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Abstract

It has been shown that the classical Rosenzweig-MacArthur predator-prey
model is sensitive to the functional form of the predator response. To see
if this sensitivity remains in the highly controlled environment of the chemo-
stat, we use a predator-prey model with three trophic levels and a Holling
type II predator response function. We first focus on the analysis of the model
using an Ivlev functional response. Local and global dynamics are studied,
with global stability of the coexistence equilibrium point obtained under cer-
tain conditions. Bifurcation analysis reveals the existence of a stable periodic
orbit that appears via a super-critical Hopf bifurcation. The uniqueness of this
periodic orbit is explored. Finally, we make comparisons between the dynam-
ics of the model with Ivlev response and Monod response, both of which have
nearly identical graphs. The same sensitivity to functional form is observed in
the chemostat as in the classical model.
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Chapter 1

Background

Predator-prey models are a well studied tool used in population ecology. In
particular, the experimental evidence and predictions of mathematical mod-
els can be seen in [3, 4, 6]. Predator-prey theory can be traced back to
the Lotka-Volterra equation [21, 31]. The Rosenzweig-MacArthur model was
then developed by expanding to include density dependent prey growth and
Holling type functional responses [27], and its effectiveness in producing re-
alistic dynamic behaviour has been shown [30]. This model predicts that
increasing the availability of nutrients can cause the dynamics to shift from a
stable equilibrium to oscillatory dynamics [26]. A generalized version of this
Rosenzweig-MacArthur model is also commonly studied [28, 8]. Collectively,
the Rosenzweig-MacArthur and the generalized Rosenzweig-MacArthur mod-
els can be referred to as the classical predator-prey model.

An issue with modelling arises since the explicit mathematical expressions
required to make biological models rigorous are not always known. This is
true in particular for the function which describes the uptake of resources.
Moreover, it has been determined that, depending on which functional form
is chosen, the model can predict qualitatively and quantitatively different dy-
namics. This problem is observed and detailed in [9] by Fussmann and Blasius.
They study the classical predator-prey model with three functional responses,
namely the Monod [25], Ivlev [15], and Trigonometric [16] functional responses.
These functions are chosen as they are nearly indistinguishable for appropri-
ate parameter choices, and they all have Holling type II form. Fussmann and
Blasius showed that qualitative and quantitative dynamics predicted by the
model can be different depending on which of the functional forms was used.
Their result was explained further in [28] by Seo and Wolkowicz who used a
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Reaction VesselNutrient Reservoir Collection Vessel
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Figure 1.1: A simple diagram of a chemostat. The nutrient reservoir

has substrate concentration S0, which is then pumped into the reaction

vessel at rate D. The reaction vessel contains prey and predator popula-

tions. Contents of the reaction vessel are pumped out at the same rate

D to maintain constant volume.

rigorous bifurcation approach to study the extreme sensitivity of the classical
predator-prey model to the functional form for resource uptake.

The motivation for this thesis comes from the work of Fussmann and Bla-
sius in the sense that we wish to see if this sensitivity to functional form re-
mains, even in the highly controlled environment of the chemostat. A detailed
description of the chemostat is given in [29]. Simply put, the chemostat is a
laboratory apparatus used for the continuous culture of organisms. It consists
of three vessels; a nutrient reservoir, reaction vessel, and collection vessel. In
all our models we assume that the reaction vessel is perfectly mixed, thus there
is no spatial variation in the concentrations of the populations. It is assumed
that the growth of the prey population is limited by a single nutrient, that
is pumped into the reaction vessel at a rate D. So as to maintain constant
volume in the reaction vessel, the contents are removed to the collection vessel
at the same rate D. Figure 1.1 gives a simplified depiction of the chemostat.
It is also assumed that the death rate of the species is insignificant compared
to the dilution rate, and that all external factors are held constant.

Here we consider a model of the chemostat with three distinct trophic
levels. That is, the reaction vessel contains both a prey species that feeds only
on the nutrient, and a predator species that feeds only on the prey. While the
motivation comes from studying different resource uptake functional forms,
this thesis focuses specifically on proving the dynamics for the Ivlev functional
response. Comparisons with the dynamics from the Monod functional form

9
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are also made. The differences between the dynamics predicted using these
functional forms are of particular significance since the prey isocline in both
cases has at most a single extremum.

This thesis is organized in the following way. In Chapter 2 we give a math-
ematical description of the model and its necessary assumptions. In addition
we give a non-dimensional version of the model and examine its limiting sys-
tems. Chapter 3 focuses on a full analysis of the possible configurations of
the prey nullcline. The local and global stability of equilibria is studied in
Chapter 4. These results draw on Lyapunov functions, the LaSalle Extension
Theorem, and the Dulac Criterion. Chapter 5 is dedicated to existence and
uniqueness of the periodic orbit. The Poincaré criterion and Liénard function
theory are used. In particular, an adapted version of Zhang’s theorem by Kooij
and Zegeling [17] is used. For the Ivlev response the proof for uniqueness of
the periodic orbit is not complete, but certain conditions for the uniqueness
are established. Bifurcation analysis is done in Chapter 6. The existence and
criticality of the Hopf bifurcation is determined, as well as the sequence of bi-
furcations that can occur. Next, Chapter 7 focuses on extending the stability
results from the two dimensional limiting system model, back to the original
three dimensional model using the Butler-McGehee Lemma. Finally, Chapter
8 begins by establishing some preliminary analysis for the Monod functional
response. A proof for uniqueness of the periodic orbit when the coexistence
equilibrium is unstable is given. As a corollary to this theorem, we get that
whenever the coexistence equilibrium point is locally stable, it is globally sta-
ble. The chapter concludes with a comparison between the dynamics from the
Ivlev response and the Monod response.

10



Chapter 2

Introduction

2.1 The Model

The predator-prey model we consider is:

S ′(t) = (S0 − S)D − xp(S)

x′(t) = x(−D + γp(S))− yq(x) (2.1)

y′(t) = y(−D + δq(x))

S(0) > 0, x(0) > 0, y(0) > 0.

The model is based on a chemostat with three trophic levels. The dependent
variables S(t), x(t) and y(t) represent the concentration of substrate, prey and
predator respectively, in the growth chamber at time t. It is assumed that
the trophic levels are distinct so that the prey feeds only on the substrate and
the predator feeds only on the prey. It is also assumed that the growth vessel
is perfectly stirred so there are no spatial variations in the concentrations of
substrate or either population. The concentration of substrate in the nutrient
reservoir is given by S0, and D represents the rate of both inflow and outflow
from the growth chamber. The parameters γ and δ represent yield constants
for the consumption of substrate and the consumption of prey, respectively. In
order to maintain biological relevance, it is assumed that all initial concentra-
tions are positive. The function p(S) represents substrate-uptake by the prey.
The rate of conversion of the substrate into prey biomass is given by γp(S).

11
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The function p(S) satisfies the following:

p(S) is continuously differentiable,

p(0) = 0, (2.2)

p(S) > 0 for S > 0

p′(S) > 0 for S ≥ 0.

We make the simplifying assumption that p(S) = mS, for constant m > 0.
This choice for p(S) is one of the simplest forms which satisfies the above
assumptions. In a similar fashion the predator response function is denoted
q(x), and has the following properties:

q(x) is continuously differentiable,

q(0) = 0, (2.3)

q′(x) > 0 for x ≥ 0,

q′′(x) < 0 for x ≥ 0.

To study the sensitivity of this model to the functional form selected for q(x),
two different response functions are observed. This thesis focuses primarily
on the Ivlev functional response that has the form qI(x) = aI(1− e−bIx) [15].
Comparisons are then drawn between this Ivlev form and the Monod functional
response that is given by qM(x) = aMx

bM+x
[25]. Both Monod and Ivlev predator

responses satisfy the required properties for a Holling Type II function given
in (2.3), and are nearly indistinguishable when using nonlinear least squares
optimization to fit the parameters to sample data of this type.

2.2 The Scaled Model

The system (2.1) with Ivlev functional response can be simplified by a change
of variables. There are four variables (S, x, y and t) in the system so four
parameters can be chosen to scale. Let Ŝ = σS, x̂ = αx, ŷ = βy and t̂ = τt.
Then,

dŜ

dt̂
=
σ

τ
((S0 − S)D −mxS) = (σS0 − Ŝ)

D

τ
− m

ατ
x̂Ŝ

dx̂

dt̂
=
α

τ
(x(−D + γmS)− ya(1− e−bx)) = x̂

(
−D
τ

+
γm

στ
Ŝ

)
− aα

βτ
ŷ
(

1− e−
b
α
x̂
)

dŷ

dt̂
=
β

τ
(y(−D + δa(1− e−bx)) = ŷ

(
−D
τ

+
δa

τ
(1− e−

b
α
x̂)

)
.

12
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Taking D̂ = D
τ

, Ŝ0 = σS0, and b̂ = b
α

gives

dŜ

dt̂
= (Ŝ0 − Ŝ)D̂ − m

ατ
x̂Ŝ

dx̂

dt̂
= x̂(−D̂ +

γm

στ
Ŝ)− aα

βτ
ŷ(1− e−b̂x̂)

dŷ

dt̂
= ŷ(−D̂ +

δa

τ
(1− e−b̂x̂)).

To eliminate a, b, γ and δ choose σ = γb, α = b, β = b
δ

and τ = δa, and
take m̂ = amγ

b
. Then the system (with hats omitted to simplify notation) is

reduced to

dS

dt
= (S0 − S)D −mxS

dx

dt
= x(−D +mS)− y(1− e−x) (2.4)

dy

dt
= y(−D + 1− e−x).

The choice to scale out γ and δ is for convenience. Choosing to eliminate a
and b is arbitrary. At some points to simplify analysis it may be more useful
to choose a different scaling of the variables. An alternate scaling is used in
Chapter 8.

2.3 Well-Posedness

As system (2.1) represents a biological system we require all solutions to be
non-negative and bounded for all time when given relevant initial conditions.

Lemma 2.1. The solutions S(t), x(t) and y(t) of system (2.4) are bounded
and non-negative.

Proof. The vector field given by System (2.4) is continuously differentiable in
the first octant {(S, x, y) : S, x, y ≥ 0}, implying that solutions with non-
negative initial conditions exist and are unique. To establish non-negativity of
the substrate concentration assume S(τ) = 0 for some τ ≥ 0. Then S ′(τ) =
S0D > 0 so the solution S(t) remains in the positive octant ∀t ≥ 0. For the
predator and prey populations, note that the (S, 0, y) and the (S, x, 0) planes
are invariant. By uniqueness of solutions these planes cannot be reached in

13



M.Sc. Thesis - T. Bolger McMaster University - Mathematics

finite time for trajectories originating in the interior of R3. As such x(t) ≥ 0
and y(t) ≥ 0 ∀ t ≥ 0. To prove boundedness of the solution consider the sum
of solutions. Let z(t) = S ′(t) + x′(t) + y′(t). Adding the equations in (2.4) we
obtain

z′(t) = D(S0 − z(t)).

This is a first order differential equation with solution for z(t) given by

z(t) = (z(0)− S0)e−Dt + S0, (2.5)

where z(0) = S(0)+x(0)+y(0). Therefore z ≤ max{z(0), S0}. Since the initial
conditions for S, x and y are positive and the sum of the solutions is bounded
above, the solutions S(t), x(t) and y(t) are bounded in the biologically relevant
octant.

2.4 The Limiting Systems

The system in (2.4) can be further simplified by studying the limiting system.
Note that from (2.5) the sum of solutions S(t) +x(t) + y(t) converges to S0 as
t→∞. The ω-limit set is given by

ω = {(S, x, y) ∈ R3
+ : ∃ an increasing, unbounded sequence tk such that

(S(tk), x(tk), y(tk))→ (S, x, y) as k →∞}.

