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I . Introduction 

At a given instant of time the individual motion of the nucleons 

of a nucleus altogether form a particular pattern1 which defines the 

nuclear surface . As the nucleons change their·paths, the pattern 

changes consequently . There can be a change in the orientation as well 

a.s in the shape of the pattern. These are respectively described as 

the rotation and vibr ation of the nucleus . Clearly, such motion must 

be attributed to all the n11Cleons and are therefore termed collective . 

Thus there is a definite correlation between the particle and the col -

lective motions . 

The nuclear surface may be specified quite generally by 

oO )\ ,. J 
11 = Ro ( 1 + [ [ o.)\~ Y )\ (Q, ~) 

)\• f'- "" -l\ I 

(I-1) 

The expansion coefficients u.Af'l' are actually nonnal coordinates, i.e. 

the kinetic and the potential energy of the surface are given by 

T "" T [_ B >-- I a "t \ 2 

"1" 

and v ... .-L '[_ c" I o. ,..r\ 2 

2. "-r 
respectively. The Lagrangian 

L = T - V 

is then a sum of term.s, each corresponding to a simple harmonic oscll-

lator with frequency 

( 
c )X w = _]L 

" B "' 

1 
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For 1\ = , a.
0 

is associated 'With a change in volume . Since nuclear 

matter is highly incompressible , such vibration only occurs at very 

high energy . The tenns in J\ =1 merely describe the translational 

motion of the centre of mass and have no effect on the internal structure 

of the nucleus • 'l'herefore usually only the l\ =2 terms are of interest , 

and only such quadrupole vibrations will be co nsidered. in the following . 

It is convenient to use a body- fixed coordinate syst~ • In 

~uch a system the nuclear surface is specified by 

(I-2) 

The connection between equations (I-1) and (I-2) is determined by the 

t ransfonnation 

and 

~ = ~ A2v 

y:(Q ) ~) = 

(D~\1 )* 

L. 'YJQ•} ~· > 
r 

A 
1tihere the iJI"f are the usual D-functions and Q...: the Eulerian angles . 

If one chooses the principal axes for the body- fixed coordinate system, 

then simplification results in that A21 = 2_1 = O, and A22 = 2- 2 · 

The coefficients A20 and A22 together with the Eulerian angles are the 

collective coordinates . They specify the nuclear orientation as well 

as its shape . 



It i desirable , ho ever, to make the further substitution 

and 22 = ...!_ a sin y 
[2 

Then the aviation of the nuclear surface from a sphere of radius Ro 

along t he k- axis is given by 

~ R. • J 5 R a cos ( .Y - 2rrk) 
~ 4rr 0 -s-

Thus v is a shape par eter . The range O ~y~ n exhausts all possible 

shapes . For larger values of -v it merely amounts to a differ ent lab 1-

ling of the axes . Both f: and -v change with r spect to time . In p-

vibr ation t he nuclear s~~etry , if any, is preserved wher as it is n t 

so in '(-vibration . 

With r efer ence t o the body- fixed coordinate system, the Ha il-

tonian H = T + V, when expressed in terms of the new set of coordinates, 

becomes 

is t he moment of inertia about t he k- a.xi s , and Wl{ is the angular 

veloci t y of rot at ion. To construct the wave equation, one t ransfor ms 

the Hamiltonian into (Bohr , 1952) 

H = 

, 



This equation, as it stands, represents the Harailtonian of a nucleus with 

a spherical equilibrium shape . With additional nucleons outside the 

clo ed shell the nucleus will attain a permanent defor-mation about 

_, = pt and y = ')'"
1 

• The potential nergy will also accordingly change 

If one restrictE o even-even nuclei, 

an al o to low- lying states only, then the Hamiltonian may be written 

as 

where 

+ W( i3,v ) , 

and 

whi ch is small compared wit Ho and can be interpreted as the inter-

action between rotation and ~-vibration . Th purpose is obviously 

to treat U0 as perturbation . For small oscillations one can expand 

One then sets to solve 

by substituting 

~ ( ~ . ...- ) .,. ~ (x) g (y) 

