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Abstract

As a result of recent technological advances in modernized sensor sets and sensor plat-

forms, sensor management combined with sensor platform path planning are studied

to conduct intelligence, surveillance and reconnaissance (ISR) operations in novel

ways. This thesis addresses the path planning and sensor management for aerial ve-

hicles to cover areas of interest (AOIs), scan objects of interest (OOIs) and/or track

multiple detected targets in surveillance missions. The problems in this thesis, which

include 1) the spatio-temporal coordination of sensor platforms to observe AOIs or

OOIs, 2) the optimal sensor geometry and path planning for localization and tracking

of targets in a mobile three-dimensional (3D) space, and 3) the scheduling of sensors

working in different (i.e., active and passive) modes combined with path planning

to track targets in the presence of jammers, emerge from real-world demands and

scenarios.

The platform path planning combined with sensor management is formulated as

optimization problems with problem-dependent performance evaluation metrics and

constraints. Firstly, to cover disjoint AOIs over an extended time horizon using mul-

tiple aerial vehicles for persistent surveillance, a joint multi-period coverage path

planning and temporal scheduling, which allows revisiting in a single-period path, is

formulated as a combinatorial optimization with novel objective functions. Secondly,
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to use a group of unmanned aerial vehicles (UAVs) cooperatively carrying out search-

and-track (SAT) in a mobile 3D space with a number of targets, a joint path planning

and scanning (JPPS) is formulated based on the predictive information gathered from

the search space. The optimal 3D sensor geometry for target localization is also ana-

lyzed with the objective to minimize the estimation uncertainty under constraints on

sensor altitude, sensor-to-sensor and sensor-to-target distances for active or passive

sensors. At last, to accurately track targets in the presence of jammers broadcasting

wide-band noise by taking advantage of the platform path planning and the jammer’s

information captured by passive sensors, a joint path planning and active-passive

scheduling (JPPAPS) strategy is developed based on the predicted tracking perfor-

mance at the future time steps in a 3D contested environment. The constraints on

platform kinematic, flyable area and sensing capacity are included in these optimiza-

tion problems.

For these multisensor path planning and decision making, solution techniques

based on the genetic algorithm are developed with specific chromosome representa-

tions and custom genetic operators using either the non-dominated sorting multi-

objective optimization (MOO) architecture or the weighted-sum MOO architecture.

Simulation results illustrate the performance and advantage of the proposed strategies

and methods in real-world surveillance scenarios.
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Chapter 1

Introduction

1.1 Sensor Management and Path Planning: A

Brief Review

Technological advances in manned or unmanned vehicles and modernized sensor sets

have enabled more efficient ways to conduct intelligence, surveillance and reconnais-

sance (ISR) operations. The update and upgrade of sensor sets and sensing platforms

have become a trend for large-scale surveillance, which has led to the study on efficient

mission planning and the integration of multiple surveillance tasks using a group of

sensing platforms with different sensors.

In the context of target tracking, major issues in sensor management are optimal

path planning [8, 20, 21], optimal sensor placement [9, 19] and optimal sensor selection

[25, 30]. In the optimal path planning, the objective is to find the optimal and safe

path(s) for one moving sensor or a group of mobile sensors, such as aircraft and

UAVs, under the given constraints, such as the maximum turn rate, to monitor the
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surveillance region [6, 16, 20, 21, 23]. In the optimal sensor placement, the objective

is to decide where, when and how many sensors must be placed such that the target

state estimation errors remain below a certain threshold level [13]. In the optimal

sensor selection, the objective is to decide which of the already deployed sensors must

be used at each measurement time step in order to maximize the tracking performance

[24, 26].

In this thesis, we consider the optimal sensor placement for localization and track-

ing in 3D, joint path planning and scanning for search-and-track in a 3D mobile search

space, joint path planning and sensor working mode (i.e., active or passive) schedul-

ing for multitarget tracking in the presence of jammers, and coverage path planning

and temporal scheduling for large-scale airborne surveillance missions.

The Cramér-Rao lower bound (CRLB), which is the inverse of Fisher informa-

tion matrix (FIM) and provides a mean square error bound on the performance

of any unbiased estimator of an unknown parameter vector, is frequently used in

the optimization formulation for target localization and optimal sensor placement

[2, 12, 19, 31]. The posterior Cramér-Rao lower bound (PCRLB), which gives a mea-

sure of the achievable optimum performance and can be calculated predictively, is

often used in the criteria for optimal sensor resource management problems for target

tracking, such as optimal sensor selection, sensor placement, power allocation and

path planning [8, 13, 25, 30, 32]. Meanwhile, many path planning approaches for

SAT missions use the value of gathered information as the objective function [20, 22].

In SAT missions, the goal is not only to find or detect targets, but also to track

them for the remainder of the mission. A decentralized cooperative control algorithm,

which maximizes the information gathered from an environment and decides the next

3



Ph.D. Thesis - Y. Wang McMaster University - Electrical & Computer Engineering

area to scan by predicting how much information can be gained by searching that area,

is proposed in [22] for multiple cooperative UAVs to track detected targets as well as

to search for the undetected ones. An information-based objective function, which

integrates the conflicting objectives of target detection, target tracking and vehicle

survivability into a single scalar index, is presented for UAV path optimization in

[20].

The objective function in optimal sensor placement can be applied to optimal

path planning. The analytical solutions for optimal sensor-to-target geometries re-

veal important insights into path planning for target tracking [19, 31]. The optimal

geometries for a two-dimensional (2D) time-of-arrival (TOA) localization configura-

tion is analyzed and the UAV path planning, which is based on minimizing the area of

estimation confidence region, is simulated in [19]. Based on the FIM, the UAV path

planning for passive emitter localization is presented in [8], where angle-of-arrival,

time-difference-of-arrival and scan-based localization are considered. Constraints to

the UAV dynamics, flyable region and no-fly zone are considered for the optimal path

planning [8].

Considerable effort has been dedicated to UAV path planning for target searching.

Pattern templates such as ladder pattern are commonly used in search missions [1],

in which the environment is always a bounded region either with or without obstacles

or forbidden regions inside. The surveillance region is often divided into cells where

each cell is associated with a probability or confidence of target existence, which

constitutes a probability map for the region [4].

Although optimal path planning has received considerable attention for detec-

tion, localization and tracking, existing algorithms are still limited regarding the
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assumptions about the environment, search space and sensing capability. A number

of optimal sensor placement and path planning algorithms are developed in 2D space

without extending to 3D scenarios [19, 20, 22]. Recently, a comprehensive analysis of

optimal sensor-to-target geometries is provided in [31] for 3D AOA target localization

with no restriction on the number of sensors. However, it fails to consider that the

sensor placement region is always constrained in real applications. Hence, it is worth

studying the optimal sensor geometry and path planning under constraints on sensor

altitude, sensor-to-sensor distance and sensor-to-target distance in 3D.

Coverage path planning (CPP) has been comprehensively studied for applica-

tions such as vacuum cleaning, lawn mowing, robotic demining, and machine milling.

The environment is always a bounded region either with or without obstacles inside.

Pattern templates such as boustrophedon (also known as the ladder search path or

lawnmower pattern) are widely used in these problems [7]. A common approach to

coverage planning is to decompose the target region into subareas, select a sequence

of those subareas, and then generate a path that covers each subarea in turn [7].

However, very few studies in CPP [7] or path planning using coverage pattern tem-

plates [11, 14, 15] have looked at multiple vehicles covering disjoint target regions,

which is a common question in surveillance missions. In addition, multiple flights for

one aircraft in the mission plan should be considered because each aircraft may take

off and land multiple times within the mission time horizon, which is referred to as

multi-period path planning [5, 28].

The shortest path or the minimum-cost vehicle route is always the objective in the

travelling salesman problem (TSP), vehicle routing problem (VRP) and their variants

[3, 18, 27]. In contrast, in many surveillance mission planning scenarios, the mission
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duration is given, and the main objective is to maximize the information collected

within this fixed time [10, 17]. The orienteering problem (OP, also known as the

selective TSP) maximizes the total collected score on a path that visits some of the

vertices in limited length [29].

1.2 Theme and Objectives of Dissertation

In compliance with the terms and regulations of McMaster University, this disserta-

tion has been written in sandwich thesis format by assembling three articles. These

articles represent the independent research performed by the author of this disserta-

tion, Yinghui Wang.

The articles in the dissertation are focused on path planning and sensor manage-

ment for target searching, localization and tracking using multiple moving sensors in

airborne surveillance missions. The general theme is based on the following:

i) To derive optimal airborne surveillance mission plans, i.e., formulate and solve

a path planning and temporal scheduling problem with the evaluation on covered

area for target searching using multiple sensor platforms (e.g., patrolling aircraft) in

disjoint AOIs over an extended time horizon (Paper I).

ii) To analyse the optimal sensor geometry and optimal path planning for target

localization given constraints on sensor altitude, sensor-to-sensor distance and sensor-

to-target distance (Paper II).

iii) To propose a joint path planning and scanning strategy for searching and

tracking possible targets in a mobile 3D surveillance space by a group of UAVs (Paper

II).

iv) To propose a joint path planning and radar active-passive mode scheduling
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strategy using a group of UAVs for target tracking in the presence of hostile interfer-

ence (Paper III).

v) To develop cooperative control schemes and online path planning solution tech-

niques for a group of UAVs (Papers II and III).

1.3 Summary of Enclosed Articles

The papers enclosed in this thesis are listed as follows:

1.3.1 Paper I (Chapter 2)

Yinghui Wang, T. Kirubarajan, R. Tharmarasa, Rahim Jassemi-Zargani, Nathan

Kashyap

Multi-period Coverage Path Planning and Scheduling for Airborne Surveillance, Ac-

cepted in final form for IEEE Transactions on Aerospace and Electronic Systems,

Mar. 2018. (doi: 10.1109/TAES.2018.2812538)

Preface: This paper studies a new variant of multi-constrained vehicle routing prob-

lems for airborne surveillance missions, which integrates coverage path planning, tem-

poral scheduling and area revisiting. New evaluation metrics for coverage path plan-

ning are provided as objective functions, which promptly update information collected

from different areas and make full use of aircraft capacity to cover AOIs. The op-

timization formulation of multi-period path planning and scheduling, which allows

revisiting in a single-period path, is first provided. Revisiting in single-period paths

and scheduling of take-off time are incorporated in the objectives and constraints,

which makes the formulation different from the existing ones in vehicle routing and
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path planning problems. A new chromosome structure is given to represent the mis-

sion plan, which integrates the path selection and the take-off time decision so that

multi-period path planning and temporal scheduling can be effectively handled in the

multi-objective evolutionary algorithm (MOEA). The proposed algorithm is intelli-

gent not only because the chromosome structure and the custom genetic operators

are used, but also because the final solution can be selected from a set of mission

plans provided by the MOO according to the user preferences. The proposed solution

framework can be used in a variety of surveillance problems, even though most of the

surveillance mission planning problems are application-dependent or environment-

dependent.

1.3.2 Paper II (Chapter 3)

Yinghui Wang, R. Tharmarasa, T. Kirubarajan, Bumsoo Kim, Rahim Jassemi-Zargani

Multisensor Joint Path Planning and Scanning for Mobile 3D Search-and-Track, Sub-

mitted to IEEE Transactions on Aerospace and Electronic Systems, June 2018.

Preface: This paper expands on the optimal 3D sensor geometry and path planning

for target localization and tracking by cooperative sensors from different angles with

restrictions on the sensor altitude, sensor-to-sensor and sensor-to-target distances.

Different constraints on sensor placement are given based on real-world applications.

The optimization problem is formulated to minimize the trace of the inverse of FIM.

Extensive examples of the optimal sensor geometry and path planning for 3D lo-

calization are shown in the simulation studies. This paper also addresses the path

planning and scan decision making for a group of UAVs cooperatively carrying out

SAT in a mobile 3D space with a number of targets. A weighted-sum multiobjective
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optimization formulation for mobile 3D surveillance space SAT, which integrates the

tracking performance of the search space, detected targets within this space as well as

the yet-to-be-detected targets by different sensors, is presented. Note that the search

space is mobile and in 3D, which distinguishes our problem and the proposed JPPS

strategy from those approaches for 2D SAT within a fixed surveillance region.

1.3.3 Paper III (Chapter 4)

Yinghui Wang, R. Tharmarasa, T. Kirubarajan, Anthony Damini, Martie Goulding

Joint Path Planning and Radar Mode Scheduling for Multitarget Tracking in ECM,

To be submitted to IEEE Transactions on Aerospace and Electronic Systems, August

2018.

Preface: This paper jointly considers path planning and radar active-passive mode

scheduling using radar systems on UAVs in a 3D contested environment with hos-

tile interference. The study expands on target tracking in the presence of jammers

and taking advantage of the jammers’ information to suppress the interference and

further enhance the tracking performance. A mixed-integer nonlinear programming

in a receding horizon optimization based on the predictive PCRLB is formulated to

achieve accurate target state estimation, where the PCRLB values in the future steps

for different radar modes are predicted. At each time step, UAV paths and radar

working modes are determined to leverage the tracking of targets or jammers con-

sidering possible target/jammer fire avoidance, UAV collision avoidance and hostile

interference mitigation.
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Chapter 2

Multi-period Coverage Path

Planning and Scheduling for

Airborne Surveillance

2.1 Abstract

In this paper, optimal surveillance mission plans are developed to cover disjoint areas

of interest (AOIs) over an extended time horizon using multiple aerial vehicles. AOIs

to be covered are divided into a number of cells. To promptly update information

collected from AOIs and to ensure persistent surveillance, each cell is to be revis-

ited within a time slot. Joint path planning and temporal scheduling is formulated

as a combinatorial optimization with the proposal of novel objective functions: 1)

maximizing the minimum number of non-repeatedly covered cells in a sliding-window

fashion and 2) maximizing the total number of covered cells in the mission plan. A
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multi-objective evolutionary algorithm (MOEA) with a specific chromosome repre-

sentation and custom genetic operators, in which the constraint that each cell be

revisited within a time slot is transformed into the third objective to handle infeasi-

bility, is developed. The initial single-period paths are generated by solving a series of

orienteering problems. The initial population is obtained by connecting these single-

period paths and selecting the take-off time for each flight. Three mutation moves are

proposed to enable revisiting in a single-period path and rescheduling of take-off time.

The solutions converge in the MOEA and are selected by a weighted-sum model ac-

cording to user preferences in decision making. Simulation results on different mission

scenarios and different criteria show the superiority of the proposed algorithm. The

algorithm is done offline ahead of the missions and requires modest computational

resources.

2.2 Introduction

In order to have the capabilities to observe, analyze, record and report activities in

disjoint areas of interest (AOIs), it is often necessary to upgrade expensive airborne

surveillance systems to maximize effectiveness [19, 23]. Technological advances in

manned or unmanned vehicles and modernized sensor sets have enabled patrolling

frequency to be increased and surveillance areas expanded. Efficient mission plans

have become critical for intelligence, surveillance and reconnaissance (ISR) operations

[23].

The purpose of this study is to derive a mission plan for multiple aircraft over an

extended time horizon (e.g., 48 hours) in order to maximize the information collected

over a number of disjoint AOIs (as shown in Fig. 2.1). It is required that regions inside
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Figure 2.1: Mission planning scenario: two aircraft conduct intelligence-gathering
over five AOIs.

AOIs be revisited within a given time slot (e.g., 8-hour slot). The spatio-temporal

control of aircraft for a given planning horizon is determined to provide prompt and

useful information as well as to achieve persistent and effective surveillance.

Very few studies in coverage path planning (CPP) [4] or path planning using

coverage pattern templates [12, 18, 19] have looked at multiple vehicles covering

disjoint target regions, which is a common question in surveillance missions. Similar

to [19], our problem includes disjoint AOIs, path planning inside AOIs, and aircraft

take off from and land at the same base. However, in our study, an AOI can be of

any shape and the path inside an AOI does not necessarily follow the strips as in [19].

Instead of using coverage pattern templates, paths for one flight are generated by a

heuristic approach. In addition, multiple flights for one aircraft in the mission plan

are considered because each aircraft may take off and land multiple times within the

mission time horizon, which is referred to as multi-period path planning [2, 32].
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The shortest path or the minimum-cost vehicle route is always the objective in

the travelling salesman problem (TSP), vehicle routing problem (VRP) and their

variants [1, 24, 31]. In contrast, in many surveillance mission planning scenarios,

the mission duration is given, and the main objective is to maximize the information

collected within this fixed time [11, 23]. In this study, we concentrate on information

maximization given the mission time. The orienteering problem (OP, also known as

the selective TSP) maximizes the total collected score on a path that visits some

of the vertices in limited length [34]. However, our problem cannot be solved by the

existing approaches in OPs or turning the cost minimization to a reward maximization

in VRPs. The main reasons are as follows:

1) Due to the nature of dynamic surveillance environment, new threats may emerge

at any time and the objects of suspicion may evade, which requires periodic or ape-

riodic revisits of AOIs to update information [18]. Aircraft should make full use of

their capacity to survey and not be satisfied with visiting AOIs only once. Therefore,

revisit of an area by the same or different aircraft should be allowed. However, every

vertex is visited at most once and the score of each vertex can be collected by one

vehicle at most in OP [32]. In multiple travelling salesman problems (mTSPs) or

VRPs, every vertex is visited exactly once [1, 24].

2) In the proposed problem, collecting information requires searching inside AOIs

by covering different areas (as shown in Fig. 2.1), which not only takes time but also

requires path planning inside AOIs. Even though service time is needed when the

vehicle visits a customer in some variants of VRP [10], path planning is not conducted

within this service time.

3) The proposed problem cannot be solved by simultaneously maximizing travel
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time (the cost of paths) inside AOIs and minimizing travel time outside AOIs, because

each region inside AOIs is required to be revisited within a given time slot. The

topology of mission scenario and the mission criteria lead to new objectives and

constraints (Sections 2.3 and 2.4), which further generate new solution techniques

(Section 2.5).

Note that the information collected in this paper is evaluated by the coverage of

AOIs [11, 23] rather than by detecting and tracking targets [25]. Paths are planned

offline even if there is no target in the AOIs. Online search and tracking is the topic

of a separate publication.

A path planning method for a single unmanned aerial vehicle (UAV) is proposed

to maximize the information collected (based on images captured by a camera at the

bottom of the UAV) from desired regions while avoiding flying over forbidden regions

in [11]. A multivehicle team planning approach is described to maximize the target

coverage (number of cells scanned in the region of interest) for surveillance missions

[23]. In our paper, the sensing model is similar to what is described in [11, 16, 23].

AOIs to be covered are divided into a number of cells. However, we use two objectives

to evaluate the information collected: 1) the number of non-repeatedly covered cells

in a sliding-window fashion [5] and 2) the total number of covered cells in the mission

plan. Maximizing these objectives not only makes full use of aircraft capacity to cover

AOIs but also conquers the problem described in [11] that, once an aircraft enters

an AOI, it remains inside instead of flying to other AOIs. Moreover, the surveillance

scenarios in our study are more realistic and complicated than those in [11, 23].

In this paper, a sequence of cells is selected to generate a path for one flight

(namely, a single-period path) that covers these cells in turn. Since aircraft take
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off and land multiple times in the mission, single-period paths are connected head

to tail with a given minimum downtime (corresponding to aircraft maintenance and

refueling time) and an adjustable wait time between two flights, by which paths for

multiple flights (namely, multi-period paths) are generated. The mission plan is a

collection of multi-period paths for all aircraft, in which paths are planned and the

take-off time for each flight is determined.

We formulate the proposed problem as a combinatorial optimization. A multi-

objective evolutionary algorithm (MOEA) with a specific chromosome representation

and custom genetic operators, which not only selects the paths but also determines

the take-off time schedule and enables revisiting in each flight, is developed. The

constraint that each cell be revisited within a time slot is transformed into an objective

in the evolutionary algorithm (EA).

We believe that our path planning and scheduling yields many original contribu-

tions.

1) The proposed objective functions provide new evaluation metrics for coverage

path planning in surveillance missions, which promptly update information collected

from different areas and make full use of aircraft capacity to cover AOIs.

2) The optimization formulation of multi-period path planning and scheduling,

which allows revisiting in a single-period path, is first provided. Path selection and

take-off time determination are jointly considered. Revisit of cells in single-period

paths and scheduling of take-off time are incorporated in the objectives and con-

straints, which makes the formulation different from the existing ones in VRPs, OPs

and CPPs [12, 24, 34].

3) A new chromosome structure is given to represent the mission plan, which
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integrates the path selection and the take-off time decision so that multi-period path

planning and temporal scheduling can be effectively handled in the MOEA. In the

EA, the crossover is performed based on the unit (gene segment) of single-period

paths rather than the unit of cells. Three custom moves in the mutation operator,

namely Remove, Insert and Reschedule, to enable revisit of cells and scheduling of

take-off times, are developed. Because of the chromosome structure and the genetic

operators, the proposed algorithm differs from the existing ones in VRPs, OPs and

CPPs.

4) The proposed algorithm is intelligent not only because the chromosome struc-

ture and the custom genetic operators are used, but also because the final solution can

be selected from a set of mission plans provided by the multi-objective optimization

(MOO) according to the user preferences [8]. The proposed solution framework can

be used in a variety of surveillance problems, even though most of the surveillance

mission planning problems are application-dependent or environment-dependent [11].

The remainder of the paper is structured as follows. Section 2.3 outlines the pre-

liminary information needed to understand the mission scenario and the objectives.

Section 2.4 presents the formulation of this optimization problem. The solution tech-

nique is developed in Section 2.6. Simulation results are given in Section 2.6. The

conclusions are discussed in Section 2.7.
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2.3 Problem Description

2.3.1 Mission Scenario

The geographic AOI can be of any shape, but the geographical and dimensional

information about AOIs are known a priori. Each AOI to be searched is divided

into a number of cells as shown in Fig. 2.2. The shape of a cell is determined by

the sensor coverage in one scan: for example, the sensing area of an airborne camera

facing downward is designed to be a circular region [16] or a rectangular region [11, 18].

Note that a variety of coverage sweep patterns can be used for a cell and that the

shape of a cell is not constrained to be circular as shown in Fig. 2.2 [18, 23]. However,

AOI segmentation is not the focus of this paper. The center of a cell is denoted as

a point of interest (POI). A cell is considered entirely covered if its center (POI) is

visited by an aircraft. In this surveillance problem, we assume that any POI can be

visited by at least one aircraft.

The assets consist of a given number of patrolling aircraft. Each aircraft is char-

acterized by its speed of travel, a fixed altitude above ground level, a maximum flight

time (constrained by fuel), a minimum and a maximum downtime between two suc-

cessive flights. The above attributes are given for each aircraft and need not be same

for all aircraft. Aircraft with the same speed and the same constraints on flight time

and downtime are of the same type. Aircraft are to take off and land from/at the

same base station, as shown in Fig. 2.1 and Fig. 2.2. It is assumed that flight paths

are collision-free. For the sake of simplicity, no atmospheric condition, such as wind

[26], is taken into consideration, but the inclusion of environmental conditions does

not change the overall problem formulation.
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Figure 2.2: Illustration of AOIs, cells, POIs, and a flight path.

There is a camera at the bottom of the aircraft to capture images from the AOIs.

The coverage of the camera is studied rather than the detections in images (the

measurements). Sensor capabilities (e.g., scan angle, scan direction and coverage

radius) are assumed to be constant during the mission time for each aircraft and

same for all aircraft. Therefore, the cells in AOIs are of the same size.

Base stations are located out of AOIs (see Fig. 2.1) and their locations are known a

priori. An aircraft has already been assigned to a base station. Each base station has

one or more aircraft. In the following, when we refer to an aircraft, the corresponding

base station is designated and specified.

A mission time is given and each aircraft should land at the base by the end of

the mission plan. An aircraft may take off and land multiple times in the mission

horizon.

The mission objective is to maximize information collected via AOI coverage:

aircraft should strive to cover as many cells as possible and make full use of their flight
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time to cover visited or unvisited cells. The persistent monitoring of a particular AOI

and the survey of different AOIs are both desired. However, it is always difficult to

achieve the above two goals simultaneously when assets are limited. To address this,

a revisit requirement to ensure prompt update of surveillance information is used:

each cell inside AOIs is to be covered within a given time interval, e.g., within each

8-hour slot.

2.3.2 Mission Plan

A flight is one sortie of an aircraft, which consists of a sequence of waypoints (bases

and POIs) that starts from a base, visits a group of POIs and turns back to the same

base from which the aircraft departs, as shown in Fig. 2.2. A flight is also referred to

as a single-period path (sp) in this paper. For one aircraft, there are multiple flights

in the mission plan. The connection of multiple single-period paths with the take-off

time for each flight forms a multi-period path (mp). A mission plan consists of the

multi-period path for each aircraft. The paths are to be planned and the take-off

time schedule is to be determined for each mission plan, in which aircraft survey

AOIs cooperatively in space and time.

The visit time point of each POI is recorded along with the planned path, which

forms a visiting time sequence. In other words, the mission planner registers aircraft’s

arrival time at each POI. Once the mission plan is derived, the multiple visits of

one POI by all aircraft correspond to a set of visit time, which can be sorted in a

chronological order. Then the revisit time interval of this POI can be calculated.

Based on the planned paths and the visit time of each POI, the performance of the

mission plan can be evaluated, which will be described as follows.
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2.3.3 Mission Objective Evaluation

Since the cells are of the same size, we use the number of covered cells (visited POIs)

to evaluate the coverage. The mission objective is evaluated by two metrics: 1) the

number of non-repeatedly visited POIs in a sliding-window fashion (referred to as

the revisit-unrepeated metric), and 2) the total number of visited POIs in the mission

plan (referred to as the revisit-total metric). These two metrics are proposed based

on the following assumptions:

1) Even though the mission lasts for a very long time, the user wants to know

the overall situation in each AOI as soon as possible. Therefore, covering different

POIs/AOIs is more important than continuously covering a particular POI/AOI.

