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Abstract

Mathematical modeling of ocean waves is based on the formulation and solution of

the appropriate equations of continuity, momentum and the choice of proper initial

and boundary conditions. Under the influence of gravity, many free surface water

waves can be modeled by the shallow water equations (SWE) with the assumption

that the horizontal length scale of the wave is much greater than the depth scale

and the wave height is much less than the fluid’s mean depth. Furthermore, to

describe three dimensional flows in the hydrostatic and Boussinesq limits, the

multilayer SWE model is used, where the fluid is discretized horizontally into a

set of vertical layers, each having its own height, density, horizontal velocity and

geopotential. In this study, we used an explicit staggered finite volume method

to solve single and multilayer SWE, with and without density stratification and

bathymetry, to understand the dynamic of surface waves and internal waves.

We implemented a two-dimensional version of the incompressible DYNAMICO

method and compare it with a one-dimensional SWE. For multilayer SWE, we

considered both two layer and a linear stratification of density, with very small

density gradient, consistent with Boussinesq approximation (∆ρ
ρ
� 1). We used

Lagrangian vertical coordinate which doesn’t allow mass to flow across vertical

layers. Numerical examples are presented to verify multilayer SWE model against

single layer SWE, in terms of the phase speed and the steepness criteria of wave

profile. In addition, the phase speed of the barotropic and baroclinic mode of two-

layer SWE also verified our multilayer SWEmodel. We found that, for multilayer

SWE, waves move slower than single layer SWE and get steeper than
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normal when they flow across bathymetry. A series of numerical experiment

were carried out to compare 1-D shallow water solutions to 2-D solutions with and

without density as well as to explain the dynamics of surface wave and internal

wave. We found that, a positive fluctuations on free surface causes water to rise

above surface level, gravity pulls it back and the forces that acquired during the

falling movement causes the water to penetrate beneath it’s equilibrium level,

influences the generation of internal waves. Internal waves travel considerably more

slowly than surface waves. On the other hand, a bumpy or a slicky formation

of surface waves is associated with the propagation of internal waves.

The interaction between these two waves is therefore demonstrated and discussed.
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Chapter 1

Introduction

The Oceans have a significant influence on Earth’s weather and climate. They

cover roughly 70% of the Earth’s surface and provide a large reservoir for heat

and other constituents of the Earth’s climate system. This great reservoir con-

tinuously exchanges heat, moisture, and carbon with the atmosphere and driving

our weather patterns. Due to it’s buffering abilities, the ocean represents the

flywheel of the Earth’s climate system [1]. Thus the scientific understanding of

the ocean’s time mean state, as well as it’s variability and it’s stability to vari-

ous forms of perturbations, represents a key goal of physical oceanography. Our

inability to perform controlled experiments on large- scale systems, leads to com-

puter model as a critical tool for justifying climate phenomena. Mainly, computer

models are becoming primary tool for predicting physical and biological character-

istics of the ocean fluid. But the study of these geophysical phenomena involves

complex geometries. Numerical simulations of such flows are still very demanding

and challenging.
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In the past decades, significant advances have been realized in terms of math-

ematical modeling to reduce the complexity of the original primitive equations ,

leading to the importance of shallow water systems [2]. Shallow water systems are

the usual model to describe the flow in rivers and channels. Apart from these,

they also describe the oceanic and atmospheric circulations at very large horizon-

tal scales. In physical oceanography, the shallow water equations (SWE) are

mainly used for simulating Tsunami wave propagation. The main assumptions of

the SWE are that the horizontal length scale is much greater than the depth scale

and the wave height is much less than the fluid’s mean depth. Under this assump-

tion, conservation of mass implies that the vertical velocity of the fluid is small.

But ocean dynamics is not as simple as we think. The temperature and salinity

variations of ocean leads to the variation of density, which profoundly affects the

dynamics of oceanic flow. Considering these aspects has led to the multi-layer

shallow water system.

The multi-layer shallow water model is used to describe three dimensional com-

pressible or incompressible flows in the hydrostatic limit, where the fluid is dis-

cretized horizontally into a set of layers, each with its own height, density, ve-

locity, temperature and geopotential. The hydrostatic approximation is valid pro-

vided horizontal fluid accelerations are much less than gravitational acceleration g.

This approximation breaks down at small scales, or when convection is important.

Moreover, by including Coriolis term, this model can also describes large scale

atmospheric and oceanic flows. Beside this, Bathymetry is one of the most impor-

tant parameters for an ocean model because it is one of the most important keys to

understand the vertical mixing mechanisms in the ocean. Dense bottom water can

2
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spill through the fracture zones and other deep-sea passages at very high velocity

and experience strong mixing as they surge over rough bathymetry. On the other

hand, mid-ocean tidal velocities are too weak to generate turbulence on its own.

Thus, when they flow over rough bathymetry, they interact with bathymetry to

produce internal waves. These waves propagate into the water column above and

produce turbulence to 1000− 2000 m above the bottom [3]. These all mechanisms

involve with bathymetry, points to the necessity of improving the knowledge of

bathymetry, to better understand the deep and intermediate ocean circulation.

In the last few years, several numerical methods have been developed to solve

the single layer shallow water system. Andreas et al. [4] used the finite volume

scheme to solve the one dimensional shallow water equations based on a contin-

uous, piecewise linear discretization of the bathymetry. Their main idea was to

design special reconstruction of water level at wet/dry fronts, in the framework of

the second-order semi-discrete central-upwind scheme to preserve the positivity of

water height as well as to handle friction forces with wetting and drying. Nikolos

et al. [5] formulated and validated a node-centered finite volume numerical scheme

for unstructured triangular meshes in order to investigate the potential to com-

pute flow regimes modeled by the non-linear shallow water equations. Burguete

et al. [6] and Cea et al. [7] dealt with the robust treatment of friction forces term

which was included in the momentum equation of the 1D shallow-water model

with drying and wetting. The work in [6] shows that pointwise discretization of

the friction term unbalances this term with the rest of the terms in the equation

in steady state while an upwind discretization of the friction term ensures the

correct discrete balance. On the other hand, in [7], their work involves the finite

3
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volume discretisation of the bed friction term in the two-dimensional shallow wa-

ter equations. They analysed that the discretisation improves the accuracy of the

model where the bed friction is a relevant force in the momentum equation, and it

guarantees a perfect balance between gravity and bed friction under uniform flow

conditions.

Yulong and Xiangxiong [8], explored the extension of high order discontinu-

ous Galerkin methods for the shallow water equations on unstructured triangular

meshes. They confirmed that the resulting scheme guarantees the positivity of

the water depth. Their numerical example also verified the positivity-preserving

property, higher order accuracy and well balanced property for smooth and dis-

continuous solutions.

Emmanuel et al. [9] found that for single layer shallow water system, a well

balanced scheme with local hydrostatic reconstruction is more stable than a finite

volume scheme. Moreover, this simple and fast well balanced scheme preserves the

nonnegativity of the water height and satisfies a semidiscrete entropy inequality.

Kevlahan and Dubos [10] developed a conservative adaptive wavelet method

for solving the shallow water equations on a staggered hexagonal C-grid. This

method was implemented for regular planar geometry in Matlab and demonstrated

the potential of this method for simulating multiscale geophysical flows. They

ensured that there is no numerical generation of vorticity when solving the SWE

and also mass is conserved. In the following year, they extended the adaptive

wavelet approach to the sphere and reimplements the algorithm in Fortran 95

and message passing interface [11]. Their goal was to achieve high computational
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efficiency and good parallel scaling.

Apart from the single layer shallow water equations, several techniques have

been developed to solve the two layer shallow water equations, where the bottom

layer is comparatively denser than the top layer. The Q-scheme [12], relaxation ap-

proach [13] and central-upwind scheme [14] are the most popular schemes to solve

two layers approximations. Kyle proposed high-resolution f-wave-propagation fi-

nite volume methods to solve two layer shallow water equations with variable

bathymetry [15].

Finally, several numerical scheme have been proposed for solving one dimen-

sional multilayer shallow water equations with mass transfer, without density strat-

ification [16] and within density stratifications [17]. In [16], the authors proposed

a multi-layer model to simulate free surface density-stratified flows over variable

bathymetry. They showed that multilayer system admits a kinetic interpretation,

and they used this to formulate a robust finite volume scheme for its numerical

approximation. Couderc et al. [2] presented an explicit Froude scheme for solving

multilayer shallow water model with density stratifications. They highlighted the

stability and efficiency of the scheme and ensured robustness and well-balanced

properties for motionless steady states. Francois and Vladimir proposed a robust

well-balanced scheme for multi-layer shallow water equations [18]. They introduced

a variant of splitting scheme which ensured the conservation of total momentum

and dealt with the restriction of complex eigenvalues. In [19], Parisot and Vila in-

troduced a multi-dimensional numerical scheme approximating the solutions of the

multilayer shallow water model in the low Froude number regime. They showed

that their numerical solutions satisfied the dissipation of energy and other physical
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properties required for oceanic flows. Andrew and Paul derived Multilayer shallow

water equations with complete Coriolis force on a non-traditional beta-plane [20].

Dubos et al. [21] presented the design of the icosahedral dynamical core DY-

NAMICO where DYNAMICO solves the multi-layer rotating shallow-water equa-

tions. In their model, the horizontal mesh is a quasi-uniform icosahedral C-grid

and the vertical discretization is obtained from the three-dimensional Hamiltonian

formulation. They used Explicit Runge–Kutta time integration for dynamics and

forward-in-time integration with horizontal/vertical splitting is used for tracers.

The choice of vertical coordinate is one of the most important aspects of ocean

model’s design. There are several vertical coordinate systems in use, such as

z-coordinates, σ-coordinates, layered and isopycnal coordinate systems. In z-

coordinate system, the vertical coordinate is depth. This coordinate system is

useful in the areas that are well mixed because they can provide very fine reso-

lution which is needed to represent three-dimensional turbulent processes. But

in the region of sloping bathymetry, the levels of this coordinate system inter-

sect with bathymetry and generate unrealistic velocities near the bottom. On the

other hand, sigma coordinate is the vertical coordinate system that follows the

bathymetry and free surface and keeps the same number of vertical grid points

everywhere in the domain. A large number of hydrostatic and non-hydrostatic

models use pressure based terrain-following sigma coordinates as the vertical coor-

dinate ([22],[23], [24], [25]). This coordinate system is appropriate for the continen-

tal shelf and coastal regions. But the model, that use sigma coordinate systems,

has difficulty for handling sharp topographic changes from one grid point to other.

Because pressure gradient error can give rise to unrealistic flows. In Isopycnal

6

http://www.mcmaster.ca/


Masters of Science– Afroja Parvin; McMaster University– CSE

coordinate system, models use potential density referenced to a given pressure as

the vertical coordinate. This system divides the water column into distinct homo-

geneous layers and the thickness of these layers can vary from place to place and

time to time. This coordinate system is good for lateral transfer process and they

also can have complex bathymetry.

Another well developed vertical coordinate system is Lagrangian vertical coor-

dinate system. It was first formulated in [26], and was reviewed and discussed in

[24]. A floating mass coordinate that does not allow mass to flow across vertical

layers, is called Lagrangian vertical coordinate. One of the major advantage to

apply this coordinate system is that it reformulates 3D motion into pure horizon-

tal 2D flow within the floating Lagrangian layers and the resulting system closely

resembles that of shallow water system [27]. The Lagrangian coordinate system

requires periodic remapping in order to avoid severe deformation of the vertical

mesh that might occur when vertical layers pinch together or move too far apart.

Waves in the free surface of the ocean are mainly generated by wind. These

wind driven waves or surface waves are mainly created due to the friction between

air and surface water. They can also form as a result of geological effects. Tsunami

are one of the most common examples of surface waves. These waves can form

when a rapid shift in water is caused by underwater earthquakes or landslides. On

the other hand, internal waves form in the interior of the ocean. Similar in many

aspects to surface waves which travel along the sharp density interface between

air and water, internal waves propagate along the density gradients within the

ocean. Perturbations to these density gradients are restored by gravity, generating

a propagating wave. Kelvin waves are one of the most common examples of internal
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waves.

Internal waves are triggered when the interface between the layers of different

densities is perturbed. The trigger can be the momentum generated by a ship or

could be due to tidal motions [28]. In 1893, a Norwegian oceanographer, Fridtjof

Nansen reported a mysterious phenomenon, called dead water. He wrote that,

a boat may experience strong resistance to forward motion in apparently calm

conditions [29]. The water directly below his ship was less salty because fresh

water had been added at the ocean surface because of melting sea ice. The interface

between two layers of different density supported internal waves which stole energy

from ship and resisted the forward motion of the ship.

The main goal of this thesis is to implement a two-dimensional version of the

incompressible DYNAMICO method with bathymetry and density stratification

and compare it with a one-dimensional SWE. We verify our multilayer model by

comparing the phase speed and wave behavior with that of single layer SWE and

by verifying correct behaviour of internal waves. In addition, one of the most

important goal of this study is to understand the dynamics and the interaction

between surface waves and internal waves . Regarding this, a series of numerical

experiments have been evaluated to predict the reason behind this interaction, in

the presence of bathymetry.

The outline of this thesis is as follows: In Chapter 2 the preliminaries of this

study are described. We introduce Single layer and multilayer shallow water equa-

tions and their derivation from the Euler equation, as well as the principles of

conservation of mass and momentum. We discuss the approximations we made
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for our system such as hydrostatic and geostrophic balance. We mathematically

derive the Boussinesq approximations which we considered only when density is

multiplied by gravity. We also look at the different forms of wave solution and

the computations of dispersion relations between wave number and frequency have

been included too.

