the gas is recycled

back into the hydrocracker and the bottoms are sent to another hydrocracker

and separator (the lighter ends separated in the fractionator remain the same

and are sent elsewhere in the refinery). In the second stage separator, the gas

is recycled back into the second stage hydrocracker, and the bottoms are sent

back into the fractionator. Figure 2.15 shows the two-stage configuration; it

should be noted that the two-stage configuration is not common [21].
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Figure 2.15: Two-stage (reactor) hydrocracker (HC) system with a fractionation tower
[1].

Separate hydrotreat hydrocracking is also another uncommon configuration

where the feed is processed by a hydrotreater, then is cooled and fractionated

first. The bottoms of the fractionator is then sent to a hydrocracking unit.

There are several catalysts available for use in the hydrocracker, depending

on if cracking function (acid support) or hydrogenation function (metals) is

desired and can be used simultaneously or sequentially. Catalysts with a

high cracking function tend to produce lighter ends such as gasoline/naphtha,

while catalysts with a high hydrogenation function tend to produce heavier

products such as middle distillates [22]. Cracking function catalysts include

amorphous oxides (SiO2, Al2O3, Hal-Al2O3), crystalline zeolite (modified Y ze-

olite + Al2O3), or a mixture of zeolite and amorphous oxide (modified Y/SiO2-

Al2O3). Hydrogenation function catalysts include nobel metals (platinum,

palladium) or non-nobel metal sulphides (molybdenum, tungsten, cobalt,

nickel) [1].
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2.1.1.8 Catalytic Reformer

The catalytic reformer is one of the most valuable process units within a

petroleum refinery, as it transforms low-octane heavy naphtha from other units,

such as the CDU and hydrocracker, into high-octane products such as aromat-

ics and iso-paraffins (which are subsequently sent to gasoline blends). There

are three main configurations of the catalytic reformer: semi-regenerative

(SRR), cyclic, and continuous-catalyst regeneration (CCR). SRR is the most

common type of reformer used, while CCR is commonly used in modern

refineries [23].

Figure 2.16 illustrates the SRR process and operates by periodic catalyst regen-

eration due to inactivity from coke deposits and as a result, lower conversion;

catalyst cycles in SRR last from 6 to 12 months [3]. Several reforming units are

placed in series with furnaces between each reactor and is operated continu-

ously. The naphtha feed is mixed with a hydrogen-rich recycle stream and is

heated to a temperature of 477 to 517◦C before entering the first reactor which

operates between 20 to 30 atm [24]. In each reactor, endothermic reactions

occur such as:

• naphthene dehydrogenation and dehydrocyclization in the first reactor

(fast)

• paraffin isomerization (fast) and naphthene dehydroisomerization (slow)

in the second reactor

• dehydrocyclization and hydrocracking in the third reactor (slow)

Thus, heaters are placed in between the reactors with the most heat being

provided after the first reactor [1]. The product from the last reactor is then
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cooled and sent to a separator where the hydrogen-rich gas is recycled and the

reformate product is sent for further distillation or blending.

Figure 2.16: Process diagram of the catalytic reformer in a semi-regenerative (SRR)
configuration [3].

In cyclic reforming, extra reactor(s) are placed in the process where one reactor

can be taken out and be regenerated and operation can be switched over to

the spare reactor. In this process, the catalyst is spent in a short amount of

time (days up to a month) due to low operational pressure, low hydrogen

content, and wide boiling range feed. This process provides advantages over

SRR by using a lower operating pressure, lower variation in catalyst activity,

and does not need to be shutdown in order to regenerate the catalyst, but has

the disadvantages of operational complexity, constant alternation of operation

and regeneration pressure, and fast catalyst cycles due to the lower pressures

(whereas SRR units may run continuously between 6 to 24 months) [23].
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In CCR processes, instead of having to shutdown and regenerate the catalyst

periodically, a regeneration system is placed in-line with the process. The gen-

eral configuration of the system is the same as the aforementioned processes —

hydrotreated feed mixed with a hydrogen-rich stream which is then heated

and sent to the first reactor. The regenerative cycle works by taking the catalyst

from the last reactor, feeding it to the regeneration unit, and then burning

off coke deposits on the catalyst in the regenerator. The clean catalyst is then

recycled back to the first reactor. In turn, catalyst from the first reactor is sent

to the second reactor at a lower activity and the same applies to the second

and subsequent reactors. By the time the catalyst reaches the final reactor, it

is de-activated to the point where it must be regenerated. Figure 2.17 shows

a CCR configuration of reactors in series [25], but the process may also be

configured in a "top-wise" fashion where the reactors are stacked on top of one

another, and the catalyst trickles down. In this configuration, the effluent from

the reactors are sent to be heated before entering the next reactor [1].
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Figure 2.17: Continuous catalytic reformer (CCR) process. Catalyst activity decreases
from left to right (i.e. R-1 contains the most active catalyst, followed by R-2 and
R-3, then is regenerated after being spent in R-3). This configuration may also be
in a vertical/trickle-down configuration, where R-1 would be at the top and the
regenerator at the bottom [25].

2.1.1.9 Hydrogen Recovery & Production

Hydrogen is an extremely important component in a petroleum refinery and

is required in several unit operations such as the hydrotreater, hydrocracker,

and catalytic reformer. While fresh, high-purity hydrogen can be purchased

or produced on-site, it is more economical to recover hydrogen from offgas

streams and redistribute it throughout the refinery — however, this method

is limited. In the refinery, hydrogen can be produced or recovered. The

methods that produce hydrogen are steam-hydrocarbon reforming (natural
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gas reforming) and partial oxidation of heavy feedstocks, whereas hydrogen

recovery units (HRU) are used to recover hydrogen from offgases [26].

In the steam reforming process, there are older and modern procedures to

produce hydrogen. The older procedure uses a combination of synthesis gas,

high-temperature shift converters (HTSC), low-temperature shift converters

(LTSC), and stripping solutions to produce hydrogen at 95 to 98% purity. The

overall scheme is as follows [1]:

1. produce synthesis gas (mixture of H2 and CO) via steam reforming —

the feed to the steam reformer is natural gas (high methane content)

2. convert the CO to CO2 using high-temperature shift converter (HTSC)

and low-temperature shift converter (LTSC) — this is so the CO2 can be

stripped from the mixture

3. strip the CO2 from the H2/CO2 mixture using an amine solution or

potassium carbonate

4. convert the remaining CO and CO2 into CH4 and H2O using a methana-

tor

In the modern process, instead of a two-stage process to convert CO to CO2,

it is completed in a one-stage high temperature shift converter, and a pres-

sure swing adsorption (PSA) unit is used to strip the CO2 in place of the

amine/potassium carbonate solution. In this process, the final purity is nor-

mally 99.9% purity. Figure 2.18 illustrates the improved hydrogen production

process [1].

35



M.A.Sc Thesis - A. Nguyen McMaster University - Chemical Engineering

Figure 2.18: Process diagram of the improved hydrogen production process with one
shift converter unit (HTSC), steam-reforming unit, and pressure swing adsorption
(PSA) unit [1].

Steam reformer units can take various feed streams such as natural gas and re-

finery offgases [3][26], and/or lighter hydrocarbons (C3 to C7) [1]. Regardless,

the streams must be pre-treated by removing catalyst poisons (e.g. sulphur,

nitrogen, halogenated compounds, mercaptans) as the steam reformer uses a

nickel-alumina catalyst. The hydrogenation of organic sulphur and chloride

using a hydrotreater with a Co-Mo catalyst is often used to produce HCl and

H2S and then removed. The clean hydrocarbon stream is mixed with super-

heated steam and heated to 540 to 580◦C. Then the stream passes through a

furnace reactor with a series of tubes filled with nickel catalyst at a temperature

of 820 to 880◦C and 294 to 368 psig. The synthesis gas that leaves the reactor

consists of H2, CO, CO2, CH4, H2O, and excess steam [1].

The stream then enters the HTSC, where the purpose of the unit is to convert

the CO to CO2, which is then stripped downstream. The H2/CO mixture from

the stream reformer is fed into the HTSC, where the CO reacts with steam at
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300 to 560◦C with a CuO/FeO or Fe3O4/Cr2O3 catalyst in a fixed-bed reactor

to produce CO2. The reaction associated with the conversion is at equilibrium,

shown in equation (2.5), so high temperatures will convert less CO due to

equilibrium, but lower temperatures will also convert less CO due to lower

catalyst activity. The LTSC then converts the remainder of the CO into CO2

using a CuO/ZnO catalyst at a lower temperature of 230◦C. Modern hydrogen

removal processes utilize only the HTSC due to improvements in technology

and design [1].

CO + H2O −−⇀↽−− CO2 + H2 (2.5)

Finally, the PSA unit selectively adsorbs compounds that are less volatile and

highly polar (i.e. most compounds in the stream except for hydrogen) on

the internal surfaces of the adsorbent bed. This occurs at high pressures at

approximately 275 psig. The desorption (regneration) of the PSA unit occurs

at low pressures (2.8 to 5.6 psig) [26]. Thus, several PSA units are employed in

this step so that some units may operate while others are being regenerated.

This process results in a 99.9% purity hydrogen stream [1].

Heavy feedstocks such as vacuum residue and bitumen can be partially oxi-

dized to produce synthesis gas, which can then be separated. In this process,

the feed is partially burned with oxygen where thermal cracking occurs and

synthesis gas (CO and H2) is produced. These reactors operate between 1093

and 1538◦C and 1200 to 2000 psig. The synthesis gas is then cooled and sent

to a single-stage shift converter and the remainder of the process to strip the

hydrogen is employed [26].

Hydrogen-rich offgases from other unit operations in the refinery are consoli-

dated and sent to the HRU. Before being sent the HRU, the feed is conditioned
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by knocking out liquids and stripping any H2S from the stream. The stream is

then sent to a PSA unit for removal of CO2 and other impurities [26].

2.1.1.10 Product Blending

In petroleum refining, unit operation products are generally not ready to

be sold and must undergo blending with other products in order to meet

specifications for commercial use. Products that are produced in the refinery

depend on the configuration of the refinery (e.g. one refinery may produce

more diesel than another), but generally, the products generated in a refinery

are gasoline, kerosene, jet fuel, diesel, fuel, residual fuel oil, lubricants, asphalt,

petroleum coke, and liquefied petroleum gas (LPG). Some of these products

can come in various grades (e.g. different grades of gasoline based on octane

number). Depending on the final product, various specifications must be

met, such as, Reid vapour pressure (RVP), flash point, viscosity, pour point,

cloud point, aniline point, smoke point, research octane number (RON), and

motor octane number (MON). Some examples include RON, MON, RVP, and

volatility for gasoline; flash point and viscosity for kerosene; and diesel index,

flash point, pour point, and viscosity for gas oils [1].

There are several formulations for calculating properties in blending, both

linear and nonlinear. A common linear blending rule for properties in a

product tank is shown in equation (2.6) [27]:

PRp,k,t = ∑
i

pri,kvI
i,p,t ∀ p, k, t (2.6)
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with product specification bounds:

prmin
p,k ≤ PRp,k,t ≤ prmax

p,k (2.7)

where PRp,k,t is the value for the property k for product p in time period t, pri,k

is the property value for intermediate blend stream i, and vI
i,p,t is the volume

fraction of inlet stream i. prmin
p,k and prmax

p,k are the minimum and maximum

product specifications for PRp,k,t. Equation 2.6 stays linear if pri,k stays fixed

using correlations or average values from plant data [27].

However, equation (2.6) may be nonlinear if vI
i,p,t is linked to volumetric flow

rates with:

vI
i,p,tF

P
p,t = FI

i,p,t ∀ p, k, t (2.8)

where FI
i,p,t are the mass flow rates being sent to the blender at time t with

stream i for product p, and FP
p,t represents the outlet flow rate of the blender

of the blended product p at time t [28]. The sum of the inlet flow rates are

not necessarily equal to the outlet flow rate, due to the inventory in the blend

tanks during the period.

Mendez et al. [28] linearize equation (2.6) by multiplying by FP
p,t to yield:

PRp,k,tFP
p,t = ∑

i
pri,kvI

i,p,tF
P
p,t ∀ p, k, t (2.9)

then substituting using equation (2.8):

PRp,k,tFP
p,t = ∑

i
pri,kFI

i,p,t ∀ p, k, t (2.10)

and by multiplying the terms in product specification bounds in equation 2.7
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with FP
p,t:

prmin
p,k FP

p,t ≤ PRp,k,tFP
p,t ≤ prmax

p,k FP
p,t (2.11)

and finally substituting equation 2.10 in equation 2.11:

prmin
p,k FP

p,t ≤∑
i

pri,kFI
i,p,t ≤ prmax

p,k FP
p,t ∀ p, k, t (2.12)

From this final relationship, the nonlinear term vI
i,p,t is not required and the

relationship stays linear — prmin
p,k and prmax

p,k are constants, and pri,k stays fixed

using correlations or average values from plant data [27]. This is in the case if

vI
i,p,t is nonlinear due to equation 2.8.

Along with the blending of intermediate product streams to obtain final prod-

ucts, several additives are blended into the final products for additional pro-

tection against corrosion, shelf-life, freezing, and other desirable properties.

Common additives to gasoline include anti-oxidation, metal passivation (slow

oxidation from trace metals), corrosion inhibitors, anti-icing, IVD (intake valve

deposits) control, CCD (combustion chamber deposits) control, and anti-knock.

Similarly for diesel fuel, additives include anti-oxidation, cetane improvement,

dispersion, anti-icing, detergent, metal passivation, corrosion inhibitors, and

cold-flow improvement [3].

2.2 Single Period Refinery Formulation

Single period refinery models may be used for a variety of studies, including

modelling under uncertainty and incorporation of detailed models of partic-

ular unit operations. This is compared to a multiperiod problem, where the

overall objective is to optimize operation over a planning horizon. Although
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refinery planning and scheduling problems are generally multiperiod, there

are formulations within refinery optimization that are single period such as

stochastic optimization [2].

Pinto and Moro [29] developed a nonlinear single period planning model

framework that includes crude processing and product blending. The model

was developed in order to improve on current practices at the time that mainly

involved linear models formulated in software such as Refinery and Petro-

chemical Modeling System (RPMS) and Process Industry Modeling System

(PIMS). Furthermore, complex nonlinear models are often restricted to a

subsection of the plant and do not represent the whole refinery. Two real

world petroleum refineries were modelled using this framework and pro-

duced promising results from this application. However, the study is limited

due to the linear models used for some of the major unit operations such as

the fluidized catalytic cracker (FCC) [29].

Li et al. [30] developed a refinery planning model that uses nonlinear empirical

models for the crude distillation unit (CDU), FCC, and blending process in

order to improve on the common practice of linear process models. The model

considers crude characteristics, unit yields, qualities, and so on. The CDU is

modelled by determining the size of the swing cuts (which are the ranges for

the cut points) using the weight transfer ratio (WTR) of the CDU fractions

(calculated using an empirical procedure and ASTM boiling ranges) and then

the planning model optimizes these cut points. The FCC is modelled using a

regression model based on work by Gary et al. [4] [30].

Elkamel et al. [31] developed a detailed MINLP refinery optimization model

that integrates planning with CO2 emission reduction. The study includes

property blending of common qualities that are measured in refineries, and
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includes API gravity, sulfur, octane number, Reid vapour pressure, cetane

number, diesel index, and smoke point. Most of the properties utilize a blend-

ing index relation where the sum of the property index multiplied by the mass

or volume fraction for all streams equals the blending index [31]:

BIp =
s

∑
s=1

INp,sXs

where BIp is the blending index for the property p, INp,s is the index for

property p in stream s, and Xs is the mass or volume fraction (depending

on the property). Following the property calculation, the remainder of the

formulation contains unspecified relationships between unit yields, opera-

tional variables, and properties. However, a unique formulation of the study

includes fuel switching for the furnaces in the refinery, where a binary variable

is used to select the type of fuel used for the furnaces. As well, part of the

objective includes reduction of CO2 emissions, and the formulation includes

the quantitative value of CO2 emissions from the furnaces, as well as whether

or not to employ CO2 capture for a furnace and which type of capture sys-

tem. Due to the complexity of the inclusion of CO2 capture options and fuel

switching, the model remains as a single period model [31].

2.3 Multiperiod Planning & Applications

Multiperiod optimization is a tool widely used in many processes to provide

optimal states of operation over a specified time horizon. Multiperiod opti-

mization appears in problems, such as chemical and oil refineries that process

various types of crude and products, problems that have seasonal demand,

financial risk in investments, and scheduling and planning scenarios. These
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type of optimization formulations differ from traditional single-period opti-

mization methods in that the problem is optimized for multiple time periods,

each with its own characteristics and properties, while being optimal for the

problem as a whole. Additionally, multiperiod optimization takes into account

long-term dynamics of the system. There are two distinct classes of variables

which are optimized – design variables and state variables. Design variables

represent information that stays constant throughout the entire period (e.g.

unit operation dimensions), while state variables represent operating condi-

tions (e.g. flow rates, temperature, pressure) and will vary from each time

period.