2) The probability of new information gathered from a particular POI increases

with time. Revisiting a POI contributes to the information collected. However,

revisiting a POI immediately contributes little to the collected information [11]. If

an aircraft still has the capacity (e.g., fuel) to cover cells after all POIs are visited, it

should continue covering to achieve a greater number of revisited POIs.

Given a mission plan, the revisit-unrepeated metric is evaluated in a sliding window

fashion [5]. The initial time of the sliding window is the start time of the mission.

The size and the step length of the sliding window are fixed, where the length is

much smaller than the mission time. The window is moved over the time horizon to

evaluate the revisit-unrepeated metric. In each time window, revisit to a POI does

not increase the revisit-unrepeated metric value. Therefore, an aircraft should visit as

many different POIs as possible and avoid revisiting within the window if maximizing

the revisit-unrepeated metric is used as the only objective. However, if an aircraft

has enough fuel after all AOIs are covered, it will return to the base instead of fully
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using its capacity to cover when maximizing the revisit-unrepeated metric is its only

objective.

Since the revisit-unrepeated metric cannot direct aircraft to revisit POIs and make

full use of the surveillance capabilities of aircraft, the revisit-total metric is developed

as a complement to the revisit-unrepeated metric. All visited POIs in the mission

plan are counted in the revisit-total metric. However, if maximizing the revisit-total

metric is the only objective, aircraft will keep surveying the nearest AOI without the

need to leave it [11]. The result is that no information is gathered from other AOIs

in the mission plan. Thus, both the revisit-unrepeated metric and the revisit-total

metric are needed.

2.4 Problem Formulation

2.4.1 Notations and Definitions

The proposed problem is defined on a complete directed graph comprising a set V

of vertices or waypoints (that represents the physical locations of POIs and bases)

together with a set of edges connecting each pair of vertices. The set V is further

partitioned into two subsets: V = S ∪B, where S is the set of POIs to be visited and

B is the set of base stations. The set of aircraft is denoted as A and the set of AOIs

as E. A list of symbols and notations used in this paper is given in Tabel 2.1.

The decision variables are the take-off time and the path selection for each flight.

Let tb1aw denote the take-off time of aircraft a in its w-th flight from base ba, where

w ∈ Wa and 0 ≤ tb1aw < Tm (the mission start time is used as the zero time reference).

Since once the aircraft is specified, the corresponding base of this aircraft is also
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Table 2.1: Symbols and Notations

Symbol Description
ba base for aircraft a (known a priori), a ∈ A, ba ∈ B
Se set of POIs inside AOI e, e ∈ E, Se ⊆ S
va speed of aircraft a
dij travel distance (by the shortest path) from vertex i to vertex j,

{i, j} ∈ V
Cija travel time from vertex i to vertex j by aircraft a. Cija = dij/va
T f
a the maximum flight time of aircraft a

T dmin
a the minimum downtime of aircraft a between two successive flights

T dmax
a the maximum downtime of aircraft a between two successive flights
Th a time slot aircraft landing at base
Tm mission time
Tr required revisit time interval: each POI should be revisited within Tr
Tc sliding window size
δ step length of the sliding window
Wa set of flights of aircraft a

NW
a total number of flights of aircraft a (the cardinality of Wa, |Wa| =

NW
a )

Fiaw set of visit time indices of vertex i in the w-th flight of aircraft a,
i ∈ V , a ∈ A, w ∈ Wa

Ki set of visit time indices of POI i in the mission plan by all aircraft,
i ∈ S

identified, the subscript of ba is omitted in tb1aw. In the following, we will omit the

subscript of ba when a and ba are both in the notation. Let xiκjµaw denote the path

selection binary decision variable:

xiκjµaw =


1 if the κ-th visit to vertex i is followed by the µ-th visit

to vertex j in the w-th flight of aircraft a, i 6= j

0 otherwise

(2.1)

When the path selection decision variables xiκjµaw are determined, a path is formed

[19, 28]. In the proposed problem, a single-period path for the w-th flight of aircraft
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a at base ba is defined as:

spaw ={ba,
POIs︷ ︸︸ ︷

k, · · · , l, ba | xiκjµaw,

∀κ ∈ Fiaw, µ ∈ Fjaw, {i, j} ∈ V },
(2.2)

where the starting vertex and the ending vertex are the same base station ba, κ and

µ are the visit time indices of POIs in a single flight.

In the proposed problem, one POI is allowed to be visited more than once in a

single-period path. Moreover, an aircraft can fly from POI i to POI j more than once

in a single flight to revisit POIs. If xij = 1 is used to denote a visit to vertex i is

followed by a visit to vertex j [24, 34], the notation xij cannot refer to the multiple

path selections from vertex i to vertex j caused by revisiting in a single-period path.

Hence, the classical notations in VRPs [24] will lead to ambiguity in the formulation

of our problem. To address this, {γ, η, κ, µ} are used to denote the visit time indices

of POIs. The visit of a POI becomes unique in a single-period path, when the visit

time index is associated with the POI.

When the planned single-period path, take-off time, speed of aircraft and the

locations of vertices are given, the visit time of POIs in this path and the landing

time at the base can be computed. The κ-th visit time of POI i by aircraft a’s w-th

flight is denoted as tiκaw, where κ ∈ Fiaw. When i = ba and κ = 1, the notation tiκaw

becomes tb1aw, which is the take-off time. The landing time of aircraft a at base ba

is defined as tb2aw, which also conforms to the format of notation tiκaw (when i = ba,

κ = 2). The formulation of tiκaw will be provided in Section 2.4.2.

The multi-period path for aircraft a is defined as mpa = {spaw, tb1aw, ∀w ∈ Wa}.

The total number of flights NW
a of aircraft a is determined when each flight is planned
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and connected, and is not known a priori. The take-off time schedule for every aircraft

in the mission plan is denoted as T0 = {tb1aw, ∀a ∈ A, ba ∈ B, w ∈ Wa}. The mission

plan is P = {mpa, ∀a ∈ A}. Therefore, a mission plan is formed by determining the

path selection and take-off time decision variables for each flight. These decision

variables enable the spatio-temporal cooperation of aircraft to cover AOIs and jointly

affect the performance of the mission.

2.4.2 Problem Formulation

We first provide the calculation for the visit time and the revisit time interval of

a POI, and then derive the formulations for the objective functions. Finally, the

constraints are discussed.

For the w-th flight of aircraft a, suppose the generated path is spaw and the cor-

responding take-off time is tb1aw. Consider this path only and ignore the cooperation

across multiple aircraft. The time point that POI k is visited by aircraft a for the

γ-th time in this path is:

tkγaw = tb1aw +
∑
i∈V

∑
j∈S

∑
κ∈Fiaw

∑
µ∈Fjaw

Cijaxiκjµaw

+
∑
l∈V

∑
η∈Flaw

Clkaxlηkγaw,

(2.3a)

{uiκaw, ujµaw, ulηaw} < ukγaw,

∀a ∈ A, ba ∈ B, w ∈ Wa, {i, l} ∈ V, {j, k} ∈ S,

κ ∈ Fiaw, µ ∈ Fjaw, η ∈ Flaw, γ ∈ Fkaw,

(2.3b)

where the additional real variables {uiκaw, ujµaw, ulηaw, ukγaw} in (2.3b) are used to
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order all vertices [27], which follow the Miller-Tucker-Zemlin subtour elimination con-

straints (MTZ-SECs) [22]. The formulations of MTZ-SECs using {uiκaw, ujµaw, ulηaw,

ukγaw} will be provided later in this section. The total number of visited POIs (with

repeat) in spaw can be expressed as

naw =
∑
i∈V

∑
j∈S

∑
κ∈Fiaw

∑
µ∈Fjaw

xiκjµaw. (2.4)

The variable uiκaw satisfies

ui1aw = 1, i = ba, (2.5a)

2 ≤ uiκaw ≤ naw + 1, i ∈ S, κ ∈ Fiaw, (2.5b)

and the variable uiκaw denotes the position of vertex i in path spaw, while the visit

time index of vertex i is κ [27].

The visit time point of each POI in a mission plan can be calculated by (2.3)

when flights for all aircraft are planned. The visited POIs in the mission plan can be

sorted by their visit time in chronological order. For POI i, the chronological set of

visit times by all aircraft in the mission plan can be formed, which is denoted as Ki.

Let UiεP denote the position of POI i in mission plan P , where the visit time index

of POI i is ε (ε ∈ Ki). Let t(UiεP ) denote the time point at position UiεP , which can

be obtained after sorting tiκaw for all a ∈ A, ba ∈ B, w ∈ Wa, κ ∈ Fiaw. The revisit

time interval between the (ε− 1)-th visit and the ε-th visit of POI i in the mission

plan is expressed as:

rvt(i, ε) = t(UiεP )− t(Ui(ε−1)P ), ε > 1, ε ∈ Ki, (2.6)
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where rvt(·) stands for the revisit time interval. The first visit time of POI i is denoted

as rvt(i, 1) = t(Ui1P ), ∀i ∈ S. It is required that the first visit of each POI happen

within Tr after the mission starts.

In the following, we provide the evaluation of the revisit-unrepeated metric in the

sliding windows.

A sliding window with size Tc and step length δ moves over the mission time

horizon. The total number of windows is Nτ = (Tm − Tc)/δ + 1. The value of δ

should guarantee that the end time of the last evaluation window is the mission time.

Usually, δ is less than Tc so that all visited POIs in the mission plan are included in

the sliding windows. The τ -th evaluation window starts from (τ − 1)δ and ends at

Tc + (τ − 1)δ, where τ = 1, 2, · · · , Nτ .

The visited POIs in mission P , whose visit time drops into the τ -th evaluation

window, is the set of POIs under test:

Q(τ) ={∀i ∈ S | (τ − 1)δ ≤ t(UiεP ) ≤ Tc + (τ − 1)δ,

∀ε ∈ Ki}.
(2.7)

For POIs in Q(τ), define a binary variable y(i, τ)

y(i, τ) =


1 if POI i ∈ Q(τ)

0 otherwise

(2.8)

The condition for y(i, τ) = 1 means that POI i is visited at least once in the τ -

th window. Therefore, repeated visit to a POI in the evaluation window does not

increase the value of y(·).
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The revisit-unrepeated metric in the τ -th sliding window is defined as the sum

of y(i, τ) with respect to (w.r.t.) all POIs:
∑

i∈S y(i, τ). To evaluate the revisit-

unrepeated metric in the mission plan, we present a maximin criteria [19] that max-

imizes the minimum revisit-unrepeated metric in all evaluation windows. The mini-

mum revisit-unrepeated metric is defined as:

f1 = min(
∑
i∈S

y(i, τ), ∀τ = 1, 2, · · · , Nτ ). (2.9)

The first objective is expressed as:

max
P

f1. (2.10)

There are other ways to evaluate the revisit-unrepeated metric, e.g.,
∑Nτ

τ=1

∑
i∈S y(i, τ).

Since there are overlapping time slots between two evaluation windows, adding up∑
i∈S y(i, τ) in all windows is not used in our method but the maximin criteria as

shown in (2.9) and (2.10) are used.

The evaluation of the revisit-total metric is the sum of all visited POIs in the

mission plan, which is expressed as:

f2 =
∑
a∈A

∑
w∈Wa

∑
i∈V

∑
j∈S

∑
κ∈Fiaw

∑
µ∈Fjaw

xiκjµaw

=
∑
a∈A

∑
w∈Wa

naw.

(2.11)

The second objective, maximizing the total number of visited POIs, is expressed as:

max
P

f2. (2.12)
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Note that the decision variables in (2.10) and (2.12) are the path selection and the

take-off time for each flight. Here, mission plan P is placed in (2.10) and (2.12) as

the argument for simplicity.

Formulations of constraints are listed as follows:

∑
i∈S

∑
κ∈Fiaw

xk1iκaw =
∑
j∈S

∑
µ∈Fjaw

xjµk2aw = 1,

∀a ∈ A, w ∈ Wa, k = ba

(2.13)

∑
i∈S

∑
κ∈Fiaw

xk1iκaw = 0,

∀a ∈ A, w ∈ Wa, k ∈ B \ {ba}
(2.14)

∑
i∈V

∑
κ∈Fiaw

xiκkγaw =
∑
j∈V

∑
µ∈Fjaw

xkγjµaw ≤ 1,

∀a ∈ A, w ∈ Wa, k ∈ S, γ ∈ Fkaw

(2.15)

∑
i∈V

∑
j∈V

∑
κ∈Fiaw

∑
µ∈Fjaw

Cijaxiκjµaw ≤ T f
a,

∀a ∈ A, w ∈ Wa

(2.16)
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tb1a(w+1) ≥ tb1aw+∑
i∈V

∑
j∈V

∑
κ∈Fiaw

∑
µ∈Fjaw

Cijaxiκjµaw + T dmin
a ,

∀a ∈ A, ba ∈ B, w = 1, · · · , NW
a − 1

(2.17)

tb1a(w+1) ≤ tb1aw+∑
i∈V

∑
j∈V

∑
κ∈Fiaw

∑
µ∈Fjaw

Cijaxiκjµaw + T dmax
a ,

∀a ∈ A, ba ∈ B, w = 1, · · · , NW
a − 1,

(2.18)

tb1aw +
∑
i∈V

∑
j∈V

∑
κ∈Fiaw

∑
µ∈Fjaw

Cijaxiκjµaw ≤ Tm,

∀a ∈ A, ba ∈ B, w = NW
a

(2.19)

rvt(i, ε) ≤ Tr, ∀i ∈ S, ε ∈ Ki (2.20)

2 ≤ ukγaw ≤ naw + 1,

∀a ∈ A, w ∈ Wa, k ∈ S, γ ∈ Fkaw
(2.21)

ulηaw − ukγaw + 1 ≤ naw (1− xlηkγaw) ,

∀a ∈ A, w ∈ Wa, {l, k} ∈ S, η ∈ Flaw, γ ∈ Fkaw
(2.22)
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xiκjµaw ∈ {0, 1}, tb1aw ≥ 0, ∀a ∈ A, ba ∈ B,

w ∈ Wa, {i, j} ∈ V, κ ∈ Fiaw, µ ∈ Fjaw
(2.23)

Constraint (2.13) guarantees that an aircraft starts from its base station and ends

at the same base station in each flight. Constraints (2.13) and (2.14) guarantee that

an aircraft only take off from the base specified to this aircraft, where the backslash

symbol \ in (2.14) denotes a set difference.

Constraint (2.15) guarantees the connectivity of POIs in each flight. When the

γ-th visit to POI k in the w-th flight of aircraft a is given,
∑

i∈V
∑

κ∈Fiaw xiκkγaw

equals 0 or 1.

When a path is planned, the continuity of time sequence is guaranteed:

tiκaw + Cija − tjµaw ≤M (1− xiκjµaw) ,

∀a ∈ A, w ∈ Wa, {i, j} ∈ V, κ ∈ Fiaw, µ ∈ Fjaw,
(2.24)

where M is a very large positive constant (M � Tm). If there exists a path selection

from the κ-th visit of vertex i to the µ-th visit of vertex j in aircraft a’s w-th flight,

xiκjµaw = 1, and tiκaw + Cija − tjµaw = 0.

Constraint (2.16) ensures that the travel time of each flight is no more than the

maximum flight time.

Constraints (2.17) and (2.18) ensure that the downtime between two successive

flights is no less than the minimum downtime and no greater than the maximum

downtime, respectively. The wait time in addition to the minimum downtime before
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the (w + 1)-th flight of aircraft a is denoted as

haw =tb1a(w+1) − tb1aw−∑
i∈V

∑
j∈V

∑
κ∈Fiaw

∑
µ∈Fjaw

Cijaxiκjµaw − T dmin
a ,

(2.25)

where haw ≤ T dmax
a − T dmin

a . It will be shown in Section 2.5 that the take-off time

schedule is generated by determining the take-off time of the first flight tb1a1 and the

following wait time haw
(
w = 1, · · · , NW

a − 1
)
.

Constraint (2.19) guarantees that the time point of aircraft returning to base for

the last flight is not greater than the mission time.

Constraint (2.20) guarantees that each POI is visited for the first time within Tr

after the mission starts (for the case ε = 1), and that each POI is revisited within

Tr for the following visits (for the cases ε > 1). The revisit time interval rvt(·) is

calculated as (2.6).

Constraints (2.21) and (2.22) are used to prevent subtours in each single-period

path, which are derived from MTZ-SECs [1, 22]. The total number of visited POIs

in the w-th flight of aircraft a is naw as in (2.4), where the repetition of POIs is

considered.

2.5 Solution Technique

The proposed mission planning problem is more complex than the existing VRPs

and OPs because of the revisiting in single-period paths and the spatio-temporal

cooperation of aircraft in multi-period paths. Furthermore, only small instances of

the VRP or OP can be solved exactly [30, 6]. It is clear that one cannot solve this path

37



Ph.D. Thesis - Y. Wang McMaster University - Electrical & Computer Engineering

planning and scheduling with the above formulation. We have therefore opted for the

development of an MOEA. The choice is motivated by 1) the success of EA in VRP

and its variants [10, 35], and 2) the ability of MOEA to find multiple Pareto-optimal

solutions or converge near the true Pareto-optimal set in one single simulation run

[8].

The flowchart of the path planning and scheduling algorithm is illustrated in Fig.

2.3. The algorithm consists of four parts: pre-processing, multi-objective evolution,

decision making, and waypoint transformation. This paper mainly describes methods

in the pre-processing and the multi-objective evolution.

At the very beginning, parameters are initialized, AOIs are divided into cells, and

POIs are generated. Single-period paths are generated by solving a series of OPs, in

which revisit to POIs and take-off time schedule are not considered. For one aircraft,

these single-period paths are connected to form the multi-period path, where the

take-off time of each flight is randomly selected under constraints.

A set of mission plans is generated as the initial population in the EA, where the

paths for all aircraft are evaluated as shown in (2.9) to (2.12). The revisit constraint

(2.20) is transformed into an objective function in the EA, which will be described

later in this section.

During the evolution of individuals, rescheduling of take-off time and revisit to

POIs are enabled by the mutation operator; exchanging single-period paths between

mission plans is conducted by the crossover operator. These genetic operators dif-

fer from standard mutation and crossover [15] and are especially designed for the

proposed problem. Objective functions are evaluated and sorted following the non-

dominated sorting genetic algorithm II (NSGA-II) procedure [8].
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Figure 2.3: Flowchart of the coverage path planning and scheduling algorithm.

The best mission plan is selected by a weighted-sum model in decision making

from the MOO solution set. The mission plan generated by the steps described above

is a sequence of vertices, which correspond to ground locations/waypoints. Finally,

paths are transformed into aerial waypoints for each aircraft based on the aircraft

motion model (e.g., Dubins airplane) [13, 20] and sensor parameters [18]. However,

waypoint transformation is not the focus of this paper.

2.5.1 Mission Plan Structure

The mission plan structure is also the genetic representation of an individual (chro-

mosome), which is shown in Fig. 2.4. The mission plan for one aircraft is made up of

39



Ph.D. Thesis - Y. Wang McMaster University - Electrical & Computer Engineering

s s × × × sb D H b s s× × × D H s

× × ×b D s s× × × D FD s s s× × ×s D D D s s× × ×s × × ×

× × ×

s × × × s D H D × × ×s × × × s s s× × ×H H

× × × s s× × ×b D s s× × × D ss × × × D × × ×

k k

N N

b b b

b b b

b b b

b b b

sb

b b b

H H b H H b H H

Base POIs
Landing at base for the

minimum downtime

Aircraft 1 at base 1
34s 35s × × × 44s1b D H 1b 52s 79s× × × D H 65s× × ×

Landing for one time slot

Flight 1 Flight 2

44s × × × 51s D H D × × ×45s × × × 51s 45s 44s× × ×H H Aircraft 2 at base 2

×
×
×

× × × 79s 111s× × × D 130s 111s× × × D 111s112s × × × Aircraft at baseD × × × n n

×
×
×

×
×
×

1b 1b 1b

2b 2b 2b

×
×
×

Flights 3, 4, ...

n
b

51s1b

2b 2b 2b

H H H H H Hn
b

n
b

n
b

n
b

n
b

Figure 2.4: Mission plan structure.

multiple single-period paths connected by elements representing the state of aircraft

landing at the base. The wait time before the first flight and the wait time in addition

to the minimum downtime are discretized into time slots with a fixed length of Th.

The genetic representation of the minimum downtime is D and that of the discrete

time slot is H. The genetic representation of POI i is si and that of base for aircraft

a is ba.

As shown in Fig. 2.4, the number of H affects the take-off time: aircraft can take

off immediately after the minimum downtime or stay at the base for several time

slots. When the time left is not enough for the aircraft to visit the nearest POI at

the end of the mission, this remaining time is denoted as several time slots as well.

This is because taking off, in this case, will not increase the objective values. The

determination of the number of time slots before each flight will be described later in

this section.

Given the mission plan structure, a time table for each aircraft, which consists

of the take-off time of each flight, the visit time of POIs, the landing time of each

flight, and minimum downtime and the wait time slots, can be computed. Elements in

the mission plan and time points in the time tables have one-to-one correspondence.

The mission plan structure, along with the time tables, effectively handles the path
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selection and the take-off time decision at the same time. It also manipulates the

variable-length chromosome, which makes the EA easy to operate [14, 29].

2.5.2 Single-period Path Planning

Single-period paths are the construction blocks in the mission plan. By connecting

the single-period paths and determining the take-off time for each flight, the initial

population to EA can be generated, which has the potential to achieve the mission

goal, as described in (2.9) to (2.12). Hence, single-period path planning is preliminary

to the construction of initial population of EA.

The path planning for each aircraft is formulated as a series of OPs. In OP, each

POI is associated with a score, the goal is to determine a path with a maximum sum

of the collected scores in limited length [34]. Each POI is visited at most once in

these paths.

Let T lmt
a denote a set of time limits for aircraft a: T lmt

a = {tlmt
a (φ), φ = 1, 2, · · · },

which may range from a small value (e.g., the time needed to fully cover the nearest

AOI by aircraft a) to the maximum flight time T f
a with a fixed step size. Within

the given time interval tlmt
a (φ), paths are designed to maximize the collected scores

associated with POIs. Initially, POIs are assigned with the same scores to generate

the first path by solving the OP. When the path is generated, unvisited POIs within

this aircraft’s reach (limited by tlmt
a (φ)) are assigned with higher scores than already

visited POIs; an OP is solved again to visit POIs with the updated scores. The score

of a POI depends on whether this POI is visited or not in the already planned paths.

This process continues until all POIs within the aircraft’s reach are visited. Then,

the time limit increases and paths are planned by the above approach once again.
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By assigning higher scores to unvisited POIs, single-period paths are generated to

cover unvisited POIs within the aircraft’s reach. Paths with different POIs enrich the

diversity of single-period paths. Unvisited POIs in a flight can be explored either by

the same aircraft’s subsequent flights or by other aircraft. Because of the different time

limits, paths of different time length are included in the mission plan. By connecting

these paths of different lengths, multi-period paths with different flight number NW
a

can be generated, which enrich the diversity of multi-period paths. When the time

limit tlmt
a (φ) is less than the maximum flight time, it is possible to use the remaining

time (T f
a − tlmt

a (φ)) to revisit POIs by the mutation operator. Therefore, solving the

proposed series of OPs ensures the diversity of the mission plan.

The path planning decision variable in OP is defined as:

xij =


1 if a visit to vertex i is followed by a visit to vertex j

0 otherwise

(2.26)

Given the scores for each POI, one OP for aircraft a at base ba is formulated as:

max
xij

∑
i∈S

∑
j∈V

sc(i)xij (2.27)

s.t.
∑
j∈S

xkj =
∑
i∈S

xik = 1, k = ba (2.28)

∑
i∈V

xik =
∑
j∈V

xkj ≤ 1, ∀k ∈ S (2.29)

∑
i∈V

∑
j∈V

Cijaxij ≤ tlmt
a (φ), ∀tlmt

a (φ) ∈ T lmt
a (2.30)

2 ≤ uk ≤
∑
i∈V

∑
j∈V

xij, ∀k ∈ S (2.31)
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ul − uk + 1 ≤
∑
i∈V

∑
j∈S

xij (1− xlk) ,

∀{l, k} ∈ S (2.32)

xij ∈ {0, 1}, ∀{i, j} ∈ V (2.33)

where sc(i) is the score assigned to POI i, ui is the position of vertex i in the path

[27, 34]. The purpose of objective function (2.27) is to maximize the total collected

score. Constraint (2.28) guarantees that the paths start and end at the same base.

Constraint (2.29) ensures the connectivity of the POIs in the path. Constraint (2.30)

ensures the limited time budget. Constraints (2.31) and (2.32) are necessary to pre-

vent subtours [34]. The constraints (2.28), (2.29), (2.30), (2.31) and (2.32) correspond

to (2.13), (2.15), (2.16), (2.21) and (2.22), respectively. A five-step heuristic is used

to solve the OP [3].

For the series of OPs, the solution is described in Algorithm 1, where the updating

of scores and the traversing of time limits are shown. In Algorithm 1, Cbia represents

the travel time from base ba to POI i by aircraft a; Sab is a set of POIs within the

reach of aircraft a taking off from base ba; S(unvisit) is a set of unvisited POIs in

Sab; spφcnt denotes the single-period path generated in the cnt-th iteration of the φ-th

time limit; ∅ denotes the empty set. Note that different values of ρ (ρ > 1) lead to

different paths: the greater the ρ, the more unvisited POIs will be included in the

path. All planned paths are stored to ensure the population diversity in the EA.