It follows from (2.5) that S(tk) + x(tk) + y(tk)→ S + x+ y = S0. Therefore ω
is restricted to the {(S, x, y) : S+x+ y = S0} simplex. We will first study the
dynamics of system (2.4) restricted to the two dimensional simplex. Chapter 7
focuses on expanding this analysis to the full three dimensional system. Three
identical limiting systems can be obtained by eliminating one of the variables
using the relationship S + x + y = S0. First eliminate y to obtain the S, x
subsystem.

dS

dt
= (S0 − S)D −mxS

dx

dt
= x(−D +mS)− (S0 − S − x)q(x) (2.6)

S(0) ≥ 0, x(0) ≥ 0.

14
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Similarly, obtain the S, y subsystem by eliminating x:

dS

dt
= (S0 − S)D − (S0 − S − y)mS

dy

dt
= y(−D + q(S0 − S − y)) (2.7)

S(0) ≥ 0, y(0) ≥ 0.

Finally obtain the x, y subsystem by eliminating S:

dx

dt
= x(−D +m(S0 − x− y))− yq(x)

dy

dt
= y(−D + q(x)) (2.8)

x(0) ≥ 0, y(0) ≥ 0.

The most useful subsystem to study is the x, y subsystem in (2.8) since the
predator nullcline is vertical. This planar system has properties similar to the
classical Rosenzweig MacArthur predator-prey model [27] given by

dx

dt
= rx

(
1− x

K

)
− yq(x)

dy

dt
= y(−D + q(x)) (2.9)

x(0) ≥ 0, y(0) ≥ 0.

In this model, D is the death rate of the predator, r is the intrinsic growth
rate of the prey, and K is the carrying capacity of the prey in the absence
of the predator population. Also, x and y are the densities of the prey and
predator populations, respectively, and q(x) is the capture rate of the predator.
It is assumed that the conversion rate of captured prey is proportional to the
capture rate. The proportionality constant has been scaled out in the model
presented here. The only difference between systems (2.8) and (2.9) is the
term describing how the prey grows in the absence of the predator.

The remainder of this thesis focuses on the analysis of subsystem (2.8). By
the conservation law from (2.5), there is a 1 : 1 correspondence between the
equilibria of the two dimensional subsystem (2.8) and the original three dimen-
sional model (2.4). The local stability results are also equivalent. Boundedness

15
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and non-negativity of solutions of (2.8) follow immediately from these results
for (2.4) from (2.1). Further justification of the equivalence of the dynamics
of these systems is given in Chapter 7.

The predator nullcline is given by the vertical line x = q−1(D). With the
Ivlev response, this is x = − ln(1−D). In order to have biologically relevant
and interesting solutions we impose the restriction that the predator nullcline
lies in the interior of the positive quadrant. For the Ivlev functional response
this corresponds to restricting 0 < D < 1.

To obtain an expression for the prey nullclines, the x′ equation in (2.8) can
be factored as:

x′ = (mx+ q(x))(F (x)− y), (2.10)

where y = F (x) , −Dx+mx(S0−x)
q(x)+mx

provides an explicit expression for the prey
nullcline.

16



Chapter 3

Isocline Analysis

The equation of the prey nullcline is F (x) = −Dx+mx(S0−x)
q(x)+mx

. Some key proper-
ties of this function need to be established for use in later analysis. First note
that F (x) is continuously differentiable for x ≥ 0. Continuity of F (x) and
F ′(x) is clear for x > 0. To obtain continuity at x = 0 L’Hopital’s rule can
be applied. Define the x-intercept of F (x) by K such that F (K) = 0. Then
K = S0m−D

m
. The prey nullcline can be rewritten in terms of K as,

F (x;K) =
mx(K − x)

q(x) +mx
. (3.1)

Since biologically relevant solutions are required, we must have K > 0, imply-
ing that S0m−D > 0.

3.1 Initial and End Behaviour

In order to determine the behaviour of the function F (x;K), first examine its
possible configurations at x = 0. There is a removable singularity at x = 0
since both numerator and denominator are zero there. Also, the y-intercept is
always biologically relevant since

F (0) , lim
x→0

F (x) =
Km

m+ 1
> 0. (3.2)

17
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The initial behaviour of the prey nullcline is determined by the signs of F ′(0)
and F ′′(0). For the Ivlev response,

F ′(0) , lim
x→0

F ′(x) =
m (K − 2(m+ 1))

2(m+ 1)2
(3.3){

> 0 if K > 2(m+ 1)

≤ 0 if K ≤ 2(m+ 1).

Similarly for F ′′(0),

F ′′(0) , lim
x→0

F ′′(x) =
−m (K(2m− 1) + 6(m+ 1))

6(m+ 1)3
(3.4){

> 0 if K(2m− 1) + 6(m+ 1) < 0

≤ 0 if K(2m− 1) + 6(m+ 1) ≥ 0.

If m ≥ 1
2
, then F ′′(0) < 0 always. If m < 1

2
, F ′′(0) can take on either sign. In

other words, m < 1/2 is a necessary but not a sufficient condition for F to be
concave up at x = 0. In order to guarantee that F is concave up initially, we
need to satisfy K(2m− 1) + 6(m+ 1) < 0.

Proposition 3.1. When the prey nullcline is initially concave up, it is also
increasing.

Proof. If F ′′(0) > 0,

6(m+ 1) < K(1− 2m)

2(m+ 1) <
K

3
(1− 2m)

<
K

3
since m <

1

2
< K.

Therefore, if F ′′(0) > 0 then F ′(0) > 0 necessarily.

Now consider the end behaviour of F at x = K,

F ′(K) =
−mK

mK + q(K)
< 0. (3.5)

Thus F (x) is always decreasing at x = K. Similarly, F (x) is always concave
down at x = K, since

F ′′(K) =
2m(Ke−K + e−K − 1)

(Km+ 1− e−K)2
< 0 for K > 0. (3.6)

18
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3.2 Location and Uniqueness of Extrema

Lemma 3.2. If an interior local maximum of F (x) exists, then it is located
in the interval (0, K/2).

Proof. Factor the first derivative of F (x) as follows:

F ′(x) =
m

(mx+ q(x))2
[(K − 2x)(mx+ q(x))− x(K − x)(m+ q′(x))]. (3.7)

Since mx + q(x) > 0 and m + q′(x) > 0 for x > 0, we have that F ′(x) < 0
for K

2
≤ x ≤ K. Therefore, if a local extrema exists, it must be located in

(0, K/2).

Lemma 3.3. The prey nullcline with Ivlev functional response has a unique
maximum on [0, K].

Proof. Define M such that F (M) = max
x∈[0,K]

F (x). Then,

F ′(x) =
m

(mx+ 1− e−x)2
[(K − 2x)(mx+ 1− e−x)− x(K − x)(m+ e−x)]

=
m

(mx+ 1− e−x)2
[(K − 2x)− (e−x(K + (K − 2)x− x2) +mx2)]

=
m

(mx+ 1− e−x)2
[k(x)− h(x)],

where k(x) = K − 2x and h(x) = e−x(K + (K − 2)x − x2) + mx2. Consider
the properties of k(x) and h(x).

k(0) = K h(0) = K
k′(0) = −2 h′(0) = −2

k
(
K
2

)
= 0 h

(
K
2

)
= K2

4
(e−K/2 +m) > 0

k′(x) = −2 h′(x) = e−x(x2 −Kx− 2) + 2mx.

There are two cases to explore: K ≤ 2(m+ 1) and K > 2(m+ 1).

First, if K ≤ 2(m + 1) then F (x) is decreasing initially. Now look at the
behaviour of h′′(x).

h′′(0) = 2(m+ 1)−K
h′′(x) = e−x(−x2 + (K + 2)x+ (2−K)) + 2m (3.8)

= H(x)e−x + 2m,

19
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Figure 3.1: The two cases for the functions k(x) and h(x) depending

on the initial state of the nullcline. Parameters chosen were D = 0.8,

m = 0.1, and K changed from 1.5 in the first plot to 4 in the second.

When F (x) is initially increasing, k and h intersect exactly once, leading

to a unique local maximum of the prey nullcline.

where H(x) = −x2 + (K + 2)x + (2 −K). Since H(x) is a downward facing
parabola with vertex at x = 1 + K/2, H(x) is increasing over the interval
(0, K/2). Thus h′′(x) > 0 implies h′(x) > k′(x) on (0, K/2) so there are no
intersections of k(x) and h(x) on the interval. Therefore if K ≤ 2(m + 1),
F (x) has no critical points and is decreasing over the interval (0, K]. In this
case the unique maximum is M = F (0).

In the case K > 2(m+1), then F (x) is increasing initially. Since h′′(0) < 0,
h(K/2) > 0, and k(K/2) = 0 there must be at least one intersection of k(x)
and h(x) in (0, K/2). Also since H(x) is increasing over the interval (0, K/2)
it can change signs at most once. In turn h′′(x) must change signs exactly
once. Therefore, since h(x) starts concave down and below k(x), ends concave
up above k(x), and must have exactly one inflection point, there is exactly
one intersection of k(x) and h(x) in (0, K/2). Thus F (x) has a unique local
maximum M in (0, K/2) when K > 2(m+ 1).

Lemma 3.4. If F ′′(0) ≥ 0, then F (x) has a unique inflection point in [0,M)
and no inflection points in [M,K]. If F ′′(0) < 0, then F (x) is strictly concave
down on [0, K].

Proof. For the case F ′′(0) ≥ 0, start by noticing that F ′′(x) is linear in K.
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Solve the equation F ′′(x) = 0 for K, and denote this special value of K by K̃.

K̃(x) =
2 + (x2 + 4x+ 2) e−2x + (mx3 + x2 − 4x− 4) e−x

(x+ 2) e−2x + (mx2 + (2m+ 1)x+ 2m− 2) e−x − 2m
(3.9)

Taking the derivative of K̃ with respect to x yields:

K̃ ′(x) =
e−x (mx+ 1− e−x)2

((x2 + 4x+ 6) e−x + 2x− 6)

((x+ 2) e−2x + (mx2 + (2m+ 1)x+ 2m− 2) e−x − 2m)2 .

The sign of K̃ ′(x) is determined by the sign of (x2 + 4x+ 6) e−x + 2x − 6.
This function and its first derivative are both zero at x = 0 and its second
derivative is x2e−x ≥ 0 for x ≥ 0. Thus (x2 + 4x+ 6) e−x + 2x − 6 ≥ 0 for
x ≥ 0, so K̃(x) is an increasing function with respect to x. Now study the
denominator of K̃(x), denoted here by d(x):

d(x) = (x+ 2)e−2x + ((x2 + 2x+ 2)m+ x− 2)e−x − 2m

d′(x) = e−x(3(1− e−x)− x(2e−x +mx+ 1))

d(0) = 0, d′(0) = 0, d′′(0) = 0, and d′′′(0) = 1− 2m

lim
x→∞

d(x) = −2m.

We now show that for m < 1/2, d(x) has a unique root, and for m ≥ 1/2, d(x)
has no positive roots. Let h(x) = 3(1−e−x) and k(x) = x(2e−x+mx+1). Then
d(x) = e−x(h(x)− k(x)). Consider the properties of the continuous functions
h(x) and k(x):

h(0) = 0 h(0) = K
h′(0) = 3 k′(0) = 3
h′′(0) = −3 k′′(0) = −4 + 2m

lim
x→∞

h(x) = 3 lim
x→∞

k(x) = ∞.

