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Abstract

This thesis focuses on extension of Inverse Probability of Censoring Weighted Tar-

geted Maximum Likelihood Estimation (IPCW-TMLE) which was initially proposed

for two-stage sampled data. We adapt this framework to the setting of mixed Aggre-

gate Data (AD) and Individual Patient Data (IPD) meta-analysis. Our methods are

motivated by a systematic review investigating treatment effectiveness for Multi-Drug

Resistant Tuberculosis (MDR-TB) where studies consist of mixed IPD and AD, and

where treatments are not necessarily observed across all studies. We focus on the esti-

mation of the expected potential outcome under a given treatment and then compare

the results using different methods in two simulation studies. We also discuss the

challenges and demonstrate our estimation approach when there exist studies that do

not have access to the treatment of interest, using the concept of transportability. We

use the jackknife estimator to estimate the variance and evaluate the coverage proba-

bility of different methods in the simulation study. The results showed near unbiased

results along with a close to nomial coverage probability when using IPCW-TMLE

method.
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Chapter 1

Introduction

Meta-Analysis is a formal way of quantitatively combining available information from

studies to assess treatment effects on a more general scale. This available information

maybe present in the form of Aggregate Data (AD), which refers to the summary

data reported in the studies, or Individual Patient Data (IPD), which refers to all

subject-specific data in each study. A meta-analysis performed on AD-only studies

may result in ecological bias, and one limited to only the studies where IPD are

available may lead to selection bias. Hence, a desirable approach to meta-analysis

uses the information available from both AD and IPD studies, which we refer to here

as a mixed data meta-analysis.

Our investigation is motivated by an investigation of drug effectiveness in patients

with multi-drug resistant tuberculosis (MDR-TB) [Ahuja et al., 2012]. MDR-TB is a

disease caused by the Mycobacterium tuberculosis that is resistant to at least isoniazid

and ripamfin, two of the most common drugs prescribed to patients with tuberculosis.

MDR-TB patients are treated using multiple alternative microbial agents with the
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current guideline recommending the intake of five or more microbial agents concur-

rently [World Health Organization, 2016]. A recent systematic review of the literature

performed in 2012 identified articles which summarized the findings obtained in the

analysis of 67 unique observational studies. The IPD were obtained after contacting

the authors of the identified studies. Not all authors responded, however, and so the

IPD from multiple studies are not available for the meta-analysis. The available stud-

ies consist of 32 IPD and 35 AD-only studies where the IPD studies were performed in

23 World Health Organization health regions [Ahuja et al., 2012]. Across all studies,

patients were observed to be taking any of 15 medications, and with patients taking

multiple medications concurrently, the analysis of this kind of data poses a challenge

in estimating the causal effects of the observed treatments.

We tackle this problem of mixed AD and IPD two-stage data structure here which

has hardly been discussed in the literature [Idris and Misran, 2015]. We justify our

procedure using a counterfactual approach to causal inference, which is commonly

employed to estimate such causal quantities as the average treatment effect. Avail-

able research has not demonstrated the identifiability of these causal parameters in

mixed AD and IPD meta-analysis. The treatment effects of interest are defined using

counterfactuals, and to obtain consistent estimation, we formulate a novel applica-

tion of the inverse probability of censoring weighted targeted maximum likelihood

estimator (IPCW- TMLE). IPCW-TMLE also incorporates a partial double robust-

ness property which we demonstrate analytically as well as through Monte Carlo

simulation.

One specific complication that arises for IPD data analysis of multiple treatments

2
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deals with cases when treatments are unevenly distributed across studies. This com-

plication has already been addressed [Wang, 2018], and the concept of transportability

of causal effects was developed for these situations under stringent assumptions. We

incorporate this concept in our IPCW-TMLE method.

In this thesis, we focus on the use of IPCW-TMLE for estimating treatment effects

for mixed data meta-analysis. In Chapter 2, we review the basics required for per-

forming causal inference in observational studies and provide an overview of TMLE

and the previous methods used for estimating treatment effects in meta-analysis.

We formulate the methodology for the use of IPCW-TMLE for our thesis in Chap-

ter 3, by first explicitly describing the data structure and the identification of the

target parameter and then providing the estimation algorithm and proof of double

robustness. In Chapter 4 we perform a couple of simulation studies, motivated by

the MDR-TB data, to evaluate the performance of the IPCW-TMLE against some

simpler approaches. We conclude the thesis in Chapter 5 and suggest some further

research that can be carried out in this area.

3



Chapter 2

Literature Review

2.1 Causal Inference

This section lays down the necessary foundation for performing causal inference on

a dataset. Under specific assumptions, one can demonstrate the identifiability of a

causal parameter of interest using observed data. We first elaborate two types of stud-

ies used in the clinical literature followed by defining the standard causal assumptions

required for simple observational studies. We then define the propensity score and

describe its use in medical studies followed by Targeted Maximum Likelihood Estima-

tor (TMLE) and the Inverse Probability of Censored Weighting-Targeted Maximum

Likelihood Estimator (IPCW-TMLE) for estimating causal quantities with different

data structures.

4
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2.1.1 Observational Studies and Randomized Controlled

Trials

Observational studies and randomized controlled trials (RCTs) are two different types

of study designs used in clinical research. RCTs are regarded as “gold standard” for

estimating treatment effects in clinical studies [Byar et al., 1976]. RCTs are studies

performed on a strictly defined population under ideal treatment conditions which

include randomization of treatments given to patients in the study. For instance,

suppose a doctor wishes to test the effectiveness of a new drug A to an existing drug

B for the same illness. The doctor then randomly assigns each patient to one of the

drugs irrespective of the characteristics of that patient. This is an example of a RCT.

An observational study is a type of study design where inference is based on the

data in which the researcher has no control over the treatments taken by individuals

in the study. For instance, suppose a farmer wants to buy fertilizer to improve his

crop yield. To choose the best fertilizer for the crop, he compares the performance

of different fertilizers with the crop based on the data from his neighbors who used

different fertilizers over the past years.

Due to the absence of randomization of treatments in observational studies, the

covariates of individuals taking each treatment may largely differ and possibly also

affect the observed outcome. These covariates, referred to as confounders, may result

in confounding bias in observational studies in contrast to studies conducted in a

RCT that are not subject to such a bias [Hannan, 2008].

However, RCTs are time-consuming and also require additional costs compared

to observational studies. Another major drawback of RCTs is that one needs to take

into account the ethical issues involved in carrying out the study. For instance, the
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individuals taking part in the study must have the right to retract themselves at any

phase in the study, individuals must be aware of the associated risks of taking part

in the study, the possible risk that might occur during the study should be balanced

by the benefits of the study, etc. The institutional review board should approve all of

the ethical issues arising in RCTs before the study is performed [Sarker, 2014]. Due

to these drawbacks, one might consider the use of an observational study for assessing

treatment effects.

2.1.2 Counterfactual Model

Suppose Mark just had an interview with Google for a data analyst position but was

unprepared for it. As a consequence, he was not offered a job after the interview.

He might think, “If I had prepared for the interview, I probably would have stood a

chance for the job position.” This is a speculative thought, and there is no way to

observe what exactly would have happened had he prepared well for the interview.

These kinds of statements are called counterfactual statements and are formally de-

fined as statements with a false premise followed by the outcome that would have

occurred, had the premise been true [Brady, 2002].

Consider the data of the form O = {X,A, Y }, where X represents a vector of

covariates, A represents a binary categorical treatment wherein A = 1 denotes that

patient i was exposed to the treatment and A = 0 denotes that the patient was

not exposed to the treatment. As stated by Greenland and Brumback [2002], the

counterfactual model for the above data assumes that:

• Individuals in the study could hypothetically have been exposed to any treat-

ment levels (A = 0 or 1) at the beginning of the study;

6
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• Outcomes for every individual exist under both treatment levels and are denoted

by Y (A = 1) and Y (A = 0) which represent the observed outcome if the

individual received the treatment A = 1 and A = 0, respectively.

At the end of the study, the outcome is only observed for a single treatment value

corresponding to the treatment received; in otherwords, for an individual who was

exposed to treatment, we observe the outcome Y (A = 1), corresponding to the treat-

ment exposure A = 1, whereas Y (A = 0) is unobserved for that individual. The

unobserved or hypothetical outcome is called the counterfactual or potential outcome.

In general, the choice of treatment does not affect an individual if the counterfac-

tual outcomes of every available treatment in the study are the same as the observed

outcome. Practical use of the counterfactual model in causal inference is to assess

the effectiveness of a treatment by estimating the difference of the average of the

potential outcomes across the study population based on the observed covariates and

the outcomes of individuals in the study [Greenland and Brumback, 2002].

Counterfactuals are also used to estimate the average treatment effect (ATE),

which is defined as the difference of the expected mean when one intervenes on the

study by exposing everyone to the treatment against no one receiving the treatment.

For instance, for a binary treatment A, the ATE is defined as:

ATE = E(Y (A = 1))− E(Y (A = 0)).

To estimate the ATE, we state the causal assumptions required in this simple

observational study structure followed by defining the propensity score model and

the TMLE algorithm for the estimation of causal quantities.

7
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2.1.3 Assumptions for Observational Studies for Inference

In order to demonstrate identifiability (defined in Section 2.1.4) for the parameter of

interest in observational studies, we require assumptions which relates counterfactual

outcomes to the observed data. The assumptions are described as follows:

Stable Unit Treatment Value Assumption: Stable Unit Treatment Value As-

sumption (SUTVA) was introduced by Rubin [1980], but was also previously

discussed by Cox [1958] informally. Within the field of epidemiology, SUTVA is

referred to as the treatment variation irrelevance and the consistency assump-

tion [Schwartz et al., 2012].

The treatment variation irrelevance assumption states that the response of any

individual is only dependent on the treatment provided to the individual and

is independent of any other individual’s treatment.

The consistency assumption states that the true observed outcome of an in-

dividual is same as the counterfactual outcome under actual treatment (Ai)

provided to the individual. Consider any patient i, who is exposed to treatment

Ai after which we observe the outcome Yi. Hence, the consistency statement

can be mathematically written in the following form:

Yi = Yi(A = Ai), (A1)

where Yi(A = Ai) denotes the potential outcome under treatment Ai.

Positivity: This assumption states that for all individuals in the study, the prob-

ability of receiving any treatment based on the covariates should be positive,

i.e., for the data structure presented in Section 2.1.2, Pr(A = 0|X) > 0 and

8



M.Sc. Thesis - Arman Alam Siddique McMaster - Mathematics & Statistics

Pr(A = 1|X) > 0. The assumption of positivity is violated when it is theoreti-

cally impossible to assign the treatment of interest to some patients due to their

set of pre-treatment covariates, for instance, some individuals in a study may be

contraindicated for one of the treatments. Practical positivity violations occur

when some patients in the study have an arbitrarily small estimated probability

of receiving the treatment of interest. This commonly occurs in studies with

small sample sizes. The presence of these cases in a model leads to an increase in

bias and variance in the estimation of the causal parameter of interest [Petersen

et al., 2012].

Conditional Exchangeability: Conditional Exchangeability can be mathematically

represented as

Y (A = a) |= A|X. (A3)

This assumption states that conditional on the pre-treatment covariates, the

counterfactual outcome of an individual is independent of the treatment re-

ceived, i.e., E(Y (A = a)|A = 1, X) = E(Y (A = a)|A = 0, X) = E(Y (A =

a)|X). In epidemiology, we say that X contains all of the confounders in the

model affecting A and Y and there are no unmeasured confounders. However,

conditional exchangeability cannot be empirically tested in an observational

study [Hernán, 2012].

2.1.4 Identifiability of E(Y (A = a))

A parameter is said to be identifiable if it can be determined using infinite samples

of the available data. For the data structure O defined in Section 2.1.2, the proof of

9
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identifiability of the target parameter E[Y (A = a)], using the assumptions mentioned

in Section 2.1.3, is as follows:

E[E[Y |A = a,X]] = E[E[Y (A = a)|A = a,X]] using A1,

= E[E[Y (A = a)|W ]] using A3,

= E[Y (A = a)] using law of iterated expectation (LIE).

