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I. Introduction
At a given instant of time the individual motion of the nucleons

of a nucleus altogether form a particular pattern, which defines the
nuclear surface. As the nucleons change their paths, the pattern
changes consequently. There can be a change in the orientation as well
as in the shape of the pattern. These are respectively described as
the rotation and vibration of the nucleus. Clearly, such motion must
be attributed to all the nucleons and are therefore termed collective.
Thus there is a definite correlation between the particle and the col-
lective motions.

The nuclear surface may be specified quite generally by

fovel A

R = Ro [l + Z Z Snse Y: (e, Q)] (I-1)

A=0  fe =~2
The expansion coefficients &AF‘ are actually nomal coordinates, i.e.

the kinetic and the potential energy of the surface are given by
' . 2
T = -7§-ZEL ﬁ).‘ acp‘
e
= = -

respectively. The Lagrangian
L=T«V
is then a sum of terms, each corresponding to & simple harmonic oscil-

lator with frequency

¢
CA “
m = e
A Ba



For A=0, &, is associated with a change in volume. Since nuclear

matter is highly incompressible, such vibration only occurs at very

high energy. The terms in A =1 merely describe the translational

motion of the centre of mass and have no effect on the internal structure

of the nucleus. Therefore usually only the A=2 terms are of interest,

and only such gquadrupole vibrations will be ocnéiderud in the following.
It is convenient to use a body~-fixed coordinate system. In

such a system the nuclear surface is specified by

R = Ro[l* ;AaﬂYg (et Q')] (1-2)

The connection between equations (I-1) and (I-R) is determined by the

transformation
=5 A, (D2.,)%
Sgp ZJ_ 2y Py
A
and Y:((O, b) = ZYK(G', o) O pp (e:)
f

where the D/':Io are the usual D-functions and €, the Eulerian angles.
If one chooses the principal axes for the body-fixed coordinate system,
then simplification results in that dg) = Ay ; = U, and Agy = 4y o,
The coefficients A,y and Ayp together with the Eulerian angles are the
collective coordinates. They specify the nuclear orientation as well

as its shape.



It is desirable, however, to make the further substitution

ﬂaO‘ﬂQOBY
and Agp = 4. p sin v
2

Then the deviation of the nuclear surface from a sphere of radius R,
along the k-axis is given by
o bl _ 2nk
SRk \4"%3‘303(‘( -3—-)

Thus v is a shape parameter. The range 0<+< .‘é exhausts all possible
shapes. For larger values of v it merely amounts to a different label-
ling of the axes. Both [ and v change with respect to time. In {-
vibration the nuclear symmetry, if any, is preserved whereas it is not
80 in v=-vibration.

With reference to the body-fixed coordinate system, the Hamil-
tonian H = T + V, when expressed in terms of the new set of coordinates,

becomes
;2 R.2 (
H =LB(E" + 55°) qz Iy w° +L 03
= | 2
where I = 4B3" sin® (v - %;5.)

is the moment of inertia about the k-axis, and wy is the angular
velocity of rotation. To construct the wave equation, one transforms

the Hamiltonian into (Bohr, 1952)

ZB 28 23 PR sin By or %

4!1%%% Ik sz +—é‘Cﬁ2

2
Hw-l.(l..a_ﬁ“l+l . .2.81D5Y.2.]
L :



This equation, as it stands, represents the Hamiltonian of a nucleus with
a spherical equilibrium shape. With additional nucleons cutside the
closed shell the nucleus will attain a permanent deformation about

=8, and vy =v . The potential energy will also accordingly change
from *5:0;‘32 to JI-CBZ + d}(;;%,v )« If one rest.rict,g,‘.to even-even nuclei,

and alse to low-lying states only, then the Hmniibonian may be written

as

2
where H *--E.[.}..‘?LE*Q*.}. i .?.sinﬁr.?.]