Note that no-fly zones [9, 11] outside AOIs are not considered in the mission

scenario, but no-fly zones can be handled in our solution technique. A discussion on

no-fly zones in single-period path planning is provided in the Appendix.
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Algorithm 1 Single-period path planning

Input:
Aircraft a. Base station ba. Set of POIs S.
Fixed score c. Factor ρ. Set of time limits T lmt

a .
Output:

Single-period paths spφcnt,
φ = 1, 2, · · · , |T lmt

a |, cnt = 1, 2, · · · .
1: for tlmt

a (φ) ∈ T lmt
a do

2: Sab =
{
i|2Cbia ≤ tlmt

a (φ), i ∈ S
}

3: S(unvisit) = Sab
4: Counter cnt = 1
5: Score sc(i) = c, ∀i ∈ Sab
6: while S(unvisit) 6= ∅ do
7: Solve OP: (2.27)–(2.33), generate and save spφcnt

8: Update S(unvisit) =

{
i|i ∈ Sab & i /∈

⋃
cnt

spφcnt

}
9: Update sc(i) = ρcntc, ∀i ∈ S(unvisit)
10: cnt = cnt + 1
11: end while
12: end for
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2.5.3 Initial Population Construction

Instead of planning the path by randomly picking up POIs and randomly setting the

take-off time, well-designed single-period paths are used as the construction blocks

for the initial population, and the take-off time for each flight is randomly configured

with constraints. For one aircraft, its single-period paths are connected as shown in

Fig. 2.4. The path for each flight is randomly selected from the results of single-period

path planning except the path for the last flight: the selection of a single-period path

for the last flight is constrained by (2.19). The number of additional wait time slots

is determined such that constraints (2.17) and (2.18) are satisfied.

As mentioned in Section 2.5.1, the number of wait time slots affects the take-

off time. There are many ways to determine the number of wait time slots for the

initial population. For example, a random number la can be generated from a dis-

crete uniform distribution U{0, (T dmax
a − T dmin

a )/Th}, where tb1aw = laTh is the wait

time. Another way is to generate a random number la from the rounding result of a

truncated normal distribution with zero mean and (T dmax
a − T dmin

a )/(mTh) standard

deviation conditioned on 0 ≤ la ≤ (T dmax
a −T dmin

a )/Th, where m is a positive constant.

The number of wait time slots la is scheduled in the initial population construction

and rescheduled in the mutation operator. During our simulations, it was observed

that mission plans with less additional wait time achieve better objective values.

Therefore, generating la from the truncated normal distribution is used in our ap-

proach, because the value of m can be tuned so that more mission plans with small

wait time can be generated in the population.

Because of the single-period path planning and initial population construction, the

initial mission plans satisfy constraints (2.13) to (2.19), (2.21) and (2.22). Individuals
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in the initial population do not necessarily satisfy the revisit constraint (2.20). The

handling of (2.20) is described as follows.

2.5.4 Infeasibility Handling

In the EA, the feasibility w.r.t. constraints (2.15) to (2.19), (2.21) and (2.22) is

checked in the genetic operators and infeasible paths or mission plans are discarded.

The feasibility w.r.t. constraints (2.13) and (2.14) is guaranteed in single-period path

planning and will not change by the genetic operators. The revisit constraint (2.20)

is transformed into an objective function in the EA for the following reasons:

1) It is possible that the given assets cannot satisfy the revisit constraint (2.20)

for all POIs, i.e., there is no feasible solution.

2) The scale of the problem (i.e., the number of POIs, the time horizon of the

mission plan, etc.) is too large to verify the existence of feasible solutions w.r.t.

constraint (2.20).

If the actual revisit time interval rvt(i, ε) (see (2.6)) is greater than the required

revisit time Tr, the violated time is rvt(i, ε)− Tr. The sum of violated revisit time is

to be minimized by path planning, take-off time scheduling and aircraft cooperation.

Let f3 denote the negative value of the sum of the violated revisit time:

f3 = −
∑
i∈S

∑
ε∈Ki

max (rvt(i, ε)− Tr, 0) . (2.34)

The objective is expressed as:

max
P

f3. (2.35)
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Therefore, constraint (2.20) is transformed into (2.35) in the EA. The multi-

objective function is maxP (f1, f2, f3).

2.5.5 Multi-objective Evolution

The MOEA is based on the NSGA-II framework [8]. As shown in Fig. 2.3, the fol-

lowing evolutionary process is performed in each generation: 1) calculate the fitness

functions (2.9), (2.11) and (2.34), and select parents that are a fit for reproduction,

2) perform crossover and mutation operators on the selected parents to produce off-

spring, and calculate the fitness of offspring, 3) form the intermediate chromosome,

which is a concatenation of the current population and the offspring population, and

4) non-domination sort the intermediate chromosome, replacing the unfit individuals

with the fit individuals to maintain a constant population size.

Selection: Many selection techniques, such as tournament selection [8] and roulette

wheel selection [35], are available. A binary tournament selection is used in this paper.

Constrained NSGA-II (constraint-handling approach) is utilized to rank the solutions

[8].

Crossover: Crossover happens with a probability pc. If crossover does not happen,

mutation is conducted. From the first flight to the last one, the crossover is performed

by exchanging parents’ single-period paths (same aircraft, same base station) with

a certain probability psc successively, whereas the take-off time of each parent does

not change. The time tables of the offspring are updated as the crossover carrying

through. If an offspring’s actual mission time exceeds Tm after a crossover of two

single-period paths, this crossover is undone and the single-period paths are reverted

to their original (last) positions in the chromosome.
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AOI2

Base

Flight path

AOI1

Figure 2.5: An example of single-period path. Visited POIs in AOI2 will be removed
by Remove, and the remaining flight time after Remove, especially the travel time
between AOI1 and AOI2, is used to revisit POIs in AOI1 when Insert is implemented.

Mutation: The custom mutation operator described in Algorithm 2 is enforced.

Three moves are designed for mutation, namely Remove, Insert, and Reschedule.

The goal of Remove is, by giving up some visited POIs in a single-period path,

to make time for possible revisits of POIs. For instance, the result of Remove is

that the POIs in AOI2 will not be visited in Fig. 2.5, and the remaining flight time,

especially the travel time between AOI1 and AOI2, will be used to revisit POIs in

AOI1 (enabled by Insert). Line 7 in Algorithm 2 indicates that POIs in the single-

period path of aircraft a’s w-th flight (denoted as spaw), which belong to AOI e but

do not constitute the whole POI set in AOI e, are removed. Thus, the spared time

can be used to revisit other POIs in the path.

The revisit to POIs is enabled by Insert. Some successive POIs within the same

AOI in a single-period path are selected as a path segment and inserted into this

path, as shown in lines 12 and 13 in Algorithm 2. The length of the path segment can

be randomly generated from 1 to |Se|. The locus, where the gene segment is inserted

to, should avoid the repeat of the same POI in two successive loci.

The take-off time is changed, i.e., the number of Th is generated again (see Section
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Algorithm 2 The custom mutation operator

Input:
A chromosome (i.e., mission plan) P contains
multi-period paths mp,
single-period paths sp, and
take-off time schedule T0.
Remove probability prm
Insert probability pin
Reschedule probability prs

Output:
The mutated chromosome P ∗ contains
the mutated multi-period paths mp∗,
the mutated single-period paths sp∗, and
the mutated take-off time schedule T0

∗.
1: for a ∈ A do
2: for w ∈ Wa do
3: Generate a random number r ∼ U (0, 1)
4: if r < prm then
5: for e ∈ E do
6: if ∃{∀i ∈ spaw} ( Se then
7: Remove {∀i ∈ spaw} ( Se
8: break
9: end if
10: end for
11: else if prm ≤ r < prm + pin then
12: Randomly choose an AOI e and a gene segment (GS) within this AOI in

a single-period path: GS ⊆ Se ⊆ spaw
13: Insert GS after a locus to spaw
14: else
15: Reschedule tb1aw
16: end if
17: Update sp∗aw, mp∗a and corresponding time tables
18: if (travel time of sp∗aw > T f

a ||
mission time of mp∗a > Tm) then

19: Undo this mutation move; revert to the original paths and time tables
20: end if
21: end for
22: end for
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2.5.3).

If an offspring violates the maximum flight time constraints or mission time con-

straints after mutation, the mutation move is undone and the paths are reverted to

the original (last) feasible ones, as shown in lines 18 to 20. These three moves can be

viewed as heuristic operators embedded in the EA, which take full advantage of the

peculiarities of the proposed problem.

2.5.6 Decision Making

When the evolution terminates, a set of solutions are generated and the objective

values of these solutions are known. Then, we can see if there exist feasible solutions

(i.e., f3 = 0) or not w.r.t. constraint (2.20). A weighted-sum model can be used to

integrate the objectives into a single index [33]:

max
P

ωT f̂ , (2.36)

where ω = [ω1, ω2, ω3]
T , ω1 + ω2 + ω3 = 1, 0 ≤ ω1, ω2, ω3 ≤ 1, and f̂ =

[
f̂1, f̂2, f̂3

]T
.

The superscript T denotes matrix transpose and f̂n denotes the normalized fn, where

n = 1, 2, 3. The selection of weights depends on the user’s preferences and priorities.

The highest-ranking solution with the greatest weighted-sum value will be selected

as the mission plan.

If there is no feasible solution w.r.t. constraint (2.20) in the final solution set,

i.e., f3 < 0 for all solutions, the solution with the minimum revisit violation can be

selected (by setting w3 � w1 + w2) if the user emphasizes the revisit constraint. If

feasible solutions exist, the mission plan will be selected from these feasible solutions,
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where w1 ≥ w2, because promptly updating information collected from different POIs

is more important than the total number of visited POIs.

The transportation cost (total travel distance) is evaluated as:

f4 =
∑
a∈A

∑
w∈Wa

∑
i∈V

∑
j∈V

∑
κ∈Fiaw

∑
µ∈Fjaw

dijxiκjµaw. (2.37)

If multiple highest-ranking solutions with the same weighted-sum value are found,

the one with the minimum transportation cost can be selected as the mission plan.

Note that by adding f4 to the objective functions maxP (f1, f2, f3,−f4), minimizing

transportation cost joins the optimization as the fourth objective and the proposed

algorithm becomes more complex. As the number of objectives increases, the NSGA-

II framework may not work efficiently, and the many-objective evolutionary algorithm

NSGA-III can be implemented [7, 17]. In this paper, maxP −f4 is not used in the

EA.

2.6 Simulations

2.6.1 Mission Scenario

There is no benchmark problem in the literature for the comparison of path planning

and scheduling algorithms [11, 23]. Two simulation environments are used in this

section for performance evaluation.

In the first simulation scenario, three rectangular regions are simulated as AOIs

(see Fig. 2.6), the sizes of which are 200× 160 km2, 80× 80 km2, and 160× 240 km2.

Two aircraft are assigned to two base stations, which are located at (0, 80) km and
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Figure 2.6: The first simulation scenario: locations of AOIs, POIs, and base stations.

(600, 0) km, respectively. Aircraft are of the same type. Aircraft fly at a constant

speed of 612 km/h with 4-hour maximum flight time. The minimum downtime is 1

hour and the maximum downtime is 1.5 hours. Dots inside the AOIs in the figure are

POIs, which are the result of AOI segmentation. The size of each cell is 40× 40 km2.

Thus, there are 48 cells in total. The mission lasts for 24 hours. Each POI in the

AOIs must be revisited within 8 hours.

The mission scenario of the second simulation is based on a real-world case study,

which will be shown later in this section.
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2.6.2 Termination Condition

Since 1) it is not feasible to compute the global optimal solution of the proposed

problem [6, 30], and 2) the NSGA-II framework has the ability to find a diverse set

of solutions and converge near the true Pareto-optimal set [8], we specify a termina-

tion condition such that the solution at termination is close to the optimal one. The

weighted-sum model (2.36) is implemented at the end of each generation. The best

weighted-sum value of objectives is used to determine the termination of the evolu-

tion. If the maximum difference of the best (largest) weighted-sum fitness among Nt

successive iterations/generations drops below a given threshold, the EA is terminated.

In the following, different values of crossover and mutation probabilities in two

MOOs solution strategies are used to investigate the convergence of the path planning

and scheduling problem. The values of crossover probability pc are 0.3, 0.5, and 0.7;

the corresponding mutation probability is (1− pc).

The proposed algorithm based on NSGA-II can be viewed as a non-dominated

sorting MOO strategy. Except for the proposed algorithm, a weighted-sum MOO

strategy, which integrates the objectives into one fitness value in each fitness eval-

uation as shown in (2.36), is applied. The weighting vector in these two MOOs is

ω = [0.25, 0.15, 0.6]T .

The difference between the proposed non-dominated sorting MOO and the weighted-

sum MOO is where the weighted-sum (2.36) is implemented. The non-dominated

sorting MOO finds multiple solutions in one single simulation run [8] and implements

(2.36) in decision making after the evolution of solutions, whereas the weighted-sum

MOO implements (2.36) in fitness evaluation along with the evolution whenever a

new individual is generated.
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The crossover probability of each single-period path is psc = 0.5. The probabilities

of the moves in the mutation operator are prm = 0.2, pin = 0.4 and prs = 0.4.

In constructing the chromosome, Th = 1/6 hours, which means that the wait time

after the minimum downtime is an integer multiple of Th. The truncated normal

distribution with m = 1.5 is used to determine the number of wait time slots. While

evaluating the revisit-unrepeated metric, the sliding window size is Tc = 4 hours and

the step length δ = 1 hour. Hence, there are (Tm−Tc)/δ+1 = 21 evaluation intervals.

In this simulation, the population size is set to be 1024. The number of generations

in each simulation is 150. The best weighted-sum fitness in each generation is plotted

in Fig. 2.7. The results in the following simulations are based on 100 Monte Carlo

runs.

It can be seen from Fig. 2.7 that the integrated fitness value reaches a plateau

in each simulation with different MOO solution strategies and crossover/mutation

probabilities, which shows the convergence of the proposed algorithm. Based on the

convergence performance of the proposed algorithm, in the following simulations, the

termination condition threshold is set to be 10−5, Nt is set to be 10, and the crossover

probability is 0.7.

The weighted-sum model for the objectives can be the other solution strategy for

the proposed MOO. Because of avoiding the non-dominated sorting, the weighted-sum

MOO strategy requires slightly less computation time in each evolution/generation

than the non-dominated sorting MOO strategy. However, the weighted-sum model

for MOO is deficient in attaining a diverse set of solutions [21]. The final solution by

the weighted-sum MOO is greatly influenced by the selection of the weights in (2.36).

If the user’s preferences change, the EA using the weighted-sum MOO strategy is to
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Figure 2.7: Best weighted-sum fitness: convergence of the proposed algorithm.

run again using the new weighting vector.

Our proposed non-dominated sorting MOO strategy enables the attainment of

a diverse set of mission plans [8]. The final mission plan can be determined by

the weighting vector in decision making, which saves computation time if the user’s

preferences change or multiple mission plans are needed.
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2.6.3 Computation Time

The proposed solution procedure is done offline ahead of the mission. Time is

mainly spent on two parts: initial population generation and multi-objective evo-

lution. Single-period paths are planned by solving a series of OPs in the initial popu-

lation generation. The OP is NP-hard (non-deterministic polynomial-time hard) [30]

and these OPs are solved by heuristic methods [3], as described in Section 2.5.2. The

number of OPs to solve depends on the topology of mission scenario, the capacity of

aircraft and the selection of the time limits T lmt
a . The NSGA-II framework is used to

generate a diverse set of mission plans. The computational complexity of NSGA-II is

O(MN2), where N is the population size and M is the number of objectives [8].

This coverage path planning and scheduling problem is solved using MATLAB on a

CoreTM i7 2.5 GHz CPU with 16 GB RAM. In the above simulation, the population

size is 1024, and the number of objectives is 3. The average computation time of

initial population generation is 44 seconds. Using the non-dominated sorting MOO

strategy, the average computational time of convergence to the final solution by the

evolutionary process is 377 seconds. Using the weighted-sum MOO strategy, the

average computational time of convergence to the final solution by the evolutionary

process is 274 seconds. Note that the proposed algorithm is for offline path planning

and scheduling, therefore the computation time is modest.

2.6.4 Objectives

In order to illustrate the advantage of using both revisit-unrepeated and revisit-total

as objectives, maxP (f1, f2, f3) is compared with maxP (f1, f3) and maxP (f2, f3). The

values of f1, f2 and f3 are evaluated as (2.9), (2.11) and (2.34) respectively, where the
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Table 2.2: Results for the Problem with Different Objective Functions

Objective
function

f1 f2

maxP (f1, f2, f3) 41.4 463.3
maxP (f1, f3) 41.3 398.8
maxP (f2, f3) 32.8 465.7

unit of f3 is hour.

Feasible solutions (f3 = 0) are generated in all cases, because revisit of each

POI within 8 hours is not a strong constraint given the mission scenario. It can

be seen from Table 2.2 that large values of f1 and f2 are attained by the proposed

objectives maxP (f1, f2, f3). However, when maximization of f2 is not used as an

objective, the value of f2 is much smaller than that of maxP (f1, f2, f3). Conversely,

when maximization of f1 is not specified as an objective, the largest f2 is achieved, but

f1 is much smaller than that of maxP (f1, f2, f3). Hence, the multi-objective function

used in this paper guarantees prompt update of information from different POIs and

a large number of covered cells (visited POIs), which in turn makes a persistent and

effective surveillance mission plan.

2.6.5 Mutation Operator

The mutation operator is especially designed for this problem to enable area revisiting

and take-off time scheduling. To illustrate the advantage of the custom mutation

operator, the proposed EA is compared with the following two methods. Method-1 is

an EA based on the proposed framework but without three custom mutation moves.

In Method-2, which is based on the path planning method in [19], a single-period path

is generated for each aircraft, and then this single-period path is copied to generate the
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Table 2.3: Results for the Problem using Different Methods

Method f1 f2
The propose EA 41.4 463.3

Method-1 36.9 365.5
Method-2 22 330

multi-period path with the minimum downtime between two successive single-period

paths. Note that aircraft in the paths generated by Method-2 conducts a search in

strips [19]; revisiting and take-off time scheduling are not enabled in Method-2.

Feasible solutions (f3 = 0) are generated in these experiments. It can be seen from

Table 2.3 that the proposed EA with custom mutation operator achieves the largest

values of f1 and f2 comparing to the other two methods without problem-specific

designs for revisiting and scheduling.

2.6.6 Revisit Violation Handling

Feasible solutions are generated when the requirement of revisit time is 8 hours. In

this simulation, the mission scenario and configuration remain consistent with the

previous ones, except the required revisit time changes to 4 hours. The proposed

algorithm is compared with the following two methods. Method-3 is an EA based on

the proposed framework but without Reschedule and without additional wait time at

bases (aircraft land for the minimum downtime between successive flights). Method-4

is an EA based on the proposed framework but with the objectives maxP (f1, f2), in

which the revisit constraint (2.20) is removed.

The sum of revisit violation time (−f3) in the proposed EA is smaller than that in

Method-3 mainly because the scheduling of take-off time by Reschedule enhances the

temporal cooperation of aircraft so that the take-off time is adjusted to minimize −f3
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Table 2.4: Results for the Problem When the Required Revisit Time is 4 Hours

Method f1 f2 −f3
The propose EA 42.5 445.3 26.3

Method-3 40 441.8 37.4
Method-4 41.4 472.7 107.8

in the proposed algorithm. The comparison between the proposed EA and Method-3

illustrates the advantage of Reschedule designed in the mutation operator. Although

the value of f2 in Method-4 is the greatest among these three experiments, the revisit

violation is much greater than that in the proposed EA. The proposed algorithm

minimizes the sum of revisit violation time when there is no feasible solution w.r.t.

constraint (2.20).

2.6.7 A Real-world Case Study

A more complex surveillance scenario that emerges from a real-world problem is set

up, as shown in Fig. 2.8. Four water areas (circular areas in Fig. 2.8) are the AOIs.

The radiuses of the AOIs are 55 km, 80 km, 110 km, and 55 km. Three aircraft are

scheduled to perform a 48-hour mission. There is one type-1 aircraft and two type-2

aircraft. There is one base station (B1) for type-1 aircraft and two base stations (B2

and B3) for type-2 aircraft. Only one aircraft is assigned to one base station.

For type-1 aircraft, the maximum flight time is 10 hours, the minimum downtime

is 2 hours and the maximum downtime is 3 hours. For type-2 aircraft, the maximum

flight time is 5 hours, the minimum downtime is 1 hour and the maximum downtime

is 1.5 hours. The speed of type-1 aircraft is 749 km/h and that of type-2 aircraft is

666 km/h. Each POI in an AOI must be revisited within 8 hours. Cells are circular

areas with diameter 44 km. AOIs are segmented into 47 cells.

59



Ph.D. Thesis - Y. Wang McMaster University - Electrical & Computer Engineering

AOI1

AOI2 AOI3

AOI4

B2

B3

B1

 105
°
 E  110

°
 E  115

°
 E  120

°
 E 

 10
°
 S 

  5
°
 S 

  0
°

   

500 km

Figure 2.8: The second simulation scenario: locations of AOIs and base stations.

The parameters used in the proposed algorithm are the same as those in Section

2.6.2. The population size is 1024. Feasible solutions (f3 = 0) are generated for this

mission scenario. The values of f1 and f2 in the best mission plan are 29.7 and 899.2,

respectively. The path planning and scheduling takes 1242 seconds on average, based

on the computer hardware described in the first simulation scenario. Note that this

computation is done offline ahead of the missions.

2.7 Conclusions

In this paper, a novel approach was described for the offline mission planning for mul-

tiple aerial vehicles to perform surveillance over disjoint areas. The formulation was
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presented for this multi-period coverage path planning and temporal scheduling prob-

lem, in which repeated visit of the same area in a path was considered. This revisiting

feature is common in surveillance applications, but distinguishes the formulations and

solution techniques of those in the vehicle routing problem and its variations. Objec-

tive functions were developed to promptly update information collected by covering

AOIs and to ensure persistent surveillance. A multi-objective evolutionary algorithm

with a novel chromosome representation and custom genetic operators, which enables

the revisiting of areas and the scheduling of take-off time, was proposed. The pro-

posed algorithm was computationally efficient even in large scale problems and can

be ported to a variety of surveillance coverage problems. Future research will address

additional real-world constraints in airborne surveillance, for example, the selection

and assignment of the base station when aircraft do not have to take off and land

from/at the same base station, the management of sensor cueing along with platform

path planning when sensor look direction can be adjusted.

2.8 Appendix A: No-fly Zone Avoidance

If there exist no-fly zones [9, 11] outside AOIs, they can be handled while generating

single-period paths as follows. Vertices are added on the border or outside but close

to the border of each no-fly zone. A penalty is defined for each edge in addition to

the travel distance:

qij =


−M if the shortest path from vertex i to vertex j across

no-fly zones

0 otherwise

(2.38)
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where M is a very large positive constant. The penalty for each edge is pre-computed

based on whether the edge across no-fly zones or not. This penalty is included in the

objective function of the single-period path planning:

max
xij

∑
i∈S

∑
j∈V

sc(i)xij +
∑
i∈V

∑
j∈V

qijxij (2.39)

Thus, aircraft can bypass no-fly zones in the single-period path. Once the single-

period paths avoid no-fly zones, paths in the mission plan will avoid no-fly zones,

because the genetic operators (Section 2.5.5) remove paths outside AOIs or add path

segments inside AOIs, which will not cross no-fly zones.
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[9] K. Doğançay, “UAV path planning for passive emitter localization,” IEEE Trans-

actions on Aerospace and Electronic Systems, vol. 48, no. 2, pp. 1150–1166, Apr.

2012.

[10] M. Drexl, “Rich vehicle routing in theory and practice,” Logistics Research, vol. 5,

no. 1–2, pp. 47–63, 2012.

[11] H. Ergezer and K. Leblebicioglu, “Path planning for UAVs for maximum in-

formation collection,” IEEE Transactions on Aerospace and Electronic Systems,

vol. 49, no. 1, pp. 502–520, Jan 2013.

[12] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,”

Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1258–1276, 2013.

[13] F. Gavilan, R. Vazquez, and E. F. Camacho, “An iterative model predictive con-

trol algorithm for UAV guidance,” IEEE Transactions on Aerospace and Elec-

tronic Systems, vol. 51, no. 3, pp. 2406–2419, July 2015.

64



Ph.D. Thesis - Y. Wang McMaster University - Electrical & Computer Engineering

[14] D. E. Goldberg, B. Korb, and K. Deb, “Messy genetic algorithms: Motivation,

analysis, and first results,” Complex Systems, vol. 3, pp. 493–530, 1989.

[15] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT

press, 1992.

[16] J. Hu, L. Xie, J. Xu, and Z. Xu, “Multi-agent cooperative target search,” Sensors,

vol. 14, no. 6, pp. 9408–9428, 2014.

[17] H. Jain and K. Deb, “An evolutionary many-objective optimization algorithm

using reference-point based nondominated sorting approach, Part II: Handling

constraints and extending to an adaptive approach,” IEEE Transactions on Evo-

lutionary Computation, vol. 18, no. 4, pp. 602–622, Aug. 2014.

[18] P. J. Jones, “Cooperative area surveillance strategies using multiple unmanned

systems,” Ph.D. dissertation, School of Elect. & Comp. Eng., Georgia Tech,

Atlanta, GA, 2009.

[19] O. Karasakal, “Minisum and maximin aerial surveillance over disjoint rectan-

gles,” TOP, vol. 24, no. 3, pp. 705–724, 2016.

[20] S. M. LaValle, Planning Algorithms. New York, NY, USA: Cambridge University

Press, 2006.

