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Abstract

The decreasing cost of chip manufacturing has greatly increased their distribution

and availability such that sensors have become embedded in virtually all physical

objects and are able to send and receive data – giving rise to the Internet of Things

(IoT). These embedded sensors are typically endowed with intelligent algorithms to

transform information into real-time actionable insights. Recently, humans have taken

on a larger role in the information-to-action path with the emergence of human-centric

sensing. This has made it possible to observe various processes and infer information

in complex personal and social spaces that may not be possible to obtain otherwise.

However, a caveat of human-centric sensing is the high cost associated with high

precision systems.

In this dissertation, we present two low cost and high performing end-to-end solu-

tions for human-centric sensing of physiological phenomena. Additionally, we present

a post-hoc data-driven sensor synchronization framework that exploits independent,

omni-present information in the data to synchronize multiple sensors. We first pro-

pose XTREMIS – a low-cost and portable ECG/EMG/EEG platform with a small

form factor that has a sample rate comparable to research-grade EMG machines. We

evaluate XTREMIS on a signal level as well as utilize it in tandem with a Gaussian
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Mixture Hidden Markov Model to detect finger movements in a rapid, fine-grained ac-

tivity – typing on a keyboard. Experiments show that not only does XTREMIS func-

tionally outperforms current wearable technologies, its signal quality is high enough

to achieve classification accuracy similar to research-grade EMG machines, making it

a suitable platform for further research. We then present SiCILIA – a platform that

extracts physical and personal variables of a user’s thermal environment to infer their

clothing insulation. An individual’s thermal sensation is directly correlated with the

amount of clothing they are wearing. Indeed, a person’s thermal comfort is crucial to

their productivity and physical wellness, and is directly correlated with morale [18].

Therefore it becomes important to be aware of actions such as adding or removing

clothing as they are indicators of current thermal sensation. The proposed inference

algorithm builds upon theories of body heat transfer, and is corroborated by empiri-

cal data. SiCILIA was tested in a vehicle with a passenger-controlled HVAC system.

Experimental results show that the algorithm is capable of accurately predicting an

occupant’s thermal insulation with a low mean prediction error. In the third part

of the thesis we present CRONOS – a sensor data synchronization framework that

takes advantage of events observed by two or more sensors to synchronize their in-

ternal clocks using only their data streams. Experimental results on pairwise and

multi-sensor synchronization show a significant drift improvement for total drift and

a very low mean absolute synchronization error for multi-sensor synchronization.
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Chapter 1

Introduction

In the broadest definition, a sensor can be defined as an electronic device whose

purpose is to detect events or changes in its environment and either report the in-

formation or store it for later use. The widespread distribution and availability of

Micro Electro-Mechanical Systems (MEMS) is transforming the physical world into a

ubiquitous computing platform [110] – giving rise to the Internet of Things (IoT) and

human-centric sensing. Human involvement is particularly useful in sensing various

processes in complex personal, social, and urban spaces where traditional embedded

sensor networks tend to suffer from gaps in spatiotemporal coverage, limitations in

making complex inferences, and inability to adapt to dynamic and cluttered spaces

[97]. By taking advantage of users who already live and work in these spaces, as

well as their adaptability and intelligence, human-centric sensing makes it feasible to

get information that otherwise is not possible. While human-centric sensing systems

are quite diverse, one can classify them in terms of the extent and role of human

participation, which falls under one or more of the following categories [97]:
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1. Humans as targets of sensing: The advent of more pervasively deployed

sensor technologies have resulted in an increased interest in applications for

sensing of human activities, behaviors, and patterns at scales ranging from

individuals (often oneself) to larger groups and communities.

2. Humans as sensors: A second role for humans is to participate in community

sensing campaigns, either via explicit recruitment or implicitly by downloading

a sensing application.

3. Humans as data sources: Humans regularly act as data sources themselves,

acquiring and disseminating information on their own, without the aid of sensing

devices.

In this dissertation, we construct low cost, high performing end-to-end platforms

to investigate human physiological phenomena under these categories. The basis

of this study is that systems that infer physiological aspects of the human body

such as action potential and heat are rather expensive and bulky. Further, at the

time of writing this dissertation there does not yet exist a truly low cost, portable,

and high performing counter-part. The objective of this dissertation is therefore

to design, create, and evaluate low cost and portable end-to-end systems in which

humans are either targets of sensing, or are treated as sensors or data sources to

infer personal information such as clothing levels and finger utilization through the

analysis of physiological signals with high efficiency and performance.

2
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1.1 Contributions

The main contribution of this dissertation is that it provides low-cost and high per-

forming tools for human-centric sensing to collect physiological data and make pre-

dictions about user physical states or actions. The proposed systems fall into two

categories: contact and contactless systems. Additionally, we propose a framework

to synchronize the data streams from multiple sensors post-hoc.

We first present a contact system – codenamed XTREMIS – a low-cost and

portable Electrocardiograph (ECG)/Electromyograph (EMG)/Electroencephalograph

(EEG) platform with a small form factor that has a sample rate comparable to

research-grade EMG machines. We utilize XTREMIS to collect EMG data in order to

infer finger movement in a keyboard typing activity. However, due to the fast moving

nature of fingers, it is difficult to predict which finger moved for a given key press

using discriminant classifiers. We thus present a Gaussian Mixture Hidden Markov

Model (GM-HMM) to predict the finger movements by taking advantage of the finger

movement patterns present in the training data. We compare the performance of the

GM-HMM with other classification algorithms such as Support Vector Machines and

k-Nearest-Neighbor. Additionally, we analyze the factors affecting fine-grained ges-

ture recognition such as sampling rate and electrode placement. Finally, we compare

XTREMIS’ performance to the Myo armband[41] – a commercial off-the-shelf EMG

sensor, and the BioSemi ActiveTwo [10] – a research-grade EMG system.

We then present a contactless system – codenamed SiCILIA – a platform that

extracts physical and personal variables of a user’s thermal environment to infer

the amount of clothing insulation without human intervention. A human’s thermal

environment has a myriad of factors that affect their thermal sensation (i.e. cold,

3
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hot, warm, etc.) such as the ambient temperature, the clothing temperature, and

the clothing emissivity. Additionally, a person’s thermal sensation is important as

it is correlated with their productivity, alertness, and can lead to illnesses such as

the Sick-building syndrome [77]. Since clothing is the most direct factor to human

thermal sensation, we developed a hardware platform as well as a real-time clothing

detection algorithm based on prior works in textile manufacturing to infer the level

of clothing insulation worn by the user.

Finally, we present CRONOS – a post-hoc, data-driven framework for sensor data

synchronization in ubiquitous environments. Traditional synchronization methods

aim to synchronize the clocks on sensors and generally rely on wireless communica-

tion protocols (e.g. RBS [16]) or modifying hardware (e.g. internal real-time clocks

(RTC)). Re-engineering entire systems to facilitate synchronization can quickly be-

come costly as the number and types of devices grow. Further, adding more hardware

to existing systems (i.e. upgrading with an RTC or a high quality oscillator) is likely

to increase cost and power consumption. CRONOS takes advantage of independent,

omnipresent events observed by two or more sensors to synchronize their internal

clocks offline using only their data streams without recalibrating or adjusting their

internal clocks.

1.2 Research Challenges and Objectives

As of late, large companies have been investing into maximizing worker comfort by

creating “health and wellness” divisions to analyze factors such as ergonomics, noise,

and personal spaces to create comfortable, personalized environments for their work-

ers. This is due to the fact that workers will only be as productive as they are

4
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comfortable [18]. However, the analysis performed by these teams is rather cum-

bersome (e.g. type on a keyboard repeatedly for ergonomic analysis, sit while body

measurements are being taken for posture analysis, etc.). The objective of this work

therefore is to develop systems that are capable of analyzing body emission infor-

mation for potential use by industry professionals to maximize and analyze worker

comfort. However, systems that can be used for this type of analysis are rather expen-

sive as they are highly precise. Therefore the first challenge is to develop a cheaper

system that is capable of performing the same tasks with similar accuracy.

The second challenge is in the algorithms to extract and analyze the human body

emission data. In the case of XTREMIS, finger movement recognition in a naturalistic

typing setting is a difficult problem due to the high amount of noise between finger

movements – making it difficult to differentiate between key presses and releases.

Similarly in SiCILIA, the problem of quantifying clothing insulation is difficult due

to the factors surrounding textiles and the heat exchange processes surrounding the

human body (convection, radiation, and conduction). Finally in the case of CRONOS,

there are multiple challenges surrounding data-driven sensor synchronization such as

synchronizing between sensors with different modalities (e.g. synchronizing SiCILIA

and XTREMIS), finding opportunities to synchronize, and synchronizing regardless

of phase differences between the data streams.

Combining SiCILIA and XTREMIS, we present solutions capable of extracting

information pertinent to an office worker’s current physical condition – such as their

level of clothing at different indoor temperatures and their typing habits – that are

low-cost but highly accurate that can be used by professionals for comfort analysis.

Additionally, CRONOS enables us to use the data from sensors that observe different

5



Ph.D. Dissertation - Ala Shaabana McMaster - Computing & Software

phenomena (e.g. XTREMIS observing finger movements, SiCILIA observing clothing

insulation changes) to synchronize between them regardless of their sensing modality.

1.3 Organization

Before constructing any human-centric sensing platform, it is important to first under-

stand the underlying biology of the platform’s target. Indeed, building an end-to-end

platform without knowledge of the underlying biology will result in a longer devel-

opment time, a bug-ridden system, and inaccurate data. Chapter 2 introduces the

two key biological aspects wof XTREMIS and SiCILIA: heat transfer and muscular

physiology, respectively.

Chapter 3 presents XTREMIS present the hardware design and software archi-

tecture of XTREMIS. We also identify ballistic gestures: a new type of hand gesture

that involves spontaneous propulsion of the limbs. We then present a GM-HMM to

identify it and compare its performance on:

1. Myo armband: A commercial off-the-shelf EMG armband [41].

2. BioSemi ActiveTwo: A research-grade EMG/EEG machine [10].

3. XTREMIS: The proposed biomedical platform.

The results of this chapter have been published at the 2nd IEEE/ACM International

Conference on Connected Health (CHASE) 2017 [88], and submitted for publication

in IEEE Transactions on Embedded Computing Systems [85]. Additionally the code,

hardware schematics, and execution manual have all been made available in the public

domain on Github for those interested in replicating XTREMIS or studying it [93].

6
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Chapter 4 changes the focus to detecting electromagnetic waves – specifically in-

frared (IR) – emitted from the human body. Utilizing contactless technologies such

as IR sensors and ultrasonic range finders, SiCILIA tracks its user and measures

their clothing insulation. The formulaic approach of the tracking and clothing infer-

ence algorithms, and the results of the experiments are then presented. SiCILIA’s

demonstration earned a best demo award at the ACM Cyber-Physical Systems (CPS)

week [91]. Additionally, the results of this chapter were published in 2015 at IEEE

GLOBECOM [90] and they have been accepted and are currently in press in ACM

Transactions on Sensor Networks (TOSN) [92]. Similarly to XTREMIS, the code

has been made available in the public domain on Github for those interested in the

research [84].

Chapter 5 changes the focus once again and presents CRONOS – an entirely

software-based approach to sensor synchronization. For the pairwise sensor case, the

sensor time skew and offset are first detected and corrected with a combination of

normalized cross correlation and linear regression. For the multi-sensor case, a graph-

based approach to multi-sensor synchronization with least squares optimization to

synchronize using the most up-to-date synchronization data is presented. The results

of this chapter have been submitted to the ACM Proceedings of the 17th International

Conference on Information Processing in Sensor Networks (IPSN) [87]. The python

notebooks for CRONOS are available on Github [86]. Finally, chapter 6 concludes

this dissertation and discusses the future works.

7



Chapter 2

Background

Measurements of human biological processes tend to be noisy, and sufficient knowledge

of the process that is under measurement is crucial. We present some biological

context regarding the underlying muscular physiology on which the finger movement

recognition using XTREMIS is based. We then present the underlying heat transfer

mechanisms that SiCILIA exploits to create its predictions.

2.1 Muscular Physiology

Instead of being controlled with interior muscles, human fingers function in a pulley

system powered by the forearm. In fact, there are 20 muscles in the forearm that

control fingers and movement. They can be divided into 2 types: extrinsic and

intrinsic muscles as shown in Figure 2.1. The extrinsic muscles are the long flexors

and extensors. The flexors are located on the underside of the arm, and allow for the

bending of the fingers [98]. The thumb has one long flexor and one short flexor, as

well as other muscles to make grasping possible. The extensors, on the other hand,

8
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are located on the back of the forearm and they help to straighten fingers out (i.e.

finger extensions).

Figure 2.1: (a) Flexor Digitorum Profundus (b) Flexor Pollicis Longus muscles (c)
Extensor Digitorum Communis [28]

The Flexor Digitorum Profundus’ primary functions are the flexing of the wrist,

the metacarpophalangeal joints (joints between the bones and phalanges of the fin-

gers), and the interphalangeal joints (hinge joints between the phalanges of the hand).

In other words, it helps in flexing the medial four digits of the hand (the index, mid-

dle, ring, and pinky fingers). Whereas the Flexor Pollicis Longus muscle serves to

primarily flex the thumb. Meanwhile, the Extensor Digitorum Communis muscle al-

lows for the extension of the medial four digits of the hand. Located on the back of

the forearm, this muscle is in a constant state of contraction when typing due to the

posture of human beings when typing.

9
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2.1.1 Electromyography

In any cell, there exists an electrical potential difference between the inside of the

cell and the surrounding extracellular fluid called the membrane potential of the cell.

A phenomenon referred to as an Action Potential (AP) occurs when the membrane

potential of a specific axon (i.e. a nerve cell) rapidly rises and falls, causing adjacent

locations to similarly depolarize [36]. APs occur in several types of animal cells –

called excitable cells – which include muscle cells. Specifically, AP produces the

contraction required for the movement of muscles, therefore AP levels are directly

correlated with the intensity and nature of muscle movements.

Electromyography is an electro-diagnostic tool utilized for the evaluation and

recording of the electrical activity produced by skeletal muscles [47]. Specifically,

an Electromyograph detects the aggregate AP generated by muscle cells when they

are electrically or neurologically activated. The signals are analyzed to detect medical

abnormalities, activation levels, recruitment order, or to analyze the biomechanics of

an animal or a human. Figure 2.2 shows a simplified action potential signal that

occurs when a muscle is contracted or relaxed. The depolarization and repolarization

phases occur first as the membrane potential of the muscle cells rises and falls.

2.2 Biological Heat Transfer Mechanisms

Humans are homeothermic, meaning they must maintain their body temperatures

within a narrow range in varying environmental conditions. Typically, body temper-

atures range between 36-37 ◦C [40]. However, there is a diverse range of thermal

sensations from one human to another that is caused by the variance in their resting
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Figure 2.2: The shape of an action potential signal during resting, polarization, de-
polarization, and the undershoot (i.e. refractory) period.

core body temperature. This variation means that humans tend to have different tol-

erances to working at certain temperatures. Further, there are two recognized sources

of heat load on each person: the first is environmental, which may be positive or neg-

ative (i.e. there may be a heat gain or loss from the body due to the surrounding

environment). The second is metabolic, which is generated by muscular activity (or

work). Hence, a human’s thermal sensation is determined by the sum total of the

effects of these processes. Meanwhile their physiological make-up determines their

preferences and level of comfort, given these processes.

As illustrated in Figure 2.3, the main processes of heat exchange between the

human body and its environment are [8]:

• Convection: The difference in temperature between the air and the skin tem-

perature along with the rate of air movement over the skin decides the rate

of convection. Convection rate characterizes the rate of convective exchange

11
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Figure 2.3: Thermal Interaction of an occupant’s body and its environment [31]

between human skin and the ambient air in close proximity to the skin.

• Radiation: The surface of the human body constantly emits heat in the form

of electromagnetic waves. The rate of emission is determined by the absolute

temperature of the radiating surface. Therefore, net heat is lost if the surface of

the body is warmer than the average of the various surfaces in the environment,

with the rate being directly dependent on the temperature difference. This form

of heat transfer does not require direct contact with the warmer object.

• Conduction: In the case of conduction, the heat moves down its thermal

gradient from the warmer to the cooler object. After it has lost some of its

heat, the warmer molecule slows down and the cooler molecules move faster

after having gained heat. The heat transfer between the two objects continues

until their temperatures have reached equilibrium (that is, equalized).

• Evaporation: To cool the body, water evaporates from the surface of the skin.

12
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Additionally, the heat required to transform it from a liquid to a gas is dissipated

from the skin.

Therefore, convection, radiation, conduction, and sometimes evaporation are the

main processes that affect persons at rest in an indoor environment such as an office.

13



Chapter 3

XTREMIS: A Portable Biomedical

Sensing Platform

Electromyography (EMG) is an electro-diagnostic tool used to analyze muscle re-

sponse or electrical activity in response to a nerve’s stimulation of the muscle. This

is done by detecting a small bioelectric pulse called the Action Potential (AP) that is

generated when muscles contract and relax. By analyzing the AP signal, it becomes

possible to analyze medical abnormalities, activation levels, muscle recruitment order,

or biomechanics [78]. Currently there exist two types of EMG: intramuscular EMG

and surface EMG (sEMG). Intramuscular EMG requires an electrode to be inserted

into the muscle that is being measured. This is an invasive process and can be painful

to the person being measured, however the signal is typically clear with a low amount

of noise. On the other hand, surface EMG electrodes are placed on the skin, making it

non-invasive and pain-free. However, the signal is noisy and requires proper filtering

before being processed.

There has been a myriad of research on the use of sEMG to to drive an actuation
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based on human biosignals in the past couple of decades. Specifically, sEMG signals

are processed and input into classifiers to create functions ranging from hardware

control to gesture recognition. Indeed, one of the earliest concepts of using EMG

for robotics control was proposed by Farry et al. in 1996, in which they proposed

converting EMG signals into commands for NASA/Johnson Space Center’s sixteen

degree-of-freedom Utah/MIT Dexterous Hand for two grasping (key and chuck) op-

tions and three thumb motions (abduction, extension, and flexion) [20]. As of late,

EMG research has been more focused on the classification of intricate tasks. This nat-

urally led researchers to finger movement classification. In 2013, Chen et al. proposed

a pattern recognition system to perform automatic classification on multiple finger

movements, specifically Chinese sign language gestures for numbers ranging from 0

to 9 [12]. Moreover, they investigated the effects of different feature and classifier

combinations in offline recognition, and have taken a further step by implementing a

real-time recognition system with above 90% accuracies for all subjects.

However, there exists a class of fine-grained gestures that involve repetitive, spon-

taneous propulsions of the limbs in activities such as playing instruments or typing

which we define as “ballistic gestures”. We evaluated ballistic gesture recognition

performance using a Myo gesture recognition armband [41] and compared it against

a Biosemi ActiveTwo research-grade EMG machine [10] and found that while the

BioSemi ActiveTwo achieved a high classification accuracy, the Myo armband suffers

from two significant setbacks that prevented it from achieving a high classification

performance [89]:

1. Rigid electrode placement: The electrodes can only be placed in one specific

way on pre-specified muscles fitting the primary application of the device. For
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example, Myo’s primary purpose is gesture recognition, and hence it can only

be placed on forearm muscles near the elbow [41].

2. Limited sampling rate: Due to power constraints, maximum device sampling

rates are typically at approximately 200 Hz. Significant information in the signal

may be lost as this does not satisfy the Nyquist-Shannon sampling theorem as

typical muscle motor unit action potential is typically between 10Hz and 500Hz

[60].

Indeed, although the BioSemi ActiveTwo performs rather well, the high costs and

complexity of such research-grade EMG machines prevent developers and scientists

without an electronics engineering background from utilizing them for their research

needs, instead resorting to off-the-shelf wearable devices like Myo. Thus, we present

XTREMIS: a low-cost, portable, and powerful hardware and software solution to

EMG data collection. XTREMIS is an EMG data collection device with an adjustable

biomedical instrumentation chip and flexible electrode placement. In order to evaluate

the validity and performance of XTREMIS, two types of experiments were performed:

finger movement recognition and a signal-level analysis and similarity measure. The

performance of XTREMIS is also compared against the BioSemi ActiveTwo and the

Myo armband. Thus, our contribution in this chapter is four-fold:

1. We present XTREMIS: a hardware platform and software solution for Electro-

cardiography (ECG/EKG), Electromyography (EMG), and Electroencephalog-

raphy(EKG) data collection.

