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ABSTRACT 
 Though quantum chemical tools are routinely used for computing the properties 

of chemical systems, barriers still remain for the widespread use of these tools in a more 

biological context. In particular, the computation of nonlinear optical properties remains 

a difficult calculation, despite the usefulness of these phenomena to bioimaging, 

pharmaceutical development, and microscopy. This thesis aims to produce new methods 

that would help make the computation of nonlinear optical properties easier for molecules 

and systems important for biological contexts. We propose to do this in two parts: (1) to 

improve the existing finite field method for NLO property prediction through use of a 

rational function fitting model, and (2) to use resummation as a computationally cheap 

means of refining the accuracy of relatively cheap energy calculation methods. Overall, 

this work found that the rational model does produce a more robust finite field method 

when compared to the traditional polynomial-based finite field method. Though the 

resummation method shows early promise, it still tends to have issues with optimization 

and particular systems that need to be overcome.  
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Preface 

 
 This thesis contains both published and unpublished content. This chapter details 

my contributions to each chapter. The coauthors of any published works can also be 

found in the footnotes of the corresponding chapter.  

 This thesis consists of four chapters, including an introduction and summary. The 

introduction serves as an outline to the second and third chapters, along with providing 

insight into the motivation for this work, and a general overview of the field as a whole. 

The introduction also provides background into potential future work that may be 

undertaken to build on the results of this thesis. Chapter 2 is a published journal article, 

while Chapter 3 is an unpublished piece of work. The summary contains details of the 

works performed, along with an analysis of directions that future work may take. 

 Chapter 2 is a reprint of the “Finite Field Method for Nonlinear Optical Property 

Prediction Using Rational Function Approximants” article, published in the Journal of 

Physical Chemistry A. I am the first author on this paper, while Ahmed A.K. Mohammed, 

Peter A. Limacher, and Paul W. Ayers are the second, third and fourth co-authors on this 

paper, respectively. I programmed the calculations for the rational function model 

calculations, and ran the corresponding calculations. I also wrote the first draft of the 

manuscript, with input and editing from Ahmed Mohammed, Peter Limacher and Paul 

Ayers. The latter three authors also performed the final edits to the paper. 

 Chapter 3 is unpublished work that was performed in conjunction with Nadin 

Abbas , Cristina E. González-Espinoza, and Paul W. Ayers. My role in the work was to 

write the program to implement the method, along with running some of the electronic 
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structure calculations. I also supervised Nadin Abbas on this project, who also ran 

electronic structure calculations, and ran the code to get results from the method, with 

some guidance from me. Cristina González-Espinoza wrote code for the future directions 

of this project, along with providing valuable programming guidance. Paul Ayers 

provided the overall structure of the project, and the ideas; he also provided valuable 

guidance throughout the project. 
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Chapter 1 

 

Introduction 

1.1 Motivation 

 With the discovery of nonlinear optical phenomena in 19611, there has been an 

ever-increasing interest in understanding and characterizing these properties. This is 

largely due to the importance of these phenomena in fields such as organic chemistry, 

materials science, and spectroscopy, among others.2 These phenomena are also highly 

relevant to potential technologies that may be useful into the future, such as the creation 

of optical processors, which use light rather than transistors to relay information.3 

 With the relevance to many highly exciting fields, the interest in computing these 

properties has only grown.3,4 Computing nonlinear optical (NLO) properties offers 
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several advantages to the experimental approach, including faster and cheaper 

characterization of a material’s properties. This would potentially allow for a more 

rational design of materials with desired NLO properties and also for computational 

prescreening of prospective NLO materials, allowing the time-consuming and sometimes 

expensive processes of experimental synthesis and characterization to be limited to the 

most promising substances. 

 Despite the advantages that are offered by computational tools, there are several 

drawbacks. The available tools will be discussed in more detail in further sections, but 

most relevantly, most tools lack the ability to quickly and accurately determine the 

properties of large and complex systems, including the macromolecules of biological 

relevance. This is often due to the size of these systems, which are generally much larger 

than those typically treated by most computational chemistry tools. For example, though 

NLO properties may be exploited to provide high-contrast confocal imaging of biological 

samples5, only particular dyes may be used for this purpose6. One use of a tool able to 

look at NLO properties for larger systems may be the creation of novel imaging dyes for 

confocal microscopy. There are a myriad of other uses that may be fathomed for a tool of 

this nature, which will be further discussed in a later section. 

 The dilemma presented by looking at larger systems is the classic one of scale. 

Using quantum chemistry tools for large-scale problems is akin to cutting a lawn with 

scissors. There are two major limitations that prohibit the use of most quantum chemical 

tools, which are the computation of energies for large systems, and determining a 

reliable, robust and quick method for the computation of the actual NLO properties 

themselves. This thesis aims to address both these problems in subsequent chapters, 
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through the mathematical lens of function fitting, in order to solve problems that are 

relevant to the fields of biochemistry and chemical biology.  

 

1.2 Background of Nonlinear Optics 

1.2.1 Overview 

 For most materials, light does not alter the optical properties of the material 

itself.2 This means that the polarization induced in the material is linearly related to the 

strength of the electric field in the light, through the following equation:  

 𝜇 = 𝛼𝐹 Eq. 1.2.1 

Where µ is the dipole moment of the molecule, and α is the polarizability of the molecule 

in response to an electric field F. However, under particular conditions, usually the 

application of intense light to an appropriate material, one can observe nonlinear optical 

effects. These nonlinear effects were first observed in 19611 and, since then, interest in 

the field has grown dramatically. Nonlinear optics describes the branch of optical 

phenomena that arise when materials have a nonlinear response to light.2 Mathematically, 

this is when the polarization induced in the material by the light, and the electric field of 

the light is related through the following equation: 

 𝐸 𝐹 =  𝐸 0 +  !"
!" !

𝐹 + !
!!
!!!
!!! !

𝐹! + !
!!
!!!
!!! !

𝐹! + !
!!
!!!
!!! !

𝐹! +⋯ Eq. 1.2.2 

Where F is the electric field strength, and E is the energy of the molecule. We can make 

the following substitutions into the equation: 

 𝐸 𝐹 =  𝐸 0 − 𝜇𝐹 − !
!
𝛼𝐹! − !

!
𝛽𝐹! − !

!"
𝛾𝐹! +⋯ Eq. 1.2.3 
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The terms α, β, and γ are the polarizability, hyperpolarizability, and second 

hyperpolarizability, respectively. These terms are considered to be the nonlinear optical 

properties of interest to many fields. 

 In general, each of these properties holds significance with regards to observed 

natural phenomena.2,7 For example, the α coefficient is related to the refractive index of 

the material. One major phenomena that arises from the coefficient β is harmonic 

generation, where two or more photons with a particular frequency are destroyed, to 

produce a photon with a higher frequency than those of the original photons. This would 

be of particular importance to spectroscopists, who rely on exploiting these phenomena to 

produce more contrast while imaging. The third hyperpolarizability, γ, is related to third 

harmonic generation, similar to second harmonic generation, but with three photons 

being destroyed to produce a single photon of a higher frequency. Additionally γ is 

related to other processes, such as simulated Raman scattering, and may be relevant to the 

fields of optical computing and switching. 

 

1.2.2 Experimental Approaches to Determine NLO Properties 

 The experimental approach to determining NLO properties is perhaps the most 

direct one. However, this approach has both advantages and disadvantages. The largest 

advantage to performing experimental measurements is the confidence in one’s results, 

provided that the measurements were done appropriately. The drawbacks to this approach 

are the time involved with running experiments, the cost to buy the appropriate materials 

and equipment, and the expertise required for the measurements to be accurate. 
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 To perform experimental measurements of NLO properties, there are several 

generally accepted methods. For the polarizability, α, one can measure the relative 

dielectric permittivity8 or determine the refractive index9. To determine the 

hyperpolarizability, β, one can use hyper-Rayleigh scattering10,11, or electric-field induced 

second harmonic generation12. In general, the former is preferred because it is a simpler 

experimental procedure than the latter. For the second hyperpolarizability, γ, one can use 

harmonic generation12 or four-wave mixing13. No viable experimental methods of 

measuring higher order hyperpolarizabilities, such as δ, are available. However, these 

higher order hyperpolarizabilities may be determined via computational methods. 

 

1.2.3 Computing NLO Properties 

 Computational tools to investigate NLO properties present an attractive 

alternative to the experimental approach, as these tools can often screen for properties in 

a fraction of the time that it would take for experimental characterization. There are many 

computational tools available, each of which relies on different approaches. The approach 

to take highly depends on the accuracy desired, the computational power available, and 

the timeframe in which the computations must be completed. 

 There are currently numerous options available to compute nonlinear optical 

properties. These methods include sum-over-states, coupled-perturbed Hartree-Fock, 

response theory, and the finite field method. Each of these methods have strengths and 

weaknesses.  

 The sum-over-states14–16 approach is grounded in the Configuration Interaction 

with single excitations (CIS), though it can be generalized to more elaborate 
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configuration-interaction wavefunctions also. Optical phenomena can be traced back to 

the excitation of electrons, and their subsequent return to the ground state. Thus this 

approach can be considered the direct simulation of the phenomena behind producing 

these optical properties. However there may be many different electron configurations 

that contribute to the generation of NLO properties. Thus, the method considers many 

different states, attempts to determine those that are the most important to describing the 

optical behavior of a molecule, and then weights these states appropriately to describe the 

phenomenon we are able to observe experimentally. 

 The SOS approach is one of the most accurate, as it directly attempts to calculate 

the phenomenon responsible for the properties observed. Additionally, the contribution of 

particular excited states to the overall observed phenomena can be deduced, allowing for 

a deeper understanding of the link between electronic structure and NLO properties. 

However, it does typically require a Configuration Interaction calculation, which is quite 

computationally expensive. This drastically limits the sizes of systems that can be 

observed, and requires a great deal of computational power. Additionally, due to the 

summation of many millions of states, this method is especially prone to numerical 

errors, such as roundoff error. 

 Coupled perturbed Hartree-Fock17–19 (CPHF) is another method that can be used 

to compute response properties. As the name suggests, this method extends the standard 

Hartree-Fock method using perturbation theory. In the case of computing response 

properties, the perturbation parameter represents an external electromagnetic field (i.e. 

light). The Schrödinger equations are (approximately) solved with and without the added 
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perturbation. This allows one to determine how a material will behave in the presence of 

an electromagnetic field, and consequently, the response properties of a material. 