2
* £+.§.2. [W'rl) K2]+_.5_.K2
4; 41 R1z
* W(BAY)’

and U5 --h—z- L ...5..2.. (le e J22),
4y 41p

which is small compared with H, and can be interpreted as the inter-
action between rotation and y-vibration. The purpose is obviously

to treat Uz as perturbation. TFor small oscillations one can expand

W) = Wi, ) +(92w) — + 9% (r=-7)* .

208 2 2 2
Y NI

Une then sets to solve

¥ () = 59§ (5,7)
by substituting

b () = &(x) g (v)



with 3 x = p - and y =Y ~-v, . Two separate equations result, which
can be denoted as

He § (%) = By § (x) (1-3)

and  Hy g(y) = £, 8(y) (1-4)



II. The y-vibration Equation for Axially Symmetrical Nuclei
For nuclel with axial symmetry the equilibrium point is given

by (Bys = 0). The explicit form of equation (I-4) is then

2 2 2 2
{. 13,0 M”...E...z...@.é.]gm-a,g«> (1-1)

283‘2 Y 9y o¢ 2 8BB, %
where
¢ %
— 2 B = ﬁ
21 Y =0

This resembles the radial equation of a two dimensional oscillater, with
eigenvalues

EY'n'm.r (ﬂ,r* l) ﬁ_"‘o, l’ 23""’

There are, however, two essential differences. While the variable

(D in a two dimensional oscillator problem varies only from zero to
infinity, here the variable y can take up negative values as well.
Secondly the differential element corresponding to the variable /’ is

‘Odp in the oscillator case, whereas that corresponds to v is [sin 5~r|d-r.
For small oscillation the latter can be replaced by 3 |v|dv, or by|yvldv if
one adjusts the normalization factors of the g-functions.

To solve equation (II-1), one tries a series solution

o
&(v) = f(r)e

where =
f(‘() = ZO AI‘ xr-m

r =



and x* = mY 2,
2h
Using the usual series solution procedure, one finds that the proper

choice for s is s = % and the recurrence formula is

. 4(r-nes K/2)
g (r+2) (re2+K)

The series { will terminate at r = n, - K/2. The solutionsg(y) depend
on both mpe and K, and therefore will be denoted by g,(}:_) (r). For

example,

R
The coefficient A, must be determined by normalizing the corresponding
g=-function to unity, integrating over the element [y|dy from - coto

+co, The first few normalized functions are given here for later uses:

2
g‘so)(f) - [ Ve

e

2
(v) = Stve

2

g§°’ () = [& Q - 2w?)e™™ (11-2)
gé“ (+) = [Bt tvRe -t

8

séa’m - [8 tr(l-tv®)e™ ™

2

3

sés)(f) - jg: t8,8 ot

t = -2-1;; ﬁ



III. Interaction between Y -vibration and Rotation

In the present work it is intended to examine the radiative
transition E2 between rotational bands bullt upon different vy -vibra-
tional states. Therefore only the rotational and v e-vibrational energy
spectra are of concern. Furthermore, only low-lying states will be
considered. In transitions it is the change in energy that really

matters. With these in mind, the energy level can be denoted by

2
e i n
&n{KJ =(n, + 1) hu, + gm [J(J*l) - 2!&2]

The interaction between rotation and y-vibration has been de-
signated by US 5 and for small vibrations one can expand the Ik in 05
~to get

n N olad
583, % %
The operator (J12 -4d 22) has non-vanishing matrix elements only between

states of same J, but with K differing by ’2:
%
(9, k1912 - 3,29, K52) =L[0 ¢ K)(J'ﬁK-l)(J;K01)(J:K+2)] (111-1)

and ¥ only connects states differing in n, by + 1. Some explicit expres-

sions for the matrix elements of v are

A
©) @) ' b )
v




Pad BRI PR

(&l ] zé“) = 275,
(géo)lvfl séz)) - [¥%,, (111-2)
v &™) - -[Tv 5

amd (g || gs®) = [

Thus the interaction Uz connects the state (n, K, J) with (n_ZI 1,
K2, J). Figure 1 represents a schematic energy level diagram.