It is also clear that h(x) is increasing and concave down for x > 0. Also
important to note is that k(x) is increasing for x > 0. To see this, consider
k(x;m). The first derivative of k(x;m) is an increasing function of m for x > 0.
Thus,

0 < 2(1− x)e−x + 1 = k′(x;m = 0) < k′(x;m > 0). (3.10)

As such, k(x;m) is strictly increasing for x > 0 and m > 0. Based on the initial
and ending configurations for h(x) and k(x), and the fact that both functions
are strictly increasing, if m < 1/2, then k(x) intersects h(x) exactly once for
x > 0. Thus K̃(x) has one vertical asymptote for x > 0. If m ≥ 1/2 then
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Figure 3.2: The three possible isocline configurations with Ivlev re-

sponse for parameters m = 0.1, D = 0.8. S0 is varied. Plotted using

Matlab [24]. The dot on the right plot shows the location of the inflection

point.

h(x) and k(x) have no positive intersections, so K̃(x) is continuous. Finally,
looking at the initial and ending behaviour of K̃(x) determines its possible
configurations when x > 0.

lim
x→0

K̃(x) =
−6(m+ 1)

2m− 1

Also,

lim
x→∞

K̃(x) =
−1

m
. (3.11)

When m < 1/2, K̃ is initially positive, and when m > 1/2 it is initially
negative. Based on this we can conclude that for m ≥ 1/2, K̃(x) < 0 for
x > 0. Thus, F ′′(x) cannot change signs for any value of K > 0, so F (x) has
no inflection points in [0, K]. When m < 1/2, F ′′(x) can change signs at most
once for a particular value of K, so F (x) has at most one inflection point in
this case.

We can therefore conclude that there are only 3 biologically relevant con-
figurations of the prey nullcline with Ivlev response to consider, as shown in
Figure 3.2. In the first two cases F (x) is concave down for x in [0, K]. In the
third case F (x) is initially concave up, then becomes concave down.

It is also relevant to determine how the local maximum of F (x) moves as
the parameter S0 is varied. Consider the partial derivative of the prey nullcline
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with respect to K.
∂F

∂K
=

mx

mx+ q(x)
> 0 (3.12)

Since ∂F
∂K

> 0 for x > 0, as K is increased the maximum moves up. Next

consider ∂2F
∂K∂x

given by:

∂2F

∂K∂x
=
m(q(x)− xq′(x))

(mx+ q(x))2
. (3.13)

The denominator of (3.13) is clearly always positive, so examine the numerator.
For the Ivlev response, q(x) − xq′(x) = 1 − xe−x − e−x. This function is zero
at x = 0 and increasing for x > 0, so q(x) − xq′(x) > 0. Thus ∂2F

∂S0∂x
> 0, so

the local maximum moves up and to the right as S0 increases.

Remark. For any x∗ > 0 it is possible to find a critical value of K, denoted
K̂, such that F ′(x∗; K̂) = 0. Since F ′(x) is an increasing function of K, solve
the expression F ′(x∗) = 0 for K and denote it K̂:

K̂ =
− ln(1−D) [(D +m− 1) ln(1−D)− 2D]

D ln(1−D)− ln(1−D)−D
(3.14)

Then F ′(x∗; K̂) = 0 for any fixed x∗ > 0.
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Chapter 4

Stability Analysis

4.1 Fixed Points and Local Stability

There are three possible critical points of this system. The (0, 0) and (K, 0)
equilibria always exist when K > 0. The coexistence equilibrium is given by
(x∗, y∗), where x∗ = q−1(D) and y∗ = F (x∗). Recall for the Ivlev response
that x∗ = − ln(1−D). Since 0 < D < 1 and F (x) > 0 for 0 ≤ x < K, we have
y∗ > 0. Thus the interior equilibrium point will exist if and only if x∗ < K.
Refer to table 4.1 for a summary of the equilibrium points and their existence
criteria. We now consider the local stability for these fixed points.

The Jacobian matrix for system (2.8) is given by:

J(x, y) =

[
−(q′(x) +m)(y − F (x)) + (q(x) +mx)F ′(x) −q(x)−mx

yq′(x) −D + q(x)

]
.

(4.1)

Equilibrium Point Existence Criteria

(0, 0) Always exists

(K, 0) K > 0

(x∗, y∗) = (q−1(D), F (q−1(D)) K > 0, and q−1(D) < K

Table 4.1: The three equilibrium points of system (2.8), along with the

criteria under which they exist.
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Evaluating at the zero equilibrium we obtain:

J(0, 0) =

[
(q′(0) +m)F (0) 0

0 −D

]
. (4.2)

Recall from the properties of q(x) that q′(x) ≥ 0 for x ≥ 0. Hence the origin
is a saddle point since the diagonal entries have opposite signs.

Performing the same analysis on (K, 0),

J(K, 0) =

[
(q(K) +mK)F ′(K) −q(K)−mK

0 −D + q(K)

]
. (4.3)

If x∗ > K, i.e. no interior equilibrium point exists, −D + q(K) = −q(x∗) +
q(K) < 0 and F ′(K) < 0 so (K, 0) is locally stable. To guarantee the existence
of a coexistence equilibrium, however, we require x∗ < K. In this case, the
diagonal entries of J(K, 0) have opposite signs and (K, 0) is a saddle point.

Lastly we consider the coexistence equilibrium which exists under the con-
dition x∗ < K:

J(x∗, y∗) =

[
(mx∗ +D)F ′(x∗) −(mx∗ +D)

y∗q′(x∗) 0

]
. (4.4)

The characteristic equation is:

0 = λ2 − λ(mx∗ +D)F ′(x∗) + (mx∗ +D)y∗q′(x∗). (4.5)

We know mx∗ + D > 0, y∗ > 0 and q′(x∗) > 0, so the constant term of the
characteristic equation is positive. The roots of (4.5) have negative real part if
and only if F ′(x∗) < 0. As such, (x∗, y∗) is locally stable when F ′(x∗) < 0 and
is unstable when F ′(x∗) > 0. If F ′(x∗) = 0 or x∗ = K then the equilibrium
point is non-hyperbolic. In Chapter 6 it is determined that a supercritical Hopf
bifurcation occurs at F ′(x∗) = 0, so the coexistence equilibrium is asymptoti-
cally stable there. It follows from standard phase plane analysis that (x∗, y∗)
is asymptotically stable when x∗ = K.

4.2 Global Stability

Some asymptotic properties of this chemostat system can be established using
a Lyapunov function. As in Harrison [10], a Lyapunov function for system
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(2.8) is given by

V (x, y) =

∫ x

x∗

q(z)−D
q(z) +mz

dz +

∫ y

y∗

z − y∗

z
dz (4.6)

=

∫ x

x∗

(1− e−z)−D
(1− e−z) +mz

dz + y − y∗ + y∗ ln

(
y∗

y

)
It is clear that V (x∗, y∗) = 0. Also, since q(x) is an increasing function,
q(z)−q(x∗)
q(z)+mz

has the same sign as x − x∗, and z−y∗
z

has the same sign as y − y∗.
Thus V (x, y) > 0 for (x, y) 6= (x∗, y∗). We also have

V̇ (x, y) = (q(x)− q(x∗))(F (x)− F (x∗)) (4.7)

The sign of V̇ is dependent on the location of the vertical isocline with respect
to the local maximum. If F ′(0) ≤ 0, then F (x) is a decreasing function and
so F (x) − F (x∗) > 0 for x < x∗, and F (x) − F (x∗) < 0 for x > x∗. Since
q′(x) > 0, q(x) − q(x∗) < 0 for x < x∗ and q(x) − q(x∗) > 0 for x > x∗. In
both cases x < x∗ and x > x∗, we have V̇ ≤ 0, with equality if and only
if x = x∗, so the interior equilibrium point is stable. Now consider the case
F ′(0) > 0 so that the prey nullcline has a local maximum in the first quadrant.
Define as usual M > 0 as the unique point such that F ′(M) = 0. Then since
F ′(x) < 0 for M < x < K, there exists a unique point ξ ∈ (M,K) such that
F (ξ) = F (0). Taking x∗ > ξ and applying this Lyapunov function the local
stability of (x∗, y∗) for x∗ ∈ (ξ,K) is obtained.

The local stability results from Harrison’s Lyapunov function can be ex-
tended to global asymptotic stability on this region using the LaSalle extension
theorem [19].

Lemma 4.1. Let E = {(x, y) : V̇ (x, y) = 0}, and letM be the largest invariant
subset of E. Then M = {(x∗, y∗)}.

Proof. For system (2.8) the set E = {(x, y) : x = x∗, y ≥ 0}. Thus for the
solution to be in M for all t ≥ 0 we have x(t) = x∗ ∀t ≥ 0. Since the x
value is fixed at x∗ we have x′(t) = (mx∗ + q(x∗))(F (x∗)− y) = 0 with initial
condition x(0) = x∗. This condition is satisfied only if F (x∗) = y, i.e. if
y(t) = y∗ ∀t ≥ 0.

By Lemma 2.1 all orbits of system (2.8) are bounded. Since the largest
invariant set only consists of the coexistence equilibrium point, every bounded
orbit must converge to it and as such (x∗, y∗) is globally asymptotically stable.
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Figure 4.1: If x∗ intersects the bold region of the nullcline F (x), then

global stability of the coexistence equilibrium has been established using

the Lyapunov function in (4.6). In plot a) we can see that since the

isocline has no local extrema, the Lyapunov function gives global asymp-

totic stability on the entire downward slope. In plot b) the isocline is

initially increasing so global stability is only obtained for x∗ > ξ using

this method.

The position of the coexistence equilibrium on the prey nullcline where its
global asymptotic stability can be established using the Lyapunov function
defined in (4.6) and the LaSalle Extension Theorem can be seen in Figure 4.1.

We conjecture that whenever the coexistence equilibrium point is locally
asymptotically stable, it is globally asymptotically stable. In other words,
(x∗, y∗) is a global attractor for M ≤ x∗ ≤ K. It is proved in Chapter 6 that
there is a supercritical Hopf bifurcation at x∗ = M so the equilibrium point
is locally asymptotically stable there. Here we take an approach similar to
that of Hsu, who hypothesized in Theorem 3.3 of [13] that the coexistence
equilibrium is globally asymptotically stable whenever the prey nullcline is
concave down. This was later proved to be incorrect and a counterexample
was provided by Hofbauer and So in [11]. Here we follow the initial approach
from [13] by applying the Dulac criterion with h(x) = (q(x) + mx)−1yβ−1 as
the auxiliary function. The constant β > 0 here is to be determined. Note

that h(x, y) is defined in the interior of quadrant one. Also let f =

(
x′

y′

)
.
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Then the divergence of the vector field is given by:

∆ , ∇ · (hf) =
yβ−1H(x)

q(x) +mx
(4.8)

where H(x) = (q(x) +mx)F ′(x) + β(q(x)−D). In the interior of the positive
quadrant we have q(x) + mx > 0 and yβ−1 > 0 implying that ∆ changes sign
if and only if H(x) changes sign. This is where we must diverge from Hsu’s
Theorem 3.3. We use the facts that on [0,M ], F ′(x) ≥ 0 and q(x) − D < 0,
and for x ∈ [x∗, K], q(x) − D > 0. Ultimately it is our choice of β that is
critical in determining that H(x) does not change sign. For x ∈ [M,x∗] both
F ′(x) ≤ 0 and q(x)−D ≤ 0, so for any β > 0 we have H(x) ≤ 0. The regions
0 ≤ x < M and x∗ < x ≤ K pose more of a challenge.

Let β(x) = −F ′(x)(mx+q(x))
q(x)−D . In order to ensure that H(x) does not change

signs we need to find a value β > 0 such that max
x∈[0,M ]

β(x) < β < min
x∈[x∗,K]

β(x).