Therefore, E[Y (A = a)] can be estimated using the available data. The following

sections describe the estimation of the target parameter using a semi-parametric

estimation structure.

2.1.5 Propensity Score

The propensity score is defined as an individual’s probability of receiving a treatment

based on their vector of covariates [Rosenbaum and Rubin, 1983]. When considering

a binary treatment A, the propensity score can be mathematically defined as

g(A = a) = Pr(A = a|X), (2.1)

where a ∈ {0,1}. In RCTs, this probability is fixed and known. For instance, treat-

ments being assigned to patients by flipping a coin, where the occurrence of heads

and tails indicates that the patient is exposed to the treatment or not, respectively,

corresponds to Pr(A = a|X) = 0.5. On the other hand, in observational studies,

this probability is unknown and likely to depend on the pre-treatment covariates

10
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of the individual. Due to this, the treatment arms in observational studies are im-

properly balanced regarding the patient characteristics in each arm [Braitman and

Rosenbaum, 2002], where treatment arms refer to the subset of patients exposed to

a particular treatment.

The propensity score may, for instance, be estimated using logistic regression,

classification, and regression trees analysis, or random forests [Lee et al., 2010].

The propensity score has been used to estimate treatment effects using stratifica-

tion [Rosenbaum and Rubin, 1984], matching [Rosenbaum and Rubin, 1985] or re-

gression adjustment [d’Agostino, 1998].

2.1.6 Efficient Influence Function

Semi-parametric models are defined as models that contain a parametric part with a

finite dimensional space and a non-parametric part with a finite or infinite dimensional

space, which in some cases is referred to as the nuisance parameter or the model

noise [Powell, 1994]. The influence function is an essential characteristic of semi-

parametric estimators, which are used for analysis of a dataset.

Consider a statistical model with O1, O2,..., On, independent and identical random

vectors. Let ψ denote the parameter of interest. Suppose there exists a consistent

estimator ψ̂ of ψ and a random vector φ(O), such that E(φ(O)) = 0 and,

√
n(ψ̂n − ψ0) =

1√
n

∑
i

φ(Oi) + op(1), (2.2)

where op(1) denotes a random variable that converges in probability to zero as the

sample size converges to infinity, and ψ0 denotes the true value of the parameter.

11
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For the above random vector φ(O), provided E(φ(O)φ(O)T ) is finite and singular, ψ

is described as an asymptotically linear estimator and φ(O) is called the influence

function of ψ̂ [Tsiatis, 2007]. Further, using Central Limit Theorem, we have that

1√
n

∑
i

φ(Oi)
D−→ N(0,E(φ(O)φ(O)T )),

which, from the use of Slutsky’s Theorem, yields

√
n(ψ̂n − ψ0)

D−→ N(0,E(φ(O)φ(O)T )),

since 1√
n

∑
i φ(Oi)

P−→
√
n(ψ̂n−ψ0) using (2.2). Every asymptotically linear estimator

is characterized by a unique influence function though any number of estimators may

share the same influence function. Further, ψ̂ is said to be asymptotically robust

if (φ(Oi) − φ(o))/n is bounded, where o represents any value of O and φ(O) is an

influence function of ψ̂ [Van der Vaart, 2014].

For every regular and asymptotically linear estimator ψ̂ of ψ, there exists an

influence function φ1(O) such that E(φ(O)φ(O)T ) - E(φ1(O)φ1(O)T ) is non-negative

definite for every other influence function φ(O) of ψ̂. This φ1(O) is called the efficient

influence function of ψ̂ [Tsiatis, 2007].

Efficient influence functions also provide a tool for variance estimation, and a

typical variance estimate of the parameter ψ is given by 1
n

∑
i(φ1(Oi))

2 [Rocke and

Downs, 1981].

12
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2.1.7 Targeted Maximum Likelihood Estimation

Targeted Maximum Likelihood Estimation (TMLE) is a semi-parametric estimation

framework, proposed by Van der Laan and Rubin [2006], for the estimation of causal

quantities.

We have the data denoted by O = {X,A, Y }, where X, A and Y represent co-

variates, treatment and outcome respectively, with a true probability distribution P0,

a statistical model space M which consists of all possible distributions for P0, and

the parameter of interest denoted by ψ = Ψ(P), where Ψ is a mapping defined from

the probability distribution P to the target parameter. ψ0 = Ψ(P0) represents the

true value of the parameter of interest. Below a typical algorithm is provided for the

estimation of a causal parameter using TMLE.

Algorithm

Suppose the parameter of interest is ψ = E[E[Yi|Ai = a,Xi]], which also represents

the causal effect under treatment A = a denoted by E[Y (Ai = a)] as proved in

Section 2.1.3. We also define Q0 = {Q̄0, QX,0} ∈ P0, where QX,0 denotes the full

distribution of X and Q̄0 denotes the expectation of the outcome conditional on the

covariates. The efficient influence curve φ1(Oi) at P0 is given by

φ1(Oi) =
I(Ai = a)

g0(Xi)
{Yi − Q̄0(Xi)}+ Q̄0(Xi)−Ψ(P0),

where g0(Xi) is the true propensity score [Rose and Van der Laan, 2011].

TMLE in this setting consists of two steps, essentially referred to as the initial

step and the update step. The initial step consists of initializing estimates of Q̄0(Xi)

13
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and g0(Xi) which are defined as follows:

Q̄0(Xi) = E[Yi|Ai = a,Xi],

g0(Xi) = Pr(Ai = a|Xi),

over P0. For obtaining an initial estimate Q̄0
n(Xi) of Q̄0(Xi), we can, for example,

fit a logistic regression model for Y against X for all individuals with treatment

A = a. This model is then used to predict E(Yi|Ai = a,Xi) for all individuals

in the dataset using the pre-treatment covariates of the individuals. The estimate

of the propensity score is denoted by gn(Xi) which can be obtained similarily by

fitting a logistic regression model for A against X and using this model to predict

the probability of assignment of the treatment A = a based on the pre-treatment

covariates of an individual.

We define a new variable H∗n, which is called the clever covariate [Van der Laan

and Rubin, 2006], as

H∗n = H(Xi, a) =
I(Ai = a)

gn(Xi)
.

We then model Y against the clever covariate H∗n using a logistic regression with

an offset of logit(Q̄0
n(Xi)) and with no intercept term in the resulting model. The

resulting coefficient for H∗n in the obtained model is denoted by εn which represents

the maximum likelihood estimate for the logistic regression model. The next step

involves updating Q̄0
n(Xi) to a new estimate Q̄1

n(Xi), which is given by

logit(Q̄1
n(Xi)) = logit(Q̄0

n(Xi)) +
εn

gn(Xi)
. (2.3)

As mentioned earlier, QX,0 is the probability distribution of Xi, and its estimate

14
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is obtained using an empirical distribution. The obtained estimate is independent of

the fluctuation parameter εn and therefore is not updated [Rose and Van der Laan,

2011]. The TMLE estimate for Q0 is then given by Q∗n = {Q̄1
n, QX,0}. The target

parameter ψ depends on P0 through Q̄0 and its estimate ψTMLE
n is given by

ψTMLE
n =

1

n

∑
i

Q̄1
n(Xi), (2.4)

where n denotes the sample size. As mentioned in Van der Laan and Rose [2011], one

can use the efficient influence curve for the estimation of the variance of the parameter

of interest, provided that one of Q̄0
n(Xi) or gn(Xi) is consistently estimated. The

estimate φ̂1(Oi) of the efficient influence function φ1(Oi) is given by

φ̂1(Oi) =
I(Ai = a)

gn(Xi)
{Yi − Q̄1

n(Xi)}+ Q̄1
n(Xi)− ψTMLE

n , (2.5)

and the variance estimate for ψTMLE
n using the efficient influence curve is given by

V ar{ψTMLE
n } =

1

n

∑
i

(φ̂1(Oi))
2.

Apart from using the efficient influence curve, one can also use bootstrp method

to estimate the variance of the parameter of the parameter of interest [Gruber and

van der Laan, 2013, Schnitzer et al., 2015].

Properties

TMLE targets the maximum likelihood estimate of the target parameter by perform-

ing an additional bias step by updating Q̄0
n(Xi). It is a well-defined estimator, i.e.,

there exists a unique solution for this algorithm.
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TMLE is asymptotically unbiased, i.e., the obtained estimate converges to the

true value as the sample size increases to infinity, provided one of Pr(Ai = a|Xi)

or E(Yi|Ai = a,Xi) is consistently estimated. This is also referred to as the double-

robustness property. When both models for Pr(Ai = a|Xi) and E(Yi|Ai = a,Xi)

are correctly specified, the resulting algorithm is asymptotically efficient [Van der

Laan and Gruber, 2016]. The proof of the double-robustness property is given in

Section 2.1.7.

TMLE is a substitution or plug-in estimator, i.e., it is obtained by plugging the

estimate Q̄1
n of the data generating function Q̄0 into the mapping function Ψ:

ψTMLE
n = Ψ(Q̄1

n) = E(Q̄1
n(Ai = 1, Xi)) =

1

n

∑
i

Q̄1
n(Ai = 1, Xi).

Due to the above reason, TMLE is more robust to outliers and sparsity [Van der Laan

and Rose, 2011].

Double Robustness of TMLE

TMLE solves the efficient influence function equation given by

∑
i

I(Ai = a)

gn(Xi)
{Yi − Q̄1

n(Xi)}+ Q̄1
n(Xi)− ψTMLE

n = 0. (2.6)

Proof : As shown is Section 2.1.7, the update step of the TMLE corresponds to the

logistic regression of Y against the clever covariate H∗n using an offset of logit(Q̄0
n(Xi))

and with no intercept term. The score function of the logistic regression model can
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thus be written as

∑
i

I(Ai = a)

gn(Xi)
(Yi − expit(logit(Q̄0

n(Xi)) +
εn

gn(Xi)
)) = 0

⇒
∑
i

I(Ai = a)

gn(Xi)
(Yi − Q̄1

n(Xi)) = 0 by Equation (2.3)

⇒
∑
i

I(Ai = a)

gn(Xi)
{Yi − Q̄1

n(Xi)}+ Q̄1
n(Xi)− ψTMLE

n = 0 by Equation (2.4).

Hence, Equation (2.6) holds. Further, provided one of Q1
n(Xi) → E(Yi|Ai = 1, Xi) or

gn(Xi) → Pr(Ai = 1|Xi), we can claim that

∑
i

I(Ai = a)

gn(Xi)
{Yi − Q̄1

n(Xi)}+ Q̄1
n(Xi)− ψ0

P−→ 0, as n→∞. (2.7)

To prove the above claim, we consider two cases with an assumption that one of

Q1
n(Xi) or gn(Xi) is correctly specified and show that Equation (2.7) is satisfied.

i) Let’s assume Q1
n(Xi) → E(Yi|Ai = 1, Xi) and gn(Xi) → g̃(Xi), where g̃(Xi) is not

necessarily equal to Pr(Ai = a|Xi). Therefore, by the Weak Law of Large Numbers
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(WLLN), the left hand side of Equation (2.7) can be written as

∑
i

I(Ai = a)

gn(Xi)
{Yi − Q̄1

n(Xi)}+ Q̄1
n(Xi)− ψ0

P−→ E
(I(Ai = a)

g̃(Xi)
{Yi − E(Yi|Ai = a,Xi)}+ E(Yi|Ai = a,Xi)− ψ0

)
= E

(
E
({I(Ai = a)

g̃(Xi)
{Yi − E(Yi|Ai = a,Xi)}+ E(Yi|Ai = a,Xi)− ψ0)

}
|Ai = a,Xi

))
by LIE,

= E
(I(Ai = a)

g̃(Xi)
{E({Yi − E(Yi|Ai = a,Xi)}|Ai = a,Xi)}+ E(Yi|Ai = a,Xi)− ψ0

)
= E

(I(Ai = a)

g̃(Xi)
{E(Yi|Ai = a,Xi)− E(Yi|Ai = a,Xi)}+ E(Yi|Ai = a,Xi)− ψ0

)
= E

(I(Ai = a)

g̃(Xi)
{0}+ E(Yi|Ai = a,Xi)− ψ0

)
= E(E(Yi|Ai = a,Xi))− ψ0

= 0.