[21] R. T. Marler and J. S. Arora, “The weighted sum method for multi-objective opti-

mization: New insights,” Structural and Multidisciplinary Optimization, vol. 41,

no. 6, pp. 853–862, 2010.

65



Ph.D. Thesis - Y. Wang McMaster University - Electrical & Computer Engineering

[22] C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer programming formulation

of traveling salesman problems,” Journal of the ACM, vol. 7, no. 4, pp. 326–329,

Oct. 1960.

[23] A. Moitra, R. Mattheyses, V. DiDomizio, L. Hoebel, R. Szczerba, and B. Yam-

rom, “Multivehicle reconnaissance route and sensor planning,” IEEE Transac-

tions on Aerospace and Electronic Systems, vol. 39, no. 3, pp. 799–812, July

2003.

[24] J. R. Montoya-Torres, J. L. Franco, S. N. Isaza, H. F. Jiménez, and N. Herazo-

Padilla, “A literature review on the vehicle routing problem with multiple de-

pots,” Computers & Industrial Engineering, vol. 79, pp. 115–129, 2015.

[25] R. Pitre, X. Li, and R. Delbalzo, “UAV route planning for joint search and track

missions—An information-value approach,” IEEE Transactions on Aerospace

and Electronic Systems, vol. 48, no. 3, pp. 2551–2565, July 2012.

[26] S. Ragi and E. K. P. Chong, “UAV path planning in a dynamic environment via

partially observable Markov decision process,” IEEE Transactions on Aerospace

and Electronic Systems, vol. 49, no. 4, pp. 2397–2412, Oct. 2013.

[27] T. Sawik, “A note on the Miller-Tucker-Zemlin model for the asymmetric trav-

eling salesman problem,” Bulletin of the Polish Academy of Sciences Technical

Sciences, vol. 64, no. 3, pp. 517–520, 2016.

[28] B. D. Song, J. Kim, and J. R. Morrison, “Rolling horizon path planning of an

66



Ph.D. Thesis - Y. Wang McMaster University - Electrical & Computer Engineering

autonomous system of UAVs for persistent cooperative service: MILP formula-

tion and efficient heuristics,” Journal of Intelligent & Robotic Systems, vol. 84,

no. 1, pp. 241–258, 2016.

[29] K. Tan, T. Lee, K. Ou, and L. Lee, “A messy genetic algorithm for the ve-

hicle routing problem with time window constraints,” Proceedings of the 2001

Congress on Evolutionary Computation, vol. 1, pp. 679–686, 2002.

[30] H. Tang and E. Miller-Hooks, “A tabu search heuristic for the team orienteering

problem,” Computers & Operations Research, vol. 32, no. 6, pp. 1379–1407, June

2005.

[31] P. Toth and D. Vigo, Eds., The Vehicle Routing Problem. Philadelphia, PA,

USA: Society for Industrial and Applied Mathematics, 2001.

[32] F. Tricoire, M. Romauch, K. F. Doerner, and R. F. Hartl, “Heuristics for the

multi-period orienteering problem with multiple time windows,” Computers &

Operations Research, vol. 37, no. 2, pp. 351–367, 2010.

[33] G.-H. Tzeng and J.-J. Huang, Multiple Attribute Decision Making: Methods and

Applications. Boca Raton, FL: CRC press, Taylor & Francis Group, 2011.

[34] P. Vansteenwegen, W. Souffriau, and D. V. Oudheusden, “The orienteering prob-

lem: A survey,” European Journal of Operational Research, vol. 209, no. 1, pp.

1–10, 2011.

[35] T. Vidal, T. G. Crainic, M. Gendreau, N. Lahrichi, and W. Rei, “A hybrid genetic

algorithm for multi-depot and periodic vehicle routing problems,” Operations

Research, vol. 60, no. 3, pp. 611–624, May 2012.

67



Ph.D. Thesis - Y. Wang McMaster University - Electrical & Computer Engineering

The following chapter is a reproduction of a peer-reviewed article submitted to the

IEEE:

Yinghui Wang, R. Tharmarasa, T. Kirubarajan, Bumsoo Kim, Rahim Jassemi-Zargani

Multisensor Joint Path Planning and Scanning for Mobile 3D Search-and-Track, Sub-

mitted to IEEE Transactions on Aerospace and Electronic Systems, June 2018.

In reference to IEEE copyrighted material which is used with permission in this

thesis, the IEEE does not endorse any of McMaster University’s products or services.

Internal or personal use of this material is permitted. If interested in reprinting

republishing IEEE copyrighted material for advertising or promotional purposes or

for creating new collective works for resale or redistribution, please go to https://

www.ieee.org/publications/rights/index.html to learn how to obtain a License

from RightsLink.

68



Chapter 3

Multisensor Joint Path Planning

and Scanning for Mobile 3D

Search-and-Track

3.1 Abstract

In this paper we propose a joint path planning and scanning (JPPS) solution for a fleet

of unmanned aerial vehicles (UAVs) equipped with a set of sensors and cooperatively

carrying out search-and-track (SAT) in a three-dimensional (3D) space with a number

of targets. The 3D search space can be a mobile object with a large volume, which

is modeled as a cuboid and tracked, followed and scanned by the UAVs. This search

space is divided into a number of small cubes and it is assumed that the sensor on each

UAV scans a fixed number of such cubes in each period of its operation. To provide

insights for 3D path planning and scanning, the optimal 3D sensor geometry for target

localization is analyzed with the objective to minimize the estimation uncertainty
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under constraints on sensor altitude, sensor-to-sensor and sensor-to-target distances

for active and passive sensors, respectively. For the 3D SAT mission, the objective

function incorporates information from the search space centroid, detected targets as

well as possible information from the yet-to-be-detected targets, which are included in

the form of possible targets in the cubes. It is required that sensors cooperatively scan

cubes and track detected targets from different angles to decrease the miss detection

probability and enhance the tracking performance. In computing the information for a

particular sensor-target geometry, the target detection probabilities, UAV kinematic,

communication connectivity, collision and target fire avoidance are jointly considered.

A weighted-sum multiobjective mixed-integer nonlinear optimization is formulated

and a solution technique based on genetic algorithm is applied to determine the

scan regions and path selection simultaneously. In the simulations, the proposed

algorithm is compared with two independent path planning and scanning solution

methods, which use pre-defined 3D search patterns for scanning and solve a nonlinear

programming problem for path planning. The proposed JPPS algorithm outperforms

the decoupled methods in terms of the overall SAT performance.

3.2 Introduction

In recent years, UAVs have been widely employed in civil and military applications

such as search and rescue, environmental monitoring and battlefield surveillance.

With the advent of affordable UAV systems, a cooperative group of small UAVs

becomes a major contributor to intelligent and effective data collection. Moreover,

modern sensor suites mounted on UAVs enable salient features of the target to be

closely monitored and inspected. For example, it is possible to use a fleet of UAVs
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to address threats associated with cargo-container-borne dangerous materials, which

moves the scanning, detection and intervention away from the Customs area at a

coastal port city to water areas far from the shore [10].

Considerable effort has been dedicated to UAV path planning for target searching.

Pattern templates such as a ladder pattern are commonly used in search missions [1],

in which the environment is always a bounded region either with or without obstacles

or forbidden regions inside. The surveillance region is often divided into cells and each

cell is associated with a probability or confidence of target existence, which constitutes

a probability map for the region [4]. A vision-based cooperative search path planning

algorithm, which optimizes the collective coverage area and the detection performance

using a probability map update model, is proposed in [16].

The objective function in optimal sensor placement can be applied to optimal

path planning and the analytical solutions for optimal sensor-to-target geometries

reveal important insights into path planning for target tracking [22, 35]. The optimal

geometries for a two-dimensional (2D) time-of-arrival (TOA) localization configura-

tion is analyzed and the UAV path planning, which is based on minimizing the area

of estimation confidence region, is simulated in [22]. Similarly, based on the Fisher

information matrix (FIM), the UAV path planning for passive emitter localization in

a 2D environment is presented in [9], where angle-of-arrival (AOA), time-difference-

of-arrival (TDOA) and scan-based localization are considered.

In SAT missions, the goal is not only to find or detect targets, but also to track

them for the remainder of the mission. A decentralized cooperative control algorithm,

which maximizes the information gathered from an environment and decides the next

area to scan by predicting how much information can be gained by searching that area,
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is proposed in [27] for multiple cooperative UAVs to track detected targets as well as

to search for the undetected ones. An information-based objective function, which

integrates the conflicting objectives of target detection, target tracking and vehicle

survivability into a single scalar index, is presented for UAV path optimization in

[23].

Although optimal path planning has received considerable attention for detec-

tion, localization and tracking, existing algorithms are still limited regarding the

assumptions about the environment, search space and sensing capability. A number

of optimal sensor placement and path planning algorithms are developed in 2D space

without extending to 3D scenarios [22, 23, 27]. Although 3D sensing model and 3D

UAV dynamics are considered in [16], the search area is a 2D plane. Recently, a com-

prehensive analysis of optimal sensor-to-target geometries is provided in [35] for 3D

AOA target localization with no restriction on the number of sensors. However, it fails

to consider that the sensor placement region is always constrained in real applications.

For example, in an airborne sensor placement scenario, the target is on the ground

and the sensor altitude has an upper bound smaller than the sensor-to-target safety

distance. Therefore, the sensor cannot be placed right above the target (i.e., elevation

at π/2). Hence, it is worth studying the optimal sensor geometry and path planning

under constraints on sensor altitude, sensor-to-sensor distance and sensor-to-target

distance in 3D.

In SAT missions, the region of interest is usually assumed to be known and sta-

tionary [16, 27]. However, there are cases that the search space itself can be viewed

as a mobile target, e.g., the search space may be a container ship and targets to be

searched and tracked are concealed onboard [10]. Note that the path planning for
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SAT missions in a mobile search space has not been investigated in the literature to

the best of our knowledge. Search-and-track of a mobile space leads to the problem of

tracking the search space, determining regions to scan and tracking detected targets.

In this paper, we consider an SAT scenario where the 3D mobile search space is

to be tracked, followed and scanned, with possible targets within this space are to

be searched and detected targets tracked. Two sensors on each UAV are used: one

sensor (referred to as S1) tracks the surveillance space centroid, while the other sensor

(referred to as S2) searches for possible targets and tracks detected targets within the

search space. To inspect and monitor the surveillance space from different angles, as

well as to avoid missed detections and to enhance tracking performance, at least two

UAVs with sensor S2 are required to scan the same cubes or track detected targets

cooperatively. The UAVs exchange the information about scanned cubes, obtained

tracks and their current kinematic states.

The optimal 3D sensor placement for target localization by cooperative UAVs is

analyzed to provide useful insights for path planning and scanning in this 3D SAT

missions. Both active sensors with range, azimuth and elevation measurements (for

short, active sensors) and passive sensors with AOA (i.e., azimuth and elevation)

measurements (for short, passive sensors) are investigated [5]. These two sensor

modes can be used for both sensors S1 and S2.

The objective function of optimal sensor placement minimizes the trace of Cramér-

Rao lower bound (CRLB), which is defined as the inverse of the FIM and provides

a mean square error bound on the performance of any unbiased estimator of an

unknown parameter vector [2, 12, 35]. The bound is referred to as the posterior CRLB

(PCRLB) if this parameter vector is stochastic [12], which is used for the optimal
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path planning in this paper. The PCRLB gives a measure of the achievable optimum

performance and this bound can be calculated predictively [13, 29]. Constraints, such

as the maximum and minimum sensor altitude, minimum sensor-to-target distance

for safety issues, maximum sensor-to-sensor distance for communication connectivity,

and minimum sensor-to-sensor distance for collision avoidance, are considered for

the optimal sensor configuration. Meanwhile, the UAV dynamics is added to the

constraints in path planning.

When the optimal 3D sensor geometries for target localization under the above-

mentioned constraints are known, the target tracking performance by UAVs can be

roughly known by looking at the relative geometry relationship among the UAVs and

the target. The optimal 3D sensor geometries provide an evaluation benchmark for

online path planning: the UAVs should form a geometry similar to the optimal one

while tracking the target. Additionally, with the optimal 3D sensor geometries, the

following can be achieved in the SAT missions. When the target (e.g., the surveil-

lance space centroid) state estimation is known, the best initial locations for UAVs,

for example, the base stations where the UAVs take off, can be selected based on

the optimal sensor geometry and the predicted target position. When the UAVs are

approaching the surveillance space centroid but not close enough to inspect the space,

they can fly to the positions which form the optimal sensor geometry with respect to

(w.r.t.) the surveillance space centroid without applying a step-by-step online path

planning but a simple geometry computation based on the predicted target position

and the known optimal sensor-to-sensor and sensor-to-target geometry. Therefore,

the optimal 3D sensor geometries for target localization provide useful insights for

path planning and scanning in this 3D SAT missions.
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For the SAT mission, a JPPS strategy based on genetic algorithm (GA) [14] is

developed to solve a receding horizon optimization problem [30, 23]. This proposed

algorithm selects paths and determines cubes to scan for all sensors by maximizing

the predictive information in the Fisher sense from 1) the surveillance space centroid,

2) detected targets, and 3) the yet-to-be-detected targets, which are included in the

form of possible targets in the cubes [27]. The above three objectives are integrated

into one single metric by a weighted-sum model [33].

The proposed JPPS is compared with an approach that takes the decisions on

path selection and cubes to scan independently. Three-dimensional search patterns,

which consider the coverage induced by the sensor look direction and the coverage

induced by the sensing platform movement jointly, are used.

This paper makes the following contributions:

1) A comprehensive analysis of optimal 3D sensor configuration and path planning

for target localization by cooperative sensors from different angles with restrictions

on the sensor altitude, sensor-to-sensor and sensor-to-target distance is provided for

active and passive sensors. Different constraints on sensor placement are given based

on real-world applications. The optimization problem is formulated to minimize the

trace of the inverse of FIM and is solved by interior point methods. Extensive exam-

ples of the optimal sensor geometry and path planning for 3D localization are shown

in the simulation studies.

2) A weighted-sum multiobjective optimization formulation for 3D mobile surveil-

lance space search-and-track, which integrates the tracking performance of the search

space, detected targets within this space as well as the yet-to-be-detected targets by

different sensors, is presented. Note that the search space is a 3D volume and mobile,
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which distinguishes our problem and the proposed JPPS strategy from those ap-

proaches for 2D search-and-track within the fixed surveillance region. Cubes to scan

and path selection for the future time steps are determined jointly by the JPPS. Mean-

while, cooperative 3D path planning with constraints is considered in our approach.

A JPPS solution technique based on genetic algorithm, which requires modest com-

putational resources and outperforms the independent path planning and scanning

methods, is developed.

The remainder of the paper is structured as follows. The optimal 3D sensor

geometries with constraints are formulated for active and passive modes in Section 3.3.

Section 3.4 presents the optimization formulation for this cooperative SAT problem

in a 3D mobile surveillance space. The solution technique is developed in Section 3.5.

Optimal sensor configurations and illustrative numerical examples are presented for

target localization in Section 3.6. Simulation results on path planning and scanning

are given for the proposed JPPS in Section 3.7. The conclusions are discussed in

Section 3.8.

3.3 Optimal Sensor Placement with Constraints

for 3D Localization

Consider the 3D localization problem where the target at a fixed location p = [x, y, z]ᵀ

is to be located by Ns sensors at si = [xi, yi, zi]
ᵀ, i = 1, 2, . . . , Ns, where ᵀ denotes

matrix transpose. With no loss of generality, the target is assumed to be at the origin

of the Cartesian coordinate system, i.e., p = [0, 0, 0]ᵀ. Sensors in passive and active

modes are investigated.
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Figure 3.1: 3D localization using range, azimuth and elevation.

3.3.1 Passive Sensors with AOA Measurements

In 3D AOA localization, the target location p is estimated from azimuth and eleva-

tion angular measurements {θi, φi} [35, 9]. These measurements are assumed to be

corrupted by additive white Gaussian noise with zero mean

θ̃i = θi + ni, ni ∼ N (0, σ2
i ), (3.1)

φ̃i = φi + ei, ei ∼ N (0, γ2i ), (3.2)

where −π < θ̃i ≤ π, −π/2 < φ̃i < π/2, σ2
i and γ2i are sensor-dependent noise

variances.

The azimuth and elevation angles of the target collected by sensor i are

θi = tan−1
y − yi
x− xi

(3.3)

and

φi = sin−1
z − zi
‖p− si‖

, (3.4)
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respectively, where tan−1 is the 4-quadrant arctangent, ‖·‖ denotes the Euclidean

norm, and di = ‖p− si‖ is the sensor-to-target distance.

Under the Gaussian noise assumption, the FIM for the 3D AOA localization is

[35]

ΦP =JTP Σ−1P JP (3.5a)

=
Ns∑
i=1

1

d2iσ
2
i cos2 φi

uiu
ᵀ
i︸ ︷︷ ︸

Φ1

+
Ns∑
i=1

1

d2i γ
2
viv

ᵀ
i︸ ︷︷ ︸

Φ2

, (3.5b)

where JP is the Jacobian of AOA measurement errors evaluated at the true target

location, ΣP is the AOA sensor measurement covariance matrix, ui is the unit vector

orthogonal to the 2D azimuth vector, vi is the unit vector orthogonal to the 3D range

vector

ui =


− sin θi

cos θi

0

 , vi =


− sinφi cos θi

− sinφi sin θi

cosφi

 . (3.6)

In (3.5), the matrix Φ1 represents the azimuth angle FIM as it corresponds to the

2D projection of the localization problem onto the xy-plane

Φ1 =
Ns∑
i=1

1

d2iσ
2
i cos2 φi


sin2 θi −1

2
sin 2θi 0

−1
2

sin 2θi cos2 θi 0

0 0 0

 . (3.7)

Note that a constraint that φi 6= ±90◦ comes with (3.7). The azimuth angle is not

available for a sensor right above or under the target. The matrix Φ2 in (3.5) is the
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elevation angle FIM, which can be expanded as

Φ2 =
Ns∑
i=1

1

d2i γ
2
i


sin2 φi cos2 θi

1
2

sin2 φi sin 2θi −1
2

sin 2φi cos θi

1
2

sin2 φi sin 2θi sin2 θi sin
2 θi −1

2
sin 2φi sin θi

−1
2

sin 2φi cos θi −1
2

sin 2φi sin θi cos2 φi

 . (3.8)

3.3.2 Active Sensors with Range and Angular Measurements

In addition to AOA measurements as in (3.3) and (3.4), sensor-to-target distance is

observed for sensors in active mode

di = ‖p− si‖ . (3.9)

The range measurement is assumed to be corrupted by additive white Gaussian noise

with zero mean

d̃i = di +mi, mi ∼ N (0, η2i ), (3.10)

where η2i is the sensor-dependent noise variance.

Under the Gaussian noise assumption, the FIM for the 3D target localization

problem with measurements {di, θi, φi} is

ΦA =JTAΣ−1A JA (3.11a)

=Φ1 + Φ2 +
N∑
i=1

1

η2i
qiq

ᵀ
i︸ ︷︷ ︸

Φ3

, (3.11b)

where JA is the Jacobian of range, azimuth and elevation measurement errors eval-

uated at the true target location, ΣA is the sensor measurement covariance matrix,
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and qi is the 3D range vector

qi =


cosφi cos θi

cosφi sin θi

sinφi

 . (3.12)

The matrix Φ3 is the range FIM, which can be expanded as

Φ3 =
Ns∑
i=1

1

η2i


cos2 φi cos2 θi

1
2

cos2 φi sin 2θi
1
2

sin 2φi cos θi

1
2

cos2 φi sin 2θi cos2 θi sin
2 θi

1
2

sin 2φi sin θi

1
2

sin 2φi cos θi
1
2

sin 2φi sin θi sin2 φi

 . (3.13)

3.3.3 Objective Function for Optimal Sensor Placement

In this paper, minimizing the trace of the inverse of FIM is used as the objective

function for localization [35, 9]. It is assumed that sensors on different UAVs have

the same working mode and parameters. The FIM is denoted as Φ, which can be ΦP

in (3.5) or ΦA in (3.11), respectively. Minimizing the objective function is given by

min tr(Φ−1). (3.14)

Note that the objective can also be expressed as maximizing the trace of Φ, i.e.,

max tr(Φ) [23]. Here, minimization is used to be consistent with most (constrained)

nonlinear programming solvers [31, 32].

The optimal sensor position for 3D AOA target localization has been researched

in [35] with no restriction on the number of sensors. The optimal sensor position is

determined by reducing ΦP to a diagonal matrix: both Φ1 and Φ2 are diagonal [35].
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From (3.7), (3.8) and (3.13), we can see that, when Φ1 and Φ2 are diagonal, Φ3 is

also diagonal. Therefore, given the sensor-to-target distance di and noise standard

deviations, the angle configurations in [35] can be applied to active sensors with

range and angular measurements. However, the constraints on sensor placement

region, sensor-to-target distance and sensor-to-sensor distance are not included in

[35], which are necessary for real applications. In the following, constraints for sensor

placement are explicitly discussed.

3.3.4 Constraints for Optimal Sensor Placement

Restricted by the motion capability of the sensing platform, the sensor is constrained

by a minimum altitude hmin
i and a maximum altitude hmax

i .

hmin
i ≤ zi ≤ hmax

i , i = 1, 2, ..., Ns. (3.15)

In some cases, under the constraint of (3.15), all sensors or a subset of them must

be at the same altitude.

zi = zj, i, j ∈ {1, 2, ..., Ns} , i 6= j. (3.16)

Constraint (3.16) is a special case of (3.15) when hmin
i = hmax

i = hmin
j = hmax

j .

A minimum sensor-to-target distance ds-p is required for safety reasons, for exam-

ple, to avoid possible fire from the target.

di ≥ ds-p, i = 1, 2, ..., Ns. (3.17)
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A minimum sensor-to-sensor distance dmin
s-s can be placed for collision avoidance.

‖si − sj‖ ≥ dmin
s-s , i, j ∈ {1, 2, ..., Ns} , i 6= j. (3.18)

A maximum sensor-to-sensor distance dmax
s-s is enforced for communication connec-

tivity.

‖si − sj‖ ≤ dmax
s-s , i, j ∈ {1, 2, ..., Ns} , i 6= j. (3.19)

The above constraints can be used alone or in combination. The problem of (3.14)

under the constraints from (3.15) to (3.19) is a constrained nonlinear optimization,

which can be solved by interior point methods [32]. There are many solvers available

for constrained nonlinear optimization [7, 31, 32]. Methods to solve optimal sensor

placement is not the focus of this paper. The optimal sensor configurations and

illustrative numerical examples are provided in Section 3.6.

3.4 Path Planning and Scanning for Mobile 3D

SAT

3.4.1 Problem Description

The surveillance space is a large 3D volume with known dimensional information,

which is modeled as a cuboid with a fixed length, width and height. The search space

can be stationary or mobile, with its centroid being tracked by sensor S1 and the

entire space being scanned by sensor S2. No obstacle is assumed inside or out of the

search space. The search space is divided into a number of small cubes with a fixed
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length, as shown in Fig. 3.2.

It is assumed that the sensor S2 on each UAV can scan M such small cubes around

the predicted positions of possible targets in each period of its operation by changing

the look direction [28, 33]. The UAVs have already formed into groups before the SAT

mission and the UAVs in the same group scan the same cubes and track the same

detected targets using sensor S2. The number of UAVs is Ns, the number of groups

is Ng and the number of UAVs in the gth group is N g
s , where

∑Ng
g=1N

g
s = Ns. There

is an unknown number of targets within the search space, which can be stationary

or mobile w.r.t. the coordination of the search space. Undetected targets are to be

searched and detected targets are to be tracked. The SAT mission ends when the

surveillance space has been scanned for Nend times, Nend ≥ 1.

UAVs are required to efficiently and cooperatively gather information from the

surveillance space centroid, detected targets as well as possible information from

the yet-to-be-detected targets, which are included in the form of possible targets in

the cubes. The information obtained from sensors S1 and S2 is maximized as in

[27, 23], where the trace of the PCRLB is evaluated [29]. The centroid of each cube,

whose location can be computed based on the dimensions of the search space and

the estimated location of search space centroid, is used to guide sensor S2’s look

direction on each UAV. Paths are selected and scan decisions are made to achieve

the optimal SAT performance given the estimated states of search space centroid,

detected targets, unscanned cubes, and the states of the UAVs.
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UAV 1

UAV 3

Search space

Targets

Cubes

UAV 2

Figure 3.2: An illustration of the 3D search space, cubes and detected targets for
SAT by three UAVs.

3.4.2 UAV Kinematic Model

The UAV path planning is constrained by the UAV kinematic capabilities. For exam-

ple, in the horizontal plane, a fan-shaped flyable area can be formed for a UAV due

to the constraints on its turning capability [17]. Different UAV kinematic models can

be found in UAV path planning literature: in [25], it is assumed that UAVs can move

in any direction with unit velocity; in [16], the UAV motion model only deals with

the waypoints of agents at discrete-time steps and the true dynamics of UAVs are not

discussed; in [17], UAVs move along continuous trajectories with constant speed and

constraints on turning; in [24], the altitude of a UAV is a constant and the control

variables are the forward acceleration and the bank angle. Note that the above UAV

kinematic models only consider motion in the 2D plane.

In this paper, the 3D discrete time airplane model from [11] is used for UAVs. The

UAV airspeed is assumed to be a constant V . The path planning decision variables
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Figure 3.3: UAV kinematic model.

for the ith UAV at time k are the bank angle ϑi(k) and the flight path angle ψi(k).

The heading angle of the ith UAV at time k is expressed as χi(k) and the location

is si(k) = [xi(k), yi(k), zi(k)]ᵀ. Under the assumption of constant V , ϑi(k) and ψi(k)

during the time interval from time k to k + 1, the heading angle at time k + 1 is

χi(k + 1) =
gT tan (ϑi(k))

V
+ χi(k), (3.20)

where g is the acceleration due to gravity and T is the length of the time interval.