2. We propose a Gaussian mixture Hidden Markov model (GM-HMM) to classify

ballistic gestures during a typing task.
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3. We present a detailed evaluation of the different factors that affect finger move-

ment classification during typing, namely:

3.1. speed of typing.

3.2. placement of electrodes on the skin.

3.3. sampling rates.

4. We evaluate XTREMIS’ performance on EMG signals by comparing it to a

research-grade EMG machine in two dimensions:

4.1. Perform a signal-level analysis on XTREMIS and compare its performance

to a research-grade EMG machine.

4.2. Evaluate the performance of both devices in classifying ballistic gestures

using a Gaussian Mixture Hidden Markov Model (GM-HMM).

The rest of this chapter is organized as follows: Section 3.1 discusses gesture recogni-

tion and previous works. Section 3.2 discusses the hardware design and software archi-

tecture of XTREMIS. Section 3.3 details the GM-HMM applied in recognizing finger

movements in the classification performance evaluation of XTREMIS. Section 3.4

highlights the evaluation results of the classifier performance using XTREMIS v.s.

a research-grade EMG machine and presents a signal comparison between the two

devices. Finally, Section 3.6 presents the conclusion and future works, respectively.

3.1 Related Work

Gesture recognition is a problem that has been tackled using many approaches by

researchers since the 1990s. Due to the variety of possible gestures performed by
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hands, gestures can be identified in two types:

1. General gestures : gestures involving the movement of the entire hand or flexing

of the fingers such as sign language.

2. Ballistic gestures : gestures involving spontaneous propulsion of the limbs in a

continuous manner, such as typing.

Gesture recognition literature has been approached using a variety of methods:

gloves [3], acoustic [64], vision-based [62, 99], and EMG-based[41, 12, 89]. Therefore

they can be broken down to two approaches: device and device-free approaches.

3.1.1 Device-free Approaches

Most alternative approaches to using EMG devices for gesture recognition involve

using computer vision and image processing. Mantecón et al. proposed a gesture

camera-based machine interface system and used compressive sensing to reduce the

dimensionality of the feature vector [57], and utilized an SVM for recognition. The

system was tested on 11 different hand gestures made by 6 subjects, and achieved

accuracies as high as 100% for certain gestures. Meanwhile, Jiang et al. proposed a

solution to recognize features made in front of a Microsoft Kinect sensor [46]. Both

Red/Green/Blue(RGB) images and depth images were explored. Features extracted

included: histogram of oriented gradient features, local binary pattern features, struc-

ture features, and 3D-voxel features. A novel deflation-based orthogonal discriminant

analysis was then explored for further feature reduction and enhancing the discrimi-

native ability, which allows for a higher flexibility than LDA. The proposed method
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excels in its higher accuracies and low complexity implementation. However, the issue

that remains with camera-based approaches is two fold:

1. Privacy: If the application of the approach is a personal one, then users may

have privacy concerns with regard to how the recorded media is being utilized.

Indeed, some institutions may wish to keep them as training data for more

generic classification investigations.

2. Granularity: Camera based approaches are a good solution when dealing with

coarse gestures or body language recognition. However if the gestures require

finger manipulation, then several factors may come into play:

2.1. Background of the user: In optimal lab conditions, backgrounds are static

during testing; that is, they do not move or have much detail behind

them. In a more day-to-day environment this may not be the case, and

may introduce complications.

2.2. Movement: The advances of lens technology today has allowed for high

picture resolutions, allowing us to zoom and focus on specific parts of

pictures. However, if the gestures are being performed live and the gesturer

is moving while gesturing, this adds a spatial dimension as well as an

angular dimension to the problem.

Other works focused on using acoustic signals for gesture recognition. Deyle et al.

proposed Hambone, a wrist- or ankle- mounted wearable gesture recognition device.

Hambone uses two small piezoelectric sensors that pick up the sounds generated by

the user’s hands or feet via bone conduction [14]. The signals are identified using

a HMM and are mapped to a set of commands to control an application. More
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recently, Gupta et al. proposed SoundWave, a technique that leverages the speaker

and microphone already embedded in most laptops to sense in-air gestures around

the device [29]. An inaudible tone is generated that gets frequency-shifted when it

reflects off moving objects like the hand. The shift is measured with the microphone

to infer various gestures [29].

Additionally, wireless signals have also been utilized for gesture recognition. Pu

et al. proposed WiSee – a gesture recognition system that leverages Wi-Fi and the

Doppler effect to enable sensing and recognition of human gestures in an entire area

such as a house or an office. WiSee performed with high accuracy on course move-

ments such as pushing, pulling, kicking, etc. [74] but will not perform well with fine

grained gestures such as finger movements due to the resolution of the signal relative

to the small Doppler shift created by fingers.

3.1.2 Device-based Approaches

Device-based gesture recognition largely solves the privacy issue as an ocular view of

the user is not required, unless they do not wish for their data to be shared. However,

granularity still remains an issue as finger-level recognition has not been thoroughly

investigated yet at the time of writing this thesis.

Wang et al. proposed RF-IDraw, an RFID-based system that allows a user to

interact with a desired computing device by gesturing or writing commands in the air

[102]. RF-IDraw is finger-mounted and can detect finger movements on a fine level

using a few antenna pairs with different spacial separations between them. However,

RF-IDraw is single-finger mounted, meaning it can only be placed on one finger and
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therefore has not been tested for multiple finger movements. It serves well as a human-

computer interaction device, but more complex applications require adjustments to

the entire system.

Kim et al. proposed a 3D hand motion tracking and gesture recognition system

using a data glove with three 3-axis accelerometer sensors, one microcontroller and

one Bluetooth module. They developed a rule-based algorithm to track simple hand

gesture recognition [49] but had significant delays. Asokan et al. proposed ARMatron

– a wearable gesture recognition glove with on-board potentiometers (one for each fin-

ger) to measure finger movement, and an accelerometer and a gyroscope to measure

the wrist’s rotation and orientation to enable interfacing with electro-mechanical sys-

tems and human-computer interactions [3]. Kalpattu et al. proposed a glove-based

sign language translator using capacitive touch sensors at its core. More specifically,

the glove employs touch sensors at the fingertips and the skin between the fingers to

collect data [1].

Various EMG solutions to general gesture recognition have been developed using

a combination of custom hardware and software. One of the earliest works on the ap-

plication of EMG on Human Computer Interfaces was proposed in 1998 by Rosenberg

in which a graphic input device controlled by the wrist is constructed. The device

detects the EMG signal of the forearm muscles used to move the wrist and moves the

mouse pointer on a screen accordingly. Rosenberg reports that the pointer performs

14% as well as a regular computer mouse at simple pointing tasks [80]. In 2009 Gopra

et al. proposed an EMG based control method for an upper-limb motion assisting

exoskeleton (SUEFUL-7) with 7 degrees of freedom [27]. SUEFUL-7 takes advantage

of the EMG signal amplitudes produced by the upper-arm and forearm muscles to
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predict the intended movement of the wearer. Experiments have shown that the sys-

tem is effective in helping physically weak individuals to rotate their shoulders and

extend/flex their wrists [27].

Chen et al. proposed a pattern recognition system to perform automatic clas-

sification on multiple finger movements, specifically Chinese sign language gestures

for numbers ranging from 0 to 9 [12]. The proposed hardware system consisted of an

instrumentation amplifier and two TelosB motes as an analog-to-digital converter and

to wirelessly transmit data. Although their design is compact, each channel requires

two electrodes at a time — one reference and one channel electrode. This design fits

their implementation with 4 channels [12] but quickly becomes cumbersome when

dealing with high electrode counts such as 8 or 16. XTREMIS resolves this issue

by using one common reference electrode that works with each channel individually,

eliminating the clutter.

Pareschi et al. designed an analog-to-information converter based on compressed

sensing that acquires biosignals with Nyquist frequency up to 100kHz [71]. Com-

pressed sensing is utilized to reduce the amount of data necessary to represent the

signal information content. Further, the proposed system contains signal saturation

checking mechanisms to allow users to reconstruct the input signal regardless of the

presence of saturation with minimal hardware requirement costs. Experiments on

biomedical signals show that the prototype is capable of successfully acquiring sig-

nals with high compression factor [71].
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3.2 Hardware Design

The design of XTREMIS is inspired by the Open Brain Computer Interface (Open-

BCI) open source project [43] – a bluetooth-based ECG/EMG/EEG system. The

high-level user flow of XTREMIS is shown in Figure 3.4. Commands are sent from

a computer connected to the same wireless network as XTREMIS. They are then re-

ceived by the WiFi system-on-chip(SoC) and sent to the processor. The processor, in

turn, converts the commands to bytes and sets or clears flags on the 6-degree Inertial

Measurement Unit (IMU) or biomedical instrumentation ADC (BIADC) as required.

During data collection, the incoming digital signal from the BIADC is timestamped

by the processor and converted to hexadecimal format. It is then either saved to the

SD card, sent to the WiFi SoC for transmission, or both.

oo

Figure 3.4: Information flow of XTREMIS. Commands are sent through WiFi to the
WiFi SoC of XTREMIS.

Figure 3.5 is a picture of the XTREMIS board with the highlighted components

as shown in Figure 3.4. XTREMIS’ compact form factor of 33cm × 55cm makes
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it suitable for a wide range of applications: from wearable technology to on-the-fly

gesture recognition. The architecture of the XTREMIS board is shown in Figure 3.6.

For simplicity, we split the circuit into two sub-circuits: data acquisition and data

processing.

Figure 3.5: XTREMIS Circuit Components.

Figure 3.6: High-level view of XTREMIS’ architecture.
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3.2.1 Data Acquisition Circuit (DAC)

Input to the BIADC is collected from 8 individual channels (S = C1,...,C8 ), a Stim-

ulus, Reference, and Bias (SRB) channel, and a BIAS channel. The SRB channel

serves as a common reference to all channels in S against which the impedance on the

skin is measured between it and a given channel. As for the BIAS channel (also called

Driven Right Leg or DRL), it takes a copy of the 50Hz or 60Hz radiation surrounding

the human body and drives it with a scaled, inverted version, effectively canceling it

out. It is typically utilized for EEG applications as the signal is weak. The signal

for EKG and EMG is stronger and hence it is not required. The BIAS channel input

was added to XTREMIS for potential EEG applications in future works.

More specifically, the BIADC is a TI ADS1299 chip that collects the ECG/EMG/

EEG data and converts it into the digital domain using a 24-bit ∆Σ Analog-to-

Digital converter (ADC), which in turn uses a second-order modulator optimized for

low-noise applications [42]. The input signal is sampled by the modulator at the

rate of fMOD =
fCLK

2
. The digital filter then receives the modulator output and

decimates the data stream. Trade-offs can be made between resolution and data rate

by adjusting the amount of filtering [42]. The filter applied is a Sinc filter: a variable

decimation rate, third-order, low-pass filter.

All channels are first passed through an electrostatic discharge (ESD) protection

circuit to protect the BIADC from any electrical shorts with any object that comes

into contact with the channel pins. Signals are then fed to a voltage divider to reduce

the voltage of the incoming signals. The reduced, analog signals are then fed into the

BIADC for conversion. XTREMIS utilizes a Texas Instruments ADS1299 chip for

the BIADC due to its ability to process EKG, EMG, and EEG signals with minimal

25



Ph.D. Dissertation - Ala Shaabana McMaster - Computing & Software

adjustments. Once the analog signal has been converted to a digital one by the

BIADC, it is ready for actuation by the data processing circuit.

3.2.2 Data Processing Circuit (DPC)

While the DAC is responsible for converting biosignals from analog to digital, the

DPC is responsible for the application program interface (API) of XTREMIS as well

as processing user commands. More specifically, a 32-bit microprocessor is responsi-

ble for saving, transmitting, and annotating the data as well as adjusting the settings

of the BIADC as per the user’s commands coming in from the WiFi SoC. Commu-

nications between the actuation components (BIADC, IMU, and SD card) and the

processor are done through Serial Peripheral Interface (SPI) protocol so as to handle

the high sampling rates that the BIADC and IMU (which contains both a gyroscope

and an accelerometer) are capable of.

On the other hand, the WiFi SoC has its own embedded processor and as such

communication with the on-board microprocessor was chosen to be Universal Asyn-

chronous Receiver-Transmitter (UART) protocol due to its asynchrony. Synchroniza-

tion and timing information is embedded into the data stream and synchronization at

each end is achieved with a protocol that incorporates start and stop bits. Further,

using UART simplifies the design when using streaming-mode: the processor simply

dumps the samples collected onto the UART bus and the WiFi SoC picks them up

and transmits them. Utilizing UART instead of SPI in this case is namely a design

choice as it is sufficient to support the high data rates coming from the IMU and the

BIADC, thus SPI was not necessary. Finally, the WiFi SoC is programmed indepen-

dently from the on-board microprocessor, making the programming of XTREMIS a
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two-step process.

3.2.3 Data Marking System (DMS)

As with any data collection system, it is paramount that the data can be properly

marked and annotated in real time if there is a need for it. Certain tasks like typing

cannot simply be marked manually, and require a low latency data marking system

to properly mark the ground truth data. Past works and current products lack

DMS circuits, making the data collection and training process for machine learning

applications cumbersome. Due to the nature of biosignals, it is impossible to mark

data without an external device. Data marking is usually performed with a video

recording of the subject performing and then cross-referencing it with the biosignal

data. The DMS in XTREMIS allows for the marking of data “on-the-fly” – that is,

as it is being recorded in real time. The inspiration of the DMS of XTREMIS came

from trying to mark the data coming from a research-grade EMG machine in our

previous work [89]. To resolve this, we constructed a DMS (referred to as a trigger

mechanism) using an Arduino and a PS/2 keyboard that interfaced with the EMG

machine to properly mark the data when a key was pressed and when it was released.

XTREMIS employs a similar mechanism in which 6 pins are dedicated as input

pins, the state of which determines whether or not there needs to be a marking on

the data (they are always defaulted to 0 when there is no incoming marker). The

reason for using 6 pins (which correspond to 6 bits in software) is to allow a high

variability in possible marking mechanisms. Specifically, 6 bits is enough to represent

the alphabet in lower case ASCII. Hence it is possible to mark the data using letters

from the English language. If one of the pins’ states is set to 1, then the data is
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marked in that instance and the states are cleared until the next change. This makes

it simple to attach any trigger mechanism to any or all of the pins on XTREMIS that

changes the states of the pins appropriately according to an action taken by a user,

thereby simplifying the collection of data.

3.2.4 Daisy Chaining

In some applications, 8 data channels are not enough to capture all the relevant

signals. This is common in instrumentation that has a high amount of data output,

such as brain wave analysis using EEG. The BIADC module on XTREMIS is a

Texas Instruments 8-channel ADS1299 analog-to-digital converter that is capable of

connecting to another ADS1299 to double the channel output from 8 to 16 channels.

Figure 3.7 shows the daisy chain configuration using two ADS1299 chips. The Daisy

box represents either another board that contains an ADS1299 directly interfaced

with XTREMIS or simply another XTREMIS board. When in daisy-chain mode,

both the daisy and XTREMIS share the clock (SCLK), chip select (CS), and data-

in (DIN) pins. The data-out (DOUT) of the daisy is connected to the daisy input

(DAISY˙IN) of XTREMIS. Since 16-channel setups are typically utilized for EEG

signals, we leave the analysis, experimentation, and verification of the daisy-chained

16-channel XTREMIS to future works due to it being out of the scope of this work.

3.3 Classification

Raw EMG signals come in a somewhat useless form. It hence becomes important

to preprocess and analyze them before training a classifier. The raw signal is first
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Figure 3.7: Daisy chaining XTREMIS using the ADS1299 [42].

cleaned up, and relevant segments of the clean signal are then extracted. Features

are then extracted and used in training or invoking a classification.

3.3.1 Preprocessing and Windowing

The first stage that EMG signals have to go through is data preprocessing. The

ISEK Standards of Reporting EMG Data states that the firing rate of Motor Unit

Action Potentials (MUAP) is typically between 10Hz and 500 Hz [60], and as such

the EMG data is first passed through a bandpass filter within 10Hz and 500Hz. In

regular gesture recognition systems the next step is usually segmentation, which in-

volves separating inactive periods from active periods in the signal. Active periods

are defined as blocks in the time-series signal where muscle contractions are hap-

pening, while inactive periods are blocks where the muscle is relaxed. However in
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ballistic gestures resting periods are very brief or sometimes non-existent. Instead,

they become transition periods, which are times where the finger is moving from a

key release to the next key press. Since transition periods vary in intensity across

people and typing speeds, we use overlapping windows to label the onset of key press,

period where the key is pressed, and key release.

In regular gesture recognition literature, there are several approaches to segment

EMG signals [12, 48, 106, 113], the most common of which are:

1. Segmentation by detecting peaks of Motor Unit Action Potentials (MUAPs).

2. Segmentation using energy/peak detection.

3. Segmentation using Discrete Wavelet Transforms.

Although their performance is good when applied to regular gesture recognition,

a caveat of the above methodologies is that they require calculation of parameters

such as thresholds, Maximum Voluntary Contraction (MVC), and appropriate win-

dow sizing, usually found using trial-and-error in experimentation. Further, using

thresholding may be counter intuitive as the instability of signals may create incon-

sistencies between the shapes of active and transition periods. Although the peaks

in the waveform are evident, the fluctuations of rest periods makes it difficult to

detect them reliably. These fluctuations are referred to as “movement epenthesis”,

which occur when performing rapid movements. This is common when dealing with

ballistic gestures due to the spontaneity of the gestures and their similarities to a

muscle twitch, making them difficult to remove completely using only filters. Finally,

thresholds are likely to differ when applied to different people as everyone has dif-

ferent physiologies due to factors like the amount of body fat they have and their
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muscular structure. Hence, the period between a key release and the next key press

cannot be treated as a resting period. Instead, using overlapping windows to label

onsets, offsets, and transitions between keys will help to build more robust classifiers.

Features are then extracted from each window and the corresponding label that is

within it (i.e. a key press, release, or in between a press and a release) is used as the

ground truth.

3.3.2 Windowing

When extracting data for training, a 50ms sliding window approach with a 10ms

overlap was adopted in which if a key press marker is found then that window and all

subsequent windows until the key release marker are labeled with the finger mapped

to that key. The benefits in using the sliding window in training the HMM is two-

fold: First, a sliding window-style of labeling gives information as to how long finger

presses and transitions are, making it more resilient to typing speeds. Second, sliding

windows allow for training the HMM to detect onsets and offsets of key presses,

making it more resilient to movement epenthesis – a common phenomenon when

dealing with ballistic gestures that occurs due to the spontaneity of the gestures and

their similarities to a muscle twitch, making them difficult to remove completely using

a filter [89].

3.3.3 Feature Extraction

Once windows of the signal have been identified, features are extracted from each

window. The features selected in this work were chosen from past gesture classification

work [12, 39, 52, 76] on fine-grained gesture recognition such as playing the piano [52]
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and sign language [12]. Alternatively, a random-forest classifier can be used to find

the best performing features. Two types of features were extracted: time domain

(TD) features and frequency domain (FD) features.

Time Domain Features

Some of Hudgin’s feature set was utilized to obtain the time domain features due to

the simplicity of their computations and their ability to describe the signal at the time

domain well [39]. In this work, four of these features were implemented in addition to

the Root Mean Square. Samples are first divided into overlapping windows of length

N each. Let I be the total number of windows.

1. Mean Absolute Value (MAV) — Estimate of the MAV of the signal in window

i which is N samples in length, given by:

MAVi =
1

N

N∑
k=1

|xik| where i = 1, ..., I (3.1)

where xik is the kth sample in window i and I is the total number of windows

over the entire signal.

2. Difference MAV — Represents the difference in MAV between the window i

and the subsequent window i+ 1, given by:

∆MAVi = MAVi+1 −MAVi. (3.2)

3. Slope Sign Changes (SSC) — Number of times the slope of the waveform

changes signs (from positive to negative, or vice versa). A suitable threshold
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must be chosen to reduce noise induced changes. Given three consecutive sam-

ples in window i: xik−1, x
i
k, and xik+1, the slope sign change count is incremented

if:

xik > max(xik−1, x
i
k+1) or xik < min(xik−1, x

i
k+1)

and max(|xik+1 − xik|, |xik − xik−1) > Ω,

(3.3)

where Ω is a threshold value that is determined as 0.02mV for a noise value of

21.34µV peak-to-peak [42].