In Chapter 3, the numerical scheme to solve our system are introduced. We use

second order finite difference- finite volume scheme on a staggered grid, to solve

both single layer and multi layer shallow water equations. For single layer SWE,

water height η is discretized at the center of each cell and velocity u is discretized at

the edge of each cell. In multilayer case we introduce Lorenz staggering for vertical

discretization. For the horizontal discretization, we calculate the velocity (u) at

the edge of each cell and inertial mass (µ) and mass weighted density distribution

(Θ) has been calculated at the center of each cell. The Lagrange multiplier (i.e.

pressure) is discretized at the center of each cell for all full vertical levels where

as geopotential is discretized at the interfaces of each vertical layer. For the time

integration, we use third-order four stage Runge-Kutta scheme. We also discuss

the stability of our solver, challenges we face to solve our system and the necessity

of meeting CFL condition to get stable solutions.

The technique for the validation of multilayer SWE model, and a series of

numerical experiments which helps to explain the phenomena of surface waves

and internal waves, is described in chapter 4. The former includes two sections:

one include the comparison of single and multilayer SWE model for the phase

speed and wave profile of surface waves and the other one is for the internal

waves. In other words, the characteristics of barotropic and baroclinics mode of
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the two-layer SWE has been presented. In the later sections, the following three

numerical experiments were conducted. Firstly, we consider a positive fluctuations

to the free surface of ocean in a two layer stratified fluid with a very small density

differences, consistent with Boussinesq approximation, to observe the generation

of both surface waves and internal waves. The initial set up of second experiments

is the same as the previous case, apart from the fact that now we consider a linear

stratified density. In our last experiment, we consider a small perturbation of

density at the interface between two layers of different densities, to observe the

generation of internal waves as well as, how that influences the propagation of

waves at the free surface of ocean. All of these experiments have been done with

and without the consideration of bathymetry.

The final chapter summarizes the main results of this thesis and outlines possible

future work, that were not included in this study.

10
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Chapter 2

Basic Theory

2.1 Introduction

The shallow water equations (SWE) describe the motion of a thin layer of

constant density fluid which are kept in hydrostatic balance. It is bounded from

below by a rigid surface and from above by a free surface and the horizontal length

scale is much larger than the vertical one. Above this free surface, we consider the

inertia of any other fluid is negligible. This same configuration can be considered

for the generalization of multilayer fluid where one fluid lie on the top of others,

forming a stacked shallow water system. Basically, the Shallow water equations

is derived from the conservation of mass and momentum in the case where the

scale of horizontal motion is much greater than that of vertical motion and the

wave height is much less than the fluid’s mean depth. Under these assumptions,

conservation of mass implies that the vertical velocity of the fluid is small. From

11
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the momentum equation, it also can be shown that vertical pressure gradients are

nearly hydrostatic, i.e vertical accleration is much less than gravity. Beside this,

vertical integration allows to remove vertical velocity from the equations. Thus

the Shallow water equations are derived.

Figure 2.1: A Single layer Shallow water system, h(x, t) = H + η(x, t)− b(x)
is the thickness of fluid layer. Vertical fluid particle velocity is given by material
derivative of the free surface position η(x, t). Also L

H � 1 and η
H � 1.

.

The major application of the shallow water equations are in marine flow predic-

tion, particularly the interest is connected to tsunamis, where a tsunami is defined

as a seismically induced wave that propagates in the region of the continental

shallows and shelf. Moreover, tsunamis also propagates in the open ocean.

Figure 2.1 represents the single layer of fluid where η(x, t) is the displacement

of free surface, h(x, t) = H+η(x, t)− b(x) is the total thickness and H is the mean

height from the flat bottom.

12
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To derive the SWE, we start with the Euler equations. These equations describe

how the velocity, pressure and density of moving fluid are related. The Euler

equations neglect the viscosity of the fluid which is included in the Navier-Stokes

equations. The mass and momentum equations are:

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

Du
Dt

+ f× u + 1
ρ
∇p = 0. (2.2)

where u(x, y, z, t) is the velocity of the fluid particles, ρ is the density of the fluid, p

is the pressure and f = 2Ω sin Φ is called Coriolis parameter. Here Ω is the angular

velocity of Earth’s rotation and Φ is the latitude. But for this thesis, we will focus

on only horizontal and vertical slice which means the velocity of the fluid particles

would be function of x, z, and t.

So to derive shallow water equation for single layer of fluid from Euler’s mass

and momentum equations, we are using the following assumptions:

1. The horizontal length scale is much greater than the vertical length scale(
L
H
� 1

)
,

2. The wave height is much less than the fluid’s mean depth
(
η
H
� 1

)
,

3. Vertical pressure gradient are in hydrostatic balance
(
∂p
∂z

= −ρg
)
. This

means that vertical acceleration is much less than gravity
(
duz
dt
� g

)
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In this chapter, first we will discuss the assumptions based on hydrostatic and

geostrophic balance. Then we will derive the SWE. We will also introduce Boussi-

nesq approximation, which gives us a more general set of equations utilizing the

fact that density variation in the oceans is very small and so density variations

enter only via buoyancy . Then we will introduce the SWE for multilayers of

fluid. Finally, we will end with a discussion on the different wave solutions of the

Shallow water equation. For completeness, we will discuss gravity wave, Kelvin

waves and Rossby waves for two dimensional SWE and Internal gravity waves for

one dimensional shallow water equation.
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2.2 Hydrostatic and Geostrophic Balance

2.2.1 Hydrostatic Balance

The ocean is in hydrostatic equilibrium when the pressure gradient force drawing

parcel upwards from higher pressure near the surface to lower pressure aloft, is

balanced by the force of gravity pulling the parcel back down to the surface. In

the derivation of SWE, we assumed that the system was in hydrostatic balance

because the definition of shallow water states that horizontal scale of flow is much

greater than the vertical scale of flow.

Consider the momentum equation in Z-direction.

Dw

Dt
= −1

ρ

∂p

∂z
− g. (2.3)

Using dimensionless quantity, the non-dimensional form of (2.3) is;

U2H

L2 = p

ρH
g. (2.4)

where the order of magnitude of horizontal velocity U = 10ms−1 , horizontal

length L = 106m, the order of magnitude of the vertical scale H = 104m, pressure

p = 105hPa, density ρ = 1Kgm−3 and gravity g = 10ms−2. Using these we get

from (2.4);

U2H

L2 = p

ρH
g

10−6 � 10 10
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Comparing these components we can see that the order of magnitude on the left

hand side are much smaller than compared to those on the right hand side. So

by neglecting the left hand side of equation (2.3) finally we get the equation for

hydrostatic balance
∂p

∂z
= −ρg. (2.5)

Also if we consider the aspect ratio of horizontal-vertical scale, we should start

with continuity equation. So ∇ · u gives U
L
∼ W

H
. Thus the order of magnitude

of horizontal advective terms of the vertical momentum equation becomes Dw
Dt
∼

UW
L

= U2H
L2 . So the ratio,

∣∣∣Dw
Dt

∣∣∣∣∣∣ ∂p
ρdz

∣∣∣ ∼
U2H
L2

Φ
H

∼
U2H
L2

U2

H

= H2

L
.

where Φ is the change in φ = ∂p
ρ
and for λ− h scale, by considering the horizontal

non-rotating Boussinesq momentum equation, we have Du
Dt

= −∇φ, which implies

that φ ∼ U2. For hydrostatic balance the magnitude of the pressure gradient is

greater than the material derivative of the fluid flow for large scale motions, so we

can say that H2

L
� 1. so we have justified that H � L.
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2.2.2 Geostrophic Balance

Sea water naturally tends to move from region of high pressure to a region of low

pressure. The force pushing the water towards the low pressure region is called

pressure gradient force. In a geostrophic flow, instead of water moving from high

pressure region to low pressure, it moves along the lines of equal pressure (isobars).

This occurs because of the rotation of earth, resulting a force felt by the water

moving from high to low, known as Coriolis force. The Coriolis force is at right

angles to the flow and when it balances the pressure gradient force, the resulting

flow is known as geostrophic.

In other words, a flow is in geostrophic balance if the relation Φ ∼ fUL holds.

Where U is the magnitude of horizontal velocity, L is the horizontal scale over

which it varies, f is the Coriolis parameter and Φ is the pressure deviation. so we

have ∣∣∣Dw
Dt

∣∣∣∣∣∣ ∂p
ρdz

∣∣∣ ∼
UW
L

fUL
H

∼ U

fL

WH

UL
= R0

H

L
.

where R0 = U
FL

is called the Rossby number. If R0 � 1 we say that the Coriolis

force is balanced by the horizontal pressure gradient and the flow is in geostrophic

balance.

The geostrophic equations are the simplified form of the Navier Stokes equations

in a rotating frame. In particular, it is assumed that there is no acceleration, no
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viscosity and the pressure is hydrostatic. The resulting balance is;

fv =1
ρ

∂p

∂x
,

fu =− 1
ρ

∂p

∂y
,

0 =− ∂p

∂z
− ρg.

For the Shallow water system the horizontal momentum equations are reduced in

the form;

−fv =− g ∂η
∂x
, (2.6)

fu =− g∂η
∂y
. (2.7)

2.3 Single layer SWE

The single-layer SWE model is one of the simplest and useful model in Geophysical

fluid dynamics because it allows to consider the Coriolis effect due to the rotation

of earth in a simple framework rather than using complicated effects of stratifi-

cations. By the definition of Shallow water dynamics, horizontal scale of flow is

much greater than the depth of the water and the height of wave is much smaller

than the mean depth of fluid. Thus the fluid motion is fully determined by the

mass continuity and momentum equations. In the following section we derive the

SWE for a vertical slice (x,z) using mass and momentum conservation and the

appropriate approximations introduced earlier.
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2.3.1 Mass Conservation equation

Consider two dimensional (x-z) motions on a non-rotating shallow body of water

with uniform density. To derive SWE, the first step is to consider mass conserva-

tion. We integrate the continuity equation ∇ · u = 0, vertically as follows,

∫ η

−(H−b)
(∇ · u) dz = 0,

⇒
∫ η

−(H−b)

[
∂u

∂x
+ ∂w

∂z

]
dz = 0,

⇒ ∂

∂x

∫ η

−(H−b)
udz − u|z=η

∂η

∂x
+ u|z=−(H−b)

∂ [−(H − b)]
∂x

+ w|z=η − w|z=−(H−b) = 0,

⇒ ∂

∂x

∫ η

−(H−b)
udz − u|z=η

∂η

∂x
+ w|z=η = 0,

⇒ ∂η

∂t
+ ∂

∂x

∫ η

−(H−b)
udz = 0,

⇒ ∂η

∂t
+ ∂

∂x
[(η +H − b)u] = 0.

For a flat bottom b = 0, so the continuity equation is;

∂η

∂t
+ ∂

∂x
[(H + η)u] = 0.

In vector form :
∂η

∂t
+∇ · (ηu) = 0. (2.8)
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2.3.2 Momentum equation

Now in the similar way, consider the momentum balance of water in volume. We

shall need to know the distribution of pressure P within water. For doing this we

use the principle of hydrostatic balance, which states that the pressure increases

with depth according to overhead mass per unit area. So the hydrostatic pressure

is,
∂p

∂z
= −ρg,

and then by integrating with respect to z we get,

p = p0 − ρgz. (2.9)

At the top of the fluid the pressure is determined by the weight of the overlying

fluid and this is assumed negligible, thus p = 0 on free surface z = h = η(x, t)

gives p0 = ρgη. Substituting the value of p0 to equation (2.9) gives

p =ρgη − ρgz;

=ρg(η − z);

=ρg(h(x, t)− z).

The consequence of this is that the horizontal gradient of pressure is independent

of height. That is ∇p = ρg∇η Substituting the value in our momentum equation

(2.2) by neglecting Coriolis effect, gives

Du
Dt

= −1
ρ
∇ (p) = −g∇η (2.10)
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Thus combining the momentum and conservation of mass, we get the SWE

∂η

∂t
+∇ · (ηu) = 0, (2.11a)

Du
Dt

+ g∇η = 0. (2.11b)

When η
H
� 1 and u� 1 then we get the linear form of SWE for the perturba-

tions η(x, t) and u(x, t):

∂η

∂t
+ ∂u

∂x
= 0, (2.12)

∂u

∂t
+ g

∂η

∂x
= 0. (2.13)
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2.4 One Dimensional Boussinesq Approximation

The SWE model is an efficient numerical tool for the simulation of large scale long

waves and for shallow water flows. But when it is applied to relatively short waves

or weekly nonlinear dispersive waves such as solitary waves, the errors could be un-

bearable. The reason behind this is as follows; in SWE model, the wave dispersion

is completely neglected if we exclude Coriolis force in the momentum equation, as

noted in section 2.7.1. Moreover, to model a dispersive wave, nonhydrostatic pres-

sure approximation is required. Because dispersion is a characteristic of nonlinear

or nonhydrostatic waves, occurs when the wave speed is a non-constant function

of the wave amplitude or wave frequency [30].

First depth-averaged model including weakly dispersive and non-linear effects

was derived by Boussinesq, where the non-hydrostatic pressure was approximated

and included in the momentum equation [31]. Later, Peregrine used the depth-

averaged velocity and presumed that vertical velocity varied linearly over depth

[32].

Thus the Boussinesq equations model water waves in shallow water, including

the first order effects of nonlinearity and dispersion, while shallow water equa-

tions neglect frequency dispersion effects on wave propagation. The Boussinesq

equations are derived from the incompressible, irrotational Euler equations.
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The following are the one-dimensional Boussinesq equations for depth averaged

velocity: [4]

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
− H3

3
∂3u

∂x2∂t
= 0, (2.14)

∂η

∂t
+ ∂

∂x
(H + η)u = 0. (2.15)

Under the same conditions, the difference between shallow water equation and

Boussinesq momentum equation is the term H3

3
∂3u
∂x2∂t

, which is neglected in shallow

water equation, but on the other hand this term is retained in Boussinesq mo-

mentum equation. To understand the reason behind this, let us look at the scaled

non-dimensionalised form of the momentum equation.