By incorporating a planning horizon, various problems may be studied such

as shutting down and starting up a unit, scheduling of crude oils, uncertainty

over time, and incorporating detailed descriptions of unit operations (e.g.

catalyst activity). Benefits include a more detailed description of the refinery,

the ability to predict how a unit will behave, and can provide a closer rep-

resentation of the refinery operation. There have been several formulations

of multiperiod planning and scheduling optimization of oil refineries [32],

maintenance scheduling of refinery units [33], and optimization for risk man-

agement [27]. Some models are more rigorous than others in terms of unit

operation modelling.

To formulate a multiperiod problem, an additional temporal index is added

to all variables and most constraints, and in turn, generates a significantly

larger problem based on the number of periods and the size of the original

model. However, in order to exploit the properties of a multiperiod problem,

there must be constraints that link the periods together using ’pass-on’ or

’interconnection’ variables which link time periods together. These intercon-

nection variables can be considered as design variables (e.g. intermediate tank
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inventories) [34]. Multiperiod problems have a ’sparse’ structure that can be

exploited - i.e. rows of the constraint matrices will only contain a few elements

while the rest of the row contains zeros. In this structure, the rows and columns

correspond to constraints and variables, respectively. Another way to visualize

the multiperiod structure is by a block-type structure. Figure 2.19 by Neiro

and Pinto [32] illustrates this concept, where each period is contained within a

block and the rest of the matrix row contain zeros. This is repeated for each

time period, and the linking constraints (in this case, inventory constraints)

encompass multiple time periods and are shown at the bottom of the figure.

Figure 2.19: Block structure of the multiperiod problem constraints presented by Neiro
and Pinto. The constraints of the multiperiod problem resemble a sparse structure,
where a block of constraints pertain to one period and the rest of the row contain zeros.
The production balance constraints (i.e. inventory/interconnectivity constraints) are
segregated and gathered at the bottom of the structure to show their connectivity
between units [32].

There have been multiple contributions within the past few decades in multi-

period petroleum refinery planning. Neiro and Pinto [32] have formulated a

multiperiod optimization for petroleum refinery production using a relatively

rigorous model. The study employed a single period non-linear programming
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(NLP) formulation for planning proposed by Pinto et al. [29], which gener-

alized each unit operation with mixers before the unit, and splitters for the

output stream. The planning model describes the refinery using mass bal-

ances at the mixers and splitters; demand, operating and quality constraints;

relationships between unit feed and mixer feed properties; and relationships

between outlet flow and properties with inlet flow and properties (dependent

on the unit operation). The product flow rates were determined using mass

balances and yield expressions, which are based on standard values that are

found using average values from plant data. The majority of the physical

properties are calculated using correlations (mixing indexes), with the rest

being calculated using gains through correlations developed by Pinto et al.

[29]. The focus of the study aimed to formulate a multiperiod optimization

model using a NLP model, whereas the previous NLP model by Pinto et al. in-

corporated optimization over a single period. In the multiperiod formulation,

each consecutive time period is linked by inventory variables. Neiro and Pinto

[32] proposed three models: multiperiod production planning using inventory

levels and crude selection; multiperiod with uncertainty in fluctuations of feed

and product prices and demand, with inventory levels; and an extended model

which incorporates the two models and includes constraints on petroleum

availability based on brine separation times. The multiperiod solution spans

up to 5 time periods for the first model, and 20 time periods for the second

and third model, each period being 1 day each.

Zhao et al. [35] formulated a multiperiod planning model for an integrated

refinery production and utility system, and formulates the problem as a mixed-

integer NLP (MINLP). In the study, the production planning model that is

studied is shown in Figure 2.20 and is described using demand constraints,

material inventory balances (used to link periods), operation modes, and
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blending constraints, which includes mass balances and property constraints.

The property calculations include cetane number, API gravity, pour point,

sulfur content, and carbon content, and are simplified using quality indexes

for linearity. The objective of the study is to optimize the production plan-

ning of the refinery units, while also optimizing the operational planning of

the utility equipment. However, due to the non-convexity and potential of

non-convergence, the two problems are decomposed into MILP models and

simplified to provide an initial estimate to the full problem. The final blend

product properties are fixed to obtain an initial solution estimate for the pro-

duction MILP model. The solution of the production model is passed onto the

utility MILP model (utility demand and byproduct production). The solution

of these two problems is then passed back into the original integrated model

as an initial guess. The solution includes the following three scenarios, all with

a planning horizon of 8 time periods: changing market demand of 6 products

at each period, but within the production capacity based on maximum energy

generation; changing demand of 6 products, but allowing demand to exceed

production capacity (i.e. cannot fulfill the entire demand); and optimization of

penalties on environmental regulations on energy utilization and production

unit operation [35].
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Figure 2.20: Process diagram of the multiperiod integrated refinery production and
utility system MINLP model used in the study by Zhao et al. [35].

Other examples in multiperiod refinery planning include Zhang and Hua [36]

who incorporate a utility system into a petroleum refinery by splitting the

system into parts - first, the overall planning problem is solved and includes

crude selection, products, and unit interactions; second, the utility system and

process system are solved separately and reconciled to check for a feasible

solution. Leiras et al. [37] reformulated a linear multiperiod model that was

adapted from Allen [38] and studied the problem under uncertainty in costs,

product price and demand, and yields using robust optimization. However,

this was only on a small case study and not representative of a full real-world

refinery. Alattas et al. [9][39] have contributed several papers in nonlinear

multiperiod refineries with a nonlinear crude distillation unit (CDU) model.

The first paper involved developing a nonlinear fractionation index for the
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CDU for a single-period planning model. The second paper extends this work

into a MINLP over multiple time periods in order to model the sequencing,

changeovers, and processing of the crude oils.

2.4 Nonlinear Programming

In optimization theory, mathematical programming is used to find the optimal

solution of an objective function, either minimized or maximized, subject to

a set of constraints which can be inequalities or equalities. A mathematical

program can be defined generally as:

min
x

f (x) (2.13)

Subject to: gi(x) ≥ 0, i = 1, ..., m (2.14)

hj(x) = 0, j = 1, ..., p (2.15)

where the objective is to find a vector x that minimizes a function f (x) subject

to m inequality constraints gi(x), and p equality constraints hj(x). The problem

is then considered nonlinear if any equations in the problem are nonlinear in

x [40].

In both linear programming (LP) and nonlinear programming (NLP) problems,

there can be multiple solutions. However, they differ in that the solution to an

LP is a global solution, but in an NLP problem there can be multiple solutions

in the form of global or local optimums as shown in Figure 2.21. This poses as

problem, as most nonlinear solvers rely on gradients and thus, will find the

optimum nearest to its starting point [41]. An exception to this is in a convex

NLP, where the local optimum will be the global optimum for the problem.

Two popular methods that are widely used in academia to solve nonlinear

48



M.A.Sc Thesis - A. Nguyen McMaster University - Chemical Engineering

optimization problems are interior point algorithms and generalized reduced

gradient (GRG) methods.

Figure 2.21: Example of a nonlinear function and the two minima (local and global)
within the bounds of the function [41].

2.4.1 Interior Point Approaches to NLP

Interior point algorithms do not make a priori assumptions as to which con-

straints are active. They apply Newton-type iteration on a large-scale system

corresponding to a modified version of the first-order optimality conditions

(KKT conditions). Upon convergence, the active inequality constraints are

identified. There are two major types of interior point methods, which are the

primal Newton barrier method and the primal-dual barrier method, and in

both, the algorithm begins in the interior of the feasible region and proceeds
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through a path using Newton’s method.

2.4.1.1 Primal Newton Barrier Method

Starting from the NLP formulation from equations 2.13 to 2.15 with the ad-

dition of x ≥ 0 for non-negativity, slacks are introduced to transform the

inequalities into equalities.

min
x

f (x) (2.16)

s.t. h(x) = 0 (2.17)

x ≥ 0 (2.18)

From this new NLP formulation (with equalities only), the logarithmic barrier

function B(x, µ) is associated with the original objective function [42]. The new

formulation is as follows, with the non-negativity constraint accounted for in

the the barrier function argument:

min
x

B(x, µ) = f (x)− µ
n

∑
i=1

ln(xi) (2.19)

s.t. h(x) = 0 (2.20)

Note that as x moves toward the boundary, the barrier function becomes larger

and due to the minimization of the problem, the solution should tend away

from the boundary and remain within the interior (hence the name of the

method). This logarithmic effect can be controlled by µ [43]. The Lagrange

function is then shown as the following:

Lµ(x, λ) = f (x)− µ
n

∑
i=1

ln(xi)− h(x)Tλ (2.21)
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Thus, the necessary first-order optimality conditions (KKT) (stationary) for the

NLP formulation (i.e. Lagrange parameter λµ and x that satisfies the following)

are as follows [40]:

∇xLµ(x, λ) = 0 (2.22)

∇λLµ(x, λ) = 0 (2.23)

which can also be equivalently written as:

∇ f (x)− µX−1e−∇h(x)Tλ = 0 (2.24)

−h(x) = 0 (2.25)

where µ is the barrier parameter, X is a diagonal matrix of the decision vari-

ables, e is a column of ones, and λ and z are the Lagrangean multipliers for

equations 2.17 and 2.18, respectively.

The solution to the barrier problem can be solved using a Newton step direction

−Jµdk = 0 = ∇L, where:

Jµ =

 d
dx∇xL d

dλ∇xL
d

dx∇λL d
dλ∇λL

 =

∇2
x f (x) + µX−2 −∇2

xh(x)λ −∇xh(x)

−∇xh(x) 0

(2.26)

dk =

∆xk

∆λk

(2.27)

∆L =

∇ f (x)− µ ∑n
i=1

1
xi
−∇h(x)Tλ

−h(x)

(2.28)
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Putting it all together:

∇2
xh(x)λ−∇2

x f (x)− µX−2 ∇xh(x)

∇xh(x) 0


∆xk

∆λk

 =

∇ f (x)− µ ∑n
i=1

1
xi
−∇h(x)Tλ

−h(x)


(2.29)

Once the step direction is solved, a Newton step is taken and the barrier

parameter µ is reduced in the next iteration until convergence [44]. The

following algorithm describes the primal Newton barrier method [44]:

Algorithm 1 Primal Newton Barrier Method

Choose x0 ∈ F 0 and µ0 > 0

k = 0

while ||xk − xk−1|| ≥ ε or stop criterion not satisfied do

Compute constrained Newton direction dk using equation 2.29

xk+1 = xk + α∆xk

λk+1 = λk + α∆λk

Choose µk+1 ∈ (0, µk)

For short-step, µk+1 = µk

/(
1 + 1

8
√

n

)
k← k + 1

end while

2.4.1.2 Primal-Dual Barrier Method

The primal-dual barrier method is the underlying algorithm used by modern

large-scale solvers, such as IPOPT, and is a generalized version of the primal

Newton barrier method as described previously. In the Primal-Dual method,

the Newton step updates both the primal and dual variables.

Starting with equations 2.16 to 2.18 with z as slack variables for the inequalities
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constraints, the primal-dual KKT optimality conditions are as follows [42]:

Fµ(xµ, λµ, zµ) =


∇ f (x) +∇h(x)λ− µX−1e

h(x)

xizi ∀i = 1, 2, ..., n

 = 0 (2.30)

The substitution Ze = µX−1e can be used [45], where Z is a diagonal matrix of

the Lagrange multipliers for the non-negativity constraint and thus, the KKT

conditions can be expressed as [44]:

Fµ(xµ, λµ, zµ) =


∇ f (x) +∇h(x)λ− Ze

h(x)

XZe− µe

 = 0 (2.31)

In order to solve this system, first, a search direction for (xµ, λµ, zµ) must be

found by solving Jµ(x, λ, z)d = −Fµ(x, λ, z), where Jµ is the Jacobian and

d = (∆x, ∆λ, ∆z):


H(x) ∇h(x)T −I

∇h(x) 0 0

Z 0 X




∆x

∆λ

∆z

 = −


∇ f (x) +∇h(x)Tλ− z

h(x)

XZe− µe

 (2.32)

where the Hessian H(x) = ∇2
xxLµ(x, λ, z) whereLµ(x, λ, z) = f (x)− h(x)Tλ−

z [42]. The solution yields d = (∆x, ∆λ, ∆z) and can be used as a step change

for the next iteration of (xµ, λµ, zµ) [42][45][46]:

(xk+1, λk+1, zk+1) = (xk, λk, zk) + α(∆x, ∆λ, ∆z) (2.33)

In order to calculate the step size α, there are several strategies. One strategy

53



M.A.Sc Thesis - A. Nguyen McMaster University - Chemical Engineering

outlined by Wright and Nocedal [47] is shown below:

αmax,x = min
{

1,− xk,i

∆xk,i
|∆xk,i < 0

}
(2.34)

αmax,z = min
{

1,− zk,i

∆zk,i
|∆zk,i < 0

}
(2.35)

αk,x = ηkαmax,x

αk,z = ηkαmax,z

where ηk ∈ [0.9, 1]. Additionally, the fraction to the boundary rule may be

used, where (αk,x, αk,z) < (αk,x, αk,z), which leads to a guaranteed decrease in

primal and dual infeasibilities, as shown by Curtis and Nocedal [48]. Thus,

the primal-dual algorithm is as follows [44]:

Algorithm 2 Primal-Dual Barrier Method

Choose (x0, λ0, z0) that (x0, z0) > 0

k = 0 and µ0 = (x0)Ts0/n

while Termination criteria not met do

µk = ρµk−1

Compute the primal-dual Newton direction (∆x, ∆λ, ∆z) using equa-

tion 2.32

Calculate step-size αk using equations 2.34 and 2.35

xk = xk−1 + αk,x∆x

(λk, zk) = (λk−1, zk−1) + αk,z(∆λ, ∆z)

µk+1 = (xk+1)Tsk+1/n

k← k + 1

end while
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2.4.1.3 Interior Point Optimization (IPOPT)

Coined IPOPT, a full space interior point solver using the primal-dual barrier

method was developed by Wachter and Biegler in 2006, and can solve large-

scale NLPs efficiently [42]. IPOPT employs a logarithmic barrier method to

the equality constraints in the nonlinear model and iterates through solving

the barrier problem with changing barrier parameter (µ), as outlined in the

previous section. However, Wachter and Biegler modify the algorithm in order

to improve efficiency and avoid potential pit-falls. Some of these modifications

include a filter line-search method, feasibility restoration phase, second-order

corrections, and inertia correction.

The termination criteria for the barrier problem are as follows:

E0(x∗, λ∗, z∗) ≤ εtol (2.36)

Eµ(x, λ, z) = max
{
‖∇ f (x) +∇h(x)λ− z‖∞

sd
,

‖h(x)‖∞ ,
‖XZe− µe‖∞

sc

} (2.37)

where equation 2.36 is the termination when µ = 0 in equation 2.37, and

measures the original problem optimality error [42]. εtol > 0 is user-defined,

and sd, sc ≥ 1 are scaling factors for λ and z. (sd, sc) may become large when,

for example, the gradients of the active constraints are close to being linearly

dependent and thus are calculated using:

sd = max
{

smax,
‖λ‖1 + ‖z‖1

m + n

}
/smax (2.38)

sd = max
{

smax,
‖z‖1

n

}
/smax (2.39)
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where n and m are the number of variables and equality constraints, respec-

tively, and smax ≥ 1 and is user-defined.

While the aforementioned termination criteria is for µ = 0, Wachter and

Biegler [42] utilize an approach proposed by Byrd et al. [49] to achieve fast

convergence for other values of µ. In this approach, it is proven that superlinear

convergence occurs under standard second-order sufficient conditions and

thus, an ’outer-loop’ is used to find an approximate solution to the barrier

problem. The tolerance for this approximation, for a given µj is:

Eµj(x∗j+1, λ∗j+1, z∗j+1) ≤ κεµj (2.40)

where κε > 0, and j is the iteration for the ’outer-loop’. Thus, the barrier

parameter for the next iteration µj+1 is calculated:

µj+1 = max
{

εtol
10

, min
{

κµµj, µ
θµ

j

}}
(2.41)

where κε ∈ (0, 1) and θµ ∈ (1, 2).