For formula compactness, let

κi(k) =
gT tan (ϑi(k))

V
. (3.21)

The UAV waypoint update is modelled as [11]

si(k + 1) = si(k)+
V T
κi(k)

cos (ψi(k)) [sin(κi(k) + χi(k))− sin(χi(k))]

V T
κi(k)

cos (ψi(k)) [cos(χi(k))− cos(κi(k) + χi(k))]

V T sin (ψi(k))

 .
(3.22)
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In this manner, the future state [si(k + 1), χi(k + 1)]ᵀ of the ith UAV can be predicted

based on its previous state and the present control inputs [ϑi(k), ψi(k)]ᵀ.

The bank angle ϑi(k) and the flight path angle ψi(k) satisfy the following con-

straints

|ϑi(k)| ≤ Θ, ∀i ∈ {1, 2, ..., Ns} , (3.23)

|ψi(k)| ≤ Ψ, ∀i ∈ {1, 2, ..., Ns} , (3.24)

where Θ is the maximum bank angle and Ψ is the maximum flight path angle. Note

that the rate of turn and radius of turn are constrained given (3.23).

3.4.3 Objectives for Path Planning and Scanning

The computation of the kinematic information matrix follows [29]. The objective

function is the combination of information gathered on three aspects: surveillance

space centroid, detected targets and possible information from cubes, which may

contain possible targets. The UAV path planning (geometries of UAVs) affects the

tracking performance of the search space centroid; the path selection and the scan

decision jointly affect the tracking performance of the detected targets and the infor-

mation gathered from cubes.

Let o represent the search space centroid, C denote the set of cubes, and D(k)

stand for the set of detected targets. It is assumed that the detected targets are

widely-separated targets.

For the search space centroid o, the information by sensor S1 on the ith UAV at
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time k can be expressed as [29]

Φi,o(k) = E
[
J ik,1(o)

TQo
k,1(i)Σ

−1
k,1J

i
k,1(o)

]
,

i ∈ {1, 2, . . . , Ns} ,
(3.25)

where Qo
k,1(i) is the Information Reduction Matrix (IRM) of sensor S1 on the ith

UAV, J ik,1(o) is the Jacobian of measurement errors evaluated at the state of o by

sensor S1, Σk,1 is sensor S1’s measurement covariance matrix, and E denotes the

expectation operator.

Similarly, for a target t ∈ D(k), the information by sensor S2 on the ith UAV at

time k can be expressed as

Φi,t(k) = E
[
J ik,2(t)

TQt
k,2(i)Σ

−1
k,2J

i
k,2(t)

]
,

i ∈ {1, 2, . . . , Ns} .
(3.26)

where Qt
k,2(i) is the IRM of sensor S2 on the ith UAV, J ik,2(t) is the Jacobian of

measurement errors evaluated at the state of t by sensor S2, and Σk,2 is sensor S2’s

measurement covariance matrix.

For possible targets inside the τth cube, τ ∈ C, the information is

Φi,τ (k) = E
[
J ik,2(τ)TQτ

k,2(i)Σ
−1
k,2J

i
k,2(τ)

]
,

i ∈ {1, 2, . . . , Ns} .
(3.27)

where Qτ
k,2(i) is the IRM of sensor S2 on the ith UAV, J ik,2(τ) is the Jacobian of mea-

surement errors evaluated at the location of cube τ by sensor S2. Formulations (3.25)

to (3.27) can be used for passive or active sensor mode. For a detailed explanation of
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IRM calculations, the reader is referred to [29].

The search space centroid o is always tracked by sensor S1. However, sensor S2

has a limited scan capability: scan decision is made at each UAV among all the cubes

and detected targets. Define a scan decision variable αi,τ (k)

αi,τ (k) =


1 if sensor S2 on UAV i will scan cube τ at time k + 1

0 otherwise

, (3.28)

where τ ∈ C and i ∈ {1, 2, . . . , Ns}. Similarly, define a scan decision variable βi,t(k)

βi,t(k) =


1 if sensor S2 on UAV i will scan detected target t at time

k + 1

0 otherwise

, (3.29)

where t ∈D(k) and i ∈ {1, 2, . . . , Ns}.

Sensor S2 on UAV i is able to scan M cubes or detected targets each time, which

is a constraint on scan decision vairables. That is,

∑
τ∈C

αi,τ (k) +
∑
t∈D(k)

βi,t(k) = M, ∀i ∈ {1, 2, . . . , Ns} . (3.30)

The UAVs in the same group scan the same cubes and detected targets coopera-

tively

αi,τ (k) = αj,τ (k), βi,t(k) = βj,t(k),

∀i, j ∈ {1, 2, . . . , N g
s } , i 6= j, ∀g ∈ {1, 2, . . . , Ng} .

(3.31)
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The total number of scanned cubes and detected targets in the kth step is

Ns∑
i=1

∑
τ∈C

αi,τ (k) +
∑
t∈D(k)

βi,t(k)

 = MNg. (3.32)

An importance factor δτ (k) is defined for each cube [23]. This importance factor

is a design parameter that is necessary for scan decision, because all cubes are not

equally important as the SAT mission evolves. The importance factor depends on

whether the cube is recently scanned: for example, a cube may be less valuable if it

has been scanned recently. The most recent time that the τth cube being scanned

can be denoted as

kτ = max {k′|αi,τ (k′) == 1, k′ = 1, 2, ..., k} . (3.33)

This importance factor δτ (k) can be formulated as a function of (k − kτ ).

Similarly, an importance factor ρt(k) is defined for each detected target. This

importance factor depends on the uncertainty about the state of the detected target

and/or the specific measurement from the detected target if additional classification

sensors/methods are used on the UAV. For example, a target with a large uncertainty

region may be more valuable; a target with unique features may be more important;

an evasive target may be more important than a stationary one w.r.t. the coordinate

of the search space [23].

The above importance factors are updated after searching and tracking the cubes

and detected targets at each time step. Therefore, δτ (k) and ρt(k) are used for time

k + 1.

The predictive information from the search space centroid by sensor S1 at time k

89



Ph.D. Thesis - Y. Wang McMaster University - Electrical & Computer Engineering

is defined as [13]

Go(k) = E

[
Ns∑
i=1

tr(Φ̃i,o(k + 1))

]
, (3.34)

where Φ̃i,o(k + 1) is the predicted information given the current states of UAVs and

current state of the search space centroid.

The predictive information from cubes by sensor S2 at time k is defined as

Gc(k) = E

[
Ns∑
i=1

∑
τ∈C

αi,τ (k)δτ (k)tr(Φ̃i,τ (k + 1))

]
. (3.35)

The predictive information from detected targets by sensor S2 at time k is

Gd(k) = E

 Ns∑
i=1

∑
t∈D(k)

βi,t(k)ρt(k)tr(Φ̃i,t(k + 1))

 . (3.36)

The objective function for the JPPS at time k is defined as

G(k) = w(k)ᵀ


Go(k)

Gc(k)

Gd(k)

 , (3.37)

where w(k) is the weighting vector at time k. Details about w(k) will be discussed

at the end of this section.

At time k, based on the state of UAVs, the estimated search space centroid, the

estimated states of detected targets, and the approximate locations of cubes, the path

planning and scanning for the next time step k + 1 is made

arg{ϑi(k),ψi(k),αi,τ (k),βi,t(k)} maxG(k),
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∀ i ∈ {1, 2, . . . , Ns} , τ ∈ C, t ∈D(k). (3.38)

Note that here we use the maximization of the trace of the information matrix rather

than minimizing the trace of information matrix inverse for consistency with our GA

based solution technique, because the fitness function is always maximized in GA

[30, 33]. The path planning is constrained by the UAV kinematic constraints (3.23)

and (3.24). Additionally, UAV path planning can be constrained by one or more

constraints from (3.15) to (3.19). The scan decision is constrained by (3.30) and

(3.31).

To guarantee a feasible solution, constraints (3.15) to (3.19) are transformed into

penalty functions and included in the objective function [15].

The penalty function of constraint (3.15) is expressed as

P1(k) =− U
Ns∑
i=1

[
max

(
hmin
i − z̃i(k + 1), 0

)
+ max (z̃i(k + 1)− hmax

i , 0)] ,

(3.39)

where U is a very large positive constant and z̃i(k+1) is the predicted altitude for the

ith UAV according to the path selection decision variables. Since constraint (3.16)

is a special case of constraint (3.15), the penalty function of constraint (3.16) shares

the same formula with that of (3.15).

The penalty function of constraint (3.17) is expressed as

P2(k) = −U
Ns∑
i=1

[
max

(
ds-p − d̃i(k + 1), 0

)]
, (3.40)

where d̃i(k + 1) is the predicted sensor-to-target distance given the path selection
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decision variables and the predicted target location.

The penalty function of constraint (3.18) is expressed as

P3(k) = −U
Ns∑
i=1

Ns∑
j=1
i 6=j

[
max

(
dmin
s-s − ‖s̃i(k + 1)− s̃j(k + 1)‖ , 0

)]
, (3.41)

where s̃i(k+1) is the predicted location of UAV i at time k+1 given the path selection

decision variables.

The penalty function of constraint (3.19) is expressed as

P4(k) = −U
Ns∑
i=1

Ns∑
j=1
i 6=j

[max (‖s̃i(k + 1)− s̃j(k + 1)‖ − dmax
s-s , 0)] . (3.42)

Define a vector of binary variables b = [b1, b2, b3, b4]
ᵀ, which indicates whether

a constraint from (3.15) to (3.19) is included in the objective function or not. For

example, b = [1, 0, 0, 0]ᵀ means only the altitudes of UAVs are constrained.

After adding the penalty functions, the objective function is expressed as

F(k) = G(k) + bᵀ
[
P1(k),P2(k),P3(k),P4(k)

]ᵀ
. (3.43)

The optimization formulation is maxF(k).

In this paper, the weighting vector in (3.37) is formulated as

w(k) =

[
wo(k)

Ḡo(k)
,
wc(k)

Ḡc(k)
,
wd(k)

Ḡd(k)

]ᵀ
, (3.44)
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where

Ḡo(k) = E

[
Ns∑
i=1

tr(Φi,o(k))

]
, (3.45)

Ḡc(k) = E

[
Ns∑
i=1

∑
τ∈C

αi,τ (k − 1)δτ (k − 1)tr(Φi,τ (k))

]
, (3.46)

Ḡd(k) = E

 Ns∑
i=1

∑
t∈D(k)

βi,t(k − 1)ρt(k − 1)tr(Φi,t(k))

 , (3.47)

which are the informations gathered based on current UAV positions, measurements

and importance factors, respectively. The values in the denominator in (3.44) scale

the predictive information.

By changing the values in w(k), different objectives can be emphasized based on

mission preference, the detection and tracking results of the search space centroid and

detected targets, as well as on the scan results of cubes. For example, more weight

wc(k) can be put onto Gc(k) if UAVs scan the space but detect no target; more weight

wd(k) can be put onto Gd(k) if all cubes are scanned at least once and some targets

are detected; more weight wo(k) can be put on Go(k) if the uncertainty about the

state of search space centroid is large. If no target is detected (i.e., Ḡd(k) does not

exist), the corresponding weight is configured as zero.

3.4.4 Receding Horizon Control

The above path planning and scanning can be extended to a receding horizon control

[8]. By predicting the states of search space centroid and detected targets for the

next K steps, the UAV path and sensor look direction are determined accordingly to

maximize the objective function.
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max
k+K−1∑
ξ=k

F(ξ). (3.48)

Note that only the decision variables for the next step are used.

Since the hard constraints on UAV paths (3.15) to (3.19) are transformed into

soft constraints in the objective function, as shown in (3.43), the generated path is

possible to violate these constraints. Receding horizon control with a large K value

will decrease the overall value of the constraint violation because of the long-term

vision for path planning. Smoother trajectories will be generated for UAVs with

K > 1 receding horizon control comparing to the path planning and scanning with

K = 1 when the predicted motion models of search space centroid and the detected

targets are accurate. However, the computational cost increases exponentially with

the value of K.

3.5 Solution Technique

From Section 3.4 we can see that the path control inputs are continuous and the

scan decision variables are discrete. Therefore, (3.48) is a mixed-integer nonlinear

programming (MINLP) [3]. MINLP includes both nonlinear programming (NLP)

and mixed-integer linear programming (MILP) as subproblems, which is an NP-hard

combinatorial problem and its solution typically requires searching enormous search

trees [3]. Details on MINLP models and solution methods can be found in [3].

Since the proposed MINLP problem must be solved in real time for online path

planning and scanning, it is desirable to obtain a near optimal solution quickly than
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to wait for the global optimal solution. In this paper, a genetic algorithm based

cooperative control is developed. Note that other heuristics for solving MINLPs,

such as particle swarm optimization (PSO) [26], tabu search (TS) [34], and simulated

annealing (SA) [3], can also be used.

The use of GA to solve this MINLP is inspired by [30]. GA is a class of learn-

ing algorithms based on a parallel search for an optimal solution [14]. The parallel

searches, which are performed synchronously in time steps, are called generations.

In each generation, a certain number of path decisions and scan decisions called in-

dividuals are maintained. The whole set of individuals in a generation is referred

to as the population. The main idea in GA is to preserve and create variations of

individuals that seem most promising (i.e., with high fitness values) and remove the

others. Denote the number of generations as Ngen and the population size Npop. The

number of cubes within the search space is Nc = |C|. The number of detected targets

at time k is Nk
d = |D(k)|.

The individual (also known as the chromosome), which represents the decision

variables in the proposed problem, is formed as follows: the first Nc variables represent

the cubes, which take 1 if the corresponding cube will be scanned in the next step

and 0 otherwise; the next Nk
d variables represent detected targets, which take 1 if the

corresponding target will be scanned and tracked in the next step and 0 otherwise;

and the rest of the variables are allocated for UAV path selection variables, which

are the bank angles and flight path angles. Therefore, the length of individuals is

Nind = Nc + Nk
d + 2Ns if path planning and scanning variables are generated for all

UAVs.

To further decrease the computational cost, in our solution technique, an order
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is defined for groups of UAVs to scan the search space: groups of UAVs scan the

cubes and detected targets at different times and measurements are shared after the

operation. Therefore, for the gth group, the length of individual becomes N g
ind =

Nc + Nk
d + 2N g

s . The path planning and scanning algorithm is designed for a group

of UAVs, which can be processed on a central UAV in the group or on each UAV so

that each acts as a central node.

In order to handle the continuous values in GA, the bank angles and flight path

angles are mapped to continuous values between 0 and 1

ϑ̄i(k) =
ϑi(k) +Θ

2Θ
, and ψ̄i(k) =

ψi(k) + Ψ

2Ψ
, (3.49)

0 ≤ ϑ̄i(k), ψ̄i(k) ≤ 1. (3.50)

Therefore, constraints (3.23) and (3.24) are satisfied when generating individuals.

These continuous variables are divided into evenly spaced numbers in the GA and

randomly selected when generating the chromosome. They are converted back to real

values of angles when evaluating the fitness function and when the GA terminates.

Individuals of the initial population are generated at random under the constraint

that the sum of the first Nc +Nk
d variables be M , as in (3.30).

The fitness function (3.43) is evaluated in each time step. Constraints (3.23),

(3.24), (3.30) and (3.31) are met when generating the individuals in the initial popu-

lation and infeasible individuals to these constraints are repaired during the evolution.

Selection of parents to reproduce is based on the fitness of individuals. Individ-

uals with high fitness values are most likely to be selected, whereas those with low

fitness will be discarded. Many selection techniques, such as tournament selection
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and roulette wheel selection, are available [14]. A binary tournament selection is used

in this paper.

In the crossover operation, a locus is randomly chosen and the subsequences before

and after that locus between two chromosomes (parents) are exchanged to create two

new individuals (offsprings). Crossover is normally performed with a probability Pc,

i.e., a fraction Pc of the new individuals are formed by crossover and the remaining

fraction 1− Pc are copied.

In the mutation operation, each variable of the new individual is changed with

a certain probability Pm; binary variables (scan decision) are flipped and continuous

variables (path selection) are replaced by a random value between 0 and 1.

Since crossover and mutation may produce individuals that violate constraint

(3.30), a repair operator is designed to rectify infeasible individuals. If the summation

of the first Nc + Nk
d variables in the chromosome is greater than M , a number of 1

bits will be randomly selected and changed to 0 so that the summation of the binary

variables is M . Therefore, constraint (3.30) is satisfied in each generation.

In each generation, the individuals are ranked by sorting their fitness values. A

small proportion of the fittest individuals are copied into the next generation. These

top scored individuals that are preserved unchanged through elitism remain eligible

for selection as parents when breeding the remainder of the next generation. Elitism

prevents losing the few best-found solutions and may improve the performance of GA

[30].

In this paper, a cooperative control is proposed for UAVs in the same group. Each

UAV performs the following tasks in each time step, which is also shown in Fig. 3.4.

The UAV uses sensor S1 to scan the measurement of search space centroid, updates
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the state and state covariance of the search space centroid, and transmits tracks for

track-to-track fusion [21]. The fusion output of the search space centroid location

is used to compute the approximate locations of cube centroids to direct sensor S2

scanning these regions of interests. The search space centroid state is used to predict

the locations of the search space centroid and cube centroids for the next time step.

Based on the locations of the cube centroids and detected targets, UAVs scan M

cubes and/or detected targets according to the scan decision made at time k − 1.

The tracks of detected targets are updated and transmitted for track-to-track fusion.

Meanwhile, the status of the cubes, which includes whether a cube is scanned, when

the cube is scanned and the measurements in the cube, is updated. Based on the

tracking and detection results, the importance factors of cubes and detected targets

are updated and the states of detected targets are predicted. The path planning and

scanning for the next time step is made by solving (3.48) based on the predicted

states of the search space centroid, detected targets, cube centroids and importance

factors.

3.6 Simulation for Optimal Sensor Configuration

In this simulation, one stationary target at [0, 0, 0]ᵀ is to be localized by multiple

sensors working in the same mode. Two modes, active and passive as discussed in

Section 3.3, are used for the sensors. The difference between the simulation in this

paper and those in [35] is that constraints (3.15) to (3.19) are now included. A

stationary target is used here to illustrate the optimal adaptation capability of our

algorithm and to provide geometric insights. A mobile target does not change the

operation of the algorithm.
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Figure 3.4: One cycle of the proposed cooperative control framework.

3.6.1 Optimal Sensor Configuration for Two Passive Sensors

Example 1. The sensor-to-target distance is fixed for both sensors: ds-p = 100m.

Let the sensor-dependent noise variances σ1 = σ2 = 1◦, and γ1 = γ2 = 1◦. The mini-

mum sensor-to-sensor distance is dmin
s-s = 15m. Different constraints on the minimum

altitude and the maximum altitude are used.

The maximum sensor altitude is fixed at 95m and the optimal sensor configurations
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are computed for different minimum sensor altitudes hmin
1 = hmin

2 = {0, 5, 10, ..., 95}m.

The difference in the optimal azimuth angles of the two sensors |θ1 − θ2| with different

minimum sensor altitudes, along with the difference in the optimal elevation angles

of the two sensors |φ1 − φ2|, is shown in Fig. 3.5. The optimal elevation angles of

sensor 1 and sensor 2 are also shown in Fig. 3.5.

When hmin
i = 0m, the optimal sensor configuration is obtained when |θ1 − θ2| =

90◦ and {φ1, φ2} ∈ {{0, arcsin(0.95)} , {arcsin(0.95), 0}}, which means that one sen-

sor is placed on the plane of the minimum altitude (0m) while the other sensor is

located on the plane of the maximum altitude (95m).

When hmin
i = 30m, the optimal sensor configuration is obtained when |θ1 − θ2| =

101.32◦ and {φ1, φ2} ∈ {{arcsin(0.3), arcsin(0.95)} , {arcsin(0.95), arcsin(0.3)}}, which

means that one sensor is placed on the plane of the minimum altitude (30m) while

the other sensor is located on the plane of the maximum altitude (95m).

However, the above optimal configuration where one sensor is located on the mini-

mum altitude plane and the other one is located on the maximum altitude plane is not

always optimal. When hmin
i = 60m, the optimal sensor configuration is obtained when

|θ1 − θ2| = 114.3◦ and {φ1, φ2} ∈ {{arcsin(0.6), arcsin(0.9)} , {arcsin(0.9), arcsin(0.6)}}.

The minimum sensor altitude is fixed at 0m and the optimal sensor configurations

are computed for different maximum sensor altitudes hmax
1 = hmax

2 = {0, 5, 10, ..., 95}m.

The difference in the optimal azimuth angles and the difference in the optimal ele-

vation angles of the two sensors (i.e., |θ1 − θ2| and |φ1 − φ2|) are shown in Fig. 3.6.

The optimal elevation angles of sensor 1 and sensor 2 are also shown in Fig. 3.6.

In Fig. 3.6, from hmax
i = 0m to hmax

i = 65m, the two sensors in the optimal

configuration are located on the same altitude plane, which is the plane of maximum
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Figure 3.5: The difference in the optimal azimuth angles and the difference in the
optimal elevation angles as the minimum altitude changes from 0m to 95m. (ds-p =
100m, dmin

s-s = 15m, hmax
1 = hmax

2 = 95m, σ1 = σ2 = 1◦, and γ1 = γ2 = 1◦.)

altitude. From hmax
i = 80m to hmax

i = 95m, in the optimal configuration, one sensor

is located on the minimum altitude plane (0m) while the other one is located on the

maximum altitude plane. When the maximum altitude is 70m, one sensor is located

on the altitude plane of 60m while the other one is located on the altitude plane of

68.2m. When the maximum altitude is 75m, one sensor is located on the altitude

plane of 75m while the other one is located on the altitude plane of 34.9m.

In this scenario, no matter what the minimum/maximum altitude is, the UAVs

will separate in azimuth to an angle greater than or equal to 90◦ to locate the target.
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Figure 3.6: The difference in the optimal azimuth angles and the difference in the
optimal elevation angles as the maximum altitude changes from 95m to 0m. (ds-p =
100m, dmin

s-s = 15m, hmin
1 = hmin

2 = 0m, σ1 = σ2 = 1◦, and γ1 = γ2 = 1◦.)

Example 2. The sensor-to-target distance and the minimum sensor-to-sensor dis-

tance are the same as those in Example 1. With σ1 = σ2 = 0.1◦ and γ1 = γ2 = 2◦, the

optimal sensor configuration is computed with different constraints on the altitude.

The maximum sensor altitude is fixed at 95m and the optimal sensor configurations

are computed for different minimum sensor altitudes hmin
1 = hmin

2 = {0, 5, 10, ..., 95}m.

The difference in the optimal azimuth angles and the difference in the optimal ele-

vation angles of the two sensors (i.e., |θ1 − θ2| and |φ1 − φ2|) are shown in Fig. 3.7.

The optimal elevation angles of the two sensors are the same and the two sensors are

located on the plane of the minimum altitude. The difference in the optimal azimuth
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Figure 3.7: The difference in the optimal azimuth angles and the difference in the
optimal elevation angles as the minimum altitude changes from 0m to 95m. (ds-p =
100m, dmin

s-s = 15m, hmax
1 = hmax

2 = 95m, σ1 = σ2 = 0.1◦, and γ1 = γ2 = 2◦.)

angles increases as the minimum altitude increases. In this scenario, the UAVs will

fly at the same altitude and separate in azimuth to an angle greater than 90◦.

The minimum sensor altitude is fixed at 0m and the optimal sensor configurations

are fixed for different maximum sensor altitudes hmax
1 = hmax

2 = {0, 5, 10, ..., 95}m.

The difference in the optimal azimuth angles and the difference in the optimal ele-

vation angles of the two sensors (i.e., |θ1 − θ2| and |φ1 − φ2|) are shown in Fig. 3.8.

The optimal sensor configuration is obtained from |θ1 − θ2| = 90◦ and φ1 = φ2 = 0,

which is the optimal sensor placement in 2D [35].

Note that in UAV path planning, the minimum altitude is usually greater than 0,

103



Ph.D. Thesis - Y. Wang McMaster University - Electrical & Computer Engineering

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Maximum altitude (m)

A
ng

le
s 

(d
eg

re
es

)

 

 

Difference in optimal elevations |φ
1
 − φ

2
|

Difference in optimal azimuths |θ
1
 − θ

2
|

Optimal elevation for sensor 1
Optimal elevation for sensor 2

Figure 3.8: The difference in the optimal azimuth angles and the difference in the
optimal elevation angles as the maximum altitude changes from 95m to 0m. (ds-p =
100m, dmin

s-s = 15m, hmin
1 = hmin

2 = 0m, σ1 = σ2 = 0.1◦, and γ1 = γ2 = 2◦.)

which corresponds to the configurations in Fig. 3.7.

Example 3. The simulation configurations are kept the same as those in Example

1 except that one constraint is added: the maximum sensor-to-sensor distance is

dmax
s-s = 100m. In Fig. 3.9, the maximum altitude is 95m and the minimum altitude

changes from 0m to 95m. When the minimum altitude is no greater than 50m, one

sensor is located at the altitude of 95m and the other one at 50m, with the difference

in the optimal azimuth angles being 84.6◦. Comparing Fig 3.9 with Fig. 3.5, when

the minimum altitude is no greater than 50m, the difference in the optimal azimuth

angles does not increase and the altitudes of both sensors cannot be lower than 50m
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Figure 3.9: The difference in the optimal azimuth angles and the difference in the
optimal elevation angles as the minimum altitude changes from 0m to 95m. (ds-p =
100m, dmin

s-s = 15m, dmax
s-s = 100m, hmax

1 = hmax
2 = 95m, σ1 = σ2 = 1◦, and γ1 = γ2 =

1◦.)

because of the maximum sensor-to-sensor distance constraint. When the minimum

altitude is no greater than 80m, the sensor-to-sensor distance in the optimal sensor

configurations is 100m. When the minimum altitude is no less than 85m, the optimal

sensor configurations are the same as those in Fig. 3.5 and the sensor-to-sensor

distances are smaller than 100m.