2 (<- Y'j ) + 

2 
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5 

andv= Y - ...r 
. " • I • 

Two separate equations result, which 

can be denoted as 

(I- 3) 

and liy g(y) • E..., g(y ) (I- 4) 



II. Th~ v-vibration "'a ation for Axially Symmetrical Nuclei 

For nuclei with axial symmetry the equilibrium point is given 

by ( (3 , , ....,, = 0) . The explicit form of equation (I-4) is then 

( 

2 2 2 21 - n .2:... L_y~ f...L.py + fi _!_ g(y ) "" E g(< ) 
2s~ 2 'Y' o-t a-r .l. as13 2 --r 2 .. 

I I 

a .. !3 
-( =0 

(II-1 ) 

This resembles the radial equation of a two dimensional oscillator, with 

eigenvalues 

E.,.., n = fiw.,... (n'f' + 1) n..,. = 0, 1 , 2, 

There are , however, two essential differences . ~flhile the variabl 

f in a two dimensional oscillator problem varies only from zero to 

infinity, here the variable ~ can take up negative values as well . 

econdly the diff rential element corresponding to the variable f is 

r dp in the oscillator case , whereas that corresponds to "( is jsin 5 Y\d"t'. 

For small oscillation the latter can be replaced by 5 1-rl d 't', or by 1...-l d Y' if 

one adjusts the normalization facto rs of the g-functions . 

To solve equation (II-1), one tries a series solution 

o4 

L_ 
where 

r = 0 

6 



and 2 - f3 , ['i3r 2 
X _... - • - 2fi ' 

Using the usual series solution proc edure, one finds that the proper 

choice for s is s "" ~ and the recurrence formula is 

r 

The series f will terminate at r = nr - K/2 . The solutionsg(y-) depend 

on both ~ and , and t herefore will be denoted by g~) ('f") . For 

xample , 

The coefficient A~ mus t be determined by normalizing the corresponding 

g- function t o unity , integrating over the element 1"(1 d r from - oo to 

+ 00. 

with 

The first few normalized functions are given here for later ses: 

0 ) ,::;: - t Y2 
tSo (..,.-) • J ,;;,t- e 

(2 ) -ty 2 
g
1 

(·.-) = 2tye 

g~0 ) ( ,.. ) .. j2t (l - 2tY2 )e-ty
2 

g~2 ) ( 't") • ]8 t T'(l - t 'Y 2 )e -t¥
2 

g~6) ("t"') = Jf t2y3 e - t Y'2 ' 

(II- 2) 

7 



III . Int eraction between Y - vibr ation and Rotation 

In the pr esent work it is intend ed to examine the radiat ive 

transition l1.l2 between rotational bands built upon ifferent Y - vibra-

tional states . Therefore only t he rotational and y - vibrational energy 

spectr a are of concern . Furthermore , only lOlo(- lying stat es will be 

considered . In transitions it is t he change in energy that really 

matters . With these in mind, the energy level can be denoted by 

En KJ = (n ..., + 1 ) fiw-t' + n
2 

( J(J+l) _ 2K2 ] 
~ 6B~, 2 

The int eraction between rotation and y-vibr ation has been de-

signated by U
3

, and for s:uall vibrations one can expand the Ik in U5 

to get 

112 
U3 ::::- --

3B!3 2 
t 

The operator (J1
2 - J /!) has non- vanishing matrix elements only between 

states of same J 1 but wit h K differin by :2: 

% 
(J, KlJ12 - J 22 1J, K; 2 ) ={-((J !:. K )(J~K-l)(J~K+l)(J;K+2 )] (III- 1 ) 

and Y onl y connects states diff ering in ny by ~ 1 . Some explicit expres-

sions for the atrix el ements of ~ a r e 

fi 
B~l2 :=Y 10 

nw-f' 

8 



( 2) I \ (o)) gl Y' g2 = - YlO 

< <z> l I (4)> gl -y g2 "" 2Y 1 

( (o ) l \ (2)) 
g2 -y g5 = JT--r 10 (II - 2) 

(g24 ) \ y \ g32)) = - j2Y 10 

and ( g~4) \ 'Y \ g~6)) = J6 -(10 

Thus the interaction u3 connects the state (n....,. , K 
1 

J) with (n .,.. : 1, 

K~2 , J) . Figure 1 represents a sch~~atic energy level diagram. 