4. Waveform Length (WL) — The cumulative length of the waveform over the

window i. This is the cumulative length of the waveform over the time window,

defined as:

WLi =
N∑
k=2

∣∣xik − xik−1∣∣ , (3.4)

where xik − xik−1 is the difference in consecutive sample voltages [39].

5. Root Mean Square (RMS) — Provides a measure on the power of the signal in

window i which is N samples in length.

RMSi =

√√√√ 1

N

N∑
k=1

(xik)2. (3.5)
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Frequency Domain Features

The frequency domain features used were Hjorth’s parameters, the mean, and median

frequencies extracted from the power spectrum of the signal. Hjorth’s parameters are

normalized slope descriptors typically used in EEG processing for data reductions

or automatic sleep stage scoring. In this work we use them for the detection of the

transient EMG signal which occurs during muscle contractions, or when a muscle is

switching from a relaxed to a contracted state and vice versa. We first define the

spectral moments over a discrete fourier transform. The zero-order moment m0i over

window i is proportional to the mean energy in that window, and is defined as:

m0i =
1

F

f2∑
f=f1

P i
f , (3.6)

where f1 to f2 are a range of frequencies of length F = f2− f1, and P i
x is the discrete

power spectrum of the signal in window i. Since the EMG frequency range is between

0Hz and 500Hz [60], the range f1 = 0 and f2 = 500 were used. The first-order moment

is defined as:

m1i =
1

F ·m0i

f2∑
f=f1

P i
f (

f

Ni∆t
), (3.7)

where Ni is the length of the power spectrum, and ∆t is the sampling interval.

To get higher order shape information one needs to define the central moments in the

discrete domain as follows:

mni
=

1

F ·m0i

f2∑
f=f1

P i
f (

f

Ni∆t
− f̄)n, (3.8)
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where f̄ is the normalized value found from the discrete first order moment. Now

that the spectral moments have been defined, we can proceed to defining the Hjorth

parameters:

1. Activity — Represents signal power as the variance of the amplitude of the

signal. In the frequency domain, it can be conceived as the envelope of the

power spectrum [63] in window i. Activity is defined as:

Activityi = m0i = σ2
0i
, (3.9)

where σ2
0i

is the variance of window i.

2. Mobility — measures the ratio between the standard deviation of the slope

and the standard deviation of the amplitude per time unit. In other words, it

represents dominant frequency. Mobility for window i is defined as:

Mobilityi =
√
m2i/m0i = σ1i/σ0i , (3.10)

where the second order moment m2i is a measure of the width of the spectrum

about the mean in window i, and σ1i is the standard deviation of the first

derivative of the signal in window i.

3. Complexity — Represents change in frequency. It compares the signal’s simi-

larity to a pure sine wave [63], and is defined as:

Complexityi =
√

(m4i/m2i)− (m2i/m0i) =
σ2i/σ1i
σ1i/σ0i

, (3.11)
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where σ2i is the standard deviation of the second derivative of window i.

Finally, we obtain the mean and median frequencies from window i as follows:

1. Mean Frequency — an average frequency which is calculated as the sum of the

product of the EMG power spectrum and frequency divided by the total sum

of the power spectrum [68, 73].

fmeani =

∑M
j=1 fj · P i

j∑M
j=1 P

i
j

, (3.12)

where M is the number of frequency bins, fj is the frequency value of the EMG

power spectrum at frequency bin j, and Pj is the EMG power spectrum at

frequency bin j.

2. Median frequency — a frequency at which the EMG power spectrum is divided

into two regions with equal integrated power[68, 73]. The halved power spec-

trum is then traversed and the median frequency is obtained.

M∑
j=f˙median

P i
j =

1

2
·

M∑
j=1

P i
j , (3.13)

where MDF is the median of the number of frequency bins M .

3.3.4 Hidden Markov Model

To take advantage of the patterns produced by fingers while typing, the HMM is

employed to predict the fingers that have been pressed given time t. A left-to-right

Gaussian mixture HMM is built with 6 states: 5 fingers and a transition state, which

represents the hand movement as it is between releasing a key and pressing the next
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key. Figure 3.8 shows the state transition diagram between the finger and transition

states.

Figure 3.8: State transition diagram of the GM-HMM.

A HMM λ = (A,B,Π) consists of the following:

1. A set of H hidden states, S = S1, S2, ..., SN .

2. A state transition probability distribution A = aij where i, j ∈ S. More for-

mally,

aij = P (St = Sj|St−1 = Si), 1 ≤ i, j ≤ H (3.14)

3. An observation probability distribution B = bi(ot). The probabilistic function

for each state si is:

bi(ot) = P (ot|St = Si) (3.15)

where ot is the observation at time t.

4. An initial probability distribution Π = π, i ∈ S where πi is defined as:

πi = P (S1 = Si) (3.16)
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The transition and observation probability distributions A and B are constructed

from training data. The state relationships can be thought of as a fully connected

graph, in which a state has a non-zero probability of transitioning to any other state

as shown in Figure 3.8. However, due to the abundance of transition states (users are

more often in transition than using any other finger) every finger state has a higher

probability of transitioning to a transition state than a finger state.

In a GM-HMM, the function bi(ot) takes the form of a Gaussian mixture of con-

tinuous probability density functions (PDF):

bi(ot) =
M∑
k=1

wikbik(ot), i = 1, ..., N (3.17)

where M is the number of mixtures and w is the weight of each mixture. The mixture

weights have the following constraints:

M∑
k=1

wik = 1;wik ≥ 0, i = 1, ..., N, k = 1, ...,M (3.18)

Each bik(ot) is a d dimensional Gaussian density with mean vector µik and covari-

ance matrix Σik. For each state, a multivariate Gaussian density in the form:

bik(ot) = g(ot, µik,Σik) =
1√

((2π)d|Σik|
· exp

(
− 1

2
(ot − µik)TΣ−1ik (ot − µik)

)
(3.19)

is used where ot is the observation. For each state si, the mean and covariance

(µi,Σi) are used to construct the emissions matrix. Hence, it is important to choose

an appropriate value for d for each state’s Gaussian mixture density function, which
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in turn defines its mean and covariance pairs. To do so, a GMM with different

parameters is fit to the observations of each state. The model with the smallest

Bayesian Information Criterion (BIC) is selected as the most representative model of

the data. Indeed, minimizing the BIC corresponds to maximizing the posterior model

probability for a large number of observations and is an effective method of selecting

a model [108]. The BIC can be defined as:

BIC = −2 · ln(θ̂) + p · ln(n), (3.20)

where θ̂ = p(ô|δ,M) is the maximized value of the likelihood function of the model

M , p is the number of free parameters to be estimated, and n is the number of

observations [108].

3.4 Experimental Setup

To verify the functionality and fidelity of XTREMIS, its signal is compared to the gold

standard in ECG/EMG/EEG data collection: the BioSemi ActiveTwo [10]. Specifi-

cally, XTREMIS is compared to BioSemi in two aspects:

1. Signal quality: We evaluate the signal of XTREMIS as well as compare it to

BioSemi’s signal in a salt water experiment to verify their similarity.

2. GM-HMM classification performance: We compare XTREMIS to BioSemi

in ballistic gesture recognition in a similar experiment to our previous work [89].

In this work, however, the experiment encompasses only anatomically-aware

electrode placement using XTREMIS and BioSemi ActiveTwo at the same
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1024Hz sampling rate, whereas the previous work explored a ring-of-electrodes

configuration and different sampling rates.

We begin by presenting the signal-level analysis and a signal-to-noise ratio com-

parison between XTREMIS and BioSemi ActiveTwo, then proceed to show that the

highly correlated signal leads to a good ballistic gesture classification accuracy by

performing typing experiments on 8 participants: 4 females and 4 males.

3.4.1 Classification Comparison

Finger movement prediction is analyzed during a typing task under 3 different typing

speeds: slow, regular, and fast. A 500-word paragraph is presented to the subject.

The experimental procedure is as follows:

1. The subject is asked to perform a test run of the paragraph.

2. The subject types the paragraph at regular speed (10-25 words-per-minute).

3. The subject then types the paragraph at a fast typing speed (30-50 words-per-

minute).

4. The subject types the paragraph as fast as they can (50-75 words-per-minute).

Additionally, finger movement is analyzed during the typing task under 3 factors:

1. Words-per-minute (WPM).

2. Electrode placement configurations.

3. Sample rates.
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The BioSemi and XTREMIS are fitted onto subjects in an alternating fashion

such that half the subjects had XTREMIS fit onto them first, and the other half had

BioSemi fit first. This acts as a control in case subjects’ typing habits change as they

type a more familiar paragraph (e.g., they’re devoting fewer cognitive resources to

reading the paragraph, and hence are more able to exert control over which fingers

they’re using). It is important to note that both systems used the same type of

electrodes – silver/silver chloride. After each time the subject types the paragraph,

they have the option of taking a rest to recuperate and ensure they are not too tired

to continue. We will first discuss the process of marking ground truth labels for each

system.

Automated Collection of Ground Truth Labels

As discussed in Section 3.2.3, XTREMIS’ DMS works similarly to BioSemi’s trigger

interface. To properly annotate data with key press and key release times, an external

trigger system was constructed to translate key events to data markers. Therefore, two

systems were built that functioned almost identically: a trigger system for BioSemi,

and one for XTREMIS. Each system consisted of a PS/2 keyboard interfaced with an

Arduino Uno, which in turn was interfaced with the BioSemi trigger input connector

or the DMS on XTREMIS. Figure 3.9 shows the setup for BioSemi. In a sense, the

Arduino functions as a Serial-to-Parallel converter: it receives input from the PS/2

keyboard, converts it to a binary number (8-bits for BioSemi, 6-bits for XTREMIS),

and then inputs this number to BioSemi’s trigger system or XTREMIS’ DMS.

Further, electrodes were placed on the individual’s right forearm in an anatomical

configuration identified in previous works to be the best placement of electrodes to

41



Ph.D. Dissertation - Ala Shaabana McMaster - Computing & Software

Figure 3.9: Arduino-controlled trigger system. The colored wires belong to the key-
board whereas the gray ribbon wires plug into the BioSemi ActiveTwo’s trigger input
(triggers are labels inserted into the system from an external device)

capture muscular contractions clearly [44, 89]. Figure 3.10(b) highlights where the 8

electrodes were placed in both the BioSemi and XTREMIS setups.

3.5 Results and Discussion

3.5.1 Signal Quality

To verify the SNR of XTREMIS over different frequencies, a signal generator was used

to input sine wave signals of varying frequencies at different sampling rates. The SNR

was calculated by first normalizing the and extracting 5 segments – equally spaced

– from the entire data stream. The measured signal may not always be strictly

periodic (due to various potential factors surrounding the experiment), making it

more similar to a real biomedical signal. If this irregularity is left unchecked, it will

create discontinuities that appear as high frequency components in the fast Fourier

transform (FFT). Hence for each segment, a Hann window [33] is extracted to reduce

the amplitude of these potential discontinuities. The power of the signal is then
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(a) (b)

Figure 3.10: (a) Myo’s rigid placement of electrodes in a Ring formation. (b) Anatom-
ically aware placement of electrodes used by XTREMIS and BioSemi ActiveTwo.

obtained from the FFT using Welch’s method [104] since the frequency range of the

fundamental frequency of the input signals is known. The SNR is then obtained from

the PSD as follows:

SNR = 10 · log10

( f2∑
i=f1

P (i)

∑
f∈F P (f)−

f2∑
i=f1

P (i)

)
, (3.21)

where P (i) is the normalized power of the signal between frequencies f1 and f2

and P (f) is the normalized power of the signal at all frequencies. Frequencies f1 and

f2 were the surrounding frequencies on either side of Figure 3.11 shows the SNR of

the XTREMIS signal at different sine wave frequencies into one channel of XTREMIS

collecting at 1024Hz.

It should be noted that the ADS1299 chip’s sample rate becomes less stable at

higher frequencies. This is likely due to the design of the ADS1299 chip combined

with the small form factor of XTREMIS, as the wires on board may generate high
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Figure 3.11: SNR of XTREMIS signal at different input signal frequencies.

frequency noise that is picked up by the chip. It was found that approximately

1024Hz is the maximum sampling rate at which the SNR is high enough to obtain a

reliable signal at all biosignal wave frequencies. Since the bandwidth of EMG, EEG,

and ECG signals is 10-500Hz [60], 1-50Hz [83],and 0.05-100Hz [103] respectively, the

signal quality of XTREMIS is still sufficient at high sampling rates to capture more

than the Nyquist frequency of the ECG, EEG, and EMG signals.

When sampling at rates higher than 500 Hz and high gains (specifically, a gain

of ×8), there is a small shift in the detected frequency of a given signal due to a

higher noise. Figure 3.12 shows the percentage in which the signal frequency shifts

at different input signal frequencies while sampling at 1024Hz. This measure can

also be considered as a percent error on the detected signal frequency with different

input signals. Since we already know the PSD of the incoming signal, it is possible
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to calculate the signal frequency shift as follows:

shift = 100× fmax − finput
finput

, (3.22)

where fmax is the frequency detected by XTREMIS with the highest amplitude

and finput is the frequency of the input signal. The similarity in shift percentage at

different frequencies indicates that there is a consistency to the frequency shift. This

consistency is due to the fact that the ADS1299 chip always samples at its highest

frequency (16kHz) regardless of sample rate. Indeed, changing the sampling rate on

the ADS1299 in fact changes the decimation ratio, and hence why at higher sampling

rates there is a higher amount of noise due to the reduction in averaging samples. This

also corresponds with the ADS1299 data sheet specification regarding the increase of

noise if the data rate and the gain setting are set too high. Data rates are to be

minimized for each application to reduce noise as much as possible [42].

Figure 3.12: Shift of XTREMIS signal at different frequencies.
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3.5.2 Signal Comparison

Since BioSemi ActiveTwo is the gold standard of ECG/EMG/EEG machinery, it

is important to ensure that the signal from XTREMIS is similar to the signal from

BioSemi. To analyze this, electrodes from a signal generator are placed in two buckets

of saline solution (a mixture of sodium chloride with water). The reference electrodes

are placed into one bucket(the reference bucket) and the signal electrodes are placed

into the other (signal bucket). Due to the dry surface electrodes and the closed form

factor of Myo, it was not possible to include it on this test.

The reference electrodes of XTREMIS and BioSemi ActiveTwo are also placed into

the reference bucket, while their channel electrodes are placed into the signal bucket.

The signal generator then generates a sine wave signal at a predetermined frequency.

XTREMIS and BioSemi are configured to collect data from the electrodes submerged

in the signal bucket and their signals are then compared. This experimental setup

is common in testing EMG equipment due to the similarity in electrical conductivity

between the human body and saline. Figure 3.13 highlights the setup in separating

the reference electrodes and the channel electrodes in two separate buckets.

Figure 3.14 shows the SNR calculated for XTREMIS and for BioSemi ActiveTwo

in this experiment. The SNR of BioSemi ActiveTwo is – as expected – higher than

XTREMIS as it is a research-grade ECG/EEG/EMG machine with more sophisti-

cated and proprietary biomedical technology. However both systems follow a similar

trend in their SNR progression at different frequencies, indicating that XTREMIS is

a valid alternative due to its portability, ease-of-use, and robust signal.
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Figure 3.13: The setup for the salt water signal comparison test. Reference electrodes
from the signal generator, XTREMIS, and BioSemi are placed in the bucket to the
top left, while the channel electrodes are placed in the bucket to the right.

3.5.3 Classification Results

We compare the classifier performances averaged over all subjects across different

speeds using ground truth labeling described in Section 3.4.1 and following the ex-

perimental procedure discussed in Section 3.4.1. Figure 3.15(a) shows the average

accuracy of all subjects across 3 different speeds while collecting data from BioSemi,

XTREMIS, and the Myo armband. The similarity in the accuracies suggests that

the signal of BioSemi and XTREMIS is similar enough that it is possible to have

comparable performance in classification. Further, this result is significantly higher

than the highest accuracy achieved by Myo: approximately 82% at the slowest typing

speed.

A strong classification model should function across speed as well as users. Fig-

ure 3.15 (b) highlights the performance of the GM-HMM user-independent (UI) model
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Figure 3.14: Comparison between the SNR of XTREMIS and BioSemi ActiveTwo.

v.s. the user dependent (UD) model on data collected using XTREMIS. The accu-

racy of UD model reported is the average accuracy from all user trials. The UI

GM-HMM generally performs almost as well as its UD counter-part, indicating that

the GM-HMM can be trained to function across multiple users using XTREMIS.

Table 3.1 highlights the average precision and recall achieved across all users

using ground truth data on all systems. The consistent high precision and recall

scores across all speeds as well as their similarity between XTREMIS and BioSemi

indicate that not only does the GM-HMM function well across speeds, but XTREMIS’

performance and data quality collected is similar to BioSemi. On the other hand, the

Myo armband’s precision and recall suffer due to its lower sample rate and rigid form

factor.

Tables 3.2 and 3.3 are confusion matrices of the GM-HMM trained on BioSemi

and XTREMIS, respectively. The GM-HMM suffers most on both devices when
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(a) (b)

Figure 3.15: (a) GM-HMM accuracy using ground truth data using different hard-
ware. Results averaged over all subjects. (b) XTREMIS Accuracies across User-
Dependent and User-Independent GMHMM models

Table 3.1: Average Precision and Recall when typing a paragraph using XTREMIS
v.s. BioSemi ActiveTwo v.s. Myo armband

XTREMIS BioSemi Myo Armband
Precision Recall Precision Recall Precision Recall

S
p
e
e
d Slow 92.4% 88.2% 95.2% 90.2% 78.16% 72.31

Regular 93.1% 89.1% 94.8% 91.3% 77.02 73.47
Fast 91.8% 89.0% 93.1% 89.7% 74.45 64.33

classifying between middle and ring fingers. This may be due to the middle and ring

fingers sharing several muscles and as a result having a very similar waveform. The

lower classification on XTREMIS suggests that the signal quality is a contributing

factor to classification, even though the GM-HMM also takes advantage of movement

patterns during the training phase.
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Table 3.2: Confusion matrix of GM-HMM using XTREMIS

Ground Truth
Thumb Index Middle Ring Pinky Transition

P
re

d
ic

ti
o
n

Thumb 96% 0% 0% 0% 0% 4%
Index 0% 91% 7% 0% 0% 2%
Middle 0% 0% 92% 5% 0% 3%
Ring 0% 0% 6% 94% 0% 0%
Pinky 0% 0% 0% 5% 92% 3%
Transition 0% 0% 0% 0% 0% 100%

Table 3.3: Confusion matrix of GM-HMM using BioSemi ActiveTwo

Ground Truth
Thumb Index Middle Ring Pinky Transition

P
re

d
ic

ti
on

Thumb 97% 0% 0% 0% 0% 3%
Index 0% 94% 4% 0% 0% 2%
Middle 0% 0% 92% 5% 0% 3%
Ring 0% 0% 4% 95% 0% 1%
Pinky 0% 0% 0% 5% 93% 2%
Transition 0% 0% 0% 0% 0% 100%

3.5.4 Configuration Effects

Prior to constructing XTREMIS, we compared the classifier performances averaged

over all subjects across different speeds using the ring and anatomical electrode place-

ments using subject dependent training on Myo and BioSemi ActiveTwo. Table 3.4

shows the classification accuracies obtained when typing a paragraph using the Myo

with ground truth data.

Table 3.4: Classifier performance when typing a paragraph while wearing the Myo
armband.

Paragraph Typing
HMM SVM kNN DT

W
P
M

Slow 82% 65.3% 63% 63.2%
Regular 82% 55.3% 53.1% 53%

Fast 80% 52.3% 49.8% 48.1%
Fastest 78% 43% 42.2% 41%
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Table 3.5: Classifier performance when typing a paragraph using the Biosemi Ac-
tiveTwo sEMG, with electrodes arranged in a ring configuration like the Myo arm-
band.

Paragraph Typing
HMM SVM kNN DT

W
P
M

Slow 94% 72% 72% 70%
Regular 93.2% 70% 69.2% 67%

Fast 93% 68% 66.5% 64.2%
Fastest 92.6% 66.3% 66% 64.1%

Table 3.6: Classifier performance when typing a paragraph using the Biosemi Ac-
tiveTwo sEMG, with electrodes placed on specific muscles as shown in Figure 3.10(b)

Paragraph Typing
HMM SVM kNN DT

W
P
M

Slow 98.4% 88.2% 87.4% 85.2%
Regular 97.1% 85.1% 84.2% 84%

Fast 96.8% 76% 74.5% 74%
Fastest 96.4% 71% 69.4% 68.2%

Tables 3.5 and 3.6 show the average performance over all subjects of each classi-

fier for the Biosemi ActiveTwo system in ring and anatomical-based configurations,

respectively. The GM-HMM’s consistency of performance across speeds and degra-

dation of performance across placements show that electrode placement indeed plays

a role in classification accuracy. Moreover, using a GM-HMM with an anatomical

placement of electrodes yields the best results. The confusion matrix in Table 3.2

shows that while the HMM with anatomical placement of electrodes performs well,

it still suffers most when classifying between middle and ring fingers. This may be

due to the middle and ring fingers sharing several muscles and as a result having

a very similar waveform. Other classifiers’ performance drops significantly as speed

increases, likely due to their inability to take advantage of transition probabilities.