Non - dimensionalisation:

To non-dimensionalise the system variables, the following parameters ρ, g and H

were chosen, where H is the average depth. This choice are useful but not unique.

Thus we have,

x̃ = x

H
, z̃ = z

H
, h̃ = h

H
, η̃ = η

H
,

t̃ =
√
x

H
t, Ũ = U√

gH
, p̃ = p

ρgH

Scaling:

To examine each part of the equations, it is necessary to scale the individual vari-

ables so that every aspect of the problem has variation of O(1). The nonlinearity
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and dispersion of the system are parameterized by the ratios ε and σ respectively.

ε = a

H
, (2.16)

σ = H

λ
(2.17)

where H is typical water depth, a is the typical wave amplitude and λ is the

typical wave length. The Ursell number is defined as the ratio between these two

parameters that predicts which wave theory will be applicable. Thus we have

Ur = ε
σ2 = aλ2

H3 . The coordinates are scaled as;

x̂ = σx̃, t̂ = σt̃, η̂ = η̃

ε
. (2.18)

Substituting these scales in free surface boundary conditions and in continuity

equation gives the scales of velocity.

Û = Ũ

ε
, Ŵ = W̃

εσ
. (2.19)

So finally, we have the scaled non - dimensional form of momentum equation is;

∂Û

∂t̂
+ εÛ

∂Û

∂x̂
+ ∂η̂

∂x̂
+ σ2

(
h̃2

6
∂2

∂x̂2

(
∂Û

∂t̂

)
− h̃

2
∂2

∂x̂2

(
h̃
∂Û

∂t̂

))
= O(εσ2, σ4). (2.20)

The Boussinesq wave theory is valid in the distinguished limit ε � 1, σ � 1 and

Ur = O(1). That’s why in momentum equation, terms up to O(ε, σ2) are retained.

For SWE, we need to discard the term withO(σ2), and in order to it, we need the

scale ε to be larger than σ2. Thus for SWE we need, Ur � 1, while for Boussinesq

approximation Ur = 1. Therefore, if we have σ2 � ε, the SWE is a better choice,
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otherwise if their magnitude is of O(1) then Boussinesq approximation is the best

option to apply.

2.4.1 Physical dispersion

It is very common to compare the dispersion characteristics of the Boussinesq

equations with those of linear water wave theory [33], [34].

The phase velocity for a wave with frequency ω and wave number k is defined as

c = ω
k
. For linear wave theory, the phase speed is defined by [35],

c2 = ω2

k2 = gH
tanh(kH)

kH
. (2.21)

In the limit, σ � 1, the ratio in (2.21) approach to 1 and so c2 ∼ gH. The

resulting waves are nearly non-dispersive.

Therefore, this approximation can impose severe restrictions on the range of water

depth, for the problem of propagating water wave in a general domain. But the

main goal of the derivation of Boussinesq model is to obtain an approximation of

the ratio in (2.21), in order to extend it outside of the limit σ � 1 [36].

Furthermore, the linearized form of weakly nonlinear Boussinesq equations

(2.14), gives the following dispersion relation,

c2 = ω2

k2 = gH

1 + (kH)2

3

. (2.22)

Without dispersion, equation (2.22) shows that, this dispersion relation reduces to

that of the shallow water equations with phase speed c2 ∼ gH.
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2.4.2 Applications of the Boussinesq equations

Interesting wave phenomena have been found when both nonlinearity and disper-

sion occur together. Under this situations, nonlinear steepening balances dispersive

spreading, and the propagation of waves is known as solitary waves. Boussinesq

equations are one of those equation that satisfies this balanced motion [37].

The nonlinear shallow water equations and Boussinesq equations are most often

used for analyzing the solitary wave phenomenon. [38] have compared these two

approaches for Predicting Solitary Wave runup on plane beaches. They found that,

when solitary waves are close to the slope, the two approaches produce almost

identical results for non-breaking waves. But for breaking waves, the Boussinesq

equations give a better result of the wave evolution before to the breaking point.

On the other hand, nonlinear SWE cannot generally provide a realistic prediction

of the actual location of wave breaking. Since no frequency dispersion is included

in these equations, they are restricted to shallow water region and they are mainly

suitable for describing the propagation and run-up of bores in the inner surf zone

after wave breaking has been fully developed.

In addition, [39] examines the run-up of the flood wave on the downstream dam

wall, and its dependence on the bed slope. They found that the Boussinesq model

gives better agreement with the measurements, since it is capable of capturing the

short undulations at the front of the flood bore.
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2.5 Shallow water equation in Dissipative form

2.5.1 Rotating Flow

In our derivation of the momentum equation in the section 2.3.2, we neglected

the effects of Earth’s rotation, i.e. the Coriolis force was ignored. However, when

we consider rotating flow, we need to include the Coriolis force in our momentum

equation. The effect of the Coriolis force is an apparent deflection of the path of

an object that moves within a rotating coordinate system, as mentioned in section

2.2.2. The object does not actually deviate from its path, but it appears to do

so because of the motion of the coordinate system. On the Earth an object that

moves along a north-south path, will undergo apparent deflection to the right in

the Northern Hemisphere and to the left in the Southern Hemisphere. Thus the

Coriolis deflection is related to the motion of the object, the motion of the Earth,

and the latitude. If u is the velocity of the fluid, ~ω is the angular velocity of

Earth rotation and φ is the latitude then the Coriolis Force is −2~ω sinφ×~u, where

f = −2~ω sinφ is called Coriolis Parameter. By taking into account the Coriolis

force, the momentum equation (2.10) can be written as

Du
Dt

+ f× u = −1
ρ
∇p. (2.23)

So the Shallow water equation (2.11a) and (2.11b) can be written as

∂η

∂t
+∇ · (ηu) = 0, (2.24)

Du
Dt

+ f× u + g∇η = 0. (2.25)
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In conservation form,

∂η

∂t
+ u

∂η

∂x
= 0, (2.26)

∂u

∂t
+ ∂

∂x

(1
2u

2 + gη
)

+ 2Ω× u = 0. (2.27)

2.5.2 Boussinesq approximation for multilayer

The Boussinesq approximation is one of the popular way to solve non-isothermal

flow, such as natural convection flows without having to solve for the full compress-

ible formulation of the Navier-Stokes equations. This is not the same Boussinesq

approximation used for the surface waves. We know the governing equation for

inviscid, non-rotating fluid are;

ρ
Du
dt

+ 2Ω× u = −∇p− ρgẑ, (2.28)
∂ρ

∂t
+∇ · (ρu) = 0, (2.29)

dρ

dt
= 0. (2.30)

This approximation is accurate when density variations are small as this reduces

the nonlinearity of the problem. So in the inertial terms and in the continuity

equation we substitute ρ → ρ0 is constant. It assumes that variations in density

have no effect on the flow field, except when they give rise to buoyancy forces in

the vertical equation of motions. Buoyancy is defined as b = g (ρ0 − ρ) /ρ0. Also

we define reference pressure p0 = −gρoz + constant in hydrostatic balance with

the reference density, and then introduce reference pressure p0 = −gρ0z + const.
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Also introduce p̃ = p− p0(z). Then we have;

−∂p
∂x

=− ∂p̃

∂x
,

−∂p
∂y

=− ∂p̃

∂y
,

−∂p
∂z
− ρg =− ∂p̃

∂z
+ gρ0 − gρ.

(2.31)

Thus (2.31) can be written as;

−∇p− gρẑ = −∇p̃+ ρ0bẑ (2.32)

Considering Φ = p̃
ρ0

(analogous to geopotential on pressure coordinates), the re-

sulting set of Boussinesq equations for a non-rotating system are;

Du
dt

+ 2Ω× u = −∇Φ + bẑ,

∇ · u = 0,
db

dt
= 0.

(2.33)

where D
Dt

= ∂
∂t

+ u · ∇ is the material derivative for the velocity and Ω is the

rotation vector.
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2.6 Multi layer Shallow water equation

In this section we will consider the dynamics of multilayer of fluid which are stacked

on top of each other, where each layer may have different thicknesses, velocities and

densities. This is a very powerful model to solve various aspects of hydrodynamical

flows such as rivers, estuaries, bays and other near-shore regions where water flows

interact with the bed geometry and wind shear stresses. The pressure is continuous

along the interface but density jumps discontinuously which makes the horizontal

velocity to have corresponding discontinuity too. The pressure in each layer is

assumed to be in hydrostatic balance so we can find pressure in any interface by

integrating from down to bottom. Thus in the first layer we have,

p1 = ρ1g(η0 − z)

In the second layer we have,

p2 = ρ1g(η0 − η1) + ρ2g(η1 − z);

= ρ1gη0 − ρ1gη1 + ρ2gη1 − ρ2gz;

= ρ1gη0 + gη1(ρ2 − ρ1)ρ2gz;

= ρ1gη0 + ρ1g
′
1η1 − ρ2gz.

where g′1 = g (ρ2−ρ1)
ρ1

and so on. Thus for nth layer the dynamical pressure is given

by ;

pn = ρ1

n−1∑
i=0

g′iηi
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where g′i = g (ρi+1−ρi)
ρ1

. Thus the momentum equation for each layer is given by;

Dun
Dt

= − 1
ρn
∇pn. (2.34)

and the mass conservation for each layer is given by;

∂ηn
∂t

+∇ · (hnun) = 0. (2.35)

We will develop and analyze the results of a numerical discretized multilayer

Boussinesq model in Chapter 4.

2.7 Wave Solutions of SWE

Depending on different parameters, such as the effects of rotation or vorticity, there

are different wave solutions for the SWE. These waves are classified as Gravity

waves, Rossby waves and Kelvin waves. The two-dimensional SWE with Coriolis

force are;
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g ∂η

∂x
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −g∂η

∂y
,

∂η

∂t
+ ∂uη

∂x
+ ∂vη

∂y
= 0.

(2.36)

For the analysis of shallow water wave solutions [40], we linearize the equations

around a state of rest, i.e. a state with zero velocity and zero surface elevation. The

idea of linearization is that all variables are assumed to have infinitesimal small

amplitude and we retain only terms that are linear in these small perturbation
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variables. Thus the advection term in the momentum equations may be neglected.

By doing this, we arrive at the following set of equations;

∂u

∂t
− fv = −g ∂η

∂x
,

∂v

∂t
+ fu = −g∂η

∂y
.

(2.37)

∂η

∂t
+H

(
∂u

∂x
+ ∂v

∂y

)
= 0. (2.38)

where we have considered η(x, y, t) = h(x, y, t) = H + O(ε) in the continuity

equation since we have assumed flat bottom of ocean.

2.7.1 Gravity Waves

The wave we get by neglecting Coriolis force in the SWE is called shallow water

gravity waves. It can exit only if the fluid has a free surface or an internal density

discontinuity. In shallow water gravity waves the restoring force is in the vertical

direction so that it is transverse to the direction of propagation. Now to find the

dispersion relation for shallow-water gravity waves in the absence of a mean flow,

with constant H, and ignoring Coriolis, we start with (2.37) and (2.38). Assuming

a sinusoidal disturbance such as;

u = Aei(kx+ly−ωt),

v = Bei(kx+ly−ωt),

η = Cei(kx+ly−ωt).

(2.39)
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and substituting back to (2.37) and (2.38) we get the following matrix equation;


ω 0 −gk

0 ω −gl

kH lH −ω




A

B

C

 =


0

0

0



Since A and C can not be zero, so we have

∣∣∣∣∣∣∣∣∣∣∣∣

ω 0 −gk

0 ω −gl

kH lH −ω

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Solving this for ω gives ω =
√

(k2 + l2)gH, where k is the zonal wavenumber, ω

is the wave frequency. The total wave number in the direction of propagation is

K =
√

(k2 + l2). Thus we get the following dispersion relation

ω = K
√
gH . (2.40)

The waves that obey this dispersion relation are known as shallow water gravity

waves since the restoring force for the wave motion is gravity. The phase speed for

shallow water gravity waves is

c = ω

K
=
√
gH . (2.41)

which shows that the phase speed is independent of wavenumber and depends only

on the depth of the fluid layer, H. Therefore, all wavenumbers travel at the same

phase speed and thus the waves are non-dispersive. But we will get dispersive wave
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only if we consider the Coriolis force in SWE. We will consider it in the following

section on Rossby waves.

2.7.2 Rossby Waves

Rossby waves are also known as planetary waves and they occur in rotating fluids.

These waves form as the result of the rotation of the planet. There are differ-

ent shapes and size of oceanic waves. Among them slow-moving Rossby waves

are different from surface waves. Unlike waves breaking along the shore, Rossby

waves are huge and massive. It’s undulating movement of the ocean can stress

horizontally across the planet for hundreds of kilometers in a westward direction.

These waves are so massive that they can change earth’s climate conditions. They

are responsible for coastal flooding in some regions of the world.

Figure 2.2: This picture from NASA’s Goddard Space Flight Center shows
both long and short atmospheric waves as indicated by the jet stream. And this
jet stream is an example of atmospheric Rossby waves. The colors represent the
speed of the wind ranging from slowest (light blue colors) to fastest (dark red).
[41].
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The movement of Rossby wave is complex. The driving mechanism of Rossby

waves is the interaction of the flow with meridional variations of the Coriolis param-

eter f . Where f depends on the latitude with f = 2Ω sinφ; Ω is the Earth’s angular

velocity, φ is the latitude on the Earth. If the y coordinate is directed northward

and measured from a reference latitude φ0, then φ = φ0 + y
a
, where a is the radius

of the Earth. Using Taylor expansion around y = 0 , we have f ≈ f0 + β0y, where

f0 = 2Ω sinφ0 is the reference Coriolis parameter and β0 = 2Ω/a cosφ0 is the beta

parameter.