This li.lll serve an a visual aid in the fo llowing calculation. 

9 



Allowed Energy Levels 

K 0 2 4 

J o, 2 , 4, --- 2 , 3, 4, --- , s, 

n.,. o, 2, 4, -- 1 , 5, s, -- 2, 4, 

----------------- J • 3 

--------------- J = 2 

K = 2 
______ J ""4 

--------
------

K = 0 

J .. 2 

J • 0 

n = 0 y n • l y 

6 

6 , --- 6, 7, s, ---
6 , --- 3, s, 7 , ---

--~---------- J = 4 

----------------- J = 2 
______ J = 0 

K = 0 

-------

n = 2 y 

K = 4 

J = 5 

Fig . 1. Schematic -~ ergy Level Diagram. Arrows illustrate admixture 
added to the state (n .,... • 1 , K ... 2, J = 4) . 
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IV . The Reduced Probability of E2 Tr~1sitions 

The reduced probability of E2 transitions are here classified 

into five groups according to where the initial and final states are. 

1 ! Transit ions from (n ..., = 1 , K = 2, Jti ) to (n .y ·=O, K = o, Jf) 

As already said, only the rotational and ~ -vibrational parts 

of the total wave function will be of concern . Let the unperturbed 

wave functions be denoted by ~n KJ ( -T, S.;) while perturbed ones by 
v 

'f' n KJ { --r, Q.;_ ) . No dist inction will be made between wave functiono and 
-( 

state vectors, as ambiguity is unli ely to occur . Owing to the inter-

action U;s , the initial state (n .y = 1 , K • 2 , J ,£ ) is in general mixed with 

three other levels, namely, (n r = 0 , K = 0 , J ..... ·), {n 'Y "' 2, K = O, J), 

and { n ..... = 2, K • 4 , J .c' ) • (See illustr ation in fig . l.) Applying time-

independent perturbation theory with the aid of equations (III-1) and 

(III- 2), one gets 

where 

and 

...[) ~ - ( 1+ (-l )J.:J 
I 12J..: "' '\'12J.; 

a •..L.. 
; 3 

2 

(J,. - l )J ... · (J.· +l ) (Jc: +2 ) 

6 

(J,i - 3) {J~ - 2)(J,i +S )(JA• +4 ) 
b .. -..1.. 

3 

The unperturbed wave functions can be writ t en as the product of 

A ) 
Sn (Y) and the D- functions which describe the rot ational part: 

-( 

11 



2J+l 

'he D- functions here are those used by Kerman (1959) . 

The final states in the present case are (ny "' 0, K = O, Jf), 

and are described by 

with 

d "" 
! (Jr - l)Jr (Jr+l )(Jr2 ) 
3 6 

The E2 t ransiti on operator in the body- fix: d system is given explicitly 

by Davydov and Filippov (1958) 

sinT] 
where 

is the intrinsic quadrupole moment . s the vibration is assumed to be 

small , the operator Q2r is approximated by 

j---s ( 2 2 Q2~ "' - e ~ D (1 - "C ) + 
I 16TT 7'" 0 

2 

2 2 
De 2 + DJ.', - 2 
I I 

The operator y 2 has non- vanishing elements for .6 n Y • 0 as well as for 

A ny "" : 2 • In f act 

12 



(~o)j-y2 f g~o )) 2 
"' 'Y1o 

(g£2) \-/ 1 gf2)) .. 2"1_02 

( g~o ) l··l \ g£o )) • 31:o2 

(g(4 ) l 2 \ g(4 )) 
2 '"'( 2 

= 6 'Y: 2 
10 ( IV- 1) 

(~o ) ( -i \ g~o ) ) .. -~o 
2 

(goo ) \·/ \ g~4)) =2 .y 2 
10 

2 (gi2)\-l \ g~2)) .. - JTY 10 

The reduced probability of 2 transition is defined as 

1 

( 2~ +1) 
L I ( f ( Q2f I~ ) l2 

/",M.c:, f 

This is the definition used by Kerman (1959) and is equivalent to that 

used by Davydov and Fil ippov (1958 ) . This is related to the transi-

tion probability by 

T( 2; ~-'>f ) "' .i_ .1:.. 
7 5 n6 

B( "2; _4_, f ) 

where A E i s t he transit ion energ;f . The transition probability itself 

is directly proportional to the int ensit y of transition, which is what 

experimentally measured . 