IPOPT then solves the barrier problem as per equation 2.32 with all elements

subscripted with iteration k, representing the ’inner-loop’ with the exception

of µ which is subscripted with iteration j for the ’outer-loop’. However, a slight

modification is applied in order to solve an easier, symmetric linear system

where the last block row is eliminated:H(xk) + ∑k ∇h(xk)

∇h(xk)
T 0


∆xk

∆λk

 = −

∇Bµj(xk) +∇h(xk)λk

h(xk)

 (2.42)

where ∑k = X−1
k Zk and then ∆zk = µjX−1

k e− zk −∑k ∆xk. However, in order

to ensure certain descent properties and prevent non-existent solutions due to
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singularity, the expression 2.42 is further modified:

H(xk) + ∑k +δw I ∇h(xk)

∇h(xk)
T δc I


∆xk

∆λk

 = −

∇Bµj(xk) +∇h(xk)λk

h(xk)

 (2.43)

where δw, δc ≥ 0 and the selection of these parameters (inertia correction) are

described in Wachter and Biegler [42].

IPOPT then follows equation 2.33 in order to make the step change. IPOPT

will take a different approach in selecting α than described in the previous

section, and uses the fraction-to-the-boundary rule:

αmax
k = max

{
α ∈ (0, 1] : xk + α∆xk ≥ (1− τj)xk

}
(2.44)

αz
k = max

{
α ∈ (0, 1] : zk + α∆zk ≥ (1− τj)zk

}
(2.45)

where τj = max
{

τmin, 1− µj
}

, τmin ∈ (0, 1).

Furthermore, Wachter and Biegler prove that using a backtracking line-search

for step size αk ∈
(
0, αmax

k
]

using a decreasing sequence of trial step sizes αk,l =

2−lαmax
k , l = 0, 1, 2, ... ensures global convergence under certain assumptions.

In this procedure, the barrier problem is solved as a bi-objective problem -

minimizing the objective function, and minimizing the constraint violation.

A trial step point xk(αk,l) = xkαk,l∆xk is taken and checked if the barrier

objective function is sufficiently improved. The method also uses a filter, where

prohibited combinations of the constraint violations and objective function

values for a successful trial step point are contained in the filter. The filter then

rejects the trial point if the trial point exists in the filter. The purpose of the

overall method is to ensure that the algorithm does not cycle between two

points that decrease the constraint violation and barrier objective function [50].
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Another fail-safe that is necessary is the failure to find a new trial step size

where αk,l ≤ αmin
k . In this case, the algorithm switches to a feasibility restoration

phase. In this phase, the algorithm attempts to find a new point xk+1 > 0 that

is acceptable to the filter and holds for the following condition:

θ(xk(αk,l)) ≤ (1− γθ)θ(xk) (2.46)

ϕµj(xk(αk,l)) ≤ ϕµj(xk)− γϕθ(xk) (2.47)

where fixed constants γθ and γϕ ∈ (0, 1) are user-defined, θ is the constraint

violation, and ϕ is the barrier objective function value. This is accomplished

by reducing the constraint violation iteratively. The restoration phase will

fail if the problem is infeasible, and in which case, should converge to a local

minimizer or feasible point. [43] and [42] describe the restoration phase in

further detail, as well as additional modifications to the primal-dual barrier

method that characterize the IPOPT algorithm.

2.4.2 Generalized Reduced Gradient Approaches to

NLP

The Generalized Reduced Gradient (GRG) method is an active set strategy,

where the active inequality constraints are treated as equality constraints (as

the constraint is active at its bounds), resulting in a reduced search space.

However, the true active set is unknown prior to convergence, thus the postu-

lated active set is updated as iterations progress, based on current information.

Furthermore, the GRG method is an non-linear application of the Reduced

Gradient method (used for linear constraints).

The overall idea of the GRG method is to take the nonlinear equality con-
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straints and replace them by their linear Taylor approximation equivalent,

then to apply the reduced gradient algorithm in the transformed problem. The

following derivation is described in notes by Dr. Klerk at the University of

Waterloo [51]. First, starting from the general NLP formulation:

min
x

f (x)

Subject to: hj(x) = 0, j = 1, ..., m

x ≥ 0

the Jacobian of the equality constraints Jk is calculated for xk at iteration k and

then separated into basic and non-basic variables, Jk(xb), Jk(xn). From there,

the reduced gradient search direction for the linearized constraints is:

h(xk) + Jk(x− xk) = 0

where all values of h(xk) are the right hand side values of the constraints (i.e. 0).

Then, when splitting the variables into basic and non-basic variables, we can

rearrange the basic variables in order to eliminate them from the linearization

of the NLP problem:

Jk(xb)xb + Jk(xn)xn = Jk(xk)xk

letJk(xk)xk = c ∴

xb(xn) =
[

Jk(xb)
]−1c−

([
Jk(xb)

]−1 Jk(xn)
)

xn

The linearized problem, in terms of the non-basic variables, becomes:

min
xn

F(xn) = f (xb, xn) = f (
[

Jk(xb)
]−1c−

([
Jk(xb)

]−1 Jk(xn)
)

xn, xn) (2.48)

Subject to: xb ≥ 0→
[

Jk(xb)
]−1c−

([
Jk(xb)

]−1 Jk(xn)
)

xn ≥ 0 (2.49)
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xn ≥ 0 (2.50)

The reduced gradient can then be written as:

∇F(xn) = −∇b f (x)
[

Jk(xb)
]−1 Jk(xn) +∇n f (x) (2.51)

The following steps are common to that for the linear case. The non-basic

variables are further split into superbasic variables xs1 and xs2, where xs1 are

between their bounds, and xs2 are at a bound. Then, the reduced gradient

with respect to xs2 is used to determine if any of the superbasic variables at the

bound, xs2, should be released to join xs1. The reduced gradient with respect

to xs1 is used to form the search direction.

The search direction can be found either with the conjugate gradient methods

or variable metric methods [52] [53] [54]. Conjugate gradient methods include

algorithms by Abadie [55] or Fletcher and Reeves [56] and have the advantage

in large problems as it only requires a few vectors and no matrices [57]. On

the other hand, variable metric methods such as the Goldfarb algorithm [58]

or by Davidon [59] are better equipped to handle the sparse properties of the

Hessian [57].

An adaptation of the Goldfarb algorithm to find the search direction is pre-

sented by Lasdon et al. using the following:

di = −Hi∇F(xi) (2.52)

where di is the search direction,∇F(xi) is the gradient of the objective function,

and Hi is a symmetric positive semi-definite matrix that projects any vector

onto the bounds - in other words, for any vector v, Hv = 0 in the ith position
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for xi that is at a bound. Hi is decided by an algorithm described by Lasdon et

al. [52].

Once the search direction is computed, a one-dimensional search is started in

order to solve the following optimization problem [60][52]:

min
α>0

F(xnb + αd)

where α is iterated using positive values to find the best solution. At each

iteration of α, F(xnb + αd) is evaluated and is equivalent to:

f (xb(xnb + αd), xnb + αd)

The basic variables xb must satisfy the equality constraints:

h(xb, xnb + αd) = 0

where xb is to be found. However, if any of the basic variables appear in a

nonlinear constraint, then it must be solved iteratively - a variant of Newton’s

method is often used. In this case of nonlinear constraints, the one-dimensional

search may terminate through one of the following ways, defined by Lasdon

et al. [52]. The first is failure of convergence of Newton’s method; bound

violation of a converged Newton Step (basic variables may violate bounds);

or the search can continue until a worse solution is found. The algorithm will

terminate if a value of α cannot be found.

In summary, the reduced gradient algorithm is as follows:
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Algorithm 3 Generalized Reduced Gradient Method

Select a feasible solution x0

for k = 0, 1, 2, ... do

Compute Jacobian of the equality constraints Jk(xk) = ∂h(xk)/∂xk

Separate variables into basic (b) and non-basic (n) variables

Ensure Jk(xb) = ∂h(xb)/∂xk
b is nonsingular

Calculate Kuhn-Tucker multiplier vector uT = ∇b f (x)T[Jk(xb)
]−1

Compute reduced gradient as per equation 2.51

Check for tolerance (satisfies KKT conditions or other condition)

Separate the non-basic variables into superbasic variables xs1 between

their bounds and xs2 at their bounds

Calculate the reduced gradient WRT to xs2 to determine if any superba-

sics at the bound should join xs1

Calculate the reduced gradient WRT to xs1 to form the search direction

Calculate the search direction d

Solve the one-dimensional optimization subproblem along the search

direction d with iterations of α

Save the solution if it improves on the current solution

end for

2.4.2.1 CONOPT

CONOPT is an optimization solver based on the GRG algorithm, and is de-

signed to solve large scale problems including sparse problems. While the

GRG algorithm helps with reliability and speed for solving highly nonlinear

models, CONOPT is well suited for nonlinear problems where feasibility may

be difficult to achieve [61].
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When calculating the constraint Jacobian, sparse-matrix algorithms taken from

linear programming techniques have been used and modified — when select-

ing the set of basic variables in the Jacobian and factorizing this sub-matrix,

sparse LU factorization is used on the Jacobian, similar to work described by

Suhl and Suhl [62]. Furthermore, CONOPT was designed on the assumption

of a sparse problem in mind, and uses the Jacobian to identify the sparsity of

the problem. Subsequently, this assumption allows CONOPT to deal with the

sparse structure encountered in dynamic and multiperiod models [63].

CONOPT is well suited for models with relatively few degrees of freedom as it

contains a fast method. The phase-0 and phase-1 algorithm outlined by Drud

[63][64] can find a first feasible solution after a few iterations if a good initial

starting point is given as only a few basis changes would be required. For

problems with a large number of variables compared to constraints (i.e. a large

number of degrees of freedom), CONOPT is able to use second derivatives to

improve solution times over MINOS and SNOPT. IPOPT is also able to use

second derivatives but both solvers calculate this information differently [65].

In addition to the base GRG algorithm, CONOPT contains several extensions

such as a preprocessing step (reduction of model space), feasibility restoration,

dynamic tolerance selection of the Newton method, bound handling, and

finding a first feasible solution. As well, CONOPT assumes nonlinearity and

applies to various parts of the algorithm, such as using the nonlinearities

instead of bounds to search for the optimal step length. These extensions are

described in detail in the CONOPT literature of Drud [63].
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2.5 AMPL Description

The optimization software that was chosen for the project is AMPL (A Math-

ematical Programming Language). AMPL is an optimization modelling lan-

guage used to represent problems at a high-level and is written similar to

the mathematical representation of the problem (using variables, parameters,

sets, and constraints) [66]. The structure of the language is similar to that of

other high-level programming languages, where equations and sets can be

entered directly. By working in the AMPL environment, the model becomes

more flexible as it is coded in general terms and thus, easier to add or remove

unit operations or change plant configuration. It becomes much easier to

implement case studies, as it involves only changing a few constraints or

parameter values. Furthermore, AMPL has the built-in ability to read and

write data tables from Microsoft Excel workbooks which is beneficial to the

TOTAL model, as many of the model parameters are stored in spreadsheet

applications. As well, AMPL can write to a spreadsheet file and thus, the

results can be displayed in a format that the user desires [67].

In the AMPL environment, there are many available solvers for use. In particu-

lar, two highly regarded nonlinear solvers, CONOPT and IPOPT, are available

for use in the AMPL environment. Along with the effectiveness of these

solvers, AMPL itself includes an effective preprocessing phase which reduces

and simplifies the optimization problem before passing onto the solver. With

the combination of the solvers and preprocessing, AMPL is able to solve com-

parable sized Excel problems significantly faster. With the ability to solve

problems faster, there is an opportunity to solve larger problems. The solver

options can also be changed, such as warm start capabilities for IPOPT, con-

vergence tolerance limits, and solve phases.
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Another benefit to the AMPL environment is the ability to implement so-

lutions and solution strategies. Within the structure of the language there

is the capability to use loops, and thus, decomposition strategies such as

Lagrangean Decomposition may be used, where two problems are iterated

back and forth. Additionally, there is the capability of running consecutive

optimization problems, where a parameter may be varied.

2.6 Lagrangean Decomposition

Lagrangean decomposition is a special case of Lagrangean relaxation, where

a problem may have several sets of constraints such that a relaxed problem

containing a subset of these constraints is easier to solve than the full problem.

Thus, the overall problem can be broken down into subproblems and solved

iteratively. The main driver of the method is to make copies of the variables

that are common between each constraint set (i.e. variables that appear in

multiple constraints) and equality constraints are added to equate the original

variables to its copies. These equality constraints are then dualized and the

overall model is decomposed into subproblems for each constraint set and

solved individually [68] [69]. Lagrangean decomposition is suitable for mixed-

integer problems, as well as nonlinear problems that have linking constraints,

such as inventory levels.

An example is presented by van den Heever et al. [69] to illustrate the trans-

formation of a problem using Lagrangean decomposition. A mixed-integer

optimization problem is shown as follows, with y1 and y2 as binary variables:

max Z = cTx + dT(y1 + y2)

s.t. A1x + B1y1 ≤ b1
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A2x + B2y2 ≤ b2

h1(x) ≤ 0

h2(x) ≤ 0

x ≥ 0, y1, y2 ∈ {0, 1}

From this problem, x is the common variable between all constraints. In order

to apply Lagrangean decomposition, x is duplicated as variable z:

max Z = cTx + dT(y1 + y2)

s.t. A1x + B1y1 ≤ b1

A2z + B2y2 ≤ b2

h1(x) ≤ 0

h2(z) ≤ 0

x = z

x, z ≥ 0, y1, y2 ∈ {0, 1}

The equality constraint x = z is then dualized in order to relax the problem

and to separate the problem into two subproblems:

max ZLD = cTx + dT(y1 + y2) + λT(z− x)

s.t. A1x + B1y1 ≤ b1

A2z + B2y2 ≤ b2

h1(x) ≤ 0

h2(z) ≤ 0

x, z ≥ 0, y1, y2 ∈ {0, 1}
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Finally, the problem is decomposed into two subproblems (P1 and P2):

(P1): max ZP1 = cTx + dT(y1)− λTx

s.t. A1x + B1y1 ≤ b1

h1(x) ≤ 0

x ≥ 0, y1 ∈ {0, 1}

(P2): max ZP2 = dT(y2) + λTz

s.t. A2z + B2y2 ≤ b2

h2(z) ≤ 0

z ≥ 0, y2 ∈ {0, 1}

Since the problem is now relaxed, assuming convex constraints, the objective

function of P1 + P2 should be an upper bound to the original problem [70]. In

theory, solving the following minimization problem (where Z is the objective

function) should produce the tightest upper bound:

min
λ

ZP1 + ZP2 (2.53)

However, solving 2.53 can be difficult and time-consuming, and although

there are algorithms that can solve this problem [71], it is not available for

use. Heuristics are used instead to solve 2.53 and to solve the overall problem.

Fisher suggests using an iterative subgradient method to find λ as it is proven

to work well and is easy to implement [72]:

λk+1 = λk + tk(zk − xk) (2.54)

where tk is a scalar step size and zk and xk are the solutions to the Lagrangean
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problem at λk. tk ideally should converge to zero and can be calculated using

the following from Fisher [73]:

tk =
αk
([

ZP1(λk) + ZP2(λk)
]
− Z∗

)∥∥zk − xk
∥∥2 (2.55)

where (ZP1(λk) + ZP2(λk)) are the combined objective values for P1 and

P2 for a λk, Z∗ is the best current objective value for the overall problem,

and αk ∈ {0, 2} which is halved each time (ZP1(λk) + ZP2(λk)) does not

improve within a set number of iterations. Held et al. [74] have shown

the theoretical convergence properties of the subgradient method, which is

support for utilizing the relationship for the step update. λ can be initialized at

a value of 0, as described by Escobar et al. [75]. Figure 2.22 shows the general

algorithm for using the Lagrangean decomposition method, adapted from [69]

[76] [77] [78].
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Figure 2.22: Lagrangean decomposition scheme adapted from [69] [76] [77] [78].

Several applications of Lagrangean decomposition are published in mixed

integer, multiperiod, and/or stochastic optimization problems. In the case

of mixed integer programming problems, one example includes a study by

Karuppiah and Grossmann [79] who study the mixed integer nonlinear op-

timization of a integrated water network under uncertainty. In this study,
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the objective is to minimize annual capital costs and operating costs that are

incurred during each scenario in an integrated water network. The network

includes process units (e.g. reactors and washers), treatment units (e.g. mem-

branes), mixers, and splitters, which all operate under uncertain operating

conditions (contaminant loads and removal). A spatial approach is taken (i.e.

where the subproblems are each uncertainty scenario) where the constraints

that link each scenario with the design variables state that the pipe flow rate

in each scenario must be lower than the maximum allowable flow rate. Tied

to the flow rate are binary variables that are linked to the bounds of the flow

rate, where the value of the binary variable is 0 if there is no flow through

the pipes. Thus, these binary variables are also duplicated and dualized. The

Lagrangean decomposition was combined with a branch and cut algorithm

and convex relaxations, and resulted in a reduction of more than an order of

magnitude in solution time [79].