Now substituting the expansion of f ≈ f0 + β0y in (2.37) and (2.38), we get;

∂u

∂t
− (f0 + β0y)v = −g ∂η

∂x
. (2.42)

∂v

∂t
+ (f0 + β0y)u = −g∂η

∂y
. (2.43)

∂η

∂t
+H

(
∂u

∂x
+ ∂v

∂y

)
= 0. (2.44)

In order to solve these equations, we use the first order geostrophic balance in

equations (2.42) and (2.43) which reads for;

u ' − g

f0

∂η

∂y
,

v ' + g

f0

∂η

∂x
.

(2.45)
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Using (2.7.2) for the momentum equations yields,

− g

f0

∂2η

∂y∂t
− f0v −

β0g

f0
y
∂η

∂x
= −g ∂η

∂x
,

+ g

f0

∂2η

∂x∂t
+ f0u−

β0g

f0
y
∂η

∂y
= −g∂η

∂y
.

which can be solved to

u = − g

f0

∂η

∂y
− g

f 2
0

∂2η

∂x∂t
+ β0g

f 2
0
y
∂η

∂y
,

v = + g

f0

∂η

∂x
− g

f 2
0

∂2η

∂y∂t
− β0g

f 2
0
y
∂η

∂x
.

Finally, substituting in the continuity equation (2.44) leads the the equation for

the surface interface displacement;

1
R2
D

∂η

∂t
− ∂

∂t
∇2η − β0

∂η

∂x
= 0. (2.46)

where RD =
√
gH
f0

is called Rossby radius of deformation. Equation (2.46) can be

expressed as a function of stream function ψ in the following form;

∂

∂t

(
∇2ψ − 1

R2
D

ψ

)
+ β

∂ψ

∂x
= 0. (2.47)

Seeking solution of the form ψ = ψ0e
i(kx+ly−ωt) and substituting back to (2.47)

gives the dispersion relation for Rossby waves;

ω = − βk

k2 + l2 + 1
R2
D

(2.48)

we have seen that the dispersion relation is always negative, which means that
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these waves always propagate westward with respect to the zonal flow. Thus,

the SWE equations support dispersive wave solutions only if the Coriolis force is

included.

2.7.3 Kelvin Waves

Kelvin waves are some of the most important oceanic waves. The solution of Kelvin

waves in SWE regimes requires the support of a lateral boundary and it occurs

in the ocean where it can travel along coastlines or in the equator where Coriolis

force is zero. To find the dispersion relation, we start with linearized shallow water

equations.

Suppose the meridional ridge is present at x = 0, with the fluid is eastward of

the ridge [40]. Since the zonal velocity has to be zero at the meridional ridge, we

will seek for the solution in which u = 0 everywhere. Thus substituting u = 0 in

the linearized SWE (2.38) with constant depth, we get;

−fv = −g ∂η
∂x
,

∂v

∂t
= −g∂η

∂y
,

(2.49)

∂η

∂t
+H

∂v

∂y
= 0. (2.50)

We assume the wave is traveling in the meridional (north-south) direction, i.e

v = v0(x)ei(ly−ωt),

η = η0(x)ei(ly−ωt).
(2.51)
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Using (2.51) in (2.49)and (2.50) gives;

−fv0 = −g∂η0

∂x
,

−ωv0 = −glη0,

−ωη0 +Hlv0 = 0.

(2.52)

Solving this system for ω gives two possible dispersion relations for Kelvin waves;

ω = ±l
√
gH (2.53)

The sign is determined by the geostrophic relation in zonal direction. Since the

velocity doesn’t depend on l, the wave is non-dispersive. The equation for the

zonal structure of η
∂η0

∂x
= −fl

ω
η0 (2.54)

this can be solved as,

η0 = Ae( fl
ω

)x

At northern hemisphere, the positive sign of dispersion relation gives exponentially

growing solution for large x and the solution is unphysical. So we neglect them.

And the other way is around for southern hemisphere. Finally, the Kelvin wave

solution is,

η = A cos(ly − ωt)e−
x
RD , (2.55)

v = −A
√
g

H
cos(ly − ωt)e−

x
RD . (2.56)

where RD =
√
gH
f

is called Rossby deformation radius.
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The interesting feature of Kelvin wave is, they travel along ridges to their right,

in the Northern hemisphere. While, on the Southern hemisphere, they travel along

ridges to their left. And the reason of these two different travel direction is Coriolis

force. In addition, the wave is in geostrophic balance in zonal direction meaning

that Coriolis force in the westward direction is balanced by the pressure gradient

towards the eastward direction and similarly the other way around.

There is another kind of Kelvin waves which plays an important role in the

equatorial dynamics and these waves are called equatorial kelvin wave. In this

case the meridional velocity vanishes everywhere identically (v = 0) i.e. no flow

along y direction [42]. Thus the linearized SWE (2.38) reduces to,

∂u

∂t
+ g

∂η

∂x
= 0,

fu+ g
∂η

∂y
= 0,

(2.57)

∂η

∂t
+H

∂v

∂x
= 0. (2.58)

Since the wave is traveling in the zonal direction, we look for the wave solutions

of (2.57)-(2.58) in the form.

u = u0(y)ei(kx−ωt),

η = η0(y)ei(kx−ωt).
(2.59)

we obtain the dispersion relation for wave frequency ω

ω2 = gHk2 (2.60)
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and the equation for the meridional structure of η

∂η0

∂y
= −fk

ω
η0 (2.61)

The only solution for (2.60) and (2.61) that decays for large y is,

η = η0e
(− fk2ω )yei(kx−ωt)

which is called Kelvin wave solution. Here η0 is an arbitary amplitude. Kelvin

waves propagate eastward for (ω
k
) > 0 and non-dispersive. For the other solution

of (2.60) and (2.61), the wave that propagate westward would grow exponentially

for large value of y and gives unphysical solutions. So we discard them.

These Kelvin waves are essential for equatorial thermocline adjustment. They

play vital role in the ENSO (El Nino Southern Oscillation) cycle.
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2.7.4 Internal waves

A stable stratified (i.e. density decreasing with height) atmosphere or ocean can

support Internal wave. They are generally slower because they depend on a weaker

density difference and can propagate both on horizontally and vertically. A prac-

tical example of stratified fluid system is a thermally stratified lake water of sum-

mertime. At this time, temperature variation is observed between the bottom and

the surface of the lake. Because temperature increases form the bottom (coldest

part) to top (warmest part) of the lake. On the other hand, density increases in

the opposite way. This means that we expect less dense water at the surface of

the lake whereas dense water should be expected at the bottom of the lake with

buoyant waters floating on top of denser water. Thus internal gravity waves are

generated whenever a source of energy displaces fluid vertically in the presence of

density stratification.

Figure 2.3: Wave patterns off the coast of Western Australia. The presence of
sunlight makes it possible to see the faint ripples of internal waves; that is, large
waves that propagate below the water surface, within the depths of the sea. [43].
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Although temperature variations create changes in density, the actual density

differences remain modest, and a linear relation between density and temperature

is ρ = ρ0[1−α(T −T0)] where ρ0 is the reference density at reference temperature

T0 and α is the coefficient of thermal expansion. As we discussed earlier in section,

this means that the Boussinesq approximation is valid. In 2D, the continuity

equation ∇ · u reduces to
∂u

∂x
+ ∂w

∂z
= 0. (2.62)

and momentum equation can be written as;

∂u

∂t
= − 1

ρ0

∂ρ

∂x
. (2.63)

∂w

∂t
= − 1

ρ0

∂ρ

∂z
− g[1− α(T − T0)]. (2.64)

The linearized form of energy equation is;

∂T ′

∂t
+ w

∂T̄

∂z
= 0. (2.65)

Subtracting the z–derivative of (2.63) from the x–derivative of (2.64) gives;

∂

∂t

(
∂w

∂x
− ∂u

∂z

)
= αg

∂T ′

∂x
. (2.66)
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now to eliminate T ′ using (2.65) yields;

∂2

∂t2

(
∂w

∂x
− ∂u

∂z

)
+ αg

∂T̄

∂z

∂w

∂x
= 0,

⇒ ∂2

∂t2

(
∂w

∂x
− ∂u

∂z

)
+N2∂w

∂x
= 0.

(2.67)

where N2 = αg ∂T̄
∂z

and N is the Brunt-Vaisala buoyancy frequency.

For example consider an incompressible, stratified non-rotating fluid at rest and

in hydrostatic equilibrium. The fluid experiences small amplitude perturbations

around the basic state, so the linearized equation of motion in 2D can be used.

ρ0
∂u

∂t
= −∂p

∂x
,

ρ0
∂w

∂t
= −∂p

∂z
− ρg,

∂w

∂t
+ w

∂ρ0

∂z
= 0.

where ρtotal = ρ0 + ρ, ptotal = p0 + p , ρ = Perturbation density

p = perturbed pressure. If u = 0 and p = 0, we have the special form of solution;

ρ0
∂w

∂t
= −ρg,

⇒ ρ0
∂2w

∂t2
= −g∂ρ

∂t
= wg

∂ρ0

∂z
,

⇒ ∂2w

∂t2
=
(
−g
ρ

∂ρ0

∂z

)
w = 0,

⇒ ∂2w

∂t2
+N2w = 0.
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where N2 = −g
ρ
∂ρ0
∂z

Now to solve the system (2.67)and (2.62) we seek a solution of

the form;
u = U sin(kx+ lz − ωt),

w = W sin(kx+ lz − ωt).
(2.68)

Substituting (2.68) back to the system yields;

kU + lW = 0,

lω2U + k(N2 − ω2)W = 0.
(2.69)

Solving this system (2.69) gives the dispersion relation for Internal Gravity waves;

ω = ±N

√√√√ k2

(k2 + l2) . (2.70)

The term k2

(k2+l2) is less than or equal to one, so ω must be less than or equal to

one.

Now let’s consider the two-dimensional propagation of the wave relative to

excitation vector ω. If the horizontal excitation vector is ~ω = ωî then the angle

between ω and the two dimensional wave number K = kî+ lĵ is [44],

cos θ =
~K · ~ω∣∣∣ ~K∣∣∣|~ω| ,

=

√√√√ k2

(k2 + l2) ,

= ± ω
N

∴ ω = ±N cos θ.
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Now if the frequency of excitation is less than the frequency of the buoyancy

oscillation, i.e. ω � N and cos θ ≈ 0, then the wave propagation is perpendicular

to the direction of excitation.

If ω = N and cos θ ≈ 1, then the direction of the wave propagation is the same

as the direction of excitation.

On the other hand, if ω > N then no wave forms and cos θ doesn’t exit. Because

ω > N means that we force the system to swing faster than it’s threshold frequency,

which is not possible and as a result, no wave forms.

In chapter 4, we will present the numerical results for Internal waves propaga-

tion.
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Chapter 3

An explicit staggered finite

volume scheme for single and

multi layer SWE

3.1 Introduction

In the introduction section, it is mentioned that shallow water equations are a

model to describe fluid flow in rivers, channels and oceans. In the one-dimensional

case, for flat bottom of ocean, the conservation form of shallow water equations

is:

∂η

∂t
+ ∂

∂x
((H + η)u) = 0, (3.1a)

∂u

∂t
+ ∂

∂x

(1
2u

2 + gη
)

= 0. (3.1b)
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where typical initial conditions for η and u at time t = 0 are of the form:

η(x, 0) = 10e
− 1

4 (x−0.2Lx)2

δ2 , u(x, 0) = 0.

and the boundary conditions are

η(t, 0) = η(t, L), u(t, 0) = u(t, L).

where t is the time variable, x is the space variable, u is the velocity, η is the

displacement of water from the free surface, H is the average height from the

flat bottom of ocean, Lx is the length scale of horizontal motion and g is the

gravitational constant.

In the presence of bathymetry, (3.1a)-(3.1b) can be written as;

∂η

∂t
+ ∂

∂x
((H + η − β)u) = 0, (3.3a)

∂u

∂t
+ ∂

∂x

(1
2u

2 + gη
)

= 0. (3.3b)

with initial conditions for η and u is of the following form:

η(x, 0) = 10e
− 1

6 (x−0.2Lx)2

δ2 , u(x, 0) = 0. (3.4)

and the following Gaussian function has been chosen for bottom bathymetry:

β(x) = 70e
− 1

4 (x−0.7Lx)2

δ2 (3.5)
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We can normalize by taking g = H = 1 and the normalized one dimensional

shallow water system is:

∂η

∂t
+ ∂

∂x
((1 + η)u) = 0, (3.6)

∂u

∂t
+ ∂

∂x

(1
2u

2 + η
)

= 0. (3.7)

The wave speed for shallow water system is c =
√
gH which is constant for constant

mean depth H. And by putting g = H = 1, we get c = 1 for normalized shallow

water equations.

The shallow water equations are non-linear hyperbolic system of conservation

laws. To solve this type of problem, finite volume methods have proved to be very

effective. Staggered finite volume discretizations for solving nonlinear hyperbolic

system of conservation laws have been investigated by [45].

In this chapter, we review an explicit finite volume scheme for the discritization

of single and multi layer shallow water equations. The different unknown variables

of the system are approximated on staggered meshes with average height at cell

centres (nodes) and velocities at cell edges (interfaces). The cells are uniform in

size and form the control volumes for the finite volume scheme. The numerical

fluxes are computed with centered discretizations. The method is second order

accurate in space. The chapter is organized as follows: Section 3.2 describes one

dimensional staggered scheme for single layer shallow water equations. Section

3.3 describes the discretization of multilayer shallow water equations. Section 3.4

describes four stage third order Runge - Kutta time integration scheme. Section

3.5 describes the stability analysis of the system.
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3.2 Description of one dimensional staggered scheme

for single layer SWE

3.2.1 Nonlinear Shallow water system

We begin with the non dimensional shallow water equations (3.1a)-(3.1b) on the

space domain Ω := (0, Lx) and the time interval (0, T ). We impose periodic

boundary conditions. The time interval is divided into Nt time steps of length

∆t and the space domain is divided into Nx cells of length ∆x. The left end, the

center and the right end of the i-th cell are denoted by xe, xi and xe+1 respectively.