13 



To calculate B(E2) , equations (III-1), (IIi - 2), (IV-1) and the 

following will be useful: 

and 

~ (J; 2M,ti J~ 2Jt.Mr )2 = (2Jr+l) 

f'· ll{,:, f 

fter a rather lengthy calculation, one finds 

where 

and 

B(.i:!.2 ; n...., • 1 , K = 2, J4 ___., n"' = O, K = O, Jr) 

= _£ e2Qo2-t.:l02 ( p2+2pq '"l' 2 + {Spq + 2pr + q2 ) Y' 4 J , (IV- 2) 
16TT 10 3 10 

q • ! (Jr- l)J r (J r+l HJr+2 ) (J~ 220 /Jr2) 

6 

14 



Since usually Y 10 
2 is of the order of 10-l 1 terms higher than )''io 6 have 

been dropped in the above calculation. Even the Y1o6 term is not 

meaningful here, for additional contribution to this term may arise if 

6 higher terms are included in the expansion of u3 and Q2f. As '""'i.o is 

often of the order o! 10- 1 and its coefficient in equation (IV ... e) is 

not large enough to make this term comparable to the other two leading 

tenns1 one can usually neglect this term entirely in most cases . 

15 

Another point that should be mentioned here is that the mixing of 

(n "f "" 2, K = 4) band with (n-t" • 1, K = 2) need not be considered. It 

is found that such a mixing will only introduce terms of order Y108 and 

higher . 

The single expression {IV- 2) can be applied t o 22 transitions 

between any level in (n"'( = 1 , K = 2) band to any permissible le"Vel in 

(n.., = 0 , K = 0) band . To put it into a more convenient fonn, one 

separates it i nto five expressions: 

B{E2; n""( = 1, K • 2, ~ __... n "" = O, K = O, Jf = J.l +2) 

4 (2J4 +1)(2J,.: +3) 
e '<W . Y lO 1+~(2J~ +5)Y"10 , (IV- 5a) 5 

2
n-

2 
2 ( 4 . . 2 ] 

16n 3 

B(E2; n..,.. = 1 , K "' 2, J_.: ~ n..,.. = O, K • O, Jr "" J~ +1) 

.. (J,i -1) 
2(2J,.: +l) 

, {IV- 3b) 



3(J.; -l) (J ... +2) .. -

2(2J; -1){2J.; +3) 
Se 

2
0c 

2 
....., 2 ( 8 .., 2 J 16rr • 10 1 + 5 ' 10 • (IV-3c) 

B(E2; n ..,.. = 1, K = 2, J_; ~ n.,. • O, K = O, Jf = J,.- -1) 

(J,:+2 ) =----2(2J~ +1) 

5e2Qo2 

16rr 

B(E2; n.,. .. 1 , K = 2, J,; __, n.,. = O, K • O, Jf = J.c. -2) 

16 

(J" +l)(J,; +2) 
= ---------

4(2J; -1)(2J~ +1) 
2 2 J Se Qo -( 2 ( 1 _ .i (2J. - 3) y 2 

16rr 10 5 .... 10 
, (IV-3e) 

As an illustration, one finds the branching ratio of J "' = 2 to 

J f = 2 and J14• = 2 to J f = 0, to the fourth order in Y10, to be 

R (B) := B(E2; n.,.=l , K•2, J ... =2~nr=O, K=O, Jr=2) 
1 

- B(E2; n ..... =l, K•2 , J . =2~n =0, K=O, Jr=O) 
T .. ~ 

- 10 (1 + 4: y: 2 + 52 ""'("" 4) 
7 10 9 :J..O 

(IV- 4) 