Additionally, the high performance of the Biosemi ActiveTwo compared to the
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Figure 3.16: Classifier accuracy V.S. sampling rate using Biosemi ActiveTwo with
anatomical configuration for HMM and SVM.

Myo indicates that sampling rate also plays a role. To verify this, the data obtained

from the anatomical placement was downsampled down to approximately 100Hz and

the classifier accuracy was obtained at each sampling rate. Figure 3.16 shows the

changes in HMM and SVM accuracy as sampling rate increases. For both method-

ologies, a sliding window of 50ms with 10ms overlap was used. Window size and

sampling rate are correlated in that if one is sufficiently large, the other must be suffi-

ciently small. In other words, the window size must be larger in order to include more

samples for analysis. Similarly, if the sampling rate is high, the window size should be

smaller. Due to timing constraints, we have not investigated the impact of different
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window sizes on accuracy, and leave it to future works. Additionally, at 200Hz the

performance becomes comparable to the accuracies achieved by Myo in Table 3.4.

Therefore, this validates the ISEK standard [60] for EMG signal bandwidth as well

as confirms that the 200Hz claimed by Myo is not enough for research-level use [88].

Onset Detection

Finally, Figures 3.17(a) and (b) show a comparison between the timings of classifica-

tions for two GM-HMMs for each device: one using ground truth (GT) as training

and another using the sliding window (SW) approach. A “too early” classification

indicates that the GM-HMM classified a window as a finger when it was still a transi-

tion, while a “too late” classification indicates that the GM-HMM classified a window

as a transition when it has become a finger already. Finally, a “misclassification” is

when the GM-HMM misses a finger movement entirely or classifies a finger as another

finger. Therefore, finger detection accuracy is not only defined as correct v.s. incor-

rect classifications, it is also defined by the timing of classifications. Figures 3.17(a)

and (b) indicates that the GM-HMM is more inclined to make a classification too

early rather than too late. This can be due to the delay between a muscle contraction

and a key press, as humans must first contract the muscles before a movement is

made. Additionally, this result is consistent with the timing analysis performed in

our previous work [89].

3.5.5 Power Consumption Analysis

Power consumption analysis is an important cornerstone of any embedded system

solution. Due to the Wi-Fi SoC and the ADS1299 chip’s power consumption, the
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(a) XTREMIS (b) BioSemi ActiveTwo

Figure 3.17: Timing of GM-HMM Recognition on BioSemi ActiveTwo and XTREMIS

total power consumption of XTREMIS cannot be strictly classified as “low-power”.

However, XTREMIS requires only 3 AA batteries connected in series to perform all

of its functions. Table 3.7 shows the power consumption and estimated battery life

for each operating mode with ADS1299 collecting at 1024 Hz powered by 4 Duracell

Procell AA batteries with a capacity of 2148 mAh. These estimates are based on

back-of-envelope calculations and hence may not be strictly accurate, however they

provide a reasonable rough idea of the expected operation time. The most power-

hungry mode is streaming over Wi-Fi at 1024 Hz, which lasts approximately 18 hours

– which is still long enough for longitudinal studies like sleep studies. Myo, on the

other hand, claims a 24 hour battery life while streaming [41]. However, Myo has an

unfair advantage in this case as it is using BLE technology to stream at approximately

250 Hz. Since the ADS1299 collects data at a rate of 16kHz and then decimates it

according to the user’s chosen data rate, it makes no difference in power consumption

to reducing the sampling rate to save power on XTREMIS.
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Table 3.7: Power consumption in different modes of operation on XTREMIS

Operating Mode Average Current (mA) Estimated Battery Life

Wi-Fi ON (No data collection) 115.60 mA 18 hours 38 minutes

Wi-Fi OFF (No data collection) 87.91 mA 24 hours 43 minutes

Wi-Fi ON (Data collection and streaming) 120.43 mA 17 hours 45 minutes

Wi-Fi OFF (Data collection) 113.75 mA 18 hours 53 minutes

3.6 Summary

We presented XTREMIS: a low-cost and portable EMG platform with a similar form

factor to off-the-shelf wearable sensors that is comparable to research-grade EMG

machines in sampling rates, electrode placement fluidity, and signal-level processing.

Indeed, experiments on 8 subjects have shown that produces a signal that is similar

to that of research-grade EMG machines, leading to a better classification accuracy

than wearable off-the-shelf technologies like the Myo armband. It is also capable of

ECG and EEG signal data collection.
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Chapter 4

SiCILIA: Inferring Clothing

Insulation Levels using

Mechanisms of Heat Transfer

Thermal comfort can be defined as the state of mind that expresses satisfaction with

the thermal environment [31]. In layman’s terms, it means that a person is not feel-

ing too warm or too cold. Thermal comfort is important for health and well-being

as well as productivity [107]. An imbalance in thermal comfort will cause stress and

discomfort among occupants (that is, humans occupying a space, whether its a room,

building, or vehicle) [23]. When occupants are too warm, they may feel fatigued, and

when they are too cold, they may feel restless or distracted. These symptoms in turn

affect occupant productivity and concentration. Further, in addition to environmen-

tal factors such as ambient temperature, humidity, and air speed, personal factors

such as clothing insulation and metabolic rate contribute greatly to thermal comfort.

Therefore, it is important for Heating, Ventilation, and Air Conditioning (HVAC)
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engineers to design systems in which occupants will feel as thermally comfortable as

possible by taking into account both environmental and personal factors.

As it stands, building operators currently use a pre-set indoor temperature for

different outdoor temperatures. Temperatures of 22oC and 24oC were recommended

for summer and winter in ASHRAE Standard 55 1. In practice, however, as noted by

Gao and Yuan et al. [24, 25, 111], building operators tend to deviate from these rec-

ommendations to minimize complaints by, for instance, setting the temperature much

lower in the summer. However, the current practice to “err on the safe side” is geared

for the general population and fails to account for individual needs. Consequently, two

problems may arise. First, the resulting set point may lead to discomfort, and in ex-

treme cases the Sick-Building-Syndrome [77]. As championed by De Dear [13], it has

been recognized recently that the acceptability of thermal environment is influenced

by the occupants’ behaviour adaptation, physiological adaptation and psychological

adaptation. An example of behaviour adaptation is the addition or removal of cloth-

ing. Second, the one-size-fit-all set point would lead to excessive energy consumption

due to the typically large difference between outdoor and indoor temperatures. In

fact, it has been estimated that approximately 30% to 50% of commercial and resi-

dential districts’ energy consumption can be attributed to Heating, Ventilation and

Cooling (HVAC) systems [11, 25, 72]. Further, about 26 billion liters of fuel (equiv-

alent to about 9.5% of the United States’ imported crude oil) are used to annually

cool vehicle passenger compartments in the United States [81, 82]. This usage can be

reduced significantly with advanced HVAC systems that are aware of the surrounding

1The recommendation assumes a relative humidity of 50%, a mean relative velocity lower than
0.15m/s, a mean radiant temperature equal to the air temperature, and a metabolic rate of
1.2met. [31, 18, 59].
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environmental as well as personal variables of the occupants. Thus, it is also impera-

tive to reduce the energy consumption of HVAC systems while satisfying the personal

thermal needs of occupants for better sustainability.

Personal thermal needs are not uniform across all occupants, however. That is,

the metabolic rate and, more commonly, the clothing insulation level (i.e. what

clothes they are wearing), will not be the same for all occupants. As a result, some

occupants may feel warmer or colder than others in the same environment. This can

be due to the different levels of clothing insulation worn or due to physiological and

psychological preferences. We focus on clothing insulation specifically, as it is one of

the most influential factors in determining thermal sensation due to its variety and

versatility. Since humans dress according to their preferred sense of thermal comfort

(i.e. people who are cold will dress in more layers, whereas people who are warm will

dress in fewer layers), it is reasonable to assume that detecting clothing insulation

levels would give us an insight as to their current thermal sensations.

Substantial work has been done in modeling thermal comfort and making rec-

ommendations for HVAC settings in indoor environments. Most notably, Fanger [18]

established the relation between predicted mean vote (PMV) and the thermal load on

the body. The PMV is the mean response of a large group of people according to the

ASHRAE 7-point thermal sensation scale. It was later adapted by Gao et al. [24, 25]

to the Predicted Personal Vote (PPV) scale which is simply a personalized version of

the PMV scale (applied to one person, as opposed to a group of people). Table 4.1

shows the PPV (same as the PMV) scale from very hot to very cold environments.

We adopted a divide-and-conquer approach to our problem: we divide the prob-

lem into simple sub-problems and solve them. In this work, we solve the problem
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PPV Sensation
+3 Hot
+2 Warm
+1 Slightly warm
0 Neutral
-1 Slightly cool
-2 Cool
-3 Cold

Table 4.1: PPV Index

of clothing insulation detection under different thermal comfort levels in a single oc-

cupancy setting (like vehicle interiors and office cubicles with personal heaters), we

leave the multiple occupancy problem for future works. Our work is motivated by two

observations. First, despite abundance of sensors that can be used to measure phys-

ical variables of the ambient environment, there is little means to measure personal

variables such as clothing insulation and activity level that contribute to thermal sen-

sation in a low-cost and non-intrusive manner. The ability to determine the latter not

only allows better assessment of thermal comfort but also help identify opportunities

for energy savings. Second, most existing work relies on conducting survey or solicit-

ing explicit feedback from occupants to obtain their thermal comfort. Such a process

can be intrusive and is not suitable for large-scale and/or in-situ data collection. To

address these deficiencies, we devise SiCILIA, a low-cost sensor platform for occu-

pant clothing insulation inference that aims to extract both physical and personal

variables. SiCILIA consists of two components: a hardware platform that integrates

multiple sensors, two servo motors, and a micro-controller, and a second component

that consists of an inference algorithm to determine clothing insulation. The imple-

mentation was tested in a 2012 GMC Terrain with various passenger heating and

cooling capabilities, including: heated seats, vent heating, and footwell heating. We
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utilize the PPV scale proposed by Gao et al. [25] as an indicator of the thermal sensa-

tion that subjects are experiencing. The traditional PMV scale is aimed at estimating

the thermal comfort of a group of people. However, using the PPV scale enables us

to evaluate the thermal sensations on a more granular scale, specifically on a personal

scale for each individual. We demonstrate that our proof-of-concept implementation

of SiCILIA can predict clothing insulations in real time. Moreover, it is capable of

achieving this without the need for any training data, given properly calibrated pa-

rameters such as emissivity. The rest of this chapter is organized as follows. Section

4.1 presents an overview of clothing insulation. Section 4.3 presents the hardware

platform design of SiCILIA. The clothing insulation and thermal sensation inference

algorithms are then presented in Section 4.4. Section 4.5 presents the typical work

flow of SiCILIA. The experimentation and evaluation process is explained in Section

4.7. Furthermore, we present an energy saving case study in Section 4.8, and finally

the related works and conclusion are discussed in Sections 4.2 and 4.9, respectively.

4.1 Background and Motivation

4.1.1 Clothing Insulation

Since the early 1960s there has been a significant drive in research on thermal insu-

lation in textile materials to find the best way to maximize thermal comfort for the

wearer [19, 59, 66]. More recent efforts have focused on accommodating the occu-

pant’s environment as opposed to their clothing [4, 24, 25, 26]. Clothing insulation

is the thermal insulation provided by clothing. It is typically expressed in clo units,

where 1clo = 0.155K ·m2/W . This is the amount of insulation that allows a person
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at rest to maintain thermal equilibrium in an environment at 21oC in a normally ven-

tilated room (0.1 m/s air movement). Typical insulation levels for clothing ensembles

are given by Table 4.2 from ASHRAE [32].

Table 4.2: Thermal insulation of different clothing levels.

Daily Wear Clothing Icl

Walking shorts,short-sleeved shirt 0.36

Trousers, short-sleeved shirt 0.57

Trousers, long-sleeved shirt 0.61

Same as above, plus suit jacket 0.96

Same as above, plus vest and T-shirt 1.14
Trousers, long-sleeved shirt, long-
sleeved sweater, T-shirt

1.01

Same as above, plus suit jacket and
long underwear bottoms

1.30

Sweat pants, sweat shirt 0.74
Knee-length skirt, short-sleeved
shirt, panty hose, sandals

0.54

Knee-length skirt, long-sleeved
shirt, full slip, panty hose

0.67

Long-sleeved coveralls, T-shirt 0.72

Due to the variability of possible clothing material and type worn by anyone at

any given time, the table serves only as a guide. The actual value is the numeric Icl

value as it is the more accurate representation of clothing thickness and insulation.

For example, it is impossible to determine the clothing “shirt and undershirt” from

Icl, but the value itself does account for the insulation of a shirt and an undershirt.

4.2 Related Works

There is a vast amount of literature on thermal comfort and energy efficiency in build-

ing management. Most works take either an evaluative stance or a technical stance.

The former being investigations of heat transfer models and factors contributing to
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thermal comfort, and the latter being energy management solutions that account for

personalized thermal comfort.

Among the earliest works, Farnworth et al. presented a theoretical model that ac-

counts for the experimentally observed heat transfer through synthetic fiber battings

and a down and feather mixture in terms of a combination of conductive and radia-

tive heat flows [19]. They have found that no convective heat flow is evident. Later,

McCullough et al. expanded the garment and ensemble insulation values database to

include more clothing ensembles and developed new methods for estimating clothing

insulation. Havenith et al. explored the individual and combined effects of sitting,

walking at two speeds, and three wind speeds on the insulation value of three cloth-

ing ensembles on: two subjects with loose fitting clothes and two subjects with tight

fitting clothes [34]. Their experiments show that posture, movement, wind speed,

and clothing fit all have an effect on clothing insulation. Furthermore, a linear model

was proposed to estimate true clothing insulation given the different conditions under

which the data was collected. However due to the myriad of different clothing styles

as well as the constantly evolving nature of clothing fashion, linear models of clothing

insulation need constant maintenance to keep up.

Ogulata et al. discussed the theoretical basis of the physical interactions between

the human body’s mechanism for heat transfer and it’s environment. They report

that in a steady state situation, the heat produced by the body is balanced by the

heat lost to the environment. If not, then the occupant will experience thermal dis-

comfort as a result of the increase in body heat temperature [66]. Zhang investigated

the subjective perception of thermal sensation in individual parts of the body, and
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how it correlates with physiological parameters [112]. Zhang further developed pre-

dictive models of global and local thermal sensation and comfort for 19 body parts in

109 subjects. Among the main findings of the experiments, Zhang has shown that in

stable conditions, local sensation has a high correlation with local skin temperature.

Oliviera et al. presented a comparative analysis of global, serial, and parallel cloth-

ing insulation calculation methods performed on thermal manikins [67]. The global

method, developed previously by Oliveira et al., performs an overall calculation by

summing the area-weighted of all heat losses and skin temperatures of each body part

before the insulation is calculated, as if the whole manikin is made of one segment

[67]. The global method serves as a general formula, while the Serial and Parallel

methods are special cases. The serial method is best used with uniform insulation

while the parallel with non-uniform insulation [67]. The calculation method utilized

by SiCILIA is similar to the global method proposed by Oliviera et al., but differs in

that it also takes into account the emissivity of clothing. As a result, if the emissivity

of clothing is known or calculated apriori, it can be plugged into SiCILIA’s formula

for a more accurate prediction. More recently, Si et al. presented a new methodology

for the assessment of indoor comfort using environmental as well as the reported per-

sonal feeling of occupants. Objective assessment of the environment and subjective

assessment of the personal feelings of the occupants are calculated and standardized

in a unified scale by fuzzy fusion and adaptive fusion [94]. This allows for the clas-

sification of indoor comfort levels. In contrast to SiCILIA, this model is an active

solution that relies on occupants actively reporting their thermal sensation, whereas

SiCILIA works in the background without input from the user, thereby making it a

passive solution.
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Tackling the problem of thermal comfort assessment using clothing insulation,

Gao et al. introduced a Smart Personalized Office Thermal Control System (SPOT).

Specifically, SPOT utilizes a model called the Predicted Personal Vote (PPV), which is

an extension of the Predicted Mean Vote model that allows per-user personalization.

Using on-board sensors to measure various environmental parameters believed to

contribute to human comfort, a linear regression model is utilized to estimate the level

of clothing insulation. SPOT and SiCILIA are rather similar in purpose, but different

in function. First, SPOT utilizes a Microsoft Kinect sensor for tracking purposes.

While this achieves good tracking results, it is difficult to justify an “always on”

camera in a home or a cubicle due to privacy concerns. Instead, we opted for a URF

and the Grid-EYE infrared sensor to achieve tracking. Further, SPOT utilizes linear

regression and training data from different users to infer clothing insulation. Due

to the assumptions that linear regression makes (such as weak exogeneity and error

independence) and the variability of human clothing fashion, it is difficult to create

a regressor trained with a small sample size (20 volunteers) that is representative

of the whole population and their different clothing styles. Moreover, due to the

computational and power requirements of the Kinect sensor, SPOT requires a laptop

in order to operate, making it less portable. SiCILIA can be used as a standalone

unit as all computations are done on the on-board microcontroller. Finally, each

SPOT unit costs $1000.00 [24, 25], compared to SiCILIA which costs $165.00 to

make. Table 4.3 highlights the components of SiCILIA and the approximate cost of

each one (in USD).

Gao et al. later introduced SPOT+ [24], which performs predictive control as

opposed to the reactive control that the previous iteration [25] used. SPOT+ utilizes
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Table 4.3: SiCILIA Cost

Item Model/Supplier Quantity Cost

Grid-EYE Sensor Panasonic 1 $33.00

Infrared Sensor Melexis 1 $30.00

Arduino Uno Arduino 1 $30.36

Servo Motors Parallax 2 $39.52

Ultrasonic Range Finder iTead Studio 1 $3.50

Arduino LCD Display Arduino 1 $28.84

Total $165.22

pattern recognition to predict room occupancy, and learning-based model predictive

control (LBMPC) to predict future room temperature.

There have also been proposals at creating more thermally aware environments

for groups of people. Lam et al. developed an ambient temperature optimization al-

gorithm to cater to the comfort requirements for multiple occupants [54, 69]. It is an

occupant-focused approach, where the idea is to “move” an occupant’s thermal envi-

ronment with them as they move from room to room in a building, where the HVAC

system will adjust the temperature of the room according to the thermal preferences

set by the occupant. While they reported high accuracy, such approaches may suffer

from setbacks before even being implemented: like incentivising occupants to provide

feedback to the system. Some occupants may not adapt to the new technology and

not provide feedback, as a result they may become thermally uncomfortable unless

they begin to provide more feedback.

The works mentioned so far have all been aimed at uniform thermal environments.

In other words, the ambient temperature has been somewhat consistent all around

the occupant. In 2003, Zhang developed predictive models of local and thermal sen-

sation and comfort for transient and non-uniform environments [112]. Interestingly,
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in addition to testing on 109 subjects in the UC Berkeley controlled environmen-

tal chamber, a separate set of tests in an automobile to validate their test chamber

models, simulating conditions found in vehicles during both hot and cold weather

[112]. The subjects body temperatures, thermal sensation and thermal comfort were

measured similarly to those in the UC Berkeley controlled environmental chamber

tests [112]. The validation results of using the model in the non-transient vehicular

environment show that the proposed local sensation prediction model predicts the

ground truth votes of subjects well.

4.3 Hardware Platform Design

The SiCILIA hardware platform has three main components: the controller, the

sensor, and the motor. Figure 4.1 shows the current setup on a 2-axis skeleton design.

4.3.1 Controller

SiCILIA is driven primarily by an Arduino microcontroller. Its main purpose is

sensor operation, model computation, and motor movement requests. Although a

USB connection can power the Arduino and the motors, the motors would be under-

powered and their sweeping speed would be significantly slower. Further, the rest

of the sensors (the URF, active IR sensor and passive IR sensor array) would also

be underpowered and may not report correct data (if any at all). To deal with this

problem, a battery pack was added as a secondary source of energy. This improves

power distribution by effectively devoting the battery pack to only the motor and

the Arduino Uno, and allowing us to use the USB serial bus to send commands
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Figure 4.1: SiCILIA hardware setup.

to the system from a separate computer. However, the final version of SiCILIA is

autonomous and is timer-based, and does not require any user input for operation.