This will serve as a visual ald in the following calculation.



Allowed Energy Levels

J 0: 2: 4y === Ry 3, 4: s 4, 5: 6: i i 6: 7: 8: e

n.( O’ 2, '4:, - 1, 5’ 5’ [ lad 2, 4, 6’ e 5, 5, 7, e

Jd =0

J =3
J=2
K=2
J =4
Jd =2
J =0
K=0
. 0 LR B, "%

Fig. 1. Schematic Inergy Level Diagram. Arrows illustrate admixture
added to the state (n_=1, K =2, J = 4).
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IV, The Reduced Probability of E2 Transitions

The reduced probability of E2 transitions are here classified
into five groups according to where the initial and final states are.

1, Transitions from (n, =1, K =2, J;) to (n, =0, K = 0, Jg)

As already said, only the rotational and vy -vibrational parts
of the total wave function will be of concern. Let the unperturbed
wave functions be denoted by bn’,KJ (~, ;) while perturbed ones by
‘V n KJ (v, 6;). No distinction will be made between wave functions and
state vectors, as ambiguity is unlikely to occur. Owing to the inter-
action Ug, the initial state (n,= 1, K = 2, J;) is in general mixed with
three other levels, namely, (n,=0, K =0, J:), (n_ =2, K=0, J),
and (n, =2, K =4, J;). (See illustration in fig. 1.) Applying time-
independent perturbation theory with the aid of equations (III-1) and

(I11-2), one gets

(1 )%
\f/ 12 @12.!,- - Ll—(-g-l-)—-]— (" - @ooJ‘. *dﬁaoa) -b %4.1‘.

~ 5
y gy & w.l. (& =1)de (d-+1)(de +2) Ym
1 v (1z$vio?)
- b e o | (=800 -2) (4 +5) (doed) Y'10°
? 8 (1-2v %)

The unperturbed wave functions can be written as the product of

(i
g;j(‘f) and the D-functions which describe the rotational part:

b5 §



12

2d+l

" J 4
Dyg + &0° Dy ]
(16r* (144, ) [

o, 5000 = g8

The D-functions here are those used by Kerman (1959).
The final states in the present case are (n,= 0, K = 0, Jf),

and are described by

\F ooJf o @oodf o ‘Plsz

with

3

g = L1 |WUe1)dg(Ige1)(dge2) Y10
: 1
’ 1-£v4%)

The ER transition operator in the body-fixed system is given explicitly
by Davydov and Filippov (1958)
2 ne

Qou = |— ©Q [ B2 copr + %2t Bu=2  sino

& J1em Ia I
where

‘ S

is the intrinsic quadrupole moment. As the vibration is assumed to be

small, the operator Qalu is approximated by

2 2
it

The operator y*® has non-vanishing elements for an. = 0 as well as for

b j 15611

An,=?t 2, In fact
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e{)* (62D =vyo°
(ef?)| 2| gf?)) = 22
()7 | e§*)) = s
(324)| 2\ 3(4)) = 67,% ' (Iv-1)
@7 &) =y
g§°)\72\g§4)) -wgY R
N 2|6 - - Try
The reduced probability of &2 transition is defined as

B(E2; i—>f) = .1 (2 | Quucli ) g
L) Z | ol ‘
/a‘ﬁ’:'ﬁf

This is the definition used by Kerman (1959) and is equivalent to that
used by Davydov and Filippov (1958). This is related to the transi-

tion probability by

5

T(ER;i—f) = & 1 (4F B(2;i—> 1)
75 B® \ ¢

where AL is the transition energy. The transition probability itself

is directly proportional to the intensity of transition, which is what

experimentally measured.