One recalls that 

Using the data listed by Van Patter (1959), R (B) is calculated and 
~ 

shown in Table 1 together with the experimental val. ue R 1 (B) . 



s e76 

rrel22 

Sml52 

Gdl54 

nyl60 

li:r168 

lv/184 

os190 

Hgl 98 

Th252 

Pu258 

Table 1 

Eooz E122 'Yio 2 
R~al(B) Rexp(B) R~F (B) 

(kev) (kev) I 

560.5 1220 0 . 46 5.1 26: 7 68 

563.9 1257 0.45 5.0 91 ~ 14 66 

121.9 1087 0.11 2.1 2. 2'!:0. 5 1.9 

123.1 966. 6 0.15 2.2 ~ 1 . 8 2.6 

86.6 965.7 0 . 09 2. 0 2.0!0.1 1.9 

79 . 8 822 .0 0.10 2.0 L8:o . 5 -
111.1 904 0 .12 2.2 1.8~0.5 5.0 

187. 0 557 0 . 34 5.9 6. 8!1. 2 7.1 

411.8 1088 0 . 58 4. 5 34 '!: 4 15 

52 . 8 790 0 .07 1.8 + 2 .1.:.0. 5 1.7 

44.0 1051 0.04 1.7 1 . 5!0 . 2 1.2 

Colwnns 2, 3 ani 6 taken from Van Patter (1959), 

Column 7 from Davydov and colleagues (1958) 

using an asymmetric rotor model. 

The following branching ratios can also be readily obtained by 

means of equations (IV-5). 

17 



and 

R ( B) :::: B(E2; nr =l, K=2, ~-z _.... n-r=O, K=O, Jr=4) 
2 

- B(E2; n"f•l, K=2 , J,.: =2~n.,.. •O, K=O, Jr=O) 

R
3
(B) = B(.c;2; nv-=1, K•2, J~ • 5 4 lly=O, K=O, Jt=4) 

B(E2; n.r=l, K•2, J .. · •5...->} n.,..•O, K=O, Jr=2) 

Mallman (1961) lists the experimental ratios of intensities corres-

ponding to Rz(B) and R0(B). For comparison the ratios R2(B) and 

R0(B ) are therefore converted to intensity ratios, denoted by H2(I) 

and R0(I) respectively, assuming pure E2 transitions . Undoubtedly this 

a.ssum.ption is not aJ ways valid . The transition energies used in conver-

t l ng R2(B) to R2(I) are based on data collected by Van Patter, while 

those for R3(I) of Gd1 56, ny-160 and v.J.84 are from nuclear data sheets . 

Recently the compilation of energy levels by Hellwege and Hellwege 

(1961) became avallable and t he required levels for Th228 and Pu238 are 

taken from this book . In the followi~ tables the energy levels are 

denoted by n~J. 

18 



Table 2 Table 3 

R (I)= 1(122-+004) exp 
2 1(122~000) .R2(I) 

a~ (l)= I..(123~004) e.x;p 
3 1(123~2) Rs (I ) 

Gdl56 4.0 x lo-2 ~.2.xlo-2 Gdl56 2.9. x 10-1 2. 2Jtlo-1 

0y1eo 5.5 x 10-2 ~.2.xlo-2 oyl60 2 • . 4 x 1o-l 4.2x:lo- l 

w184 1.'7 X 10-2 67xlo- 2 /184 l.B x lo-1 o. 3xl.o- l 

'I'h228 5.3 X 10-2 7.7xlo- 2 'l'h228 5.3 x 10- 1 3.4xlo-1 

Pu258 6. 0 x lo- 2 I 
s 417xlo- 2 
r 

Pu238 3.5 x 1o-1 e. exl.o-1 

Recalling that pure ~2 transitions have been assumed~ it is 

seen that agreement is r easonably good except for ~i184 • 

2. Transitions from (n Y' = 2, K = 0 , J,c ) to (n ..,. = 1, K =-· 2, J f) 

In this roup the initial state (n ..... • 2, K = o, J.c.· ) is 

affected by t~ ~..; 1..,.""' 1, K .. 2, J,.:) level and also by the (ny = 3, 

K = 2, J ..: ) level. The perturbed wave function may be written as 

here 
(J,• -1)J .. · (J.- +1)(J~ +2) 