In the study of multiperiod problems, Neiro and Pinto [77] have proposed

two formulations of the Lagrangean decomposition applied to a multiperiod

petroleum refinery planning NLP under uncertainty. In this study, a real-

world production planning model from Petrobras is considered, where the

model incorporates the selection and processing of petroleum crude oils, unit

operation, and the inventory management and revenue from final products

over a planning horizon of 10 periods. The uncertainty in this problem stems

from the probability of 2 possible crude slates - the base case considers a 100%

probability of crude slate 1, whereas the second case study provides 40% and

60% as the probability of crude slate 1 and 2, respectively, and the third case

study swaps the probability to 60% and 40% to slates 1 and 2, respectively.

Thus, in this problem there are two types of linking constraints which give

rise to two types of decomposition - spatial and temporal decomposition. The
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temporal linking constraints (and subsequently, the temporal decomposition

problem) correspond to the product inventory constraint:

Volu,t,c = Volu,t−1,c + QFu,t,c − Demu,t,c

where u, t, and c are the unit, time period, and scenario respectively; Vol, QF,

and Dem are the inventory volume, inlet flow rate, and demand (outlet) for the

tank, respectively. The spatial linking constraint binds the petroleum supply

tanks:

yu,t,cQSL
u ≤ QSu,s,t,c ≤ yu,t,cQSU

u

where s is the stream; y is the binary variable that corresponds to the selected

crude type, and QS is the outlet flow rate of the crude tanks. From these

two types of linking constraints, there are two Lagrangean decomposition

strategies: dualizing the inventory variables (temporal) or dualizing the binary

variables (spatial). In the temporal case, the inventory tank inventories are

the connection between time periods and are severed to create independent

problems per time period. In the spatial case, the scenarios correspond to

changing flow rate bounds in each scenario using the binary variable y. Thus,

by severing y, each scenario becomes its own independent subproblem. The

results show that both strategies exhibit lower solution times by an order of

magnitude, and is exaggerated when the number of incorporated scenarios

increases (e.g. there is a large improvement for 3 or 5 scenarios versus only

1 scenario). Between the two strategies, the dualization of the inventory

constraints (temporal decomposition) consistently shows lower solution times

[77].

Another study in multiperiod optimization using Lagrangean decomposition

is published by Jackson and Grossmann [76]. In this study, Lagrangean de-
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composition is applied to a multiperiod nonlinear production planning and

distribution model. In this model, several production plants located in dif-

ferent areas produce products that are distributed to various global markets,

where each plant produces various products. From this problem, there are two

methods of Lagrangean decomposition that are applied - spatial and temporal

decomposition. In the spatial case, ties are severed between the product sites

(plants) and markets, as shown in figure 2.23.

Figure 2.23: Spatial decomposition of the multisite multiproduct production planning
model by Jackson and Grossmann. In the spatial case, the interconnection variables
that link the sites to the markets (flow rates that connect sites and markets) are severed
[76].

For the spatial case, the flows of product i ∈ PR from the sites s ∈ SITES to

market m ∈ MAR in time period t ∈ T are severed. These flows are separated

into a flow from the site, and a flow to the market. Thus, the problem is

separated into two subproblems - one that only concerns itself with production

from the sites s ∈ SITES, and the other that concerns itself with the markets

m ∈ MAR.

In the temporal case, the ties between time periods are severed instead of the

markets/sites, and are illustrated in figure 2.24.
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Figure 2.24: Temporal decomposition of the multisite multiproduct production plan-
ning model by Jackson and Grossmann. In the temporal case, the interconnection
variables that link the time periods (inventories between periods) are severed [76].

For the temporal case, the inventories are disconnected between time periods

t and t− 1, and the problem is formulated similarly to the study by Neiro and

Pinto [77].

The study found that the temporal decomposition method was more robust

and effective than the spatial decomposition - i.e. the converged solution

was closer than in the spatial case. Depending on the size and type of the

problem, either method was faster than the other. In the first example of a
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linear network, the temporal formulation was faster and provided a closer

solution. However, both solutions were slower than the simultaneous solution.

In the second example of a nonlinear industrial network, the spatial formula-

tion was faster for a problem with 3 time periods but temporal decomposition

was faster for the 6 and 12 time period problems and all temporal solutions

were closer to the true optimum than the spatial solutions. In the third example

of the large nonlinear industrial network, spatial decomposition was faster for

all problem sizes, but the temporal solution was significantly closer to the solu-

tion than the spatial case. For both examples two and three, the decomposition

methods were significantly faster than the simultaneous solution.

It is also noted that for all examples, there are difficulties in finding feasible

solutions in the spatial case and thus, some constraints must be relaxed. In the

temporal solution, feasible solutions were found without relaxation.
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3.1 Model Building Process and Procedure

The petroleum refinery optimization model was developed in stages. The first

stage of development involved formulation and implementation of the single

period refinery optimization model, which is also divided in sub-stages. Once

the single period optimization was successful and various verification steps

were taken to ensure correct model behaviour, the multiperiod optimization

was formulated and implemented.

When developing the single period optimization model, the TOTAL refinery

optimization model was translated into mathematical form, including indices,

sets, mass and yield equations, property relationships, and constraints. Once

this step was completed, a process flowsheet was created in order to visualize

the interconnectivity of the unit operations, as well as track all blending

operations and pathways of intermediate products. The model was then

programmed into sub-stages.

The first sub-stage involved setting up the model parameter tables that are

internally generated by TOTAL through various simulations of unit operations.

AMPL features connectivity between its interface and spreadsheet applications

in order to link parameter tables.

The next step involves programming the refinery in sections. First, the mass

balance and yield relationships are programmed and includes all unit opera-

tions, crude inputs to the plant, intermediate pools, and split points, blenders,

and final products. Within this first step, compositions and densities are im-

plemented, as some product streams require the molecular composition to

calculate the yield, and some streams require conversion between volume and

mass. Next, the unit operating conditions and critical properties are calcu-
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lated. Some of the operating conditions include reaction temperatures, and

catalyst properties. Since some of the operating conditions require properties

such as sulfur, octane number, and Reid vapour pressure, these properties are

implemented. Next, the remainder of the properties are calculated such as

aromatic content, benzene, flash point, and cloud point. Then, the blending

relationships are implemented into the model and include blending properties.

Finally, the model specific constraints such as final product specifications,

reaction temperatures, etc. are implemented.

Once the single period model is completed and verified, the multiperiod model

is developed. The progression of creating the multiperiod model is illustrated

in Figure 3.1. First, the single period model is used as the starting point, then

is duplicated to create the basis of the multiperiod problem. The periods are

then linked together using linking variables and constraints (in this case, tanks

are incorporated to link the periods together) and the crude slate and imports

are partitioned appropriately between the periods.
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Figure 3.1: Development model for the petroleum refinery model. A single period
model is used as a initial point, and is then partitioned into multiple periods. In this
first iteration of the multiperiod model, all tanks are fixed with zero flow through,
and the crude slate and imports are divided equally across all periods. From this
point, the model is solved and the solution to this problem is the initial guess for the
nominal operation problem. In the nominal operation (base case) problem, flow is
allowed through the tanks and the crude slate and imports are partitioned as defined
by the user.

To begin this multiperiod model building procedure, the overall time horizon

and the number of periods are decided by the user - for example, the time

horizon was selected to be 30 days divided in 5 periods, therefore 6 days per

period. The single period model is then modified to represent the overall time

horizon (in this case, 30 days) - this involves changing the operating hours of

each unit and modifying the crude slate and imports for 30 days. Note that

the single period can take on different lengths of time (e.g. the single period

model can span 30 days, 365 days, 200 days, etc.), as long as the crude slate,

imports, and operating time of the units are adjusted.
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Once the 30 day single period model is successfully solved, a time index

was added to all constraints and variables and the number of time periods is

changed to the desired partition (5 periods in this case) and the number of days

per period is modified as well (modified from 30 days to 6 days). The tanks and

their locations are then decided and implemented as units in the model. The

tanks include property mixing, inventory levels, and mass balances. However,

once the tanks are implemented, zero flow is fixed through the tanks in order

to keep the periods disconnected and the flow is then bypassed around the

tank, directly to the unit.

Next, the crude slate and imports should be adjusted to represent the new

model where the crudes and imports used in the single period model are

divided between the periods (e.g. if 100 units of import A are used in the 30

day single period model, for a 5 period model, each period will use 20 units of

import A). Thus, this new 5 period, 6 day representation is the 30 day single

period model divided into 5 periods, where each period is identical. This now

becomes the basis of the multiperiod model. Once this model is completed

and solved, the final stage of the model building can be implemented.

The final stage of the implementation is to allow flow through the intermediate

product tanks and to change the crude slates and imports to represent the

desired inputs to the plant per period (e.g. imports may only be fed to the

refinery every odd period and the crude slate may be different for each period).

The solution to this final step becomes the initial starting point for any case

studies, and concludes the multiperiod refinery optimization model building

procedure.

The single period model totals over 4000 variables and constraints, and as the

number of periods increases, so does the number of variables and constraints.
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Table 3.1 summarizes the number of variables and constraints before pre-

processing for a range of periods. The problem essentially scales linearly with

number of time periods, with differences due to the interconnection variables

and constraints. However, it should be noted that the solution time does not

scale linearly along with the problem size, and is discussed in the next chapter.

Table 3.1: Petroleum refinery model size for different number of periods. The
number of variables and constraints are listed for various model sizes from 1
to 30 periods.

No. of Periods Variables Constraints

1 4,230 4,447

3 12,807 13,280

5 21,345 22,132

10 42,690 44,262

30 128,070 132,782

3.2 Mathematical Formulation

The multiperiod refinery optimization model is formulated as follows:

max PROFIT = ∑
t∈T

[
∑

u∈Ub

∑
j∈Ju

cjFj,u,t − ∑
u∈Ud

∑
i∈Iu

ciFi,u,t

− ∑
u∈UNG

cNGFNG,u,t

] (3.1)

subject to: ∑
i∈Iu

Fi,u,t = ∑
j∈Ju

Fj,u,t ∀ u ∈ U, t ∈ T (3.2)

Fj,u,t = f (Fi,u,t, θj,u, CPj,u,t, Zz,u,t)

∀ i ∈ Iu, j ∈ Ju, u ∈ U, t ∈ T, z ∈ Zu

(3.3)

Fi,u,t = f (Vi,u,t, ρi,u,t, Hu) ∀ i ∈ Iu, u ∈ U, t ∈ T (3.4)
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Pp,j,u,t = f (Fi,u,t, Vi,u,t, ρi,u,t, θp,i,u, CPj,u,t, Xx,i,u,t)

∀ p ∈ Pu, i ∈ Iu, j ∈ Ju, u ∈ U, x ∈ X, t ∈ T
(3.5)

PLB
p,j,u,t ≤ Pp,j,u,t ≤ PUB

p,j,u,t ∀ p ∈ Pu, j ∈ Ju, u ∈ U, t ∈ T (3.6)

Zz,u,t = f (Fi,u,t, Vi,u,t, Pp,i,u,t, Fj,u,t, Vj,u,t, Pp,j,u,t, θz,u)

∀ p ∈ Pz, i ∈ Iu, j ∈ Ju, u ∈ U, t ∈ T, z ∈ Zu

(3.7)

ZLB
z,u,t ≤ Zz,u,t ≤ ZUB

z,u,t ∀ z ∈ Zu, u ∈ U, t ∈ T (3.8)

Xx,j,u,t = f (Fi,u,t, θx,j,u, Fj,u,t)

∀ x ∈ X, i ∈ Iu, j ∈ Ju, u ∈ U, t ∈ T
(3.9)

∑
u∈Uin

H2

FH2,u,t = ∑
u∈Uout

H2

FH2,u,t ∀ t ∈ T (3.10)

PLB
p,j,u,t ≤ Pp,j,u,t ≤ PUB

p,j,u,t ∀ p ∈ Pb, j ∈ Ju, u ∈ Ub, t ∈ T (3.11)

F, V, CP, ρ, P, X, Z ∈ < (3.12)

Equation 3.1 describes the objective function being maximized in the opti-

mization problem, which is the total profit of the plant over the time horizon

t ∈ T, defined as the revenue subtract the cost of crude/imports subtract the

cost of natural gas. The revenue is defined as the product mass flow rates

Fj,u,t in outlet streams j ∈ Ju from unit u ∈ Ub times their cost cj, where Ub

are the blending units and Ju are the streams leaving from these units u. The

expenses are defined as the import/crude mass flow rates Fi,u,t in inlet streams

i ∈ Iu from unit u ∈ Ud times their cost ci, where Ud are the units that use the

imports/crude and Iu are the streams entering from these units u. The natural

gas (NG) utility usage is defined as the usage in mass flow rate FNG,u,t from

unit u ∈ UNG times the natural gas cost cNG.

Equation 3.2 then describes the mass balance of each unit operation u ∈ U for

each time period t ∈ T in the refinery, where the sum of the mass flows Fi,u,t in

the set i ∈ Iu entering unit u is equal to the sum of the flows Fj,u,t leaving unit
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u in the set j ∈ Ju; this equation includes blend tanks in the set U.

Equation 3.3 denotes the relationship between the product mass flow rate Fj,u,t

in set j ∈ Ju of a unit u ∈ U as a function of the unit’s inlet flow rates in set

Iu, output model parameters θj,u, cut points for specific product j CPj,u,t, and

unit operating conditions Zz,u,t in set Zu where the operating conditions are

specific to the unit.

Equation 3.4 denotes the conversion relationship from volume to mass (and

vice versa) of inlet stream Fi,u,t in i ∈ Iu entering unit u ∈ U for all time periods

t ∈ T and is related to the inlet volume Vi,u,t, density ρi,u,t, and uptime (in

days) of the unit Hu which are parameters.

Equation 3.5 denotes the relationship for all time periods t ∈ T between the

property Pp,j,u,t in the set of properties Pu for the unit u of the outlet stream

j ∈ Ju for all units u ∈ U as a function of inlet mass flow rates of the unit Fi,u,t,

each inlet’s corresponding volume Vi,u,t, inlet stream densities ρi,u,t, model

parameters θp,i,u for each property p for the inlet stream, cut point CPj,u,t and

composition Xx,i,u,t for certain properties. Examples of properties include

density, sulphur, octane number, and Reid vapour pressure. Equation 3.6

describes the bounds of the properties described in equation 3.5, and differs

depending on the property.

Equation 3.7 denotes the relationship between operating conditions Zz,u,t in

the set z ∈ Zu of unit u ∈ U for all time periods t ∈ T where the operat-

ing condition is specific to the unit. The operating conditions for the unit

are calculated using: unit inlet and outlet mass flow rates Fi,u,t and Fj,u,t, re-

spectively; inlet and outlet volumetric flow rates Vi,u,t and Vj,u,t, respectively;

inlet and outlet properties Pp,i,u,t and Pp,j,u,t, respectively, in p ∈ Pz where

the property depends on the operating condition z (e.g. reaction temperature
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may require properties A, B, and C, whereas catalyst conditions uses prop-

erties D and E); and model parameters θz,u specific to the unit and operating

condition. Some examples of operating conditions would include reaction

temperatures, changes in temperature between time periods, and heat duties.

Equation 3.8 then describes the bounds for the operating conditions described

in equation 3.7.

Equation 3.9 denotes the relationship for molecular composition of component

Xx, j, u, t for component x ∈ X where X is a fixed list of molecules (e.g. C2, C3,

benzene, etc.) of the outlet stream j ∈ Ju of unit u ∈ U as a function of inlet

and outlet mass flow rates Fi,u,t and Fj,u,t, respectively, and model parameters

θx,j,u for the component x for the stream j ∈ Ju from unit u ∈ U.

Equation 3.10 describes the hydrogen balance for the entire refinery, where the

sum of all hydrogen flow rates FH2,u,t entering hydrogen-fed units u in set Uin
H2

is equal to the sum of hydrogen produced by units in set Uout
H2 . In other words,

all hydrogen produced in the refinery must be consumed by other units in the

refinery.

Equation 3.11 describes the specifications for the final blend properties p ∈ Pb

for the product streams j ∈ Ju leaving the blend tank units u ∈ Ub. In other

words, specific properties of product streams must be met before being sold to

market. For example, gasoline must meet a specific octane number depending

on the type of gasoline, while fuel oil is not bound by octane levels but may be

bound by sulphur.

Equation 3.12 denotes the domain of the variables in the aforementioned

equations, reiterated as: mass flow rate (F), volumetric flow rate (V), cutpoint

(CP), density (ρ), property (P), composition (X), and operating condition (Z).

All variables are in the real domain.
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3.2.1 Equation Transformations

With the presence of conditional statements in the original optimization model,

the discontinuity of these statements poses a problem due to the gradient-

based nature of nonlinear optimization solvers. If-else statements can be

written as max or min functions - for example:

if 5x < 0 then y = 0

else y = 5x

can be written equivalently as: y = max
(
0, 5x

)
. Gopal and Biegler [1] have

devised smoothing methods for complementarity problems in process engi-

neering using the sigmoidal distribution function, which is commonly used

in neural networks. Using the sigmoidal function, the above example can be

approximated as:

y ≈ 5x +
1
α

ln(1 + e−α5x)

where α is a user-defined parameter. There are various other variables, such

as the max of two functions (as opposed to one function and a constant), min

functions, and nested min/max functions. Applications and derivations can

be found in the published literature by Gopal and Biegler [1].