(2.8)

ii) Now, let’s assume that Q1
n(Xi)→ Q̃n(Xi) and gn(Xi)→ Pr(Ai = 1|Xi), where

Q̃n(Xi) is not necessarily equal to E(Yi|Ai = 1, Xi). Therefore, by the WLLN, the

left hand side of Equation (2.7) can be written as
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∑
i

I(Ai = a)

gn(Xi)
{Yi − Q̄1

n(Xi)}+ Q̄1
n(Xi)− ψ0

P−→ E
( I(Ai = a)

Pr(Ai = 1|Xi)
{Yi − Q̃n(Xi)}+ Q̃n(Xi)− ψ0

)
= E

(
E
({ I(Ai = a)

Pr(Ai = 1|X)
{Yi − Q̃n(Xi)}+ Q̃n(Xi)− ψ0

}
|Y (Ai = a), Xi

))
by LIE,

= E
(
E
({ I(Ai = a)

Pr(Ai = 1|Xi)
{Y (Ai = a)− Q̃n(Xi)}+ Q̃n(Xi)− ψ0

}
|Y (Ai = a), Xi

))
by (A1),

= E
( Pr(Ai = 1|Xi)

Pr(Ai = 1|Xi, Y (Ai = a))
{Y (Ai = a)− Q̃n(Xi)}+ Q̃n(Xi)− ψ0)

)
= E

(Pr(Ai = 1|Xi)

Pr(Ai = 1|Xi)
{Y (Ai = a)− Q̃n(Xi)}+ Q̃n(Xi)− ψ0)

)
= E(Y (Ai = a)− Q̃n(Xi) + Q̃n(Xi)− ψ0)))

= E(Y (Ai = a))− ψ0

= 0

Therefore, we conclude that TMLE is doubly-robust. Double-robustness is a de-

sirable property for an estimator because of its consistent estimation of the target

quantity when any one of the two components is correctly specified. The double-

robustness property also makes TMLE stable [Kang et al., 2007, Porter et al., 2011].
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2.1.8 Transportability

The generalization of a conclusion obtained from a particular study and using those

conclusions to make inference on a more general population is known as external va-

lidity. One particular form of generalization involving the transfer of causal effects

from an investigational study to a different target population is called transportabil-

ity [Pearl and Bareinboim, 2014]. For example, consider a small group where patients

are treated with a particular treatment for a disease. Even though the treatment

might be effective in this study group, the same can’t be said for a different target

population. This generalization requires similarities between the experimental group

and the target population.

Pearl and Bareinboim [2011] laid the ground rules and circumstances under which

the transportability of these causal associations is possible with the application of

selection diagrams which are used to compare the similarities and dissimilarities be-

tween the source study and the target study. Further, Bareinboim and Pearl [698-704,

2012] gave a formal graphical algorithm to decide whether the similarities between

the study and the target population allow for the transfer of causal effects between

studies.

Hernán and VanderWeele [2011] justified transportability of the causal effect es-

timates while dealing with different versions of the same category of treatment in

studies when the corresponding studies have similar characteristics regarding effect

modification, interference in the studies and versions of the compound treatments.

Data fusion, formally defined as the combining of experimental results from mul-

tiple studies, led to a generalization of the transportability theory to multiple het-

erogeneous studies, is one of the essential concepts used in the thesis. Data fusion
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synthesizes the results obtained from multiple studies to infer the causal effects on the

target study [Bareinboim and Pearl, 2016]. Previous works have used transportability

to estimate treatment importance in MDR-TB using targeted learning [Wang, 2018].

In the next section, we provide an overview of meta-analysis and the properties

of different types of data on which meta-analysis is performed.

2.2 Systematic Review and Meta-Analysis

Systematic Review is the review of information based on devising a detailed selection

strategy plan for the exploration of relevant articles on a particular topic of interest.

It aims to perform an unbiased search for all the available articles in the literature.

Three critical standards, which are looked upon while performing a systematic review

are framing a review question, identification of the relevant articles and inclusion

criteria for selection of the obtained articles [Khan et al., 2003].

Meta-Analysis, a term coined by Eugene Glass in 1976 [DerSimonian and Laird,

2015], is defined as a formal way of quantitatively combining data from previous

studies and providing a general estimate of a quantity [Haidich, 2010]. Meta-Analysis

may or may not be based on the data collection using a systematic review. However,

results obtained by Meta-Analysis on articles acquired using systematic reviews are

often considered to be more reliable [Ryś et al., 2009].

Meta-Analysis strengthens the evidence of the treatment efficiency by examin-

ing multiple articles with the same objective [DerSimonian and Laird, 1986]. Meta-

Analysis provides inference about the effectiveness of a treatment on a more general

level as opposed to individual studies [Mansfield et al., 2016].

However, meta-analysis has some drawbacks. Studies containing results with more

21



M.Sc. Thesis - Arman Alam Siddique McMaster - Mathematics & Statistics

statistical importance or positive results are often more likely to be published than

studies containing less significant treatment effects. Performing a meta-analysis which

excludes such studies often leads to misguided interpretations about the evidence of

the treatment effect, and this is referred to as publication bias [Begg and Berlin, 1989].

Previous literature suggests the use of graphical models [Duval and Tweedie, 2000]

or modeling methods [Hedges, 1992] to assess publication bias.

Another drawback of meta-analysis is the presence of heterogenity in the collected

data information. Heterogeneity occurs due to two sources in the collected stud-

ies, known as within-study variability and between-study variability. Within-study

variability accounts for the sampling variability, differences in patient characteris-

tics within the study, different version of treatment, etc. Between-study variability

(true heterogeneity) occurs in meta-analysis due to factors like the population differ-

ences between the studies, region-specific treatment variations, methodological study

quality, etc., which accounts for the difference in treatment effects between the stud-

ies [Huedo-Medina et al., 2006, Montori et al., 2003]. Meta-Analysis of studies should

account for the availability for both sources of heterogeneity and more details on

modeling methods that incorporate this information are provided in Section 2.2.1.

Meta-Analysis can be based on two types of data, called aggregate data or individ-

ual patient data, which are briefly explained and compared in the following sections.

2.2.1 Aggregate Data Meta-Analysis

Aggregate Data Meta-Analysis (AD-MA) is a type of Meta-Analysis performed on

articles containing summary data information of the study, such as sex ratio, percent-

age of patients cured by the treatment and mean age. These articles also contain the
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summary results for the study, such as the average treatment effect or odds ratio. One

does not need the consent of the publisher to perform Meta-Analysis on the articles,

which is the main reason behind the extensive usage of AD-MA.

One of the most popular methods used for Meta-Analysis in clinical trials, pro-

posed by DerSimonian and Laird [1986], summarizes the available evidence of the

effectiveness of a treatment using a random effects model with normally distributed

study specific intercepts. This random effects model allows for heterogeneity of the

treatment effect across various studies and also overcomes the difficulties arising from

the usage of different weights for each study in a fixed effects model.

However, AD-MA has many limitations. Firstly, AD-MA is susceptible to publi-

cation bias. Secondly, due to the differences in the characteristics of the individuals

in each study and the usage of different designed statistical models for each study,

AD-MA can lead to discrepancies in the resulting estimate of the treatment effect.

Specifically, in observational studies, the presence of different confounding factors

across studies leads to an additional bias [Blettner et al., 1999]. In cases where stud-

ies use different measurement scales to represent the outcome, one needs to normalize

these outcomes to perform AD-MA [Stewart and Tierney, 2002].

Due to the above drawbacks of AD-MA, one cannot always rely on the statistical

conclusions, and hence it is suggested to obtain individual patient data for studies

whenever feasible, since it may reduce the bias and also provide reliable and consistent

estimates.
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2.2.2 Individual Patient Data Meta-Analysis

Individual Patient Data Meta-Analysis (IPD-MA) is considered to be one of the best

approaches to analyze systematic reviews and is often regarded as the “gold standard”

to perform meta-analysis [Stewart and Tierney, 2002]. Individual patient data (IPD)

contains information about all of the individuals participating in any study. Usually,

IPD-MA is performed using one of the two different approaches: One-Stage Approach

and Two-Stage Approach [Burke et al., 2017].

In an One-Stage Approach IPD-MA, IPDs from all the individual studies are

pooled together, and the overall effect for the pooled data is estimated. In a Two-

Stage Approach IPD-MA, each study is analyzed separately to obtain the study-

specific estimates which are then combined using an appropriate AD-MA model to

obtain the pooled estimate [Burke et al., 2017].

IPD-MA, however, has many advantages over AD-MA. The collection of individual

patient data includes direct contact with the authors of the article who are experts

in the research topic and can also provide information about unpublished work in

the research area. IPD-MA considers information about the patient-level factors as

well as the study-level factors, possibly decreasing the extent of heterogeneity in the

meta-analysis [Broeze et al., 2010]. Also, IPD-MA allows one to estimate subgroup

effects by performing the analysis on those individuals who satisfy the criterion of

interest, for instance, estimating the treatment effect for the subset of patients with

age > 30 [Stewart and Tierney, 2002]. IPD can also be used in some cases even-

though, the article using the IPD does not contain the relevant association to the

Meta-Analysis. For instance, suppose we have an IPD article which contains two

treatments, A1 and A2, and summarizes the treatment effect of A2 for the study.
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Suppose we are interested in performing Meta-Analysis on articles which provide

association of the treatment on the study. One can use the IPD to first estimate the

treatment effectiveness of A1 for the study and then perform a second-stage AD-MA.

We can also pool together all the IPDs and perform an IPD-MA.

However, IPD-MA also has some disadvantages. It requires large amounts of

time and resources to obtain the data from the authors and then cleaning the data

according to the requirement of the analysis. Sometimes, data gets lost or destroyed,

or it also might be possible that the author may not be willing to share the data due

to confidentiality reasons. Also, the quality of the individual patient data cannot be

increased, and the studies might consist of poorly-designed trials [Riley et al., 2010].

IPD-MA is also susceptible to publication bias; however, this bias is exacerbated

in particular due to selection bias when we do not have access to the IPD studies for

some available AD studies.

2.2.3 Partial Individual Patient Data Meta Analysis

Because of the disadvantages of meta-analysis using IPD or AD alone, a reasonable

way to perform meta-analysis is to base it on a dataset consisting of IPD and AD, the

latter corresponding to datasets in which the IPD cannot be retrieved. We refer to

these kinds of datasets as Partial IPD. A systematic review performed by Riley et al.

[2007] identified 33 applied articles and 8 methodological articles which combined

IPD and AD data to perform a meta-analysis. The analysis in the obtained articles

was performed using a two-stage method, partial reconstruction of IPD, multilevel

modeling, and Bayesian Hierarchical Regression.

In the two-stage method, all the IPD information is converted to AD, and the
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final analysis is performed on the AD for every study [Tudur et al., 2001, Simmonds,

2005, Idris and Misran, 2015]. This allows the analyst to perform the same version

of analysis on each dataset. The multilevel model assumes that every IPD study

can be viewed as a multilevel model where the highest level of the model represents

the study and the lowest level of the model represents observations of individuals in

the study. This modeling framework can be extended to include AD studies which

are considered to contribute only to the highest level of the model [Goldstein et al.,

2000]. Bayesian Hierarchical Regression uses a Markov Chain Monte Carlo method

to estimate common regression parameters of the AD and the IPD models. The

obtained regression parameters are used in performing meta-analysis [Jackson et al.,

2008, Sutton et al., 2008].