6 

'"'("105 

<1tf1o2
) 

19 



and 

b "" !.. 
5 

(J" -1)J4' (J.: +l)(J,.: +2) ~ 103 

5 (1-{ r oz) 

It should be remembered that the J~ are always even in this case. The 

final state (n y = 1, K .. 2, Jr) is given by 

where 
. 1 
d=-; 3 

(Jr-l)Jr(JrlHJr2) Y 103 

6 (l;t "(' 10 2) 

The mixing with the state (24J r) only gives negligible contribution to 

the reduced pro1 .., · L .... y of E2 transitions. By a similar procedure as 

before one obtains 

16n 

where now 

p .. -(J.4 202 1 Jr2) 

q .. 1. (J,.-l)J .-(J .• :+l)(J..:•2) (J~ 220 I Jr2) 
5 6 

_ ( 1+(-llr 1 1 j <Jr- l)Jr(Jr+lHJr+2) (J,.: 220 1 Jt:J) 
2 3 6 

20 



and 

r"" ( 1-+(-1/t } 

2 

(Jr-1)J r(Jr+l) (J £+2) 

6 

Comparison of equations (IV-2) and (IV-5) indicates they are si.-rnilar, 

as one would also have guessed since both transitions involve a change of 

A n 'Y = 1 and (AK l = 2. Again, to the fourth Order in Y 10, one obtains 

five separate expressions from equation (IV- 5). 

""! (J.+5)(J,.:+4) 
4 (2J~ +1) (2J.: +5) 

5 2Q 2 e o 
16fT 

B(E2; n Y' = 2, K. .. O, J4~ n..,• 1, K = 2, Jf = J• +1) 

# (JA+5) 

2(2J; +1) 

S(J~ -l J\J , +2) "" .. 
2(2J.: -1)(2J..: +5) 

""( 10 2 ( 1 - ~ y 10 21 

.B(E2; ny = 2, K = O, J..: __, n..,. .. 1, K = 2, Jf * J,.: -1) 

= (J..: -2) 

2(2J..: +1) 

B(E2; ny • 2, K = O, J~--1) n..,. • 1 , K = 2, Jf .., J~ - 2) 

,. l (J..:•B)(J.o - 2) 
4 (2J..: -1)(2J; +1) 

( IV-6a) 

(IV- 6b) 

(IV- 6c) 

(IV- 6d) 

2l 



3. Transitions from (n ..,. = 2, K = 0, J,d to (n "(" • 0, K • 0, Jf) 

In this case a change of A n ..... "' 2 ()CCurs. If one uses unper-

turbed. wave func t ions and u.ses cos "'(':! I in Q2f' then B(E2) vanishes . 

Therefore, though using perturbed wave .functions as well as higher order 

expansion for cos "( in Q2f' one will not be sul'{>rised to find that the 

B(E2) in case 5 is much smaller than those in cases 1 and 2. 

The reduced probability is round to be 

B(E2; ny = 2, K = o, J~~ n..,.. = o, K = o, Jr) 

5e2Qo2 
= lerr Y lO 4 (p2 + 2pq·-.io2) 

where now 

and 

(J..: -l:)J.- (J~ +l)(J~ +2) 

6 

(J r - l )Jr(Jr+l) (J r+2) 

6 
(J;.202 I Jr2 ) 

(!V- 7) 

As equation (IV- 7) is relatively simple , no attempt is ade to separate 

it into five equations . For convenience in using it, however, some 

Clebsch-GJrdan coefficients are listed here: 

(02 of2o) "' 1, 

(2200\00) -Jf, 
(02- 22 l 20) "' o, 

(22- 22 100) =Jf, 
(0202 (22) ... l, 

(2202( 00) =If , 

22 



{2200120) = -~ ~, 

(2200 140) = .5 jis, 

(22- 22 t20) .. rr J 7 , 

(22-22 140) =Jio , 

(2202 122) ~J t, 

(2202 142) =f~, 

Thus, for instance, for JA = 0 and Jf ~ 2, one readily obtains 

q * 

and hence 

B(E2; n y = 2, K = O, J..l = 0 --') n.., = O, K = O, Jf = 2) 

(IV-8) 

It i s well known that transition from J~ = 0 to J f = 0 is absolutely 

forbidden . This is Ldeed the case here as (0200 100) vanishes . 