We then apply this smoothing method to the conditional statements in the

optimization model, mainly in the hydrotreater operating conditions and other

unit operating conditions.
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3.3 Tank Formulation

In order to fully formulate the multiperiod model, there must be a connection

between the periods. To connect the periods together, intermediate product

tanks are used; the model contains 4 tanks:

• Heavy gas oil (HGO) preceding the distillate hydrocracker (DHC)

• Vacuum gas oil (VGO) preceding the DHC

• Atmospheric residue preceding the vacuum distillation unit (VDU)

• Atmospheric residue imports preceding the VDU

Using these tanks, the volume levels and stock are used to link the periods

together where the current level of the tank is dependent on the previous time

period and the material entering and leaving the tank at that current period,

as shown:

EODu,t = EODu,t−1 + ∑
i∈Iu

Fi,u,t − ∑
j∈Ju

Fj,u,t ∀ u ∈ Uk, t ∈ T

where EODu,t, Fi,u,t, and Fj,u,t represent the tank inventory level, mass flow

rate entering, and mass flow rate leaving the tank, respectively, for time period

t ∈ T. The tank units are denoted by u ∈ Uk where k is the list of tanks.

This same formulation of stock levels at the end of the period is employed

by several researchers such as Kolodziej et al. [2] and Castro [3]. This same

concept is applied to all properties of the tanks, where the property in the

current period is calculated using the inlet and outlet streams, as well as the

property in the tank in the previous period. By using these relationships,

the periods are now linked together. With the inclusion of the intermediate
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inventory tanks, the problem is reformulated as follows:

max PROFIT = ∑
t∈T

[
∑

u∈Ub

∑
j∈Jp

cjFj,u,t − ∑
u∈Ud

∑
i∈Id

ciFi,u,t−

∑
u∈UNG

cNGFNG,u,t

] (3.13)

subject to: Equations 3.2 to 3.12

EODu,t = EODu,t−1 + ∑
i∈Iu

Fi,u,t − ∑
j∈Ju

Fj,u,t ∀ u ∈ Uk, t ∈ T (3.14)

EODu,T = EODu,0 ∀ u ∈ Uk (3.15)

EODLB
u,t ≤ EODu,t ≤ EODUB

u,t ∀ u ∈ Uk, t ∈ T (3.16)

Pp,u,t = f (Fi,u,t, Vi,u,t, ρi,u,t, Pp,u,t−1, EODu,t)

∀ i ∈ Iu, p ∈ Pu, u ∈ Uk, t ∈ T
(3.17)

EOD ∈ < (3.18)

Equation 3.15 states that the inventory level in the tank must be replenished

to its original stock level for use in future operation after the optimization.

Equation 3.16 states the bounds for the inventory level in the tank, with the

lower bound usually set as 0. Equation 3.17 shows the relationships between

the properties of the tank content, and is related by the mass and volume flow

rate, Fi,u,t and Vi,u,t, entering the tank at the current period, the density ρi,u,t of

the inlet streams, the property in the tank from the previous period Pp,u,t−1,

and the stock in the tank from the previous period t-1. Equation 3.18 states the

real domain of the stock level.
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4.1 Initialization Strategies

In order to solve the refinery optimization model, the following solution

strategy is proposed, as shown in Figure 4.1. The reasoning for this solution

strategy is that the initial point is a relatively simple point to start from, and

the base case (i.e. nominal, or normal, operation of the refinery) is a good

feasible point to start from when solving a case study, as the overall operation

of the refinery will not drastically change due to constraint bounds.
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Figure 4.1: Initialization strategy for the multiperiod problem. The initial point is
used as the solution to the equally partitioned multiperiod problem with zero flow
though intermediate tanks. The solution of this problem is used as the initial point
to solve to the base case (i.e. nominal/normal operation of the refinery), where flow
is allowed through the tanks and the crude slate and imports are partitioned as per
user definition. The solution to this problem is the nominal operation of the plant
and is used as the initial point to solve to a case study (i.e. deviations from nominal
operation of the refinery.)

First, the optimization problem initializes at a point where every time period

is identical by restricting flow through the intermediate product tanks, and

by taking the proposed crude slate and averaging it over all periods. For

example, if the proposed final crude slate is 100% crude A in period 1, 100%

crude B in period 2, 100% crude C in period 3, and 100% crude D in period 4,

then the initial starting point would be 25% crude A/B/C/D for all 4 periods.

This also applies to the imports to the plant, where if the imports are divided
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unevenly throughout the time horizon, they are also averaged out for the time

horizon (e.g. if imports only arrive during odd periods, the total sum of these

imports are averaged out for the entire horizon). Next, the problem is then

solved to a ’base case’ point, or nominal/normal operation using the solution

of the previous problem (duplicated periods). Flow is allowed through the

intermediate tanks and the crude slate and imports become fully partitioned

(changed from having the crude slate/imports averaged over the time horizon

from the previous step). This point is a suitable starting point, as it is within the

normal operating range of the petroleum refinery. Most studies that deviate

from this point will not drastically change the operation of the refinery. In the

case that there is a failure to converge to the case study, then it is possible that

the new point is outside of the operating range of the refinery.

Another benefit to solving from the duplicated periods to the nominal oper-

ation point is that it is easier to change time period length and time horizon.

For example, it is easy to change the problem from a 5 period problem to a 30

period problem, as solving from the initial point to nominal operation is often

feasible. The two problems essentially start at the same point, but the nom-

inal operation of the two problems will be different. Therefore, the nominal

operation of the 5 period model cannot be used as the nominal operation of

the 30 period model. By allowing the solver to move from the duplicated case

to nominal operation, there are fewer problems with trying to find a feasible

starting point, as opposed to manually attempting to fix variables to find a

feasible starting point.

By attempting to solve from the initial point (of duplicated periods) directly

to the case study without first solving to nominal operation, feasibility issues

arise and the problem is less likely to converge than trying to solve from the

nominal operating point. This is due to the fact that solutions to the case
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studies and the duplicated model are relatively far away from each other and

are more likely to encounter infeasibilities and difficulty in moving back to a

feasible region.

This is compared to solving the problem incrementally (i.e. duplicated model

to nominal operation to case study). Furthermore, IPOPT is used to solve

from the initial point to nominal operation. Both IPOPT and CONOPT were

tested to solve to the nominal point, but only IPOPT was successful. IPOPT

does not require a feasible point to start and can update the objective function

without satisfying the constraints and identifies the active-set constraints

at the solution. On the other hand, CONOPT must identify and calculate

the active-set constraints at every iteration and tries to maintain feasibility

while improving the objective [1]. Thus, IPOPT is overall more robust and

can find the feasible solution to the base case even from a difficult starting

point. However, both IPOPT and CONOPT are used to find solutions to the

case studies. In solving from nominal operation to deviations in operation,

CONOPT has a feasible starting point and can find the new operating point,

provided the new operating point is within the same feasible region.

4.2 Lagrangean Decomposition and Formulation

Lagrangean decomposition is a suitable choice for multiperiod problems, as

the problem is formulated in a block-structure where each time period is

essentially its own problem but with variables and constraints that link the

periods together (in this case, the inventory variables and constraints). This

block structure is illustrated in Figure 2.19 by Neiro and Pinto.
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Figure 2.19: Block structure of the multiperiod problem constraints presented by Neiro
and Pinto. The constraints of the multiperiod problem resemble a sparse structure,
where a block of constraints pertain to one period and the rest of the row contain zeros.
The production balance constraints (i.e. inventory/interconnectivity constraints) are
segregated and gathered at the bottom of the structure to show their connectivity
between units [2].

This block structure can be exploited by separating the interconnection equa-

tions into independent equations and solving each time period independently;

this is repeated in an iterative procedure. The benefit to this strategy is that

solving 30 single period problems is significantly faster than solving a single

30 period optimization model.

The formulation of the Lagrangean Decomposition method, including reformu-

lation of dual and primal subproblems and the algorithm itself, is as follows.

To separate the interconnection constraints, the mathematical reformulation is

as follows.
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Replace equation 3.14 with:

EODA
u,t = EODB

u,t−1 + ∑
i∈Iu

Fi,u,t − ∑
j∈Ju

Fj,u,t ∀ u ∈ Uk, t ∈ T

EODA
u,t = EODB

u,t ∀ u ∈ Uk, t ∈ T

∴ the problem becomes:

max PROFIT = ∑
t∈T

[
∑

u∈Ub

∑
j∈Jp

cjFj,u,t − ∑
u∈Ud

∑
i∈Id

ciFi,u,t − ∑
u∈UNG

cNGFNG,u,t

]

subject to: Equations 3.2 to 3.12, and equations 3.15 to 3.18

EODA
u,t = EODB

u,t−1 + ∑
i∈Iu

Fi,u,t − ∑
j∈Ju

Fj,u,t ∀ u ∈ Uk, t ∈ T

EODA
u,t = EODB

u,t ∀ u ∈ Uk, t ∈ T

In this reformulation, the linking variables, EODu,t and EODu,t−1, are re-

defined as two new variables, EODA
u,t and EODB

u,t−1, respectively. How-

ever, this reformulation still does not change the problem, as the equality

EODA
u,t = EODB

u,t still links the two variables together. The next step is to

relax the problem by dualizing the equality constraint (i.e. moving it to the

objective function while adding a penalty to the constraint) and separate each

time period as independent problems as follows:

max PROFITt =

[
∑

u∈Ub

∑
j∈Jp

cjFj,u,t − ∑
u∈Ud

∑
i∈Id

ciFi,u,t − ∑
u∈UNG

cNGFNG,u,t

]
+ ∑

u∈Uk

λu,t(EODB
u,t − EODA

u,t)

subject to: Equations 3.2 to 3.12, and equations 3.15 to 3.18
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EODA
u,t = EODB

u,t−1 + ∑
i∈Iu

Fi,u,t − ∑
j∈Ju

Fj,u,t ∀ u ∈ Uk, t ∈ T

However, each time period is still not independent as the duplicated variable

EODB
u,t−1 in the inventory constraint and EODB

u,t in the objective function are

mismatched in time. Thus, the duplicated inventory variable in the objective

function is shifted back one period:

max PROFITt =

[
∑

u∈Ub

∑
j∈Jp

cjFj,u,t − ∑
u∈Ud

∑
i∈Id

ciFi,u,t − ∑
u∈UNG

cNGFNG,u,t

]
+ ∑

u∈Uk

(λu,t−1EODB
u,t−1 − λu,tEODA

u,t)

This new problem is now able to be solved for each time period independently.

As this problem is now relaxed and is not the same as the original problem, it

is denoted as the ’dual subproblem’ and the original problem is denoted as

the ’primal subproblem’. The Lagrangean decomposition algorithm may now

be used, and is as follows:

1. Initialize values of λt.

2. The dual subproblem is solved for each time period and the profit from

each period are added together to obtain the overall profit - this generates

an upper bound on profit.

3. The interconnected (inventory) variables are passed onto the primal

subproblem as fixed variables.

4. The primal subproblem is now solved for each time period indepen-

dently - this should generate a feasible solution with respect to the full

problem (e.g. inventory at the end of the time horizon should be at the

same level as the start of the optimization). This generates a lower bound
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on profit.

5. The profit from the two problems are compared.

6. If the gap between profits is small enough, then exit the algorithm.

7. If the gap is not sufficiently small, then modify λt using a lambda step

and go back to step 2.

The Lagrangean decomposition algorithm is also illustrated in the chapter 2 in

Figure2.22.
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Figure 2.22: Lagrangean decomposition scheme adapted from [3] [4] [5] [6].
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4.3 Hybrid Method

The hybrid method is proposed, as it takes a significant amount of time to

solve to the base case point from the initial point of duplicated periods. Using

the method of directly solving from the initial point to the base case using

IPOPT, Table 4.1 lists the solution times for a range of time periods. For smaller

problems, the solution times to obtain the base case are relatively small but for

larger problems, such as problems with 10 to 30 periods, these times become

significantly large (close to 1 hour for the 30 period problem, to solve to the

base case).

Table 4.1: Computation times for solving the multiperiod refinery problem
using the conventional method of solving directly from duplicated periods as
the initial point to the nominal operation of the refinery.

Number of Periods Solve Time (seconds)

3 21

5 67 (1 min 7 sec)

10 285 (4 min 45 sec)

30 2947 (49 min 7 sec)

Therefore it is attractive to reduce these solution times using Lagrangean

decomposition or a hybrid approach. With the hybrid approach, in the case

that the gap between the two solutions does not become sufficiently small and

the algorithm reaches its maximum number of iterations (which is decided by

the user), then the current solution may be used as an initial guess to solve to

the base case. Thus, the current solution at the end of the decomposition may

be closer to optimality than the original starting point and it would provide

the solver a closer point to the base case point. It may also allow other solvers

107



M.A.Sc Thesis - A. Nguyen McMaster University - Chemical Engineering

such as CONOPT to able to solve to the base case instead of only IPOPT, as

the new point may provide a feasible point for CONOPT to start from.
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5.1 Comparison of Termination Tolerance for Base

Case Study

The petroleum refinery optimization model that is used to study deviations

from normal operation of the plant is a complex, nonlinear, and nonconvex

model. The refinery consists of 21 unit operations, 16 blending units/products,

8 pooling units, 4 intermediate product tanks, 6 types of crude oil, and 3 types

of imports. From these unit operations, streams, products, properties, and

operating conditions, the model totals up to 4230 variables and 4447 constraints

for the single-period problem (which does not include tanks). Table 3.1, as

shown in chapter 3 and re-iterated below, shows the model size as the number

of time periods increases. For the multiperiod problems, the tanks and other

interconnection variables are included in these models.

Table 3.1: Petroleum refinery model size for different number of periods. The
number of variables and constraints are listed for various model sizes from 1
to 30 periods.

No. of Periods Variables Constraints

1 4,230 4,447

3 12,807 13,280

5 21,345 22,132

10 42,690 44,262

30 128,070 132,782

In order to study deviations from normal operation of the plant, the problem

must first be solved to the state of normal operation. Before solving to the base

case point, or nominal operation, the problem is first initialized by averaging

the crude slate and imports over the time horizon, and preventing flow to enter
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through the tanks (by fixing the flow rates to 0), effectively creating replicas

of the time periods, as discussed in chapter 4. Once the model solves this

problem, the solution is used as an initial guess. The flow is then unfixed and

flow is allowed through the tanks, the crude slate and imports are partitioned

throughout the time periods, and then the problem is solved to the base

case/nominal operation of the plant.

By reformulating the refinery model into a multiperiod model (i.e. higher

resolution solution), there is a small benefit in regards to objective function.

By taking a 30 day single period model and formulating it into a 5-period

6-day multiperiod model that incorporates tanks and partitioned crude slate,

the profit value increases by 0.097065% (with the single period profit as the

reference point). Thus, the refinery is able to shift to a slightly better mode of

operation when formulated as a multiperiod problem.

When solving to this base case point (normal operation of the refinery) where

the crude slate and imports are partitioned and there is flow through the inter-

mediate tanks, the termination tolerance is relevant in determining the time

required for convergence to this point. Additionally, it is necessary to confirm

that the convergence of this point, regardless of tolerance, does not affect

the objective value significantly. The benefit to using a relaxed convergence

tolerance is that the computational time may decrease significantly without

adversely affecting the solution, and thus a lower tolerance may be used.

Table 5.2 summarizes the computation (CPU) time in seconds for various

tolerances for different sizes of problem using the nonlinear solver IPOPT.

The tolerance values shown, as defined in IPOPT, are the scaled NLP error

described in equations 2.36 and 2.37 [1]. If the NLP error becomes smaller than

the defined value, then the optimization will terminate.
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Table 5.2: Computation time for solving the multiperiod problem using the
conventional method of solving directly from the initial point of duplicated
periods to nominal operation. The problem was solved for various sized
problems, from 3 to 30 periods, at various convergence tolerances. The compu-
tational time (in seconds) and number of iterations required for convergence
are listed.

No. of Periods Tolerance CPU Time (s) Iterations

3 Default (1e-8) 21 106

10 21 103

1e-5 21 104

5 Default (1e-8) 106 213

10 67 150

1e-5 74 156

1e-6 162 313

1e-7 103 222

1e-8 106 213

1e-9 176 325

10 10 285 248

1e-5 346 289

30 10 2947 674

For problems with 3 periods, varying the termination criteria does not have

an appreciable effect on computation time and number of iterations. This

indicates that the problem is small enough that the final iterations of the

solution do not take an extended period of time to settle on a final value.