β(x;K) =
−F ′(x)(mx+ q(x))

q(x)−D
(4.9)

=
m (x (K − x) q′(x) + (2x−K) q (x) +mx2)

(mx+ q (x)) (q (x)−D)
. (4.10)

Now differentiate β with respect to the parameter K:

∂

∂K
β(x;K) =

m(xq′(x)− q(x))

(mx+ q(x))(q(x)−D)
. (4.11)

To understand the sign of this derivative first note that xq′(x) − q(x) =
xe−x+e−x−1 < 0 ∀ x > 0. Then, β(x) is an increasing function of K if x < x∗

and a decreasing function of K if x > x∗. Taking K = K̂ from (3.14) forces
x∗ = M . Since x∗ > M originally, forcing x∗ = M causes the local maximum
to move up and to the right by (3.13). To maintain x∗ > M we must therefore
have K < K̂. Let

β̂(x) , β(x; K̂), (4.12)

and

β̂crit , lim
x→x∗

β̂(x)

=
m
[
(D − 1) ln2(1−D)− 2ν(D)

]
(D − 1)ν(D)

, (4.13)
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where ν(D) = (D−1) ln(1−D)−D. To establish the sign of β̂crit, we examine
the properties of ν(D). We have

ν(D) = (D − 1) ln(1−D)−D
ν(0) = 0 (4.14)

ν ′(D) = ln(1−D) < 0 ∀ 0 < D < 1.

Thus ν(D) is negative for 0 < D < 1 and so β̂crit > 0.

Theorem 4.2. If (x∗, y∗) is a locally asymptotically stable equilibrium point
of system (2.8) with Ivlev functional response and β̂(x) from (4.12) is an in-
creasing function of x, then (x∗, y∗) is globally asymptotically stable.

Proof. The function β̂(x) = β(x; K̂) is defined in (4.12), where K̂ is as in
(3.14). If β̂(x) is an increasing function of x and x < M , then we have
β(x;K) < β̂(x) < β̂crit, where β̂crit is as defined in (4.13). In the case x > x∗,
we similarly have β̂crit < β̂(x) < β(x;K). It remains to test the boundaries,

β(M ;S0) = 0 < β̂crit (4.15)

and
lim

x→x∗+
β(x;S0) =∞ > β̂crit. (4.16)

Finally we have

max
x∈[0,M ]

β(x;K) < β̂crit < min
x∈[x∗,K]

β(x;K). (4.17)

As such, β̂crit is the exact value of β needed for the Dulac criterion in (4.8).
With this β we ensure that H(x) does not change sign in the region and hence,
by the Dulac criterion, there are no closed periodic solutions lying entirely in
the region. Since in addition all orbits are bounded, the Poincaré-Bendixson
theorem implies that the interior equilibrium must be globally asymptotically
stable with respect to initial conditions in the interior of the first quadrant.

Remark. The result that local stability implies global stability as stated above
requires that β̂(x) is an increasing function of x. In order for this global sta-
bility result to be rigorous an additional proof that β̂′(x) > 0 is required. We
conjecture that for the Ivlev functional response this is the case and an example
is provided in Figure 4.2. Also note that this condition will be required again
in Theorem 5.3. As such, it is an important open problem.
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Figure 4.2: An example where an appropriate β can be found for the

Dulac function in (4.8). In this case, with D = 0.5 and m = 0.25 we

can find the β̂crit when K < K̂ (x∗ > M), but not when K > K̂ (x∗ <

M). This gives global stability of the coexistence equilibrium whenever

F ′(x∗) < 0.
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Chapter 5

Periodic Orbits

It has been established via the global attractivity argument that system (2.8)
has no periodic orbits when F ′(x∗) < 0. We now prove that when periodic
orbits do exist, they must surround the local maximum at (M,F (M)).

Lemma 5.1. Let Γ be any periodic orbit of system (2.8). Then,

∆ ,
∮

Γ

∇ · (ẋ, ẏ)dt =

∮
Γ

(mx+ q(x))F ′(x)dt.

Proof. Let g(x) = −D +m(S0 − x) and l(x) = mx+ q(x). Then ẋ = xg(x)−
yl(x) and the integral becomes

∆ =

∮
Γ

[(xg′(x) + g(x)− y(q′(x) +m)) + (−D + q(x))] dt

=

∮
Γ

[
xg′(x) + g(x) +

(
ẋ− xg(x)

l(x)

)
l′(x) +

ẏ

y

]
dt

=

∮
Γ

[
l(x)(xg′(x) + g(x))− xg(x)l′(x)

l(x)
+

(
ẋ

l(x)

)
l′(x) +

ẏ

y

]
dt

=

∮
Γ

[
l(x)F ′(x) + ẋ

l′(x)

l(x)
+
ẏ

y

]
dt

=

∮
Γ

[
l(x)F ′(x) +

d

dt
ln (l(x)) +

d

dt
ln (y)

]
dt

=

∮
Γ

(mx+ q(x))F ′(x)dt.

31



M.Sc. Thesis - T. Bolger McMaster University - Mathematics

Since mx + q(x) > 0, the sign of ∆ depends on the sign of F ′(x). By
the Poincaré criterion [5], if ∆ > 0, then the periodic orbit is unstable and if
∆ < 0, any periodic orbit is stable.

Proposition 5.2. Any periodic orbit of (2.8) must surround the point (M,F (M)).

Proof. Suppose that F ′(x) > 0 for the entire portion of F (x) that lies inside
Γ. Then by Lemma 5.1, ∆ > 0, so by the Poincaré criterion Γ must be an
unstable periodic orbit. Also, Γ must surround the coexistence equilibrium at
(x∗, y∗), implying that F ′(x∗) > 0 so the equilibrium point is unstable. This is
a contradiction since we cannot have an unstable periodic orbit surrounding
an unstable equilibrium point.

Now suppose F ′(x) < 0 for the entire portion of F (x) that lies inside Γ.
Then ∆ < 0 so Γ must be a stable periodic orbit. The coexistence equilibrium
is locally stable when F ′(x∗) < 0. Thus we have a contradiction since we cannot
have only stable periodic orbits surrounding a stable equilibrium point.

Therefore the slope of the portion of F (x) that lies inside of any peri-
odic orbit cannot be entirely of one sign. Finally, since the critical point at
(M,F (M)) is unique, the only way for F ′(x) to change sign is for Γ to surround
this local maximum.

5.1 Uniqueness of the Periodic Orbit

In 1987, Zhang proved the uniqueness of the periodic orbit for generalized
Liénard equations [32]. A Liénard equation has the form:

d2x

dt2
+ f(x)

dx

dt
+ g(x) = 0,

where f, g ∈ C1(R), f is an even function, and g is an odd function [20].
Zhang’s result is well used in the study of quadratic ordinary differential sys-
tems, including the classical predator-prey model. In 1988 Zhang’s theorem
was extended by Huang to encompass a wider variety of predator-prey models,
including Lotka-Volterra, Gause-type and others [14]. Here, we use a slightly
adapted version of Huang’s theorem that better applies to our system. This
adapted version accounts for the invariance of system (2.8) in the first quad-
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rant. We consider systems of the form:

dx

dt
= φ(x) (F (x)− π(y)) , (5.1)

dy

dt
= ρ(y)ψ(x).

Theorem 5.3. (Theorem 1 from [14]) Consider system (5.1). If
(i) ∃ K > x∗ such that F (K) = 0 and (x−K)F (x) < 0 for x 6= K,
∃ 0 < x∗ < K such that ψ(x∗) = 0, i.e. there is a positive equilibrium
point (x∗, y∗),

(ii) all functions in (5.1) are C1 in the interior of R3
+, and F ′(x) is

continuous in the interior of R3
+,

(iii) φ(0) = π(0) = ρ(0) = 0,
φ′(x) > 0 and ψ′(x) > 0 for x > 0,
ρ′(y) > 0 and π′(y) > 0 for y > 0, and

(iv) H(x) = −F ′(x)φ(x)/ψ(x) is non-decreasing for 0 < x < x∗

and x∗ < x < K.
Then, system (5.1) has at most one limit cycle in the first quadrant, and if it
exists it is stable.

The uniqueness result from Huang’s theorem follows by making a change
of variables and applying Zhang’s Theorem [32].

For the chemostat system in (2.8) with Ivlev response, take φ(x) = mx +
q(x), π(y) = ρ(y) = y and ψ(x) = q(x) − D to obtain the same form as
(5.1). Conditions (i), (ii) and (iii) are easily verified, leaving only condition
(iv). Recall from the previous chapter that this function H(x) is exactly the
same as β(x) from (4.9), which was used to establish the global stability of
(x∗, y∗) when x∗ > M . Also, Theorem 4.2 required β̂′(x) > 0. This condition
is equivalent to condition (iv) above since for periodic orbits we need K > K̂
from (3.14) to ensure x∗ < M . This implies that uniqueness of the periodic
orbit follows as a corollary from Theorem 4.2, so when the equilibrium point
falls to the right of the maximum it is globally asymptotically stable, and when
it falls to the left there is a unique periodic orbit. The non-decreasing nature
of H(x) has been observed in all of the examples we considered. One such
example is given in Figure 4.2, with m = 0.25 and D = 0.5. In this figure, the
non-decreasing nature of H(x) can be visually observed when x∗ < M . This
proof has not been completed in general for the Ivlev response function. A
proof that the periodic orbit is unique for all choice of parameters such that
x∗ is to the left of the local maximum of the prey nullcline is given in Chapter
8 for the Monod functional response.
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For Ivlev functional response specifically, uniqueness of the periodic orbit
was established for the classical predator-prey model by Kooij and Zegeling
[17]. For the chemostat model, the analogous approach of transformation to
a Liénard system can be applied. To do so, the preliminary theorems from
Zhang [32] and accompanying lemmas from [17] need to be restated.

Theorem 5.4. (Theorem 1.1 from [17]) Let f(x) and g(x) be continuously dif-
ferentiable functions on an open interval (r1, r2), and let Ψ(y) by continuously
differentiable on R. Consider:

dx

dt
= Ψ(y)−

∫ x

x0

f(τ)dτ, (5.2)

dy

dt
= −g(x).

such that:
(i) dΨ(y)

dy
> 0,

(ii) x0 ∈ (r1, r2) is the unique value such that (x− x0)g(x) > 0 for x 6= x0

and g(x0) = 0, and

(iii) f(x0) d
dx

(f(x)
g(x)

) < 0 for x 6= x0.
Then, system 5.2 has at most one limit cycle, and if it exists, it is hyperbolic.

Since we are considering a parameter dependent system, Theorem 5.4 can
be used in combination with the Dulac function B(x, y) = e−cy from [18] to
obtain information over the entire parameter space. This leads to a modified
version of Theorem 5.4 that is useful since it can be interpreted graphically.

Theorem 5.5. (Theorem 1.2 from [17]) Suppose a Liénard system (5.2) sat-
isfies the following on r1 < x < r2:

(i) and (ii) as in Theorem 5.4, and either:
(iii)′ ∃ c ∈ R, such that f(x)− cg(x) has no zeros, or
(iii)′′ ∀ c ∈ R, f(x)− cg(x) has no multiple zeros and f(x0) 6= 0.

Then, system (5.2) has at most one limit cycle and if it exists it is hyperbolic.

In the case of (iii)′, no intersection of f(x) with cg(x) implies that no limit
cycle exists. In (iii)′′, if for all choices of c, f(x) has no tangency points with
cg(x), then there is at most one limit cycle. A proof of the equivalence of
Theorems 5.4 and 5.5 is given in [18]. The following three lemmas from [17]
are used to verify the conditions of Theorem 5.5.

Lemma 5.6. (Lemma 1.3 from [17]) If f(x) has exactly one zero at x = x1

on the interval r1 < x < r2, then condition (iii)′′ from Theorem 5.5 only needs
to be satisfied on the intervals r1 < x < x1 and x0 < x < r2 if x1 < x0
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(r1 < x < x0 and x1 < x < r2 if x0 < x1 ), in order to draw the same
conclusions as Theorem 5.5.

Lemma 5.7. (Lemma 1.4 from [17]) Define f(x) = s(x)f1(x) and g(x) =
s(x)g1(x), where s(x) is a positive, continuously differentiable function on
(r1, r2). If f1(x) and f2(x) satisfy the conditions in Theorems 5.4 and 5.5,
then so do f(x) and g(x).