The branching ra.tio of the E2 trai"lsitions from n-y- == 2 to n y = 1 

and from n ..,. = 2 to n .y ~ 0 can also be easily obtained by means of equa-

tiona (IV-5) an. ( I V-6). For example , 

B(E2; n 1' = 21 K • 0, J ~ = 0 ~ n y= == 0, K ,., 0, Jf = 2) 

B(E2; n y = 2, K • O, J~ • 0 --+ n y •l, K = 2, Jf = 2) 

.. 1. '( 2 (1 + §. "'L 2) 
4 10 5 10 

(IV-9) 

4 . Transitions from (n ..,. • 2, K = 4, J ..,. ) to (n l" • l, K • 2, Jr) 

For this group of transitions the perturbed wave function of the 

initial state is given by 
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where 

and 

b = _ l {J,i - 3)(J,: -2)(J; +3)(J, +4) 
3 6 

c = l 
3 

{J; - 5)(J; - 4)(J,c + S)(J; +6) 

2 

The final state is given by 

with 

Y 1o3 
I 

(l- l YJ.o2) 

'YJ.o3 

. (l+ \1l'io2) I 

Y"1o3 

(1_10 -y 2) I 

3 10 

y 103 

(lJY 2) 
-t- 10 

and 

(J ,r-3){J r-2){J r+3)(J £+4) 

3 

The calculated result is 

where the coefficients 

p "' j2 (J" 24 - 2 1 Jr2) ~ 

q • _ ~ r -3HJ. -2~(J.- ·3)( •• ·4) 

Y 1o5 

(l- )•\ o2) 
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and 

• 1. j Jr- sHJr-2)(Jro3HJ'r•4j 
:3 3 

_ 1 gJl-sgJ..:-2HJ~ +5)(J" +4~ 
r- 2 J 3 

_ f r-s)(Jr-21!Jr-s)(Jro4) 
3 

25 

(JA 240( J r4) , 

As before, this is separated into five equations, to the f ourth order 

in i 10• 

= (J~ - s)(J.: · 2HJ.: -1)J~ . . .. Se2Qo2 --r 10 2 ( l+i(2J.; +9)Y10
2 ] (IV-lla) 

2(J• +1)(J,: +2)(2J..: +1)(2J; +3) 16n 3 

• (J.; - 5) (J~ -2)(J~ - l)(J4 +4) 

J ". {J"· +l) (J~ +2){2J; +1) 

= 3(J.; - 5) (J_. - 2) (J~ + 3 )(J~· +4) 

(2JA - 1)J,.:- (J_.:- of'1)(2J..,:- +3) 

= (J£ ... s)(J~ ... 2)(J.z +5)(J.: +4) 

(J-4 - l)J,: (J_; +l) (2J..: +1) 

se2Q.o2 ...,102 ( 2 ) _ • . l+BlJ.o 
16TT 

(IV-llo) 

56
2

Qo
2 

v 102 ( 14<~·-6 )"T)_02 l (IV-1ld) 
16fl' 

B(E2; n.,. = 2, K = 4, J4 ~ n,. = 1 , K = 2, Jr = J_:-2) 

... (J.; +l)(J,. +2)(J~ +5)(J;+4) 

2(2J.; ·1HJ .. ·-l)J~ (2J~ +l) 



5. Transitions from (n..,.= 2, K = 4, J.; ) to (n.y = O, K .. O, J r) 

It is found that the reduced probability of E2 transitions for 

this group is extremely small. The result is 

where 

< J r-1 )J f ( J r• 1) (J r 2) 