 As this method uses the Hartree-Fock formalism, it is less computationally 

expensive than using Configuration Interaction, since Hartree-Fock only a single 

electronic configuration. For most materials, the assumption of having only one 

configuration works reasonably well; however, this assumption may not hold true of all 

materials and molecules, especially those considered to be strongly correlated. Strong 

correlation will be discussed in more detail in further sections. Thus, CPHF may be less 

accurate than the SOS approach, at a lower computational cost. Additionally, the choice 

of basis set, convergence criteria, and grid parameters may have a drastic effect on the 

accuracy of the method. 

 Finally, Response Theory20,21 (RT) is another perturbation theory-based method. 

However, this method uses a time-dependent perturbation theory approach to the 

Schrödinger Equation and is identical to the coupled-perturbed Hartree-Fock method 

when the Schrödinger equation is (approximately) solved at the Hartree-Fock level. 

Rather than having to compute, and sum over, a set of computationally demanding 

equations, in response theory only a set of coupled equations must be solved. This 

method is still relatively expensive, though is much cheaper than the SOS method. 

Currently, it is considered the standard for when using a bottom-up approach, as it 

combines a reasonable computational cost with high accuracy. Consequently, within this 

work, we use RT as the benchmark for comparing our method’s numbers.  

 The finite-field method22–26 takes a different approach to the aforementioned 

three. This method takes computed molecular energy data and attempts to fit it as the 
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external field is varied. The derivatives of the fitted function are then taken to determine 

the nonlinear optical properties as follows: 

 

𝜇 = 𝐸!(0)
𝛼 = 𝐸!′(0)
𝛽 = 𝐸!!!(0)
𝛾 = 𝐸(!)(0)

 Eq. 1.2.4 

One can use many different functions to fit the E(F) function, including Taylor 

polynomials, rational functions, and hypergeometric functions. 

 The major advantage of the finite field method is the computational cost relative 

to the other methods mentioned here. This method usually completes calculations in a 

matter of minutes, rather than days or weeks. This opens up a wide variety of 

possibilities, such as being able to screen large numbers of materials in a high-throughput 

fashion, or to look at larger systems. These applications are particularly important to the 

field of chemical biology, where systems are quite large, relative to those more relevant 

to purely traditional chemistry.  

 However, this method is not without its own set of drawbacks. The most apparent 

one is the heavy reliance of the calculation’s accuracy on the parameters chosen for 

fitting.27 If the fitting parameters are chosen inaccurately, the results of the finite field 

calculations are very inaccurate. This sensitivity has meant that: (1) Users of the method 

need to have experience with using the method, and have the relevant expertise, and (2) 

The results of the method need to have a good validation protocol. By reducing this 

sensitivity to chosen parameters, the reliability of this method can greatly be increased.  

In this work, the finite-field method is chosen as the method of choice to study NLO 

phenomena. 
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1.2.4 The Finite-Field Method 

	
 The finite field approach22–26 is a numerical one, which takes several points at this 

expansion, uses them to fit an arbitrary function, and solves for the derivatives of the 

function as per Equation 1.2.4. As one of the advantages of this method is its cheapness, 

the function that is used for fitting must fulfill the following criteria: (1) The function 

should be easy to optimize, and (2) it should be relatively easy to determine the 

derivatives of this function.  

 In previous work, each of the finite field approaches use a polynomial as the 

function for fitting.28 The polynomial model has the advantage of having the same form 

as the Taylor expansion that defines the NLO properties (Equation 1.2.3). Thus, solving 

for the coefficients in the polynomial model automatically gives one a value for the NLO 

properties. Additionally, to solve the coefficients of the polynomial model, a simple 

linear system of equations can be solved. However, the polynomial model can be quite 

sensitive to the field values for which the system is solved; if values are not chosen 

carefully, the model will not yield usable results. Additionally, there is no easy means of 

knowing if the results obtained are useable. This reduces the overall reliability of the 

method. 

 An alternative to using a polynomial to fit the finite field data is to use a rational 

model instead: 

 𝐸 𝐹 =  !!!"!!!
!!!!!!⋯

!!!"!!!!!!!!!⋯
 Eq. 1.2.5 

Unlike the polynomial model, the coefficients of the rational model do not directly 

correspond to the NLO properties in Equation 1.2.4. However, the model is quite easy to 
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differentiate, as Eq. 1.2.5 can be differentiated analytically with minimal computational 

cost. Additionally, the rational model can also be solved using a linear system of 

equations, similar to the polynomial model. Thus, the rational model does not pose any 

significant disadvantages, in terms of computational cost, to using a polynomial fit.  

 However, there are many significant advantages that make the rational model a 

more attractive alternative to using a polynomial model. The rational model tends to have 

better behavior at poles and asymptotes than the polynomial model. This is quite 

important when fitting the energy at different external fields, as the energy is divergent 

with respect to the applied field. Additionally, the rational model can be thought of as a 

more general form of a polynomial; setting the denominator coefficients to zero yields a 

polynomial form. The rational model also is more robust to choices of parameters, as 

having the correct form tolerates more variance in choosing the correct points in the 

linear expansion. 

 The finite field method is quite computationally cheap, and can be accurate. 

However, the accuracy highly depends on the parameters chosen for the fitting. Choosing 

these parameters is the limiting factor that prevents the method from being user friendly 

and reliable. There are three major parameters that must be optimized for any finite field 

calculation: (1) The number of fields that are chosen for the calculation, (2) The spacing 

of the fields chosen, and (3) The starting field used for the finite field expansion. In a 

previous study of the polynomial method28, the first and second factor were not difficult 

to chose, as they are quite forgiving to a suboptimal choice. However, the third factor is 

quite crucial to the accuracy of the results, and is highly unforgiving to errors in choosing 

it. We expect to see similar trends during studies of the rational function model. 
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1.3 Background of Computing Molecular Energies 

1.3.1 Motivation and Relevance to NLO Property Prediction 

 The computation of accurate molecular energies is the central task of 

computational chemists. The reason why molecular energies are a staple calculation is 

that they are useful for calculating a variety of different properties of molecules, reactions 

and materials. Within the realm of quantum chemistry, there are two paradigms for the 

computation of molecular energy: (1) Wavefunction based methods, and (2) Density-

Functional Theory (DFT) based methods. The finite field method requires the use of 

molecular energies at several different fields in order to create the system of equations to 

be solved. For this purpose, either wavefunction-based methods, or DFT-based methods 

can be used to obtain the energies. 

 These energies must be relatively accurate and have the correct trend with regards 

to increasing electric field strength. Otherwise, the finite field method will not produce 

accurate results. However, as the overarching theme of this thesis is to push the 

boundaries of what can be looked at with the finite field method to facilitate the routine 

calculation of NLO properties for biological systems, computational methods that 

accurately determine energies of larger systems must be considered. 

 The issue with computing energies of larger systems is that the trade-off between 

computation-time and accuracy. In general, as one increases the size of the system, the 

required computation power increases quickly, often as the fourth (and sometimes much, 

much, higher) power of the size of the system. Additionally, the more accurate the 

method used to compute the energy, the more computational resources are required. 



M.Sc. Thesis- Anand Patel  McMaster University, Chemical Biology 
	

	 12	

Thus, to even be able to determine the energy of a larger system, one usually uses a cheap 

computational method, which often leads to inaccuracies in the energies computed. It has 

been observed that NLO properties are often exquisitely sensitive to these errors. In the 

following sections, we will discuss energy extrapolation methods, along with a means of 

refining the energy obtained through relatively cheap calculations. This is done using 

function fitting as well, highlighting the strong applicability of this mathematical tool to 

many different areas of quantum chemistry. 

 

1.3.2 Introduction to Electronic Structure Theory Methods 

 Electronic structure theory based methods rely on solving the time independent 

Schrodinger Equation: 

 𝐻Ψ(𝑅!,𝑅!…𝑅! , 𝑟!, 𝑟!… 𝑟!) = 𝐸Ψ(𝑅!,𝑅!…𝑅! , 𝑟!, 𝑟!… 𝑟!) Eq. 1.3.1 

This equation provides a description of the momentum and position of the electrons and 

nuclei in atoms and molecules. 𝐻 is the Hamiltonian operator, Ψ is the electronic and 

nuclear wavefunction, RI is the position of a nucleus I, and ri is the position of an electron, 

i. One of the most basic assumptions made to this equation is the Born-Oppenheimer 

approximation.29 This approximation postulates that the motion of nuclei is much slower 

than that of electrons; this allows for the separate treatment of nuclear and electronic 

motion. 

 However, for many electron systems, the Born-Oppenheimer equation alone does 

not provide a tractable means of computing the energy. Thus, further assumptions must 

be made. The most well known one is that of the Hartree-Fock30 method. This method 

simplifies the problem of computing the electron-electron repulsion by replacing a many-
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body electron-electron repulsion with an average electron repulsion term instead. The 

main advantage to the Hartree-Fock method is that the assumption allows for the 

treatment of systems with many hundreds of electrons; Hartree-Fock computations for 

polypeptides and polynucleotides are possible, if not exactly routine. Even the energies of 

whole proteins have been reported in the literature using Hartree-Fock based methods.31 

 However, there are disadvantages to using the Hartree-Fock method.30 One major 

disadvantage is the neglect of electron correlation, an effect of using average electronic 

repulsion rather than including electron-electron repulsion explicitly. This reduces the 

overall accuracy of the method. Additionally, the Hartree-Fock method only uses a single 

Slater Determinant-based wavefunction. This means that only one electron configuration 

may be considered in the construction of the wavefunction, but this is not necessarily a 

valid assumption for many systems. For example, in strongly-correlated systems multiple 

electron configurations make significant contributions to the energy. The accurate 

description of strongly-correlated systems is one of the big challenges of quantum 

chemistry, as these systems include, but are not limited to, superconductors and transition 

metal catalysts. 

 In order to determine the properties of strongly-correlated systems, one can use 

Full Configuration-Interaction (FCI).30 This method assumes that the wavefunction can 

be written as a linear combination of Slater determinants. As FCI takes into account all 

the possible electron configurations (i.e. Slater determinants) possible, the wavefunction 

created is exact. However, the drawback to this method is the computational cost 

associated with it; FCI is only tractable for small- and medium-sized atoms and very 

small molecules containing only light (i.e., H-Ne) atoms. 
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 As a compromise between FCI and HF in terms of accuracy and cost, perturbation 

series32 takes a HF calculation and then and then adds systematic corrections to the 

energy in the form of higher order terms in the series. A user may compute as many (or 

as few) correctional terms as they wish. One of the most used perturbation series for 

computational chemistry is the Møller-Plesset (MP) perturbation series33. If we expand 

the energy of a molecule as follows: 

 𝐸 1 = 𝐸 0 + 𝐸! 0 + !
!!
𝐸!! 0 + !