Lemma 5.8. (Lemma 1.5 from [17]) If the conditions of Theorems 5.4 and
5.5 are met with x = k(u), dk/du 6= 0, where all derivatives are taken wrt u
instead of x, and all x-intervals are replaced by the corresponding interval in
u, k−1(r1) < u < k−1(r2), then system (5.2) has at most one limit cycle

To prove uniqueness of the periodic orbit, the sequence of steps taken is
to first transform system (2.8) into a Liénard system. Then, in accordance
with Lemma 5.7, identify and remove the common factor s(x) from f(x) and
g(x) and continue the analysis using f1 and g1. Next, apply Lemma 5.8 to
perform a change of variables x = k(u), and finally attempt to prove that
the functions f ∗(u) = f1(k(u)) and g∗(u) = g1(k(u)) satisfy the conditions
outlined in Theorem 5.5.

Making a change of variables similar to that of [17], y 7→ ey1 and t 7→
−t1/(mx+ q(x)), and restoring the original notation, system (2.8) becomes:

x′ = ey − x(−D +m(S0 − x))

mx+ q(x)
= ey − F (x)

y′ =
D − q(x)

mx+ q(x)
(5.3)

Transform to a Liénard system of the form of (5.2) by taking

Ψ(y) = ey − mx∗(K − x∗))
mx∗ + q(x∗)

= ey − F (x∗)

f(x) = F ′(x) = s(x)f1(x), g(x) = s(x)g1(x)

f1(x) = m(K − 2x)− mx(K − x)(m+ q′(x))

mx+ q(x)
(5.4)

g1(x) = −D + q(x)

s(x) =
1

mx+ q(x)
,

where x0 is the unique zero of g(x) in the first quadrant. This zero is unique
since the denominator of g(x) is always positive in the interior of quadrant
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one, so the only zero is located where q(x) = D. As such, x0 corresponds with
the coexistence equilibrium point so that x0 = x∗ = − ln(1−D).

It remains to show that f(x) and g(x) satisfy the conditions of Theorem
5.5. Applying Lemma 5.7 this is equivalent to showing that f1(x) and g1(x)
satisfy the criteria for a Liénard system. Condition (i) is trivial since dΨ

dy
=

ey > 0. For condition (ii) we need x0 ∈ (0, K) to be the unique value such
that (x− x0)g(x) > 0 for x 6= x0, and g(x0) = 0. This is the case since

g(x) =
−D + q(x)

mx+ q(x)
,

g(x0) = g(x∗) = 0,

(x− x0)g(x) = (x− x∗)g(x).

If x > x∗, then q(x) > D =⇒ (x − x∗)g(x) > 0, and if x < x∗ then
q(x) < D =⇒ (x − x∗)g(x) > 0. Therefore condition (ii) holds. It now
remains to check (iii)′ and (iii)′′. In accordance with Lemma 5.8 a change of
variables x = k(u) = − ln(u) will be used. We choose this k(u) so as to make
g∗(u) a decreasing linear function. Note that d(k(u))/du < 0, so now condition
(ii) is not satisfied. This change of sign can be justified by making another
change of variables x 7→ −x in (5.4) to ensure (ii) holds. The interval under
consideration is 0 < x < K =⇒ e−K < u < 1. Therefore, taking 0 < u < 1 is
sufficient for the proof. Applying this change of variables to f1 and g1 gives:

g1(x) = −D + 1− e−x

g∗(u) = g1(k(u)) = −D + 1− u

f1(x) = m(K − 2x)− mx(K − x)(m+ e−x)

mx+ 1− e−x
(5.5)

f ∗(u) =
m(m− u) ln2(u) +m(Ku+ 2(u− 1)) ln(u) +Km(u− 1)

m ln(u) + 1− u
.

We now need to prove that ∀ u ∈ (0, 1), either f ∗(u) − cg∗(u) has no zeros
for a certain choice of c, or that it has no multiple zeros ∀c ∈ R. First some
properties of f ∗ and g∗ are required. The root of g∗ is at u = 1−D, and since
0 < D < 1, the root of g∗ will always exist in the given interval.

Lemma 5.9. If F ′(0) ≤ 0, then f ∗(u) has no zeros in (0, 1). If F ′(0) > 0,
then f ∗(u) has a unique root located at u = k−1(M).
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Proof. Examine the following properties of the function f ∗(u):

lim
u→0+

f ∗(u) = −∞

lim
u→1−

f ∗(u) = 0

lim
u→1−

df ∗(u)

du
=
m [2(m+ 1)−K]

2(m+ 1)
.

The third limit corresponds exactly with the condition for the initial behaviour
of the prey nullcline from (3.3). The derivative of f ∗ at u = 1 is positive
when the prey nullcline F (x) is initially decreasing, and negative when F (x)
is initially increasing. This implies that f ∗(u) must have at least one root for
0 < u < 1 when the prey nullcline is initially increasing. In fact, by examining
the structure of f ∗(u) we see that there must be exactly one root of f ∗(u)
when the nullcline is initially increasing, since f ∗ = 0 corresponds to having
F ′(k(u)) = 0. Thus, the unique zero occurs when k(u) = M , i.e. u = k−1(M).
To show that no root exists when F ′(0) ≤ 0, it suffices to show that f ∗(u) is
increasing on (0, 1).

f ∗(u) = f1(k(u))

f ∗
′
(u) = k′(u)f ′1(k(u))

= k′(u) [(m+ q′(x))F ′(x) + (mx+ q(x))F ′′(x))]
∣∣
x=k(u)

> 0.

Since F (x) is decreasing and concave down for 0 < x < K, we have F ′′(k(u)) =
f ′(k(u)) < 0. Thus, f ∗

′
(u) > 0 for 0 < u < 1 implies that f ∗ is a negative,

increasing function with no roots in the interval 0 < u < 1.

Corollary 5.9.1. If F ′(0) ≤ 0, then system (2.8) has no periodic orbits.

Proof. By condition (iii)′ this is equivalent to showing that there exists some
c ∈ R such that f ∗− cg∗ has no roots. Take c = 0 here. By Lemma 5.9, f ∗(u)
has no roots in (0, 1), and so condition (iii)′ is satisfied. Hence no limit cycle
exists.

Remark. The result given in Corollary 5.9.1 was already established using the
Lyapunov function in (4.6) and the LaSalle Extension Theorem. This merely
offers an alternative method to obtain an identical result.

Lemma 5.10. Let x = I denote the unique inflection point of F (x), and let
uI = k−1(I) and uM = k−1(M) represent the u coordinate corresponding to
the inflection point and local maximum of F (x), respectively. Then f ∗(u) is
decreasing for uI ≤ u < 1 and f ∗(u) is increasing for 0 < u ≤ uM .
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Figure 5.1: The three possible configurations for f∗(u). The parameter

m is fixed at m = 0.25 and K is varied from (a) K = 2, (b) K = 6,

(c) K = 12. Plot (a) occurs when the prey nullcline is initially flat or

decreasing. When the nullcline is initially increasing f∗(u) may take the

shape of either (b) or (c), where (b) is strictly concave down and (c) has

a unique inflection point to the right of the local maximum.

Proof. Examine the first derivative of f ∗(u):

f ∗
′
(u) = k′(u)f ′1(k(u))

= k′(u) [(m+ q′(x))F ′(x) + (mx+ q(x))F ′′(x))]
∣∣
x=k(u)

.

If 0 < x ≤ I, we have both F ′(x) > 0 and F ′′(x) ≥ 0 so f ∗
′
< 0 and f ∗(u)

is decreasing over the corresponding u interval uI ≤ u < 0. Similarly, if
M ≤ x < K both F ′(x) ≥ 0 and F ′′(x) > 0 so f ∗

′
> 0 and f ∗(u) is increasing

over the corresponding u interval 0 < u ≤ uM .

We conjecture that f ∗(u) can have at most one local maximum. This
would be the case if the sign of f ∗

′
(u) changed sign exactly once in the interval

uM < u < uI . Additionally, we know that since x∗ < M , the maximum of f ∗

must lie to the right of its root. We also conjecture that f ∗ can have at most
one inflection point to the right of its local maximum. This gives the three
possible configurations for f ∗(u) that are shown in Figure 5.1.

Theorem 5.11. Assume f ∗(u) has one of the three configurations shown in
Figure 5.1. That is, f ∗(u) is continuously differentiable on (0, 1), lim

u→0+
f ∗(u) =

−∞, lim
u→1−

f ∗(u) = 0, and one of the following holds:

(a) f ∗
′
(u) > 0 and f ∗

′′
(u) < 0 for 0 < u < 1 (Figure 5.1 (a)).

(b) f ∗(u) has a unique local maximum to the right of its root, and f ∗
′′
(u) < 0
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for 0 < u < 1 (Figure 5.1 (b)).
(c) f ∗(u) has a unique local maximum to the right of its root, and a unique

inflection point to the right of that maximum. (Figure 5.1 (c)).
Then, if (x∗, y∗) is unstable, system (2.8) has a unique hyperbolic limit cycle,
and if (x∗, y∗) is locally stable, then it is globally asymptotically stable.

Proof. This proof proceeds in the same way as the proof of Theorem 2.4 from
[17], by considering three cases based on the different configurations of f ∗(u)
as shown in Figure 5.1.

Case (a): We have F ′(0) ≤ 0. Thus F ′(x) < 0 for 0 < x < K, so
the equilibrium point is always locally stable. By Corollary 5.9.1 no periodic
orbits exist, so (x∗, y∗) is globally asymptotically stable. In cases (b) and (c),
F ′(0) > 0, so F (x) has an interior local maximum.

Case (b): Let ug be the unique root of the linear function g∗(u) and uf be
the unique root of f ∗(u) on 0 < u < 1. Distinguish two sub-cases based on
the relative positioning of ug and uf . The first case is ug ≤ uf , corresponding
to x∗ ≥ M in the original coordinate system. In this case the coexistence
equilibrium point is locally stable, so we seek to prove that no periodic orbits
exist. Following Theorem 5.5, choose c to be given by

c =
f ∗
′
(u)

g∗′(u)

∣∣∣∣
u=ug

. (5.6)

Then c < 0 and since g∗(u) is linear,

d2

du2
[f ∗(u)− cg∗(u)] =

d2

du2
f ∗(u) < 0. (5.7)

Since the second derivative is negative, the first derivative of f ∗(u)−cg∗(u) has
exactly one root at u = ug. Thus, f ∗(u)−cg∗(u) obtains an absolute maximum
at u = ug, and f ∗(ug) ≤ 0. Therefore, this choice of c gives f ∗(u) − cg∗(u) <
0 ∀ 0 < u < 1. By condition (iii)′ of Theorem 5.5, no limit cycles exist so
the coexistence equilibrium point is globally asymptotically stable. For the
second sub-case we have ug > uf . This corresponds to having x∗ < M , so
the coexistence equilibrium point is unstable. By Lemma 5.6 we only need
to show that no repeated roots of f ∗(u) − cg∗(u) are possible on 0 < u < uf
and ug < u < 1. On both of these intervals f ∗(u) and g∗(u) have opposite
signs, so c < 0 is necessary for a root to exist. However, evaluating at u = ug
and u = uf , f

∗ − cg∗ > 0, so in order to have a repeated root the function
would need to be concave up. By (5.7) this is not the case, so it follows that
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f ∗(u)− cg∗(u) cannot have multiple zeros on 0 < u < 1. Thus, condition (iii)′′

is satisfied and there is a unique, hyperbolic limit cycle.