We discretize η at the center of the cells whereas we discretize velocity u at the

interfaces between the cells. The approximation of η at point xi and at time tn is

denoted by ηni and the approximation of u at point xe and at time tn is denoted

by une . This grid set up is shown in Figure 3.1. Typical initial conditions for η and

u at time t = 0 are of the form:

η(x, 0) = 10e
− 1

6 (x−0.2Lx)2

δ2 , u(x, 0) = 0.

where η(x, 0) is a Gaussian curve centred at zero and δ is the standard deviation

parameter, δ � L. The periodic boundary conditions are applied as;

ηno = ηnNx , un1 = unNx+1.
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The space discretization is represented as follows:

Figure 3.1: One-dimensional staggered grid. velocity (u) is discretized at the
interfaces between each cell and η is discritized at the centre of each cell.

In order to discretize (3.1a)-(3.1b) we first need to approximate the height (mass)

flux through the edges. For example, at edge xe+1 the flux is ue+1ηe+1 and at edge

xe the flux is ueηe. We approximate ηe+1 from the cell centre values using linear

interpolation. Thus we have,

ηe+1 = 1
2 (ηi+1 + ηi) , (3.8)

ηe = 1
2 (ηi + ηi−1) . (3.9)

The divergence of the height flux is then approximated at the cell centre xi using

second order central finite difference method.

∂

∂x
[(H + η)u]i = (H + ηe+1)ue+1 − (H + ηe)ue

∆x .

Thus the discretized form of (3.1a) at control volume center is;

∂ηi
∂t

= − ∂

∂x
[(H + η)u]i ,

⇒ ∂ηi
∂t

= −(H + ηe+1)ue+1 − (H + ηe)ue
∆x .

50

http://www.mcmaster.ca/


Masters of Science– Afroja Parvin; McMaster University– CSE

In a similar way, we can derive the approximation for (∂u
∂t

)e+1 at interface xe+1.

First we interpolate the velocities to the cell centres using linear interpolation.

Thus we have,

ui = 1
2 (ue+1 + ue) , (3.10)

ui+1 = 1
2 (ue+2 + ue+1) . (3.11)

The gradient at the cell edge xe+1 is then approximated using the second order

central finite difference approximation as

(
∂u

∂t

)
e+1

= − ∂

∂x

(1
2u

2 + gη
)
i
,

≈ − 1
∆x

[(1
2u

2 + gη
)
i+1
−
(1

2u
2 + gη

)
i

]
,

= − 1
∆x

[1
2
(
(ui+1)2 − (ui)2

)
+ g (ηi+1 − ηi)

]
,

= − 1
∆x

[
1
2

((1
2 (ue+2 + ue+1)

)2
−
(1

2 (ue+1 + ue)
)2)

+ g (ηi+1 − ηi)
]
.
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3.2.2 Linearised Shallow water system

In this section, we discretize the linearised form of shallow water equations. The

system is linearised about the average water depth H and with the zero velocity

u. Thus we have h(x, t) = H + η(x, t) where η � 1 is the elevation of water from

free surface. Thus we have

∂h

∂t
+ ∂

∂x
(hu) = 0,

⇒ ∂(H + η)
∂t

+ ∂

∂x
((H + η)u) = 0,

⇒ ∂η

∂t
+ ∂

∂x
(ηu) = 0.

Similarly we have,

∂u

∂t
= − ∂

∂x

(1
2u

2 + gη
)

= − ∂

∂x
(gη) .

Then we non-dimensionalise by taking g = 1 and H = 1 and finally we get the

following linearised form of shallow water equation;

∂η

∂t
= −∂u

∂x
, (3.12)

∂u

∂t
= −∂η

∂x
. (3.13)

By discritizing in space as before, our approximation for linear system becomes;

(
∂η

∂t

)
i

= − 1
∆x (ue+1 − ue) , (3.14)(

∂u

∂t

)
e+1

= − 1
∆x (ηi+1 − ηi) . (3.15)
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3.3 Staggered scheme for Multilayer Shallow

water equations

3.3.1 Multi-Layer Shallow water equations

Multi layer shallow water equation can be extended to three dimensions layer-

wise using the hydrostatic approximation for pressure as in Dubus et al.[21]. The

multi-layer shallow water model is used to describe incompressible flows in the

shallow water region, in the situation where several layers with different densities

can be identified. For setting up this model, we used the following assumptions:

Shallowness of layers with respect to horizontal scales, small viscosity, hydrostatic

balance, almost uniform velocity in each layer and stratification of density. De-

noting ∂α = ∂
∂α

for α = x, t, the one dimensional multilayer shallow water system

can be written as:

∂tµ+ ∂x(µu) = 0, (3.16a)

∂tΘ + ∂x(θU) = 0, (3.16b)

∂tu+ ∂x(
1
2u

2 + λ

ρ
+ Φ) + θ∂x(−Φ) = 0. (3.16c)
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Here,

Pseudo-density: µ = ρr∆z; ∆z = (H + η)
Nz

; (3.18a)

Horizontal mass flux vector U = µu; (3.18b)

Inertial mass weighted density perturbation: Θ = µθ; (3.18c)

Geopotential at interfaces: φl = φs + gµ

ρr
. (3.18d)

Here it’s important to mention that, for compressible fluid θ is potential temper-

ature but for incompressible case, θ acts as a buoyancy.

Also,

Nz is the number of the layer,

Nx is the number of cells in space domain,

dt is the time step,

H is the vertical length of ocean,

η is the elevation of inertial mass from free surface,

λ is the Lagrange multiplier to enforce incompressibility,

ρr is the reference density and

geopotential at ocean surface, φs = 0.

But in the presence of bathymetry,

Layer Thickness: ∆z = (H + η − β(x))
Nz

; (3.19a)

Geopotential at ocean surface: φs = 0 + gβ(x). (3.19b)

where β(x) is the bottom bathymetry, defined by equation (3.5).
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Figure 3.2: Multi-Layer Shallow water system,where b(x) represents
bathymetry. Density (ρi), inertial mass (µi), mass weighted density distribution
(Θi) and velocity (ui) are defined on each vertical level. The thickness of each
vertical level is ∆zi = µi

ρr
, where i = 1, 2, 3.....K.

Here figure (3.2) represents the model for multi-layer Shallow water equations.

Density is stratified vertically and meets the condition of boussinesq approximation

((∆ρ
ρr
� 1); i = 1, 2, 3....K.). Velocity, Inertial mass and mass weighted density dis-

tribution is defined at each vertical level. Using hydrostatic balance, the thickness

of vertical level is defined as ∆z = µ
ρr
.
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3.3.2 Discretization of Inertial Mass and Mass weighted

density distribution equation

In this section we will describe how to discritize the transport of mass and mass

weighted density distribution equations using explicit finite volume scheme. Like

single layer SWE, we begin with the one dimensional multi layer shallow water

equations (3.16a)-(3.16c) on the space domain Ω := (0, Lx) and the time interval

(0, T ). We applied periodic boundary conditions. The time interval is divided into

Nt time steps of length ∆t and the space domain is divided into Nx cells of length

∆x. The center of each cell is denoted by i and the edge of the cell is denoted

by e. For vertical discritization, Lorenz staggering is used. And this full vertical

levels are indexed by k = 1, 2.....K and interfaces between full levels are indexed

by l = 1/2, 3/2...L = K + 1/2. Thus the fluids are labeled from bottom to top.

Scalar densities µ and Θ is discritized at the center of each cell and we describe

them by µik,Θik whereas the velocity is descritized at the edge of each cell for all

k-th vertical level and we denote them by uek. Lagrange multiplier λ is discritized

at the center of each cell at k-th vertical level and the geopotential Φ lies at the

interfaces of vertical level. The situation is represented in Figure (3.3). In absence

of bathymetry, the geopotential at the bottom of the ocean is considered as zero.

Beside this the layer thickness is discretized as ∆zk = (H+η(xi))
Nz

.
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Figure 3.3: Staggered scheme for Multi-Layer Shallow water system. µik,Θik

and λik are discritized at the center of each cell at k-th vertical level where
i = 1, 2....Nx−1, k = 1, 2, ...K. uek is discritized at the edge of each cell where
e = 1, 2, ...Nx. Geopotential Φil is discritized at the interface of vertical level
where l = 1/2, 3/2, ...K + 1/2.

On the other hand, with bottom bathymetry,the layer thickness is discretized

as ∆zk = (H+η(xi)−β(xi))
Nz

. And the discretization of geopotential at the bottom of

the ocean is given as, φs = 0 + gβ(xi).
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For non-flat bottom of ocean, we use σ − z coordinate system where vertical

coordinate is depth. At interface,

zl = zs + ∆z(l − 1) (3.20)

where zs = 0 + β(x), while on the other hand, for flat bottom of ocean we use

uniform z coordinate with zs = 0 in equation (3.20).

Figure 3.4 and Figure 3.5 represents these two coordinate system.

Figure 3.4: Coordinate system with uniform layer thickness ∆z = (H+η(x))
Nz

.
where η(x) is the elevation of inertial mass from free surface of ocean.
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Figure 3.5: Coordinate system with vertical layer thickness ∆z =
(H+η(x)−β(x))

Nz
. where η(x) is the elevation of inertial mass from free surface

and β(x) is the bottom bathymetry of ocean.

Using those above mentioned notation, the discritised inertial mass and mass

weighted density distribution budget can be written in the form;

∂tµik + ∂i(µekuek) = 0, (3.21)

∂tΘik + ∂i(θ?ekµekuek) = 0. (3.22)

where we have θik = Θik
µik

and θ?ek is reconstructed at interfaces between control

volumes as in the one dimensional case, using linear interpolation.
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3.4 Discritization of equation of motion

We want to write the equations of motion corresponding to the discrete Hamil-

tonians (H). In [21] T. Dubos et al. showed that the approximations of H for

incompressible fluid can be done by introducing Boussinesq approximations. Thus

the horizontally discretized form of Hamiltonian is;

H = 1
2
∑
ik

µiku
2
ek +

∑
ik

[
µik

(
1− Θik

µik

)
Φ̄ik + λik

(
µik
ρr
− ∂kΦi

g

)]
+ p∞

∑ΦiL

g
.

(3.23)

For incompressible Hamiltonian, the geopotential is obtained by enforcing ∂H
∂λik

= 0,

which gives;

∂kΦi

g
= µik

ρr
,

⇒ Φl − Φl−1

∆z = gµik
ρr

,

⇒ Φl = Φl−1 + gµik∆z
ρr

,

⇒ Φl = Φs + gµik∆z
ρr

.

The hydrostatic balance is expressed as ∂H
∂Φil

= 0 which gives (1− θik)µik
l +

g−1δlλik = 0 with the upper boundary conditions λiK = p∞ + g
2 (1− θiK)µiK .

Therefore λik can be determined starting from the top level and can be interpreted

as the pressure at full model levels, where as geopotential lies at the interfaces.

Pressure at free surface, i.e p∞ = 0

Finally, the horizontal momentum balance is written as follows;

∂tuek + ∂eBik + θ?ek∂eΠik = 0. (3.24)
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where in equation (3.23) ∂H
∂µik

gives Bik = ∂H
∂µik

= 1
2u

2
ek + Φ̄ik + λik

ρr
and Πik = ∂H

∂Θik
=

−Φ̄ik.

3.5 Runge Kutta Time integration Scheme

To solve our nonlinear system numerically; we used third order fourth stage Runge

-Kutta scheme to approximate the trend in time for inertial mass, mass weighted

density distribution and velocity. We approximate the solutions at each time step

between initial time t0 and final time tT . The solution at n + 1 -th time step is

calculated as follows;

U0 = yn,

U1 = U0 + ∆t12f
(
t, U0,

∂y

∂x

)
,

U2 = U1 + ∆t12f
(
t, U1,

∂y

∂x

)
,

U3 = 2
3U0 + 1

2U2 + ∆t16f
(
t, U2,

∂y

∂x

)
,

U4 = U3 + ∆t12f
(
t, U3,

∂y

∂x

)
,

yn+1 = U4,

tn+1 = tn + ∆t.

Where yn represents the solution at time t = n, the initial condition for inertial

mass, mass weighted density distribution and velocity is defined by y1 at time

t0 and f
(
t, U, ∂y

∂x

)
is the approximation of the right hand side of the equation in

space. Now using finite difference - finite volume discritization with Runge -Kutta
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approximations, we can solve our system in forward time from t = 0 to t = T .

And by doing this we obtained our final solutions for µ(x, t), Θ(x, t) and u(x, t).

3.6 Stability and Courant-Friedrichs-Lewy Con-

dition

Generally, a numerical scheme is stable in time if it does not amplify numerical

errors. A lack of stability in our scheme can cause exponential growth of numerical

errors. The Courant-Friedrichs-Lewy (CFL) criterion is what ensures stability for

hyperbolic problems. For discrete hyperbolic equations, CFL condition expresses

that the distance that any information travels during the timestep length within

the mesh must be lower than the distance between mesh elements. It means that

the time step must be less than a certain value. If the time step is too large,

then it might happen that this value could be larger than the time taken for

our information to travel to adjacent grid points in space where the solution is

calculated.

For one-dimensional case, the form of CFL is the followings;

c∆t
∆x ≤ cmax = 1. (3.25)

Where the quotient c∆t
∆x is called the CFL number.