The differences in the angles of the two sensors and the optimal elevation angles are

shown in Fig. 3.10, when the minimum altitude is fixed to 0m, the maximum altitude

changes from 0m to 95m and the maximum sensor-to-sensor distance requirement is
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Figure 3.10: The difference in the optimal azimuth angles and the difference in the
optimal elevation angles as the maximum altitude changes from 95m to 0m. (ds-p =
100m, dmin

s-s = 15m, dmax
s-s = 100m, hmin

1 = hmin
2 = 0m, σ1 = σ2 = 1◦, and γ1 = γ2 = 1◦.)

100m.

3.6.2 Optimal Path Planning for Two Passive Sensors

In this subsection, we verify the optimal geometries in the previous examples using

minimum mean-squared error (MMSE) estimation [2]. The target is located at p =

[0, 0, 0]ᵀm. The sensors can move in any direction in 3D space. The sensor speed is

V = 4 m/s. The constrained nonlinear programming problem in Section 3.3 is solved

by the interior point algorithm [6].

Example 4. Let σ1 = σ2 = 1◦, γ1 = γ2 = 1◦, dmin
s-s = 15m, and hmax

1 = hmax
2 = 95m
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as in Example 1. The minimum sensor altitude is hmin
1 = hmin

2 = 0m. The minimum

sensor-to-target distance is constrained: d1 = d2 ≥ ds-p = 100m. Two sensors start

from initial positions [100, 20, 20]ᵀm and [20, 100, 75]ᵀm, respectively. The sensor

trajectories are shown in Fig. 3.11, which are averaged over 100 Monte Carlo runs.

The final sensor geometry matches that in Fig. 3.5 when the minimum altitude is

0m.

Example 5. Next we consider the setup in Example 2, i.e., σ1 = σ2 = 0.1◦, γ1 = γ2 =

2◦, dmin
s-s = 15m, and hmax

1 = hmax
2 = 95m. The minimum sensor altitude is hmin

1 =

hmin
2 = 75m. The minimum sensor-to-target distance is constrained: d1 = d2 ≥ ds-p =

100m. Two sensors start from initial positions [110, 20, 90]ᵀm and [−20, 110, 90]ᵀm,

respectively. The sensor trajectories are shown in Fig. 3.12, which are averaged over

100 Monte Carlo runs. The final sensor geometry matches that in Fig. 3.8 when the

minimum altitude is 75m.

3.6.3 Optimal Sensor Configuration for Two Active Sensors

Example 6. The simulation configurations are kept the same as those in Example

1 with η1 = η2 = 5m. The maximum sensor altitude is fixed at 95m and the optimal

sensor configurations are computed for different minimum sensor altitudes hmin
1 =

hmin
2 = {0, 5, 10, ..., 95}m. The differences in the optimal azimuth angles and the

difference in the optimal elevation angles of the two sensors are shown in Fig. 3.13.

When hmin
i = 0m, the optimal sensor configuration is obtained when |θ1 − θ2| =

90◦ and {φ1, φ2} ∈ {{0, arcsin(0.95)} , {arcsin(0.95), 0}}, which means that one sensor

is placed on the plane of the minimum altitude (0m) while the other sensor is located

on the plane of the maximum altitude (95m). This is the same as the configuration
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Figure 3.11: Optimal sensor trajectories for two passive sensors when d1 = d2 ≥ 100m,
dmin
s-s = 15m, hmax

1 = hmax
2 = 95m, hmin

1 = hmin
2 = 0m, σ1 = σ2 = 1◦, and γ1 = γ2 = 1◦.

The black ‘◦’ symbols mark the sensor initial positions and the black ’4’ symbols
mark the final positions.
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Figure 3.12: Optimal sensor trajectories for two passive sensors when d1 = d2 ≥
100m, dmin

s-s = 15m, hmax
1 = hmax

2 = 95m, hmin
1 = hmin

2 = 70m, σ1 = σ2 = 0.1◦, and
γ1 = γ2 = 2◦. The black ‘◦’ symbols mark the sensor initial positions and the black
’4’ symbols mark the final positions.
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for two passive sensors.

When hmin
i = 30m, the optimal sensor configuration is obtained when |θ1 − θ2| =

98.76◦ and {φ1, φ2} ∈ {{arcsin(0.3), arcsin(0.95)} , {arcsin(0.95), arcsin(0.3)}}, which

means that one sensor is placed on the plane of the minimum altitude (30m) while

the other sensor is located on the plane of the maximum altitude (95m).

However, the above optimal configuration where one sensor is located on the

minimum altitude plane and the other one is located on the maximum altitude plane

is not always optimal. When hmin
i = 75m, the optimal sensor configuration is obtained

from |θ1 − θ2| = 113.5◦ and φ1 = φ2 = arcsin(0.75).

The minimum sensor altitude is fixed at 0m and the optimal sensor configurations

are computed for different maximum sensor altitudes hmax
1 = hmax

2 = {0, 5, 10, ..., 95}m.

The difference in the optimal azimuth angles and the difference in the optimal eleva-

tion angles are shown in Fig. 3.14.

In Fig. 3.14, from hmax
i = 0m to hmax

i = 70m (i = 1, 2), the two sensors in the

optimal configuration are located on the same altitude plane, which is the plane of

maximum altitude. From hmax
i = 85m to hmax

i = 95m (i = 1, 2), in the optimal

configuration, one sensor is located on the minimum altitude plane (0m) and the

other one is located on the maximum altitude plane. When the maximum altitude is

75m, one sensor is located on the altitude plane of 75m and the other one is located

on the altitude plane of 56.18m. When the maximum altitude is 80m, one sensor

is located on the altitude plane of 80m and the other one is located on the altitude

plane of 16.75m.

Example 7. The simulation configuration is the same as Example 2 with η1 =

η2 = 5m. The maximum sensor altitude is fixed at 95m and the optimal sensor
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Figure 3.13: The difference in the optimal azimuth angles and the difference in the
optimal elevation angles as the minimum altitude changes from 0m to 95m. (ds-p =
100m, dmin

s-s = 15m, hmax
1 = hmax

2 = 95m, σ1 = σ2 = 1◦, γ1 = γ2 = 1◦, and η1 = η2 =
5m.)

configurations are computed for different minimum sensor altitudes hmin
1 = hmin

2 =

{0, 5, 10, ..., 95}m. The difference in the optimal azimuth angles and the difference in

the optimal elevation angles are shown in Fig. 3.15. The optimal elevation angles

of the two sensors are the same and the two sensors are located on the plane of

the minimum altitude. The difference in the optimal azimuth angle increases as the

minimum altitude increases.

In this scenario, the UAVs fly at the same altitude and separate in azimuth to an

angle from 90◦ to 91.82◦.
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Figure 3.14: The difference in the optimal azimuth angles and the difference in the
optimal elevation angles as the maximum altitude changes from 95m to 0m. (ds-p =
100m, dmin

s-s = 15m, hmin
1 = hmin

2 = 0m, σ1 = σ2 = 1◦, γ1 = γ2 = 1◦, and η1 = η2 = 5m.)

The minimum sensor altitude is fixed at 0m and the optimal sensor configurations

are computed for different maximum sensor altitudes hmax
1 = hmax

2 = {0, 5, 10, ..., 95}m.

The differences in the optimal azimuth angles and the difference in the optimal ele-

vation angles are shown in Fig. 3.16. The optimal sensor configuration is obtained

from |θ1 − θ2| = 90◦ and φ1 = φ2 = 0, which is the optimal sensor placement in 2D

[35].

Note that in UAV path planning, the minimum altitude is usually greater than 0,

which corresponds to the configurations in Fig. 3.15.

Example 8. The simulation configurations are kept the same as those in Example 6
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Figure 3.15: The difference in the optimal azimuth angles and the difference in the
optimal elevation angles as the minimum altitude changes from 0m to 95m. (ds-p =
100m, dmin

s-s = 15m, hmax
1 = hmax

2 = 95m, σ1 = σ2 = 0.1◦, γ1 = γ2 = 2◦, and
η1 = η2 = 5m.)

except that one constraint is added: the maximum sensor-to-sensor distance is 100m.

In Fig. 3.17, the maximum altitude is 95m and the minimum altitude changes from

0m to 95m. When the minimum altitude is no greater than 50m, one sensor is located

at the altitude of 95m and the other one at 51.34m, while the difference of optimal

azimuth angles is 87.37◦.

The angle differences and the optimal elevation angles are shown in Fig. 3.18,

when the minimum altitude is fixed at 0m, the maximum altitude changes from 0m

to 95m, and the sensor-to-sensor distances of all optimal configurations in different
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Figure 3.16: The difference in the optimal azimuth angles and the difference in the
optimal elevation angles as the maximum altitude changes from 95m to 0m. (ds-p =
100m, dmin

s-s = 15m, hmin
1 = hmin

2 = 0m, σ1 = σ2 = 0.1◦, γ1 = γ2 = 2◦, and η1 = η2 =
5m.)

constraints are 100m.

3.6.4 Optimal Path Planning for Two Active Sensors

Example 9. Let σ1 = σ2 = 1◦, γ1 = γ2 = 1◦, η1 = η2 = 5m, dmin
s-s = 15m,

hmax
1 = hmax

2 = 95m, and hmin
1 = hmin

2 = 65m. The minimum sensor-to-target distance

is constrained: d1 = d2 ≥ ds-p = 100m. The initial positions of the two sensors are

s1 = [100, 20, 80]ᵀm and s2 = [20, 100, 80]ᵀm, respectively. The sensor trajectories are

shown in Fig. 3.19. The final sensor geometry matches that in Fig. 3.14: one sensor

is located at the altitude of 95m, the other one is located at the altitude of 65m and
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Figure 3.17: The difference in the optimal azimuth angles and the difference in the
optimal elevation angles as the minimum altitude changes from 0m to 95m. (ds-p =
100m, dmin

s-s = 15m, dmax
s-s = 100m, hmax

1 = hmax
2 = 95m, σ1 = σ2 = 1◦, γ1 = γ2 = 1◦,

and η1 = η2 = 5m.)

the azimuth difference between the two active sensors is 105.6◦.

3.6.5 Optimal Sensor Configuration for Three Passive Sen-

sors

Example 10. The sensor-to-target distance is fixed for three passive sensors: ds-p =

100m. Let σ1 = σ2 = 1◦, and γ1 = γ2 = 1◦. The minimum sensor-to-sensor distance

is dmin
s-s = 15m. Different constraints on the minimum altitude and the maximum

altitude are used.
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Figure 3.18: The difference in the optimal azimuth angles and the difference in the
optimal elevation angles as the maximum altitude changes from 95m to 0m. (ds-p =
100m, dmin

s-s = 15m, dmax
s-s = 100m, hmin

1 = hmin
2 = 0m, σ1 = σ2 = 1◦, γ1 = γ2 = 1◦, and

η1 = η2 = 5m.)

The maximum sensor altitude is fixed at 95m and the optimal sensor config-

urations are computed for different minimum sensor altitude constraints hmin
1,2,3 =

{0, 30, 60, 90}m. The optimal sensor configurations are shown in Fig. 3.20.

Note that in the following examples, the azimuth angle of sensor 1 (or UAV 1) is

fixed to 0◦. However, the FIM is invariant to xy-plane rotations [35], and the relative

positions between the sensors and between the sensor and the target do not change.

When hmin
1,2,3 = 0m, the optimal sensor configuration is obtained when { θ1 =
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Figure 3.19: Optimal sensor trajectories for two active sensors when d1 = d2 ≥ 100m,
dmin
s-s = 15m, hmax

1 = hmax
2 = 95m, hmin

1 = hmin
2 = 65m, σ1 = σ2 = 1◦, γ1 = γ2 = 1◦,

and η1 = η2 = 5m. The black ‘◦’ symbols mark the sensor initial positions and the
black ’4’ symbols mark the final positions.
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0◦, φ1 = arcsin(0.95)}, {θ2 = 90◦, φ2 = 0}, and {θ3 = −90◦, φ3 = 0}, where two sen-

sors are located at the minimum altitude (0m) and the third one is located at

the maximum altitude (95m). When hmin
1,2,3 = 30m, the optimal sensor configu-

ration is obtained when {θ1 = 0◦, φ1 = arcsin(0.95)}, {θ2 = 95.7◦, φ2 = arcsin(0.3)},

and {θ3 = −95.7◦, φ3 = arcsin(0.3)}, where two sensors are located at the minimum

altitude (30m) and the third one is located at the maximum altitude (95m). When

hmin
1,2,3 = 60m, the optimal configuration is obtained when {θ1 = 0◦, φ1 = arcsin(0.95)},

{θ2 = 99.8◦, φ2 = arcsin(0.6)}, and {θ3 = −99.8◦, φ3 = arcsin(0.6)}, where two sen-

sors are located at the minimum altitude (60m) and the third one is located at

the maximum altitude (95m). When hmin
1,2,3 = 90m, the optimal sensor configura-

tion is obtained when {θ1 = 0◦, φ1 = arcsin(0.9)}, {θ2 = 120◦, φ2 = arcsin(0.9)} and

{θ3 = −120◦, φ3 = arcsin(0.9)}, where the three sensors are located at the same alti-

tude (90m).

Example 11. The sensor-to-target distance is fixed for three passive sensors: ds-p =

100m. Let σ1 = σ2 = σ3 = 0.1◦, and γ1 = γ2 = γ3 = 1◦. The minimum sensor-to-

sensor distance is dmin
s-s = 15m. Different constraints on the minimum altitude and

the maximum altitude are used.

First, the maximum sensor altitude is fixed at 95m and the optimal config-

urations are computed for different minimum sensor altitude constraints hmin
1,2,3 =

{0, 30, 60, 90}m. The optimal sensor configurations are shown in Fig. 3.21.

When hmin
1,2,3 = 0m, the optimal sensor configuration is obtained when {θ1 = 0◦ ,

φ1 = 0}, {θ2 = 90◦, φ2 = 0}, and {θ3 = −90◦, φ3 = 0}, where the three sensors are

located at the minimum altitude (0m). When hmin
1,2,3 = 30m, the optimal sensor con-

figuration is obtained when {θ1 = 0◦, φ1 = arcsin(0.3)}, {θ2 = 120◦, φ2 = arcsin(0.3)},
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Figure 3.20: Optimal sensor configurations for different minimum altitude constraints
on three passive sensors when ds-p = 100m, dmin

s-s = 15m, hmax
1,2,3 = 95m, σ1,2,3 = 1◦,

γ1,2,3 = 1◦. The ‘•’ symbols mark the sensor positions and the ‘N’ symbols mark the
target positions.
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and {θ3 = −120◦, φ3 = arcsin(0.3)}, where the three sensors are located at the mini-

mum altitude (30m). When hmin
1,2,3 = 60m, the optimal sensor configuration is obtained

when {θ1 = 0◦, φ1 = arcsin(0.6)}, {θ2 = 120◦, φ2 = arcsin(0.6)}, and {θ3 = −120◦,

φ3 = arcsin(0.6)}, where the three sensors are located at the minimum altitude (60m).

When hmin
1,2,3 = 90m, the optimal sensor configuration is obtained when {θ1 = 0◦,

φ1 = arcsin(0.9)}, {θ2 = 120◦, φ2 = arcsin(0.9)}, and {θ3 = −120◦, φ3 = arcsin(0.9)},

where the three sensors are located at the same altitude (90m).

3.6.6 Optimal Path Planning for Three Passive Sensors

In this subsection, we verify the optimal geometries for three passive sensors using

MMSE estimation [2]. Let σ1 = σ2 = σ3 = 1◦, γ1 = γ2 = γ3 = 1◦, dmin
s-s = 15m,

hmax
1,2,3 = 95m, hmin

1,2,3 = 85m. The sensor-to-target distance should be no less than 100m.

The three sensors start moving from initial positions [110, 0, 95]ᵀm, [−10, 110, 95]ᵀm

and [−10,−110, 95]ᵀm, respectively. The sensor trajectories are shown in Fig. 3.22,

which is the average over 100 Monte Carlo runs. Finally, these three sensors stop at

the altitude of 85m and form an equilateral triangle with the target at the center,

which is consistent with the results in Fig. 3.21b, 3.21c and 3.21d.

3.7 Simulation for Path Planning and Scanning

Two UAVs in the same group are to cooperatively track, follow and scan a mobile

search space, search for possible targets inside this 3D space and track any detected

targets. The 3D search space is divided into small 150m long cubes. Each cube is to

be scanned at least once. Sensor S1 on each UAV is a radar with range, azimuth and
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Figure 3.21: Optimal sensor configurations for different minimum altitude constraints
on three passive sensors when ds-p = 100m, dmin

s-s = 15m, hmax
1 = hmax

2 = 95m,
σ1,2,3 = 0.1◦, γ1,2,3 = 1◦. The ‘•’ symbols mark the sensor positions and the ‘N’
symbols mark the target positions.
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Figure 3.22: Optimal sensor trajectories for three passive sensors when ds-p = 100m,
σ1,2,3 = 1◦, γ1,2,3 = 1◦, dmin
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1,2,3 = 95m, hmin

1,2,3 = 85m. The ‘◦’ symbols mark
the sensor initial positions and the ’4’ symbols mark the final positions.
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elevation measurements, used to track the centroid of the search space. Sensor S2 on

each UAV is a passive sensor with azimuth and elevation measurements, used to scan

M = 6 cubes in each period of its operation.

For both UAVs, the speed is V = 50m/s, the maximum bank angle is Θ = 30◦ and

the maximum flight path angle is Ψ = 12◦. The maximum altitude is 5000m, the min-

imum altitude is 500m, the minimum distance between UAVs is 200m, the distance

from a UAV to the centroid of the search space is to be greater than 1000m. Therefore,

constraints (3.15), (3.17), (3.18), and (3.19) are enforced with b = [1, 1, 1, 1]ᵀ in (3.43).

The initial locations of the UAVs are [−1500, 1200, 660]ᵀm and [−1500,−1200, 660]ᵀm,

respectively. The initial headings of both UAVs are [1, 0, 0]ᵀ (to the east).

In the simulation, the detection probabilities of sensor S1 and S2 are specified

as functions of the range [27], as shown in Fig. 3.23. The Extended Kalman filter

(EKF) and the Integrated Probability Data Association (IPDA) algorithm are used

in target tracking with both sensors [2, 18, 20].

The 3D search space has a volume of 1000m in length, 400m in width and 250m in

height. The initial location of the search space centroid is [0, 0, 0]ᵀm. The search space

is mobile and moves to the east at a constant speed of 36m/s. A sequence of zero-mean

white Gaussian process noise with power spectral density matrix diag [Sx, Sy, Sz] =

diag [0.1, 0.1, 0.01] is used to generate the search space centroid trajectory [19].

The UAVs track the search space centroid without scanning the cubes until the

state estimate of the search space centroid is accurate enough. The eigenvalues of

the estimated search space centroid position covariance are computed, which are the

lengths of the uncertainty ellipsoid’s semi-axes. A threshold is set up for the largest
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Figure 3.23: Detection probabilities assumed in the simulation.
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eigenvalue among the three positional values. The UAVs start simultaneously track-

ing and scanning the search space once the largest eigenvalue is no greater than the

threshold. In this simulation, the threshold is set to 25m. It is assumed that the

approximate dimensional information about the mobile search space is known to the

UAVs. From the perspective of the UAVs, taking into account the uncertainty in

search area centroid estimation, the size of the estimated search space is generated

based on the a priori rough knowledge of the search space dimension and the eigen-

values of the estimated search area centroid position covariance. In this simulation,

the estimated 3D search space is a volume of 1050m in length, 450m in width and

300m in height, consisting of 7× 3× 2 cubes.

Two search patterns are defined for the independent path planning and scanning

in this 3D search-and-track scenario using a group of two UAVs: a 3D lawnmower-

like search pattern (for short, 3D lawnmower) and a 3D spiral-like search pattern (for

short, 3D spiral), as shown in Fig. 3.24. Cubes are scanned in the order of increasing

shade intensity: In the 3D lawnmower search pattern, cubes are scanned from one

side to the other; in the 3D spiral search pattern, cubes are scanned from the centroid

to the sides.

In the following simulation, each cube inside the search space is scanned four times.

One target, whose position w.r.t. the search space centroid is [−400, 200, 100]ᵀm and

does not change, exists within the space. The proposed JPPS solution is compared

with the independent path planning and scanning solution methods based on the two

pre-defined search patterns. The following results are averaged over 100 Monte Carlo

runs.

The comparison of position PCRLB values of the search space centroid from the
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(a) 3D Lawnmower (b) 3D Spiral

Figure 3.24: Scan priorities in the pre-defined 3D lawnmower search pattern and the
pre-defined 3D spiral search pattern: Cubes are scanned in the order of increasing
shade intensity.

start of cube scanning is shown in Fig. 3.25. It can be seen that there is not much

difference between these three methods. Note that the search space centroid is being

tracked for 44 time steps before scanning the search space, in order to achieve a low

uncertainty region. During these 44 time steps, the PCRLB values are the same for

different methods in each step and they decrease step after step, which are not shown

in Fig. 3.25. The increase in PCRLBs in Fig. 3.25 is the result of UAVs adjusting

their positions to avoid violating the sensor-to-sensor distance constraint.

The comparison of position PCRLB values of the targets detected by these three

methods is shown in Fig. 3.26. It can be seen that the PCRLBs have similar values

in the first 5 measurement steps, which is a result of the UAV kinematic constraints

and the weighted-sum objective optimization: UAV states obtained by different path

planning and scanning methods have the same positions and velocities before scanning

the cubes and the difference in their positions and velocities will not be significant

due to the UAV kinematic model within a few steps; the scan decision impacts the
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Figure 3.25: Position PCRLB values of the search space centroid using three different
path planning and scanning methods.

overall performance of position PCRLB based on the corresponding weight value.

The increase in PCRLBs in Fig. 3.26 is due to the same reason as that in Fig. 3.25.

After the positional adjustment, UAVs using JPPS are able to continuously decrease

the position PCRLB, whereas the decrease in position PCRLBs using independent

path planning and scanning is not obvious.

In the following, one target, whose position w.r.t. the search space centroid is

randomly generated in each Monte Carlo run, exists within the space. Once detected,

the target is tracked for 10 steps by the UAVs. The comparison of position PCRLB

values of the targets detected by these three methods is shown in Fig. 3.27 based on

100 Monte Carlo runs. The proposed method achieves a lower position PCRLB than
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Figure 3.26: Position PCRLB values of the detected target using three different path
planning and scanning methods, when the location of target w.r.t. the search space
centroid is fixed in each Monte Carlo run.

the other two methods.

From the above simulations, we can see that the proposed JPPS solution has a

better overall performance w.r.t. tracking the search space centroid, searching for

possible targets within the space and tracking detected targets than the algorithms

based on pre-defined search patterns.

128



Ph.D. Thesis - Y. Wang McMaster University - Electrical & Computer Engineering

2 4 6 8 10

280

300

320

340

360

380

400

420

440

Measurement step

P
os

iti
on

 P
C

R
LB

 v
al

ue
s

 

 

3D lawnmower
3D spiral
JPPS

Figure 3.27: Position PCRLB values of the detected target using three different path
planning and scanning methods, when the location of target w.r.t. the search space
centroid is random in each Monte Carlo run.

3.8 Conclusions

In this paper, we proposed a joint path planning and scanning (JPPS) strategy based

on genetic algorithm for a group of UAVs carrying out SAT over a 3D mobile space

with a number of targets inside. A cooperative control framework was developed for

UAVs to follow the mobile search space, track detected targets as well as search for

new targets. Each UAV broadcasts its current scan, detection and tracking infor-

mation as well as its current state, and then decides on path and cubes/targets to

scan according to an information-based weighted-sum multiobjective function. The
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UAV kinematic model, detection probabilities and the constraints on sensor altitude,

sensor-to-sensor distance and sensor-to-target distance were considered in 3D path

planning. The optimal sensor configuration for target localization using passive and

active sensors in a 3D environment under constraints was provided with examples.

In the simulation of path planning and scanning for an SAT mission, in terms of the

PCRLB, the proposed JPPS method outperformed methods that make scan decisions

and path selections independently.
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[9] K. Doğançay, “UAV path planning for passive emitter localization,” IEEE Trans-

actions on Aerospace and Electronic Systems, vol. 48, no. 2, pp. 1150–1166, Apr.

2012.

[10] S. Gallagher and R. Lanza, “Detection of nuclear weapons and fissile material

abroad cargo containerships,” Feb. 27 2007, US Patent 7,183,554.

[11] F. Gavilan, R. Vazquez, and E. F. Camacho, “An iterative model predictive con-

trol algorithm for UAV guidance,” IEEE Transactions on Aerospace and Elec-

tronic Systems, vol. 51, no. 3, pp. 2406–2419, July 2015.

[12] M. L. Hernandez, A. Farina, and B. Ristic, “PCRLB for tracking in cluttered en-

vironments: measurement sequence conditioning approach,” IEEE Transactions

on Aerospace and Electronic Systems, vol. 42, no. 2, pp. 680–704, Apr. 2006.

132



Ph.D. Thesis - Y. Wang McMaster University - Electrical & Computer Engineering

[13] M. L. Hernandez, T. Kirubarajan, and Y. Bar-Shalom, “Multisensor resource de-

ployment using posterior Cramer-Rao bounds,” IEEE Transactions on Aerospace

and Electronic Systems, vol. 40, no. 2, pp. 399–416, Apr. 2004.