Additionally, extensions can be made to the Arduino Uno (such as a Wi-Fi shield) to

send commands and retrieve readings wirelessly.

4.3.2 Sensors

SiCILIA uses a single MLX90614 infrared sensor to read the ambient temperature and

target temperatures (i.e. clothing surface and skin). The sensor detects background

thermal radiation temperature between −40◦C and 125◦C, and target radiation tem-

perature between −70◦C and 380◦C, with a resolution of 0.02◦C.

However, the MLX90614 is simply a target IR sensor and is not enough to de-

tect movement effectively as a standalone unit. As such, SiCILIA was fitted with a

Panasonic Grid-EYE thermopile IR sensor array. It contains 64 passive IR sensors

arranged in an 8 × 8 grid fashion, each detecting the temperature of the object in
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front of them. The result is a heat maps of the different sources of heat in front of the

sensor. Figure 4.2 shows the visual output of the array. It can be used for tracking by

following the highest source of heat detected. The tracking methodology is described

in Section 4.5.2.

Figure 4.2: Tracking using the generated grid by Grid-EYE. [70]

SiCILIA is also fitted with an ultrasonic range finder (URF). The URF utilizes

the propagation of high-frequency sound waves to find the distance between it and a

remote object. Due to the diffusion of infrared heat, the further away the IR sensor

is, the lower the temperature sensed will be. The distance measurement is then used

to compensate for the diffusion of heat and obtain the actual temperature emitted

from the object through an empirical model.

4.3.3 Motors

SiCILIA utilizes two continuous rotation servo motors. The motors are capable of

clockwise and counter clockwise rotations. The horizontally mounted motor (hereby

referred to as the x-motor) and the vertically mounted motor (referred to as the y-

motor) are used in tandem to track the individual and keep the sensors aimed at the
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hottest area of their body. The y-motor is further used to do a vertical sweep from

the individual’s head to their torso to collect the relevant data needed to make an

inference about the their clothing insulation.

Figure 4.3: The resulting curve from the motor sweeping down from above the occu-
pant’s head to their core.

Figure 4.3 shows the readings as it sweeps from above the occupant’s head to their

core. Note that at the beginning, the motor is set at a high angle and cannot see

the occupant, and thus the target temperature is close to the ambient temperature.

SiCILIA uses a tracking algorithm to ensure the IR sensor is always looking at the

occupant, hence it can assume they will always be in its Field of View (FoV). However,

one cannot always assume SiCILIA is aiming at the same spot on the occupant’s body

every time it is used (i.e. their face, torso, etc.). Typically, the ambient temperature

is lower than facial skin and clothing surface temperatures. In turn, the clothing

surface temperature is lower than facial skin temperature. Therefore, sweeping can

effectively determine the area of interest. Section 4.5 describes this process in more

detail.
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The motors are also utilized to track the occupant’s movements using the Grid-

EYE sensor, the algorithm is further discussed in Section 4.5. In the experiment

setup, continuous rotation servos were used. Hence, it is not possible to specify the

angle to which the servos must rotate, instead one must specify the speed of rotation

as well as the direction.

SiCILIA uses Feetech Micro Continuous Rotation Servos (FS90R), whose maxi-

mum speed is:

1. 0.12 sec/60◦ when powered with 4.8V

2. 0.10 sec/60◦ when powered with 6V

However, with Arduino Uno the supplied voltage should be exactly 5V. Taking

a linear approximation, the following equation can be applied to find the speed S in

s/60◦:

S = (0.12− 0.10)× (5.0− 4.8)

(4.8− 6.0)
+ 0.12 = 0.116667 sec/60◦. (4.1)

Hardware and software constraints prevent from moving the servos continuously

as one would with a stepper motor. Hence the specific angle by which the motors

can “jump” by must be determined in order to track the occupant’s movements

accordingly. Through empirical testing, it was determined that the best angle to

“jump” the motors by would be 27◦ as it is small enough to turn the motor in the

desired direction without missing the target, but large enough to turn it significantly

without needing to turn it multiple times for small distances. Hence, the servo must

be turned at its maximum speed during:
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S ′ = S × (
27◦

60◦
) = 0.052s. (4.2)

Therefore, the turn time for the motors must be approximately 0.052 seconds to

turn 27◦. With a frame rate of approximately 10 Hz [70], the Grid-EYE keeps the

motors updated on what movements are happening and directs them as to which

way to turn. This is enough to reliably track humans walking at an average speed of

approximately 3km/hr to 5km/hr at a maximum distance of approximately 100cm.

However, due to the nature of the servo motors and the “jumping” effect described

earlier, it becomes rather difficult to track objects moving at faster speeds. This

problem can be resolved by upgrading to stepper motors.

Another dimension that must be tackled with tracking is the distance away from

the Grid-EYE sensor. If an occupant is walking at 5km/hr at a distance of 100cm

relative to the sensor, they will spend more time in the FoV of the sensor than if they

were walking at the same speed at 30cm away. Hence, the motor tracking movement

must also be adjusted according to the distance away from the sensor. Using the

URF it is possible to infer the distance, the direction and speed in which the motors

must move. However we have left this problem to future work.

4.4 Inference of Clothing Insulation

During equilibrium, the result of the difference between skin temperature (or ap-

proximately, the inner surface temperature of the clothing) and the outer surface

temperature (i.e. the conduction heat transfer) should be the same as the heat loss

to the environment by convection and radiation. In Figure 4.4, Ck stands for the
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Figure 4.4: Convection, conduction, and radiation acting on clothes as highlighted
by Ogulata et al [66].

conductive heat transfer from the inner surface to the outer surface of the clothing,

and is defined as [66]:

Ck = (Tsk − Tcl)/Rcl, where Rcl = 0.155Icl, (4.3)

where Tsk and Tcl are the skin temperature and clothing surface temperature in

Kelvin 2, respectively, and Rcl is the insulation of clothing measured in SI unit.

Typical clo values of clothing assemblies are given in Table 4.2. Furthermore,

a few constants were assumed during experiments: first is the Stefan-Boltzmann

constant, denoted as σ and valued at 5.67× 10−8W ·m2 ·K4 . Secondly, we assume

the emmisivity of the clothing to be close to black-body emissivity at 0.9, and is

denoted by εcl. Finally, the air velocity to be at 0.20m/s2, which is typical in indoor

office environments, and is denoted by Va.

Let C be the convective heat loss, and R be the heat loss by thermal radiation

2[K] = [oC] + 273.15
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from the clothing surface. In equilibrium,

Ck = C +R. (4.4)

What remain to be determined are C and R. From [9, 17, 30], the convection

heat loss is given by (4.5),

C = fclhc(Tcl − Ta), (4.5)

where fcl is clothing area factor, hc is the coefficient of convective heat transfer

(W/m2K) and Ta is the ambient temperature. fcl is the ratio in surface area be-

tween the outer clothing surface and the nude person’s surface area [34], given by

fcl = 1.05 + 0.1Icl, (4.6)

hc is given by,

hc = 12.1V 0.5
a , (4.7)

where Va is the air velocity. Va can be measured directly. In our derivation, we assume

Va = 0.20m/s as specified by ASHRAE handbook [31].

The heat loss through radiation can be determined by [9, 17, 30]:

R = σεclfclFvf [T 4
cl − T 4

a ], (4.8)

where εcl is the emissivity of clothing, Fvf is the view factor between the body and

the surrounding surface, σ is the Stefan-Boltzmann constant (σ). The emissivity of

the clothing and skin is very close to that of a black body, and thus has a value of
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nearly 1. The effective area of the body for radiation is roughly 80 percent of the

total area, and thus, Fvf = 0.80.

To this end, combining (4.3) – (4.8) creates:

Tsk − Tcl
0.155Icl

= fclhc(Tcl − Ta) + σεclfclFvf [(Tcl + 273.15)4 − [(Ta + 273.15)4]. (4.9)

In (4.9), δ, Fvf , hc are constants; Ta, Tcl, Tsk are measured via the infrared sensor.

Note fcl relates to Icl by (4.6). Thus, Icl is the root of a quadratic equation. To simplify

the equation, assume C1 = (hc[Tcl − Ta] + σεclFvf [(Tcl + 273.15)4 − [(Ta + 273.15)4]

and C2 = Tsk − Tcl. Hence the Icl is given by:

Icl =
−0.116C1 ±

√
(0.116C1)2 − 4× 0.0115C1C2

2× 0.0115C1

. (4.10)

Naturally, solving this for Icl will output two values for Icl. The value that falls

between 0 and 1.5 is the predicted clo value. However, a few comments are in order.

First, the parameters used in the derivation are chosen from typical indoor settings.

In cases where the actual value deviates by much, the model would not produce

very accurate results – one such example being a shiny clothing material with low

emissivity like polyester. Clothing with low emissivity is designed to preserve body

heat, and hence it is more commonly worn outdoors. Since SiCILIA is primarily made

for indoor use, the focus is not on emissivity as it is not a trivial task and is out of

the scope of this project.

Second, Ogulata [66] used a similar model to find the clothing surface temperature

(Tcl). In contrast, we solve for clothing insulation Icl from measured clothing surface
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temperature Tcl and other quantities. Third, if (0.116C1)
2−4×0.0115C1C2 is negative,

then (9) has no solution. This may happen when the ambient temperature is very

high and as a result the clothing surface temperature is too close to the ambient

temperature.

4.5 Work Flow

The ultimate design goal of SiCILIA is a passive-active sensor that seamlessly inte-

grates into the user’s environment. Using the hardware setup and inference algorithm

described in Sections 4.1 and 4.4 respectively, we describe how SiCILIA can function

in a stand-alone manner without human intervention. Initially, SiCILIA will remain

in the Standby state (that is, simply waiting) until a heat-emitting object moves

into its FoV, in which case it will transition into the Ready state and begin tracking

it. Simultaneously, a countdown timer is started to determine whether the subject

has been stationary for long enough such that scanning (or measuring) will yield a

feasible result. Once the timer expires, SiCILIA will transition to the Scanning

state and begin the measurement. Once the scanning is finished, SiCILIA will go

back to the Ready state and reset the timer. If the object leaves the FoV of the

sensors entirely, then it will go back to the Standby state.

Figure 4.5 shows the work-flow in between these 3 states. We will now go into

further detail about each state and its transition.
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Figure 4.5: Usage procedure state diagram

4.5.1 Standby

The de-facto state of SiCILIA, it remains in this state for as long as no heat-emitting

object has been detected within the FoV of the Grid-EYE sensor. It will also return

to this state if a heat-emitting object has left its FoV completely.

4.5.2 Ready

SiCILIA will remain in this state for as long as there is a heat-emitting object within

its FoV. In this state, SiCILIA is actively doing two tasks simultaneously:

1. Tracking the object using an algorithm based on the center of mass equation.

2. Using a timer to determine whether the object in the FoV is eligible for a

clothing insulation measurement. If so, it will shift into the Scanning state.

We will now describe (1) and (2) in further detail.
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Tracking Since the Arduino Microcontroller has limited processing capabilities, a

more simplistic model for tracking the occupants was chosen. SiCILIA finds the spot

with the highest concentration of heat on the 8× 8 grid generated by the Grid-EYE

sensor and follows it by panning and tilting the sensors using the x- and y-motors,

respectively. This has two benefits:

1. It allows us to track only the closest occupant in proximity to the sensor, and

safely ignore any occupants standing further away from the sensor.

2. Due to the simplicity of this calculation, tracking is almost instantaneous and

hence does not create any delay overheads before moving the motors.

In order to find the concentration of heat, the center of mass equation was adapted

to the 8×8 grid. The center of mass is the unique point at the center of a distribution

of mass in space where the weighted position vectors relative to this point add up to

zero. In terms of statistics, the center of mass is the mean location of a distribution of

mass in space. This adaptation, called the center of heat equation, finds the centroid

of the heat grid generated by the Grid-EYE:

~v = (xi, yj), c =

∑n
i,j=0 tij · v∑n
i,j=0 tij

, (4.11)

where xi and yj represent row i and column j of the 8 × 8 grid generated by the

Grid-EYE sensor, respectively, and n is the number of values per row/column (8 in

this case, since it is an 8× 8 grid). Further, tij represents temperatures at row i and

column j, respectively. The result is a vector ~vij = (xi, yj) that points to the highest

concentration of heat on the grid. The horizontal and vertical motors then move the

platform such that (x, y) is now at the center of the grid.
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Timer The nature of the occupant’s occupancy and movement relative to the sensor

is unpredictable. For example, the occupant may be in the area to do a simple task

and then leave immediately, or they may be in the area for hours on end. As such,

SiCILIA must be certain that the occupant will not be moving significantly when

SiCILIA scans their clothing insulation. To this end, SiCILIA uses a countdown

timer to determine whether the occupant is stationary long enough to take a reliable

measurement. Once SiCILIA enters the Ready state, the timer begins counting

down to 0. If the occupant moves such that SiCILIA must move its motors to place

him/her in the center of the FoV of the sensors again, then the timer is re-set and

started again. If the timer hits 0 without any motor movement, it is eligible for a

measurement and SiCILIA will enter the Scanning state. The timer value can vary

according to the application. For example, it can be as long as 5 minutes in an office

cubicle setting (since occupants will typically remain in cubicles for long periods of

time), or 30 seconds in a vehicular setting (since the time spent in a car is variable

and can range from minutes to hours).

4.5.3 Scanning

Once SiCILIA determines an object is indeed ready for a measurement (that is, the

timer hits 0), it will shift into the Scanning state and begin the measurement pro-

cedure. While in this state, tracking is disabled so that the MLX90614 IR sensor can

take control of the motors to vertically scan (or “sweep”) the occupant. Once the

measurement is finished, SiCILIA will go back to the Ready state. In order to use

the inference algorithm described in Section 4.4, SiCILIA needs to record the skin

temperature, clothing surface temperature, and the ambient temperature. The steps
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taken within the Scanning state to obtain these values is described below:

1. Record the ambient temperature.

2. Use the MLX90614 IR sensor to record the target temperature. If the temper-

ature reads higher than 31◦C then it is likely aimed at the occupant’s skin, and

will record the temperature as the skin temperature. Otherwise, tilt upwards

until a temperature reading higher than 31◦C is found. The reason that the

threshold was set at 31◦C is because human skin temperature typically rests at

32◦C [51].

3. Tilt downwards until a temperature reading lower than 31◦C and above the

ambient temperature is found.

4. Plug in the skin, clothing surface, and ambient temperatures to (4.10).

The skin surface temperature is typically higher than the clothing surface tem-

perature, which in turn is higher than the ambient temperature. If at any point the

target temperature drops down to a value close to the ambient temperature, then it

is reasonable to assume that SiCILIA is no longer pointing at the occupant. In this

case, the inference from Equation (4.10) will be a negative value, and is discarded.

SiCILIA will return to the Ready state regardless of the measurement outcome, and

will measure again once the timer times out.

4.6 Other Design Considerations

In order for SiCILIA to become a fully automated entity, a myriad of concerns must

be resolved. We have tackled a few of those in this work to create a working prototype,
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however other design considerations may arise as the platform evolves.

4.6.1 Angle Compensation

As shown in Figure 4.1, the sensors on-board SiCILIA are “stacked” in the sense

that they are placed on top of each other. At the bottom is the active IR sensor

(MLX90614), in the middle lies the URF, and at the very top rests the Grid-EYE

passive sensor array. Since the Grid-EYE acts as the “eyes” of SiCILIA, the other

two sensors must be aligned accordingly in order to adequately capture the skin and

clothing surface temperatures. Most importantly, the IR sensor must be tilted such

that it points at the same area that the Grid-EYE was pointing at earlier. The URF

has a bit more “wiggle room” since the object being tracked is intended to be human,

hence the distance will always remain relatively the same as long as the sensor is

pointing in the same direction as the others (for example, the distance of a person’s

face from the URF will be the same as their chest). Therefore, SiCILIA must ensure

that the IR sensor captures the same information as the Grid-EYE sensor.

Figure 4.6 shows a typical setup between the IR sensor, the Grid-EYE, and a

human’s face. There are two given facts in this problem:

1. The Grid-EYE will always be at a 90◦ angle relative to the MLX sensor and

the face, and hence SiCILIA must determine the appropriate angle in which the

IR sensor should be angled to ensure it is pointing at the same object as the

grid-EYE.

2. The distance between the Grid-eye sensor and the MLX90614 sensor will always

be 4.8cm due to the hardware platform structure. This value may be adjusted

if SiCILIA is re-designed.

80



Ph.D. Dissertation - Ala Shaabana McMaster - Computing & Software

Figure 4.6: The relationship between the MLX90614, Grid-EYE sensor, and a human

Re-angling the IR sensor is tedious and difficult to do without a tertiary motor

to automate the process, which in turn will increase costs of power and operation.

Therefore, to tilt the IR sensor to aim at the same target that the Grid-EYE is aiming

at, SiCILIA moves the entire sensor tray. The question then becomes “what is the

angle at which the tray should tilt such that the IR sensor is pointed at the same

object that the Grid-EYE sensor is pointing at now?”.

Using some elementary geometry, it is possible to derive the angle at which the

tray should tilt to aim the IR sensor at the spot where the Grid-EYE was pointing.

Let σ denote the current angle of the IR sensor relative to the user’s face, and Φ

denote the angle in which the platform needs to be tilted such that the IR sensor will

be aiming at the face. Since the IR sensor senses target temperatures as well as their

distance d away in a relatively straight line in front of it, it is safe to assume that

σ + Φ = 90◦. Therefore,
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90◦ − σ = Φ, (4.12)

meaning σ must be determined in order to find Φ. Therefore:

σ = tan−1(
d

4.8cm
). (4.13)

Hence, the IR sensor is at an angle of σ relative to the occupant’s face. Using

Equation (4.12), it is clear that the sensor tray must tilt by Φ = 90◦ − σ to aim the

IR sensor at the occupant’s face. Let us take an example where SiCILIA detects an

object to be 50cm away from it. Hence:

σ = tan−1(
50cm

4.8cm
) = 84.5◦. (4.14)

Applying Equation (4.12), it becomes clear that the system should tilt by 90◦−84.5◦ =

5.5◦ upwards to make up for the difference between what the Grid-EYE and the IR

sensor are pointing at. Similarly, if the object is 100cm away then Φ = 2.7◦, whereas

if the object is 20cm away then Φ = 13.5◦. This indicates that the further away

the occupant is from SiCILIA, the smaller the tilt angle becomes. This is because

as the distance between the occupant and SiCILIA increases, so does the amount

of the occupant’s body “seen” inside SiCILIA’s FoV. For example, if an occupant is

30cm away, then perhaps only their chest would be in the FoV, whereas if they were

200cm away, then their whole body would be in the FoV. However, as the distance

increases, then their “image” in the IR sensor becomes smaller and the perceived

target temperature becomes less accurate. The issue of distance compensation is

tackled in Section 4.6.2. Additionally, it is possible to create a “bound angle” for
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both approaches that the platform will abide by in order to limit the time and the

distance of the sweep. The bound angle will simply limit the vertical sweep such that

the platform will not look too far up or too far down trying to find an occupant’s face

or torso.

4.6.2 Distance-base compensation

The intensity of light or other linear waves radiating from a point source is inversely

proportional to the square of the distance from the source [37]; so an object of the

same size that is twice as far away receives only one-quarter the energy in the same

time interval. That is the inverse-square law in terms of electromagnetic radiation.