In this thesis, we interpret partial IPD as a two-stage sampling structure which is

defined briefly in Section 2.3. In the next section, we describe various methods that

are used for estimating causal parameters in these kinds of datasets and focus mainly

on a TMLE approach.

2.3 Two-Stage Data

Consider the problem wherein one aims to estimate average patient outcomes in a

population consisting of cancer patients who visited a particular hospital. To estimate

the average outcomes under treatment we consider interviewing the patients who

were exposed to the treatments. Since bringing in patients and conducting surveys

costs money and time, the interviews are only conducted on a random subset of

the population and clinical data information are obtained for this subset. The data

extracted from this kind of study is called two-stage data [Neyman, 1938].
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Previous works have proposed various ways to perform analysis on data sampled

with two-stage designs. White [1982] used weighted least-square techniques to esti-

mate the log-odds ratio for a two-stage design data. Breslow and Cain [1988] proposed

a modified logistic regression to provide inference for two-stage data by taking into

account the data available in the first stage. Flanders and Greenland [1991] proposed

a generalization of the weighted-likelihood estimator for the estimation of absolute

rates and risk in two-stage designs. Robins et al. [1994] devised semi-parametric esti-

mators using inverse probability weighting by considering two-stage designs as a data

structure with observations missing at random. Zhao and Lipsitz [1992] provided a

general overview of the estimators developed by Breslow and Cain [1988] and Flan-

ders and Greenland [1991] for the analysis of two-stage data using some simulation

studies and provided recommendations for the usage of these methods in different

situations. Wang et al. [2009] proposed an enriched doubly robust estimator for the

estimation of the treatment effectiveness for a binary treatment in the two-stage de-

sign of observational studies. Rose and Van der Laan [2011] developed the concept

of combining TMLE with the inverse probability of censoring weighting to adjust for

the missingness of the units which were not sampled at the second stage. We discuss

this last estimator in detail in the next subsection.

2.3.1 Inverse Probability of Censoring Weighted Targeted

Maximum Likelihood Estimator

Inverse Probability of Censoring Weighted Targeted Maximum Likelihood Estimator

(IPCW-TMLE) is a methodology proposed by Rose and Van der Laan [2011] for

estimating the causal target parameter in two-stage sample designs. This estimator
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uses TMLE to obtain the estimates for the observations collected in the second stage

sampling followed by an IPCW estimate to adjust for the observations which were

not selected from the first stage to the second stage.

Consider the data O = {Y,∆,∆W}, where Y denotes the outcome of the obser-

vations sampled in the first stage, ∆ denotes the inclusion of the observations from

the first stage to the second stage, i.e., ∆i = 1 if the ith observation from the first

stage is resampled during the second stage sampling, else ∆i = 0, and W = {X,A, Y }

denotes the additional details for the observations sampled during the second stage.

Let the probability distribution of the above model be given by P0 and our parame-

ter of interest denoted by ψ0 = Ψ(P0) = E[E[Yi|Ai = a,Xi]], where Ψ is a mapping

defined from the probability distribution P0 to the target parameter. The full data

efficient influence function curve for the above model is given by

D(Q0, g0) =
(I(A = a)

g0(Xi)

)
(Y − Q̄0(Xi))) + Q̄0(Xi)−Ψ(Q0),

where Q0 = {Q̄0, QX,0} ∈ P0, where QX,0 denotes the full distribution of X and

Q̄0(Xi) = E(Yi|Xi, Ai) and g0(Xi) = Pr(Ai = a|Xi) is our propensity score as defined

in Section 2.1.7 for a = 1. We also define πn(Yi), the probability of inclusion of the

studies from the first stage to the second stage, as

πn(Yi) = Pr(∆i = 1|Yi).

For the analysis of this data, we first fit a TMLE for the observations with ∆ =

1. To do so, we first obtain an initial estimate Q̄0
n(Xi) of Q̄0(Xi) using a regression

model for Y based on the covariates in the subset of observations with A = a, with
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weights as 1/πn(Yi). We also denote I(Ai = a)/gn(Xi) as the clever covariate given by

Hn(Xi, a), where gn(Xi) is an estimate of g0(Xi). The next step is to update Q̄0
n(Xi)

in order to obtain the new estimate Q̄1
n(Xi) using the following regression equation:

logit(Q̄1
n(Xi)) = logit(Q̄0

n(Xi)) + εH0(Xi, a),

where ε is obtained using the weighted maximum likelihood estimation as shown

in Section 2.1.7, with weights of 1/πn(Yi). After obtaining Q̄1
n(Xi), we obtain our

estimate for ψ0, ψIPCW−TMLE
n = Ψ(Qn), where Qn = {Q̄1

n, QX,0} is our IPCW-TMLE

estimate, which is given by

ψIPCW−TMLE
n =

1

n

n∑
i=1

{ ∆i

πn(Yi)
(Q̄1

n(Xi))
}
.

As mentioned by Rose and Van der Laan [2011], IPCW-TMLE is a locally efficient

way of dealing with two-stage data as it takes into account the data collected in both

the first as well as the second stage sampling. IPCW-TMLE inherits the double

robustness property of the complete data TMLE by solving the weighted complete-

data efficient influence function provided that we consistently estimate πn(Yi).

2.3.2 Variance Estimation in two-stage sampling

Sitter [1997] proposed jackknife and bootstrap estimators to estimate the variance

and standard errors for the parameter of interest in two-stage sampling. Based on

the available data, the jackknife estimator is shown to perform well because it is

asymptotically equivalent to a robust variance estimator [Ziegler, 1997]. Here, we

make use of the jackknife estimator which is described below.
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Jackknife Estimator for Two-Stage Sampling

Consider a sample of N observations. Suppose the first stage sample s′1 consists of n1

observations which are sampled from the initial N observations without replacement.

The second stage sample s′2 consists of n2 observations sampled without replacement

from the n1 observations sampled in the first stage. As defined earlier in Section 2.1.7,

our target parameter ψ can be written as

ψ = Ψ(P )(O)

Using a slightly different notation, the above expression is written as

ψ = Ψ̄(O) = Ψ̄(O1, O2, ..., On1),

where Oi denotes the ith observation in the first stage sampling. Further, we denote

ψ−j as

ψ−j = Ψ̂(O1, ..., Oj−1, Oj+1, ...On1).

Then, the jackknife variance estimate for ψ is given by

V ar(ψ) =
n1 − 1

n1

∑
j∈s′1

{ψ−j −
∑
k∈s′1

ψ−k}2.

We extend the concept of IPCW-TMLE which was originally used by Rose and

Van der Laan [2011] for observation to a context in mixed data of AD and IPD in

Chapter 2. To show the effectiveness of this approach, we use some simulation studies

in Chapter 3 and compare this method to other simpler methods. We also use the
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jackknife estimator as an alternative to estimate the standard errors and compare

them with Monte Carlo standard errors.
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Chapter 3

Methods

We define the parameter of interest as the expected potential outcome, fixing a given

treatment, without intervention on other available treatments. Our data are defined

as comprising both Aggregate Data (AD) and Individual Patient Data (IPD). As

mentioned in Chapter 2 and demonstrated by simulation studies in Chapter 4, esti-

mation of the target parameter using only the IPD studies may lead to selection bias

incurred due to the exclusion of the relevant APD studies. In order to deal with this

selection bias, we use the IPCW-TMLE algorithm described in Chapter 2.

This chapter lays down the identifiability of the parameter of interest and its es-

timation using the IPCW-TMLE algorithm. We introduce the multi-drug resistant

tuberculosis example in Section 3.1, which serves as a motivating example for per-

forming the simulation studies in this thesis. Section 3.2 provides a general context

and interpretation of the partial IPD as a two-stage design structure. Section 3.3

provides an overview of the data structure along with the definition of the param-

eter of interest. Section 3.4 lists the assumptions required for the identifiability of

the parameter of interest given the data structure and the proof of identifiability of
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the parameter of interest is demonstrated in Section 3.5. Section 3.6 describes each

component of the IPCW-TMLE algorithm and gives the proof of consistency of the

IPCW-TMLE algorithm for the defined data structure under the stated assumptions.

3.1 Multi-Drug Resistant Tuberculosis

Multi-Drug Resistant Tuberculosis (MDR-TB) is a type of a tuberculosis (TB) which

is caused by the Mycobacterium Tuberculosis that is resistant to isoniazid and ri-

pafmin, the most commonly prescribed drugs for TB. The Collaborative Group for

Meta-Analysis of Individual Patient Data in Multidrug-Resistant Tuberculosis (IPD-

MDRTB) collected IPD from 31 observational studies comprising 9,290 individual

MDR-TB patients [Ahuja et al., 2012]. Further, findings of 36 studies were also

reported, though the investigators were not able to secure the IPD for these stud-

ies. In the available IPD, patients with MDR-TB were observed to be treated with

combinations of 15 different antimicrobial agents.

The collected IPD contains study level information on the year when the study was

conducted and the country where it was conducted and patient-specific information

such as the age of the individual, sex, HIV status, binary indicators for the 15 different

antimicrobial agents and a binary outcome for each individual. The binary outcome

was defined as either treatment success (the treatment was completed and cured

the infection) or failure (patient still tested culture positive for MDR-TB, died, or

defaulted on treatment/were lost to follow-up).
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3.2 Two-Stage Sampling

Meta-Analysis requires investigators to perform a systematic review and select rele-

vant articles regarding the topic of interest. The investigator proceeds by first ob-

taining the published study data (AD) for the selected articles. Next, one obtains

the IPD using different sources, but sometimes the IPD is not available for all of the

studies. This leaves us with IPD and AD for some studies and AD only for other

studies. We refer to this kind of data as mixed AD and IPD.

Our goal is to make consistent inference in a meta-analysis with mixed AD and

IPD. We think of this data structure as a two-stage sampling problem. To demon-

strate the conceptual sampling strategy followed, a flowchart is given below followed

by the description of its usage in the thesis:

Super-population

Aggregate Data

Individual Patient Data

First-Stage Sampling

Second-Stage Sampling

Figure 3.1: Flowchart for two-stage sampling structure.

Each study is assumed to be sampled from an infinite population of potential studies

referred to as the super-population. This is the first-stage sample. The data available

from this sampling contains AD information about the sampled studies in the first
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stage. Next, the second stage-sampling involves obtaining the IPD for the studies

obtained in the first stage. The full data structure obtained using the two-stage

sampling is formulated in Section 3.3. The final analysis is then performed on the

obtained AD and IPD using methods described in Section 3.6.

3.3 Data Structure and Parameter of Interest

We consider a data structure similar to that of the MDR-TB data defined in Chapter

1. The data consist of 67 studies where the AD are always available and IPD are

sometimes available. Each study i has study level variables jointly denoted by Vi,

which represents the population information of the study data such as data such

as the year of the study, information about the country in which the study took

place, etc. The data comprise of K different binary treatments which are denoted

by A
(k)
ij , where k = 1,2,..,K. The participants in a given study may or may not

have had availability to any individual treatment. We use binary indicators , D
(k)
i

for k = 1,2,,..,K, to represent this availability. For instance, D
(k)
i = 1 indicates that

individuals in the ith study had access to the kth treatment and D
(k)
i = 0 indicates

that individuals in the ith study didn’t have access to the kth treatment. We assume

that D
(k)
i is observable such that if treatment k had been available in study i, at

least one patient would have been exposed to it. The measured characteristics of any

individual j in study i are denoted by Wij and their outcome is indicated by a binary

variable Yij. We denote ∆i for the binary selection indicator of the ith study in the

second stage sampling. We set ∆i = 1 if we have access to the IPD for the ith study.