To calculate B(ER2), equations (III-1), (IIL-2), (IV-1) and the

following will be useful:

(D /_(” Dp k)= (J K[ K ) (s a.i/ulafmf

(9e Rigfeld i) = (1% 7t (g, 2-»&-,«401-«%),

and
Yl n el 2 M. )% = (20p1)
Faiin T

After a rather lengthy calculation, one finds

B(E2; n,=1,K=2,J,— n, =0, K =0, Jg)

= .i.?; ezqozﬁoa [ p2+2pq'7i02 + E’éﬂ + 2pr + QZ)HOQJ s (IV-2)
where

p = (J;22-2 | J40),

a=% }.(.ﬂ:’”";_(_‘.’!’“(f?a) (9:220]d¢2)

6
.3 [1*(—1)"" “ (13 @10 +2) (3;200(940),
s 2 6

and

o

re=% j('}f"l)"f(f;f’l)("f’z) (J; 220 | 42)

14
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Since usually Yma is of the order of 107t

s terms higher than Ylﬁe have

been dropped in the above calculation. [Even the Yma term is not

meaningful here, for additional contribution to this term may arise if
6

50

often of the order of 10°°, and its coefficient in equation (IV-2) is

higher terms are included in the expansion of Uz and ng‘. As Y

not large enough to make this term comparable to the other two leading
termms, one can usually neglect this term entirely in most cases.

Another point that should be mentioned here is that the mixing of
(ny=2, K = 4) band with (n,= 1, K = 2) need not be considered. It
is found that such a mixing will only introduce terms of order Yma and
higher.

The single expression (IV-2) can be applied to E2 transitions
between any level in (ny= 1, K = 2) band to any permissible level in
(n,= 0, K = 0) band., To put it into a more convenient form, one

separates it into five expressions:

B(E2; n,=1,K =2, J— n_=0,K=0,Jp= J;+2)

L. o 2 2
4(20; +1)(20:43)  16nm ’

B(E2; nf'l’ K - 2, J;—-—'.n_r' Q, K - 0, Jfﬂ J;"l)

- i) Sefef 4 e 5) ¥ 2 »
2(J:+1) 16w 10 [1 y % (J:+3) My , (IV-3b)
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B(ER; n-r' l’ K - 2’ J:——) n?/' 0, K= 0, Jr - J‘:)

Ok Bl 1v-3
(24 -1)(24:+3) 16m 10 [ +3 Y100 | s (IV=3e)

B(E2; n,=1,K=2,d;—»n, =0,K=0,Jdp=J.-1)

_ Lgge2) 532%2
2(2d; +1) 16m

Yloa [1 " ‘g' (JA. -2) 7102 ] 3 (Iv‘m)

B(E2; n,=1,K=2,J;—>n, =0, K=0, Jp=J:-2)

1 2100 22) So 0" 211-4 (28 -3)7,,° v
= ” v ‘ “Be
4(2J; -1)(2J:+1) 16w Y10 [ 3 (2% -3) 7y ( )

As an illustration, one finds the branching ratio of J. = 2 to
Jp=2and J; = 2 to Jp = 0, to the fourth order in ¥;,, to be

' 7 B(82; n =1, K=2, J;=2-»n_=0, K=0, Jg=0)

- J,.?Q 1+ a2 %& ¥ (Iv-4)

One recalls that
52
Y Bn 2
102 = BB, =
hw.,

Using the data listed by Van Patter (1959), R (B) is calculated and

2P
shown in Table 1 together with the experimental value R , (B).