Case (c): Let ui be the unique inflection point of f ∗(u). Again there are
two cases to consider based on the positions of ug and uf . First, for ug ≤ uf
take c as in (5.6). On the interval 0 < u < ui the same proof as for the previous
cases holds. Next, on the interval ui < u < 1 we have f ∗

′′
(u) > 0. Also, on this

interval f ∗
′
(u) < 0, g∗

′
(u) < 0 and c < 0, so f ∗(u) − cg∗(u) is monotonically

decreasing on ui < u < 1. Since f ∗(u) − cg∗(u) < 0 on 0 < u < ui and is
decreasing on ui < u < 1, it follows that f ∗(u) − cg∗(u) < 0 for 0 < u < 1.
Thus, condition (iii)′ holds and no limit cycles exist on ui < u < 1. The
second sub-case is again ug > uf . On 0 < u < ui the proof from the previous
cases holds. On the interval ui < u < 1 it is necessary to again subdivide
into two cases based on the relative positions of ui and ug. First consider
ug ≤ ui. On the interval ui < u < 1 note that the derivatives of f ∗ and g∗

have the same signs but the first derivatives of f ∗ and g∗ have opposite signs.
Thus, it is impossible for f ∗(u) − cg∗(u) to have a double root for any choice
of c ∈ R. Finally, consider ug > ui. An application of Lemma 5.6 allows
us to only consider the interval ug < u < 1. Again in this case, f ∗ and g∗

have opposite signs, but their derivatives have the same sign. Thus it is not
possible for f ∗(u)−cg∗(u) to have a double root for any choice of c. Therefore,
for ug > uf , by condition (iii)′′, system (2.8) has a unique hyperbolic limit
cycle.

In practice, this theorem can be applied by first creating a plot of f ∗(u)
and examining its properties for the desired parameters. If the shape is one of
the three displayed in Figure 5.1, then by Theorem 5.11, if (x∗, y∗) is locally
stable, then it is globally asymptotically stable, and if (x∗, y∗) is unstable, then
it is surrounded by a unique, stable periodic orbit.
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Chapter 6

Bifurcation Analysis

This chapter investigates changes in the dynamics of system (2.8) as the pa-
rameters are varied. The primary focus will be to vary S0, with D used as a
secondary bifurcation parameter.

First, if S0m − D < 0, then the zero equilibrium E0 = (0, 0) is the only
equilibrium point that exists and it is globally asymptotically stable. As S0

is increased to the point where S0m − D > 0, solutions become biologically
interesting and the E1 = (K, 0) equilibrium becomes globally stable. Further
increasing S0 gives rise to a second transcritical bifurcation at x∗ = M , when
the E1 and E∗ = (x∗, y∗) equilibria exchange stability. Finally, we know from
(4.4) that the coexistence equilibrium loses its stability for x∗ < M .

Proposition 6.1. System (2.8) has a Hopf bifurcation occurring at (x∗, y∗) =
(M,F (M)).

Proof. Recall from Proposition 5.2 that if a periodic orbit exists in this system,
then it must surround the coexistence equilibrium E∗. This makes E∗ the only
possibility for a Hopf bifurcation to occur in this system. The eigenvalues of
the Jacobian matrix (4.4) evaluated at E∗ are

λ+,− =
1

2
(−(mx∗ +D)F ′(x∗))

± 1

2

√
((mx∗ +D)F ′(x∗))2 − 4y∗q′(x∗)(mx∗ +D). (6.1)

When the coexistence equilibrium exists, these eigenvalues are purely imag-
inary if and only if F ′(x∗) = 0. The condition F ′(x∗) = 0 can be achieved
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by fixing K = K̂ from (3.14). Also, the imaginary part of the eigenvalues is
non-zero. Furthermore, the transversality condition holds, since the derivative
with respect to K of the real part of the eigenvalue at the Hopf bifurcation is
positive by (3.13). Thus, the eigenvalues are complex in a neighbourhood of
K̂ and cross the imaginary axis at K = K̂, implying that a Hopf bifurcation
occurs there.

6.1 Vague Attractor Condition

Conditions were determined by Andronov [1] and Hopf [12] for a phenomenon
that has become known as the Andronov-Hopf bifurcation. They proved that
if the real part of the eigenvalues at an equilibrium considered as a function
of a single parameter cross the imaginary axis transversally, then a family of
periodic orbits is born. In Marsden and McCracken [23] a formula is derived
to determine for which values of the parameter the bifurcating periodic orbits
exist, and also to determine their stability. The formula is based on determin-
ing the stability of the equilibrium point at the Hopf bifurcation using higher
order terms. In order to use their formula, we need to evaluate the Jacobian
of system (2.8) at the equilibrium, assuming it is a function of the bifurcation
parameter. We then make a change of variables to put this Jacobian into real
Jordan Canonical Form (RJCF), J :(

u
v

)′
= J

(
u
v

)
+H.O.T. =

(
f(u, v)
g(u, v)

)
.

For a system in this form, Marsden and McCracken derived the following
formula for the so-called vague attractor condition:

V ′′′ =
3π

4|β|
(fuuu + fuvv + guuv + gvvv)

+
3π

4|β|2
(−fuv(fuu + fvv) + guv(guu + gvv) + fuuguu − fvvgvv). (6.2)

If V ′′′ < 0, then the equilibrium is a vague attractor and the family of bifur-
cating periodic orbits are all orbitally asymptotically stable.

The evaluation of expressions in this section was done using the computa-
tional software Maple [22]. First, the Jacobian matrix A , J |(x∗,y∗) in (4.4)
must be transformed into RJCF. That is, we must find an invertible matrix P
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such that:

J = P−1AP =

(
α β
−β α

)
, (6.3)

where the eigenvalues of A are λ+,− = α± iβ.

Lemma 6.2. The invertible matrix P needed to transform A into RJCF is
given by P = (Pre Pim), where Pre and Pim are the real and imaginary parts,
respectively, of the eigenvector v+ associated with eigenvalue λ+.

Proof. (
1 0
0 1

)
= P−1P

= P−1
(
Pre Pim

)
=
(
P−1Pre P−1Pim

)
.

Thus, P−1Pre =

(
1
0

)
and P−1Pim =

(
0
1

)
. Now examine the eigenvalue

equation.

Av+ = λ+v+

A(Pre + iPim) = (α + iβ)(Pre + iP im).

Setting the real and imaginary parts of this equation equal gives

APre = αPre − βPim
APim = βPre + αPim.

Finally, substituting into the equation for J , we get

J = P−1AP

= P−1
(
APre APim

)
= P−1

(
αPre − βPim βPre + αPim

)
=
(
αP−1Pre − βP−1Pim βP−1Pre + αP−1Pim

)
(6.4)

=

(
α

(
1
0

)
− β

(
0
1

)
β

(
1
0

)
+ α

(
0
1

))
=

(
α β
−β α

)
.

Therefore, P =
(
Pre Pim

)
is the invertible matrix P needed to convert J into

RJCF.
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To convert the Jacobian matrix from (4.4) into RJCF, first examine its
eigenvalues in (6.1). Thus, take α and β to be

α =
1

2
(mx∗ +D)F ′(x∗)

β =
1

2

√
−((mx∗ +D)F ′(x∗))2 + 4q′(x∗)y∗(mx∗ +D).

The matrix P can be constructed by considering the real and imaginary parts
of the eigenvector corresponding to λ+

P =

(
(mx∗+D)F ′(x∗)

2y∗q′(x∗)

√
(mx∗+D)(−F ′(x∗)2(mx∗+D)+4y∗q′(x∗))

2y∗q′(x∗)

1 0

)
(6.5)

Using this P , we can finally rewrite our system so that its linear part is in
RJCF, (

x
y

)′
= A

(
x
y

)
+H.O.T.

P−1

(
x
y

)′
= P−1A

(
x
y

)
+ P−1(H.O.T.) (6.6)

= P−1APP−1

(
x
y

)
+ P−1(H.O.T.)

= JP−1

(
x
y

)
+ P−1(H.O.T.).

Now, performing the change of variables

(
u
v

)
= P−1

(
x
y

)
, system (2.8) be-

comes (
u
v

)′
= J

(
u
v

)
+H.O.T. =

(
f(u, v)
g(u, v)

)
. (6.7)

In the chemostat system,

P−1

(
x′

y′

)
=

(
y(q(x)−D)

2y∗q′(x∗)(q(x)+mx)(F (x)−y)−F ′(x∗)(mx∗+D)y(q(x)−D)√
(mx∗+D)(−F ′(x∗)2mx∗−F ′(x∗)2D+4y∗q′(x∗))

)
=

(
f(x, y)
g(x, y)

)
Consider x = x(u, v) and y = y(u, v). Then the change of variables can be
inverted to find x and y in terms of u and v.(
x
y

)
= P

(
u
v

)
=

(
F ′(x∗)(mx∗+D)u+

√
(mx∗+D)(−F ′(x∗)2mx∗−F ′(x∗)2D+4y∗q′(x∗))v

2y∗q′(x∗)

u

)
.
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We can now use the chain rule to compute the vague attractor condition from
(6.2) for the chemostat

V ′′′(x∗, y∗, K̂) =
(mx∗ +D)(2F ′′(x∗)q′(x∗)(q′(x∗) +m) + F ′′′(x∗)q′(x∗)D)

y∗q′(x∗)2

− (mx∗ +D)(q′′(x∗)F ′′(x∗)(mx∗ +D)− F ′′′(x∗)q′(x∗)mx∗)
y∗q′(x∗)2

.

The sign of V ′′′ is what we wish to determine, so factoring out the positive
constant mx∗+D

y∗q′(x∗)2
, we have sgn(V ′′′) = sgn(w), where

w = (mx∗ +D)(F ′′′(x∗))− (mx∗ +D)F ′′(x∗)q′′(x∗)

q′(x∗)
+ 2(q′(x∗) +m)F ′′(x∗).

Substituting the Ivlev functional response along with the Hopf bifurcation
condition K = K̂, the criticality condition w becomes

w =
m[(D − 1)(D +m− 1) ln(1−D)2 + (−4D2 + 6D − 2m− 2) ln(1−D)

(−m ln(1−D) +D)((D − 1) ln(1−D)−D)

+
4D2 − 2D(m+ 1)]

(−m ln(1−D) +D)((D − 1) ln(1−D)−D)
. (6.8)

6.2 Criticality of the Hopf Bifurcation

The criticality of the Hopf bifurcation is then determined by the sign of w. If
w < 0, the Hopf bifurcation is supercritical and if w > 0, then it is subcritical.

Proposition 6.3. The Hopf bifurcation in system (2.8) at x∗ = M is always
supercritical.

Proof. To determine the sign of w, first consider the denominator. Clearly
(−m ln(1−D)+D) > 0 since 0 < D < 1. Recall ν(D) = (D−1) ln(1−D)−D <
0 for 0 < D < 1 from (4.14). Thus the denominator of w is negative.

For the numerator, since m > 0, we first divide through by m. Denote the
remaining part of the numerator by ξ and notice that it is linear in m. As
such, consider ξ as a function of m.

ξ(m) , [(D − 1) ln2(1−D)− 2 ln(1−D)− 2D]m+ (D − 1)2 ln(1−D)2

+ (−4D2 + 6D − 2) ln(1−D) + 4D2 − 2D.
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First determine the sign of ξ at m = 0.

ξ(0) = (D − 1)2 ln2(1−D) + (−4D2 + 6D − 2) ln(1−D) + 4D2 − 2D

= (D − 1)2 ln2(1−D)2 − 2(2D − 1)ν(D),

where ν(D) < 0 as before. Now consider ξ(0) as D is varied in (0, 1).

ξ(0)

∣∣∣∣
D=0

= 0

d

dD
ξ(0) = 2ν(D) (ln(1−D)− 2) > 0 ∀ 0 < D < 1.

Thus ξ(0) > 0 for 0 < D < 1. Now examine ξ′(m):

ξ′(m) = (D − 1) ln2(1−D)− 2 ln(1−D)− 2D

ξ′(m)

∣∣∣∣
D=0

= 0

d

dD
ξ′(m) = ln2(1−D) + 2

(
D

1−D
+ ln(1−D)

)
.