For problems with 5 periods, however, the variance in tolerance causes the

solution time to change significantly due to the increased complexity of the

problem. Utilization of a large tolerance of 10 or 1e-5 shows significantly
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decreased solution times, while tighter tolerances of 1e-8 or 1e-9 display higher

CPU times. It is noted that the CPU times are vastly different between tighter

and relaxed tolerances and is also indicated by the variation in the number

of iterations required for solution. This is an indication that with tighter

tolerances, it takes longer for the solver to settle on a solution and in particular,

near the end of the optimization. Figures 5.1 and 5.2 show the evolution of the

solution for the 5 period case for the default tolerance (1e-8) and a tolerance

of 1e-5, respectively. The figures show the iteration number on the x-axis,

while showing the normalized profit on the y-axis - the normalized profit is

calculated as a fraction of the starting profit:

ProfitNormalized
i =

Profiti − Profit0

Profit0
(5.1)

where i is the iteration number. It is shown that the evolution of the solution

is exactly the same for both, including the final objective value, but the final

termination of the optimization is significantly shorter for the tolerance of

1e-5. The difference between the two optimization runs is 47 iterations, and

translates to a reduction in computation time of 33 seconds. The difference in

final objective value is 0.000606 and thus, is acceptable in this problem as the

profit value is several orders of magnitude larger than this difference.
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Figure 5.1: Objective function (profit) evolution versus iteration number for the 5
period model, solving from the initial point of duplicated periods to nominal operation.
Solved using IPOPT at a default tolerance of 1e-8. The profit is normalized relative to
the profit at iteration 0.

Figure 5.2: Objective function (profit) evolution versus iteration number for the 5
period model, solving from the initial point of duplicated periods to nominal operation.
Solved using IPOPT at a tolerance of 1e-5. The profit is normalized relative to the
profit at iteration 0.

An anomaly to the general trend of lower computational times for relaxed

tolerances is the case of 1e-6. For all cases with 156 iterations or more, the

solution evolution up to that point is exactly the same. However, once the

optimization passes iteration 156, the objective function stops changing (to a

precision of one thousandth); the log10 of the barrier parameter also changes,

and is different for each tolerance case (for 1e-6, 1e-7, and 1e-8, the logarithmic
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value of the barrier parameters change to -7, -8, and -8.6, respectively). This

change in value has a different effect on each case, and in the case of 1e-6,

the dual infeasibility starts to cycle. In the other cases, the dual infeasibility

resolves relatively quickly. Table 5.3 shows this cycling, and summarizes

information from the iteration log for the tolerance cases of 1e-6 and 1e-7, and

lists the constraint violation, dual infeasibility, and logarithmic value of the

barrier parameter. The table shows the first few iterates after 156 to show

the change in infeasibilities and barrier parameter, then shows the cycling in

iterates 174 to 180. The dual infeasibility cycling for the case of 1e-6 continues.
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Table 5.3: Constraint violation and dual infeasibility for the solving the 5 period
model with a tolerance of 1e-6. The iterations shown are when IPOPT stops
adjusting the objective function and tries to satisfy the constraints in the model.

Iteration Constraint Violation Dual Infeasibility log10 µ

Tolerance 1e-6

156 0.00000608 0.00000139 -5.7

157 0.00005570 0.00000723 -7

158 0.00052600 0.00005270 -7

...

174 0.0000599 0.0000044 -7

175 0.0000584 12.7000000 -7

176 0.0000768 0.0000056 -7

177 0.0000748 12.7000000 -7

178 0.0000985 0.0000071 -7

179 0.0000960 12.7000000 -7

180 0.0001270 0.0000090 -7

Tolerance 1e-7

156 0.00000608 0.00000139 -5.7

157 0.00005500 0.09100000 -8

158 0.00051700 0.00005210 -8

...

174 0.0004540 22.6000000 -8

175 0.0006080 0.0000421 -8

176 0.0005940 22.6000000 -8

177 0.0007990 0.0000548 -8

178 0.0001120 0.0000078 -8

179 0.0010600 0.0000718 -8

180 0.0001490 0.0000102 -8
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For the 10 period system, the smallest tolerance that will allow convergence is

1e-5, and thus, only a tolerance of 10 and 1e-5 are tested. It is observed that the

CPU time gap between these two tolerances is significantly higher than the

gap shown for the smaller problems (i.e. over 1 minute gap for the 10 period

problem versus only a 7 second gap for the 5 period problem), and is explained

due to the larger problem and complexity due to the interconnectivity of all

periods. Figures 5.3 and 5.4 show the evolution of the normalized objective

function for the 10 period model for tolerances of 10 and 1e-5, respectively.

The x-axis shows the iteration number, and the y-axis shows the normalized

profit value. Again, similar to the 5 period case, the evolution of the profit is

exactly the same for the two cases except for the termination at the end of the

optimization, where the larger tolerance of 10 terminates earlier. The difference

between these two problems in iteration number is 41, and the computation

time difference is 61 seconds. Comparing final profit values, the difference is

0.004201 and again, is insignificant in the context of the refinery optimization

problem.

Figure 5.3: Objective function (profit) evolution versus iteration number for the 10
period model, solving from the initial point of duplicated periods to nominal operation.
Solved using IPOPT at a default tolerance of 10. The profit is normalized relative to
the profit at iteration 0.
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Figure 5.4: Objective function (profit) evolution versus iteration number for the 10
period model, solving from the initial point of duplicated periods to nominal operation.
Solved using IPOPT at a default tolerance of 1e-5. The profit is normalized relative to
the profit at iteration 0.

For the 30 period model, a tolerance of 10 requires close to 50 minutes to solve

and other tolerances smaller than 10 did not solve in under an hour and were

terminated. This large computational time displays the rapidly increasing

complexity for larger problems, and that the problem does not scale linearly

with time periods.

In the context of a full scale petroleum refinery schedule optimization model,

the tolerance has a significant impact in the computational time, as well as

feasibility. For the model studied, the tolerance required for termination was

varied for the optimization from the initial point (of duplicated time periods)

to the base case point (normal operation of the refinery). For smaller problems,

the impact of the tolerance is less significant on the solution time and number

of iterations required for termination and is evident for the 3 period model.

The 5 period model solution times vary more than the 3 period model, but

even with a tighter tolerance than default, solution times are reasonable. For

larger problems, the tolerance termination criteria is significant in finding

feasible solutions, as demonstrated by the 10 and 30 period models. In these
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models, the default tolerance does not allow the problems to resolve in a

reasonable time frame, and thus, the tolerance is lowered to find a solution. It

is shown, however, that decreasing the tolerance does not affect the solution

significantly, as shown in figures 5.3 and 5.4, and the same line of reasoning

can be extended to the 30 period model, and other larger models.

5.2 Refinery Case Studies - Deviations from Nomi-

nal Operation

Various case studies were investigated in order to compare the effectiveness

of IPOPT and CONOPT against the original model, as well as to compare the

performance between the IPOPT and CONOPT solvers. The case studies that

were proposed reflect deviations from nominal operation of the refinery, and

illustrate potential issues that may arise. The cases studied were as follows:

• Decreasing the maximum available throughput of the distillate hydroc-

racker (DHC) by 5%

• Decreasing the upper limit of the vacuum gasoil (VGO) cut point by 2%

• Increasing the 95-octane gasoline Reid Vapour Pressure (RVP) allowable

limit by 51%

• Decreasing the maximum available throughput of the catalytic reformer

(CCR) by 6%

In the first case where the throughput to the DHC is decreased, this causes

a disruption in the conversion of gas oils into high value products such as

naphtha and kerosene. This can cause further problems downstream to other

120



M.A.Sc Thesis - A. Nguyen McMaster University - Chemical Engineering

units such as the catalytic reformer, which converts the naphtha into high-

octane products for blending. Due to this throughput reduction, the heavy gas

oil and vacuum gas oil tanks must compensate for the lower flow rate, and

also adjust for the imports incoming to the refinery.

In the second case study, by decreasing the allowable range for the VGO

cutpoint, the production of VGO is decreased. Again, this causes a cascading

effect to the DHC and subsequent unit operations by decreasing one of the

flow streams to the DHC. This may be compensated by adjusting the HGO

cutpoint (and thus, the other cutpoints from the CDU), or the inventory of the

VGO tank may be adjusted to maintain VGO feed into the DHC.

The third case study illustrates a relaxation in the specifications of a high

valued final product, 95-octane gasoline. By increasing the allowable limit for

Reid vapour pressure, the blending feeds of the gasoline may be optimized

further by re-routing products from other blends to the gasoline.

The fourth case study decreases the throughput of the CCR. This can cause

a similar situation as the decrease in DHC throughput but with more severe

consequences. The products of the CCR are highly valued, as many of the

products contain a high octane number and are critical for blending and meet-

ing gasoline specification. Therefore, the CCR is always at maximum capacity

and if throughput is decreased, then the amount of product is decreased as

well. This may cause some final products to not meet specification, and it may

be difficult for other units to compensate.

With the interconnectivity between unit operations, variables, properties, and

streams in the refinery, even the smallest change from nominal operation, as

illustrated in these case studies, may lead to cascading effects throughout the

plant. Having a multiperiod formulation allows insight in the operation of the
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refinery over a specified time horizon where the intermediate product tanks

play a crucial role in allowing feasible solutions.

While the plant operation was varied for each case, the crude oil slate and

imports to the refinery were kept consistent. Furthermore, they were repeated

every 5 time periods for the crude slate and every 2 time periods for the

imports. Table 5.4 shows the crude oil and import shipment schedule for

a 5 period time horizon. Each column represents a time period, with each

crude making up a percentage of the crude slate for that period (e.g. in period

1, the crude slate consists of 50% crude A and 50% crude F); the imports to

the plant are both denoted as 100% for every other time period, as they are

not considered within the crude slate, are independent from one another, are

only imported to the plant every other period. This schedule is repeated for

problems with larger time horizons (e.g. for a 10 period problem, this schedule

is repeated once).

Table 5.4: Crude slate and import partition for the nominal operation of the
refinery. For example, in period 1, the crude slate consists of 50% of crude A
and 50% of crude F, and has maximum imports of import A and B.

Time Period 1 2 3 4 5

% Crude A 50 0 0 50 0

% Crude B 0 50 30 0 20

% Crude C 0 0 0 0 0

% Crude D 0 0 50 0 0

% Crude E 0 0 0 0 0

% Crude F 50 50 20 50 80

% Import A 100 0 100 0 100

% Import B 100 0 100 0 100
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5.3 Performance ofCONOPTand IPOPTVersusOrig-

inal Model Solution

The four case studies outlined in the previous section, plus an additional case

study where the crude shipment in periods 2 and 3 are forced to be 100%

Crude D, were solved using CONOPT and IPOPT in order to compare the

performance with the refinery model developed and solved by TOTAL. This is

done in order to gauge the effectiveness of regarded solvers in academia on a

real world problem and scale.

Table 5.5 shows the comparison of the aforementioned case studies between

solutions of the original TOTAL model solved in a spreadsheet application

and solving the problem using IPOPT/CONOPT for a 5 period multiperiod

refinery model. The computational (CPU) time is shown for solving from the

base case (nominal operation) to the case study using IPOPT, CONOPT, and

the TOTAL model.

Table 5.5: Comparison of the computation time for the TOTAL model solved in
a spreadsheet application versus solving using IPOPT and CONOPT for the 5
period model for the case studies (deviation from nominal operation). In all
cases, the initial point used is the solution to the nominal operation case.

CPU Time (s)

Case Study IPOPT CONOPT Original Model

DHC Throughput 74 26 606

VGO Cut Point 37 26 1,680

Gasoline Vapour Pressure 70 20 486

CCR Throughput 73 32 960

100% Crude D in Periods 2 & 3 208 43 850
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From these comparisons, there is an immediate benefit to using IPOPT or

CONOPT, with solution times significantly lower than the original solver and

model by an order of magnitude. However, due to a different configuration

of inventory tanks, as well as reformulation of several equations, the models

cannot be directly compared side by side. In the TOTAL model, the configura-

tion is different due to four additional small tanks used for other intermediate

products. Another difference is that the if and else statements in the original

model are represented using smoothing functions as described in the litera-

ture [2]. Thus, there are no results directly comparing profit objective values

from the original model to the reformulated model in AMPL with IPOPT and

CONOPT.

Nonetheless, all objective function values and model variable results are within

the same order of magnitude and range, and both models display similar

behaviour, such as the decisions made in the intermediate product tanks,

where the contents are depleted and stocked in the same fashion. The results

provide context and estimation of the required solve times.

Furthermore, the single period results can be used as a direct comparison

between CONOPT/IPOPT and the TOTAL model, as no tanks are used in the

formulation of the single period model and everything remains the same, with

the exception of the smoothing functions. Table 5.6 shows the difference in

the single-period model objective function between the TOTAL model and the

model solved with CONOPT for various deviations from nominal operation

(case studies), using the TOTAL model as the reference point. The results

confirm that the model formulation and implementation in AMPL is correct

for the single period model and display the same behaviour as the original

TOTAL model. Thus, the use of the CONOPT and IPOPT solvers for the

refinery optimization problem posed by TOTAL and other similar problems
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proves to be an attractive choice for this application.

Table 5.6: Difference in objective function of the single period model between
the TOTAL model solved in a spreadsheet application and solved using
CONOPT. This is to verify that the refinery models behaves similarly and
results may be compared directly for the single period case.

Case Study % Difference in Profit Between Models

Base Case 0.000039%

Unrestrict Crude B 0.000017%

Increase VGO Cutpoint 0.003956%

Increase CDU Throughput 0.005660%

Increase VDU Throughput 0.000109%

Reduce CCR Throughput 0.136519%

Increase DHC Throughput 0.000128%

Increase Imports A and B 0.000101%

Zero Gasoil Import 0.000051%

Limited Jet Exports 0.000089%

Limited DHC Bleed 0.007239%

Increase Gasoline RVP 0.000054%

Increase ULSD Cloud Point 0.000071%

Increase % Kerosene in Fuel Oil 0.000059%

5.4 Problem Scalability — Solution of Larger Prob-

lems

When studying a multiperiod optimization problem, the size and complexity

of the problem is directly related to the number of partitions defined by the

user. By increasing the number of partitions, the time horizon can be increased
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by maintaining the length of each period, or the resolution of the problem may

be increased by decreasing the length of each period. For example, a 5 period

model at 6 days per period equates to a time horizon of 30 days. If the model

is extended to 30 periods, if the length is maintained at 6 days per period, the

time horizon increases to 180 days; or if the length is decreased to 1 day per

period, the overall problem becomes more detailed. As a result, operational

decisions can be made at shorter time intervals or for problems that model

long term dynamics, the overall operation and reaction of the process may

be observed. However, as the problem size increases, the problem becomes

larger and more complex due to the interconnection constraints and variables,

and the resulting solution times become too large. As the computational time

increases, it may be unattractive to solve high resolution problems as the

time required to solve may not be fast enough to respond to process changes.

Thus, the solution times for various sized problems for various case studies

(deviations from normal operation) are presented and discussed.

Table 5.7 summarizes the comparison of the aforementioned case studies by

solving with the IPOPT and CONOPT solvers for various model sizes, from

a single period model up to 30 periods. The first column describes the 4

case studies that were outlined at the beginning of the chapter: reducing the

throughput of the distillate hydrocracker unit; tightening the bounds of the

VGO cutpoint; relaxing the allowable Reid Vapour Pressure limit of the gaso-

line product; and reducing the throughput of the catalytic reformer. Each case

study was then run for a range of time horizons of 1, 3, 5, 10, and 30 periods

for both the IPOPT and CONOPT solvers. From each run, the computational

(CPU) time and number of iterations were recorded. In Table 5.7, the non-

entries, denoted by a dash (-), represent a failure to convergence. It is noted

that the tolerance for both solvers was set to 1e-5.

126



M.A.Sc Thesis - A. Nguyen McMaster University - Chemical Engineering

Table 5.7: Computation times and iterations for the case studies (deviation from
nominal operation) for various sizes of the multiperiod model (from 1 to 30
periods) using IPOPT and CONOPT. Dashes (-) represent failure to converge.

IPOPT CONOPT

Case Study Periods CPU Time (s) Iter. CPU Time (s) Iter.