The sample size for study i is denoted by ni. Then the full observed data structure
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Oi is given by

Oi = (D
(1)
i ,∆i, Xij,∆{A(1)

ij , Yij, j ∈ Si}), where

Xij = (Vi, {D(k)
i ; k = 2, .., K},∆(Wij, {A(k)

ij ; k = 2, .., K}; j ∈ Si)), i = 1, ..., 67,

where Si denotes index set of the patients in the ith study. We further denote Ōi

for the data corresponding to the low dimensional measure of each study or the AD

availability in every study. Ōi contains information measured over the course of the

study. Here, we represent Ōi by

Ōi = {Vi, {D(k)
i , Ā

(k)
i ; k = 1, 2, .., K, j ∈ Si}, W̄i, Ȳi}, i = 1, ..., 67,

where W̄i, Ā
(k)
i , and Ȳi represent the average summary for Wij, A

(k)
ij , and Yij, respec-

tively, over all the individuals in the ith study.

The aim of this thesis is to estimate the expected potential outcome, setting A
(1)
ij

= 1, with no interventions on A
(k)
ij for k 6= 1. The parameter of interest is defined

by ψ0 = E(Y {A(1)
ij = 1, A

(2)
ij , A

(3)
ij }). One can use this to estimate the add-on effect

of treatment A(1) for the study population by obtaining various measures such as

E(Y {A(1)
ij = 1, A

(2)
ij , A

(3)
ij }) - E(Y {A(1)

ij = 0, A
(2)
ij , A

(3)
ij }) or E(Y {A(1)

ij = 1, A
(2)
ij , A

(3)
ij }) -

E(Y {A(1)
ij , A

(2)
ij , A

(3)
ij }). This generalization can be made to all the K treatments in the

study. However, in this thesis, we only estimate ψ0. The proof of identifiability for

ψ0 is shown in Section 3.5 under the model assumptions stated below in Section 3.4.
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3.4 Causal Assumptions

In order to identify and estimate the parameter of interest based on the available

data, we make some assumptions similar to those mentioned in Chapter 1 for the

ATE. The causal assumptions are as follows:

• SUTVA: The outcome of an individual in a study is independent of the treat-

ment exposure of other individuals in the study. Mathematically,

Yij(A
(1)
ij , A

(2)
ij , A

(3)
ij ) ⊥⊥ A

(1)
ij′ , A

(2)
ij′ , A

(3)
ij′ ,∀j′ ∈ {Si − j}. (B1)

Further, the consistency statement in SUTVA states that the potential outcome

of an individual under treatment exposure A
(1)
ij = 1 is the same as the true

outcome of the individual provided that the individual was exposed to the

treatment in the study. Mathematically,

Yij(A
(1)
ij = 1, A

(2)
ij , A

(3)
ij ) = Yij, {j ∈ Si | A1

ij = 1}; (B2)

• Positivity: For the parameter of interest defined here, we need to have two

positivity conditions to hold, which are as follows:

i) Every study in the model has a positive probability of having access to all

the treatments in the model conditional on the study level variables Vi within

studies where the IPD are available, i.e.,

Pr(D
(1)
i = 1|Vi,∆i = 1) > 0, i = 1, ..., 67, (B3)

This assumption is important in order to allow for the transportability of the
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parameter of interest.

ii) Provided that a study i has availability of the treatment A(1), every patient

in that study has a positive probability of being exposed to A(1) conditional on

the pre-treatment covariates Xij within studies where the IPD are available, i.e.

Pr(A
(1)
ij = 1|D(1)

i = 1, Xij,∆i = 1) > 0, ∀j ∈ Si; (B4)

• Conditional Exchangeability: The potential outcome of an individual in

study i is independent of the exposure to treatment A(1) conditional on the

pre-treatment covariates of the individual within studies where the IPD are

available, i.e.,

Yij(A
(1)
ij = 1, A

(2)
ij , A

(3)
ij ) ⊥⊥ A

(1)
ij |Xij,∆i = 1. (B5)

This assumption eliminates confounding bias by adjusting for all the covari-

ates which act as a confounder. Equivalently, Xij is sufficient to estimate the

potential outcomes for studies where the IPD is available;

• Transportability: The potential outcome of an individual is independent of

the treatment indicator of selection for A(1) conditional on the covariates and

treatment exposure to the individuals within studies where the IPD are avail-

able, i.e.,

Yij(A
(1)
ij = 1, A

(2)
ij , A

(3)
ij ) ⊥⊥ D

(1)
i |A

(1)
ij = 1, Xij,∆i = 1. (B6)

This assumption states that the potential outcomes of patients in the IPD can
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be estimated using Xij irrespective of the fact that the patients have availability

to the medication A(1) or not;

• Selection Assumption for ∆ (Missing at Random): Conditional on the

low dimensional measure of every study (Ōi), the binary selection indicator ∆i

is independent of the counterfactual outcomes of an individual. Mathematically,

∆i ⊥⊥ Ȳi(A
1
ij = 1, A2

ij, A
3
ij)|Ōi. (B7)

This assumption states that the low dimensional measure of the studies Ōi is

sufficient enough to estimate the average potential outcome in study i, which is

represented by Ȳij(A
1
ij = 1, A2

ij, A
3
ij);

• The treatment availability for A(1) is independent of the individual level con-

founders {Xij\Vi} conditional on the study level variables Vi. Mathematically,

D
(1)
i ⊥⊥ {Xij\Vi}|Vi. (B8)

This assumption states that study-level variables Vi are sufficient enough to

predict the treatment availability D
(1)
i .

The above causal assumptions are incorporated to achieve the identifiability of our

target parameter and to show the consistency of the IPCW-TMLE algorithm adapted

here.
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3.5 Identifiability of ψ0

For simplicity reasons, we shall now denote the parameter of interest ψ0 = E(Y (A
(1)
ij =

1, A
(2)
ij , A

(3)
ij )) as ψ0 = E(Yij(A = 1)). In order to prove identifiability of ψ0 using the

observed dataset O, we decompose ψ0 as follows:

ψ0 = E(Q̄Y,∆), (3.1)

where Q̄Y,∆ = E(Yij(A = 1)|Xij,∆i = 1). The proof for Equation (3.1) is as follows:

ψ0 = E(Q̄Y,∆)

= E(E(Q̄Y,∆|Ōi,∆i = 1)) using LIE

= E(E(E(Yij(A = 1)|Xij,∆i = 1)|Ōi,∆i = 1))

= E(E(Yij(A = 1)|Ōi,∆i = 1)) using LIE since Ōi ∈ Xij,

= E(E(Ȳi(A = 1)|Ōi,∆i = 1))

= E(E(Ȳi(A = 1)|Ōi)) using (B7),

= E(Ȳi(A = 1)) using LIE

= E(Ȳij(A = 1)). (3.2)
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Following Equations (3.1) and (3.2), it is sufficient to show that ψ0 is identifiable if

Q̄Y,∆ is identifiable, where the proof for latter is as follows:

Q̄Y,∆ = E(Yij(A = 1)|Xij,∆i = 1)

= E(Yij(A = 1)|∆i = 1, Xij, A
(1)
ij = 1) using (B5),

= E(Yij(A = 1)|∆i = 1, Xij, A
(1)
ij = 1, D

(1)
ij = 1) using (B6),

= E(Yij|∆i = 1, Xij, A
(1)
ij = 1, D

(1)
ij = 1) using (B2).

(3.3)

We further denote ψ∆ as

ψ∆ = E(Q̄Y,∆|∆i = 1) = E(E(Yij(A = 1)|Xij,∆i = 1)|∆i = 1), (3.4)

where ψ∆ is interpreted as the expected outcome under setting A(1) = 1 within the

population represented by the IPD and is also identifiable as it is an estimable function

of Q̄Y,∆.

3.6 IPCW-TMLE Algorithm for Two Stage

Design

In order to estimate the target parameter ψ0, we extend the IPCW-TMLE algorithm

mentioned in Chapter 1 to our context of mixed AD and IPD meta-analysis. The

original formulation was developed for a two-stage sample of individuals rather than

study data. The algorithm for two-stage data designs involves two phases, where the
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first phase of the algorithm uses TMLE for the IPD studies and the second phase

uses IPCW to account for the studies which were not selected in the second stage.

In this section, we first define the Q and g components used in the IPCW-TMLE

algorithm and then provide the general framework of the IPCW-TMLE algorithm for

mixed data meta-analysis.

3.6.1 Q Component

The Q component is defined as the expectation of the counterfactual outcome of an

individual conditional on the covariates and exposure to the counterfactual treatment

A(1) within studies which were selected in the second stage, i.e., studies with ∆i = 1.

We refer to the Q-component as Q̄(Xij) which is defined as follows:

Q̄(Xij) = E(Yij(A = 1)|A(1)
ij = 1, Xij,∆i = 1).

In order to estimate Q̄(Xij), we take the subset of the IPD studies where the treatment

A
(1)
ij was available, i.e., studies with D

(1)
i = 1. Using this subset, we fit a logistic

regression model for Yij on Xij, for all those individuals who had A
(1)
ij = 1 with

weights of 1/πn(Ōi), where πn(Ōi) denotes the probability of selection in the second

stage conditional on Ō, i.e., the conditional probability of obtaining the IPD in the

second stage. πn(Ōi) is an estimate of π(Ōi), mathematically represented as

π(Ōi) = Pr(∆i = 1|Ōi),

where we recall that Ōi contains the study specific AD. The obtained regression model

is then used to predict Yij based on the covariates of an individual for all the studies
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in the data with ∆i = 1. We refer to this prediction as Q̄n(Xij), the estimate of

Q̄(Xij). The prediction step for the Q-component uses transportability since our

aim is to predict the counterfactual outcomes for the treatment exposure A(1) for all

the individuals in studies with ∆i = 1 irrespective of the reality that the studies had

access to the treatment A(1) or not. The proof of identifiability for Q̄(Xij) has already

been shown earlier in Equation (3.3) which allows Q̄(Xij) to be estimated based on

the studies with ∆
(1)
i = 1.

3.6.2 g-Component

The g-component is usually referred to as the propensity score and is herein defined

as the probability of an individual being exposed to treatment A(1) conditional on the

covariates of the individual and the binary selection indicator ∆i =1. We refer the

g-component as g(Xij) and is defined as

g(Xij) = Pr(A
(1)
ij = 1|Xij,∆i = 1).

In order to obtain g(Xij) from the available data, we decompose the above expression

into a simpler form as follows:

g(Xij) = Pr(A
(1)
ij = 1|Xij,∆i = 1)

= Pr(A
(1)
ij = 1, D

(1)
i = 1|Xij,∆i = 1)

= Pr(A
(1)
ij = 1|∆i = 1, D

(1)
i = 1, Xij) · Pr(D(1)

i = 1|∆i = 1, Xij)

= Pr(A
(1)
ij = 1|∆i = 1, D

(1)
i = 1, Xij) · Pr(D(1)

i = 1|∆i = 1, Vi) using (B8)

= g(1)(Xij) · g(2)(Xij). (3.5)

43



M.Sc. Thesis - Arman Alam Siddique McMaster - Mathematics & Statistics

Each of the above decomposed quantities can be easily estimated from the available

data. The first component in Equation (3.5), g(1)(Xij), is estimated using a logistic

regression on the IPD, while the second component g(2)(Xij) is estimated using a

logistic regression on the AD selected in the second stage.

3.6.3 IPCW-TMLE for mixed AD and IPD

We formulate the IPCW-TMLE algorithm using the above defined Q and g-components

to obtain an estimate of our target parameter defined in Section 3.3. We denote the

initial estimate of the Q-component and g-component by Q̄0
n(Xij) and gn(Xij), re-

spectively.

After obtaining Q̄0
n(Xij) and gn(Xij), we fit a logistic regression for Y on 1/gn(Xij)

with an offset of logit(Q̄0
n(Xij)) and with no intercept term with weights of 1/πn(Ōi).

The above model is only fitted for individuals with A
(1)
ij = 1 in our IPD studies.