Let ψ(D) = D
1−D + ln(1 − D). Then ψ(0) = 0 and ψ′(D) = D

(1−D)2
> 0, so

ψ(D) > 0 for 0 < D < 1. As such, d
dD
ξ′(m) > 0 so ξ′(m) > 0 for 0 < D < 1.

Since ξ(0) > 0 and ξ′(m) > 0, it can be concluded that ξ(m) > 0 ∀ m > 0 and
0 < D < 1. Therefore, w < 0 so the Hopf bifurcation which occurs at x∗ = M
is always supercritical.

6.3 Bifurcation Results

The bifurcation results are summarized in Figure 6.1 (generated using XP-
PAUT [7] and plotted using Matlab [24]). The two transcritical bifurcations
are seen along with the supercritical Hopf. The first transcritical bifurcation
occurs when S0m−D = 0 and solutions become biologically relevant. Stability
passes from E0 to E1 when this occurs. The second transcritical bifurcation
occurs at x∗ = K, and stability is passed from E1 to E∗. Finally, the super-
critical Hopf bifurcation at x∗ = M shows a transfer of stability from E∗ to a
periodic orbit.

We can also consider a two parameter bifurcation diagram for system (2.8)
with Ivlev functional response by taking D as the secondary bifurcation pa-
rameter. This is illustrated in Figure 6.2. The two parameter bifurcation
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Figure 6.1: The bifurcation diagram for the system with Ivlev func-

tional response and S0 as the primary bifurcation parameter. The other

parameters are fixed at m = 0.25, D = 0.7, a = 0.87565 and b = 0.73332.

Solid lines correspond to stable equilibria, dashed lines correspond to un-

stable equilibria and filled circles correspond to the largest and smallest

values of x on a stable periodic orbit. E0 represents the (0, 0) equilibrium,

E1 is the (K, 0) equilibrium and E∗ is the (x∗, y∗) equilibrium.

diagram separates the (S0, D) plane into regions with different dynamics. In
R1 solutions converge asymptotically to the only equilibrium point, E0. In
R2 two equilibria exist, E0 and E1. Solutions with positive initial conditions
converge to the E1 equilibrium. In R3 all three equilibrium points exist, and
there is global asymptotic convergence to the coexistence equilibrium E∗ for
positive initial conditions. Finally, R4 again has all of the equilibrium points
existing, but solutions converge to a stable periodic orbit surrounding E∗.
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Figure 6.2: The two parameter bifurcation diagram for the chemostat

with Ivlev functional response. S0 is used as the primary and D the

secondary bifurcation parameters. The other parameters are fixed at m =

0.25, a = 0.87565 and b = 0.73332. The line separating R1 and R2 is

the transcritical bifurcation between E0 and E1 that occurs when K = 0.

The curve between R2 and R3 is the transcritical bifurcation when E1

exchanges stability with E∗ at x∗ = K. The curve separating R3 and R4

is the Hopf bifurcation of E∗ that occurs when x∗ =M .
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Chapter 7

Extension to the 3D System

With the analysis of the 2D system complete, it remains to justify that the
dynamics of subsystem (2.8) are equivalent to those of the 3D system from
(2.4). The existence and uniqueness of solutions follows directly from that of
the 2D system, as does the existence and number of periodic orbits. Addition-
ally, there is a direct correspondence between the equilibrium points of the 2D
and 3D systems, since it was previously shown that solutions of (2.4) converge
to the 2D simplex S+x+y = S0. Thus, the three equilibrium points of the 3D
system are E0 = (S0, 0, 0), E1 = (S0−K,K, 0) and E∗ = (S0−x∗−y∗, x∗, y∗).
The local stability of these equilibria from Chapter 4 remains unchanged, since
the additional eigenvalue must be negative in order for the solution to converge
to the simplex.

To prove that when an equilibrium is globally asymptotically stable for
the 2D system (2.8), then the corresponding equilibrium of the 3D system is
globally asymptotically stable in (2.4), we use the Butler McGehee Lemma as
stated by Freedman and Waltman [2]. Let O(X) denote the orbit through
a point X, and ω(X) denote the omega limit set of O(X). Also, if P is a
hyperbolic equilibrium point, then let M+(P ) and M−(P ) denote its stable
and unstable manifolds, respectively.

Lemma 7.1. (Butler McGehee Lemma) Let P be an isolated hyperbolic equi-
librium point in the omega limit set ω(X) of an orbit O(X). Then either
ω(X) = P or there exist points Q+ and Q− in ω(X) with Q+ ∈ M+(P ) and
Q− ∈M−(P ).

For the chemostat model (2.4), take X = (S, x, y) with S ≥ 0, x ≥ 0,
and y ≥ 0. Let O(X) be the orbit through point X, and ω(X) be the omega
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Figure 7.1: The dynamics on the boundary of the S + x + y = S0

simplex when all three equilibium points exist.

limit set of O(X). Note that by Lemma 2.1, ω(X) is bounded. Let E0 =
(S0, 0, 0) represent the equilibrium corresponding to extinction of both species,
E1 = (S0 −K,K, 0) correspond to predator extinction and E∗ correspond to
the coexistence equilibrium. Also, let S = {(S, x, y) : S ≥ 0, x ≥ 0, y ≥
0, S + x+ y = S0}.

Proposition 7.2. When K ≤ 0, then (0, 0) is globally asymptotically stable for
the 2D system (2.8) with respect to solutions originating in the first quadrant,
and E0 is globally asymptotically stable in the 3D system (2.4), with respect to
solutions originating in the first octant.

Proof. When K ≤ 0, (0, 0) is the only equilibrium point of (2.8). Consider a
point X ∈ R3

+. If X lies on S, then E0 ∈ ω(X) since E0 is globally stable for
the 2D system. If X does not lie on S, then by (2.5), there is a point in ω(X)
which lies on S. This implies E0 ∈ ω(X). Since E0 is asymptotically stable, it
is the only point in ω(X). Therefore, when E0 is the only equilibrium point,
it is globally asymptotically stable for system (2.4) with non-negative initial
conditions.

Proposition 7.3. The equilibrium point (K, 0) is globally asymptotically stable
for system (2.8) when K > 0, q−1(D) > K, x(0) > 0, and y(0) ≥ 0. If in
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addition, S(0) ≥ 0, then E1 is globally asymptotically stable for the 3D system
(2.4), with respect to initial conditions S(0) ≥ 0, x(0) > 0, and y(0) ≥ 0.

Proof. In this case, K > 0, and the only equilibrium points which lie on the
simplex S. On S, all orbits with x(0) > 0 will converge to E1. Now take X
in the interior of R3

+, and suppose E0 ∈ ω(X). Since E0 is a saddle point,
it cannot be the only point in ω(X). The stable manifold M+(E0) is the
two dimensional S − y plane, that by the Bulter McGehee Lemma, must also
contain a point Q+ 6= E0 in ω(X) ∩M+(E0). However, if Q+ ∈ ω(X), then
the entire orbit through Q+ is also in ω(X), contradicting the boundedness
of ω(X). Therefore, E0 6∈ ω(X) for X in the interior of R3

+. Next, suppose
there is a point in the ω-limit set of X that lies on the S − y plane. Then we
would have E0 ∈ ω(X), which is a contradiction. Thus, for all choices of X
with x > 0, E1 ∈ ω(X). We therefore have global asymptotic stability of E1

in system (2.4) whenever K > 0, x∗ > K, and x(0) 6= 0.

A visualization of the dynamics on the boundary of the simplex when all
three equilibrium points exist is given in Figure 7.1. By applying the Butler
McGehee lemma, all trajectories with positive initial conditions converge to
the interior of the S + x + y = S0 simplex and obey the dynamics of the 2D
subsystem on that simplex. When (x∗, y∗) is globally asymptotically stable in
the 2D subsystem (2.8), we will prove that the coexistence equilibrium E∗ is
globally asymptotically stable in the original 3D model.

Proposition 7.4. When (x∗, y∗) is globally asymptotically stable for the 2D
system (2.8) with respect to initial conditions x(0) > 0, and y(0) > 0, then E∗
is globally asymptotically stable in the 3D system (2.4), with respect to initial
conditions S(0) ≥ 0, x(0) > 0, and y(0) > 0.

Proof. In the case where E∗ exists, all three equilibrium points of system (2.4)
lie on S. Since (x∗, y∗) is globally asymptotically stable in the 2D system there
are no periodic orbits on S. Note by (2.5) that ω(X) is contained in S. We
must show that for X in the interior of R3

+, E∗ is the only point in ω(X).

First suppose that E0 ∈ ω(X). Since E0 is a saddle point, it cannot be
the only point in ω(X), so by Lemma 7.1 there must be at least one other
point Q+ ∈ ω(X) ∩M+(E0). The two dimensional stable manifold of E0 is
the positive S − y plane, which contains the S axis. Since the entire orbit
through Q+ is contained in ω(X), the entire positive S axis must be in ω(X),
contradicting its boundedness. Thus, E0 cannot be in the omega limit set
of O(X) for X in the interior of the positive octant. We also show that
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E1 6∈ ω(X), since if E∗ exists, then E1 is a saddle point. Again by Lemma 7.1
there must exist a point Q− ∈ ω(X)∩M−(E1). The one dimensional unstable
manifold of E1 is the positive y direction, which implies E∗ ∈ ω(X)∩M−(E1).
Since E∗ is asymptotically stable with respect to the 3D system, E∗ must be
the only point in ω(X). Thus E1 6∈ ω(X).

Next, assume that ω(X) contains a point that lies on the S − y plane.
This implies E0 ∈ ω(X), a contradiction. Finally, assume that ω(X) contains
a point that lies on the S − x plane. Then, either E1 ∈ ω(X), or ω(X)
is unbounded, both contradictions. Therefore, ω(X) = {E∗} for X in the
interior of R3

+.
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Chapter 8

Comparison with Monod
Response

The focus of this chapter is to explore the sensitivity of the model to the
functional form chosen for q(x). As previously discussed, the Ivlev and Monod
forms both have the necessary requirements for the predator response function,
and by looking at the theoretical sample data alone it is statistically impossible
to determine which, if either, form should be chosen.

8.1 Monod Preliminary Analysis

First, some preliminary analysis on the prey isocline with Monod form is re-
quired. The initial behaviour of the prey nullcline is determined by the signs
of F ′(0) and F ′′(0). For the Monod response,

F ′M(0) , lim
x→0

FM
′(x) =

m (K − (m+ 1))

(m+ 1)2 (8.1)

≤ 0 if K ≤ m+ 1

> 0 if K > m+ 1

F ′′M(x) =
−2m (Km+m+ 1)

(mx+m+ 1)3 (8.2)

Thus, the prey nullcline for the Monod response can be initially increasing,
decreasing or zero, and is concave down for all x ≥ 0. The prey nullcline
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Figure 8.1: Plots of the Monod and Ivlev response functions with their

best fit parameters. The sample data points are only demonstrative and

were generated by perturbing the Monod response with a = b = 1. A non-

linear least squares algorithm was then used to generate the parameters

aM , bM , aI and bI . The sum of the residuals squared is also displayed.

54



M.Sc. Thesis - T. Bolger McMaster University - Mathematics

with Monod response also has at most one extremum, a local maximum. In
the Monod case, it is possible to solve for the x value of the local maximum
explicitly,

M =
−(m+ 1) +

√
Km+m+ 1

m
. (8.3)

We also have

q(x)− xq′(x) =
x2

(1 + x)2
> 0.

Therefore, by 3.13 the local maximum moves up and to the right asK increases.
The local stability of the equilibrium points results from Chapter 4 were done
in general and as such are applicable to the Monod form as well as the Ivlev.

8.2 Monod Global Stability and Periodic Or-

bits

Theorem 8.1. System (2.8) with Monod functional response has a unique,
stable periodic orbit when x∗ < M .