Here, c =
√
gH is the wave speed,

∆t is the time step,

∆x is the length interval .
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Thus to meet the CFL criterion for the single layer, the time step should be

∆t ≤ ∆x
c
. But for our multi-layer model, the condition for choosing the time step

is different from a single layer. In our model, the horizontal interfaces may steepen

due to nonlinearity and this can cause the computation to break down because the

gradient cannot be resolved. We deal with this by adding viscous diffusion to the

equations (3.21) and (3.24). Since we have added diffusion terms in our system,

so the required time step for obtaining stable solutions is the following;

∆t < min
(
C1∆x√
gH

,
C2∆x2

ν

)
. (3.26)

where ν is the smallest viscosity parameter, which is added to stabilized the nu-

merical instability of our system.

In addition, since the horizontal interfaces are Lagrangian (i.e. they move with

the vertical velocity of the fluid) a layer may collapse, or layers may become too

thick. In the multilayer shallow water model, these issues with the Lagrangian ver-

tical coordinate were controlled by periodically remapping the vertical coordinates

back to the original coordinates.

Figure 3.6 shows the physical demonstration of remapping. For each cell, the

shifted variable µ,Θ and u are remapped onto uniform vertical grid, i.e. we in-

terpolated these integrated quantities to preserve mass, momentum heat in each

layer.

The remapping algorithm is as follows;

• From the shifted mass density, find the current z coordinates of vertical

interfaces.
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• Find new uniformly spaced z coordinates of vertical interfaces.

• Calculate inertial mass at horizontal edges and then interpolate integrated

variables (µ and Θ ) onto uniform vertical grid.

• Update mass density at horizontal cell edges.

• Interpolate velocity onto uniform vertical grid.

• Return interpolated µ, Θ and u .

Figure 3.6: Physical demonstration of remapping. Variables µik,Θik and
uek are remapped onto uniform vertical grid point for each cell Ωi where i =
1, 2, ....Nz. Here the top most right figure represents the uniform grid where
variables are remapped.

To solve the shallow water and multilayer shallow water system numerically, second

order finite difference-finite volume method have been implemented in Matlab.
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Chapter 4

Results and discussion

4.1 Introduction

We began our analysis of the staggered scheme (second order finite difference-

finite volume) on single layer ((3.1) and(3.3)) and multi-layer shallow water equa-

tions (3.16). We chose a total time period from 0 to 350 and the spatial domain

[0, 4000]km. The space domain is divided into Nx = 400 cells of length ∆x = 10.

We consider vertical length 1000km which we divided into 100 layers. The time

step ∆t is chosen by (3.26). The time interval for remapping is chosen for 5s. The

set up of horizontal and vertical domain will be the same for all of our numerical

experiments.
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For flat bottom of ocean, the typical initial conditions for the perturbation to

the free surface η and velocity u at time t = 0 is,

η(x, 0) = 10e
− 1

6 (x−0.2Lx)2

δ2 , u(x, 0) = 0. (4.1)

On the other hand, in the presence of bottom bathymetry, the typical initial

conditions for the perturbation to the free surface η is,

η(x, 0) = 10e
− 1

6 (x−0.2Lx)2

δ2 . (4.2)

and for both cases, the boundary conditions are

η(t, 0) = η(t, L), u(t, 0) = u(t, L). (4.3)

The following function has been chosen for bottom bathymetry:

β(x) = 70e
− 1

4 (x−0.7Lx)2

δ2 (4.4)

The mean density function is given as:

ρ = ρr

(
1− ∆ρ

2

(
1− tanh

(
−z +H/2

0.05H

)))
(4.5)

On the other hand, for linear density stratification, the density function is

ρ = ρr

(
1−∆ρ z

H

)
(4.6)
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The aim of this chapter is to validate multilayer SWE (3.16) and to explore

numerically the effect of density gradients on surface wave propagation, both in the

presence and absence of bottom bathymetry. We will also explore the interaction

of barotropic and baroclinic waves generated by the interaction of surface and

internal waves.

The first part of this chapter presents some numerical simulations to validate

our multilayer shallow water model, such as the comparison of surface wave prop-

agation for single layer and multilayer shallow water model with and without

density gradient as well as bathymetry. In addition, we also validate our model by

looking at internal wave propagation along a strong density gradient. The later

section of this chapter presents the results of a set of numerical experiments. We

consider two cases of stably stratified density gradients: two layers and linearly

density gradient, including the effects of bathymetry. Finally, in the last section,

we summarize and discuss the results from the numerical experiments.
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4.2 Validation of Multi-layer SWE model

4.2.1 Comparison of single layer and multi-layer Shallow

water model for surface waves

We begin our validation of the model by comparing the surface wave prop-

agation of single layer and multilayer SWE. In order to do this, we consider four

numerical test cases:

1. Zero Density gradient without bathymetry,

2. Small Density gradient without bathymetry,

3. Zero Density gradient with bathymetry.

4. Small Density gradient with bathymetry,

For all of these test cases, we chose a total time period from 0 to 150 s.
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4.2.1.1 Zero Density gradient without bathymetry

In this section, we examine the surface wave propagation for single layer

and multilayer SWE with flat bottom. For the multilayer model, we consider the

case of zero density gradient. The horizontal and vertical domain of the model is

introduced in the introduction section of this chapter. The initial condition for the

perturbation to the free surface η is given by (4.2) and the density stratification

function is given by (4.5).

Figure 4.1: Initial elevation of inertial mass from free surface η(m). The
spatial domain X is rescaled as Lx

H .

Figure 4.1 represents the initial perturbation of water mass to the free surface

both for single layer and multi layer shallow water equations, which is of the form

η(x, 0) = 10e
− 1

6 (x−0.2Lx)2

δ2 .
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(a) (b)

(c) (d)

Figure 4.2: Comparison of surface wave (η(m)) propagation for single layer
and multi layer shallow water equation. (a) Wave breaks into two parts at t
= 5.05 s; (b) Wave approaches towards boundary at t = 71 s; (c) Wave hits
boundary at t = 130 s; (d) Position of waves at t = 150 s. The behaviour of
multilayer model is exactly same as Single layer SWE.

Figure 4.2 shows the propagation of the surface wave at different time steps.

Since density is constant so there are no internal wave and the single and mul-

tilayer SWE models should generate the same surface waves. This is verified in

figure, which shows exactly the same surface wave evolution for both the single
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and multilayer SWE numerical models.

4.2.1.2 Small Density gradient without bathymetry

In this simulation, we examine the surface wave propagation for single layer

and multilayer SWE with flat bottom. The horizontal and vertical domain, the

initial perturbation to the free surface and the boundary conditions are the same

as 4.2.1.1. The layer thickness and geopotential is defined by 3.18a and 3.18d.

The density stratification function is given by (4.5) where we consider very small

density gradient ∆ρ = 0.1, consistent with Boussinesq approximation (∆ρ
ρr
� 1).

Figure 4.3 shows the propagation of the surface wave at different times. It is

noted that our choice of initial conditions and parameters ensure that our case

satisfies all the validity conditions for the multilayer SWE model (i. e. η
H
�

1 and Lx
H
� 1,∆ρ/ρr � 1). We have seen that the waves are very similar,

but that the single layer SWE wave travels a bit faster. We just presented few

snapshot to explain the phenomena. If we look at the peak of wave both for single

and multilayer SWE, we can see that, the peak of single layer SWE reaches to

the boundary at t = 48s, while for multilayer, it reaches at t = 50s. Here, we

observed the phase speed for single layer is cnumerical = 700
(48.1−41.1) = 100, which is

approximately identical to the phase speed for SWE, c =
√
gH =

√
9.81 ∗ 1000 ≈

99.0ms−1 what we know theoretically. On the other hand, we observed the phase

speed for the multilayer case is cnumerical = 700
(50.1−41.1) ≈ 77.7ms−1. So we can

say that the results are qualitatively correct (i.e. the multilayer SW wave moves

slower). The reason for this behavior will explain in the section 4.2.2. At t = 130
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s, we also observe a slight bump in the middle which forms due to the transfer of

energy to internal waves.

(a) (b)

(c) (d)

Figure 4.3: Comparison of surface wave (η(m)) propagation for single layer
and multi layer shallow water equation. (a)Wave in their initial position at t =
41.1 s; (b) Surface wave hits the boundary at t = 48 s; (c) internal wave hits
boundary at t = 50 s; (d) Position of waves at t = 130 s. Compare to SWE, a
slight difference in terms of wave’s position is observed in multilayer SW model.
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4.2.1.3 Zero Density gradient with bathymetry

In this test case, we examine surface wave propagation for single layer and

multilayer SWE model, in the presence of bathymetry, with no density gradient.

The layer thickness and the geopotential are given by (3.19a) and (3.19b) respec-

tively. The initial condition for η and the function for bathymetry is given by (4.2)

and (4.4) respectively.

Figure 4.4 shows the propagation of surface wave at different time steps. As

expected, the multi layer SWE model behaves the same as the single layer shallow

water model, apart from the fact that multilayer SW wave move slightly slower

than the single layer. Because for single layer SWE, bathymetry is just a param-

eter, so it does not affect the wave speed. But for multilayer SWE, the equation

we are solving is different and we used σ − z coordinate system, where the lay-

ers closest to bathymetry, follows the terrain (Figure 3.5). As a result, when the

wave reaches to bathymetry, it tries to cross the obstacle and feels the effect of

decreasing depth. Thus multilayer SW waves slow down with decreasing water

depth even when we assume zero density gradient. So the results are qualitatively

correct, which verifies our numerical multilayer SWE model.
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(a) (b)

(c) (d)

Figure 4.4: Comparison of surface wave (η(m)) propagation for single layer
and multi layer shallow water equation. (a) Wave breaks into two parts at t =
5.05 s; (b) Wave hits boundary at t = 71.01 s; (c) Wave approaches to original
position at t = 130 s; (d) Position of waves at t = 150 s The behaviour of
multilayer model is exactly same as Single layer SWE.
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4.2.1.4 Small Density gradient with bathymetry

The aim of this simulation is to examine surface wave propagation for single

layer and multilayer SWE model in the presence of bathymetry. The horizontal

space domain, vertical layer, initial perturbation to the free surface and the func-

tion for bathymetry have been chosen the same as the test case 4.2.1.3. But now,

for this test case, we consider two layers of stratified densities with very small

density difference (to satisfy the Boussinesq approximation). The stratification of

mean density function is given by (4.5) with density gradient ∆ρ = 0.1.

Figure 4.5 shows the propagation of the surface wave at different time steps,

in the presence of bathymetry. From the figure we observe that multilayer SWE

wave move slower than the single layer SWE wave, as outlined in test case 4.2.1.2.

In addition, by looking the peak of the multilayer wave, we observe that, in the

presence of bathymetry, the wave speed is slightly slower as well and the wave

profile is steeper compared to case of a flat bottom. This is since,when such a

wave approaches regions with shallower depth (i.e. the area around the bathymetry

where the mean height, H is small, compare to that of other area), the the higher

wave which propagate faster, overtake the shallower parts of the wave.
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(a) (b)

(c) (d)

Figure 4.5: Comparison of surface wave (η(m))propagation for single layer
and multi layer shallow water equation. (a) Wave in their initial position at t
= 41.1 s; (b) Surface waves hits the boundary at t = 48.1 s; (c) internal waves
hits the boundary at t = 50.1 s; (d) Position of waves at t = 130 s. Compare
to SWE, a slight difference in terms of waves position is observed in multilayer
SW model.
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4.2.2 Comparison of single layer and multi-layer Shallow

water model for Internal waves

To study the validity of our multilayer shallow water model, here we investi-

gate the propagation of an internal wave in the multilayer SWE model with two

stably stratified densities. The horizontal space domain is Ω := [0, Lx] where

(Lx = 4H and H = 1000 km), the vertical domain is divided into two layers,

the initial velocity is zero and the water height from free surface is η(x, 0) =

10e
− 1

6 (x−0.2Lx)2

δ2 . The stratified density function for two layers of fluid is given by

(4.5) with a small density difference.

The key point of these numerical experiments is that (as we saw in the previous

section) waves on the free surface and internal waves on the density interface are

not independent. They are locked together in two possible modes. In other words,

the two-layer fluid supports two modes of wave motion, namely the Barotropic

mode and the Baroclinic mode.

Barotropic mode: In barotropic mode, two surfaces move in phase and the

phase speed is the same as the phase speed for single layer shallow water equation,

c =
√
gH.

Baroclinic mode: In this mode, two waves has opposite phase. The Baroclinic

mode is much slower than barotropic mode and transports less energy.
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In this section, we consider the following three numerical experiments to observe

the barotropic and baroclinic modes.

1. Perturbation of inertial mass at top layer,

2. Perturbation of inertial mass at interface,

3. Perturbation of density at interface,

Basically, in this section, we are considering stably stratified two-layer scenario

for the vertical structure of the ocean, where a layer of water of lower density is

above a layer of higher density, separated by a sharp interface. This two layer model

is efficient to describe an upper, well mixed oceanic layer. The density gradient

layer is unstable and any perturbations to these density gradients are restored

by gravity, generating a propagating wave, called internal waves. In addition,

internal waves can move in both horizontal and vertical directions, transport energy

and trigger vertical mixing of ocean. Since surface waves and internal waves are

not independent, the generation of internal waves due to density perturbation

influences the surface waves at upper layer and on the other way around. That’s

why we consider independently perturbations of the inertial mass and density to

observe their coupled interactions in terms of barotropic and baroclinic mode. We

consider density difference, ∆ρ = 0.1 to see their effect on the modes of wave.
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For these test cases, numerically, we calculate

Composite mode of wave i.e., ηcomp =
2∑
i=1

µi −H.

Baroclinic mode of wave = ηcomp − ηswesloution.

Disturbance on two layer, i.e., η1 = µ1 −H1, η2 = µ2 −H2.

and the height of two layer, i.e., h1 = µ1 − ηswesolution, h2 = µ2 − ηSWEsolution.