The coefficient for 1/gn(Xij) in the above model is then termed as our fluctuation

parameter and is represented by ε. We then use its estimate, εn, to update Q̄0
n(Xij)

as follows:

Q̄1
n(Xij) = expit

(
logit(Q̄0

n(Xij)) +
εn

gn(Xij)

)
.

The above update is performed for all the individuals in our IPD studies. Had our

data only consisted of IPD studies, one would obtain the plug-in estimate ψTMLE,n

of the target parameter ψ0 as

ψTMLE,n =
1

n

67∑
i=1

∆i=1

ni∑
j=1

Q̄1
n(Xij),

where n =
∑67

i=1 ni. We refer to the above estimation step of Q̄1
n(Xij) as the first
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phase estimate and this procedure is similar to the TMLE described in Chapter 1.

ψTMLE,n can be also written as

ψTMLE,n = E(Q̄1
n(Xij)|∆i = 1).

ψTMLE,n is a biased estimate of ψ. In order to adjust for this bias, we use IPCW

for Q̄1
n(Xij). We utilize πn(Ōi) to obtain the estimate of ψ0 using the IPCW step in

the second phase of our algorithm. Now, we introduce a new variable Q̄∗i,n which is

defined as follows:

Q̄∗i,n =
1

ni

ni∑
j=1

Q̄1
n(Xij).

Q̄∗i,n represents the estimate for the parameter of interest over the IPD study i. Finally,

one obtains the plug-in estimate ψIPCW−TMLE,n of the target parameter ψ0 as

ψIPCW−TMLE,n =
n∑

i=1

∆i

π(Ōi)
Q̄∗i,n.

ψIPCW−TMLE,n is obtained by taking a weighted average of Q̄∗i,n using the second-stage

sampling probability. This weighting strategy reduces the selection bias obtained by

only using the IPD information for estimating ψ0 in the first stage.
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3.6.4 Consistency of IPCW-TMLE

Provided that we have IPD for all studies such that π(Ōi) = 1, IPCW-TMLE solves

the following equations:

1

N

n∑
i=1

1

ni

ni∑
j=1

I(Aij = 1)

gn(Xij)
(Yij − Q̄1

n(Xij)) = 0, (3.6)

1

N

n∑
i=1

(( 1

ni

ni∑
j=1

Q̄1
n(Xij)

)
− ψ0

)
=

1

N

n∑
i=1

(
Q̄∗i,n − ψ0

)
= 0. (3.7)

Equation (3.6) refers to the weighted score equation for the first phase estimation and

Equation (3.7) refers to the weighted mean equation for the second phase estimation.

The standard full data EIF is given by

φ1(O) =
1

N

n∑
i=1

1

ni

ni∑
j=1

(I(Aij = 1)

gn(Xij)
(Yij − Q̄1

n(Xij)) + Q̄1
n(Xij)− ψ0)

)
, (3.8)

which is also equivalent to

φ1(O) =
1

N

n∑
i=1

1

ni

ni∑
j=1

(I(Aij = 1)

gn(Xij)
(Yij − Q̄1

n(Xij)) +
1

ni

ni∑
j=1

Q̄1
n(Xij)− ψ0)

)
,

since 1
ni

∑ni

j=1 Q̄
1
n(Xij) is invariant with respect to j. As demonstrated in Chapter 2,

this EIF is doubly robust, i.e., we obtain consistent estimates for ψ0 provided one of

Q̄1
n(Xij) or gn(Xij) is consistently estimated.

Following the article by Rose and Van der Laan [2011], IPCW-TMLE solves the

weighted influence function which in this case is given by

1

N

n∑
i=1

∆i

πn(Ōi)

1

ni

ni∑
j=1

(I(Aij = 1)

gn(Xij)
(Yij − Q̄1

n(Xij)) +
1

ni

ni∑
j=1

Q̄1
n(Xij)− ψ0)

)
= 0.
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IPCW-TMLE inherits the double robustness property of the full data EIF in Equa-

tion (3.8) provided that πn(Ōi) is consistently estimated, i.e., πn(Ōi) → Pr(∆i =

1|Ōi).

3.6.5 Variance Estimation

For the estimation of the variance of the parameter of interest obtained using IPCW-

TMLE algorithm we employ the jackknife estimator previously described in Section

2.3.2. Let us assume that our parameter of interest ψ is a function of all the studies

irrespective of whether they fall into the category of IPD or AD. We denote ψn, the

estimate of ψ, by

ψn = Ψ̄(O1, O2, ..., O67).

We define a new variable ψ−i,n which denotes the estimate of ψ obtained using the

full data excluding the ith study. We denote ψ−i,n by

ψ−i,n = Ψ̄(O1, ..., Oi−1, Oi+1, ..., O67).

Then, the jackknife variance estimate of ψn is given by

V ar(ψn) =
66

67

67∑
i=1

(
ψ−i,n −

67∑
k=1

ψ−k,n

)2

.

We evaluate the performance of the IPCW-TMLE and the jackknife estimator using

some simulation studies in the next chapter.
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Chapter 4

Simulation Study

In this chapter, we perform some simulation studies, motivated by the MDR-TB ex-

ample, and demonstrate the properties of IPCW-TMLE for mixed IPD and AD sce-

narios used in the simulation studies. Our goals for performing the simulation studies

are to demonstrate the double robustness property of IPCW-TMLE, the importance

of the second phase update step which eliminates selection bias due to neglecting

the AD-only studies in the first phase, and to show the validity of the variance es-

timation. Section 4.1 provides the entire data generation structure of the performed

simulation studies. Section 4.2 lists various estimation methods used in the analysis

of the simulated data. We present the results of the analysis in Section 4.3.

4.1 Data Generation

For the data generation of the simulation, we generate 67 studies with ni denoting the

sample size of each study. We consider two scenarios for our data generation which

are
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• Fixed and identical sample size ni = 200, for every study;

• Sample size for each study is drawn from a uniform distribution.

4.1.1 Data Generation Scenario I

We generate a clustered dataset of 67 studies with a total of 13400 patient observa-

tions. Every study, denoted by i includes 200 patient observations, denoted by j. We

generate two study level variables, V
(1)
i and V

(2)
i , one unmeasured individual level

variable, U
(1)
ij , and two individual level covariates, W

(1)
ij and W

(2)
ij . We generate three

study level binary treatment availability indicators, D
(1)
i , D

(2)
i and D

(3)
i . We generate

three individual level binary indicators for exposure to treatments, A
(1)
ij , A

(2)
ij and A

(3)
ij ,

which can only be non-zero if the corresponding availability indicator is 1. We gen-

erate a binary outcome variable, Yij, conditional on both patient and study-specific

covariates, including the unobserved Uij. Finally, the indicator of selection for study

i in the second stage is given by ∆i, where ∆i = 1 indicates that we have access to

the IPD for study i. We denote the full data structure by Oi, which is given by

Oi = (D
(1)
i ,∆i, Xij,∆{A(1)

ij , Yij, j ∈ Si}), where

Xij = (Vi, {D(k)
i ; k = 2, 3},∆(W

(1)
ij ,W

(2)
ij , {A

(k)
ij ; k = 2, 3}; j ∈ Si)),

Vi = {V (1)
i , V

(2)
i } i = 1, ..., 67,

where Si denotes the index set of patients in the ith study. The above data structure

is similar to that of the MDR-TB data mentioned in Chapter 3, though the number

of treatments in particular is greatly reduced for simplicity. Table 4.1 represents the

entire data generating function for these variables, which is also described below.
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We first generate Vi and Ui for each study using a normal distribution with fixed

mean and standard deviation. Every individual in study i is then allocated Vij and

Uij as the same generated value of Vi and Ui, respectively, for each study. U
(1)
ij is

then generated using a normal distribution with mean as a function of Uij and a fixed

standard deviation. The treatment availability indicators D
(k)
i , k = 1,2,3, are then

generated using three binomial distributions with probability set to be a function of

Vij along with the additional constraint that for every study i, D
(1)
i +D

(2)
i +D

(3)
i > 0,

i.e., every study has access to at least one of the 3 available treatments. Based

on the above study level variables, we then generate individual level variables W
(1)
ij ,

W
(2)
ij , A

(k)
ij , k = 1,2,3 and Yij. Specifically, W

(1)
ij and W

(2)
ij are generated using a

normal distribution with mean as a function of the variables Vij and a fixed standard

deviation. For every study i with D
(k)
i = 1, A

(k)
ij is generated using a Bernoulli

distribution with mean as a function of Vij, W
(1)
ij , and W

(1)
ij . For every study i with

D
(k)
i = 0, A

(k)
ij was set to be 0 for each j ∈ Si. The outcome variable Yij is then

generated using a Bernoulli distribution with mean as a function of Uij, W
′
ijs and

A′ijs. As mentioned previously, U
(1)
ij is an unmeasured individual level variable, which

is used to create random effect heterogeneity between studies. We further discuss the

implications of U
(1)
ij in Section 4.3.

For the purpose of simulation study, we take Ōi to be

Ōi = (Vi, D
(1)
i , D

(2)
i , D

(3)
i , W̄

(1)
i , W̄

(2)
i , Ā

(1)
i , Ā

(2)
i , Ā

(3)
i , Ȳi), i = 1, ..., 67,

where W̄
(1)
i , W̄

(2)
i , Ā

(1)
i , Ā

(2)
i , Ā

(3)
i , Ȳi denote the average values of the variables W

(1)
ij ,

W
(2)
ij , A

(1)
ij , A

(2)
ij , A

(3)
ij and Yij, respectively, over study i. ∆i, for every study i, is

generated using a binomial distribution with a mean dependent on the components
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of Ōi. ∆i = 1 denotes that study i was selected in the second stage, allowing access

to the individual patient data for that study.

4.1.2 Data Generation Scenario II

The variable generation for Scenario II was similar to the variable generation for

Scenario I, except for the fact that the sample size of each study was obtained using

an uniform distribution. In other words, for every study i, in Scenario I, the value of

ni was fixed to be 200 whereas, in Scenario II, we generate ni using a discrete uniform

distribution with a range from 50 to 1000. This simulation scenario was created to

take into account the random nature of the sample size in any given study.

4.2 Analysis

After generating data as demonstrated in Section 4.1, we carry out an analysis using

the methods described in Chapter 3. This section describes the aims of the simulation

study, followed by description of the different estimation methods used.

4.2.1 Aims of the simulation study

The simulation studies aim to

• Estimate the target parameter ψ, defined as follows:

ψ = E(Y (A
(1)
ij ) = 1, A

(2)
ij , A

(3)
ij ) = E(Y (Aij = 1));

• Verify the double-robustness property for the first phase estimation step for
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IPCW-TMLE;

• Compare the results obtained by using IPCW-TMLE on the entire dataset

against using TMLE only on the available IPD studies, which demonstrates the

importance of the second phase;

• Check the validity of the Jackknife method for the variance estimation.

4.2.2 True Value of the Target Parameter

To obtain the true value of ψ, we increase the number of studies from 67 to 104 and fix

the sample size of each study at 104. The data is then generated similarly as described

in Section 4.1 except everyone in the studies to be deterministically exposed to A(1),

and ∆i = 1 is set for all studies. The true value ψ0 of ψ is approximated by

ψ0 ≈
1

108

104∑
i=1

104∑
j=1

Yij.

4.2.3 Methods used for estimating ψ

For the estimation of ψ, we first obtain estimates for the Q and g components as dis-

cussed in Chapter 3. We describe the various model specification for the components

which are either correctly specified or incorrectly specified.

• Estimate for the correctly specified Q-component: To obtain Q̄0
ij,n, we

fit a logistic regression model for Y against Xij on the subset of individuals in

the IPD studies with A
(1)
ij = 1 with weights of 1/πn(Ōi), where πn(Ōi) is an
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estimate of π(Ōi), given by:

π(Ōi) = Pr(∆i = 1|Ōi).

The above obtained model is then used to predict Q̄0
ij,n for all individuals in the

IPD studies using the observed pre-treatment covariates of the individuals.