!!
𝐸!!! 0 + !

!!
𝐸(!) 0 +⋯ Eq. 1.3.2 

The function above is written in terms of a perturbation parameter, ε. The individual 

terms in this expansion are related to the MP series by the following relationship: 

 

𝐸 0 =  𝜀!!∈!""
𝐸! 0 = 𝐸!" − 𝐸(0)
𝐸!! 0 = 𝐸!"! −  𝐸!"

𝐸(!) = 𝑛! (𝐸!"# − 𝐸!"#!!)

 Eq. 1.3.3 

 The MP series terms can be computed practically to the 4th order for moderately-

large organic molecules, and until the 5th order for small organic molecules. Ideally, the 

series will tend to converge to the “true” energy for that system as one adds terms to the 

energy expansion. Thus, if we can calculate a few low-order terms, use these to fit a 

function, and then extrapolate that fitted function to infinity, then we should potentially 

be able to determine this true energy. 

However, this extrapolation may pose a problem, in that the MP series is well 

known as to diverge.34 This means that the series does not converge to one fixed energy 

value as the terms in the expansion are increased. This leads to the counterintuitive notion 

that more computationally expensive calculations can be less accurate than less expensive 

ones. However, as the MP series often appears convergent at lower order, if these (non-

divergent) terms are fit, we should be able to resum the series to obtain a convergent 
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fitting function. As with the case of the finite field approximation, many different 

functions can be used to fit the MP series terms. This includes polynomial and rational 

functions, along with even more general functions. One such example of a generalized 

function is the Gauss hypergeometric function. This resummation scheme will be 

discussed in further sections. In this thesis, resummation of the MP perturbation series is 

posed to be a viable method of determining accurate energies for larger systems. If one 

can use cheap computations for large systems, and then refine them towards the true 

energy, then it should be feasible to study larger systems, and especially determine NLO 

properties for these systems.  

 

1.3.3 Resummation of the MP Series 

 As mentioned in the previous section, a perturbation series should ideally be able 

to converge to the true energy in the infinite limit. However, it is a well-known 

phenomenon that the MP series tends to diverge at terms that are higher order.34 This 

usually occurs after the 4th-5th term in the series. Thus, lower-order terms still tend to 

converge towards the “true” energy value. Thus, if one could take the MP1-4 terms, and 

use the term values to create a convergent series that could be cheaply extrapolated to the 

infinite term, then one would have found a way of refining the MP series to the true 

energy, with minimal computational power. 

 In order to resum the perturbation series, a good choice would be the family of 

Gauss Hypergeometric functions. The general form of these functions is as follows: 

 !𝐹!
𝑎!,… ,𝑎!
𝑏!,… , 𝑏!

𝑐
= !! !… !! !

!! !… !! !
(𝑐𝑥)!!

!!!  Eq. 1.3.4 
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where the Pochammer symbols are defined by gamma functions (Γ) as follows: 

 (𝑎)! =
!(!!!)
!(!)

 Eq. 1.3.5 

Through this expansion, it becomes apparent that the structure of these functions is 

combinatoric in nature. Though they seem complicated at first glance, these functions 

present several attractive features that make them a good fit for a problem of this nature.  

 The features that make these functions attractive include their ability to exactly 

describe many different families of functions including geometric, logarithmic, elliptic, 

exponential, and many different types of (associated) orthogonal polynomials. 

Additionally, there are several mathematical tricks that are available that can help with 

the practical application of hypergeometric functions. Currently, the issue with 

optimization of nonlinear functions like these is that convergence is quite difficult to 

achieve. Having explicit mathematical identities to exploit can be very helpful because it 

allows one to (partially) optimize the systems of equations explicitly.35 

 To resum the perturbation series, we note that we can truncate the energy 

expansion in Equation 1.3.2 to four terms: 

 𝐸 1 ≈ 𝐸 0 + 𝐸! 0 + !
!!
𝐸!! 0 + !

!!
𝐸!!! 0 + !

!!
𝐸(!) 0  Eq. 1.2.6 

We can then normalize this series by dividing each of the terms by E(0). If we define 

each of our terms in series 1.2.6 as 𝑂! = 𝛿𝑜!𝑈!, where n represents the n-th term, to be 

defined as, we can rewrite our normalized series in the following way: 

 𝐸 1 = 1+ 𝛿𝑜!𝑈 +
1

2!
𝛿𝑜!𝑈! +

1

3!
𝛿𝑜!𝑈! +

1

4!
𝛿𝑜!𝑈! Eq. 1.2.7 

Then, we note that we can set the third parameter in the hypergeometric equation 

(Equation 1.3.4) to 𝑐 = 𝑐𝑈. Finally, each of the respective four terms can be equated to 

form a system of nonlinear equations, as follows: 
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 𝛿𝑜! =
!! ! !! !…

!! !
(𝑐𝑥)! Eq. 1.2.8 

Where we take n=1, 2,3,4 to create the system of equations. Note that the form used 

above is the 2F1 Gauss Hypergeometric, but if more terms are calculated, then one can 

use a 2F2 (or higher) Hypergeometric function. 

This system of nonlinear equations must be solved, to get our coefficients 

𝑎! !,, 𝑎! !, 𝑏! !, 𝑐. This solution should provide us with a convergent hypergeometric 

function, that we can then solve at U=1. That would give us the value of the MPn series if 

we were to apply an infinite order correction to it. 

 One note about solving the nonlinear equations is that there is no explicit formula 

known to solve this system of equations. If we were only looking at the even order terms, 

however, there are means of solving the system with diagonal Pade approximants.35 The 

case with even order terms does come up in some contexts for our overall problem. 

However, if we assume there is no explicit formula, then we must use a nonlinear system 

solver. In our case, we choose to use the scipy.optimize Python package, as it is a simple, 

yet sufficiently robust, solver for problems of this type. 

 

1.4 Future Directions 

1.4.1 Motivation 

 As the overall project progressed, it became apparent that we were not able to 

further use more complex nonlinear functions due to issues with optimization. This 

became apparent when attempting to use hypergeometric functions in NLO property 

prediction, as discussed in the following section. Thus, future directions of this project 
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would need to satisfy two criteria: (1) Functions that are easy to optimize, while (2) 

increasing the flexibility of fitting, to allow for more accurate fits. For example, the using 

the Meijer-G family of functions provides a promising alternative to solving systems of 

nonlinear equations with hypergeometric functions.36 This scheme is detailed in the 

following section. This function fitting may be promising in other areas of quantum 

chemistry as well, including such as Density Functional Theory. 

 Although we looked at NLO property prediction in this thesis, we only have 

looked at property prediction along a singe axis. To generalize to more real systems, we 

need to include the y- and z-axis to determine these properties in three dimensions. As the 

finite field method worked well for the single axis case, it is a logical choice for the three-

dimensional case as well. This forms a key direction for future work on this method. 

 

1.4.2 Hypergeometric Functions for NLO Property Prediction 

 To use hypergeometric functions with the finite-field method22–26, one replaces 

the Taylor polynomial in traditional methods with a hypergeometric function instead. 

This means that the linear systems of equations that arises with the polynomial and 

rational models is no longer valid. Thus, a nonlinear solver must be used to determine the 

coefficients for the hypergeometric model. However, solving the function, and 

determining derivatives is a trivial exercise, as the function’s series form lends itself well 

to this. 

 In our work, we used Covariance Matrix Adaptation Evolution Strategy (CMA-

ES)37 to optimize the system of nonlinear equations. One advantage to using a nonlinear 

solver such as CMA-ES is that one can use as many points as desired to optimize the 
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function. However, this is not necessarily practical from a computational cost standpoint, 

as one of the main draws of the finite-field method is that it is computationally cheap to 

use. Despite this, the flexibility to use as many, or as little points for fitting creates an 

additional layer of flexibility that may help with how well the function fits. This is in 

contrast to the rational model, which only could use as many points as dictated by the 

truncated form of the function.  

 

1.4.3 Moving Beyond Hypergeometric Resummation 

 Although the hypergeometric function does provide a high degree of flexibility in 

fitting different functions, one of the major drawbacks of employing it is the issue with 

optimizing the system of nonlinear equations that tends to result. These issues are quite 

prevalent when dealing with systems of nonlinear equations that are complex. The 

Meijer-G resummation method36 seems to be a promising method to circumvent this 

issue. If we take a series of the form: 

 𝑍 𝑔 =  𝑧!𝑔!!
!!!  Eq. 1.4.1 

where z0 = 1 (i.e. the series is normalized). This method takes four different steps to 

implement. The first step is to regularize the series to be fitted by making a Borel 

transform of the coefficients, which is simply dividing our series in Equation 1.4.1 with: 

 𝑏! =
!!
!!

 Eq. 1.4.2 

Next, we take the ratios of consecutive Borel (bn) coefficients: 

 𝑟! 𝑛 = !!!!
!!

 Eq. 1.4.3 

We can then make the assumption that the ratios of the coefficients can be approximated 

via the rational function defined as: 
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 𝑟! 𝑛 = !!!!!
!

!! !!!!!
!!!

 Eq. 1.4.4 

We then solve the resultant system of equations to create solutions vectors in the form: 

 
𝑝!𝑥! = 0!

!!!

𝑞!𝑦! = 0!
!!!

 Eq. 1.4.5 

These solutions vectors uniquely determine a hypergeometric equation. We can finally 

get back our resumed equation by solving the following equation:  

 𝑂!,! 𝑔 =  ! !!!
!
!!!

! !!!!
!!!

𝐺!!!,!!!
!!!,! ( 1,−𝑦!,… ,−𝑦!  1, 1,−𝑥!,… ,−𝑥!