DHC

Throughput

1 - - 0.233 12

3 - - - -

5 74 173 26 162

10 281 312 117 212

30 502 134 - -

VGO Cutpoint 1 54 1135 0.344 44

3 7.5 39 5.2 119

5 37 80 26 224

10 229 198 114 617

30 251 72 - -

Gasoline Reid

Vapour Pressure

1 20 373 0.095 9

3 8.5 43 10.5 680

5 80 145 20 104

10 108 101 136 1432

30 658 165 - -

CCR

Throughput

1 - - 0.457 16

3 7.5 42 8.4 70

5 73 158 32 166

10 134 114 216 387

30 1367 291 - -

It is observed that in general, IPOPT is able to handle larger problems, and
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CONOPT is the faster solver for solving smaller problems [3]. By the nature

of the solvers, IPOPT is able to find solutions in difficult regions, as IPOPT

does not require a feasible point to start and can update the objective function

without satisfying the constraints. At the end of the optimization, IPOPT will

identify the active-set constraints. CONOPT instead will find solutions quickly

if the feasible starting point is close to the new optimum, as CONOPT requires

constraint feasibility before proceeding with objective function improvement

using the reduced gradient. In other words, CONOPT must deal with identify-

ing the active-set constraints at each iteration [3]. If the new optimal solution

is relatively close to the initial point without complex infeasible regions in

between the points, then CONOPT is an effective solver. Thus, IPOPT is used

to solve from the initial point to the base case to build the base multiperiod

model, then either CONOPT or IPOPT is used to solve the case study to the

new optimum. If CONOPT can find a solution to the case study, it will often

solve significantly faster than IPOPT. However, if the case study optimum is

in a difficult region, then CONOPT may fail and IPOPT may succeed.

Both methods return similar results, as shown in the profit values shown in

Table 5.8. Table 5.8 lists the case study, the number of periods the model is

partitioned into, and the deviation of profit from nominal operation for both

IPOPT and CONOPT. The deviation is calculated as follows:

∆Profitdeviation = 100
||Profitnominal − Profit||

Profitnominal

Furthermore, the mass balances for both methods were compared side-by-

side to ensure robustness between the two solutions. Using the results in

Tables5.7 and 5.8, the behaviour of the model can be explained based on the

computational time of the solvers used.
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Table 5.8: Comparison of solution for the case studies (deviation from nominal
operation) for various sizes of the multiperiod model (from 1 to 30 periods)
using IPOPT and CONOPT. Used to verify the solutions obtained from the
two solvers. Dashes (-) represent failure to converge.

IPOPT CONOPT

Case Study No. of Periods ∆% From Nominal Profit

DHC Throughput 1 - 0.96

3 - -

5 5.24 5.23

10 5.30 5.04

30 22.00 -

VGO Cutpoint 1 4.31 4.31

3 2.17 2.17

5 3.30 3.30

10 3.14 3.14

30 24.64 -

Gasoline Reid Vapour Pressure 1 11.37 11.37

3 11.07 11.07

5 11.05 11.05

10 11.14 10.96

30 42.91 -

CCR Throughput 1 - 1.76

3 2.47 2.47

5 2.26 2.28

10 2.39 2.39

30 25.40 -

In the single period problem, CONOPT is superior to IPOPT and indicates
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that the initial starting point is close to the optimal solution as the reduced

gradient can quickly find the new optimal point. Additionally, with a small

model such as the single period model, there is a small number of degrees

of freedom and CONOPT is well suited to finding a first feasible solution for

these types of problems [4]. However, IPOPT may try to improve the objective

function and may encounter a new region which is infeasible and has difficulty

in successfully backtracking in the restoration phase (as shown in the high

number of iterations of the VGO cutpoint and Gasoline RVP cases).

For the 3 period model, the two solvers are comparable in successful case

studies, where CONOPT may not fall into an infeasible region and the gradient

is easily found at the initial point. The reduced distillate hydrocracker (DHC)

throughput case shows that the problem is infeasible for both solvers and

indicates infeasibilities within the model. This is attributed to the final product

qualities and the missing crude slate from periods 4 and 5 as outlined in

table 5.4. The properties from these missing crude slates help allow the final

products to reach the desired final product qualities, and thus the lack of these

crudes proves detrimental to the feasibility of the solution. In particular, the

absence of Crude F and B causes the overall production of vacuum gas oil to

decrease, which is an essential feed to the DHC, and compounded by the fact

that the overall DHC throughput is restricted will not allow some of the final

products to meet their specifications. For the remainder of the case studies, the

computational time is close for both solvers.

For the 5 period model, the results from the solvers IPOPT and CONOPT

start to deviate. In terms of objective value, both solvers produce the same

results and is an indication that the initial starting point is in a region that both

solvers can find a solution. In all case studies, however, IPOPT is shown to be

significantly slower than CONOPT. In the first case study, IPOPT produces a
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solution almost 3 times slower than CONOPT; in the second case study, the

gap is close, with IPOPT slower by 11 seconds; in the third case study, IPOPT

is 4 times slower than CONOPT; and finally, in the last case study, IPOPT

is more than 2 times slower than CONOPT. This gives an indication of the

characteristics of the 5 period model. The initial point (nominal operation) is

at a feasible point, but more importantly, the path between this point and the

case study is a suitable feasible region for CONOPT, where the solver does

not encounter difficult regions and can go directly to the new solution. The

fourth case study, reducing the CCR throughput, using CONOPT and IPOPT

are illustrated by figures 5.5 and 5.6, respectively, where the x-axis shows the

iteration number, and the y-axis shows the normalized profit, calculated using

equation 5.1.

Figure 5.5: Objective function (profit) evolution versus iteration number for solving
the 5 period model, solving from nominal operation to the case study of reduced
CCR throughput. Solved using CONOPT. Profit is normalized from the starting profit
value (at iteration 60, which is not the same starting point as the IPOPT case due to
the phase 0 and 1 solve of CONOPT).
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Figure 5.6: Objective function (profit) evolution versus iteration number for solving
the 5 period model, solving from nominal operation to the case study of reduced CCR
throughput. Solved using IPOPT. Profit is normalized from the starting profit value
(at iteration 0).

For CONOPT, the iterations do not start at 0, as the first phase of the CONOPT

algorithm attempts to find the first feasible solution, then will start the reduced

gradient calculation. On the other hand, IPOPT does not have trouble finding

a path to the solution, but takes longer to settle on a solution, as shown

in the tail of the solution in figure 5.6. This long tail is attributed to the

cycling of the dual infeasibilities shown in figure 5.8. Figures 5.7 and 5.8 show

the constraint violation and dual infeasibilities corresponding to figure 5.6

(solving the CCR case study using IPOPT), respectively. IPOPT defines the

constraint violation as the max-norm of h(x) in the reformulated NLP shown

as the second term in equation 2.37 (IPOPT internally replaces inequality

constraints with equality constraints with slack variables and then the bound

constraints are the only inequality constraints remaining). IPOPT then defines

the dual infeasibility as the max-norm of the first KKT condition of the barrier

problem, shown as the first term in equation 2.37. In both figures, the constraint

violation/infeasibility reported by IPOPT is shown on the y-axis, while the

iteration count is displayed on the x-axis and starts at 65 as the objective value

stops changing at iteration 65 and IPOPT tries to reduce the infeasibilities at
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the optimum.

Figure 5.7: Constraint violation versus iteration (starting at 65, where the objective
stops changing) for the IPOPT algorithm for the 5 period model of solving from
nominal operation (base case) to the case study of reduced CCR throughput.

Figure 5.8: Dual infeasibility versus iteration (starting at 65, where the objective stops
changing) for the IPOPT algorithm for the 5 period model of solving from nominal
operation (base case) to the case study of reduced CCR throughput.

From figure 5.7, the constraint violation decreases rapidly and remains at a

low value at an order of magnitude of 10−3 to 10−8. However, the scaled

dual infeasibility is cyclic, jumping to values between 10−4 and 30. While

there are several potential reasons why this may occur by looking at the first

term in equation 2.37, we narrow this down to one likely cause. First, the

gradient of the objective function may be eliminated as a cause since at this
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point, the objective is no longer changing significantly. Second, the gradient of

the equality constraints h(x) may be eliminated as well because the constraint

violation remains small and thus the gradient must be small as well. Thus, the

only remaining terms that may affect the dual infeasibility are the multipliers

(z) for the bound variables or the scaling factor. Therefore, this shows that

the bound constraints of the problem have difficulty in stabilizing under the

infeasibility tolerance (by default, the non-scaled dual infeasibility tolerance is

1). The long tail in the IPOPT CCR case study can be attributed to the cyclic

dual infeasibility and the inability to stabilize, and thus, resulting in longer

computational times.

For the 10 period model, both CONOPT and IPOPT are faster than the other

in half of the case studies tested, where IPOPT is faster in the third and fourth

case study, and CONOPT is faster in the first and second. Both solvers return

similar results, with IPOPT obtaining a slightly higher value for cases one and

three. For the 30 period model, only IPOPT is able to solve the model and

CONOPT fails to converge to a solution. This shows that IPOPT is more suited

to solve large problems, and can start from a far point, such as the base case

point (which is more than 20% from the optimal solution for all case studies,

based on profit, as shown in table 5.8).

In general, based on the results shown, CONOPT is more suited toward

smaller problems, whereas IPOPT can handle larger problems. The benefit

to using CONOPT for smaller problems is that many case studies can be run

consecutively in a short amount of time in order to study many variations in

operation, or to run a sensitivity analysis where one or several parameters can

be varied incrementally. However, for medium sized problems, both IPOPT

and CONOPT converge to the same or very similar optima and can be used

for these problems.
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5.5 Lagrangean Decomposition Results

Due to the complexity of the petroleum refinery model, it becomes increasingly

difficult to solve the model as the time horizon increases. For example, as

outlined in table 5.2, in order to solve to the nominal operation of the plant

from the original starting point, it takes close to 50 minutes to solve the 30

period model, and then to solve it further to a deviation in operation will

push the total solution time to over 1 hour. Lagrangean decomposition was

proposed as a solution strategy for this problem, as it is relatively fast to solve

a single period model, and if the multiperiod model could be broken down

into smaller parts, then there are potentially significant gains in computational

times.

First, the Lagrangean decomposition formulation is modified slightly to reflect

the interconnectivity of the refinery model. Instead of only duplicating the

inventory, as outlined in Chapter 4, all properties associated with the interme-

diate tanks are duplicated. The tank properties, such as sulfur, density, and

nitrogen, are calculated using the inventory and properties from the previous

time period, and thus must be separated in order to create independent time

periods. The result of the new formulation changes the way that the multiplier

step is calculated. Equation 2.55 was modified to incorporate all of the inter-

connected variables. Instead of only using the difference in inventory in the

denominator, the differences of all of the interconnected variables and their

duplicates was used and summed to give the denominator. The multiplier

step is modified as so:

tk =
αk
(
ZD − ZP)

∑t∈T ∑y∈YL

∥∥∥xA
y,t,k − xB

y,t,k

∥∥∥2 (5.2)
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where tk is the step size, αk is the reduction factor, ZD is the objective value

for the dual, ZP is the objective value for the primal, xA
y,t,k and xB

y,t,k are the

original and duplicated variables, respectively, k is the iteration number of the

decomposition, y is the separation variable in the set YL. The multipliers are

then calculated for all interconnected variables using the common calculated

step. Additionally, the multipliers are initialized at 0 as suggested by Jackson

and Grossmann [5] and Escobar [6].

Next, the duplicated variables are initialized to the values from the solution of

duplicated time periods of the original problem. In other words, the original

problem of no flow through tanks was solved first, and the duplicated variables

were initialized at this point. This is done in order to prevent undefined

calculations, such as division by 0 in equations in the dual subproblem that use

the duplicated variables in denominators. This is not an issue for the primal

problem, as that problem only uses the original variables and no division by 0

would occur. The algorithm is then followed, as outlined in figure 2.22. Once

the dual subproblem is solved, all interconnected variables are fixed as the

non-duplicated variables (the ’A’ variables), including properties, and passed

onto the primal subproblem. The primal and dual objectives are compared

and if the gap between them is not sufficiently small, then the multipliers are

updated and the algorithm repeats until convergence. All problems are solved

with CONOPT. Figures 5.9 to 5.11 show the evolution of the dual and primal

objectives, solving to the nominal operation point, where the dual is the upper

bound and primal as the lower bound.
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Figure 5.9: Objective value (profit) evolution of the dual (�) and primal (X) solutions
versus the number of decomposition iterations (full runs; a run is defined as solving
the dual and primal subproblems) for the 5 period model. Solving from the initial
point of duplicated periods to nominal operation, using CONOPT for both the dual
and primal subproblems. Profit is normalized from the nominal profit value from the
original full space model.

Figure 5.10: Objective value (profit) evolution of the dual (�) and primal (X) solutions
versus the number of decomposition iterations (full runs; a run is defined as solving
the dual and primal subproblems) for the 10 period model. Solving from the initial
point of duplicated periods to nominal operation, using CONOPT for both the dual
and primal subproblems. Profit is normalized from the nominal profit value from the
original full space model.
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Figure 5.11: Objective value (profit) evolution of the dual (�) and primal (X) solutions
versus the number of decomposition iterations (full runs; a run is defined as solving
the dual and primal subproblems) for the 30 period model. Solving from the initial
point of duplicated periods to nominal operation, using CONOPT for both the dual
and primal subproblems. Profit is normalized from the nominal profit value from the
original full space model.

The y-axis shows the normalized profit relative to the nominal base case

solution (i.e. the difference between the solutions relative to the nominal base

case). The x-axis shows the decomposition iteration, defined as a full solve

of the dual subproblem and the primal subproblem. The 5 period model,

shown in figure 5.9, shows a fast approach to a plateau for both problems

within 3 iterations of the decomposition algorithm, while the 10 and 30 period

problems, illustrated by figures 5.10 and 5.11, respectively, the plateau occurs

at iteration 6 and 7, respectively. The termination criteria for all cases was set

to a value of 1 in order to observe the plateaus of the two problems.

However, it is noted that the upper bound in the 5 and 30 period cases plateaus

slightly below the plateau of the lower bound. This is due to the infeasibility

of the lower bound primal solutions once the interconnected variables were

fixed from the dual problem solution. However, the refinery model considered

in this study incorporates the properties of the tanks and streams in addition

to the tank inventories in regards to interconnection variables, while the stud-
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ies published by Jackson and Grossmann [5], and Neiro and Pinto [7] only

consider tank inventories. This results in a more complex model and thus, it is

difficult to achieve feasibility for the primal problem. Jackson and Grossmann

[5] also state difficulty in achieving feasibility in their primal problem and re-

sult in relaxing the demand constraints in their problem, and thus, in practice,

it is difficult to achieve feasibility without relaxing constraints.

In regards to the dual problem, almost all periods were feasible - the exception

being the final period. This may be attributed to the constraint that comes

into effect only in the final period, where the final inventory must return to

the same level as the initial stock. This constraint is implemented in order to

foresee use of the inventory tank past the scope of the optimization (e.g. if a

unit fails some time after the optimization ends, the inventory tank would be

at its original level to deal with the failure). Several checks were performed

in order to ensure that the problem was model complexity related and not

formulation (or human error) related.

The first check was to eliminate the constraint entirely - this yielded a feasible

solution for the final period without affecting the other periods. The second

check was to force a feasible solution in the final period to ensure that the

dual problem was able to find a feasible solution. As the dual subproblem

is a relaxation of the primal problem, if a feasible solution is possible for the

primal problem, the dual subproblem should be feasible as well. In this check,

the final period variables were fixed to the original problem’s solution and in

order to deal with the interconnection variables, the duplicated variables were

fixed as well. Since all time periods are severed using the duplicated variables,

these duplicated variables were fixed at the corresponding original model

solution from the previous time period (e.g. the inventory of the duplicated

variable for period T-1 was fixed at the original problem’s solution in period
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T-1). By doing so, the previous time periods were not affected by the forced

solution in the final time period; if the period T-1 variables were fixed, then the

solution in period T-1 would be affected. As a result of this check, a feasible

solution was able to be found for all dual subproblem periods. Thus, there is an

opportunity to explore future work in initialization strategies to find feasible

solutions for all dual subproblem periods. It is unreasonable to initialize the

dual subproblem with the full solution in practice, as the solution would not

be known ahead of time.

The sub-gradient optimization used by Jackson and Grossmann [5], and Neiro

and Pinto [7] to calculate the Lagrange multipliers requires feasible dual and

primal solutions in the calculation of the step size. In spite of this method, the

decision was made to use the infeasible solutions generated by the dual and

primal problems in the multiplier step calculation in order to generate better

initial guesses for the full problem, despite the infeasibility. The calculation

of the multiplier step size is one method (along with multiplier adjustment

methods and column generation techniques), as described by Fisher [8] and is

the most widely used. Using the step size calculation closely matched to that of

the aforementioned studies, the difference being the additional incorporation

of the interconnected properties, as per equation 5.2.

Despite the infeasibility of the primal problem and parts of the dual problem,

we explore the potential benefit of using the results obtained as an initial

starting point to solve the problem to optimality. Table 5.9 lists the times

required to run the Lagrangean decomposition algorithm 14 times for various

model sizes. The times shown are cumulative - for example, the first iteration

of the 5 period problem (full solve of both the dual and primal subproblems)

completes in 14 seconds, but consecutive solves after the first iteration are 50%

of that time. For smaller problems, it is faster due to the smaller model size and
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fewer periods required to solve. It is noted that although the decomposition

was run for 14 iterations, the number of iterations may be decreased based on

the plateaus shown in figures 5.9 to 5.11.