• Estimate for the incorrectly specified Q-component: We obtain the av-

erage of Y over all the patient observations in the IPD with A
(1)
ij = 1. We then

set Q̄0
ij,n to be this average for all individuals in the IPD studies.

• Estimate for correctly specified g-component: To obtain gn(Xij), we first

independently obtain estimates for g(1)(Xij) and g(2)(Xij) as defined in Chapter

3. For obtaining the estimate of g(1)(Xij), we fit a logistic regression model for

A
(1)
ij against Xij, for all individuals in the IPD studies who had availability to

A(1) with weights of 1/πn(Ōi). This model is then used to predict values of

g
(1)
n (Xij) using the pre-treatment covariates of individuals in IPD study.

For obtaining the estimate of g(2)(Xij), we fit a logistic regression model for D
(1)
i

against the study level variables Vi for all IPD studies with weights of 1/πn(Ōi)

and use this model to obtain the probability of treatment availability of A(1)

based on the study level variables Vi for each IPD study. g
(2)
n (Xij) is then set

to be the above estimated probability.

The estimate gn(Xij) is then taken to be the product of g
(1)
n (Xij) and g

(2)
n (Xij).

• Estimate for incorrectly specified g-component: To obtain gn(Xij), we

again independently obtain estimates for g(1)(Xij) and g(2)(Xij), where the latter
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is estimated using the same procedure as for the correctly specified g-component.

For obtaining the incorrectly specified estimate of g(1)(Xij), we obtain the pro-

portion of observations with A
(1)
ij = 1 within studies with D

(1)
i = 1 and ∆i = 1.

We then set g
(1)
n to be this proportion for all individuals in studies with ∆i =

1. The final estimate gn(Xij) is then given by

gn(Xij) = g(1)
n (Xij) · g(2)

n (Xij).

The above components are used to estimate ψ using TMLE or IPCW-TMLE algo-

rithm. The complete list of estimation methods which are used for the analysis of the

simulation studies are as follows:

• IPCW-TMLE using correct Q and g components (IPCW-TMLE Qcgc):

This estimate is obtained using correct Q and g components in IPCW-TMLE;

• IPCW-TMLE using correct Q component and incorrect g component

(IPCW-TMLE Qcgi): This estimate is obtained using correct Q component

and incorrect g component in IPCW-TMLE;

• IPCW-TMLE using incorrect Q component and correct g component

(IPCW-TMLE Qigc): This estimate is obtained using the incorrect Q com-

ponent and correct g component in IPCW-TMLE;

• IPCW-TMLE using incorrect Q and g components (IPCW-TMLE Qigi):

This estimate is obtained using the incorrect Q and g components in IPCW-

TMLE;

• Phase I TMLE using correct Q and g components (TMLE Phase I):
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This estimate is obtained using the correct Q and g components in IPCW-

TMLE, but omitting the IPCW update step or the second phase estimation of

IPCW-TMLE. This estimation method models the transportability of the causal

effects within the IPD, but does not adjust for selection bias of the second stage

subsample of IPD;

• TMLE using correct Q and g component on studies with ∆ = 1 and

had availability to treatment A(1) (TMLE Available): The estimate is

obtained using TMLE on the IPD studies which had availability to treatment

A(1). This method does not involve updating the estimate using IPCW;

• Mean of outcomes for patients exposed to A(1) (Mean): This estimate

is obtained by taking the sample mean of individuals exposed to the treatment

A(1) in the IPD studies.

We use 1000 different randomly generated seed values, thereby obtaining 1000

different datasets. Our mean estimate for ψ using each method described above

is obtained by taking the mean over the corresponding obtained estimate for each

dataset.

We expect to obtain consistent estimates for the estimation methods using IPCW-

TMLE when at least one of the Q or g components is correctly specified, due to the

double-robustness property of IPCW-TMLE for the first phase, as demonstrated in

Chapter 3. We expect the other estimation methods to produce biased estimates

since they either omit the second phase estimation, ignore transportability, or obtain

the sample mean of the population.

The results obtained using different estimation methods are compared using box

plots of the Monte Carlo estimates in Section 4.3. The true value ψ0 is represented
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by the green line, with the top and the bottom part of each boxes representing the

25th and 75th percentiles, respectively, of the estimates. The median of the estimates

is portrayed by the dark black line within the box. The outliers in the box-plots are

represented by the symbol ◦.

The standard error of the estimate in each simulated dataset is obtained using the

jackknife estimator. The median jackknife standard error estimate is compared to

the Monte Carlo standard error. We also construct the jackknife confidence intervals

using

CILB = ψIPCW−TMLE,n − 1.96 ∗ V ar(ψIPCW−TMLE,n),

CIUB = ψIPCW−TMLE,n + 1.96 ∗ V ar(ψIPCW−TMLE,n),

where CILB and CIUB denote the confidence interval lower and upper bounds,

respectively, and V ar(ψIPCW−TMLE,n) denotes the obtained estimate of the jackknife

variance for ψIPCW−TMLE,n. A 95% coverage probability is obtained for all jackknife

confidence intervals and presented in the next section.

4.3 Results

The true value of ψ was estimated to be 0.52 for both the scenarios. Figure 4.1 shows

the box plots for the obtained estimates under different estimation methods for Sce-

nario I. Under the correct specification of either one of the Q or g components, the

estimate obtained using the IPCW-TMLE algorithm is almost unbiased. A signifi-

cant degree of bias is observed in the estimate obtained using IPCW-TMLE with an

incorrect specification of both components thereby verifying the double-robustness
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property of the first phase of IPCW-TMLE.

The estimate obtained using only TMLE while incorporating transportability,

TMLE Qcgc, is seen to exhibit a low degree of bias whereas a significant amount

of bias is observed for TMLE Available since it excluded the IPD studies which

didn’t have availability of A(1). The estimate obtained by taking the mean outcomes

of individuals exposed to the treatment A(1) is even more biased. We observe more

outliers with IPCW-TMLE as compared to other estimation methods.

The estimates of ψ obtained using these estimation methods rarely produced esti-

mates greater than 1 which is caused due to the higher sampling weights used in the

second phase estimation. This problem occurred due to a low number of studies and

we expect this problem to vanish when there are a large number of studies.

Figure 4.2 shows the box plots for the obtained estimates using different estimation

methods for Scenario II with similar trends as in Scenario I.

Table 4.2 displays the results for the mean estimates, Monte Carlo standard errors,

median jackknife standard errors and the coverage probabilities of the confidence

intervals using the estimation methods described in Section 4.2.3 for the simulation

data in Scenario I. As observed in the box plot for Scenario I, IPCW-TMLE estimation

methods with atleast one correctly specified Q or g component produces consistent

estimates, whereas the rest of the methods has a significant amount of bias in their

estimates.

For correctly specified Q and g components, IPCW-TMLE produces a coverage

probability of 0.95, whereas when one of the Q or g components is correctly specified,

IPCW-TMLE produces a coverage proportion slightly higher than 0.95, whereas the

rest of the estimation methods exhibit poor coverage due to the bias in the estimates.
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Similar Monte Carlo and median jackknife standard errors were obtained for all the

methods. We omitted the mean jackknife standard errors since the obtained jack-

knife standard error contains outliers which overestimates the mean for the jackknife

variance.

Table 4.3 displays the results for the analysis carried out on the dataset generated

by Scenario II. The estimation methods produced similar mean estimates as seen in

Scenario I. This scenario also produces optimal coverage for the estimation methods

using IPCW-TMLE with atleast one correct Q or g component.

We constructed this simulation study to demonstrate the advantages of the IPCW-

TMLE algorithm for mixed IPD and AD. We misspecified or eliminated components

in the model to demonstrate the potential importance different modeling components

has. We specifically generated a random effects model by using the unobserved study

level confounder U
(1)
ij , for the outcome generation in the simulation study. In the

absence of this random effects model, instead of using the IPCW-TMLE algorithm,

ψ can be estimated using simple TMLE for studies with availability to treatment A(1).

Treatment effect heterogeneity is incorporated into the data generating mechanism

by making sure that each study in the dataset had a different expected outcome for

individuals exposed to A(1) given the measured covariates.

We also demonstrated the importance of modeling transportability for estimating

the treatment effect for partial IPD. As shown in the simulation studies, ignoring

the differential treatment availability leads to additional bias in the estimation of the

causal parameter ψ. The transportability assumption holds in the generated data

because all study level confounders involved in simulating the treatment availability

were considered to be observed. Generating unobserved study or individual level
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confounders would lead to a violation of the transportability and the conditional

exchangeability assumptions, resulting in an inestimable causal effect. Further, the

inclusion of unobserved study level variables in the generation of the binary indicator

of selection ∆ would lead to a violation of the Missing at Random (MAR) assumption

making it impossible to identify the target parameter ψ from the observed data.
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Table 4.1: Complete Data Generating Mechanism for Scenario 1.

Generation Mechanism

Study Level Variables

Vij V
(1)
i ∼ N (mean = 0.45, s.d. = 1)

V
(2)
i ∼ N (mean = 0.5, s.d. = 1), i = 1,...,67

Now we set V
(1)
ij = V

(1)
i & V

(2)
ij = V

(2)
i for each j in study i

Dij D
(1)
i ∼ Bin(expit(0.33 + 1.1V

(1)
i ))

D
(2)
i ∼ Bin(expit(0.76 + 0.5V

(2)
i ))

D
(3)
i ∼ Bin(expit(0.55 + 0.6V

(1)
i )), i = 1,...,67

an additional constraint that for each i, D
(1)
i +D

(2)
i +D

(3)
i > 0

Now we set D
(1)
ij = D

(1)
i , D

(2)
ij = D

(2)
i & D

(3)
ij = D

(3)
i for each j in study i

Individual Level Variables for i = 1,...,67 and j = 1,...,200

U
(1)
ij Ui ∼ N (mean = 0.55, s.d. = 0.7), i = 1,...,67

Now set Uij = Ui for each j in study i

Now U
(1)
ij = N (mean = 0.4Uij , s.d. = 0.8)

Wij W
(1)
ij ∼ N (mean = 0.1 + 0.35V

(1)
ij , s.d. = 0.5)

W
(2)
ij ∼ N (mean = 0.15V

(2)
ij , s.d. = 0.6)

Aij A
(1)
ij ∼ Bin(D

(1)
ij (expit(−0.45 + V

(1)
ij + 0.4W

(1)
ij + 1.8W

(2)
ij )))

A
(2)
ij ∼ Bin(D

(2)
ij (expit(−0.55 + 2V

(1)
ij + W

(1)
ij + W

(2)
ij )))

A
(3)
ij ∼ Bin(D

(3)
ij (expit(−0.1 + 1.4V

(1)
ij + 0.35W

(1)
ij + 1.6W

(2)
ij )))

Yij Yij ∼ Bin(expit(0.7− 3.2W
(1)
ij − 1.1U

(1)
ij A

(1)
ij + 0.15A

(2)
ij − 0.45A

(3)
ij ))

Binary Selection Indicator

∆i ∆i ∼ Bin(expit(0.32 + 1.3W̄
(1)
i ∗D(1)

i − 1.2W̄
(2)
i − 0.5Ā

(1)
i + 0.52Ā

(2)
i − 0.7Ȳi)),

i = 1,...,67
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Table 4.2: Results for Scenario I.

E(Ŷ (A1 = 1)) Monte Carlo Median Jackknife Coverage

standard error standard error Probability

Estimating Methods

IPCW-TMLE Qcgc 0.51 0.07 0.07 0.95

IPCW-TMLE Qcgi 0.52 0.07 0.06 0.98

IPCW-TMLE Qigc 0.52 0.08 0.07 0.96

IPCW-TMLE Qigi 0.45 0.07 0.06 0.73

TMLE Phase I 0.48 0.03 0.03 0.81

TMLE Available 0.44 0.03 0.03 0.34

Mean 0.39 0.03 0.03 0.01

Table 4.3: Results for Scenario II.