!
!!
!!!
)  Eq. 1.4.6 

Where the G function is the Meijer-G function. The resultant sum gives us an 

(approximate) resummation of the divergent series. This method looks to be quite 

promising to increase reliability of the hypergeometric resummation method for the MP 

series, while maintaining the flexibility of the generalized functions. 
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Chapter 2 

 

Finite Field Method for Nonlinear Optical Property 

Prediction Using Rational Function Approximants* 

2.1 Motivation 

 This chapter investigates a novel method of computing NLO properties, in the 

form of a rational function based finite field method. Though the finite field method is 

quite accurate, it is not very robust to the choices of electric fields one uses for the 

computation of NLO properties. Thus, we hypothesized that using a function that fits the 

																																																								
	
*Work published as: Patel, A. H. G.; Mohammed, A. A. K.; Limacher, P. A.; Ayers, P. W. Finite Field 
Method for Nonlinear Optical Property Prediction Using Rational Function Approximants. J. Phys. Chem. 
A 2017, 121, 5313–5323. 
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energy with respect to a field (E(F)) more closely would help with the accuracy of the 

finite field method, and increase the overall robustness. This should help this method be 

more useful for uses in pharmaceutical and biomaterials development, as increased 

robustness would translate to less user intervention needed, allowing for more widespread 

use by those not necessarily experienced in doing calculations of this nature. 

2.2 Introduction 

 Since the discovery of nonlinear optical (NLO) phenomena1 and their uses, 

determining response polarizabilities and hyperpolarizabilities for molecules and 

polymers has become increasingly relevant to many fields, including materials science 

and organic chemistry2. Consequently, the demand for cheap and accurate computational 

methods to predict these molecular properties has increased.3,4 However, producing a 

method that achieves these goals is challenging, as the (hyper)polarizabilities are higher-

order derivatives of a molecule’s energy with respect to an external homogeneous electric 

field (𝐹), as follows: 

 𝐸 𝐹 =  𝐸 0 +  !"
!" !

𝐹 + !
!!
!!!
!!! !

𝐹! + !
!!
!!!
!!! !

𝐹! + !
!!
!!!
!!! !

𝐹! +⋯ Eq. 2.1 

The dipole moment (µ), the dipole polarizability (α), the first hyperpolarizability (β) and 

the second hyperpolarizability (γ) can be substituted in the expansion: 

 𝐸 𝐹 =  𝐸 0 − 𝜇𝐹 − !
!
𝛼𝐹! − !

!
𝛽𝐹! − !

!"
𝛾𝐹! +⋯ Eq. 2.2 

 Several approaches are available to compute these NLO properties, including: 

sum over states5, coupled-perturbed Hartree-Fock (HF)6–8, response theory9,10, and the 

finite field (FF) method11–15. Of these, the FF method remains one of the most 

computationally inexpensive, since unlike the other methods, no excited state information 
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or analytical derivatives are required.16 This also makes the FF method one of the most 

facile to implement; simply knowing the energy at several field strengths is sufficient to 

compute a desired optical property. For these reasons, the FF method is commonly used 

first when one wishes to assess the performance of new quantum chemistry methods for 

(hyper)polarizabilities.17–29 

 Though the FF method has many advantages, the accuracy of a FF calculation is 

highly sensitive to the fields used. This sensitivity originates from the errors caused by 

choosing field strengths that are too high or low. The numerical nature of the FF method 

implies that choosing field strengths that are too low will cause finite-precision artefacts. 

Conversely, fields that are too high make higher-order terms in Eq. (2.1) nonnegligible, 

leading to errors when the Taylor series is truncated. When there are low-lying excited 

states, using fields that are too high can lead to a field-induced state inversion, where an 

excited state at zero-field becomes lower in energy than the ground state.30 This leads to 

properties being evaluated for the more favourable excited state rather than for the ground 

state, as desired. As a consequence of these effects, chosen field strengths must be 

optimized to ensure that computed (hyper)polarizabilities are accurate.  

In previous work, it was found that three factors play a key role in the accuracy of 

a FF method: the total number of fields used, the distribution of the fields, and the initial 

field value around which the other fields are picked.31 This previous study tuned these 

three factors for a Taylor expansion based FF method.31 In particular, this previous 

method was based on taking finite differences, using a Taylor polynomial, to compute 

NLO properties.  The optimized method, in conjunction with iterative error reduction 

using Richardson extrapolation, was found to provide accurate predictions for NLO 
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properties. However, the accuracy of this method was found to be quite sensitive to the 

initial field used for the calculation. This sensitivity tends to reduce the overall reliability 

of the method, creating a significant barrier to its widespread adoption and use. 

To mitigate the field sensitivity observed with the finite difference method, we 

propose using a rational function to fit the energy instead:  

 𝐸 𝐹 =  !!!"!!!
!!!!!!⋯

!!!"!!!!!!!!!⋯
 Eq. 2.3 

Where a, b, c, d,… and B, C, D,… are fitting coefficients. By setting all the denominator 

coefficients to zero, a polynomial is obtained, so this function is a generalized form of the 

Taylor expansion. However, rational functions are well-suited to approximate asymptotic 

functions and, recalling their use in Padé approximants, (approximately) account for 

higher-order terms in the Taylor series (Eq. 2.1), as one must do especially for larger 

fields. We hypothesized that these properties of rational functions may allow for 

improvement in the energy fitting procedure. Consequently, the overall error in a FF 

calculation might be reduced, which would increase the range of electric fields that 

produce an acceptable error. To test this hypothesis, in this work, a rational function 

based FF method is optimized and compared to the Taylor FF method.  

 As in our previous work on the Taylor, or polynomial, FF model31, three factors 

vital to the accuracy of the rational FF model will be optimized in this study. First, the 

ideal number of terms for the rational function approximant will be determined, which 

gives the number of fields used in the calculation. Then, different distributions of the 

chosen fields will be tested, in order to determine which distributions allow for the most 

accurate calculation of NLO properties. Finally, the error dependence on initial field 

strengths for various molecules is explored. If any trends are present, they will be used to 
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produce an algorithm that can choose initial fields optimally. After the rational-function 

FF method is optimized, its accuracy and behaviour in calculating response properties 

shall be compared to the previous polynomial-based method. 

 

2.3 Methods 

2.3.1 Overview of the Rational Function Approximation for the 

FF method  

 
To produce enough data points for the FF approximation, the energy of a 

molecule must initially be solved for at various field strengths. Selecting the appropriate 

field strengths begins with choosing an initial field strength (𝐹!), around which the other 

chosen field strengths (𝐹) are distributed. For this variant of the FF method, the selected 

fields are distributed according to: 

 𝐹� = 𝑥!𝐹! Eq. 2.4 

In this study, 𝑥 = 2
!
!"" and 𝐹! = 𝐹!"#  × 2

!
!"". Substituting these forms into Equation (4) 

produces: 

 𝐹! =  2
!
!""! 𝐹!"#  × 2

!
!"" =  𝐹!"#×2

(!!!")
!""  Eq. 2.5 

Where 𝑗 is any integer between 1-800, 𝑝 is any integer between 1-100, and 𝐹!"# =

0.0005 𝑎.𝑢.  For 𝑁  unknown coefficients in the rational function (Equation 3), 

𝑛 ∈ ℤ∗ 0 ≤ 𝑛 ≤  (!
!
− 1)  for even values of 𝑁, and 𝑛 ∈ ℤ∗ 0 ≤ 𝑛 ≤  (!!!

!
)  for odd 

values of 𝑁. In addition, for both even and odd values of 𝑁, the energy at 𝐹 = 0 is also 

determined, since this simplifies Equation 2.3 to: 



M.Sc. Thesis- Anand Patel  McMaster University, Chemical Biology 
	

	 29	

 𝐸 0 =  𝑎, Eq. 2.6   

allowing for 𝑎 to be determined directly. To determine the remaining coefficients, each 

𝐹! value is substituted into Equation 2.3. Since both +𝐹! and −𝐹! are used, each 𝐹! value 

produces two equations. These substituted equations can be rearranged into the form:  

 

𝐸 𝐹! + 𝐵𝐹 𝐸 𝐹! = 𝑎 + 𝐹!𝑏 + 𝐹!!𝑐
𝐸 −𝐹! − 𝐵(𝐹! � −𝐹! = 𝑎 − 𝐹!𝑏 + 𝐹!!𝑐

𝐸 𝑥𝐹! + 𝐵𝑥𝐹! 𝐸 𝑥𝐹! = 𝑎 + 𝑥𝐹!𝑏 + 𝑥!𝐹!
!𝑐

𝐸 −𝑥𝐹! − 𝐵𝑥𝐹! 𝐸 −𝑥𝐹! = 𝑎 − 𝑥𝐹!𝑏 + 𝑥!𝐹!
!𝑐

⋮

 Eq. 2.7 

By substituting 𝐸 0 =  𝑎, and rearranging into the form 𝐴𝑥 = �: 

 

−𝐹(𝐸 𝐹 ) 𝐹 𝐹!

𝐹(𝐸(−𝐹) −𝐹 𝐹!
−𝑥𝐹(𝐸 𝑥𝐹 )
𝑥𝐹(𝐸 −𝑥𝐹 )

𝑥𝐹
−𝑥𝐹

𝑥!𝐹!
𝑥!𝐹!

𝐵
𝑏
𝑐
=

𝐸 𝐹 − 𝐸(0)
𝐸 −𝐹 − 𝐸(0)
𝐸 𝑥𝐹 − 𝐸(0)
𝐸 −𝑥𝐹 − 𝐸(0)

 Eq. 2.8 

Since both the positive and negative fields are used, for even values of 𝑁 the system is 

overdetermined. This overdetermined system can be solved through least squares, or by 

discarding one of the equations. Both approaches are discussed further in Section 2.3.3. 

 Once the coefficients for Equation (3) are determined by solving the system of 

equations 2.8, the response properties can then be determined by taking the appropriate 

derivatives of Equation 2.3 at 𝐹 = 0: 

 

𝜇 = −𝐸′(0)
𝛼 = −𝐸′′(0)
𝛽 = −𝐸′′′(0)
𝛾 = −𝐸 ! (0)

 Eq. 2.9 

 

2.3.2 Optimizing the rational function form and field 

distribution 
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 Using the general method presented in Section 2.3.1, the energies of five 

randomly selected molecules were fit by rational functions with various numbers of 

numerator and denominator terms (Table 2.1). The molecules tested were: acetamide, 4-

amino-4’-nitrobiphenyl (DPAN), 1-hexadecanol, hexa-1,3,5-triene (PA3), and 1-amino-

10-nitro-deca-1,3,5,7,9-pentaene (PA5AN). For each molecule, plots comparing the error 

in computed properties (𝛼,𝛽, 𝛾) over varying 𝑝 and 𝐹! (Equations 2.4 and 2.5) were 

generated for each approximant form (Figures 2.1 and 2.2). For more information on 

benchmark values and error calculation, refer to Section 2.3.5.  