Table 1

. 2
o o | ™ o | 6w | @
Se’® | 560.5 | 1220 0.48 | 5.1 26 7 68
rel? | 563.9 | 1257 0.45 | 5.0 91 ! 14 66
smlS2 | 121.9 | 1087 0.1 |2.1 2.2%0.3 1.9
Gal% | 123.1 | 986.6 | 0.13 |z2.2 >1.8 2.6
pyl0 | g6.6 | 965.7 | 0.08 |2.0 2.020.1 1.9
uri®® | 99,8 | s22.0| 0.10 |2.0 1.8%0.3 "
Wit | 111.1 | 904 0.12 |=2.2 1.8%0.3 3.0
08190 | 187.0 | 5857 0.54 |35.9 6.8%1.2 7.1
[#gl®€ | 411.8 | 1088 0.38 | 4.3 34t 4 13
T™h®%2 | 52,8 | 790 0.07 |1.8 2.120.3 1.7
Pu®38 | 44,0 | 1031 0.04 |1.7 1.520.2 1.2

Columns 2, 3 and 6 taken from Van Patter (1959),
Column 7 from Davydov and colleagues (1958)

using an asymmetric rotor model.

. 4

EgoR
10 s

Ei22

—

B

The following branching ratios can also be readily obtained by

means of equations (IV-3).



B(E2; n, =1, K=2, Jo=2 —n_=0, K=0, Jp=4)
B(B2; n =1, K=2, J:=2—»n_=0, K=0, Jg=0)

Ro(B)=

E 40 2 4
‘13‘; (1452 ¥ 0™+16 (%)

B(E2; n.=l, K=2, J,=5 »n_ =0, K=0, Jf=4)

Ry(B)= :
B(B2; nc=l, K=2, J:=8—sn_=0, k=0, Jg=2)

c2 (1,28~ 2, 52 4
g (5 * %)

10

Mallman (1961) lists the experimental ratios of intensities corres-
ponding to Rg(B) and Rg(B). For comparison the ratios Rp(B) and

Rz(B) are therefore converted to intensity ratios, denoted by Hy(I)

and Rg(l) respectively, assuming pure E2 transitions. Undoubtedly this
assumption is not always valid. The transition energles used in conver-
ting Hg(B) to Rg(I) are based on data collected by Van Patter, while
those for 35(1) of Gd‘-ss, Dymo and W8 are from nuclear data sheets.
figecently the compilation of energy levels by Hellwege and Hellwege

(1961) became available and the required levels for The®8 and PuR®8 ape

taken from this book. In the following tables the energy levels are

denoted by n,fKJ ‘

18
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Table 2 Table 3

Ra(I)' I(122->004 8xp Li (1)= 1(125-5004) exp

I(122>000)| Re(I) I(123-2002)] Rz(I)
g1 56 4.0 x 10°%  B.2x10°% | |pal®e 2.8 x10°1  h.2xol
pyt%0| 5.8 x 107 h.2x07® | pyl80| 2.4 x 1071 h.2xio-l
ly184 1.7 x 10%  Le7xio—R | 84 1.8 x 107 p.axio-L
Th2R8 5.5 x 107°  7.7x10°2 | [m®28 3.8 x 10°1 T o
pyls8 6.0 x 10~° s.Lﬂmo~2 pyR38 3.3 x 10~1 .6x10™1

Recalling that pure B2 transitions have been assumed, it is

seen that agreement is reasonably good except for w184.

2, Transitions from (n,=2, K =0, J;) to {(n, =1, K = 2, Jg)

In this group the initial state (n,=2, K =0, J.) is
affected by tie (n, =1, K = 2, J.') level and also by the (n,.= 3

K =2, J;) level. The perturbed wave function may be written as

o = 0 [T o it [ B o o
+ g (v) (i'é‘:l) [D&f“é , DMf"'_,zl
where 4
(3 =1)d.(9.+1) (3:+2) 10®

-}

s (142 %)

3

I



and

p=2 (e =1)d5 (9 #1)(J: +2) {Los

It should be remembered that the J; are always even in this case. The

final state (n, =1, K = 2, Jg) is given by

(2) 2J g+l Jr
1> =g ) | [Dﬂﬁ Aet Dy ~2]

J ——
- [l:—(-;-}—)—-ﬂ (d,‘géo)(v) +4*géo)(~r) ) Jan’l DM‘;f;