5 
(J& 24- 2 1 Jr2) 

(IV-12) 

2 

Thus it is seen that the reduced probability for this group is even 

les s than that from (n "( = 2 .. K "" 0 , J A, ) t o (n..,.. = 0, K = O, J1 ) . This 

is probably due t o the large change i n K values here . 
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V. Discussion 

The expressions derived for the reduced probability depend 

on the parameto!lr Y 10, which is essentially the square root of the 

ratio of the first rotational energy level to the first vibrational 

level. The variation of Y
10

2 over even-even nuclei with 54 < A< 238 

is roughly within the interval of 0 . 05 to 0 . 5 . The variation o f the 

branching ratios of the reduced probability, on the other hand, is 

much larger. Thus, for instance, the ratio R1 (B) can vary from 1.5 

to 1800 for the above variation of nuclei. This thus limits the range 

of application of the derived expressions for the reduced probability of 

E2 transitions . 

The original :rotor model of Davydov and Filippov (1958) has 

remarkable success in calculating the transition probability, especially 

in its capability of accounting for a large r ange of nuclei . In this 

odel the nucleus is pictured as non ... a.xia.l in general ith a fixed form 

of the nuclear surface. A parameter "{ is introduced to describe the 

non-axiality. Adiabatic condition is assumed to hold, i . e . the rota-

tion of the nucleus has no effect on the intrinsic state of the nucleus . 

Starting from the Hamiltonian 

3 AJk2 H ... 2: 
k•l 2 sin2(y ... 2rrk) 

3 
with 

A• n2 
4Bl312 
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energy levels are obtained in ter1ns of the para eter "Y • From experi-

mental data of energy spectrum the parameter v is determined. This 

value of -( is then used in the calculation of radiative transitions. 

Some of their calculated results are included in Table 1. 

Recently, Davydov (1961) also includes surface vibrations and 

discusses non-axial nuclei as well. Thus one :y consider this as a 

generalization of Bohr's mod 1 (1952). For axial nuclei, Davydov gives 

with 

where F is 

integer. 

(V-1) 

a confluent hypergeometric function, and A is a non- negative 

B1'12 
The quantity{D is equal to fi w..., • With suitable choice 

28 

of ~ , equation (V- 2) reduces to the g-.functions used in the present vrork . 

Though both ~ and ny come into the coefficient of ~~ there is no re-

striation on )\ apart from being a non-negative integer, w ereas ny- is 

restricted by the K value (see Fig. 1). The relation between 1\ and 

nv i s 

)\ = 2n y= .. K 
4 

According to the calculation of Davydov 1 Rostovsky, a."'ld Chaban (1961), 

... !Q 
7 

(V- 3) 
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and 

(V-4) 

where 22-+21 in the present notation means (n ..., .. 1, K • 2, J = 2) to 

(n...,. "' 0, K == 0, J = 2) , and the 0,.- tate corresponds to n y = 2, K = 0 , 

an J = 0 . The parameter r is equal to YJ.o/J2 . It is therefore 

not surprising that, t o the second order in Y 10, these are the same as 

equations (IV- 4) and (IV-9), respectively. The difference in the 

coefficient s of the fourth order terms in equations (IV- 9) and {V-4) 

may be traced to the fact that Davydov 1 et al. use unperturbed wave 

function f or the initial state. 



VI. Conclusion 

From tbe compari on with exper imental data it seems that the 

derived expressions for the reduced pl'Qbability of 1~2 transitions are in 

general quite adequate for greatly deformed nuclei, namely, for those 

with 150 < A< 190 and A> 220 . As already mentioned, in the present 

calculation only approximated expressions are used for u3, the inter• 

action between rotation ani vibration, and Q2r the electric quadrupole 

operator. It must also be realized that other interactions, such as 

particle-vibration interaction, havs been completely neglected. Further-

1ore, it has been implicitly assumed that w,... is the same for all states 

of a particular nucleus, Whereas in reality it is a function or K and J . 

Such consideration must be taken into account in a more refined calcula-

tion. 
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