 

Table 2.1. The forms of the rational function benchmarked for their accuracy in 
fitting molecular energies. 
 

Model number Numerator degree Denominator degree 
1 3 2 
2 4 3 
3 4 4 
4 2 2 
5 3 3 

 

These plots were used to fix the form of the rational function as model 2 for the 

remainder of the study. The form of model 2 is: 

 𝐸 𝐹 =  !!!"!!!
!!!!!

!!!"!!!!
  Eq. 2.10  

Since this model has four terms in the numerator and three terms in the 

denominator, each further FF calculation requires the molecular energy at five nonzero 

field values, along with the molecular energy at 𝐹 = 0. This is not surprising, since for a 

fixed (but large) basis set, one expects the energy to diverge to minus infinity linearly 

with F in the high-field limit. 
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Having determined the optimal functional form for the rational function, the 

generated plots were also used to fix the value of 𝑝 = 50  for Equation (5). This 

corresponds to a common ratio of 𝑥 = 2 for the geometric progression used to distribute 

fields in Equation (4) and it is the same ratio that we found when investigating the 

polynomial form in ref. 31.  

 

2.3.3 Testing the least squares solution 

	
The form of the rational function given by model 2 (Equation 2.10) contains six 

unknown coefficients, one of which can be determined directly using Equation 2.6. For 

the remaining five unknown coefficients, positive and negative fields are picked using 

Equation 2.5. Thus, six equations were generated for five unknowns in this case, leading 

to an overdetermined system. To ensure that solving the system using least squares 

provides a consistently accurate result relative to discarding one of the equations, the 

error in computed response properties over varying 𝐹!  values was plotted for both 

approaches. An example plot for acetamide is given in Figure 2.3. Using these plots, it 

was determined that least squares provided an adequate solution to the overdetermined 

system. Thus, for the remainder of the study, the least squares solution to Equation 2.8 

was used. To obtain solutions to both the overdetermined and truncated system of 

equations, the linear systems were solved using the numpy.linalg Python package. 

 

2.3.4 Developing a protocol to find optimal values of F0 
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 For FF methods, picking the optimal 𝐹!value is crucial in ensuring the computed 

response properties are accurate.31 However, the optimal 𝐹! drastically varies for each 

NLO property calculation. Thus, we devised an automatic method to determine an 

adequate 𝐹! value. This 𝐹! picking method arises from the investigation conducted in 

Section 2.3.3, as it uses the property values calculated by either least squares or 

truncating the system of equations (Equation 8). In particular, the difference between the 

truncated solutions from the least squares solution is used to produce an indicator, 

denoted as 𝑟:  

 𝑟 = (!!"#!!!"#)
!!"#!"$$%&'

 Eq. 2.11 

Where 𝑞 = 𝛼,𝛽, 𝛾, and 𝑚𝑎𝑥 and 𝑚𝑖𝑛 are the maximum and minimum values of the 

properties calculated by removing one of six equations, respectively. Additionally, 

𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 refers to the value of the properties computed using least squares. The 

quantity r can be thought of as an error metric that is the ratio between (a) the difference 

between the maximum and minimum values of q obtained when the equations are solved 

using leave-one-out analysis and (b) the predicted property value obtained by least-

squares solution on the complete dataset. 

In total, this procedure requires seven points for each 𝐹! value to generate the 

corresponding 𝑟 value. A representative plot comparing γ values calculated via the two 

methods of solving Equation 2.8 is given in Figure 2.4a.  Additionally, an example of the 

𝑟 value plotted with respect to 𝐹! is given in Figure 2.4b. 

 To pick an 𝐹! value that minimizes the error in a calculated property, the 𝑟 value 

was observed as the 𝐹! value is increased. Starting from the low-field limit, the first 𝐹! 

value for which the 𝑟 value increases or decreases for five consecutive 𝐹! values was 
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taken as the 𝐹! used for the FF calculation. The 𝐹! chosen in this manner was used to 

calculate α and γ for a set of 121 molecules (Figure 2.5), and β for a set of 91 molecules 

(Figure 2.6). 

 

2.3.5 Electronic structure calculations and reference values to 

determine errors 

 
 All energy calculations in this study were performed using DALTON 2.0.32 The 

level of theory used was Hartree-Fock, with a 6-31G* basis set33. For the calculation of 

electric properties, the HF method was found to be superior to conventional DFT.34,35 All 

molecular geometries were optimized with this level of theory and basis set prior to 

computing the energy. The reference values for the α, β and γ properties were calculated 

using response theory (RT).9,10 These RT values were used to calculate the error (𝜀) in a 

given response property using the following formula: 

 𝜀!,!,! =
!,!,!!"#!
!,!,!!"

− 1  Eq. 2.12 

Where 𝛼,𝛽, 𝛾!"#!  is the response property computed using the rational-function FF 

method, and 𝛼,𝛽, 𝛾!" is the corresponding property computed using RT. To ensure that 

the reference values computed by RT were accurate enough to compare to the properties 

computed using the FF method, the convergence criteria for αRT was 10 significant 

figures or greater, and for βRT and γRT, nine and eight significant digits, respectively.  

 Since assessing the finite field method requires the comparison of many similar 

and small numbers, issues related to numerical precision can become quite significant. 

Thus, all wave functions and molecular energies were tightly converged. All the energies 
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used in this study are exact to at least 2e-12 a.u. Since the smallest molecules in this study 

have absolute energies above 40 a.u., this leads to a relative precision of 1e-13 a.u. for the 

energy, corresponding to 13 significant digits. 

 

2.4 Results and Discussion 

2.4.1 Determining the optimal form of the rational function to 

fit the energy 

 
 Observing the plots for computing γ for acetamide in Figure 1, the accuracy and 

overall behaviour of the truncated rational functions (Table 2.1) were compared. Models 

1 and 4 can immediately be excluded from consideration, due to their relative lack of 

accuracy. Moreover, for model 3, the two blue bands signifying a double minima 

preclude it from being considered further; the presence of more than one minimum makes 

it difficult to optimally choose both the initial field and field distribution. Finally, a 

comparison between models 2 and 5 reveals that the minimum of model 5 is not as well 

defined when compared to model 2. This is supported by the diffuse blue band observed 

in the model 5 plot, which contrasts with the better-defined blue band in the model 2 plot. 

Overall, model 2 was found to have the best accuracy, while retaining desirable error 

behaviour. A similar analysis was performed with the graphs generated for the remaining 

test molecules and NLO properties; the behaviour and accuracy of model 2 was generally 

found to hold for these as well. Thus, for the remainder of the study, the form of the 

rational function used was model 2 (Equation 2.10). 
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Figure 2.1. The behaviour of different rational function models in computing γ for 
acetamide. For each rational function form, the error relative to the reference value was 
determined as the initial field (𝐹!) and the field fineness (𝑝) were changed. Model 2 was 
chosen as the best form of the rational function, since its plot contains a relatively tight 
and continuous blue band. This band indicates a desirable error distribution, along with 
low overall errors. The corresponding α and β plots for acetamide confirmed that model 2 
should be used. The analysis was repeated with four additional molecules:  4,4-
nitrophenyl aniline (DPAN), hexadecanol, 3-subunit polyacetylene (PA3), and 5-unit 
polyacetylene aminonitro (PA5AN). This confirmed the trends observed for acetamide. 
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2.4.2 Optimizing the field distribution parameters 

	
 Once the form of the rational function was fixed to model 2, the following step is 

to optimize the field distribution for the FF calculations. For the previous polynomial 

based FF method31, the field distribution was found to be important for the accuracy of 

the method. In particular, using a geometric progression with a common ratio of 2 was 

found to produce the most accurate NLO property values. Thus, in this study, we also 

choose to distribute the fields according to a geometric progression (Equation 4).  The 

common ratio of this progression, denoted by 𝑥, is expanded as 𝑥 = 2
!
!"" . Through 

varying the value of 𝑝 from 1-100, the interspacing between chosen fields can be tuned. 

The effect of varying the 𝑝 value on the accuracy of the method was observed using plots 

such as those in Figure 2.2. Though only the plots for γ are shown for the five test 

molecules (Methods, Section 2.2), the plots for α and β were found to show the same 

trends as those observed for γ. 

 As predicted, the plots in Figure 2.2 demonstrate dependence between the 

accuracy in γ and the value of 𝑝 picked for a calculation. However, since the bands 

corresponding to the minimal error span a large range of 𝑝 values for the molecules, this 

implies that the value of 𝑝 does not have to be picked precisely. For all five molecules, 

the minimal error band appears for values of 𝑝 between 20-60. Though any value 

between these will work equally well, the remainder of the study fixed 𝑝 = 50, producing 

a common ratio of 𝑥 = 2. This optimal common ratio was found to be the same as that 

observed for the polynomial based FF method.31 
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Figure 2.2. Contour plots of the error in γ for five test molecules to determine the 
optimal field fineness (p) value. The bands corresponding to minimal error are bright 
blue, except for PA3, where it is yellow. These error bands are present for every molecule 
from p = 20-60. The error within these bands is stable, indicating that any choice of p 
between 20-60 will be equally valid. Thus, the value of p was fixed to 50 for the 
remainder of the study. 
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2.4.3 Testing the least squares solution 

	
 For the rational function form given in Equation 10, there are six equations in five 

unknowns, i.e. the system is overdetermined. This system was solved by either least 

squares or truncating the system through removing one equation. Figure 2.3, where errors 

in γ are computed for acetamide, gives a representative example of a plot used to assess 

the accuracy of both methods.  

 At lower fields, the accuracy of the least squares solution and the solutions 

obtained through leaving an equation out are similar. Depending on which equation was 

removed, the 𝐹! at which the error is minimized varies, with no discernable pattern. At 

higher fields, all solutions show similar behaviour, but have varying errors. One observed 

trend is that the solution obtained by removing the first equation from the system given in 

Equation 2.8 is generally very similar in behaviour and accuracy to the least squares 

solution. This suggests that the equations constructed with low field strengths contain less 

information than those using higher fields. 

 Though the solution obtained through removing the first equation showed 

predictable behaviour relative to the least squares solution, this did not hold true for the 

rest of the equations. By leaving an equation out of the system of equations 2.8, the error 

could increase or decrease, with no clear trends indicating which equations would lower 

the error when removed. Thus, as the least squares solution performed most predictably 

with regards to accuracy and behaviour, it was used for the remainder of the study. 
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Figure 2.3. Example of a plot used to assess the performance of the least squares 
solution compared to solving a truncated system of equations. Here, the errors in 
computing γ for acetamide using model 2 are shown. No consistent trends between the 
least squares and truncated solutions could be found between molecules and properties. 
Thus, the least squares solution was used for the remainder of the study. 
 