Proof. Recall Theorem 5.3, originally by Huang [14]. For the purposes of sim-
plifying this proof, a different scaling of system (2.8) with the Monod response
is used. It is more convenient here to scale out the parameter m and instead
leave a. This leaves the chemostat model with Monod functional response as

dx

dt
= (x+ q(x))(F (x)− y) (8.4)

dy

dt
= y(−D + q(x)).

with F (x) = x(K−x)
x+q(x)

and q(x) = ax
1+x

. The condition under which the coexis-

tence equilibrium exists in this scaling is 0 < D < a. Take φ(x) = x + q(x),
π(y) = y, ρ(y) = y and ψ(x) = −D+ q(x). This chemostat model now has the
same form as Huang’s system (5.1). Conditions (i), (ii) and (iii) are easily ver-
ified. It remains to show condition (iv) holds, that is H(x) is non-decreasing.

H ′(x) =
−1

ψ2(x)
((F ′′(x)φ(x) + F ′(x)φ′(x))ψ(x)− F ′(x)φ(x)ψ′(x))

=
h(x)

(1 + x+ a)2((a−D)x−D)2
,
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where h(x) is a polynomial of degree four with the form

h(x) = c4x
4 + c3x

3 + c2x
2 + c1x+ c0

c4 = a−D
c3 = 2a(a−D) + 2(a− 2D)

c2 = Ka(a−D) + 2a3 − 2a2D + 3a2 − 8aD + a− 6D

c1 = −4D(a+ 1)2

c0 = D(a+ 1)(a(K − 1)− 1).

Clearly the denominator of H ′(x) is positive, so the sign of H ′(x) depends only
on the sign of h(x). Additionally, for a periodic orbit to be present, F (x) must
be increasing initially, which implies

F ′(0) , lim
x→0

F (x) =
a(K − 1)− 1

(a+ 1)2
> 0 =⇒ a(K − 1)− 1 > 0. (8.5)

This gives h(0) = c0 > 0. It has also been established that for periodic orbits
to exist, x∗ < M . Since F ′(x;K) is linear in K, it is possible to solve for K̂
such that F ′(x; K̂) = 0. For the Monod response this value of K̂ is given by

K̂ =
1

a

(
x2 + (2x+ 1)(a+ 1)

)
. (8.6)

Also, recall that as K increases the local maximum moves up and to the right,
so to maintain x∗ < M we must have K > K̂. Next, note that h(x) is an
increasing function of K.

∂

∂K
h(x;K) = a(a−D)x2 + aD(a+ 1) > 0, (8.7)

so h(x;K) > h(x; K̂) ∀ K > K̂. Evaluating h(x) at K = K̂ gives

h(x; K̂) = (x− x∗)2k(x), (8.8)

with k(x) = x2 + 2 (a+ 1)x + (a+ 1)
(
2 a+ 1 + a

a−D

)
. Thus, h(x; K̂) has a

double root at x = x∗. The discriminant of the quadratic k(x) is −a(a +
1)(a − D + 1)(a − D) < 0 so k(x) has no real roots. Then, either k(x) < 0
or k(x) > 0 ∀x. But h(0) = c0 > 0 =⇒ k(0) > 0 so we have k(x) > 0 ∀ x.
Therefore,

0 < (x− x∗)2k(x) = h(x; K̂) < h(x;K) ∀ K > K̂ and x 6= x∗. (8.9)

Thus we have h(x) > 0 ∀ x when 0 < x∗ < M , that implies H ′(x) > 0 ∀ x 6= x∗.
Therefore, H(x) is non-decreasing as required, so the periodic orbit is stable
and unique.
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Corollary 8.1.1. Consider system (2.8) with Monod functional response. If
x∗ ≥ M , then the coexistence equilibrium (x∗, y∗) is globally asymptotically
stable.

Proof. Refer to Theorem 4.2 and notice that the function β(x) to which it
refers is identical to the function H(x) used to establish uniqueness of the
periodic orbit above. Then β̂ = h(x; K̂) > 0, so the conditions of Theorem 4.2
are satisfied and (x∗, y∗) is globally asymptotically stable whenever it is locally
stable.

8.3 Sensitivity to Functional Form

The sensitivity of the classical predator prey model has been well studied (see
for example [9, 28]). In this section we examine if this phenomenon transfers
over to the chemostat as well. Refer to Figure 8.1, where it can be seen that
both the Monod and Ivlev response functions have the same shape and can be
fit to theoretical data very well. In practical situations it is likely not known
which, if either, of these functions is the correct choice. Yet depending on
which function is chosen the dynamics of the chemostat model can change.

Figure 8.2 shows the variations in the values at which bifurcations of the
system occur based on which functional response is used. We notice a small
difference in where the transcritical bifurcation between (0, K) and (x∗, y∗)
occurs, and a very large difference in where the Hopf bifurcation of (x∗, y∗)
occurs. From these variations we select parameters where the systems with
Monod and Ivlev functional responses have dynamically different solutions.
Figure 8.4 displays an example where the Monod response causes predator
extinction and convergence to the (0, K) equilibrium, but the Ivlev response
yields persistence of both predator and prey populations. Figure 8.5 demon-
strates another such example where the Monod response gives a stable periodic
orbit, but the system with Ivlev response has global convergence to the coex-
istence equilibrium. Based on the bifurcation diagrams in Figure 8.2, it can
also be seen that the amplitude of the periodic orbit with the Monod response
is larger than the amplitude for the Ivlev response when S0 is large.

To notice an even larger difference in the parameter sets that yield differ-
ent dynamics, we can overlay the two parameter bifurcation diagrams for the
Monod and Ivlev functional responses. This is done in Figure 8.3.

57



M.Sc. Thesis - T. Bolger McMaster University - Mathematics

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

Figure 8.2: Bifurcation diagrams for the Ivlev and Monod functional

forms overlayed. The full opacity plot is Ivlev and the faded plot is

Monod. The other parameters are set to m = 0.25, D = 0.3, and a and

b with the best fit values from Figure 8.1. Solid lines correspond to stable

equilibria, dashed lines correspond to unstable equilibria and filled circles

correspond to the largest and smallest values of x on a stable periodic

orbit. E0 represents the (0, 0) equilibrium, E1 is the (K, 0) equilibrium

and E∗ is the (x∗, y∗) equilibrium.
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Figure 8.3: Two parameter bifurcation diagrams for the Ivlev and

Monod functional forms overlayed. The full opacity plot is Ivlev and the

faded plot is Monod. The other parameters are set to m = 0.25 and a

and b with the best fit values from Figure 8.1. In R1, solutions converge

asymptotically to E0. In R2, solutions with positive initial conditions

converge to E1. In R3 solutions converge to the coexistence equilibrium

E∗. Finally, in R4 solutions converge to a stable periodic orbit surround-

ing E∗. The line separating R1 and R2 is the transcritical bifurcation

between E0 and E1 that occurs when K = 0. The curve between R2 and

R3 is the transcritical bifurcation when E1 exchanges stability with E∗

at x∗ = K. The curve separating R3 and R4 is the Hopf bifurcation of

E∗ that occurs when x∗ =M .
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Figure 8.4: S0 = 5.1, m = 0.25, D = 0.7, a and b best fit parameters

from Figure 8.1 gives rise to different dynamics. The initial condition

in both figures is (1.5, 1). For the Monod response we have extinction

of the predator and convergence to the (0,K) equilibrium. In the case

of the Ivlev functional response, the coexistence equilibrium is a global

attractor and both predator and prey populations persist.

Fussmann and Blasius claim in [9] that when S0 is increased in the classical
Rosenzweig-MacArthur model, the different response functions have different
degrees of destabilization. As they refer to it, destabilization of the system
occurs when the dynamics change from a globally stable equilibrium point
to a periodic orbit. They claim that the Monod functional response has a
greater degree of destabilization than the Ivlev response, as S0 is increased.
By examining Figure 8.3, we can see that this is not the case. For smaller
values of D we do observe that the system with Monod response will undergo
its Hopf bifurcation before the Ivlev system does. However, as D is increased
it is the Ivlev system which is first to reach the Hopf bifurcation. It is therefore
incorrect to claim that either function has a higher degree of destabilization.

Without experimental data, it is impossible to determine whether the slight
variations in where the bifurcations occur is actually statistically significant.
It is entirely possible that the sensitivity observed here can be attributed to ex-
perimental error. Nevertheless, it is still surprising to note that even when the
prey nullclines for both Monod and Ivlev responses are unimodal, differences
in the dynamics of the system can still be found.
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Figure 8.5: S0 = 4.5, m = 0.25, D = 0.3, a and b best fit parameters

from Figure 8.1 gives rise to different dynamics. The initial condition

for both panels is (9, 2). Here, a periodic orbit is observed for the Monod

response, but there is convergence to the coexistence equilibrium for the

Ivlev response.

61



Chapter 9

Discussion

In this thesis we have been concerned with establishing the dynamics of a
chemostat predator-prey model with Ivlev functional response. We have also
studied the sensitivity to the choice of functional response through a compar-
ison between the dynamics with the Ivlev and Monod forms.

First we considered the possible configurations of the prey isocline. It
was determined to be of Rosensweig-MacArthur form with at most one local
extremum (a maximum). We also observed the existence of a unique inflection
point when the isocline is initially concave up. It was determined that the
local maximum moves up and to the right as the parameter K is varied.

The system was found to have three possible fixed points. The mutual
extinction and the predator extinction equilibria are found to be saddle points
when the coexistence equilibrium exists. The coexistence equilibrium is unsta-
ble when x∗ < M and locally asymptotically stable when x∗ ≥M . A Lyapunov
function extends local stability to global stability over a certain portion of the
prey isocline. An application of the Dulac Criterion attempts to show that
(x∗, y∗) is globally stable when it is locally stable, but relies on the assumption
β̂′(x) > 0 for x > 0.

By transforming our chemostat model into Liénard form we attempt to
prove the uniqueness of the periodic orbit. This proof is missing a key piece
of information as it relies on the function f ∗(u) only having three possible
configurations. The shape of f ∗(u) remains to be rigorously proven, however
in numerical experimentation no evidence to the contrary has been observed.
This theorem could be useful in practical situations when parameter values
are known.
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In terms of bifurcations, this system was found to have two transcritical
bifurcations and one Hopf bifurcation. The primary bifurcation parameter
used was S0. As S0 was increased, stability transferred first from the (0, 0)
equilibrium to the (K, 0) equilibrium via a transcritical bifurcation. The sec-
ond transcritical bifurcation passed stability to the coexistence equilibrium,
(x∗, y∗). Finally, continuing to increase S0 caused the system to undergo a su-
percritical Hopf Bifurcation and a unique stable periodic orbit was observed.
Both one and two parameter bifurcation diagrams were provided.

Through comparing the dynamics from the Ivlev and Monod responses
the sensitivity of this model to specific functional forms was demonstrated.
A complete proof for the uniqueness of the periodic orbit with the Monod
functional response was provided. While the same sequence of bifurcations
is observed in both cases, the bifurcations occurred for different parameter
values. This would be an interesting area for further study. If numerical data
could be obtained we would be able to understand if this sensitivity can be
attributed to experimental error, or if it is, in fact, statistically significant.

In addition to analyzing experimental data to determine the authenticity of
the differences in dynamics, some interesting further work would be to experi-
ment with ratio dependent, rather than prey dependent, functional responses.
Ratio dependent responses have the form q(x/y), and it is compelling to find
out if the sensitivity observed here persists. It would also be relevant to theo-
retically determine what is causing the sensitivity to functional form. Perhaps
considering a one-parameter family of smooth functions from one functional
response to the other could yield more insight in this area. Another idea
could be to fix the values, slopes, and curvatures of the functional responses
at the equilibrium values, and see how that affects the bifurcation values. It
would also be interesting to search for practical applications with which the
chemostat model is applicable, and examine if the sensitivity can actually be
observed in nature.
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