Also, the the Boussinesq approximation of inertial mass is not the same as buoy-

ancy mass.
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4.2.2.1 Internal wave dynamics for two-layer stably stratified flow

In order to understand internal wave dynamics we consider stratified, two layer

system as depicted in figure 4.6. Here, ρ1 is the density of the bottom dense layer

and ρ2 is the density of upper layer. H1 and H2 are the height of the lower and

upper layer respectively. To find the dispersion relation or the barotropic and

baroclinic mode of waves, we solve linearized SWE for two layer fluid with zero

mean flow, and for waves traveling in the x-direction only.

Figure 4.6: The physical configuration of two-layer SWE model, where ∆ρ
ρ �

1.

Now, the phase speed of the barotropic mode is identical to that of an external

gravity wave on the surface of a fluid of depth H, i.e.

c1 =
√
gH (4.7)
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A two layer fluid has one barotropic mode and one baroclinic mode. The phase

speed for baroclinic mode is

c2 =
√
g′
H1H2

H
(4.8)

as outlined in [46], here g′ = g∆ρ
ρr

is called the reduced gravity which is always

less than g. The baroclinic mode is therefore slower than the barotropic mode of

wave.

Figure 4.7 shows the phase speeds of the baroclinic and barotropic modes of

two-layer fluid. It is clear from the figure that the phase speed of barotropic mode

is identical with that of ordinary single layer SWE even if we have different density

gradient between two layers of fluid. On the other hand, the phase speed of the

baroclinic mode is always less than barotropic mode.

The ratio of the disturbance amplitude on the free surface (B) to that of the

interior interface (A) is found in [46];

B

A
= c2

c2 − gH2
(4.9)

For the barotropic mode, the ratio of disturbances on the two interfaces can be

found by substituting c2 =
√
gH in the equation (4.9), i.e.

B

A
= c2

c2 − gH2
= H

H1
(4.10)
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Figure 4.7: Comparison of phase speed for ordinary single layer and two layers
( Barotropic and Baroclinic mode of wave motions) shallow water equations.

where H1 and H2 are the height of the lower and upper layer respectively.

This means that, due to the presence of the barotropic mode, the disturbance

on the free surface is slightly larger in amplitude than the disturbance on the

internal interface. Beside of this, the positive ratio of the disturbance amplitude

for barotropic mode confirms that two layers should be in phase.

In contrast, for baroclinic mode, the ratio of disturbances on the two interfaces

can be found by substituting c =
√
g′H1H2

H
in the equation (4.9), i.e.

B

A
= −g

′

g

H1

H
(4.11)

This shows that the disturbance on the free surface is much smaller in amplitude

than that on the internal interface, and the two interfaces are out of phase.
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4.2.2.2 Perturbation of inertial mass at top layer

We consider two layers of fluid where lower layer is denser than the top layer(
∆ρ
ρr
� 1

)
. To study the propagation of internal wave, in this simulation, we con-

sider a small perturbation of inertial mass from free surface. The perturbed η

function is;

ηperturb = 10e
− 1

6 (x−0.2Lx)2

δ2 (4.12)

Figure 4.8: Two layer of stratified (
(

∆ρ
ρr
� 1

)
) fluid with a small perturbation

to the inertial mass in the top layer.

In the next few figures of this section, we observe how the perturbation of

inertial mass (i.e. free surface perturbation) as well as different density differences

affect the propagation of the barotropic and baroclinic modes and how the height

of two layers change.
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Figure 4.9: Propagation of wave at times t = 41.1 s and t = 48.1 s with
∆ρ = 0.1. Disturbance of two layers, η1 = µ1 −H1, η2 = µ2 −H2, Composite
mode, ηcomp =

∑2
i=1 µi −H. and Baroclinic mode = ηcomp − ηswesloution.
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Figure 4.10: Propagation of wave at times t = 49.1 s and t = 130 s with
∆ρ = 0.1. Disturbance of two layer, η1 = µ1 − H1, η2 = µ2 − H2, Composite
mode, ηcomp =

∑2
i=1 µi −H. and Baroclinic mode = ηcomp − ηswesloution.
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4.2.2.3 Perturbation of inertial mass at interface of two layer

To study the propagation of an internal wave, in this simulation, we now consider

a small negative perturbation of inertial mass at the interface of two layers . The

perturbed function used at the interface is;

perturbfunction = −10e
− 1

6 (x−0.2Lx)2

δ2 (4.13)

And the densities of the two layers are the same as in the previous section.

Figure 4.11: Two layers of stably stratified (
(

∆ρ
ρr
� 1

)
) fluid with with a

negative perturbation to the internal layer.

In the next few figures, we observe how the perturbation of inertial mass at the

interfaces as well as different density gradient affects both the free surface and the

interface of two layers, propagation of barotropic and baroclinic mode and how

the height of two layers changes.
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Figure 4.12: Propagation of wave at times t = 41.1 s and t = 48.1 s with
∆ρ = 0.1. Disturbance of two layer, η1 = µ1 − H1, η2 = µ2 − H2, Composite
mode, ηcomp =

∑2
i=1 µi −H. and Baroclinic mode = ηcomp − ηswesloution.
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Figure 4.13: Propagation of wave at times t = 49.1 s and t = 130.0 s with
∆ρ = 0.1. Disturbance of two layer, η1 = µ1 − H1, η2 = µ2 − H2, Composite
mode, ηcomp =

∑2
i=1 µi −H. and Baroclinic mode = ηcomp − ηswesloution.
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4.2.2.4 Perturbation of density at interface

In contrast to the previous case, we now add a positive perturbation to the internal

layer. The perturbed density function is;

ρperturb = ρr∆ρ
(

exp
(
−
((

x− Lx
2

)2
+
(
z − H

2

)2)
/ (0.3H)2

))
(4.14)

Figure 4.14: Two layers of stably stratified fluid with a positive perturbation
to the internal layer.

The impact of the perturbation of density on the top layer as well as at the

interfaces of two layers have been observed from the following figures. Apart from

this, we also observe the changes of water height and the propagation of baroclinc

mode for two layers.
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Figure 4.15: Propagation of wave at times t = 3.03 s and t = 16.1 s with
∆ρ = 0.1. Disturbance of two layer, η1 = µ1 − H1, η2 = µ2 − H2, Composite
mode, ηcomp =

∑2
i=1 µi −H. and Baroclinic mode = ηcomp − ηswesloution.
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Figure 4.16: Propagation of wave at times t = 114.2 s and t = 150.2 s with
∆ρ = 0.1. Disturbance of two layer, η1 = µ1 − H1, η2 = µ2 − H2, Composite
mode, ηcomp =

∑2
i=1 µi −H. and Baroclinic mode = ηcomp − ηswesloution.
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From all of these above mentioned test cases, the key point that we want to

investigate to validate our model is the phase speed and the characteristics of

barotropic and baroclinic modes. First of all, it is noted that our choice of initial

conditions and parameters ensures that our case satisfies all the validity conditions

for the two-layer SWE model (i. e. η
H
� 1 and Lx

H
� 1,∆ρ/ρr � 1).

The composite mode of the test case 4.2.2.2 shows that, the waves are very

similar, but the phase speed of two-layer SWE model is a bit slower than that of

single layer SWE. If we look at the peak of wave both for single and two-layer SWE,

we can see that, the peak of single layer SWE reaches to the boundary at t = 48.1s,

while for two-layer, it reaches at t = 49.1s. Here, we observed the phase speed for

single layer is cnumerical = 700
(48.1−41.1) = 100.0ms−1, which is approximately identical

to the phase speed of linearized SWE, c =
√
gH =

√
9.81 ∗ 1000 ≈ 99.0ms−1

what we know theoretically. On the other hand, from the composite mode (i.e.

perturbation to the free surface) we observed the phase speed for two-layer is

cnumerical = 700
(49.1−41.1) = 87.5ms−1.

Now, if we look back to the equation (4.7) and (4.8) we see that, theoretically,

the phase speed for the barotropic and baroclinic mode (for the vertical length H

and ∆ρ, we used in our model) is,

c1 =
√
gH =

√
9.81 ∗ 1000 ≈ 99.0ms−1

c2 =
√
g′
H1H2

H
=
√

9.81 ∗ 0.1 ∗ (5002)/1000 ≈ 15.7ms−1
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and from equation (4.15) and (4.16), the ratio of disturbance on two interfaces for

the barotropic and baroclinic mode is,

B

A
= H

H1
= 2 (4.15)

B

A
= −g

′

g

H1

H
= 0.1 ∗ (1/2) = 0.05 (4.16)

Since the barotropic and baroclinic mode exists on both layers and the direction

of propagation of these two modes are relatively opposite to each other, so accord-

ing to the principle of superposition of wave, the phase speed of their composite

mode is, 99.4 − 15.7 = 83.3ms−1, which verifies that, our numerical model gives

qualitatively accurate result.

In addition, we also found that, at the free surface, the phase speed of the

baroclinic wave is slower than the barotropic wave. From the figure, it is seen

that, the peak of barotropic wave reaches to the boundary at t = 49.1s while the

former one reaches to the boundary at t = 51.1s.

The behavior of two modes for the dispersion relation with a free surface can

be explained by using the following figure.
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Figure 4.17: The behavior of two modes for the dispersion relation with a free
surface.

For the barotropic mode, the pressure is constant along the line of constant

density and the dominant wave is surface wave. Because this solution is indepen-

dent of the density differences between layers and the barotropic mode behaves

like a way as if the system is unstratified.

In contrast, for baroclinic mode, the pressure varies along the line of constant

density and the internal wave motion is much greater than the surface wave and

they are 180◦ out of phase.
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Also, when the pycnocline moves down, the total thickness of upper layer in-

creases. Thus in the test case 4.2.2.3, the value of η (perturbation to the internal

layer) corresponds to the downward movement of pycnocline, increases the thick-

ness of the upper layer and downwells at pycnocline, i.e. negative vertical velocity

has found there.

In test case 4.2.2.4, a positive perturbation of density at the interface of two

layer generates internal wave. As we know that, internal waves oscillate in a fluid

medium. The water layer don’t mix and the interface remain intact. Thus we

observe internal wave propagates back and forth along the line of density differ-

ences. Since internal waves move both in horizontal and vertical direction, we also

observe the generation of waves at the free surface.

Thus the analyzation of these above test cases confirms the validity of two layer

shallow water model. For multilayer SWE model, we just subdivided this two-layer

into several layers. Thus the validity of two-layer SWE model also confirms the

validity of our multilayer SWE model.
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4.3 Numerical experiments

In our daily lives, we experience different types of waves and thus waves are all

around us. A wave is an immaterial thing and is created by energy passing through

a medium. For our numerical experiments we consider the medium is sea water.

The ocean is never still and waves in the ocean are most commonly created by the

wind. Ocean waves that occurs at the top layer or free surface of ocean is known

as surface waves. These waves are created by the stress force between wind and

the surface water of ocean. Apart from this, sometimes they also form due to the

geological effects (e.g. tsunamis).

Figure 4.18: Comparison between surface waves and an internal wave. Surface
waves form at the free surface of ocean due to the stress force between wind
and ocean’s top layer while Internal waves occur along a boundary of different
densities of ocean water.

On the other hand, waves in the interior of the ocean are called internal waves.

They can form when the water body consists of layers of different density due to the

variation of temperature and salinity. Internal waves also form in the atmosphere
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and are visible as periodic bands of clouds, often in the lee of mountains. There

are no internal waves in homogeneous fluid where the density doesn’t change with

depth.

Internal waves transport energy and momentum and they can lead to mixing

when they break, thus they play important role in the vertical mixing of ocean.

Beside this, surface wave is also important because they interact with internal

wave. This section basically deals with the interaction of wave that propagates

at the top and underneath of the ocean surface. Regarding this, we consider the

following test cases;

1. Perturbation of inertial mass from free surface for flat bottom of ocean with

two layered density,

2. Perturbation of inertial mass from free surface with two layered density and

bathymetry,

3. Perturbation of inertial mass from free surface for flat bottom of ocean with

linearly stratified density,

4. Perturbation of inertial mass from free surface with linearly stratified density

and bathymetry,

5. Perturbation of density at the boundary of different density with flat bottom

of ocean,

6. Perturbation of density at the boundary of different density with bathymetry

of ocean.
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4.3.1 Perturbation of free surface for both flat and non-flat

bottom of ocean with two-layer density

We are interested to study the generation of internal waves. The domain is Ω =

[0, 4000]m.

Flat bottom:

For flat bottom of ocean, the perturbation of the free surface is

η(x, 0) = 10e
− 1

6 (x−0.2Lx)2

δ2

we consider periodic boundary conditions.

Non-flat bottom:

The bathymetry is defined by

β(x) = 70e
− 1

4 (x−0.7Lx)2

δ2

The two-layer stably stratified density is given by,

ρ(z) = ρr

(
1− ∆ρ

2

(
1− tanh

(
−z +H/2

0.05H

)))

where ∆ρ = 0.1 and H = 1000 m. Figure 4.19 shows the initial perturbation of

inertial mass and initial density distribution at time t = 0 s for flat and non-flat

bottom of ocean respectively.
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Figure 4.19: Initial elevation of water mass from free surface (η(m)) which

is a Gaussian profile of the form η(x, 0) = 10e
− 1

6 (x−0.2Lx)2

δ2 η(m) and initial
distribution of density. The spatial domain X is rescaled as Lx

H .

To illustrate the results, we plot the change in inertial mass (µ) as well as the

perturbation in normalized density (θ) for different time. To visualize the propa-

gation of internal waves, we subtracted the mean background density stratification

from the normalized density function. The propagation of surface waves and inter-

nal waves for flat bottom case has been plotted in figures (4.20-4.22). Subfigure.1

of all of these snapshot, represents the comparison of single layer and multilayer

SWE for surface wave. Subfigure.2 represents the perturbation in normalized den-

sity without mean background density. As we see, due to the perturbation to the
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free surface of ocean, both a surface wave and an internal wave are produced and

propagate away from the original disturbance. The process at work is easy to

apprehend: a positive perturbation causes water to rise above the surface level,

then gravity pulls it back down since water is heavier than air and the forces that

acquired during the falling movement causes the water to penetrate beneath it’s

equilibrium level and results a buoyancy motion.