Figure 4.7: Ratio between the true object temperature and the perceived temperature
of the target (face and torso) vs the distance

Further, the issue with distance and IR sensors such as the MLX90614 that Si-

CILIA utilizes is that the image of the object being measured gets smaller and smaller
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as the distance increases, and soon the temperature of the object will be averaging

out with other objects around it and the ambient temperature. Consequently, the dis-

tance between the user and SiCILIA should be used to compensate for the perceived

temperature every time a measurement is taken, since the user may have shifted in

their seat or moved in between measurements. To this end, we train a linear model

using the heat temperature data of the torso and the face of 10 participants at dif-

ferent distances between 5 cm and 50 cm. f = td
to

is defined as the ratio between the

original (to) and the perceived (td) temperatures (measured in degrees Celsius) at a

distance. This ratio is used as the “amplifier” to the perceived temperature td to find

the true object temperature to using the following equation:

t̂o =
td
f
. (4.15)

Figure 4.7 shows the relationship between f and the distance from the face and

torso, respectively. To find the true temperature of an object, a classifier was built in

order to predict what the original temperature of an object is given the distance and

the perceived temperature of the object at that distance. To create a good classifier, it

is essential not to over-fit or under-fit the data. Hence linear regression with gradient

descent was used to minimize the cost function and find the curve of best fit.

f = 0.99954− 0.0017 · d. (4.16)

Once the amplifier value f becomes known for face and torso temperature am-

plification, SiCILIA plugs the values into f in Equation (4.15) to obtain the actual

temperature of the target. We used k-fold cross validation to check the performance
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Table 4.4: Comparison between to/td and regressor f

Distance to td f t̂o = td/f

5 (cm) 32.00◦C 31.89◦C 0.991 32.21◦C

10 (cm) 32.00◦C 31.33◦C 0.982 31.90◦C

15 (cm) 32.00◦C 31.05◦C 0.974 32.00◦C

20 (cm) 32.00◦C 30.99◦C 0.967 32.04◦C

25 (cm) 32.00◦C 30.45◦C 0.957 31.81◦C

30 (cm) 32.00◦C 30.10◦C 0.949 31.72◦C

35 (cm) 32.00◦C 29.85◦C 0.940 31.75◦C

40 (cm) 32.00◦C 29.73◦C 0.931 31.93◦C

45 (cm) 32.00◦C 29.55◦C 0.923 32.02◦C

50 (cm) 32.00◦C 29.21◦C 0.914 31.96◦C

of the model by partitioning the dataset into 100 partitions of 23 data points (out of

230 data points), and dividing them into training and test data. The average root

mean square error (RMSE) was found to be approximately 0.0056. To further verify

the validity of our regressor, we have performed an experiment in which an occu-

pant’s face temperature was measured in contact with SiCILIA’s IR sensor and then

measured it again at distances ranging from 5 cm to 50 cm. The perceived object

temperature t̂o, defined in (4.15) is compared to the true object temperature to in

Table 4.4. Indeed, t̂o is always close or equal to the true object temperature to. This

confirms that f is reliable enough to be used to compensate for temperature at a

distance.

4.7 Experimental Validation

To validate the design of SiCILIA, there are two functions to evaluate: tracking, and

clothing inference. In the case of tracking, experiments were run on one subject mov-

ing in different directions. For clothing insulation, experiments were run on a total
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of ten subjects (5 male, 5 female), each with three different levels of clothing insula-

tion. For each level, the clo value was determined based on the garment insulation

table in [32]. Table 4.5 shows what each subject was asked to wear for each clothing

insulation value during the experiments.

Table 4.5: Clothing worn by subjects for each insulation value during experiments

0.45 clo 0.70 clo 0.81 clo
Underwear (cotton) (0.04 clo) X X X
Short sleeve cotton T-shirt (0.17 clo) X X X
Denim jeans (0.24 clo) X X X
Long sleeve sweater(thin) (0.25 clo) X X
Long sleeve sweater(hoodie) (0.36 clo) X

Subjects are of different ages (from 20 to 60 years old), body weights (110 lbs. to

282 lbs.), and Body Mass Indices (BMI) (from 19.5 (normal weight) to 36.2 (obese)).

The full subject data can be found in the Appendix. We first present the evaluation

of the tracking algorithm, and then present the evaluation of the clothing inference

algorithm.

4.7.1 Occupant Tracking

Since SiCILIA requires tracking the user before performing a measurement, it is im-

perative to choose a robust tracking algorithm. Using a camera or a Kinect sensor

has been utilized by Gao et al. [24, 25] with high accuracy. However, an always-

on camera and the computational requirements of the Kinect introduce privacy and

computational overhead problems, respectively. Instead, SiCILIA’s on-board pyro-

electric infrared sensors are a good approach to achieve good tracking performance,

resolve privacy concerns, and maintain a low computational overhead. Additionally,

the problem of human tracking and localization using pyroelectric infrared sensors has
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Table 4.6: Confusion matrix for occupant half meter (50cm) away

Ground Truth
Left Right Middle Up Down

P
re

d
ic

ti
on

Left 90% 0% 10% 0% 0%
Right 0% 92% 4% 4% 0%
Middle 6% 4% 90% 0% 0%
Up 0% 2% 10% 88% 0%
Down 2% 0% 6% 0% 92%

been investigated in the past [35, 65, 96]. However, these works implement tracking

for surveillance and localization purposes and as such employ sophisticated solutions.

SiCILIA is only required to track objects that are:

1. In the FoV of the Grid-EYE sensor.

2. A maximum distance of 100cm away from it.

3. Are going to remain in front of it long enough to take a measurement.

These three conditions simplify the tracking requirements. It becomes possible to

create a tracking algorithm that is robust enough to keep the user in the center of

SiCILIA’s FoV at all times and computationally simple enough to run on a micro-

controller. the algorithm must be capable of differentiating between the different

directions that a subject may take at different distances. Two distances (50cm and

100cm) and four directions of movement were evaluated: left, right up, and down.

Additionally, the motor’s reaction when the subject is already directly in front of

SiCILIA (marked as “middle” in the confusion matrices) was also recorded. The sub-

ject moved 50 times in each direction and the motor’s reaction was recorded. Tables

4.6 and 4.7 show the confusion matrices generated from this experiment.

Table 4.8 shows the precision and recall rates for 50cm and 100cm cases. Note how

they both deteriorate as the distance increases. This is due to the occupant’s body
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Table 4.7: Confusion matrix for occupant one meter (100cm) away

Ground Truth
Left Right Middle Up Down

P
re

d
ic

ti
on

Left 80% 0% 10% 10% 0%
Right 0% 84% 10% 4% 2%
Middle 6% 8% 86% 0% 0%
Up 0% 4% 20% 72% 4%
Down 2% 4% 30% 0% 64%

Table 4.8: Precision and Recall rates for 50cm and 100cm cases

Precision (50cm) Recall (50cm) Precision (100cm) Recall (100cm)
Left 0.90 0.92 0.80 0.91
Right 0.92 0.94 0.84 0.84
Middle 0.90 0.75 0.86 0.55
Up 0.88 0.96 0.72 0.84
Down 0.92 0.92 0.64 0.91

occupying less of the FoV of the Grid-EYE sensor and hence less heat is perceived. If

distance compensation on the Grid-EYE is applied, then it may be possible to retrieve

the true temperature for each point on the 8 × 8 grid. However, this opens other

dimensions to the problem as Grid-EYE’s view must now be treated as a 3D figure

since SiCILIA first has to extract the user’s body and then discard the background

heat behind it. Hence, we have left the problem to be solved in future works.

Furthermore, in the case of the user moving up and down the precision falls

significantly when the distance increases. This is also because more of the user’s

body becomes inside the FoV of the Grid-EYE as the distance increases. Specifically,

as more of the user’s body goes into the FoV, the sensor stops seeing individual

concentrations of heat on their body and begins to see the entire body as one point of

concentrated heat. Consequently it becomes difficult to differentiate between standing

up and sitting down, and the algorithm begins to infer the user as simply standing

88



Ph.D. Dissertation - Ala Shaabana McMaster - Computing & Software

still in the middle of the FoV.

Tracking Timing

Part of the problem of tracking occupants is when to track them. As mentioned

previously, SiCILIA’s tracking algorithm places the occupant in the center of the

GridEYE’s vision. This is important as a user may be in the vicinity for only a short

amount of time, and if SiCILIA takes too long to track and position itself correctly

then it may miss a scheduled measurement. We have evaluated this metric at two

distances and two clo values: 50cm and 100cm, and 0.45 clo and 0.81 clo, respectively

in table 4.9. The reason for using different clo values is because the more insulation

that a person is wearing, the less heat will be detected by the GridEYE sensor.

However, the difference in tracking timing was not significant as SiCILIA is usually

able to lock on to the user’s face which was always uncovered in the experiments. As

such, we conclude that as long as SiCILIA “sees” a person’s face, then it will be able

to lock onto them within one second.

Table 4.9: Time SiCILIA takes to find occupants

0.45 clo (50cm) 0.81 clo (50cm) 0.45 clo (100cm) 0.81 clo(100cm)
Time 0.76 sec 0.77 sec 0.84 sec 0.89 sec

Tracking Consistency

In addition to quick tracking, it is important to have consistent tracking. This means

that SiCILIA must be tracking the occupant correctly for as long as it is in use.

We determine “correct tracking” by the way SiCILIA positions itself relative to the

occupant: if the sensors are aimed at the occupant’s face or torso, then the tracking
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is correct and SiCILIA is ready to take a measurement at any time. Otherwise the

tracking is determined to be “incorrect”. To determine how consistent SiCILIA is, we

ran an experiment for an occupant using SiCILIA for one hour. SiCILIA was placed

on a cubicle desk and tracked the occupant for 60 minutes. During those 60 minutes,

the occupant would perform usual daily tasks at their desk, like:

1. Typing on the computer.

2. Writing on a piece of paper.

3. Leaving the cubicle and coming back.

4. Stretching.

5. Turning around and speaking to the person in the adjacent cubicle.

SiCILIA tracked the occupant correctly for 93% of the time. During the tracking

period, two things occurred that “muddled” SiCILIA’s tracking by 7%:

1. Another person entered SiCILIA’s FoV and it was unable to determine which

person to track during this time. Once the person left, SiCILIA went back to

tracking the occupant sitting at the desk.

2. At some point, the occupant was drinking a hot cup of coffee. When the person

would hold the cup, SiCILIA would focus on the cup and not the person holding

it. This is due to the cup being hotter than the surface temperature of the

person. Once the cup was placed away from SiCILIA’s FoV, it went back to

tracking normally.
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4.7.2 Test procedure

The system was tested inside a 2012 GMC Terrain equipped with temperature-

controlled air conditioning (AC), heated seats, vent heating, and footwell heating.

However, most of these features may affect certain body parts more than others,

which may skew or bias the data as a result. Since our aim is to affect as much of the

occupant’s body as possible all at once, we opted to use windshield vent heating so

as not to blow at any part of the occupant directly. Rather, it blows into the ambient

air in the vehicle, heating and cooling it slowly. Even with these precautions, vehicle

thermal environments remain transient and the temperatures are non-uniform as com-

pared to typical office cubicles which are relatively non-transient in nature [82] due to

the heating and cooling air not being directly pumped at occupants. Consequently,

we reason that testing our implementation in a vehicular environment provides for a

more challenging environment for SiCILIA, confirming that it is functional both in a

vehicular setting as well as a less transient setting such as a small room or a cubicle.

In order to obtain a variety of PPVs from each subject (i.e. from PPV = −3

to PPV = +3), the AC temperatures were adjusted from “very cold” to “very hot”

(we do not specify temperatures here as each subject specified different temperatures

in the spectrum of “very cold” to “very hot”), with the air coming out of the wind-

shield vents to provide for a more uniform temperature experience. Each experiment

proceeded as follows:

1. Set temperature to comfortable level for the occupant, where PPV = 0

2. Wait 15 minutes for the occupant’s body to reach thermal equilibrium, then

take clothing insulation measurements.
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3. Gradually decrement temperature by 0.5◦C until user votes PPV = −1 (slightly

cool).

4. Repeat step 2 and 3 for PPV = −2 and PPV = −3.

5. Bring occupant back to normal comfort level (PPV = 0).

6. Gradually increment temperature by 0.5 ◦C until user votes PPV = +1 (slightly

warm).

7. Repeat step 2 and 6 for PPV = +2 and PPV = +3.

This procedure was repeated 3 times: once for each clothing insulation value in

Table 4.5. To test the proposed model, each subject was asked to wear the clothing

specified in Table 4.5. Their clothing was then evaluated using SiCILIA, which was

placed on the vehicle dashboard in between the driver and the passenger. The test

subject sat in the passenger seat and the examiner in the driver’s seat. SiCILIA

first makes a vertical sweeping motion, initially pointing at the occupants face and to

measure the skin’s surface temperature, and then sweeps down the occupant’s core

and measuring the average surface temperature of their clothing.

4.7.3 Results

Figure 4.8 shows the inferred clothing insulation from (4.10) for all subjects under

different PPVs (starting with PPV = −3 to PPV = +3) in phase 1 of the experi-

mentation. Note that in the case of PPV = +3, subjects 3, 4, 7, and 8 do not have a

reading as they did not vote any higher than PPV = +2 for the temperatures where

the rest of the subjects voted PPV = +3. This leads to the conclusion that while all
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subjects will report an “extremely cold” sensation (PPV = −3), some subjects will

not be as uncomfortable in PPV = +3, this could be due to the thermal background

of the subjects upbringing. Meaning subjects that grew up in hot or cold areas may

be more resistant to hot and cold temperature than other subjects. However, the

specific cause of this is beyond the scope of this work. From Figure 4.8, it is evident

the inferred clo values are very close to the ground truth, with an RMSE of ±0.08.

This is comparable with SPOTs RMSE of 0.0919 [25]. However SiCILIA differs on its

portability, low computational overhead, and immediacy of use as it does not require

training data for clothing insulation prediction. Figure 4.9 shows the curves PPV s

as the subject’s clothing insulation changes, the similarity of these curves shows that

SiCILIA can infer clothing insulations at all subject comfort levels, and at different

temperatures ranging from 14◦C to 35◦C. Hence we demonstrate that SiCILIA can

provide reasonable results as long as the type of clothing worn is reasonably emis-

sive of the wearer’s body heat, insulated clothing tends to have a similar surface

temperature to the ambient temperature, skewing results.

Physiological effects

For each subject we recorded gender, age, height, and weight. This information is used

for the calculation of the Body Mass Index (BMI). Derived from the weight and height

of an individual, BMI quantifies the amount of tissue mass (muscle, fat, and bone)

in an individual, and then categorize that person as underweight, normal weight,

overweight, or obese based on that value [2]. Figure 4.10 shows the relationship

between BMI and the typical PPV vote from a subject with a specific BMI. Indeed,

subjects with a low BMI tended to feel, on average, colder than subjects with a
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Figure 4.8: Subject clothing insulation predictions in PPV = −3 to PPV = +3

higher BMI. This can be due to the absence of fatty tissue (which provides some level

of insulation) compared to subjects with a high BMI, who tend to have more fatty

tissue. The accuracy of BMI is disputed among the medical community [105, 100],

and the statistical community [53] due to its limitations regarding height scaling and

indifference to muscle and fat masses. Therefore, this trend should serve as simply a

guideline since the sample size is not large and BMI itself is not an accurate measure

of body composition in an individual.
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Figure 4.9: Clothing insulation predictions in changing PPVs and insulation values

4.8 Case study

We present a back-of-envelop study on the potential savings in energy consumption

with and without clothing insulation inference in an office building. The range of

temperatures and humidity under specific clothing insulations in which an occupant

will be thermally comfortable are characterized by comfort zones. In order to calculate

the user’s thermal comfort zone, we have utilized an online tool developed by the

Center for Built Environment (CBE) at the University of California at Berkeley [38].

The tool follows the ASHRAE standards [31] in calculating the user’s thermal comfort

relative to their thermal comfort zone, given inputs such as the air temperature, the

clothing insulation level, air speed, and humidity. For the purposes of this study we
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Figure 4.10: The relationship between BMI score and PPV votes.

have assumed an air speed of 0.20 m/s, a constant humidity of 50%, and a metabolic

rate of 1.0 (to simulate a seated position).

To link thermal comfort with energy consumption, the ASHRAE handbook [31]

was used as a guide, and to calculate the peak cooling loads for one office room.

Assume a 16’ x 12’ office space with a 10’ high ceiling. Further, assume the room has

curtain walls and U-Factor = 0.075Btu/h · ft2 ·◦ C. The U-Factor indicates the heat

loss rate of a window assembly such that the lower the U-Factor value, the greater a

window’s resistance to heat flow and the better its insulating properties. In this case,

the U-Factor indicates that the heat coming in from windows is minimal. Regions 1

and 2 in Figure 4.11 (a) show the comfort zones when an occupant has a clothing

insulation level of 0.74 clo and 0.5 clo, respectively.

From Figure 4.11 (a) it is evident that if the indoor temperature was set to 21◦C

and the occupant is wearing 0.5 clo insulation, then they would be outside of their
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Figure 4.11: (a) Occupant comforts relative to their comfort zone at 21◦C (square)
and 25◦C (circle). (b) Comparison of cooling loads in kW with and without insulation
detection

comfort zone (that is, outside of Region 2) and would feel cold. However, when the

occupant put on a sweater and increased their clothing insulation to 0.74 clo, they

moved inside of their comfort zone (represented by the square in Region 1), and

consequently became thermally comfortable. The circles in Figure 4.11 (b) represent

the energy usage where one set-point is used throughout the day. Between 12 AM

and 6 AM, the energy usage is low as the outdoor temperature is also low, and hence

the system requires less work to keep up the 21◦C indoor temperature. As the day

progresses and the outdoor temperature increases, the system requires more energy

to keep up the indoor temperature set-point, and hence energy usage increases. The

total energy usage in this case is 10.11 kWh for 24 hours.

Now assume that SiCILIA is deployed in this building, and makes an occupant

clothing insulation reading at 11 AM. In this case, SiCILIA has detected that the

occupant’s clothing insulation is at 0.74 (trousers and sweater). This is an abnor-

mally high level of insulation for an outdoor temperature of 33◦C, where the typical

insulation level worn by people is approximately 0.5 clo. As such, it is safe to infer
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that the current indoor temperature is too cold for this occupant to be wearing 0.5

clo (trousers/shorts and a t-shirt). Hence, energy can be saved by increasing the

indoor temperature to a value where the occupant is comfortable. From Figure 4.11

(a) it is clear that the new indoor temperature can be set at 26◦C, a temperature that

would make the occupant comfortable at 0.5 clo. Consequently, the HVAC system

will need to utilize less energy for keeping up this set-point. Specifically, it is evident

from Figure 4.11 (b) that the system will save energy as the new indoor temperature

is closer to the outdoor temperature, and hence requires less energy to keep up. In

the case of the new 26◦C set-point, the clothing-aware system spent an average of

approximately 5.0 kWh/day, resulting in energy savings of approximately 49% over a

24 hour period. This back-of-envelop calculation shows that additional energy savings

can be achieved by detecting the deviation of the clothing level from “normal” wear

given the outdoor temperature. However, it should be noted that the CBE calculator

is based on PMV and does not account for individual preferences.

4.9 Summary

In this chapter, we present the design and implementation of a low-cost smart sensor

(SiCILIA) for the inference of human clothing. Specifically, SiCILIA measures envi-

ronmental parameters such as the ambient temperature, humidity, target skin tem-

perature, and target clothing temperature, and finds the occupant’s level of clothing

insulation. We have deployed SiCILIA in a temperature-controlled vehicle in order to

create a challenging, transient environment in which to test its performance. Results

show that SiCILIA is capable of predicting the occupant’s clothing insulation level

with an RMSE 0.08 with properly tuned parameters.

98



Chapter 5

CRONOS: A Post-hoc Data Driven

Multi-Sensor Synchronization

Approach

The increasing popularity of wearable technology and the Internet of Things (IoT) has

contributed greatly to the rise of ubiquitous computing in which small, inexpensive,

networked processing devices are distributed at all scales throughout everyday life.

This has created environments that contain ubiquitous sensor devices with different

clock generation methods and communication protocols. Additionally, many applica-

tions require the fusion of multiple sensor’s data. These sensors may be instrumented

on different physical objects or humans, or may be of different vendors or sensing

modalities.

Properly aligning the data streams coming from these sensors is crucial to make

sense of the data. For example, a person with a heart condition may wear a prescribed

heart-rate monitor as well as a personal activity tracker (i.e. a fitbit, Garmin fitness
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tracker, etc.). The patient is typically asked to journal her activities over 24 hours,

which can be a cumbersome task and prone to human error. Instead, it would be

more accurate and less intrusive to implement an activity inference algorithm based

on the activity tracker reading and use the results to annotate the heart rate data

collected during the 24 hours. The physician can then interpret the heart-rate data

more accurately. Furthermore, consider a different scenario in which multiple people

with a wrist-worn activity tracker interact with a door with a motion sensor. If the

scenario involved only one person opening the door, it becomes trivial to construct an

activity inference algorithm and find out when the door was opened by this person.

However, when multiple people are involved it becomes necessary to synchronize

between their sensors and the door to accurately find out who opened the door.