- ¢24Jf

where

d=3 }_(it“l)"g(Jrl)(J?a) Y103
i X (17 vi0%)

The mixing with the state (24J¢) only gives negligible contribution to
the reduced prol..ili.y of ER transitions. By a similar procedure as

before one obtains
B(E2; n,=2,K=0,J;— n_=1,K=2,J,;)

S Qo
" A, [ #* P 2erto® Gparzpreativg B | (xv-5)

where now
p = -(Ji202 | Jg2)

q = % ] Jda=l)Jo(de+l P42 (J.:zao ‘ Jfg)

&
(20(-1)°f] % ](Jf“l)Jf(Jf"l)(Jf*a) (92220 | J40)

2 6

20



L. Ll,(;l)"fl I [Wr)ie@en)User)  (g;2001 4,0)
8

Comparison of equations (IV-2) and (IV-5) indicates they are similar,

as one would also have guessed since both transitions involve a change of
An, =1 and [aK | = 2. Again, to the fourth order in Y., one obtains

five separate expressions from equation (IV-5).

B(E2; n, =2, K =0, ; >0, =1, K =2, Jg = J;+2)

. ‘ 2 2
o) FirBldae) S v? (vt (19-6a)
4 (20;+1)(20;+3) 16

- Waes) st o 2 (14«%(.5,;-1)“5_02] (1V-6b)
2(2J,+1) 16w

B(Ea; nfa 2’ K= 0, J“_-yn.," l’ K = 2’ Jf - J“)

_ B(ds =100 +2) 8.5 ? 2 8., 2
— e Qo YlO [1 - 'S-YIO ] (IV-6e)
2(2J. -1)(2J; +3) 16

B(E2; n, =2, K=0,J:—>n, =1,K=2, Jdp=4: -1)

eilbol) RS o (iga vy B Iv-
2(2:41) 16w © ke L 10] .

Ji=3)(d, -2 gy
’ % (;L -1§§2J~ 4;) 56,_2:; Y].oz [l-§ (2d:+1) Yma] (Iv-8e)



3. Transitions from (n, =2, K = 0, J;) to (n, =0, K = 0, {52

In this case a change of An, = 2 occurs. If one uses unpere
turbed wave funetions and uses cos vy= | in ng’ then B(E2) vanishes.
Therefore, though using perturbed wave functions as well as higher order
expansion for cosy in Q%f’ one will not be surprised to find that the
B(ER) in case 5 is much smaller than those in cases 1 and 2.

The reduced probability is found to be

E(Eﬁ; Ry = 2, K= 0, JA—%h_f'O,K"O, Jf)
2. 2

" %&%9‘ Yo ®F+ 2avio?) (1v-7)

where now

P =% (J4:2000950)

and

< % ]_(:L' -1)d; (:x*l)(&_:ﬁ (922 - 22 J40)

- % J[(Jf'l)Jf(Jg,’l)(ng) (Je202 | sz)
6

As equation (IV-7) is relatively simple, no attempt is made to separate
it into five equations. For convenience in using it, however, some

Clebsch-@Bordan coefficients are listed here:

(cz00l20) = 1, (02-22(20) = O, (0202(22) = 1,
(2200100) "fs:» (22-22100) -E, (2202(00) -PST,

RR



(2200(20) = -2E s (22-22120) nj—:,z-—, (2202)22) = % "

(2200140) = 5]}%-, (22-22|40) = 55 * (2202)42) = 1%,

Thus, for instance, for Ji = 0 and Jg = 2, one readily obtains

P"%: Q*’%

and hence

B(E2; ny=2,K=0, J, =0—>n,=0, K=0, Jp = 2)

2, 2
= l’. Se Q % 2 8 2 o
T 22 vyt G-gngd (1v-8)

It 1s well known that transition from J; = O to Jg = O 1s absolutely
forbidden. This is indeed the case here as (0200)00) vanishes.