[14] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence. Cam-

bridge, MA, USA: MIT press, 1992.

[15] A. Homaifar, C. X. Qi, and S. H. Lai, “Constrained optimization via genetic

algorithms,” Simulation, vol. 62, no. 4, pp. 242–253, Apr. 1994.

[16] J. Hu, L. Xie, J. Xu, and Z. Xu, “Multi-agent cooperative target search,” Sensors,

vol. 14, no. 6, pp. 9408–9428, May 2014.

[17] Y. Jin, Y. Liao, A. A. Minai, and M. M. Polycarpou, “Balancing search and

target response in cooperative unmanned aerial vehicle (UAV) teams,” IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 36,

no. 3, pp. 571–587, Jun. 2005.

[18] T. Kirubarajan and Y. Bar-Shalom, “Probabilistic data association techniques

for target tracking in clutter,” Proceedings of the IEEE, vol. 92, no. 3, pp. 536–

557, Mar. 2004.

[19] X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking. Part I. Dy-

namic models,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39,

no. 4, pp. 1333–1364, Oct. 2003.

133



Ph.D. Thesis - Y. Wang McMaster University - Electrical & Computer Engineering
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[31] A. Wächter and L. T. Biegler, “On the implementation of an interior-point fil-

ter line-search algorithm for large-scale nonlinear programming,” Mathematical

Programming, vol. 106, no. 1, pp. 25–57, Mar. 2006.

[32] R. Waltz, J. Morales, J. Nocedal, and D. Orban, “An interior algorithm for

nonlinear optimization that combines line search and trust region steps,” Math-

ematical Programming, vol. 107, no. 3, pp. 391–408, July 2006.

[33] Y. Wang, T. Kirubarajan, R. Tharmarasa, R. Jassemi-Zargani, and N. Kashyap,

“Multiperiod coverage path planning and scheduling for airborne surveillance,”

IEEE Transactions on Aerospace and Electronic Systems, vol. PP, no. 99, pp.

1–1, Mar. 2018.

135



Ph.D. Thesis - Y. Wang McMaster University - Electrical & Computer Engineering

[34] G. Wu, W. Pedrycz, H. Li, M. Ma, and J. Liu, “Coordinated planning of het-

erogeneous earth observation resources,” IEEE Transactions on Systems, Man,

and Cybernetics: Systems, vol. 46, no. 1, pp. 109–125, Jan. 2016.
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Chapter 4

Joint Path Planning and Radar

Mode Scheduling for Multitarget

Tracking in ECM

4.1 Abstract

In this paper, a joint path planning and radar active-passive mode scheduling (JP-

PAPS) strategy is developed in a three-dimensional (3D) contested environment us-

ing radar systems mounted on unmanned aerial vehicles (UAVs), which adopt active-

passive mode switching against maneuvering targets in the presence of jammers broad-

casting wide-band noise as electronic countermeasures (ECM). The radar systems on

UAVs operate to track targets in the active mode or jammers in the passive mode.

The estimated jammers’ positions are used in active mode to suppress interference by

spatial anti-jamming methods and further enhance the target tracking performance.

A mixed-integer nonlinear programming in a receding horizon optimization based on
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predictive posterior Cramér-Rao lower bound (PCRLB) is formulated to achieve accu-

rate target state estimation, where the PCRLB values in the future steps for different

radar modes are predicted and summed up. At each time step, UAV paths and radar

operating modes are determined in the JPPAPS using a genetic algorithm to leverage

the tracking of targets and jammers considering the possible target fire avoidance,

UAV collision avoidance and hostile interference mitigation. Simulation results ver-

ify the superiority of the proposed algorithm in terms of the target tracking accuracy

and track loss by comparing with independent path planning and active-passive mode

scheduling strategies.

4.2 Introduction

In this paper, multitarget tracking (MTT) in the presence of electronic countermea-

sures (ECM) is studied using a group of unmanned aerial vehicle (UAVs) equipped

with radar systems, which possess the capability to work either in active or passive

mode. Moreover, the radar system is capable of simultaneously launching multiple

beams to execute several radar tasks independently and generating nulls to reject in-

terfering signals [36, 42]. Jammers are used as ECM to conceal protected targets while

degrading and confusing radar systems [1]. In this contested environment, the radars

on the UAVs should track the targets as accurately as possible by taking advantage

of path planning and active-passive mode scheduling.

It is assumed that the jammers are within the radar detection range and can be

tracked in passive mode. In other words, the jammer can be viewed as a target in

passive mode even though it may not be as important as the actual targets under

track. The estimated jammer state is used to predict the jammer’s future position to
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afford spatial interference suppression when the radars switch to active mode. The

optimal active-passive mode scheduling is studied along with cooperative UAV path

planning to minimize the estimation uncertainty corresponding to the targets in the

presence of jammers. Path selection and radar mode are determined by solving a

receding horizon optimization [5].

To use a phased array radar against maneuvering targets, the design and perfor-

mance analysis of an interacting multiple model (IMM) estimator with an adaptive

sampling policy, where large sampling intervals are allowed during benign periods

and short sampling intervals are needed during maneuvering periods, were presented

in [6]. The use of IMM with the probabilistic data association filter (PDAF) for the

same problem in the presence of false alarm (FA) and ECM was presented in [20, 21],

while countering the effects of target amplitude fluctuations, beamshape, missed de-

tections, FAs and ECM, finite resolution, target maneuvers, and track loss. The

ECM in the benchmark problem [4] includes a standoff jammer (SOJ) broadcasting

wideband noise and targets attempting range gate pull off (RGPO).

Even though some of the target trajectories in our simulations are based on those

in the benchmark problem [4] and an IMM estimator is used as in [6, 20], the optimiza-

tion formulation in the joint path planning and active-passive mode scheduling (JP-

PAPS) is the focus of our paper rather than the development of an advanced tracker or

filter. Moreover, although beamforming and spatial anti-jamming techniques are con-

sidered to mitigate interference and to enhance the signal-to-interference-plus-noise

ratio (SINR) when the radar works in active mode [8, 11, 22], they are mainly used

for modeling the target detection probability. Radar signal processing [28] combined

with sensor resource management [23] can be considered in some future work.
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Considerable effort has been expanded on UAV path planning with application

to target search-and-track systems [31, 33]. A number of optimal sensor placement

and path planning algorithms are developed in two-dimensional (2D) space without

extending to 3D scenarios [25, 26, 32]. The optimal geometries for time-of-arrival

localization configuration is analyzed and the UAV path planning, which is based

on minimizing the area of estimation confidence region, is simulated in [25]. Sim-

ilarly, based on the Fisher information matrix (FIM), the UAV path planning for

passive emitter localization is presented in [7], where angle-of-arrival, time-difference-

of-arrival and scan-based localization are considered. A decentralized cooperative

control algorithm, which maximizes the information gained from an environment and

decides the next area to scan by predicting how much information can be gained

by searching that area, is proposed for multiple cooperative UAVs to track detected

targets as well as search for the undetected ones in [32]. An information-based ob-

jective function, which integrates the conflicting objectives of target detection, target

tracking and vehicle survivability into a single scalar index, is presented for UAV path

optimization in [26]. Constraints to the UAV dynamics, flyable region and no-fly zone

are considered for the optimal path planning [7].

The Cramér-Rao lower bound (CRLB), which is the inverse of the FIM and pro-

vides a mean square error bound on the performance of any unbiased estimator of

an unknown parameter vector, is frequently used in the optimization formulation for

target localization [2, 12, 25, 40]. The posterior Cramér-Rao lower bound (PCRLB),

which gives a measure of the achievable optimum performance and can be calculated

predictively, is often used as the criterion in optimal sensor resource management

problems with application to target tracking, such as optimal sensor selection, sensor
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placement, power allocation and path planning [7, 13, 34, 39, 42]. Meanwhile, many

path planning approaches for search-and-track missions use the value of gathered

information as the objective function [26, 32].

These trackers available in the literature for target tracking, adaptive selection of

sampling period, benchmark problems for MTT in the presence of ECM and optimal

UAV path planning provide the motivation and serve as the foundation for our cur-

rent study. To adapt to the development of sensor and sensor platform technology,

joint UAV path planning and radar active-passive mode scheduling for intelligence,

surveillance, target acquisition and reconnaissance missions are considered in this pa-

per. The proposed JPPAPS is formulated as an optimization based on the predictive

PCRLB using receding horizon control (RHC) [26, 34].

When the radars operate in passive mode, the jammers are tracked. The spatial

signature of the jammers, e.g., the directions of arrival (DOAs), can be computed and

used in the anti-jamming process to increase the SINR and the detection probability

with the objective of enhancing the target tracking performance once the radars

switch to active mode. However, the targets cannot be observed when the radars

operate in passive mode since they do not emit any signals by themselves. When the

radar is in active mode, the targets are tracked but the jammers are excluded due

to beam-pointing. Therefore, there is a trade-off between radars operating in active

mode versus in passive mode: in the presence of ECM, the estimation of jammer

states in passive mode can enhance the target tracking results while radars operate

in active mode, but the targets cannot be detected when radars are in passive mode

leading to loss of track quality. Hence, one of the goals of this paper is to find the

optimal solution to make decisions on radar operation mode considering the effect
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of jammers on future steps. The radar mode scheduling is jointly considered with

UAV path planning where the UAVs try to detect and track the targets or jammers

cooperatively from different angles using different operation mode in each step.

The UAV path and radar working mode decision variables for the next H steps

are considered in the objective function from different targets and jammers in future

steps. The target detection probability is modeled considering the present of jammers

within the targets’ line of sight (LOS) and the accuracy of jammer state estimates to

effectively implement spatial interference suppression. By switching between active

and passive modes, the mode scheduling aims to optimize target tracking performance

with the help of jammer state estimation to increase the detection probability. The

UAV paths and radar modes in the predictive horizon that minimize the predictive

PCRLB are selected as the decision variables. A genetic algorithm (GA) solution

technique, which requires modest computational resources, is developed to generate

the decisions for active vs. passive mode selection and platform path selection [14, 34].

The use of receding horizon control also enables the UAVs to have a long-term strategy

for path planning, which improves collision avoidance and avoids possible target fire.

This paper makes the following contributions: An integrated optimization for-

mulation is proposed for joint UAV path planning and radar active-passive mode

scheduling. The predictive PCRLB using different radar modes given the predic-

tion of the states of UAVs, targets and jammers in future time steps are computed

and summed up. The estimation of the jammer states enables the radar system to

suppress the jamming signal when the radars operate in active mode. The detec-

tion probability used in the information reduction factor (IRF) is modeled based on

the estimated locations of the targets and jammers, the history of radar operating
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modes and the history of track association results. The proposed JPPAPS adaptively

switches between active and passive modes and designs the paths for UAVs according

to the changes in the contested environment rather than iteratively switching between

active and passive modes without the knowledge of the environment or switching to

passive mode when the radar systems declare the existence of jammers. The pro-

posed JPPAPS is solved using a genetic algorithm, which handles the mixed-integer

nonlinear programming within the receding horizon optimization framework.

The remainder of the paper is structured as follows. Section 4.3 outlines the

preliminary information needed to understand the system model including the deci-

sion variables, the criteria for the target to be corrupted by the jammer signal, the

detection probability model, the UAV kinematic model and the formulation of the

PCRLB. Section 4.4 presents the optimization formulation for the proposed JPPAPS

strategy. The solution technique based on a genetic algorithm is developed in Section

4.5. The proposed JPPAPS strategy is compared with existing path planning and

radar mode selection methods, which follow an ordered active-passive mode switching

schemes and make decisions on UAV path and radar modes independently, through

simulation in Section 4.6. Concluding remarks are given in Section 4.7.

4.3 Problem Description

Consider S UAVs tracking Q point targets in a 3D surveillance region with J jam-

mers. A radar system, which possesses the capability to work in either active or

passive mode, launch multiple beams pointing to different targets simultaneously and

generate nulls to mitigate interference, is mounted on each UAV. The targets are

tracked by the radar in active mode and the jammers are tracked in passive mode.
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Set T as the measurement sampling interval for the radar system. Based on the po-

sition estimate of a target or a jammer, the DOA of the corresponding object, which

can be used to steer a beam pointing to the target or generate a null to reject the

interference, can be computed [8, 22, 37].

At time kT , denoted by time step k, the state vector of the qth (q = 1, 2, ..., Q) tar-

get is defined as xq,k, which consists of position [xq,k, yq,k, zq,k]
ᵀ, velocity [ẋq,k, ẏq,k, żq,k]

ᵀ

and possibly acceleration [ẍq,k, ÿq,k, z̈q,k]
ᵀ, where ᵀ denotes matrix transpose. The state

vector of the jth (j = 1, 2, ..., J) jammer is expressed as

xj,k = [xj,k, ẋj,k, ẍj,k, yj,k, ẏj,k, ÿj,k, zj,k, żj,k, z̈j,k]
ᵀ .

. The position of the sth (s = 1, 2, ..., S) UAV is ss,k = [xs,k, ys,k, zs,k]
ᵀ.

It is assumed that all radar systems on the UAVs at a time step work in the same

mode. Let a binary variable uk denote the decision on the radar mode at time step

k. Then,

uk =


1 if radars operate in active mode at the kth step

0 if radars operate in passive mode at the kth step

(4.1)

The decision variables on path planning will be discussed next with details on the

UAV kinematic model used in this paper.

The following assumptions are made to simplify the problem.

Assumption 1: The number of targets and jammers is known from the radar search

mode and the tracks are initialized by using the maximum likelihood probabilistic data

association (ML-PDA) algorithm [16, 19, 39] or multi-frame detection methods [10,
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17]. Then, filtering methods can be adopted to maintain target or jammer trajectories

[21]. Based on the estimated state, the DOA of each target and jammer, which steers

a beam to point at the target or generates a null to suppress the jamming signal, can

be predicted and computed.

Assumption 2: The targets are widely separated in the surveillance region. In

this case, MTT can be simplified as a number of simultaneous single target tracking

problems. Even if there is association uncertainty due to target proximity, it does

not limit the application of our framework provided seperate tracks are established.

This is automatically done by standard MTT algorithms.

Assumption 3: To simplify the problem, as well as to make it general, radar equa-

tions, antenna gain patterns [4], adaptive beamforming [36] and interference mitiga-

tion techniques [11] are not included in our optimization formulation. Instead, the

IRF for the single target case, which depends on the measurement noise covariance,

the false alarm rate, the field of view of the sensor, and the probability of detection,

is utilized in the computation of the predictive FIM [34].

Assumption 4: In real-world scenarios, the radar beamwidth increases as the beam

is steered off the broadside direction. In this paper, for simplicity, the 3 dB beamwidth

values at different angles are fixed when computing the probability of detection.

4.3.1 UAV Kinematic Model

The UAV path planning is constrained by the UAV kinematics capabilities. For

example, in the horizontal plane, a fan-shaped flyable area can be formed for a UAV

due to the constraints on its turning capability [18]. Different UAV kinematic models

can be found in UAV path planning literature: in [29], it is assumed that UAVs can
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Figure 4.1: UAV kinematic model

move in any direction with unit velocity; in [15], the UAV motion model only deals

with the waypoints of agents at discrete-time steps and the true dynamics of UAVs is

not discussed; in [18], UAVs move along continuous trajectories with constant speed

and constraints on turning; in [27], the altitude of a UAV is a constant and the control

variables are the forward acceleration and the bank angle. Note that the above UAV

kinematic models only consider motion in the 2D plane.

In this paper, the 3D discrete time airplane model from [9] is used for UAVs, as

shown in Fig. 4.1. The UAV airspeed is assumed to be a constant V . The path

planning decision variables for the sth UAV at time step k are the bank angle ϑs,k

and the flight path angle ψs,k. The sth UAV heading angle at step k is expressed as

χs,k and the location is ss,k = [xs,k, ys,k, zs,k]
ᵀ. The heading angle of the sth UAV at

time step k + 1 is

χs,k+1 =
gT tan (ϑs,k)

V
+ χs,k, (4.2)

where g is the acceleration due to gravity and T is the length of the time interval.

For formula compactness, let

κs,k =
gT tan (ϑs,k)

V
. (4.3)
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The UAV waypoint update is modeled as [9]

ss,k+1 = ss,k +


V T
κs,k

cos (ψs,k) [sin(κs,k + χs,k)− sin(χs,k)]

V T
κs,k

cos (ψs,k) [cos(χs,k)− cos(κs,k + χs,k)]

V T sin (ψs,k)

 . (4.4)

In this manner, a UAV’s future state [ss,k+1, χs,k+1]
ᵀ can be predicted based on its

current state and control inputs [ϑs,k, ψs,k]
ᵀ.

The bank angle ϑs,k and the flight path angle ψs,k satisfy the following constraints:

|ϑs,k| ≤ Θ, (4.5)

|ψs,k| ≤ Ψ, (4.6)

where Θ is the maximum bank angle and Ψ is the maximum flight path angle. Note

that the rate of turn and radius of turn are constrained given (4.5).

The UAV state can be restricted by its motion capability. For example, the UAV

may be constrained by a minimum altitude hmin and a maximum altitude hmax as

zs,k ≥ hmin, (4.7)

zs,k ≤ hmax. (4.8)

The range between the sth UAV and the qth target is defined as D(ss,k,xq,k) =

‖ss,k − xq,k‖ and the distance between the sth UAV and the jth jammer isD(ss,k,xj,k) =

‖ss,k − xj,k‖. A minimum UAV-to-target distance dQS is required for safety reasons,

148



Ph.D. Thesis - Y. Wang McMaster University - Electrical & Computer Engineering

for example, to avoid possible fire from the target. Similarly, a minimum UAV-to-

jammer distance dJS is defined to avoid strong jamming signal and possible fire from

the jammers.

D(ss,k,xq,k) ≥ dQS ,

∀s = 1, 2, ..., S, q = 1, 2, ..., Q, k = 1, 2, ...

(4.9)

D(ss,k,xj,k) ≥ dJS,

∀s = 1, 2, ..., S, j = 1, 2, ..., J, k = 1, 2, ...

(4.10)

A minimum UAV-to-UAV distance dmin
SS is placed for collision avoidance.

D(ss,k, ss′,k) ≥ dmin
SS ,

s, s′ ∈ {1, 2, ..., S} , s 6= s′, k = 1, 2, ...

(4.11)

A maximum UAV-to-UAV distance dmax
SS is enforced for communication connectivity.

D(ss,k, ss′,k) ≤ dmax
SS ,

s, s′ ∈ {1, 2, ..., S} , s 6= s′, k = 1, 2, ...

(4.12)

The above constraints can be used alone or in combination.

4.3.2 Criteria for Target Corruption

Since multiple beams are launched simultaneously to observe the targets and nulls are

generated to reject interfering signals [36, 42] by the radar system on a UAV, a target
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return is not always corrupted in the presence of jammers and is only corrupted

under the following conditions. Two angular thresholds ρ1 and ρ2 are used based

on the beamwidth of the radar and the shape of the null generated by the spatial

anti-jamming method. It is assumed that the radar beamwidth is 2ρ1. When any

jammer is out of ρ1 of a radar-to-target LOS, the corresponding target return will

not be corrupted. When there is a jammer within ρ1 of a radar-to-target LOS, the

corresponding target return is corrupted or hidden by the jammer signal. However,

with the implementation of spatial interference suppression methods given accurate

DOAs of the jammers, jammer signals can be nulled. When there is a jammer within

ρ2 of a radar-to-target LOS, the spatial null generated by a spatial anti-jamming

method will also filter out the return signal from targets. Therefore, spatial anti-

jamming methods cannot make up for the detection probability decrease and track

loss caused by jammers.

In the simulations, the impact of jamming on target detection probability is ob-

served. Based on the above signal corruption criteria, the detection probability for

the sth UAV measuring the qth target at time step k, Pd(s, q, k), in this contested

environment is a function of the following three parts: 1) the range between the UAV

and the target D(ss,k,xq,k), 2) the angles between the target’s LOS and all jammers’

LOS, {θ(xq,k, ss,k,xj,k), ∀j = 1, 2, ..., J}, and 3) the angle between the estimated jam-

mer’s LOS and the true jammer’s LOS, θ(xj,k, ss,k, x̂j,k), if this jammer is within ρ1

of the target LOS.

When {θ(xq,k, ss,k,xj,k) < ρ1, ∃j = 1, 2, ..., J}, the target return is corrupted and

the detection probability decreases with the angle between the target LOS and the

jammer LOS if any spatial anti-jamming process is not implemented.
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When {θ(xq,k, ss,k,xj,k) < ρ2, ∃j = 1, 2, ..., J}, the detection probability is fixed to

a small value. When ρ1 ≤ {θ(xq,k, ss,k,xj,k), ∃j = 1, 2, ..., J} < ρ2, with the spatial

anti-jamming technique in active mode, the detection probability is incremented to

make up for the loss in the detection probability due to the interference. The smaller

the value θ(xj,k, ss,k, x̂j,k), the greater the increment value corresponding to Pd(s, q, k)

if the jth jammer is the one that within ρ1 but out of ρ2 of the target LOS. More

details on the detection probability model used for target tracking will be described

in Section 4.6.

4.3.3 FIM and PCRLB

In this subsection, only one radar on a UAV is considered at first and the UAV index

“s” is omitted. The FIM for more than one UAV with respect to a target is the

summation of the FIM values corresponding to all UAVs. Since the targets (and

jammers) are treated separately, for brevity, the target’s index “q” (and jammer’s

index “j”) are omitted often in this and the next sections, unless doing so causes

confusion.

Let xk be an unknown and random state vector. The global measurement vector

is denoted by zk. If we assume that targets are moving independently and the state

equation of each target is linear, then the overall state equation is given by

xk+1 = Fkxk + vk, (4.13)

where Fk is the state transition matrix and vk is the process noise of the target. The

covariance matrix of vk is Γk.
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The measurement is given by

zk =


hk (xk) + ωk if measurement originates from target

υk if false alarm

(4.14)

where hk (·) is (in general) a nonlinear function, ωk is a zero-mean Gaussian random

variable with covariance Σk and υk is uniformly distributed across the surveillance

region. If the radar is in active mode, the measurements are usually the range, the ele-

vation angle and the bearing angle. If the radar is in passive mode, the measurements

are the elevation angle and the bearing angle [4].

The PCRLB gives a measure for the achievable optimum performance in terms of

mean square error and, importantly, this bound can be calculated predictively [34, 13].

Furthermore, the PCRLB is independent of the filtering algorithm employed and is

therefore not constrained by the idiosyncrasies of any particular filtering methodology.

Let x̂k be an unbiased estimate of xk based on the measurement data zk. The PCRLB,

which is defined to be the inverse of the FIM J(xk), gives a lower bound of the error

covariance matrix, i.e.,

Ck = E {(x̂k − xk) (x̂k − xk)
ᵀ} � J−1(xk), (4.15)

where E denotes the expectation operator. The inequality in (4.15) means that Ck−

J−1(xk) is a positive semi-definite matrix .

A recursive formula for the evaluation of the posterior FIM J(xk) is given by [34]

J(xk) = JX(xk) + JZ(xk), (4.16)
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where

JX(xk) =
[
Γk−1 + Fk−1J(xk−1)F

ᵀ
k−1
]−1

(4.17)

gives the prior information regarding the target states at time step k. The measure-

ment contribution is given by

JZ(xk) = E
{
rkH

ᵀ
kΣ
−1
k Hk

}
, (4.18)

where rk is the IRF, Hk(α, β) = ∂hk(α,xk)
∂xk(β)

denotes the (α, β)th element of matrix Hk.

Here, we only present the PCRLB for a single sensor and widely-separated targets;

for the general case (i.e., multiple sensors with measurement origin uncertainty), see

[34].

The trace of the PCRLB, which is denoted as tr(J−1(xk)), is used here as the

scalar performance metric [7, 40]. Note that either the determinant or the maximum

eigenvalue of the PCRLB can also be used to assess the performance [25, 34].

The FIM for S UAVs corresponding to the qth target is J(xq,k) =
∑S

s=1 J(ss,k,xq,k).

The trace of the PCRLB is denoted as tr(J−1(xq,k)).

4.4 Optimization Formulation

4.4.1 Objective Function

For all UAVs, by stacking the trace values of the PCRLB regarding all the targets, a

vector is defined as follows:

GQ,k =
[
tr(J−1(x1,k)), tr(J

−1(x2,k)), ..., tr(J
−1(xQ,k))

]ᵀ
(4.19)
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The vectors of the trace values of the predicted PCRLB for targets at the next time

step are denoted by G̃Q,k+1, in which the states of the UAVs, targets and jammers

in (4.16) to (4.19) are the predicted states based on their current states and their

motion model.

If the radars are in active mode at time step k, i.e., uk = 1, the summation of the

trace of the PCRLB is 1ᵀ
Q×1GQ,k. Based on the current UAV states and the predicted

target and jammer states, decisions on path planning and radar active-passive mode

selection are made to minimize the summation of the trace of predicted PCRLB from

the targets for the H next steps.

In the JPPAPS, the first radar mode decision variable uk+1 at time step k can be

either 1 or 0. When uk+1 = 1, uk+H = 0; when uk+1 = 0, uk+H = 1. The radar mode

decision variables for time steps k+2 to k+H−1 are all one. The choice of uk+1 = 1

or 0 is because in the RHC although the path and radar mode decisions for the next

H steps are made, only the decision variables for the next step are used. The choice

of uk+H = 0 or 1 is made to guarantee that the number of items (the trace of the

PCRLB) in the summation is the same for different active-passive mode scheduling

at step k.