2.4.4 Determining optimal initial fields for FF calculations 

 Unlike the 𝑝 value or rational function form, the optimal 𝐹! value varies with the 

molecule and NLO property for which the FF calculation is performed. The strong 

dependence of the optimal 𝐹! on the molecule and property can be observed in Figure 

2.4. This figure illustrates that 𝐹! must be picked precisely to minimize error; using an 𝐹! 

that is not optimal leads to unusable results. Thus, a method to consistently choose the 

correct 𝐹! value is needed. As reference values are not available in practice, only the 

calculated response property value can be used for choosing 𝐹! . Additionally, the 

response property cannot be computed for too many 𝐹! values, since this negates the cost 

advantage of the FF method.  
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 To develop this method, plots similar to those generated for the least squares 

analysis  (Section 2.3.3) were first used. However, instead of plotting the errors against 

𝐹!, the raw values of each computed property were plotted. An example of these plots, 

where γ is computed for acetamide, is given in Figure 2.5a. It can be observed that 

deviation from the least squares solution is minimized near the optimal field value, which 

is represented by the vertical red line. This deviation is quantified by the 𝑟 value, 

calculated by Equation (11). Plotting the 𝑟 value (Figure 2.5b) shows that it reaches a 

minimum at the optimal field, corresponding to the point at which the curves in Figure 

2.5a begin to follow the least squares solution. Thus, starting from the low-field limit and 

moving toward the high-field limit, the initial field is picked as the field after which the 𝑟 

value consecutively increases or decreases for five 𝐹! values. The field chosen using 

these criteria, represented by the purple vertical line in Figure 2.5b, is not exactly at the 

optimal 𝐹!. This is due to the roughness of 𝑟 value curve at the minima, which makes it 

difficult to choose the 𝐹! value exactly corresponding to the minimum. Overall, this 

algorithm was used to compute the optimal 𝐹! for a set of 121 molecules (Figure 5). 

These 𝐹! values were used to compute α and γ for each molecule in the 121-molecule set. 

Similarly, β was computed using the 𝐹! chosen for a set of 91 non-centrosymmetric 

molecules (Figure 6). Overall, this field-picking method, along with the optimized 

common ratio and rational-function model allow for the computation of NLO properties 

in a quick and reasonably accurate manner. 

	



M.Sc. Thesis- Anand Patel  McMaster University, Chemical Biology 
	

	 42	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
Figure 2.4. The optimal initial field value (F0) that minimizes the error strongly 
depends on the molecule and NLO property for which the calculation is run. 
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Figure 2.5. Determining a criterion for choosing an optimal initial field for the FF 
calculation. Both graphs shown are for the computed value of γ for acetamide. The 
vertical red lines represent the optimal field value. In (a), the deviation of the other 
solutions from the least squares result decreases as the optimal field value is approached. 
To determine the deviation from the least squares result, the maximum value of a 
calculated property can be subtracted from the minimum, and divided by the least squares 
regression result. A plot of this value is shown in (b). As the deviation decreases in plot 
(a), the curve in plot (b) reaches a minimum. The vertical purple line in plot (b) is the 
field chosen by the field-picking algorithm. 
 
2.4.5 Comparison of single-molecule error behaviour to the 

polynomial model 
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 After having optimized the new FF method, its accuracy and behaviour is 

compared to the previous polynomial model31. To start, a single molecule comparison, 

using acetamide, is done. In general, the trends described for acetamide are representative 

of those observed for the entire dataset of molecules (Figures 2.6 and 2.7). Errors in α, β, 

and γ as 𝐹! is varied were plotted for the rational-function and polynomial models, and 

are given in Figure 2.8. For the polynomial model, each iterative Richardson 

extrapolation used to refine the error is denoted as 𝑚 = 0,1,2,3. For α and γ, the error in 

the ration-function model is comparable to the 𝑚 = 2 polynomial refinement. For β, the 

error in the rational-function model is comparable to 𝑚 = 1 for the polynomial model. For 

each property, the error curve for the rational function fit is smoother than the comparable 

polynomial curve. This smoothness likely reduces the need for error refinement steps. 

Additionally, the lack of a need for error refinement steps for the rational function model 

provides advantages in the form of lower computational cost and a simpler 

implementation. 
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Figure 2.6. The 121 molecules for which α and γ were calculated using the rational-
function based FF method. 
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Figure 2.7. The 91 non-centrosymmetric molecules for which β was calculated using 
the rational-function based FF method. 
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Figure 2.8. The α, β, and γ error behaviour for acetamide is compared between the 
rational-function (a) and polynomial (b) FF methods. For the polynomial method, the 
behaviour with iterative refinement via Richardson extrapolation is shown, denoted as m 
= 0,1,2,3. 
 

2.4.6 Overall comparison of the rational-function and 

polynomial models  
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 To compare the accuracy and robustness of the rational function model versus the 

polynomial model31, plots of the average α, β, and γ errors over χ for the entire dataset 

were created (Figure 2.9). Here, 𝜒 = !!
!! (!"#$%$&'()

, where 𝐹!  is the initial field, and 

𝐹! (!"#$%$&'() is the optimal initial field chosen by the protocol presented in Section 2.4. 

This normalization allows the average behaviour of the entire dataset to be compared 

around 𝐹! (!"#$%$&'(), where χ = 1. Though as many molecules as possible from the 

dataset were included, the energies of some molecules could not be calculated at enough 

𝐹! values to span the full range of the graph. We found that at the χ values where the data 

for these molecules ended, large discontinuities in the graph would occur. Thus, these 

molecules were not included in the graphs. The two major errors in the FF method, 

truncation and round-off error,36 can be observed in these graphs. Truncation error 

increases with increasing 𝐹! values, and round-off error increases with decreasing 𝐹! 

values. 

 For α, the accuracy at χ = 1 of the rational-function and polynomial models are 

quite similar, with minimum errors of approximately 10-7 for both. However, the rational 

function model is approximately half an order of magnitude less accurate than the 

polynomial model. Comparing the behaviour of both models, the rational function model 

remains at a lower overall error for a large range of fields compared to the polynomial 

model. This means that the results are robust with respect to moderate errors in choosing 

the optimal 𝐹! .  

  The errors at χ = 1 for β are approximately 10-3, with the rational-function model 

being half an order of magnitude less accurate than the polynomial model. Similar to α, 
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the rational function model is more robust to changes in initial field strength. In general, 

errors are smaller than 10-2 for field strengths between χ values of 1-4. This is a greater 

range than that of the polynomial model, which remains in that range for 0.25-2.5 χ only. 

Thus, small errors in choosing the optimal 𝐹! are less detrimental to the accuracy of the 

rational-function model than the polynomial model. 

At χ = 1, the polynomial model31 obtains average errors on the order of 10-4 for γ. 

The rational function model performs significantly worse, with an accuracy loss of 

approximately 1.5 orders of magnitude. However, the error for the rational function 

model remains lower over a larger range of fields, as observed for the α and β 

calculations. The rational function model consistently remains at an error of 10-1 or lower 

for χ = 0.1-4, in contrast to the polynomial model, which achieves this for χ = 0.1-2.0 

only. 

Though the comparison above may lead to the conclusion that the rational 

function model is less accurate overall, this is not the case. Rather, the loss of accuracy is 

from not having the error minima centered on χ = 1. For α and γ, the minimum error 

occurs at χ = 0.5, while for β, the minimum error is at χ = 2. This suggests that the 

protocol used to choose the optimal 𝐹! value overestimates this value for α and γ, and 

underestimates it for β. From Figure 4b, it can be observed that the 𝑟 value becomes 

smooth only after the minimum is reached. For β, the 𝑟 value becomes smooth before the 

minimum is reached. Thus, this over and underestimation of 𝐹!  is expected, as the 

protocol only chooses the optimal 𝐹! value when the 𝑟 value becomes smooth. Though 

different variations of the protocol were explored, none were able to yield any 

improvement. Thus, work will be continued on developing a more consistent method to 



M.Sc. Thesis- Anand Patel  McMaster University, Chemical Biology 
	

	 50	

find the minimum 𝑟  value. However, despite issues with choosing 𝐹! , the rational 

function model is more robust with regards to the initial field chosen; overestimation or 

underestimation of the optimal initial field will still yield reasonably accurate results. The 

robustness of the rational model is expected, as the rational function reduces the 

truncation error relative to a polynomial fit, which should increase the range of 

acceptable field strengths for a calculation. However, the round-off error remains similar 

for both models, but these errors are controlled by using very tight convergence criteria 

for the energies, and by selecting the minimum field appropriately. Overall, this 

robustness to the 𝐹! value used in the calculation is a key step in improving the overall 

user-friendliness and reliability of the FF method. 
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Figure 2.9. The average α, β, and γ error behaviour for the dataset of molecules is 
compared between the rational-function (red) and polynomial (blue) FF methods. 
The field values for each molecule are normalized using the optimal initial field value for 
each molecule. Thus, 𝜒 = !!

!! (!"#$%$&'()
, where 𝐹!  is the initial field used for the FF 

calculation, and 𝐹! (!"#$%$&'() is the optimal initial field automatically chosen for the FF 
calculation. At χ = 1, the overall error for the rational-function model is not as low as for 
the polynomial model. However, the rational model error remains lower over a larger 
range of χ, indicating that it is more robust to changes in 𝐹! than the polynomial model. 
For the polynomial curves (blue), the Richardson refinement level is m = 1 for β, and m= 
2 for α and γ. 
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2.5 Conclusion 

A variation of the FF method using a rational function was presented to calculate 

longitudinal polarizability and the first and second longitudinal hyperpolarizabilities of a 

wide range of molecules. To calculate NLO properties accurately, the functional form to 

best fit the energy was found, along with the optimal field distribution and a method of 

choosing 𝐹! reasonably well. The fitted rational function approximation has a polynomial 

of degree three in the numerator and a polynomial of degree two in the denominator. The 

field mesh used for this approximant was generated using a geometric progression with a 

common ratio of 2. To generate a good 𝐹! guess, it was found that the deviation from 

the least squares result could be used.  

 Comparison of the optimized rational-function FF method to the polynomial FF 

method from ref. 31 shows that both perform similarly with regards to error behaviour. 