The branching ratio of the E2 transitions fromn_=2 ton_ =1
and from n_ = 2 to n_ = 0O can also be easily obtained by means of equa-

tions (IV-5) an: (IV-6). For example,

B(E2; n, =2, K=0, Ji = 0—n, =1, K =2, J; =2)

= 2 (1 2 »
APECRS AP (2%-4)

4. Transitions from (n,= 2, K= 4, J;) to (a =1, K = 2, Jp)

For this group of transitions the perturbed wave function of the
initial state is given by

\Yau; " 4‘24.1; * 8 ﬁu; + D 1’52.1; i %e};

R3



where

s .3 jg.xa--:s)g.r;-a)(a.-»s)(-s,;w) L y

be-1 [(3:-8)(J; -2) (J: +3) (i *4) Y508

J 6 “(17*27102) ’
and 1 [o-8)(d:-4)(J:+5) (d:46) ¥10%
3 2 (1-£8+ 2y
3 10

The final state is given by

Je
l+{=-1 i
\rlsz p* ¢12Jf 5 L__ﬁg.l__l (d—*voodf ”&éZOJI) - f ¢24Jf
with
(-} PEEOANE
Ky ’ (=g Y o)
and

f=-2 l(Jf-5)(Jr-2)(Jfo$)(Jf+4) Y 108
) ’ (1—21&02)

The calculated result is

. °wn {Pa‘(w +2pq o+ (Bpa+2preq®) ™M ] (1v-10)

where the coefficients

p=[2 (424 - 209p2),

q=- ‘15 (J; =58)(J: -2)(J; +3)(J: +4) (J;220(J,2)
3
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i _35 We=8)Ut-2)[J§+8)(J1+4) (Jz2400004) ,

N 3
and
. ”% JL(J;—s)(J;-E;(J;*fS)(J;*&) (ngf&(}lJfZ)
4 Jgi_f.-a)(af.z}w?s)(a;_p&) (J:240(0 14)
5 5

As before, this is separated into five equations, to the fourth order
in 10

E(Ez; n,=2,K=4, J;— R, - 1, K= 2, Jr = J,:*E)

2(d:+1)(d:+2)(2d;+1)(2d:+3) 16w

B(Ez; nr* 2, K= 4’ Jzﬁﬂ.r” l’ K= 2, J! b J“*l)

2.8

P (Ji '5)('}; ‘2)(‘,4""1)(!7; "'4) 52 Q@ Y 2 l‘,i(J.*?)y 2 (lv‘llb}
I (el )(J02) (R0 +1) 16 ” [ 4 by ]

B(82; n, = 2, K= 4, J;—sn_= 1, K = 2, Jp = J.)

o Mzm8)(0;-2)(s48)(reh) 570" v 2 (1emg 2 (1v-11c)
(20; 1042 (3-+1) (20: +5) S e ()

B(Ea” n{“ 2’ K = 4’ J‘:__.’n" = 1, K = 2, Jf - J“«l)

- DeB) (e r2)(Je8)(Uivd)  BoQo” ¥10° [l‘é(&-ﬁ)ﬁoz} (Iv-114)
(Jz-1)92(Jo+1) (200 +1) 16e

B(B2; n, =2, K=4, J;—n, =1, K=2, Jp = J;-2)

e (&41)(3:+2)(J;48)(Jzea) 5“332 Skl siiay
2(2d; =1)(J:-1)d: (2J:+1) 16 e [ 3(2e:-7) Y ]( V-lle)
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5. Transitions from (n,= 2, K = 4, J;) to (n, =0, K = 0, Jg)

It is found that the reduced probability of E2 transitions for

this group is extremely small. The result is
B(82; n,=2,K =4, J,—»n_ =0, K =0, Jf)

2 2
- p S re® (1v-12)
161

where

SEr 1.‘.&{'“%.@:‘..;*““:*2) (J:24-2| Jg2)

- [ 23100 (g e-2)90) 2
3

N
Thus it is seen that the reduced probability for this group is even
less than that from (ny= 2, K =0, J:) to (n,=0, K = 0, Js). This

is probably due to the large change in K values here.