E(Ŷ (A1 = 1)) Monte Carlo Median Jackknife Coverage

standard error standard error Probability

Estimating Methods

IPCW-TMLE Qcgc 0.51 0.08 0.08 0.94

IPCW-TMLE Qcgi 0.52 0.08 0.08 0.94

IPCW-TMLE Qigc 0.52 0.08 0.08 0.94

IPCW-TMLE Qigi 0.46 0.08 0.07 0.80

TMLE Phase I 0.48 0.03 0.03 0.77

TMLE Available 0.44 0.03 0.03 0.40

Mean 0.39 0.03 0.03 0.03
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Figure 4.1: Box plots for the estimate ψ, observed using different estimation methods

for Scenario I.
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Figure 4.2: Box plots for the estimate ψ, observed using different estimation methods

for Scenario II.
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Chapter 5

Discussion

In this thesis, we have proposed a novel application of IPCW-TMLE for mixed AD

and IPD meta-analysis. Previous work on mixed AD and IPD did not demonstrate

nonparametric identifiability of the causal parameter of interest. We have established

the nonparametric identifiability of the causal parameter and have shown that we

can obtain consistent estimates using causal estimation methods. In particular, the

related two-stage method [Tudur et al., 2001] did not adjust for the study-level co-

variates. In addition, they relied on parametric modeling whereas TMLE in principle

can also be performed under non-parametric setting. However, for simplicity, we have

used parametric working models here when fitting the TMLE.

We demonstrated the finite-sample performance of our method using simulation

studies. We verified the double robustness property of IPCW-TMLE for mixed AD

and IPD. In the presence of a random selection of the IPD studies in the second

stage one does not need to perform the IPCW step, since the single phase TMLE

would be consistent. Further, provided that specific studies do not have access to the

treatment of interest, following the transportability procedure reduces the bias in the
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estimation of the causal parameter in the more general population.

In our algorithm, the first phase uses TMLE, which is a bounded estimator. With-

out the second phase, estimation would therefore be bounded. The weighting step in

the second phase concludes with a weighted sum of the estimates of the IPD studies.

This results in an unbounded final estimate of ψ0. A possible solution to reduce the

variability of the estimate may use data-adaptive truncation of the weights, which

has previously been proposed for standard propensity scores [Ju et al.]. In practice,

one may set the estimates for ψIPCW−TMLE,n to be 1, provided that the value exceeds

1, for the estimate as well as the jackknife procedure. Note that the upper confidence

bound may also exceed 1.

Future work includes implementation of this method to estimate the expected

potential outcome on real-life data such as the MDR-TB data. This data includes

additional complexity such as a higher number of available treatments, patients that

are resistant to some treatments, etc. Furthermore, this proposed method can also

be used to estimate the effects by regimen, rather than by single treatment, where

regimen is defined to be some specific combination of the treatments [Siddique et al.,

2018].
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Appendix A

R-codes

A.1 Data Generation Code for Scenario-I

set.seed(2014)

N_Sampled <- 67

Sample_Size <- rep(200,N_Sampled)

V1 <- rnorm(N_Sampled ,0.45,1)

V2 <- rnorm(N_Sampled ,0.5,1)

U1 <- rnorm(N_Sampled ,0.55,0.7)

#U2 <- rnorm(N_Sampled ,0.6,0.9)

D1 <- NA

D2 <- NA

D3 <- NA

i <- 1

while(i <= N_Sampled ){

D1[i] <- rbinom(1,1,plogis(0.33+1.1*V1[i]))
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D2[i] <- rbinom(1,1,plogis(0.76+0.5*V2[i]))

D3[i] <- rbinom(1,1,plogis(0.55+0.6*V1[i]))

if((D1[i]+D2[i]+D3[i])>0)

i <- i+1

}

V1_ij <- c()

V2_ij <- c()

U_ij <- c()

D1_ij <- c()

D2_ij <- c()

D3_ij <- c()

Study_ID <- c()

for(i in 1:N_Sampled ){

V1_ij <- append(V1_ij ,rep(V1[i],Sample_Size[i]))

V2_ij <- append(V2_ij ,rep(V2[i],Sample_Size[i]))

U_ij <- append(U_ij ,rep(U1[i],Sample_Size[i]))

#U2_ij <- append(U2_ij ,rep(U2[i],Sample_Size[i]))

D1_ij <- append(D1_ij ,rep(D1[i],Sample_Size[i]))

D2_ij <- append(D2_ij ,rep(D2[i],Sample_Size[i]))

D3_ij <- append(D3_ij ,rep(D3[i],Sample_Size[i]))

Study_ID <- append(Study_ID ,rep(i,Sample_Size[i]))

}

N <- sum(Sample_Size)

U1_ij <- rnorm(N,mean=0.4*U_ij,sd = 0.8)

W1_ij <- rnorm(N,mean=0.1+0.35*V1_ij,sd=0.5)

W2_ij <- rnorm(N,mean=0.25*V2_ij,sd=0.6)
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A1_ij <- rbinom(N,1,D1_ij*plogis(-0.45+V1_ij+0.4*W1_ij+

1.8*W2_ij))

A2_ij <- rbinom(N,1,D2_ij*plogis(-0.55+2*V1_ij+W1_ij+W2_ij))

A3_ij <- rbinom(N,1,D3_ij*plogis(-0.1+1.4*V1_ij+0.35*W1_ij+

1.6*W2_ij))

Y_ij <- rbinom(N,1,plogis(0.7-3.2*W1_ij+1.1*U1_ij*A1_ij+

0.15*A2_ij-0.45*A3_ij*W2_ij))

Full_IPD <- data.frame(Study_ID ,W1_ij ,W2_ij ,A1_ij ,A2_ij ,A3_ij ,

Y_ij,D1_ij,D2_ij,D3_ij,V1_ij,V2_ij)

Full_AD <- c()

for(i in 1:N_Sampled ){

IPD <- Full_IPD[which(Full_IPD$Study_ID==i),]

Full_AD <- rbind(Full_AD ,colMeans(IPD))

}

colnames(Full_AD) <- c("Study_ID","W1_bar","W2_bar","A1_bar",

"A2_bar","A3_bar","Y_bar","D1_bar",

"D2_bar","D3_bar","V1","V2")

Full_AD <- data.frame(Full_AD)

pInd <- plogis(0.25+1.3*Full_AD$W1_bar*Full_AD$D1 -

1.2*Full_AD$W2_bar - 0.5*Full_AD$A1_bar +

0.52*Full_AD$A2_bar - 0.7*Full_AD$Y_bar)

Indicator_bar <- rbinom(N_Sampled ,1,pInd)
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A.2 Data Generation Code for Scenario-II

set.seed(683447215)

N_Sampled <- 67

Sample_Size <- floor(runif(67,50,1000))

V1 <- rnorm(N_Sampled ,0.45,1)

V2 <- rnorm(N_Sampled ,0.5,1)

U1 <- rnorm(N_Sampled ,0.55,0.7)

D1 <- NA

D2 <- NA

D3 <- NA

i <- 1

while(i <= N_Sampled ){

D1[i] <- rbinom(1,1,plogis(0.33+1.1*V1[i]))

D2[i] <- rbinom(1,1,plogis(0.76+0.5*V2[i]))

D3[i] <- rbinom(1,1,plogis(0.55+0.6*V1[i]))

if((D1[i]+D2[i]+D3[i])>0)

i <- i+1

}

V1_ij <- c()

V2_ij <- c()

U_ij <- c()

D1_ij <- c()

D2_ij <- c()

D3_ij <- c()

Study_ID <- c()
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for(i in 1:N_Sampled ){

V1_ij <- append(V1_ij ,rep(V1[i],Sample_Size[i]))

V2_ij <- append(V2_ij ,rep(V2[i],Sample_Size[i]))

U_ij <- append(U_ij ,rep(U1[i],Sample_Size[i]))

D1_ij <- append(D1_ij ,rep(D1[i],Sample_Size[i]))

D2_ij <- append(D2_ij ,rep(D2[i],Sample_Size[i]))

D3_ij <- append(D3_ij ,rep(D3[i],Sample_Size[i]))

Study_ID <- append(Study_ID ,rep(i,Sample_Size[i]))

}

N <- sum(Sample_Size)

U1_ij <- rnorm(N,mean=0.4*U_ij,sd = 0.8)

W1_ij <- rnorm(N,mean=0.1+0.35*V1_ij,sd=0.5)

W2_ij <- rnorm(N,mean=0.25*V2_ij,sd=0.6)

A1_ij <- rbinom(N,1,D1_ij*plogis(-0.45+V1_ij+0.4*W1_ij+

1.8*W2_ij))

A2_ij <- rbinom(N,1,D2_ij*plogis(-0.55+2*V1_ij+W1_ij+W2_ij))

A3_ij <- rbinom(N,1,D3_ij*plogis(-0.1+1.4*V1_ij+0.35*W1_ij+

1.6*W2_ij))

Y_ij <- rbinom(N,1,plogis(0.7-3.2*W1_ij+1.1*U1_ij*A1_ij+

0.15*A2_ij-0.45*A3_ij*W2_ij))

Full_IPD <- data.frame(Study_ID ,W1_ij ,W2_ij ,A1_ij ,A2_ij ,A3_ij ,

Y_ij,D1_ij,D2_ij,D3_ij,V1_ij,V2_ij)

Full_AD <- c()

for(i in 1:N_Sampled ){

IPD <- Full_IPD[which(Full_IPD$Study_ID==i),]
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Full_AD <- rbind(Full_AD ,colMeans(IPD))

}

colnames(Full_AD) <- c("Study_ID","W1_bar","W2_bar","A1_bar",

"A2_bar","A3_bar","Y_bar","D1_bar",

"D2_bar","D3_bar","V1","V2")

Full_AD <- data.frame(Full_AD)

pInd <- plogis(0.25+1.3*Full_AD$W1_bar*Full_AD$D1 -

1.2*Full_AD$W2_bar - 0.5*Full_AD$A1_bar +

0.52*Full_AD$A2_bar - 0.7*Full_AD$Y_bar)

Indicator_bar <- rbinom(N_Sampled ,1,pInd)
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A.3 Code for obtaining the true value of the causal

quantity for the simulation data

set.seed(2001)

Sample_size <- 10000

V_1 <- rnorm(10000,0.45,1)

V_2 <- rnorm(10000,0.5,1)

U_1 <- rnorm(10000,0.55,0.7)

M1 <- 0.1+0.35*V_1

M2 <- 0.25*V_2

M3 <- 0.4*U_1

pInd2 <- plogis(0.76+0.5*V_2)

pInd3 <- plogis(0.55+0.6*V_1)

In2 <- rbinom(10000,1,prob = pInd2)

In3 <- rbinom(10000,1,prob = pInd3)

Estimate_Population <- function(Sample_size ,Mean1,Mean2,Mean3,

Ind2,Ind3,V1,V2){

W1 <- rnorm(Sample_size ,Mean1,0.5)

W2 <- rnorm(Sample_size ,Mean2,0.6)

U1 <- rnorm(Sample_size ,Mean3,0.8)

A1 <- rep(1,Sample_size)

pA2 <- plogis(-0.55+2*V1+W1+W2)

pA3 <- plogis(-0.1+1.4*V1+0.35*W1+1.6*W2)
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A2 <- rbinom(Sample_size ,1,prob = pA2*Ind2)

A3 <- rbinom(Sample_size ,1,prob = pA3*Ind3)

pY <- plogis(0.7-3.2*W1+1.1*U1*A1+0.15*A2-0.45*A3*W2)

Y <- rbinom(Sample_size ,1,prob = pY)

return(mean(Y))

}

Causal_Estimate <- c()

for(i in 1:10000){

Causal_Estimate[i] <- Estimate_Population(Sample_size ,M1[i],

M2[i],M3[i],In2[i],In3[i],

V_1[i],V_2[i])

print(i)

}

True_Value_Study <- mean(Causal_Estimate)
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