Unlike the polynomial model, the rational function model does not need subsequent error 

refinement. This is advantageous in terms of computational cost, and for ease of 

implementation. Comparison of the two methods for the overall dataset reveals that the 

rational-function FF method loses approximately 0.5-1.5 orders of magnitude in accuracy 

relative to the polynomial method. However, the insensitivity of the rational-function FF 

method to 𝐹!, along with not requiring refinement steps, makes this method a strong 

choice for new quantum chemistry codes that wish to implement a cheap and simple 

method for NLO property calculations. 
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Chapter 3 

 

Resummation of the Møller-Plesset Perturbation Series 

using Gauss Hypergeometric Functions 

 
3.1 Motivation 

 Within computational chemistry, one of the major goals is to be able to compute 

the energies of molecules and materials. This allows for the simulation of many different 

properties, and is particularly foundational to the computation of nonlinear optical (NLO) 

properties using the finite field1–5 method. Though computing NLO properties using the 

finite field method is quick, the computation of molecular energies represents a rate-
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limiting step in the overall process, as these calculations can take up to months to 

complete. 

 The issue with computing the energy for a system is the tradeoff between 

accuracy, and the overall computational cost of the calculation.6 The larger the system, 

the more computational cost associated with determining the energy. Consequently, one 

must resort to computationally cheap methods to be able to solve for the energy of larger 

systems, but this may not be accurate. Thus, in this study, we set out to determine a 

means of taking relatively cheap computations, and refining them systematically to 

increase accuracy, with minimal added computational time. This allows many larger 

systems, especially those of biological relevance, to be investigated with greater ease. 

3.2 Introduction 

 The field of computational chemistry aims to accurately simulate and predict 

chemical phenomena. This includes both simulation of molecules, reactions and 

materials. Though there are many problems within the scope of computational chemistry, 

the computation of energy remains a fundamental calculation that forms a foundation to 

be able to answer many questions posed by computational chemists. The critical nature of 

computing accurate molecular energies has lead to a plethora of different methods, each 

with their own unique strengths and drawbacks. 

 Within quantum chemistry, we can fundamentally categorize all ab initio energy 

calculation methods as being either Electronic Structure Theory (EST) based, or Density 

Functional Theory (DFT) based.6 EST is based off of solving the time independent 

Schrodinger Equation: 

 𝐻Ψ(𝑅!,𝑅!…𝑅! , 𝑟!, 𝑟!… 𝑟!) = 𝐸Ψ(𝑅!,𝑅!…𝑅! , 𝑟!, 𝑟!… 𝑟!) Eq. 3.1 
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However, as this equation is not exactly solvable for systems with more than one 

electron, those developing EST methods must make a series of assumptions to render this 

equation tractable. In general, one of the key advantages to using, and developing, EST 

methods is the ability to systematically improve the method, as we exactly know the 

correct form that needs to be solved. However, though there are EST methods that are 

quite computationally cheap, using accurate EST methods tends to be quite expensive. 

This is not necessarily the case with DFT-based methods. 

 DFT based methods are based off of the Hohenburg-Kohn theorem7, which 

postulate that the electronic energy of a molecule can be written as a functional of the 

electron density. This greatly simplifies the computation of molecular energy, from a 

problem that handles N-electrons with 3N coordinates, to a problem that only relies on 

only three coordinates. Later work by Kohn-Sham8 led to the following equation to 

express molecular energy as a functional of electron density: 

 𝐸 𝜌 = 𝑇! 𝜌 + 𝐸!" 𝜌 + 𝐽 𝜌 + 𝐸!" 𝜌  Eq. 3.2 

Where the total energy (𝐸 𝜌 ) is expressed as a sum of the kinetic energy (𝑇! 𝜌 ), 

nuclear-electron attraction (𝐸!" 𝜌 ), Coloumb repulsion between electrons (𝐽 𝜌 ), and 

the exchange-correlation energy (𝐸!" 𝜌 ). 

 Of these four terms, computing the first three are relatively straightforward. 

However, the exchange correlation energy is quite tricky to determine, with no way of 

knowing the exact form that it takes. Determining good approximations for this term 

tends to be a challenge for those developing DFT based methods. Not knowing the exact 

form that this term takes also represents one of the greatest drawbacks for DFT based 

methods, which is that one cannot improve the accuracy of results in a systematic fashion 
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similar to EST methods. However, DFT based methods tend to be cheaper, while 

providing comparable accuracy to EST methods. This inexpensiveness is why DFT based 

methods are widely relied upon by computational chemists. 

 In this study, we chose to develop a perturbation series9 based method. These 

methods fall into the category of being EST based, and start with an uncorrected energy. 

Then, corrections are added to this energy in the form of higher order terms in the series. 

To determine more accurate energies, one simply computes as many terms as desired. 

The number of terms that can be computed is limited only by system size, computational 

power available, and time available to run the calculation. 

 One of the most widely used perturbation series in computational chemistry is the 

Møller-Plesset (MP) perturbation series10. This series starts with the sum of occupied 

orbital energies, which does not include any electron correlation. Subsequent terms in the 

series add more electron correlation effects, which (in principle) increase the accuracy of 

the energy computed. However, this series is well known to be divergent for many 

systems in the infinite limit.11 Thus, a resummation method must be used to produce a 

convergent series from this divergent one. In this study, we chose to use hypergeometric 

resummation12 as a tool to be able to extrapolate the MP series to the infinite limit. 

 We chose this resummation approach12 for several reasons. The first is that the 

calculation of MP1-4 energies is relatively cheap, and can easily be done for many 

systems of biological relevance. This is important to the more widespread adoption of 

computational chemistry tools in the fields of biochemistry and chemical biology. There 

are also many MP1-4 energies reported in the literature, which allows many systems to 

be studied with greater accuracy, but without having to run further calculations. 
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Additionally, the hypergeometric resummation approach provides a lightweight tool that 

does not add (virtually) any computational cost to the MP4 calculation. Finally, this 

approach leaves many options for systematic improvement; one can use more general 

functions in an attempt to obtain a more accurate resummation. This preserves one of the 

advantages of EST based methods.  

 The hypergeometric function we are using to fit the energies is the Gauss 

hypergeometric function. This function has the following form: 

 !𝐹!
𝑎!,… ,𝑎!
𝑏!,… , 𝑏!

𝑐
= !! !… !! !

!! !… !! !
(𝑐𝑥)!!

!!!  Eq. 3.3 

Where (a)n are Pochhammer symbols, written in terms of gamma functions: 

 (𝑎)! =
!(!!!)
!(!)

 Eq. 3.4 

From Equation 3.4 it can be observed that the structure of this function is combanatoric; 

this allows for a high degree of flexibility when fitting. 

 Overall, we will be using the Gauss hypergeometric function to fit the energies 

obtained from MP1-4 calculations. Then, the resummed hypergeometric function will be 

used to extrapolate to the infinite limit of the MP series, which should provide us with a 

computationally cheap means of refining the energy obtained from MP1-4 calculations. 

To test this method, we will be using strongly correlated systems (Methods 3.3.2), as they 

are quite small, so we can compute reference energies using full CI. Additionally, these 

systems are quite difficult to compute accurately for most computational methods, so 

they represent a rigorous test for this newly developed protocol. 

 

3.3 Methods 
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3.3.1 Overview of the Resummation Scheme 

	
 In most perturbation series9, we have a perturbation parameter (ε) that is 

dimensionless, and which is quite small in magnitude, ε << 1. We can expand the energy 

of a molecule using a Taylor series, written in terms of this parameter, and centered 

around a:  

 𝐸 𝑎 + ε = 𝐸 𝑎 + ε𝐸! 𝑎 + !
!!
ε!𝐸!! 𝑎 + !

!!
ε!𝐸!!! 𝑎 + !

!!
ε!𝐸 ! 𝑎 +⋯ Eq. 3.5 

If we choose a = 0, and substitute ε = 1 into this series, then we obtain the following 

expression: 

 𝐸 1 = 𝐸 0 + 𝐸! 0 + !
!!
𝐸!! 0 + !

!!
𝐸!!! 0 + !

!!
𝐸 ! 0 +⋯ Eq. 3.6 

We can think of the perturbation parameter, ε as a means of measuring the amount of 

electron correlation that is considered, where ε = 0 gives us a simple sum of occupied 

orbitals, and ε = 1 is the “true” corrected molecular energy. Thus, the expression in 

Equation 3.6 would give us the true energy, if we were able to solve this series 

analytically. What becomes interesting, is that the derivatives in this expression can be 

thought of as subsequent corrections to the uncorrelated (E(0) energy as follows: 

  

𝐸 0 =  𝜀!!∈!""
𝐸! 0 = 𝐸!" − 𝐸(0)
𝐸!! 0 = 𝐸!"! −  𝐸!"

𝐸(!) = 𝑛! (𝐸!"# − 𝐸!"#!!)

 Eq. 3.7 

Where E(0) represents the sum of all occupied alpha orbital energies, HF is the Hartree-

Fock Energy (equivalent to MP1), and MPn is the nth-order MP energy. Most standard 

quantum chemistry software can compute up to the MP4 energy. In this study, we used 

Gaussian 09, Rev. C.0113 to compute the occupied alpha orbital, and MP1-4 energies. 

The basis set for these calculations was minimal (STO-3G14,15). All calculations were 
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checked for normal termination, and convergence. This gives us up to 5 terms in the 

series (Equation 3.6). 

 Once we have the numbers for each of the terms, we move to creating a system of 

equations with our hypergeometric function, of the form 2F1 (Equation 3.3). To do so, we 

first divide our series by E(0) to normalize the first term to 1. Next, we define 𝑂! =

𝛿𝑜!𝑈!, where n represents the n-th term, and we can rewrite our series in the following 

way: 

 𝐸 1 ≈ 1+ 𝛿𝑜!𝑈 +
1

2!
𝛿𝑜!𝑈! +

1

3!
𝛿𝑜!𝑈! +

1

4!
𝛿𝑜!𝑈! Eq. 3.8 

Finally, we set the third parameter in the hypergeometric function (Equation 3.3) to 

𝑐 = 𝑐𝑈. Finally, each of the respective four terms can be equated to form a system of 

nonlinear equations, as follows: 

 𝛿𝑜! =
!! ! !! !…

!! !
(𝑐𝑥)! Eq. 3.9 

Where n ranges from 1-4. This system of equations was then solved using the Python 

scipy.optimize package, using the lst_squares nonlinear equation solver. Care was taken 

to ensure that the optimality of the optimized function was less than 10-9, ensuring tight 

convergence. If this optimality was not reached, another random initial guess was chosen, 

and the function was re-optimized until converged sufficiently. 