V. Discussion
The expressions derived for the reduced probability depend

on the parameter YIO’ which is essentially the square root of the

ratio of the first rotational energy level to the first vibrational
level. The variation of 1102 over even-even nuclei with 54 <A <238

is roughly within the interval of 0.05 to 0.5. The variation of the
branching ratios of the reduced probability, on the other hand, is

much larger. Thus, for instance, the ratio R,(B) can vary from 1.5

to 1800 for the above variation of nuclei. This thus limits the range
of application of the derived expressions for the reduced probability of
E2 transitions.

The original rotor model of Davydov and Filippov (1958) has
remarkable success in calculating the transition probability, especially
in its capability of accounting for a large range of nuclei. In this
model the nucleus is pictured as non-axial in general with a fixed form
of the nuclear surface. A parameter ¥ is introduced to describe the
non-axiality. Adiabatic condition is asa}mod to hold, i.e. the rota-

tion of the nucleus has no effect on the intrinsic state of the nucleus.

Starting from the Hamiltonian

s 2
Ve A
k=1 2 ninz(Y-.z...gk.;.)
with
A = -—A?—.
43512

R7
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energy levels are obtained in terms of the parameter Y . From experi-
mental data of energy spectrum the parameter v is determined. This
value of ¥ is then used in the calculation of radiative transitions.
Some of their calculated results are included in Table 1.

Recently, Davydov (1961) also includes surface vibrations and
discusses non-axial nuclei as well. Thus one may congider this as a

generalization of Bohr's model (1852). For axial nuclei, Davydov gives
b ©v) = 13> g8 () (v-1)

with
&) ) = Ben kK41 [T0R) (Pv2) T e (- 3072) (v-2)

where F is a confluent hypergeometric function, and A is a non-negative
integer. The quantity{D is equal to E—?‘i @, . With suitable choice
of )\ , equation (V-2) reduces to the g-functions used in the present work.
Though both A and n, come into the coefficient of fw, , there is no re-
striction on ) apart from being a non-negative integer, whereas n., is
restricted by the K value (see Fig. 1). The relation between A and
n,is

A= 20y = K
4

According to the calculation of Davydov, Rostovsky, and Chaban (1961),

B(E2 J » 2 Qear® (V-3)
B(E2; 22 — O 7



b2°)

and
o a > 2‘
g{gg; gxmg e AT (L~ 20 %) (V-4)
B(E2; O, 22 2r 3 r

where 22—921 in the present Motation means (n, =1, K = 2, J = 2) to
(ny= 0, K =0, J = 2), and the 0 state corresponds to n_= 2, K = 0,

and J = 0. The parameter [ is equal to ‘(lo/r..z_. It is therefore

not surprising that, to the second order inY,,, these are the same as
equations (IV-4) and (IV-9), respectively. The difference in the
coefficients of the fourth order terms in equations (IV-9) and (V-4)
may be traced to the fact that Davydov, et al. use unperturbed wave
function for the initial state.



VI. Conclusion
From the comparison with experimental data it seems that the

derived expressions for the reduced probability of E2 transitions are in
general quite adequate for greatly deformed nuclei, namely, for those
with 180<A4¢190 and A»220. As already mentioned, in the present
calculation only approximated expressions are used for Ua, the intere
action between rotation ani vibration, and Oy o the electric quadrupcle
operator. 1t must also be realized that other interactions, such as
particle~vibration interaction, have been completely neglected. Further-
‘more, it has been lmplicitly assumed that w, is the same for all states
of a particular nucleus, whereas in reality it is a function of K and J.
Such considerations must be taken into account in a more refined calecula-

tion.
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