Surface waves can propagate only in horizontal directions. When a water parcel

rises somewhere above the surface level, it added some weight on water there.

And the weight of this water creates pressure which is locally higher than normal.

Eventually, this pressure anomaly pushes the water to move away from that region

and generates another surface rise at some distance away. As a result, we get the

translation of disturbance, hence a traveling wave, which we call as surface wave.

Both surface waves and internal waves propagate back and forth with time,

since we applied periodic boundary conditions. Internal waves are slower since

they rely on a weaker density difference and can propagate both vertically and

horizontally. Interestingly, at time t = 270 s, the vertical mixing of density has

been observed. Since the solution is periodic in time, both waves are propagating

back to their origin of perturbation at time t = 500 s, as seen in Figure 4.22.

The result for non-flat bottom is illustrated in figures (4.23 - 4.25). As we see in

the above mentioned case, the disturbance at the free surface generates an internal

wave. Apart from that, since this problem simulates flow over a bump, we also

observe the creation of another internal wave. This type of internal waves generate

when a stably stratified flow is forced over a bump/ an obstacle. This disturbance
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lifts the water parcel above their neutral buoyancy level and therefore buoyancy

restoring forces act to excite the vertical oscillation of the perturbed water parcel.

During this process, a pressure anomaly generates there and that pressure varies

along the line of density differences. Thus we can see the propagation of another

internal wave.

The another major difference what we observe between flat and non-flat bottom

case is the phase speed and the steepness of the wave. For the non-flat bottom

case, the wave moves a bit slower and gets steeper than the flat bottom case.

As we outlined in 4.2.1.4, when such a wave model approaches progressively in

smaller depth (i.e. the area around the bathymetry where the mean height, H

is small, compare to that of other area), the longest components of wave which

propagate faster, are being slowed down when reaching smaller depth areas. The

shorter following wave components, which are still left behind in larger depth, feel

less effect of the depth and tries to catch the longest ones. That’s how, we see a

steeper wave profile.

101

http://www.mcmaster.ca/


Masters of Science– Afroja Parvin; McMaster University– CSE

Figure 4.20: Flat bottom: Surface waves (η(m)) and Internal waves at t = 1 s
and t = 45 s. Both waves are propagating towards boundary but internal waves
are slower than surface wave.
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Figure 4.21: Flat bottom: Surface waves(η(m)) and Internal wave generation
at t = 110 s and t = 270 s. Vertical mixing of density is observed at t = 270 s.
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Figure 4.22: Flat bottom: Surface waves (η(m)) and Internal wave generation
at t = 390 s and t = 500 s. Both waves propagate back and forth due to the
periodic boundary conditions.
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Figure 4.23: Non-flat bottom: Surface waves (η(m)) and Internal wave gener-
ation at t = 1 s and t = 45 s. Waves are propagating away from the region of
disturbance as well as from topographic region.
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Figure 4.24: Non-flat bottom: Surface waves (η(m)) and internal waves at
t = 110 s and t = 270 s. Waves that created due to the disturbance at top layer
and vertical mixing is observed at t = 270 s.

106

http://www.mcmaster.ca/


Masters of Science– Afroja Parvin; McMaster University– CSE

Figure 4.25: Non-flat bottom: Surface waves (η(m)) and Internal wave gener-
ation at t = 390 s and t = 500 s. Slicks on the surface is observed when internal
waves rebound.
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4.3.2 Perturbation of inertial mass from free surface both

for flat and non-flat bottom of ocean with linear

stratified density

To study the propagation of internal wave in a linear stratified ocean, we chose the

same function for the perturbation of inertial mass, as introduced in section 4.3.1,

both for flat and non-flat bottom case. Also the horizontal and vertical domain

as well as the bathymetry function we consider for this test case is similar to the

case 4.3.1.

But for the density stratification, a linear stratified density function is given as,

ρ = ρr

(
1−∆ρ z

H

)

where ∆ρ = 0.1 and H = 1000 m. Figure 4.26 shows the initial perturbation of

inertial mass and initial density distribution at time t = 0 s.

Just as the test case 4.3.1, to visualize the propagation of surface wave and in-

ternal wave, we plot the change in free surface height as well as the perturbation in

normalized density (θ) for different times. As in two layer density case, we observe

that both surface waves and internal waves propagate in a similar pattern. How-

ever, in this case, the internal waves propagate away from the region of disturbance

in an angle to the vertical. Furthermore, for internal waves, energy propagates in

the direction of group velocity. This means that, internal wave which is generated

by a localized source, could never have the appearance of concentric circular crest

as surface waves does [47], instead of having it, the crests and other surfaces of
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constant phase propagate radially outward from the source. Because waves energy

propagates in the direction of group velocity, which is parallel to the surface of

constant phase.

For ω ≤ N , all these surfaces move at an angle θ = cos−1(ω/N) to the vertical

and therefore, all the wave energy travels from the source region in an angle to the

vertical. In addition, the direction of the propagation of wave can be determined

by the fact that, the phase velocity is perpendicular to the group velocity. This

means, if the group velocity has positive vertical component then the phase velocity

has negative vertical component and the other way around.

Figure 4.26: Initial elevation of water mass from free surface (η(m)) and initial
distribution of density. The spatial domain X is rescaled as Lx

H .
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Figure 4.27: Flat bottom: Surface waves (η(m)) and Internal wave generation
at t = 1 s and t = 120 s. Waves are propagating away from the region of
disturbance.
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Figure 4.28: Flat bottom: Surface waves (η(m)) and Internal wave generation
at t = 245 s and t = 300 s. Waves are propagating towards boundary under an
angle with vertical.
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Figure 4.29: Flat bottom: Surface waves (η(m)) and Internal wave generation
at t = 365 s and t = 500 s. Vertical mixing in the interior ocean has been
observed.
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Figure 4.30: Non-flat bottom: Surface waves (η(m)) and Internal wave gener-
ation at t = 1 s and t = 45 s. Waves are propagating away from the region of
disturbance as well as from topographic region.
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Figure 4.31: Non-flat bottom: Surface waves (η(m)) and internal waves at
t = 110 s and t = 270 s. Waves that created due to the disturbance at top layer,
propagates towards boundary and merge with the waves propagating away from
the topographic region.

114

http://www.mcmaster.ca/


Masters of Science– Afroja Parvin; McMaster University– CSE

Figure 4.32: Non-flat bottom: Surface waves (η(m)) and Internal wave gen-
eration at t = 390 s and t = 500 s. Waves are propagating back and forth and
vertical mixing of density has been observed.
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4.3.3 Perturbation at the density interface with flat and

non-flat bottom of ocean

In this test case, we consider two layer of density where the lower layer is denser

than the upper layer. The density function is given by;

ρ = ρr

(
1− ∆ρ

2

(
1− tanh

(
−z +H/2

0.05H

)))

where ∆ρ = 0.1 and H = 1000 m.

We consider the inertial mass at free surface is in rest. The goal of this numerical

test case is to observe how a small perturbation of density at the interior interface

of ocean generates oceanic wave. For the perturbation of density we consider the

following function;

ρperturb = ρr∆ρ
(

exp
(
−
((
x− Lx

2

)2
+
(
z − H

2

)2)
/ (0.3H)2

))

For non-flat bottom of ocean, the bottom bathymetry is defined by the following

Gaussian function

β(x) = 70e
− 1

4 (x−0.7Lx)2

δ2

Figure 4.33 shows the initial state inertial mass at free surface and initial density

distribution at time t = 0 s.
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Figure 4.33: Flat bottom: Inertial mass at free surface (η(m)) and initial dis-
tribution of density with a small perturbation to the density gradients. Initially,
there is no change in inertial mass at free surface.

To illustrate the results, we plot the change in inertial mass (η) as well as

the perturbation in normalized density (θ) for different time. The propagation of

surface waves and internal waves for flat bottom case has been plotted in figures

(4.34-4.39).

The boundary conditions at left and right boundaries of our domain are set to

be periodic. Internal waves are generated when energy is applied to the interface

of water layers with steep density gradients. The layer don’t mix and the interface

remain intact. These waves propagate back and forth with time, as we see from

figures. For surface wave, atmospheric wind mainly apply the triggers to lift water
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from the equilibrium level of surface and then gravity pushes it downwards again

and thus creates a rippling wave. While for internal wave, most of the cases,

the trigger can be the propulsion of energy from a ship or could be due to tidal

motions. Internal waves are much larger than the surface waves, because the

density differences between two layers is much smaller than that between air and

water. So less energy is required to displace the interface from it’s equilibrium

position and oscillation is more easily set up at the internal interface than that

at the surface. On the other hand, the wave at the surface become rougher when

the internal wave dropped down. And when it rebounded up, the surface water

form a smooth slick [28]. Some particular snapshot after 20 periods of forcing is

sufficient to visualize all these scenarios, as presented in figures (4.34-4.39).
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Figure 4.34: Flat bottom: Change in inertial mass at free surface (η(m)) and
propagation of internal wave at the interior ocean at t = 25 s and t = 60 s.
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Figure 4.35: Flat bottom: Change in inertial mass at free surface (η(m)) and
propagation of internal wave at the interior ocean at t = 100 s and t = 150 s.
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Figure 4.36: Flat bottom: Change in inertial mass at free surface (η(m)) and
propagation of internal wave at the interior ocean at t = 295 s and t = 500 s.
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Figure 4.37: Non-flat bottom: Change in inertial mass at free surface (η(m))
and propagation of internal wave at the interior ocean at t = 20 s and t = 65 s.
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Figure 4.38: Non-flat bottom: Change in inertial mass at free surface (η(m))
and propagation of internal wave at the interior ocean at t = 105 s and t = 205
s.
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Figure 4.39: Non-flat bottom: Change in inertial mass at free surface (η(m))
and propagation of internal wave at the interior ocean at t = 250 s and t = 350
s.
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Chapter 5

Conclusions and Future work

5.1 Conclusions

The ocean is stratified due to the dynamics of temperature, salinity, position and

pressure. These changes in the ocean often lead to strong variation of density in the

vertical direction. Consequently, the density stratification (either at an interface

between ocean and atmosphere or an interface between two layers of ocean water)

allows oscillation of fluid. The wave phenomena associated with these oscillation

are called surface waves (i.e. waves at free surface of ocean) and internal waves (i.e.

waves in the interior of ocean). Buoyancy force generates this oscillation. This

study presents the dynamic and interaction between surface waves and internal

waves, with and without bathymetry of ocean.

Multilayer SWE has been solved by using an explicit staggered finite volume

method to understand the behavior of internal waves. In the multilayer model
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we consider a stratified fluid with small density differences, consistent with the

Boussinesq approximation. Boussinesq approximation for buoyancy, what we use

for multilayer model is not the same as the Boussinesq approximation for surface

waves. Here we include density variations in terms when multiplied by gravity.

Due to the use of a Lagrangian vertical coordinate, vertical layers change from

their original positions as the flow evolves. Therefore, conservative remapping is

required periodically to keep the layers from collapsing or spreading too far apart.

To validate our numerical model, we compare the phase speed and the wave

characteristics of multilayer surface wave with that of single layer SWE with and

without density stratification. As seen in the results, without any density dif-

ferences, as expected, the wave speed is the same for both models. But in the

presence of density differences, surface waves for the multilayer case move slowly

due to the generation of internal waves in the interior of the ocean. For 1D SWE,

the steepening as seen in the results, is just the usual nonlinear wave steepening.

Moreover, 2-D multilayer model shows the expected nonlinear wave steepening in

the presence of bathymetry. In addition, the numerical analysis of the barotropic

and baroclinic mode for linearized two-layer SWE confirms that the phase speed

of barotropic mode is faster than baroclinic mode.

The interaction between internal waves and surface waves have been inves-

tigated in a series of numerical experiments. It shows that, free surface waves

perturb the density isopycnals and that generates mixed layers in the interior of

the flow. The adjustment to gravitational equilibrium then generates internal

waves. During this adjustment process, internal waves are generated and emitted.

Apart from this, when fluid flows over bathymetry, a vertical components of wave
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arise and it oscillates at a frequency as like as the horizontal component of wave.

This vertical component of wave brings isopycnal surfaces into oscillation and thus

propagate energy both in horizontally and vertically. Moreover, surface waves are

created in the zone where density changes very sharply between air and water and

restricted their movement and energy propagation just in the surface. On the con-

trary, internal waves are formed at density gradients in the interior ocean, which

is smoothly stratified over the vertical and thus transports energy from one depth

level to the other.

Surface waves and internal waves are definitely an interesting topic to study.

Beside them, there are many types of ocean waves and they can all co-exist with

different wave speeds and wavelengths. In addition, they can also influence and

affect each other. Internal wave dynamics, and their interaction with wind-driven

surface waves, are an essential part of ocean climate models.
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5.2 Future work

A brief sketch of possible future work is given below:

1. Extend multilayer incompressible SWE to three dimensions on the sphere.

This project will develop an ocean version of the dynamically adaptive cli-

mate model being developed by Dubos and Kevlahan and will build on earlier

work by Aechtner et al (2015) for the 2-D SWE.

2. In the present study, we used a sigma-type Lagrangian vertical coordinate

which doesn’t allow mass to flow across the vertical layer. In the future work,

we will investigate and compare with a mass-based coordinate system which

explicitly includes a vertical velocity.

3. For the vertical discretization, we used sigma type (σ−z) coordinate systems.

Apart from this, we can also consider other vertical coordinate system such

as isopycnal coordinates.

4. For ocean’s bathymetry, we assumed that β(x) depends on horizontal posi-

tion x only. We could also include dynamic bathymetry, as occurs in earth-

quakes, by allowing β to be a function of both x and t.
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