 Once the optimized function parameters for the function were determined, the 

hypergeometric series was solved with these parameters at x = 1. This solved energy 

should be a close approximation to the case when ε = 1, giving an energy that is closer to 

the “true” correlated energy. 

3.3.2 Overview of Test Systems 
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 The test systems that were used in this study were mostly those that are known to 

display strong correlation behavior. This includes hydrogen atom chains (H2 and H4), and 

several diatomics (N2, O2
2+, C2). The diatomic molecules were tested at the ground state, 

and at one or two excited states. The bond lengths in the molecule were stretched from 

1.0-10.0 Å, in increments of 0.5 Å. 

 To provide a reference for the computed energies, Full CI calculations were used. 

These calculations were done using Gaussian 09, Rev. C.0113 using the CASSCF 

keyword, and using all the electrons as part of the active space. The basis set for these 

calculations was minimal (STO-3G14,15). All calculations were checked for normal 

termination, and proper convergence.  

 

3.4 Results and Discussion 

3.4.1 Method Convergence Issues 

	
 As this method involves optimizing a system of nonlinear equations (Equation 

3.9), it is important that the method is able to converge consistently to determine a correct 

set of parameters. This is also important for user-friendliness and reliability of the 

method. If the method fails to converge, then users might need to troubleshoot. If the 

method does converge, but to the incorrect minima, then the results from the method 

cannot be trusted. 

 As expected in this study, we found that the nonlinear solver tended to have issues 

with convergence. Sometimes the nonlinear solver would converge to local minima, 

rather than the global minima. This would lead to an ill-fitted function, which then would 
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provide drastically incorrect energies when used to extrapolate the MP series. However, 

observing the fitted function optimality, which is a measure of how close the fitted 

function is to the original points, allows one to know if the function was optimized to a 

local minima. It was determined though observation that if the optimality was above 10-9, 

then the function was not converged properly. Having this measure greatly increases the 

reliability of the method, as the optimization can be set to rerun with another random 

guess if a local minima is found. 

 In order to assess if changing convergence tolerances would help with finding 

global minima instead of local ones, the same calculations were rerun several times with 

increasing and decreasing tolerances. The three tolerances parameters in the solver, called 

xtol, gtol and ftol were independently set from 10-6 to 10-13, decreasing an order of 

magnitude each trial. It was found that decreasing the default tolerance of 10-9 for any of 

these parameters did not help find global maxima more easily. 

 Although several different nonlinear solvers as part of the scipy.optimize package 

were tried, none were found to work substantially better than the lst_squares optimizer. 

The other optimizers also tended to be much more complex, making output much harder 

to read; this makes it more difficult to tell when the function had failed to optimize 

properly. Thus, we decided to continue the remainder of the study with the lst_squares 

optimizer. 

3.4.2 Energy Refinement Results 

	
 The reference (FCI), MP4 and refined hypergeometric energies were plotted for 

each of the test systems (Figures 3.1-3.9). The refined hypergometric energies for these 

systems displays several general trends and patterns of behaviour. Observing the plots for 
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the H2 and H4 test systems (Figures 3.1 and 3.2), one can observe that the hyergeometric 

function tends to diverge much more rapidly than the curve for the MP4 series as the 

bond is stretched. This seems to be a trend that is exclusive to the hydrogen-based test 

systems, which would have intuitively been thought of as the simplest systems to predict 

properties of, due to having fewer electrons.  

However, despite the high levels of divergence, the hypergeometric function 

succeeds in refining the energies of the hydrogen-chain systems at lower bond lengths. 

Often, the accuracy of the MP4 calculation is increased from within 10 millihartrees of 

the reference value to within 1 millihartree of the FCI value. This leads to the notion that, 

for strongly correlated hydrogen-based systems, the MP series displays quite erratic 

behaviour, surpassing the ability of even the general hypergeometric function to be able 

to accurately resum the data involved. However, at lower bond lengths, the resummation 

scheme works as intended. 

For the remainder of the diatomic systems (Figures 3.3-3.9), the overall trend 

seems to be more encouraging. For these systems, the hypergeometric function seems to 

be refining the energy, as predicted. Additionally, many of the large deviations of the 

MP4 energy from the FCI energy seem to have been minimized, suggesting that fitting 

using the hypergeometric function does resum the divergent MP series to produce a 

convergent series with corrected behaviour. 

 However, these positive results have minor issues that can be observed. 

Occasionally, we observe that at higher bond lengths, we get results that diverge quite 

suddenly. Two examples of this is the refined energy for spin 1 N2, at a bond length of 

8.5 Å (Figure 3.3), and the spin 1 O2
2+ energy, at a bond length of 7.5 Å (Figure 3.5). 
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Interestingly, these types of divergences are only observed for the spin 1 diatomic 

molecules, which have the same electron configuration. It is quite possible that there are 

issues with refining the MP series for this electron configuration, but further studies need 

to be conducted. In particular, it would be interesting to determine the hypergeometric 

refinement curves for C2
2-, to see if a similar trend is observed to that of O2

2+ and N2. If a 

similar trend were found, this would point to errors that arise from the fit of the MP 

series, rather than being an artifact of the optimization process. 

 It would also be interesting to study why the hydrogen chain systems are quite 

difficult to refine. To do so, there are several possible routes, including testing 

isoelectronic systems, such as He+ chains, or to use alternative fitting functions to 

determine if there is an issue with the form of the hypergeometric function used. It is also 

possible that more terms in the hypergeometric function are needed, perhaps using a 2F2 

or 3F2 form. To do so, however, MP5 and MP6 energies would be needed, which are 

generally quite difficult to obtain from commercial quantum chemistry software.  

 Finally, there are some molecules that do not have refined hypergeometric 

numbers at higher bond lengths, but also do not show high levels of divergence. These 

bond lengths are those that the function could not be optimized for, suggesting that there 

were either no global minima that could be found at those points, or that the nonlinear 

solver was not robust enough to determine the roots of the system. In future work, it 

would be interesting to use schemes that provide explicit formulae to optimize the 

hypergeometric fitting function, to narrow down if the issue is with the nonlinear solver, 

or the function itself. One resummation scheme that shows promise is based off of 

Meijer-G functions.16 
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Figure 3.1 Comparison of the MP4, reference (FCI) and hypergeometric energies 
for H2 with a spin multiplicity of 1.  
 

 

Figure 3.2 Comparison of the MP4, reference (FCI) and hypergeometric energies 
for H4 with a spin multiplicity of 1.  
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Figure 3.3 Comparison of the MP4, reference (FCI) and hypergeometric energies 
for N2 with a spin multiplicity of 1.  
 

 

Figure 3.4 Comparison of the MP4, reference (FCI) and hypergeometric energies 
for N2 with a spin multiplicity of 3.  
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Figure 3.5 Comparison of the MP4, reference (FCI) and hypergeometric energies 
for O2

2+ with a spin multiplicity of 1.  
 

 

Figure 3.6 Comparison of the MP4, reference (FCI) and hypergeometric energies 
for O2

2+ with a spin multiplicity of 3.  
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Figure 3.7 Comparison of the MP4, reference (FCI) and hypergeometric energies 
for O2

2+ with a spin multiplicity of 5.  
 

 

Figure 3.8 Comparison of the MP4, reference (FCI) and hypergeometric energies 
for C2 with a spin multiplicity of 1.  
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Figure 3.9 Comparison of the MP4, reference (FCI) and hypergeometric energies 
for C2 with a spin multiplicity of 3.  
 

3.5 Conclusions and Future Work 
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Chapter 4 

 

Conclusions and Future Work 

4.1 Conclusions 

 The overall aim of this thesis was to take tools commonly used in computational 

and quantum chemistry, and help facilitate use in biological applications. In particular, 

we focused on the computation of nonlinear optical properties, which finds many 

applications in biochemistry and chemical biology. These applications include confocal 

microscopy, imaging for pharmaceuticals and tissues, and the development of novel 

biomaterials with desired optical properties.1 

 With this goal, there were two parts that needed to be investigated: (1) 

determining a means of computing NLO properties for common organic molecules and 
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polymers in a more robust manner, and (2) determine a means of computing accurate 

energies in a manner cheap enough to use for biological applications. The second part to 

this is due to the reliance of the finite field method on the computation of accurate 

energies. 

 We succeeded in making significant progress with part (1), as a variation of the 

finite field method that uses rational functions was studied. This investigation found that 

using a rational model allows for increased robustness of the method, while nearly 

matching the level of accuracy possible with the polynomial based finite field method. 

This allows for less user intervention in the method, and increased reliability, both key 

factors for the in silico screening of materials and drugs in a high-throughput fashion. 

 However, more work remains to be done with part (2). Though the initial results 

seem promising, the method must be made more reliable to be adopted and used widely. 

In order to do this, we must better understand why certain electron configurations and 

systems fail to produce accurate results consistently. Additionally, more work on finding 

a reliable means of optimizing the function must be conducted. However, the progress on 

both parts shows that it is possible to design computational tools that are relevant to 

biological applications, though the lens of quantum chemistry and mathematical fitting.  

4.2 Future Work 

 Despite the work done on this topic, there are many directions that may be taken 

to build upon it. This includes using more general functions for nonlinear optical property 

prediction, to determine if the robustness can be increased further, and to determine new 

schemes that can be used for the purposes of resummation. Additionally, the work done 

in this study can be extended to other fields in quantum chemistry. For example, the idea 
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of using fitting functions also finds an application in the development of novel DFT 

methods, among many others. Finally, more user-friendly code must be written, so that 

the methods can be more widely (and easily) used. 

 Though not mentioned in the main chapters of this thesis, some preliminary work 

was also done using a hypergeometric function-based variant of the finite field method. 

Unfortunately, this work was not fruitful, as the overall optimization of the 

hypergeometric function consistently failed. This was likely due to the higher number of 

points that need to be used for the finite field method, resulting in a system of equations 

that was much larger and more complex than that mentioned in Chapter 3. This 

investigation outlines that there are limits to how complex we can make fitting functions. 

In future work, we will try to use different fitting functions that can be optimized linearly, 

or have explicit formulae to determine optimized parameters. Hopefully, this work leads 

to further variants of the finite field method that are increasingly robust and accurate. 

 Finally, we hope that the ideas presented here will be useful and applicable to 

other parts of quantum chemistry and not just in the scope presented here; many of the 

ideas adapted here originated for physics applications.  
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