Indeed, even though SiCILIA and XTREMIS are designed to function as standalone

systems, they too would require synchronization if used in tandem with other sensors

or with themselves. For example, if using SiCILIA in a building context along with

HVAC sensors, or if using multiple XTREMIS boards at the same time.

Traditional synchronization methods aim to synchronize the clocks on sensors

and generally rely on wireless communication protocols (e.g. RBS [16] or GPS)

or modifying hardware (e.g. internal real-time clocks (RTC)). Re-engineering en-

tire systems to facilitate synchronization can quickly become costly as the number

and types of devices grow. Further, adding more hardware to existing systems (i.e.

upgrading with an RTC or a high quality oscillator) is likely to increase cost and

power consumption. Indeed, frequent wireless communication may consume too much

power, rendering real-time synchronization using network-based methods infeasible

for battery-powered devices. Finally, if the data has been already collected without
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synchronization, network-based methods cannot be applied to it.

It is therefore important to develop a framework that is capable of synchronizing

devices post-hoc, without needing to re-engineer their hardware or software. Rather,

it exploits the very thing that every sensor collects: data. In this chapter, we exploit

the independence and omnipresence of motion artifact information in most sensor

data. Indeed, cameras and biosensors such as electroencephalographs (EEG), elec-

tromyographs (EMG), and electrocardiographs (ECG) can capture motion data as

it is prevalent in the < 20Hz range of the waveform and even potentially higher for

some motions [21]. Although not strictly granular, there is enough information in the

data to infer whether there is movement or not. However, post-hoc synchronization

presents multiple challenges:

• How to identify multiple sensors detecting the same movement?

• For non-rigid objects, movements on different parts may be not only be out of

sync, but out of phase.

• How to extract motion from these non motion-oriented sensing modalities?

We thus present CRONOS: a post-hoc, opportunistic data-driven framework for

sensor data synchronization that takes advantage of common events observed by

multiple sensors.

CRONOS identifies and extracts common events that are suitable for synchro-

nization by first extracting motion information from the synchronizing sensors’ data

streams. The skew and offset in time between the sensor data streams are then esti-

mated and their timings adjusted accordingly. For the multi-sensor case, CRONOS

utilizes a graph-based approach using the most up-to-date synchronization data. This
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optimization leads to further reduction in synchronization errors. To demonstrate its

versatility, we apply CRONOS to both pairwise and multi-sensor motion, optical, and

key press data synchronization and achieve a drift improvement of approximately 88%

to 97% in both pairwise and multi-sensor synchronization.

The remainder of this chapter is organized as follows. Section 5.1 reviews related

works on sensor synchronization techniques. Section 5.2 presents a formulation of the

synchronization problem CRONOS is designed to resolve. Section 5.3 presents the

overall approach, classification, and pairwise synchronization. Section 5.4 discusses

the multi-sensor synchronization protocol. Section 5.5 covers the experiments and

gives an analysis of the results obtained. Finally, Section 5.6 presents the conclusion

and future work.

5.1 Related Work

There have been many approaches to time synchronization in sensor networks [16,

50, 55, 79, 95, 109]. They can be split into two categories: network synchronization

and data-driven synchronization.

With network synchronization, sensors are synchronized in real time using wireless

communication protocols. For example, Network Time Protocol (NTP) synchronizes

all participating devices within a few milliseconds of Coordinated Universal Time

(UTC) [61]. Another example is Reference-Broadcast Synchronization (RBS) and

Post-Facto Synchronization (PFS), developed by Elson et al. [16]. RBS is a form of

time synchronization in which receivers use the arrival time of a reference broadcast

to compare their clocks. Elson et al. extended RBS to multi-hop RBS in which
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clocks across broadcast domains are unionized without sacrificing the receiver-to-

receiver property of RBS [16]. Finally, PFS is an energy-aware time synchronization

technique that lets clocks run naturally until an event of interest occurs, at which

time the clocks synchronize. Maróti et al. proposed the flooding time synchronization

protocol (FTSP) for wireless sensor networks. FTSP synchronizes the time of the

sending node to multiple receivers by utilizing a radio message time-stamped at both

the sender and receiver sides [58]. However, network synchronization methods are not

suitable for synchronizing stored data and require common communication protocols

on all devices.

Data-driven synchronization, on the other hand, is less studied. Time delay esti-

mation between signals received at two spatially separated sensors was developed by

Knapp et al., as one of the first approaches to sensor synchronization. A maximum

likelihood (ML) estimator was developed as a pair of receiver pre-filters followed by a

cross correlation. However, the proposed estimator only functions on pairwise sensor

time approximation and was not developed for multi-sensor synchronization. Lukac et

al. proposed data driven time synchronization (DDTS) to synchronize seismic activ-

ity sensors [56]. By extracting underlying independent and omnipresent phenomena

in the data, a model of their travel time between two earthquake sensing stations

is developed. The model is then used to predict the travel time of an incorrectly

synchronized station and use it to derive a time correction [56]. Compared to Lukac

et al.’s work – where all sensors must be capable of sensing Microseisms – CRONOS

extracts independent motion artifacts from different sensing modalities to synchro-

nize among different sensors. Fridman et al. proposed a method for the automated

synchronization of vehicle sensors [22]. Specifically, Fridman used cross-correlation of
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accelerometer, telemetry, audio, and dense optical flow from three video sensors to

synchronize all the sensors offline. All sensors were purposefully instrumented on the

same vehicle. Although cross-correlation is applied to the data to correct for offsets,

this approach does not take into account the skew of the data. CRONOS utilizes

linear regression to compensate for skew, making it more applicable for longer peri-

ods of time as drift over long periods of time is quasi-linear. Finally, Bennett et al.

presented two offline data-driven methods for pairwise synchronization [5]. The first

approach utilized the notion of templates, and the other utilized entropy [5].

Both approaches estimate the delays of one clock oscillator vs. the other. The

authors acknowledge that a limitation of their technique is the possible matching of

the wrong data points between the two sensor streams. This is especially evident in

highly periodic signals, however they argue that single point errors do not propagate

synchronization error [5]. CRONOS, on the other hand, utilizes cross-correlation to

eliminate any misclassified data streams prior to performing synchronization. Bennett

et al. further extended the work and proposed a methodology to synchronize data

streams from multiple sensors. Similarly to CRONOS, the approach exploits common

events observed by the sensors. Using a graph model to represent the couplings

between sensors and the drift in sensor timing, a solution that employs shortest path

to minimize the clock drift in the system is proposed [6]. Bennett et al.’s algorithms

focus primarily on accelerometer data. Further, to set up the observation windows

properly and find alignment points between sensors it is necessary to know the parts-

per-million (PPM) of the sensor, which is a measure of the sensor’s stability over time.

PPM is not always available prior to synchronization and thus limit the applicability

of their approach.
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It can be surmised that a fundamental difference between network and data-driven

synchronization is that it is possible to opportunistically synchronize using the latter,

but it is not possible with the former. In other words, it is possible to exploit events

that are observed by multiple sensors at the same time for synchronization; whereas in

network synchronization useful events are pre-defined and generated by the protocols

themselves.

5.2 Problem Formulation

CRONOS is designed to synchronize the data from multiple sensors. We assume the

sensor data are associated with timestamps according to local clocks, thus we use

the terms “local clock timestamp” and “sensor clock” interchangeably. Additionally,

we define the speed of sensor i’s clock relative to sensor j’s as the “relative skew”,

and the delay between sensor i’s clock relative to sensor j’s as the “relative offset”.

Table 5.1: CRONOS notations

Variable Description

ti Local time of sensor i

t Real time

αij Relative skew of sensor i’s clock to sensor j

Oij Relative offset sensor i’s clock to sensor j

x Data stream

Figure 5.2 shows the drift between two sensor clocks over 31 hours. The quasi-linear

nature of the curve indicates that it is inaccurate to assume sensor drift is purely

linear.

However, from Figure 5.2 and findings by Bennett et al. [5, 6] it is reasonable to

assume that over a short period of time (that is, minutes or a few hours) the drift
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Figure 5.1: The flow of CRONOS to synchronize a pair of nodes,where node j is the
reference node and node i is the node in need of synchronization

is indeed linear. If the data streams from these sensors are left unsynchronized, the

timing of events observed from both sensors may differ greatly, even if the sensors

recorded the events at the same time. We introduce Synchronization Opportunities

(SOs) as the common events among sensors during which synchronization is possible.

In the heart-rate scenario, SOs can be the increased heart rate on the heart-rate

monitor and the jogging activity recorded on the activity tracker, whereas in the

door scenario it would be the twisting of the door knob and the user’s wrist. In order

to identify SOs, CRONOS utilizes activity recognition to find the general event start

and end times. We define an event as a singular occurrence detected by the sensor

such as taking a step when a person is walking. On the other hand, we define an

activity as a category consisting of a singular event or repetitive identical events. For

example in Figure 5.3, walking is an activity – labeled “Activity 1”, which consists of

11 steps, regarded as events. In this work, we exploit walking, pressing a keyboard

key, and handshakes as SOs.
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Figure 5.2: Drift reported between two sensor nodes over 31 hours.

To synchronize a pair of sensors, we must find all the common observations be-

tween both sensors and mark them all as SOs. Consider two sensors si and sj ob-

serving activities together. To synchronize between them, all SOs must be identified.

Once the timings of all SOs are determined among the data streams from both sensors,

one can apply linear regression to determine the relative skew and drift. For multi-

sensor synchronization, CRONOS handles the quasi-linear nature of sensor drifts by

utilizing a graph-based approach to synchronize from one sensor to the next most

recently synchronized sensor.

5.3 Pairwise Synchronization

The flow of CRONOS for pairwise synchronization is summarized in Figure 5.1. In

the case of varying clock skews the synchronization algorithm is applied over a moving

window of the data streams. The incoming data streams are pre-processed to extract
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Figure 5.3: Walking activity consists of taking multiple steps, each of which is re-
garded as an event.

useful signals and then fed into a classifier for event detection. On nodes i and j,

each activity and its events found by the classifier are extracted and prepared for

cross correlation. Cross-correlation is first applied to the preprocessed waveforms

corresponding to common activities found on nodes i and j to find the overall offset

Oij (or Oji). Cross-correlation is then applied to the individual events within the

activities to build a linear model to estimate the skew αij (or αji).

5.3.1 Extraction of Movement Data

Movement data can be captured by many sensing modalities from cameras to EMG in

addition to accelerometers or vibration sensors. Indeed, the conventional wisdom is

to treat motion artifacts as noise to be removed, however CRONOS takes advantage

of these artifacts as they are independent, omnipresent components in the data from

wearable or IoT devices that can be used for synchronization. In EMG for example,

motion information is present in the signal at below 10 − 20Hz. Figure 5.4 shows
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an example of extracting motion information from one EMG channel using an EMG

device mounted on the user’s forearm as they typed a paragraph on a keyboard.

Figure 5.4: Comparing the presence of motion artifacts in one EMG channel on the
user’s forearm during a typing activity v.s. not typing.

Cameras also capture motion indirectly. Optical flow is typically used to derive

the displacement of objects in video data. Figure 5.5 shows a comparison between ac-

celerometer data and the optical flow data from a helmet-mounted accelerometer and

camera worn by a user as they walked towards an object. Note that the vibrational

data from walking is evident in both the accelerometer magnitude and the optical

flow along the Y axis, where each peak above 3 pixels of deviation is a step taken.
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Figure 5.5: Walking data collected by a participant wearing an accelerometer and a
camera-mounted helmet.
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Compensation for Phase Differences

Sometimes sensors may be placed in symmetrical locations. If such phase shifted

activities are left unchecked and the associated waveforms are used directly in syn-

chronization, the result will be off by at least half a gait cycle, or 500ms in the example

in Figure 5.6 (top). This is clearly unacceptable. However, we observe that not all

frequency components of the accelerometer data are subjective to the same degree

of phase shift between the two sensors. In particular, when a person’s foot hits the

ground, vibrations that permeate the entire body are picked up by the accelerometers.

The characteristic frequency band of the vibrations generated by the force normal to

the ground/floor has been shown to be approximately 20 − 90Hz [15]. CRONOS

extracts these vibrations by applying a high-pass filter at > 20Hz to remove the gait

cycle information, treating it as noise instead.

5.3.2 Identification of SOs

As we previously defined, SOs are the possible observations among sensors during

which synchronization is possible. Bennett et al. referred to this phenomenon as

alignment points and used template-based and entropy-based methods to find them

[5, 6, 7]. The limitation of this approach, however, is that it requires prior knowledge

of the sensor’s PPM – a measure of a sensor’s stability over time. This information

may not always be available or worse – if the PPM specified is incorrect then the

synchronization effectiveness will suffer. Additionally, template- and entropy- based

methods have a higher chance of false positives or false negatives than a discriminant

classifier. Therefore, CRONOS utilizes a support vector machine (SVM) to identify

the activities being performed. Additionally, within the context of this framework
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Figure 5.6: Walking data from two accelerometers (in right and left pockets) before
and after applying a high pass filter to obtain the inherent vibrations that permeat
the human body.
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a classifier can be swapped in and out for different activities to be identified. For

example, a trained classifier may be used to find motion-based activities but it can

be swapped out for a different classifier to identify muscle-based activities.

Activity Recognition

Since the classification must be as accurate as possible to avoid misclassifying events,

it is important to build a robust feature set. In this work, we adopt some of Hudgin’s

feature set described in Chapter 3 due to the simplicity of their computations and

their ability to describe the signal in the time domain well. Specifically, the mean

absolute value, distance mean absolute value, sign slope changes, and the waveform

length were utilized. Further, due to its high dimensionality, memory efficiency, and

versatility, a SVM was utilized to classify the incoming data streams.

5.3.3 Integrity Check

Prior to synchronizing, the detected pairs of activities (or events) must first be trans-

formed to remove all potential phase differences, then verified as suitable for syn-

chronization. However accurate the SVM classifier is, it can still be erroneous. Mis-

classification of the activities may lead to large synchronization errors. Generally,

there is a trade-off between false positive and false negative rates. In CRONOS, it

is desirable to have low false positives rates while moderate false negative rates only

imply synchronization opportunities but would not negatively impact synchronization

accuracy. We define synchronization integrity (SI) as the likelihood to assess whether

activities or events identified on the data from a pair of sensors are indeed the same.

We identify three cases in which the SI may be compromised:
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1. False Negative Classification: The classifier has missed an activity or event that

should have been caught on one of the sensors.

2. False Positive Classification: The classifier has determined that an activity or

event has occurred on one of the sensors when in reality it has not.

3. Composite Activity : Activities may become intermixed with other activities

happening simultaneously (e.g. texting and driving). In this case, activities

across two sensors may be the same but will contain different events.

Besides confidence measures from the classifier (e.g. SVM can compute the dis-

tance from a feature vector to a decision plane), we can also evaluate SI at the signal

level. Intuitively, the closer the two waveforms associated with the identified com-

mon activities are, the more likely these activities captured by different sensors are

indeed identical. We propose two approaches: normalized cross-correlation (NCC)

and dynamic time warping (DTW), for measuring signal similarity.

NCC (described in further detail in Section 5.3.4) is essentially the dot product

between the two normalized vectors. The output can be defined such that 1 >

NCC > −1, where the closer to 1 the vectors are, the more similar they are. If NCC

is closer to 0 or −1, then the vectors are orthogonal to each other or are pointing in

opposite directions, respectively.

On the other hand, DTW is an algorithm for measuring the similarity between

two time-series sequences regardless of their speed. More formally, DTW aligns two

time-series data streams xi of length n and xj of length m from nodes i and j where:

xi = a1, a2, ..., aN ,

xj = b1, b2, ..., bM .

(5.1)
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An N ×M matrix is then constructed where the (nth,mth) element of the matrix

corresponds to the squared distance d(an, bm) = (an − am)2 which is the alignment

between points in xi and xj [75]. A path through the matrix that minimizes the

total cumulative distance between these two sequences is retrieved to find the best

match between xi and xj. Specifically, the optimal path is the path that minimizes

the warping cost:

DTW (xi, xj) = min

√√√√ K∑
k=1

wk, (5.2)

where wk is the matrix element (n,m)k that also belongs to the kth element of a con-

tiguous set of matrix elements that represent a mapping between xi and xj, referred

as W [75]. Dynamic programming is then used to find the warping path by evaluating

the following recurrence:

ζ(n,m) = d(an, bm)+

min{ζ(n− 1,m− 1), ζ(n− 1,m), ζ(n,m− 1)},
(5.3)

where d(an, bm) is the distance found in the current matrix cell, and ζ(n,m) is

the cumulative distance of d(an, bm) and the minimum cumulative distances from the

three adjacent cells.

Comparing DTW and NCC

Figure 5.7 highlights an experiment in which a user walks three times then removes

their phone from their pocket and makes a call while still walking (activity 3), the

duration of the call is plotted in red in the figure. In this case the classifier may
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find all matching activities on both sensors. However, activity 3 on the right leg is

not similar enough to activity 3 on the left leg and will result in inaccurate event

detection when calculating the skew. Table 5.2 gives the output of DTW and NCC

in comparing the integrity of activities 1, 2, and 3 in Figure 5.7. Both approaches

respond similarly in detecting structurally sound pairs of activities, however in some

cases the versatility of DTW may allow users to avoid needing to up-sample the slower

data stream. Moreover, it is possible to create a finer resolution by using windowing to

compare the signals instead of the entire activity. Indeed, this would allow CRONOS

to discard data at the event level rather than the activity level. Finally, this approach

is applicable to the other two cases in which SI may be compromised, as false positive

and false negative classifications will consequently create dissimilar windows of the

signal for synchronization.

5.3.4 Estimation of Skew and Offset

Now that the common activities are identified, we describe the procedure to estimate

clock skew αij and offset Oij using sensor signals. The offset between two nodes i

and j is detected using normalized cross-correlation, which provides a quantitative

assessment of the similarity of two functions at all possible time shifts. Formally, the

cross-correlation between data streams xi and xj is defined as:

NCC(k) =

∑N−1
n=0 xi(n)xj(n+ k)√∑N−1

n=0 x
2
i (n) ·

∑N−1
n=0 x

2
j(n+ k)

(5.4)

where N is the number of samples in xi and xj, xi(n) and xj(n) are the samples from

data streams xi and xj at sample n, respectively, and finally k is the shift between xi
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Figure 5.7: Walking data obtained from accelerometers on the right and left legs
with random stops. Activity 3 (walking) is composited in that the accelerometer was
removed from the pocket and placed near the ear during a phone call.

Walking Walking fast Walking (on call)
NCC 0.74 0.85 0.54
DTW 0.12 0.11 0.34

Table 5.2: Activity integrity output comparison between dynamic time warping and
normalized cross correlation
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and xj.

Unlike offset estimation which considers an entire activity when applying cross

correlation, skew estimation is more fine-grained in that it considers individual events.

Specifically, the offset is calculated at each event detected and a linear regression

model is constructed to estimate the skew of sensor i to sensor j. Since the linear

model takes the form:

tj = αijti +Oij, i = 1, ..., n, (5.5)

where tj is the time at sensor j, αij is the estimated skew between node i and node

j, ti is the current time at node i, and Oij is the offset between node i and j.

5.4 Multi-Sensor Synchronization

As previously discussed, the drift experienced by two sensors over long periods of time

is not strictly linear. Figure 5.2 shows the drift between two sensors over approxi-

mately 31 hours. The variations in the slope over time indicate that the skew is not

consistent over long periods of time. Additionally, some sensors do not have direct

interactions to observe common events for pairwise synchronization, or the synchro-

nization between them may be erroneous or stale. A more sophisticated, multi-sensor

synchronization approach is required in this case. Let αij and Oij be the real offset

and skew between nodes i and j, respectively. The problem is this: We wish to obtain

estimates αij and Oij of the skews and offsets, respectively. Note that the true αij

and Oij satisfy the global constraints:

αi1i2 · αi2i3 · ... · αimi1 = 1, (5.6)
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Oi1i2 +Oi2i3 + ...+Oimi1 = 0, (5.7)

where i = 1, ...,m is the index of the sensor in a loop made of m sensors in the

network. These constraints ensure that if the synchronization goes back to the original

node, then the skew and offset must be equal to 1 and 0, respectively. However, the

estimates αij and Oij arrived through only pairwise synchronization described in

Section 5.3.4 do not need to satisfy these constraints. Further constraints include:

1. The skew and offset at time t at each sensor node is dependent on its neighboring

nodes. In the graph, nodes become neighbors attached by an edge if there was

a direct pairwise synchronization between them. Hence, a node’s relative skew

and offset is directly influenced by its neighbors’ clocks.