The radar systems estimate the detection probability based on the logic-based

track management. If Mc measurements are associated with a track out of the last

Nc measurement frames, the detection probability used in the IRF is Mc/Nc. Mean-

while, it is assumed that once the radar systems start operating in passive mode,

the probability of detection in IRF in the next L steps will increase based on the

detection probability value at time step k, where L ≤ H. Based on the locations of

the UAVs, the targets and the jammers, θ(x̂q,k+h, ss,k+h, x̂j,k+h) is predicted, where
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1 ≤ h ≤ H. When θ(x̂q,k+h, ss,k+h, x̂j,k+h) < ρ2, the detection probability in the IRF

will not increase once the radar systems start operating in passive mode.

At the (k + h)th time step, the predicted PCRLB of the targets is denoted as

Uk+h = uk+h1
ᵀ
Q×1G̃Q,k+h, (4.20)

where h = 1, 2, ..., H. A receding horizon decay factor ak+h is defined for each

future step. The vector of the receding horizon decay factors is defined as Ak =

[ak+1, ak+2, ..., ak+H ]ᵀ. The summation of target predictive PCRLB in the receding

horizon is
H∑
h=1

ak+hUk+h = Aᵀ
kUk, (4.21)

where Uk = [Uk+1, Uk+2, ..., Uk+H ]ᵀ is a vector of predicted target PCRLB at different

time steps.

Therefore, the objective function is expressed as

min Aᵀ
kUk, (4.22)

where the decision variables are ϑk+h, ψk+h and uk+1 for h = 1, ..., H.

The number of decision variables in this receding horizon control framework is

(2SH + 1), where 2 stands for the bank angle and flight path angle, and 1 represents

the radar working mode at the future time step k+ 1. It can be seen that the greater

the value H, the more of the computational resources needed to solve the problem.

When the value of H is large, the predicted states of targets and jammers will

be inaccurate and the predictive PCRLB will not contribute much to the objective

value considering the RHC decay factor. However, the advantages in planning for the
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next H steps rather than the next one step alone are as follows: 1) Once the radars

enter in passive mode, the increment in the detection probability corresponding to

a corrupted target by the spatial anti-jamming process can be implemented in the

following L active modes, which decreases the value of predicted PCRLB. 2) The

constraints on UAV altitude and UAV no-fly zone will be hard to violate because

the UAVs have a long planning horizon. Details on the handling of constraints are

described in the next subsection.

4.4.2 Constraints on Path Planning

The path planning variables, which are the bank angles and the flight path angles,

should satisfy constraints (4.5) and (4.6). Constraints (4.7), (4.8), (4.9), and (4.10)

are transformed into soft constraints and are added to the objective function (4.22).

For the sth UAV, a penalty function is defined for the violation of the altitude

constraints (4.7) and (4.8) as follows:

p1(s, k) = w1 [max (zs,k − α1hmax, 0) + max (α2hmin − zs,k, 0)] , (4.23)

where 0 < α1 < 1, α2 > 1 and α1hmax > α2hmin. The use of α1 and α2 makes the

altitude constraints more strict. The violation of zs,k ≥ α2hmin and zs,k ≤ α1hmax will

firstly happen at large h values in the RHC for 1 ≥ h ≥ H, which will influence the

path selection for time step k+1. Incorporation of (4.23) will decrease the possibility

of the violation of constraints (4.7) and (4.8) if α1 and α2 are appropriately selected

based on the UAV kinematic model. The weight w1 is used to balance the value of the

penalty and the value of the predicted PCRLB to prevent one of these two components

becoming dominant. The more severe the constraint violation, the higher the penalty
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value. The value of (4.23) is positive and the function itself can be either linear or

nonlinear.

For the sth UAV and the qth target, a penalty function is defined for the violation

of the UAV-to-target range constraint (4.9) as follows:

p2(s, q, k) = w2 max
(
α3d

Q
S −D(ss,k,xq,k), 0

)
, (4.24)

Similarly, for the sth UAV and the jth jammer, a penalty function is defined for the

violation of the UAV-to-jammer range constraints (4.10) as follows:

p3(s, j, k) = w3 max
(
α4d

J
S −D(ss,k,xj,k)

)
, (4.25)

where the weights w2 and w3 as well as parameters α3 and α4 are selected as in (4.23)

with α3 > 1, α4 > 1. The more severe the constraint violation, the higher the penalty

value.

For UAVs s and s′, the penalty function corresponding to constraint (4.11) is

expressed as

p4(s, s
′, k) = w4 max

(
α5d

min
SS −D(ss,k, ss′,k), 0

)
, (4.26)

For UAVs s and s′, the penalty function corresponding to constraint (4.12) is ex-

pressed as

p5(s, s
′, k) = w5 max (D(ss,k, ss′,k)− α6d

max
SS , 0) , (4.27)

where α5 > 1 and 0 < α6 < 1, α6d
max
SS > α5d

min
SS .

157



Ph.D. Thesis - Y. Wang McMaster University - Electrical & Computer Engineering

The summation of penalty values at time step k is given by

P (k) =
S∑
s=1

p1(s, k) +
S∑
s=1

Q∑
q=1

p2(s, q, k)

+
S∑
s=1

J∑
j=1

p3(s, j, k) +
S∑
s=1

S∑
s′=1
s′ 6=s

p4(s, s
′, k)

+
S∑
s=1

S∑
s′=1
s′ 6=s

p5(s, s
′, k).

(4.28)

A vector of penalty values during the predictive horizon is defined based on the

predicted states of the UAVs, targets and jammers as

Pk = [P (k + 1), P (k + 2), ..., P (k +H)]ᵀ . (4.29)

4.4.3 Optimization Formulation

To sum up, at time step k, the paths and operating mode for the next step are planned

by predicting and computing the summation of predicted PCRLB values for the next

H steps considering the penalty in (4.29). The decision variables are ϑk+h, ψk+h and
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uk+1, where h = 1, 2, ..., H.

min Aᵀ
k(Uk + Pk),

s.t. |ϑk+h| ≤ Θ

|ψk+h| ≤ Ψ

uk+h =


{0, 1} , if h = 1 or H

1, otherwise

uk+1 = 1− uk+H

∀h = 1, 2, ...H

(4.30)

4.5 Solution Technique

From Section 4.4 we can see that the path control inputs are continuous and the active-

passive mode scheduling variables are discrete. Therefore, (4.30) is a mixed-integer

nonlinear programming (MINLP) [3]. MINLP includes both nonlinear programming

(NLP) and mixed-integer linear programming (MILP) as subproblems, which is an

NP-hard combinatorial problem and its solution typically requires searching enormous

search trees [3]. Details on MINLP models and solution methods can be found in [3].

Since the proposed JPPAPS must be solved in real time for online path planning

and active-passive mode scheduling, it is desirable to obtain a near optimal solution

quickly rather than to wait for the global optimal solution. In this paper, a genetic

algorithm based cooperative control is developed. Note that other heuristics for

solving MINLPs, such as particle swarm optimization (PSO) [30], tabu search (TS)

[38], and simulated annealing (SA) [3], can also be used.
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The use of the genetic algorithm to solve this MINLP is inspired by [35]. The

genetic algorithm is a class of learning algorithms based on a parallel search for an

optimal solution [14]. The parallel searches, which are performed synchronously in

time steps, are called generations. In each generation, a certain number of radar mode

selection and path decision options called individuals are maintained. The whole set

of individuals in a generation is referred to as the population. The main idea in

the genetic algorithm is to preserve and create variations of individuals that seem

most promising (with high value of fitness) and remove the others. The number of

generations is denoted as Ngen and the population size as Npop.

The individual (also known as the chromosome), which presents the decision vari-

ables in the proposed problem, is formed as follows: the first 2SH variables represent

the UAVs’ bank angles and flight path angles for the next H steps; the next variable

represents the radar mode for time step k+1, which takes 1 if the radars are in active

mode and 0 otherwise. Based on uk+1, the remaining radar mode decision variables

for future steps are know according to (4.30).

In order to handle the continuous values in the genetic algorithm, the bank angles

and flight path angles are mapped to continuous values between 0 and 1 as follows:

ϑ̄k =
ϑk +Θ

2Θ
, and ψ̄k =

ψk + Ψ

2Ψ
, (4.31)

0 ≤ ϑ̄k, ψ̄k ≤ 1. (4.32)

Therefore, constraints (4.5) and (4.6) are enforced while generating individuals. These

continuous variables are divided into evenly spaced numbers and randomly selected

when generating the chromosome. They are converted back to real values of angles
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when evaluating the fitness function and when the GA terminates.

The fitness function, which maximizes the negative value of the objective in (4.30),

is evaluated in each time step.

The decisioning of parent to reproduce is based on the fitness of individuals.

Individuals with high fitness values are most likely to be selected, whereas those with

low fitness will be discarded. Many selection techniques, such as tournament selection

and roulette wheel selection, are available [14]. A binary tournament selection is used

in this paper.

In the crossover operation, a locus is randomly chosen and the subsequences before

and after that locus between two chromosomes (parents) are exchanged to create two

new individuals (offsprings). Crossover is normally performed with a probability Pc,

i.e., a fraction Pc of the new individuals are formed by crossover and the remaining

fraction 1− Pc are copied.

In the mutation operation, each variable of the new individual is changed with a

certain probability Pm; binary variables (i.e., radar mode decision) are flipped and

continuous variables (i.e., path selection) are replaced by a random value between 0

and 1.

In each generation, the individuals are ranked by sorting their fitness values. A

small proportion of the fittest individuals are copied into the next generation. These

top scored individuals that are preserved unchanged through elitism remain eligible

for selection as parents when breeding the remainder of the next generation. Elitism

prevents losing the few best-found solutions and may improve the performance of the

GA [35].

In this paper, a cooperative control is used for the UAVs. Each UAV performs the
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following tasks at each time step. The UAV uses its radar to scan according to the

radar mode decision made in the previous step, predicts and updates the state and

state covariance of the targets and jammers, and transmits tracks for track-to-track

fusion [24]. The fusion outputs of the targets and jammers are shared and used in

decision making for the next step. Based on the state estimate of the targets and the

jammers, as well as the models used in the IMM and mode transition probabilities,

the locations of the targets and the jammers for the next H steps are predicted [20].

The path planning and active-passive mode selection for the next time step is made

by solving (4.30) using the genetic algorithm.

4.6 Simulations

Note that the benchmark tracking and sensor management problem in [4] was pro-

posed for a ground-based phased array radar. In our paper, the simulations consist of

using two UAVs to track a single target as well as multiple maneuvering targets in the

presence of jammers. The jammers are within the radar range and can be tracked in

passive radar mode. Some of the targets’ and jammers’ trajectories in the benchmark

[4] are adjusted for the airborne radar tracking scenario. An IMM estimator with a

logic-based track management is used to track targets and jammers [20].

The sampling time is 1s. The maximum bank angle of the UAV is 30◦/s, the

maximum flight path angle is 15◦/s, and the speed is 150m/s. In terms of the radar

field-of-view (FOV), the target ranges vary from 0.2km to 120km, while the target

elevation angle can vary from −80◦ to 80◦ for both active and passive modes. Since

only one face of the phased array radar is used, the bearing of the target is confined

to ±60◦ for both active and passive modes. For the proposed JPPAPS, the objective
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function based on RHC plans for the next 3 steps and the decision variables for the

next step are used for path and radar mode selection. The value of L is set to 3 when

predicting the detection probability in the IRF of the receding horizon optimization.

The minimum distance between UAVs is set to be 200m. The minimum distance

between a UAV and a target is set to be 500m. The minimum distance between a UAV

and a jammer is set to be 600m. The minimum altitude for UAVs is 200m and the

maximum altitude is 6000m. The minimum distance between UAVs is 200m and the

maximum distance between UAVs is 10km. In the penalty functions, α1 = α6 = 0.8

and α2 = α3 = α4 = α5 = 1.25. These parameters are the same for all UAVs.

4.6.1 Single Target Tracking with Two UAVs and Two Jam-

mers

The initial locations of the UAVs are [−6000, 4000, 500]ᵀm and [−6000,−4000, 500]ᵀm

respectively, and the initial headings of the UAVs are both [1, 0, 0]ᵀ. One target at

[0, 0, 2000]ᵀm moves to the east with a constant speed 150m/s. One jammer flies with

an oval (race course) holding pattern in the clockwise direction with an initial position

of [26000,−3000, 3050]ᵀm and speed of 168m/s [4]. Similarly, the second jammer flies

with an oval holding pattern in the counter-clockwise direction at an initial position

of [26000, 3000, 3050]ᵀm and speed of 168m/s.

It is assumed that the radar beamwidth is 12◦, ρ1 = 6◦ and ρ2 = 2◦.

In the detection probability model, when {θ(xq,k, ss,k,xj,k) < 6◦, @j = 1, 2, ..., J},
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the qth target is not corrupted by jammers, we assume that

Pd(s, q, k) =f1(D(ss,k,xq,k))

=


0.1 if D(ss,k,xq,k) > 2× 104

0.9 if D(ss,k,xq,k) < 2.22× 103

1− εD(ss,k,xq,k) otherwise

(4.33)

where ε = 4.5× 10−5.

When {2◦ < θ(xq,k, ss,k,xj,k) < 6◦, ∃j = 1, 2, ..., J}, the qth target return is cor-

rupted or hidden by the jammer signal. Assume that the set of jammers that satisfies

{2◦ < θ(xq,k, ss,k,xj,k) < 6◦} is J1(k). If spatial anti-jamming technique is not imple-

mented, we have

Pd(s, q, k) = f2 (D(ss,k,xq,k), {θ(xq,k, ss,k,xj,k), j ∈ J1(k)})

= f1(D(ss,k,xq,k))− (f1(D(ss,k,xq,k))− 0.02)

× 6−min {θ(xq,k, ss,k,xj,k), j ∈ J1(k)}
4

.

(4.34)

When {2◦ < θ(xq,k, ss,k,xj,k) < 6◦, ∃j = 1, 2, ..., J} and the spatial anti-jamming
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technique is implemented, we have

Pd(s, q, k) = f3(D(ss,k,xq,k), {θ(xq,k, ss,k,xj,k), j ∈ J1(k)} ,

{θ(xj,k, ss,k, x̂j,k), j ∈ J1(k)})

=



min {f2 [D(ss,k,xq,k), {θ(xq,k, ss,k,xj,k), j ∈ J1(k)}]

+ (0.5− 0.2 max {θ(xj,k, ss,k, x̂j,k), j ∈ J1(k)}) ,

f1(D(ss,k,xq,k))}

if max {θ(xj,k, ss,k, x̂j,k), j ∈ J1(k)} < 2◦;

f2 [D(ss,k,xq,k), {θ(xq,k, ss,k,xj,k), j ∈ J1(k)}]

otherwise.

(4.35)

When {θ(xq,k, ss,k,xj,k) < 2◦, ∃j = 1, 2, ..., J}, the target return is totally cor-

rupted or hidden by the jammer signal and Pd = 0.02.

To make comparisons to our proposed strategy, independent active-passive mode

scheduling and path planning strategies are used: the active-passive mode scheduling

follows a pre-defined radar mode order and the path planning minimizes the trace of

the predictive PCRLB of the target.

In the active-passive mode scheduling following a pre-defined order, the following

three strategies are used: 1) Alternating between active and passive radar modes, 2)

Using active modes for four steps followed by passive radar mode for one time step,

and 3) Using active modes for nine steps followed by passive radar mode for one time

step. Radar mode scheduling and path planning operating are decoupled and the

decisions are made independently. The above mentioned three methods are denoted

by “PPA1P1”, “PPA4P1” and “PPA9P1” in the following discriptions, respectively.
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Table 4.1: Results using different UAV path planning and radar active-passive mode
scheduling methods for two UAVs tracking one target in the presence of two jammers

PPA1P1 PPA4P1 PPA9P1 JPPAPS

Position RMSE (m)
when target corrupted

208 320 443 260

Position RMSE (m)
when target not corrupted

238 183 135 101

Track Loss (%) 13 11.9 10.1 9.5
Passive Mode (%) 50 20 10 15

The position root mean square errors (RMSEs) of the target when the target

return is not corrupted by jammer signals, the position RMSEs of the target when

the target return is corrupted by jammer signals, and track loss percentages are

recorded and listed in Table 4.1 based on 200 Monte Carlo runs.

From Table 4.1 we can see that with these independent path planning and radar

mode scheduling methods, as the passive mode use rate percentage increases, the po-

sition RMSE decreases when the target return is corrupted, but the position RMSE

increases when the target return is not corrupted along with track loss percentage.

This is intuitive and can be interpreted as follows: when the target return is not

corrupted, higher radar passive mode percentage means that the radars observe the

target less frequently. Therefore, the RMSEs are large for PPA1P1 and PPA4P1 com-

pared with that of PPA9P1. However, when the target is corrupted by the jammers,

higher radar passive mode percentage results in means more accurate estimates of

jammer locations, hence the spatial anti-jamming technique can suppress the jammer

signal better. The number of detections is higher when the radar systems operate at

higher passive mode percentage with anti-jamming process than when they operate

less in passive mode when the target is corrupted. However, if the radar systems
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operate more in passive mode, the track loss percentage will also increase, especially

when the target is corrupted by the jammers.

The proposed JPPAPS achieves the lowest position RMSE when the target is not

corrupted and the lowest track loss percentage. The position RMSE value of the

proposed JPPAPS is the second lowest when the target is corrupted.

To show the outputs of path planning and mode scheduling, the results of one

Monte Carlo run from different path planning and mode scheduling strategies are

illustrated here. The trajectories of the target and the two jammers can be found in

Fig. 4.2. The track of the target and the trajectories of the UAVs using the proposed

JPPAPS are shown in Fig. 4.2. The UAVs approach the target and measure it from

different angles.

In this Monte Carlo run, for UAV 1, jammer 2 is within 6◦ of the target LOS

from 46s to 114s and within 2◦ of that from 61s to 85s using the proposed JPPAPS.

For UAV 2, jammer 1 is within 6◦ of the target LOS from 46s to 130s and within 2◦

of that from 59s to 82s using the proposed JPPAPS. It can be seen from the third

subfigure of Fig. 4.3, the radars on the UAVs work in the passive mode when the

target is corrupted by the jammer signal. This is achieved by the predictive PCRLB

with the detection probability model used by the radar system with the estimate

of θ(x̂q,k, ss,k, x̂j,k) and the logic-based track management. The result of “PPA1P1”

is not shown here mainly because the stems that represent the radars operating in

passive mode are too dense for iteratively one active mode after one passive mode

scheduling.
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4.6.2 Multiple Target Tracking

In this part, a scenario where two UAVs tracking two maneuvering targets in an

environment with two jammers is simulated. The initial locations of the UAVs

are [4× 104, 5× 104, 500]
ᵀ
m and [5× 104, 5× 104, 500]

ᵀ
m respectively, and the ini-

tial headings of the UAVs are both [0,−1, 0]ᵀ.

Two target trajectories in the benchmark [4] are used as shown in Fig. 4.4. Two

jammers fly with an oval (race course) holding pattern in the clockwise direction

with the initial positions of [55000,−20000, 3000]ᵀm and [80000,−20000, 3000]ᵀm,

respectively, at a speed of 168m/s. In the detection probability model, ε = 3.3×10−3

in (4.33).

The UAV paths from one Monte Carlo run are shown in Fig. 4.4. The intervals

of each target being corrupted by jammers and the intervals of radar operating in

passive mode in one Monte Carlo run are shown in Fig. 4.5. The position RMSE of

the two targets being corrupted by any jammer and that of the two targets not being

corrupted by jammers from 200 Monte Carlo runs are shown in Table 4.2 along track

loss percentage.

From Fig. 4.5, we can see that the jammers are not simultaneously within 2◦ of

the LOS of UAVs to target 1. Meanwhile, the intervals during which a jammer is

within 2◦ of the LOS of UAVs to target 1 do not last long. Therefore, there is no

track loss for target 1 during the mission as shown in Table 4.2. In this case, higher

passive mode percentage will lead to a large value of position RMSE regardless of

the return of target 1 being corrupted by jammers or not. The proposed JPPAPS

strategy achieves the lowest position RMSE when the return from target 1 is not

corrupted by jammers and the second lowest position RMSE value when the return
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Table 4.2: Results using different UAV path planning and radar active-passive mode
scheduling strategies for two UAVs tracking two targets in the presence of two jammers

PPA1P1 PPA4P1 PPA9P1 JPPAPS

Position RMSE (m)
when targets are corrupted

Target 1 642 592 429 460
Target 2 1951 1996 2017 1327

Position RMSE (m)
when targets are not corrupted

Target 1 574 515 345 324
Target 2 513 424 334 317

Track loss (%)
Target 1 0 0 0 0
Target 2 10.7 7.2 6.8 7.7

Passive mode (%) 50 20 10 9

of target 1 is corrupted.

The advantage of the proposed strategy is more obvious in the tracking of target

2. From Fig. 4.5, we can see that the jammers are simultaneously within 2◦ of the

LOS of UAVs to target 2 from 38s to 44s and simultaneously within 6◦ of the LOS of

UAVs to target 2 from 35s to 54s and from 82s to 85s. The interference and radars in

passive mode lead to the loss of target 2. The sequantial active-passive-active mode

selection strategy results in highest track loss percentage. The proposed JPPAPS,

with a low track loss percentage, achieves the best position RMSE values whether

target 2 is corrupted or not.

4.7 Conclusions

In this paper, a joint path planning and active-passive mode scheduling strategy was

developed for multitarget tracking in a 3D contested environment using airborne radar

systems on UAVs. The radars adopt a multibeam strategy with spatial anti-jamming

and active-passive mode scheduling against maneuvering targets in the presence of

jammers broadcasting wide-band noise as ECM. A receding horizon optimization

169



Ph.D. Thesis - Y. Wang McMaster University - Electrical & Computer Engineering

based on the predictive PCRLB was formulated to minimize the target state esti-

mation uncertainty. At each time step, the radar determines whether to synthesize

beams to point at specific targets or to work in passive mode to provide electronic

support measures (ESM). The data association results are used to estimate the detec-

tion probability in the optimization formulation and the angle between the estimated

target LOS and the estimated jammer LOS. Meanwhile, the UAVs plan the path

to balance the tracking of targets or jammers, avoid possible target fire and collision

and to reduce the effect of hostile interference. A genetic algorithm solution technique

was presented to jointly determine the radar working mode and path selection, sub-

ject to constraints on the UAV kinematic model, UAV-to-target, UAV-to-jammer and

UAV-to-UAV distances. The proposed JPPAPS performs better than the indepen-

dent active-passive mode switching following a pre-defined order and path planning

to minimize the estimation uncertainty, especially when target returns are corrupted

by the jammer signal. As for future works, path planning can be tackled jointly with

beam selection [41, 42] and/or power allocation [39] with new formulations using the

predictive PCRLB based receding horizon optimization used in this paper.
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Figure 4.2: Trajectories of the target, two jammers, two UAVs and the estimated
target track.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, the optimal path planning for airborne surveillance by multiple aerial

vehicles is combined with temporal scheduling, scan area decision making and radar

active-passive mode scheduling, respectively.

The spatial and temporal coordination of multiple sensor platforms (e.g., pa-

trolling aircraft) for target searching in disjoint AOIs over an extended time horizon,

i.e., a multi-period coverage path planning and temporal scheduling, is formulated

as a combinatorial optimization and solved by multiobjective evolutionary algorithm.

Optimal surveillance mission plans are developed considering the cooperative visit-

ing and revisiting of areas by aircraft taking off from different base stations. New

objective functions based on the number of covered areas are proposed to evaluate

the gathered information to promptly update information collected from AOIs and

to ensure persistent surveillance.

Considering the flyable region of the sensing platforms (e.g., UAVs) , such as the
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UAV altitude, UAV-to-target and UAV-to-UAV distance, the optimal sensor geome-

try and optimal path planning for target localization using active or passive sensors

are formulated and analysed. A joint path planning and scanning strategy is devel-

oped for a group of UAVs to search possible targets and track detected targets in a

mobile 3D surveillance space. The objective function is formulated to maximize the

predictive information in the Fisher sense from the surveillance space, which includes

the surveillance space centroid, detected targets as well as the yet-to-be-detected

targets.

To take advantage of path planning and the spatial signature of the jammers

to mitigate hostile interference, a joint path planning and active-passive scheduling

strategy is developed for a group of UAVs equipped with radars, which work in either

active or passive modes. A receding horizon optimization is formulated based on

the predictive PCRLB under the UAV flyable region constraints. Simulations and

real-world case studies are given to illustrate the performance and advantages of the

proposed strategies and solution techniques.

5.2 Future Work

In the research of coverage path planning and temporal scheduling, we integrated

the path planning inside and outside the AOIs, and aircraft take-off time scheduling

for each flight in one optimization formulation. For future research, these tasks can

be decoupled and tackled separately, which will lead to new problem definition and

formulation. For example, the path of POIs in one AOI can be selected at first, and

then the path of AOIs can be planned. The entire mission time can be divided into

slots for each aircraft so that the path planning and scheduling can be done within
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each time window. The advantage of this separate path planning and scheduling

approach is that it requires less computational resources, it makes dynamic planning

based on information gathered possible, and it could involve more sensor resource

management issues, such as the selection of base stations. In addition to the multi-

objective evolutionary algorithm, we can test other solution techniques, such as the

column generation [1, 4] and Markov decision process [2, 3], to tackle this mission

planning problem.

In the research of joint path planning and scanning, we assumed that UAVs in the

same group work in the same mode. For future research, the optimal sensor geometry

and path planning for a group of UAVs with sensors in multiple modes observing the

same target can be studied. In the research of joint path planning and active-passive

scheduling, benchmark problems for maneuvering target tracking in the presence of

ECM using a group of moving sensors can be developed for future work, which should

consider issues such as radar signal processing, target tracking, data association, and

sensor management.
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