Table 5.9: Cumulative time (seconds) required to run the decomposition algo-
rithm for the multiperiod model for 5, 10, and 30 time periods. An iteration
is defined as the combined solve of the dual and primal subproblem. For
example, 1 solve of the decomposition algorithm for the 5 period model takes
14 seconds.

Total CPU Time (s)

Iteration 5 Period 10 Period 30 Period

1 14 27 84

2 20 39 125

3 26 53 176

4 33 69 232

5 39 84 279

6 44 99 325

7 50 113 364

8 56 127 403

9 61 141 444

10 67 155 482

11 73 169 521

12 79 182 559

13 84 196 596

14 90 209 634

After the decomposition phase, the problem is solved to the nominal operation

point, as the decomposition did not yet solve to this point. IPOPT is used, as

CONOPT fails in this phase. Table 5.10 lists the computation time to optimality
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from the end of 14 Lagrangean decomposition iterations. The solution was

obtained using tolerances of default (1e-8) and 10, with the exception of the

30 period model, as the 5 and 10 period models did not show a significant

difference between the two tolerance options.

For the 5 period model, the solution from the end of the decomposition to op-

timality shows an improvement in computational time from the conventional

method of solving (previously shown in Table 5.2) for the default tolerance, and

no improvement from the tolerance of 10. However, when the decomposition

times from Table 5.10 are factored in, the solution time shows no improvement

over the conventional method of solving to the nominal case. Similar results

show for the 10 period case with a tolerance of 10 - the combined decomposi-

tion time with the final solve phase result in a slower time. However, gains

start to be made for the default tolerance with a 32 second reduction. The 30

period case using the decomposition time plus the solve time (from the end of

the decomposition) reduce the solution time (from conventional solving) by

412 seconds.

These results show that for smaller models, such as the 5 and 10 period case,

the solution time does not improve by using the end point of the Lagrangean

decomposition as an initial point. This is due to the nonlinearity and noncon-

vexity of the problem where different initial guesses may or may not have an

impact on the convergence to optimality. Combined with the time required to

run the decomposition, it may not be an attractive option. However, for larger

problems such as the 30 period model, the decomposition end point provides

a benefit to convergence time and shows that it is a better initial guess than

the conventional method.
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Table 5.10: Computation time for solving from the end of the decomposition
after 14 iterations to the nominal operation point for various sizes of the
multiperiod model. IPOPT is used to solve the problem, and default tolerance
of 1e-8 and 10 are used. Final profit deviation from nominal profit (from the
original full space model) is also listed.

No. of Periods Tolerance CPU Time (s) Deviation from Nominal Profit (%)

5 Default 65.984 0.457

5 10 65.008 0.457

10 Default 172.52 6.299

10 10 171.54 6.299

30 10 2090.88 1.072

It is noted that there is a deviation from the nominal profit. Ideally, the solution

should be the same as the nominal profit (i.e. a deviation of 0). However, the

end of the decomposition puts the problem at a different starting point than the

conventional method. From this different starting point, due to the nonlinear

and nonconvex nature of the problem, a different optimum is found where it

differs from the nominal operation of the plant. For the 5 period problem, the

new initial guess gives close to the same results as the conventional method of

solving, but for the 10 period problem, the new initial starting point results in

an optimum that is 6.3% from the solution of the conventional solve.

To further analyze the effect of the end point of the decomposition, the 5 and

10 period models were solved using various decomposition end points. That

is, the decomposition was run for 1 to 8 iterations and the model was solved

from those points. Table 5.11 lists the computational time required to solve

the refinery model after running the decomposition algorithm a set number of

times, the difference in solution times between the computational time plus

the decomposition time (from table 5.9) versus the original solve time (from
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table 5.2), and the deviation from the nominal profit. The difference in solution

times is calculated as the original solution time minus the (decomposition +

new initial point) solve time - therefore, positive numbers in the table represent

improvements (i.e. using the new initial guess solves the model faster than

the old initial guess), and negative numbers represent slower solve times (i.e.

the conventional way/old initial guess is faster). It is noted that the solve time

from the new initial point to optimality can be found by taking the ’Combined

CPU Time’ in table 5.11 and subtracting the corresponding value found in

table 5.9 - for example, for 1 ’iteration’ of the decomposition, the combined

CPU time is 35.469 seconds. The decomposition time (listed in table 5.9) is

14 seconds, and thus, the time to solve from the end of the decomposition to

optimality is 21.469 seconds.
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Table 5.11: Computation (CPU) time for solving the 5 and 10 period models
from the end of the decomposition to the nominal operation point. CPU time
shown is for the decomposition time plus the solve time from the end of the
decomposition to optimality. Difference between this combined time and
the solve time of the conventional direct solving method (from duplicated
periods to nominal operation) is listed, and the percent deviation from the
profit obtained in that problem. Dashes (-) denote a failure to converge.

No. of Decomp. Combined ∆ Combined Time ∆ Nominal

Iterations CPU Time (s) From Original (s) Profit (%)

5 Period Model

1 35.469 70.5 0.509

2 45.644 60.4 0.510

3 74.358 31.6 0.462

4 78.884 27.1 0.462

5 116.339 -10.3 0.462

6 - - -

7 119.304 -13.3 0.394

8 108.735 -2.7 0.457

10 Period Model

1 153.188 192.8 6.323

2 251.462 94.5 6.115

3 229.546 116.5 6.078

4 262.587 83.4 6.295

5 430.222 -84.2 6.244

For the 5 period model, there is a significant improvement compared to the

full-space solution in starting from the end point after 1 to 4 iterations of the

decomposition. Combined with the time required for decomposition, there is a

70.5 second reduction in computational time from the original computational
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time (106 seconds from table 5.2) for using 1 iteration of the decomposition.

Similarly for 2 iterations of decomposition, there is an improvement of 60.4

seconds from the original solve. There is a reduction up until 5 iterations of

decomposition, where the total solution time becomes slower than the original

CPU time. This indicates that the end point of the decomposition becomes

a poorer initial guess as iterations of the algorithm increases due to longer

times in solving from the end point to optimality. The longer times required

to complete the decomposition phase (listed in table 5.9) also contribute to

the increased CPU times. These results are also shown for the 10 period

model, where 1 iteration of the decomposition provides an excellent starting

point to provide more than a 3 minute improvement in solution time (this is

compared to a solve time of 346 seconds). As well, the initial guess deteriorates

significantly once the algorithm passes 4 iterations. Thus, in order to reap the

benefits of the decomposition scheme, it is better to stop the algorithm early

and use the early termination as a good starting point.

In order to further investigate the effect of using the end point of the decom-

position as an initial guess, figures 5.12 to 5.14 show the evolution of objective

function starting from the end of the decomposition phase up to optimality

of nominal operation. The y-axis shows the normalized profit, relative to the

final objective profit, which is calculated as:

ProfitNormalized
i =

Profit f − Profiti

Profit f

where Profit f is the final profit value, and Profiti is the profit at the current

iteration i. Figure 5.12 shows the evolution in objective function for 1 iteration

of the decomposition algorithm, while figures 5.13 and 5.14 shows the results

for 4 and 7 iterations of the decomposition algorithm, respectively.
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Figure 5.12: Objective value (profit) versus iteration number for solving the 5 period
model using the end of the decomposition (after 1 run of the decomposition) as the
initial guess to nominal operation optimality. Solved using IPOPT at the default
tolerance. Profit is normalized based on the final profit value obtained from the
optimization.

Figure 5.13: Objective value (profit) versus iteration number for solving the 5 period
model using the end of the decomposition (after 4 runs of the decomposition) as
the initial guess to nominal operation optimality. Solved using IPOPT at the default
tolerance. Profit is normalized based on the final profit value obtained from the
optimization.
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Figure 5.14: Objective value (profit) versus iteration number for solving the 5 period
model using the end of the decomposition (after 7 runs of the decomposition) as
the initial guess to nominal operation optimality. Solved using IPOPT at the default
tolerance. Profit is normalized based on the final profit value obtained from the
optimization.

The trend in figure 5.12 shows that the solution moves directly to the final

objective, while figures 5.13 and 5.14 both start closer to the final objective, but

move away from the optimum before finding the correct search direction to

move closer to the optimum. This is an indication that although the initial

objective is close to the solution, the constraints affect the search direction at

that point and drive the search direction away from the optimum. It takes

time for CONOPT to determine the next search direction, as CONOPT must

identify the active-set constraints at every iteration and may elect to move to a

worse objective while reducing constraint infeasibility. This is supported by

figures 5.15 to 5.17, where the constraint violation evolution is shown on the

y-axis, and the iteration number is shown on the x-axis for the 5 period model

for 1, 4, and 7 runs/iterations of the decomposition algorithm.
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Figure 5.15: Constraint violation versus iteration number for solving the 5 period
model using the end of the decomposition (after 1 run of the decomposition) as the
initial guess to nominal operation optimality. Solved using IPOPT at the default
tolerance.

Figure 5.16: Constraint violation versus iteration number for solving the 5 period
model using the end of the decomposition (after 4 runs of the decomposition) as
the initial guess to nominal operation optimality. Solved using IPOPT at the default
tolerance.
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Figure 5.17: Constraint violation versus iteration number for solving the 5 period
model using the end of the decomposition (after 7 runs of the decomposition) as
the initial guess to nominal operation optimality. Solved using IPOPT at the default
tolerance.

Figures 5.15, 5.16, and 5.17 show the constraint violation for the 5 period model

for 1, 4, and 7 runs/iterations of the decomposition algorithm. This supports

the claim that for the 4 and 7 iteration cases, the objective function moves

away from the optimum because CONOPT chooses to reduce the constraint

violation before improving the objective.

Additionally, figure 5.18 shows the difference between the optimum and the

final objective at iteration 0 for the 5 period model for varying runs/iterations

of the decomposition algorithm. The x-axis shows the number of times that

the decomposition algorithm was run, while the y-axis shows the normalized

profit at iteration 0, relative to the final objective value. Figure 5.18 shows

that running the decomposition for more iterations moves the initial starting

point closer to the optimal value. Again, the starting objective value cannot be

used as an indication of how fast the solver will find the optimum; rather, it

also depends on the constraint infeasibility and the search direction that the

solver may decide to go. As well, running the decomposition longer may not

provide a better starting point, and for this model in particular, running the
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decomposition longer actually provides worse starting points.

Figure 5.18: Starting objective values (from iteration 0) versus the number of decompo-
sition iterations/runs for the 5 period model. The objective values are from iteration 0
using the end of the decomposition as the initial guess. The objective value (profit) is
normalized based on the final profit value at optimality (of nominal operation). Using
6 runs of decomposition as the initial guess does not allow IPOPT to converge.

In summary, the Lagrangean decomposition scheme was implemented for

the petroleum refinery multiperiod model. The inclusion of tank properties

in the decomposition scheme increased the complexity of the algorithm, as

the algorithm has previously been demonstrated for models with only the

inventory as the interconnection constraint. As well, the nonlinearity and

nonconvexity of the model proves difficulty in finding feasible solutions for

the primal problem and part of the dual problem. Nonetheless, the end point of

the decomposition may be used as an initial guess to solve the original model

to optimality (to nominal operation). Varying the number of decomposition

iterations can provide better initial guesses than running the decomposition

until no improvement is made.

There are various avenues that may be explored in order to achieve feasible

results or decrease computational times. A better initialization strategy is

required in order to potentially allow feasible solutions and is an area of

exploration that would be beneficial to study. The possibility of utilizing
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parallelization may also be suggested for future work. As each time period

is solved independently, it may be proposed to parallelize the problem. As

it stands, each time period is being solved consecutively and although each

period may only take one to two seconds to solve, these times start to add up

in larger problems, such as with 30 periods. Since each period is independent

of the others, then it may be possible to solve all time periods simultaneously

using multiple cores/threads in processors and save more time during the

decomposition phase. Potential future work could also include an improved

initialization scheme for both the dual and primal subproblems. Currently, the

initial point passed onto the dual problem is not completely feasible, and once

the solution of the dual is passed onto the primal problem, it is infeasible.
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6.1 Key Findings and Contributions

The development and applications of a multiperiod petroleum refinery op-

timization model were described and implemented in this work. Various

aspects of the model were explored using termination criteria, computation

time, as well as other metrics as the basis for comparison. Several studies

illustrated model behaviour and included comparison of the method utilized

by TOTAL to solve the model versus IPOPT/CONOPT for various case studies

that deviate from normal operation of the refinery; testing the performance

of IPOPT/CONOPT for various multiperiod model sizes; and comparing

solution strategies for solving the model. The implementation of Lagrangean

decomposition was a major component of the work as well; exploring the

effect of the decomposition on the initial guess for the solution of the full space

problem.

The key contributions and findings of this work are as follows:

• When solving the case studies (deviation from nominal operation), using

IPOPT and CONOPT both have significant advantages in convergence

time compared to the method utilized by TOTAL in solving their model.

Although the models are not exactly the same (due to the TOTAL model

having four additional tanks), both models behave in a similar fashion

and all objective function values and variables solve within the same

range and magnitude. Thus, the results provide context and estimation

of the solution times.

• The single period model solves to the same points as the TOTAL model

within a maximum of 0.2% of objective function difference for 13 different

test cases and verifies that there is little mismatch between the two
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models and can be extended to the multiperiod case for context.

• The computation times increase nonlinearly and significantly when the

model is expanded from 5 periods up to 10 and 30 periods for solving

both to the nominal operation point and to the case studies. Both IPOPT

and CONOPT solve to the same objective value, which shows consistency

between the solvers.

• The convergence tolerance set for IPOPT may be relaxed, as the larger

tolerance does not affect the solution when solving from the initial point

to the nominal operation point, but does provide a significantly faster

convergence time for models larger than 5 periods.

• The Lagrangean decomposition was not able to find feasible solutions, as

the inclusion of tank properties in the decomposition scheme increased

the complexity of the algorithm and the nonlinearity and nonconvexity

of the model proved difficult in finding feasible solutions.

• The end point of the decomposition proved to be an acceptable initial

guess for solving the full space model to optimality at nominal operation,

depending on the how long the decomposition was run for. It was found

that a faster solution was found using a low number of decomposition

iterations. This is indicative that the current decomposition model may

drive the optimization further from the optimum, mainly due to the

constraints. For longer decomposition runs, the objective function moves

closer to the optimum but due to the infeasibilities in the primal and dual

subproblems, the decomposition may be further violating the constraints.
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6.2 Recommendations for Future Work

Several areas that may be considered for further exploration are identified.

They are:

• Possibility of utilizing parallelization may be suggested for future work.

As it stands, each time period is being solved consecutively and although

each period may only take one to two seconds to solve, these times start

to add up in larger problems, such as the 30 period model. By being able

to parallelize the problem, all time periods could be solve simultaneously

and thus, saving time spent in the decomposition phase.

• Improved initialization scheme for both the dual and primal subprob-

lems in the decomposition. Currently, the initial point passed onto the

dual problem is not completely feasible, and once the solution of the dual

is passed onto the primal problem, it is also infeasible. An initialization

strategy may provide benefit to finding feasible solutions for both the

primal and dual subproblems and should be applied to the general case

to allow flexibility in modifying the model (e.g. number of periods).

• Incorporation of additional intermediate product tanks. In the current

model, only four intermediate tanks are included in the model, while

the TOTAL model includes eight tanks - this was due to consideration

of time, as the study was to study the multiperiod problem and not all

tanks were required to model the problem.

• Formulation of uncertainty in the multiperiod model. There are various

elements in the refinery model that may be explored in regards to uncer-

tainty. These include supply uncertainty, fluctuations in feedstock and
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product prices, and fluctuations in pricing of utilities (natural gas).

• Different configurations and further case studies. The same model was

used throughout this work for both the single period and multiperiod

studies. Various configurations of the refinery may be studied, such as

inclusion of units that did not appear in this work. Additionally, other

case studies such as catalyst scheduling and crude scheduling may be of

interest. In catalyst scheduling, it may be pertinent to study the activity

of the catalyst and provide conditions on when to shutdown the unit

and replace the catalyst. In crude scheduling, it would be of interest to

determine the optimal crude slate based on properties of the crude (e.g.

sulfur content).

• Inclusion of integers and binary variables in the model. At the present

moment, the model is a continuous NLP. With the implementation of

binary and integer variables, other studies such as unit start-up and

shutdown may be studied, as well as changing the operating mode of a

unit (e.g. deciding on catalyst type or switching operating conditions).

• Further exploration of solver options, in both IPOPT and CONOPT -

for example, a different strategy may be used to calculate the barrier

parameter. There are two methods to calculate the barrier parameter: the

monotone (Fiacco-McCormick) strategy (default), or an adaptive update

strategy. These are further explained in the IPOPT documentation.
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