2. The network is connected.

We define a graph model of the system

G = (V,E) (5.8)

where the vertices V represent the sensor nodes and edges E represent a direct pair-

wise synchronization between the nodes. Further, let Ni denote the neighbors of node

i and |Ni| the total number of the neighbors. Assume that we have estimates of α̂ij

and Ôij for j ∈ Ni, ∀i. The estimates need not exactly be equal to the true values.

We take advantage of the edge weights in the graph to represent the validity of

synchronization. The higher the edge weight, the more up to date the synchronization

is and therefore more likely that edge will be to be taken in the path from node i to

node j. Consequently, weighted least squares is used to estimate the skew and offset
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and define the weight for an edge between node i and node j as:

wij =
δij
σij

(5.9)

where σij is the standard deviation of the skew estimates so far between node i and

j, and

δij = exp
t−sij

c (5.10)

in which t is the current time, sij is the time of the last synchronization between

nodes i and j, and c is a unit converter that can be used to convert time to seconds,

minutes, days, etc.

Figure 5.8: Example graph in which each vertex corresponds to a sensor and each
edge represents a synchronization between them

As an example, there are six nodes in the graph in Figure 5.8: 1, 2, 3, 4, 5, 6. We

define the oriented incidence matrix A as with arbitrarily assigned edge directions:

(1,2) (2,3) (3,4) (4, 2) (5, 1) (5, 4)

1 +1 0 0 0 -1 0
2 -1 +1 0 -1 0 0
3 0 -1 +1 0 0 0
4 0 0 -1 +1 0 -1
5 0 0 0 0 +1 +1

where in the row corresponding to node i, we have an entry +1 for all edges of
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the form (i, ), an entry −1 for all edges of the form (, i), and 0 otherwise. We denote

vi and ui as the estimate that we will make of the offset and skew with respect to a

reference node, respectively. Written as a vector of edge offsets, ATv and ATu convert

the node offsets into edge offsets. The problem formulation to find skew and offset is:

Min
v
||wT · (ATv − α)||2,

Min
u
||wT · (ATu−O)||2,

(5.11)

where w is a |E|×1 vector representing the weights of the edges, and α and O are

|E|×1 vectors representing the skews and offsets of the nodes in the graph respectively.

Since wT · (ATv−O) and wT · (ATu−α) are both in the null space of A, the solution

to the optimization problems is:

AATv = AO, (5.12)

and

AATu = Aα. (5.13)

Initial O and α for each node are assigned arbitrarily. Equations (5.12) and (5.13)

can be solved by setting an arbitrary vi = 0 and ui = 0, removing one row from AAT ,

and maintaining a |V |−1 rank. The complexity of solving this equation is O(n3) due

to the Gassian Jordan matrix multiplication method requiring 3 iterations. There are

faster methods that can be utilized such as the Coppersmith–Winograd (O(n2.376))

or the Stassen (O(n2.807)) algorithms, but the advantage in performance will only
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be relevant with very large matrices – in this scenario, when the number of sensors

and synchronizations between them creates matrices so large that they cannot be

processed on conventional hardware. Additionally, since the algorithm is applied

offline the time

5.5 Experiments and Results

Due to its clock flexibility and ease of access, a Texas Instruments MSP430 micro-

controller was used as each sensor node’s core microprocessor during evaluation. For

motion sensing, an Invensense MPU9150 measurement unit (IMU) collecting accelera-

tion data at 100Hz was utilized. Each sensor timestamps the data using the on-board

crystal oscillator (±20ppm, i.e. 1.01 second drift after 14 hours) as well as the DCO

(±5000ppm, 4 hour drift after 14 hours). The DCO has low clock accuracy but is

often used in tandem with the crystal oscillator. It is used as a standalone oscil-

lator during experimentation as the drift will occur quicker than using two crystal

oscillators. The crystal oscillator is used as the ground truth as the accuracy of the

crystal will be high. Each synchronization is applied to sensor data using the crystal

and DCO timestamps to obtain both ground truth and drifted data, respectively.

We present the results for pairwise synchronization and then present the results for

multi-sensor synchronization. The absolute synchronization error is used to evaluate

synchronization accuracy in both the pairwise and the multi-sensor case, defined as:

ASE(γk, γ̂l) =
1

N

N−1∑
i=0

|γki − γ̂li | , (5.14)

where N is the number of samples, γki is the real time at sample i in node k
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and γ̂li is the synchronized time at sample i in node l. Since drift is consistently

increasing in a quasi-linear fashion like in Figure 5.2, the absolute synchronization

error is obtained at every synchronization action and averaged with other obtained

errors to obtain the mean absolute synchronization error.

5.5.1 Data Collection

We consider several scenarios where interactions among the subjects create synchro-

nization opportunities for sensor data.

• Two subjects wore an accelerometer on their wrist and carried on a conversation

while emphasizing and gesturing with their hands as they spoke. Subjects would

also pick up an item at random times during the experiment and then place it

back down to emulate a real conversation and to generate possible false positives.

During the conversation, the subjects were asked to shake hands at random to

collect handshaking data – the common activities used for synchronization.

• A subject types on a keyboard with an accelerometer mounted on their wrist.

During the experiment, the subject typed a paragraph and used their thumb

every time they wished to press the space bar. The key press and release were

timestamped on the keyboard and accelerometer and then sent to the computer

to be recorded. Pressing the space bar with the right thumb was chosen as the

synchronizing event because the shortness of the thumb forces the human hand

to move more than the rest of the fingers would.

• Subjects wore a helmet fitted with an Arduino Uno-powered camera and an

accelerometer was used to collect data when they walks. The camera collects
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data at a rate of 10 frames per second (FPS), which is enough to capture walking

data as it is typically 1.8-3 Hz [45, 101]. During data collection, the user walks

towards an object mounted on a wall. The camera captures the movement of

the observer relative to the object, namely the high frequency “bumps” that

occur each time a user’s foot hits the ground due to the vibrations in the body.

5.5.2 Classification Accuracy

Data from 5 volunteers was collected for conversing, typing, and walking. Each clas-

sifier was evaluated using 10-fold cross validation. Table 5.3 highlights the activities

utilized for each category of classification and the accuracy, precision, and recall

achieved. The column labeled “Target Event” describes the event that is searched for

when performing synchronization, whereas the “Interfering events” column describes

activities that are added to the training data in order to create an activity recognition

classifier that is more robust and discriminative.

Table 5.3: Synchronization activities and the classification accuracy, precision, and
recall for each one.

Activity Target Event Interfering Events Accuracy Precision Recall

Conversing Handshakes Converse with hands. Pick up item 96.22% 89.05% 87.32%

Typing Press using thumb Press using other four fingers 95.12% 95.65% 92.86%

Walking Steps taken Turning around, misstep 97.54% 92.78% 89.10%

5.5.3 Pairwise Synchronization

Synchronization between two sensors should be possible regardless of the sensor’s

modality as long as both sensors can observe the effects of the same event. Each

experiment in Section 5.5.1 was performed with 5 volunteers. Figure 5.9 shows the
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effects of applying CRONOS on pairwise synchronization once between two sensors.

Since the synchronization period is small, the drift is linear. If the synchronization

period is long then the drift would take on a more quasilinear form, and the adjusted

drift would take on a sawtooth-like shape as CRONOS continuously synchronizes.

Table 5.4 presents the drift improvement and the mean absolute error for each ex-

periment in comparison with the work by Bennett et al. [5, 6]. In shaking hands,

both users are wearing an accelerometer sensor and hence both systems perform well.

Indeed, although these performance results were obtained after extracting the motion

information from the data, it is likely not a fair comparison between the two systems

since Bennett et al.’s implementation suffered as it does not account for different

sensing modalities (like the the cases of typing on a keyboard and walking with a

helmet-mounted accelerometer and a camera).

Table 5.4: Pairwise results comparison in accuracy and mean absolute error (MAE)
between CRONOS and the work by Bennett et. al [5, 6, 7].

CRONOS Bennett et al. (2017)
Drift Reduction (%) MAE(ms) Drift Reduction (%) MAE(ms)

A
ct

iv
it

ie
s Shaking Hands 88.01% 5.41 84% 6.33

Typing on keyboard 91.64% 6.28 82.38% 8.52
Walking with Helmet 87.12% 6.62 78.35% 11.37

5.5.4 Multi-Sensor Synchronization

To verify the performance of CRONOS for multi-sensor synchronization, a simulation

and a small-scale sensor experiment were performed. Besides verifying the perfor-

mance of CRONOS, the goal of the experiments is two fold: to verify the importance

of the synchronization fidelity described in Section 5.4, and to compare its perfor-

mance against other methodologies such as weighted and unweighted shortest path
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Figure 5.9: Comparison between the raw sensor drift and the sensor drift when ap-
plying CRONOS one time.

and opportunistic pairwise synchronization.

Shortest path has been utilized in the past to resolve sensor synchronization

across multiple nodes [6]. We compare its performance against CRONOS in both

the weighted and unweighted cases to highlight the changes that CRONOS’ weighing

scheme makes. Further, it is possible to simply wait and perform pairwise synchro-

nization on each pair of sensors. We utilize the following approaches as benchmarks

to compare to the performance of CRONOS:

1. Weighted CRONOS (WC): Applying CRONOS with the edge weighing

scheme proposed in this work.

2. Bennett’s Approach (BA): Applying Bennett et al.’s approach [7].

126



Ph.D. Dissertation - Ala Shaabana McMaster - Computing & Software

3. Unweighted CRONOS (UC): Applying CRONOS without using edge weights

4. Weighted Shortest Path (WSP): Applying Shortest path between nodes

using the same weighing scheme used by CRONOS.

5. Unweighted Shortest Path (USP): Applying Shortest path without using

edge weights.

6. Opportunistic Pairwise (OP): Ordinary pairwise synchronization using the

first path found from node i to node j.

Figure 5.10: Multi-sensor Synchronization Simulation: A randomized 15-node graph
generated by the simulation.

Experimental Results

To test the capabilities of CRONOS in a more realistic environment, an experiment

was set up to synchronize data between three users interacting with sensors for 30
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minutes, using handshakes, walking, and keyboard presses for synchronization. It

proceeded as follows:

1. Users 1 and 2: wearing accelerometer on wrist.

2. User 3: wearing a data collection helmet with an accelerometer and a camera

mounted on it, and a wrist-worn accelerometer.

Additionally, a keyboard as described in Section 5.5.1 is set up to collect typing data.

The users performed the following actions at random times during the experiment:

1. Scenario 1: User 1 shakes hand of user 2.

2. Scenario 2: User 3 walks towards users 1 or 2 and shakes their hand.

3. Scenario 3: Any user types on the keyboard then walks away.

For scenario 1, there are two sensor data streams: user 1 and user 2’s wrist-worn

sensors. Scenario 3 has five synchronizing data streams: users 1,2, and 3’s wrist-worn

sensors, and user 3’s helmet-mounted sensors. Finally, scenario 3 has six data streams:

all user’s wrist-worn sensors, the helmet-mounted sensors, and the keyboard.

Figure 5.11 shows the graph generated by CRONOS when synchronizing all sensors

worn by the users and the keyboard. Sensor 1 in this case first acts as a reference

sensor, each edge is weighed according to 5.9. Sensors 1 to 4 are the accelerometers

worn by all 3 users (where user 3 is wearing one on his wrist and one on his helmet),

sensor 5 is the keyboard, and sensor 6 is the camera on user 3’s helmet.

Figure 5.12 shows the mean absolute synchronization error in milliseconds, pre-

dictably with WC having the lowest error and OP having the highest. BA performs

well but still has a higher mean absolute error due to the different sensing modalities
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Figure 5.11: Multi-sensor Synchronization Experiment: The graph generated by
CRONOS synchronizing the sensors during the experiment

in the system, there also appear to be problems with phase shift handling as the

approach performed worse on walking data.

Simulation Results

A 15-node network was constructed as a simulation of optical flow, acceleration, gy-

roscope, and EMG sensors in which each clock’s skew (with respect to the simulation

clock) was adjusted slightly over time by a random value. This simulates the behavior

of the sensor clock drift similarly to Figure 5.2. As simulation ran, edges were created

between the nodes at arbitrary times and assigned a weight using 5.9. The simulation

ran for 32 hours and synchronization was run every four hours. Figure 5.10 shows

a 15-node graph generated by the simulation, with each node having its own offset

and skew. Each edge in the graph is weighed using (5.9), where the thick part of the
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Figure 5.12: Multi-sensor Synchronization Experiment: The drift reduction achieved
by CRONOS vs. other approaches.

edge indicates the edge direction.

Figure 5.13 shows the simulation performance under different densities of the

graph. The graph density is defined as:

D =
|E|

|V |·(|V |−1)
(5.15)

In this experiment, the number of edges determines the graph density and the

number of vertices remains the same. As the number of edges decreases, the mean

absolute synchronization error increases overall. This is expected as a lesser number

of edges means less synchronizations and less common events observed by different
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sensors. However, given the full 143 edges, CRONOS performs better than the real-

world experiment. Additionally, the trend in the performance of the different methods

remains the same, indicating that not only does WC perform best, but that it still out-

performs traditional methods and Bennett et al.’s method. However, the simulation

and experiment datasets contain data from sensing modalities other than accelerom-

eters and complex activities that may have affected the performance of Bennett et

al.’s approach.

Figure 5.13: Multi-sensor Synchronization Simulation: The drift reduction achieved
by CRONOS vs. other approaches.
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5.6 Summary

Traditional synchronization approaches require more power and cannot be applied

opportunistically or after data collection, hence there is a need for a post-hoc frame-

work to synchronize data offline. We presented CRONOS: a post-hoc, opportunistic

data-driven sensor synchronization framework that takes advantage of events observed

by two or more sensors, CRONOS estimates the skew and offset between the sensor

clocks and adjusts their timing accordingly. Experimental and simulated results on

pairwise and multi-sensor synchronization show a drift improvement as high as 98%

for total drift, a mean absolute error of 3ms in simulations and 6ms in real-world

experiments.
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Chapter 6

Conclusion and Future Work

Worker comfort analysis performed by health and wellness professionals is rather

cumbersome (e.g. type on a keyboard repeatedly for ergonomic analysis, sit while

body measurements are being taken for posture analysis, etc.). The objective of this

work therefore is to develop systems that are capable of analyzing body emission in-

formation for potential use by industry professionals to maximize and analyze worker

comfort. However, systems that can be used for this type of analysis are rather

expensive as they are highly precise and are built with many patented components.

In this work, we presented low-cost and high performing tools for human-centric

sensing to collect physiological data and make predictions about user physical states

or actions. The proposed systems fall into two categories: contact and contactless

systems. Additionally, we proposed a framework to synchronize the data streams from

multiple sensors post-hoc. The high performance of these systems suggests that it is

possible to attain a similar accuracy to the research-grade counter-parts by properly

utilizing machine learning algorithms and inferences. The works in this thesis have

been made publicly available on Github [84, 86, 93] for replication or extension by
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others in the future.

6.1 Contributions

The contribution of this dissertation is that we provide a structured and comprehen-

sive set of end-to-end solutions for human-centric sensing that cover subjects ranging

from hardware design, to software architecture, to empirical evaluations. Specifically,

we have:

• Designed and implemented a contact-based solution to heart, muscular, and

brain activity measurements (Chapter 3).

• Identified the effects of sampling rate, electrode placement, and movement speed

on fine-grained gesture recognition (Chapter 3).

• Identified the problem of ballistic gestures and proposed a Gaussian Mixture

Hidden Markov Model to take advantage of the finger movement patterns in

training data (Chapter 3).

• Designed a contactless desktop solution to track users and measure their cloth-

ing insulation levels (Chapter 4).

• Designed an algorithm for the detection of clothing insulation given several pa-

rameters such as skin, ambient, and clothing temperatures, clothing emissivity,

and others (Chapter 4).

• Designed a software framework to synchronize multiple sensors using only their

data in a post-hoc manner (Chapter 5).
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In designing end-to-end platforms for human-centric sensing, the most valuable

lesson to be learned is that data collected from the human body tends to be noisy

and is rather non-deterministic. This occurs not only due to the nature of the human

body, but also due to the various factors affecting the instrumentation used and the

ambient environment. Therefore it is crucial to first understand the phenomenon

being measured and all factors that may affect it in detail, then design the system in

a unit test style of development. That is, divide the platform’s hardware and control

software into the smallest possible testable units (or components). Test the units and

rigorously ensure their operation as intended, and then assemble the system as each

unit is verified. After all, an algorithm is only as accurate as the signal it is operating

on. If the signal is distorted or inaccurate, then the algorithm’s accuracy will surely

suffer.

6.2 Limitations and Future Work

Since there are two platforms presented in this dissertation, we will present the limita-

tions of each one separately. Each system currently functions well enough for research

purposes and is reproducible, however they all require further fine tuning in order to

make them production ready should the reader be interested in doing so.

Although XTREMIS produces a clean signal and is capable of predicting fin-

ger movements when performing ballistic gestures with approximately 94% accuracy,

however it is important to address several issues moving forward. The first is plac-

ing it into a more user-friendly form factor: currently it rests as a standalone unit

away from the user. A better form factor would be integrating it into a sleeve to

be worn by the user. Secondly, to increase usability it is important to explore the
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use of dry-surface electrodes instead of the current wet-gel silver/silver chloride ones.

Dry-surface electrodes will create a noisier signal but eliminate the need to use con-

ductive gel for every experiment, making it more suitable to users not trained in

ECG/EMG/EEG data collection. Finally, the sampling rate currently destabilizes at

sampling rates above 500Hz. We have shown that this is due to the ADS1299 chip’s

design, however it would be interesting to explore some post-hoc processing steps

that may be implemented to overcome this issue and increase the SNR even further

at higher frequencies.

SiCILIA predicts the user’s clothing insulation accurately within a 0.08 RMSE,

and in fact – as shown in Chapter 3 – outperforms its competitor SPOT [25, 24] in both

function and form. However, the performance is still dependent on the emissivity of

the clothing worn. If the emissivity is too high (i.e. the occupant is wearing polyester

or a thermally reflective material) then the perceived clothing surface temperature

will be too close to the ambient temperature and the clothing insulation calculations

will not be accurate. As such, there are a few more problems to solve in the future.

First, SiCILIA should be capable of tracking occupants constantly in order to always

be ready to take a measurement. Second, it must be able to differentiate between

different object temperatures. For example, it must be able to differentiate between

clothing, skin, and miscellaneous objects (such as a hot coffee mug). Lastly, SiCILIA

should also be able to differentiate between good data and bad data. That is, whether

or not the clo value obtained is reasonable in contrast to the ambient temperature or

not.

Finally, CRONOS reduces the drift between sensors by approximately 97%, how-

ever it is not a fully automated system. Therefore it would be interesting to add more
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intelligence to the framework to detect the signal modality and the activity type so

as to tailor the signal integrity checks accordingly. Additionally, it would be inter-

esting to explore other sensing modalities and exploit other omnipresent components

within their data. Indeed, CRONOS can be a flexible tool where users simply provide

classifiers or templates for event recognition to receive a synchronized dataset.
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Chapter 7

Appendix

7.1 Research Ethics

Research using XTREMIS (Project Number: 2016149) and SiCILIA (Project Num-

ber: 2014213) has been reviewed and approved by the McMaster University Research

Ethics Board .

7.2 Subject Data

Table 7.1 shows the meta-data of each subject that participated in the experiments

for SiCILIA. Whereas Table 7.2 presents the meta-data of each subject that partici-

pated int he experiments for XTREMIS. Note that the differing information provided

between the two tables is due to the different MREB application requirements for the

two systems.
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Table 7.1: SiCILIA Subject Information

Subject Age Height(cm) Weight (kg) BMI Gender

Subject 1 25 188cm 132 37.5 Male

Subject 2 25 173cm 65 22.7 Male

Subject 3 28 177cm 63 20.1 Male

Subject 4 26 188cm 108 30.6 Male

Subject 5 59 178cm 104 29.4 Male

Subject 6 28 162cm 49 18.7 Female

Subject 7 28 162cm 52 19.6 Female

Subject 8 20 163cm 77 29.0 Female

Subject 9 52 163cm 63 23.7 Female

Subject 10 27 170cm 52 18 Female

Table 7.2: XTREMIS Subject Information

Subject WPM Range Gender

Subject 1 25 Male

Subject 2 23 Male

Subject 3 24 Male

Subject 4 29 Male

Subject 5 28 Female

Subject 6 21 Female

Subject 7 24 Female

Subject 8 23 Female
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