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PREFACE

The first part of this thesis consists of a detailed
presentation of proofs for theorems given in the paper "Zur
Existenz von universellen Uberlagerungen" by B. Banaschewski,
This paper determines the existence of a uniquely defined
greatest covering space (}T..‘,g,‘,,ia} of a locally connected
topological space E with respect to a covering'\@ of E by
domains,

Next the notion of simple connectedness is genera-
lized to"&-—simple connectedness with respect to some
covering \@ of the space by domains., It is shown that the
covering space (E-e,g,',fﬂ) ia%-simmy connected with respect
to the covering{\’ of E,‘, by the connected components of the
sets g_"".(v), Ve, Then the analogue of the Principle of
Monodromy for simply connected spaces (see Chevalley, page
46, Theorem 2) is extended to'}(-simply connected spaces.,

Section 4 is devoted to showing that any relatively
maximal covering space is normal; i.e. for any ae¢E, the set
g}(a) is permuted transitively by the automorphisms of
(gt

In Section 5 a unique method of making the covering
space (E.‘,,g,‘,,%’;) into a covering group is developed, in the
case where £ is a topological group and aVeW for each Ve
and aeB., 4

iii



ACKNOWLEDGMENTS

The author expresses his sincere appreciation teo
Professor B, Banaschewski for his constant interest, advice,
and encouragement during the course of this research,

Appreciation is also expressed for financial
assistance to the National Research Council and to lMicMaster

University.

iv



TABLE OF CONTENTS

SECTION PAGE

i 2 Dafinitioﬂsn’tGt;ﬁii&il’#tﬁbi%'&tt'c*!’a&ﬁ.‘dtCQ*‘1
2. Relatively Greatest Covering SpaceSBs.ssvsvesssssesd
3. Relatively Simply Connected SpaceS.csssconssssssssld

4, The Automorphism Groups of Relatively
Greatest Covering SpaceS.ssssscevvsoncsnnvessssnss2d

5« Relatively Greatest Covering GroupS.cscesscscossssss26

HIXQLI(}{;E{,&;”%{?’%*#‘.’ﬁ*QQﬂ‘QﬁQﬁQliOil&00""1‘*#."'!Qﬁsz



1. Definitions

(1) The subset {(x,x)/x<E} of E+E is called the diagonal
of EXE and will be denoted by .

The mapping (x,y)=>(y,x) of ExE into itself will be
denoted by W,

If A, BSExE, then AeB={(x,y)/(x,a)¢A,(a,y)eB for
. some al.

A set REExE is called an equivalence relation if

(i) AsRr (reflexivity)
(ii) YR=R (symmetry)
(iii) Re°R=R (transitivity)

The equivalence relation generated by any subset
CESExE is the smallest equivalence relation R2C, (This
clearly exists and is{a\gl).

(2) For the equivalence relation R, the glice with respect
to xeE is R(x)=1y/(x,y)eR?.

For ASE, ii(ﬁ)aﬁ\eJAﬁ(x).

(3) If A=R(A), A is called R=saturated.

(4) 1If, for any open subset USE where E is a topelogical

space, R(U) is open, R is called an open equivalence

relation.
(5) Let E be a topological space, R an eguivalence relation
on E, ie define the guotient space E/R={R(x)/x¢E}.

The mapping f:E-3E/R by x—R(x) is called the natural

mapping of E onto the guotient set E/R.
i



The guotient topology on the quotient set E/R is the

finest topology making f continuous,

(6) A space E is connected if it is not the union of two
disjoint, non-void, open sets.

(7) A domain is an open, connected set.

(8) The connected component of a point of a space E is

the largest connected subset of E containing this point,
The connected components of a subset AGLE are the
connected components of the points of A relative to the

subspace A,

(9) A space E is locally connected if any neighbourhood
of any point of E contains a connected neighbourhcod of
the point,

A space [ is locally connected if and only if the
connected components of any open set in E are open sets,
(10) Let f:X-5E be a continuous mapping onto E. A subset
ASE is said to be evenly covered by X with respect to f
if every comnected component of £™(A) is mapped homeo-
morphically onto A by f.
(11) Let E be a topological space. A covering space of E
is a triple (X,f,E) formed from a connected, locally
connected space X and a continuous mapping f£:X-—9E such
that each point of £ has a neighbourhood which is evenly
covered by X with respect to f.

Remark: A space E cannot have a covering space unless

it is connected and ldcally connected., Conversely, if E



is connected and locally connected it has at least one
covering space, i.e. the trivial covering space (E,f,B)
where f is the identity mapping.

(12) A collection of sets VSE is a covering of the
space E if Ea\#f.

(13) Two covering spaces (X,f,E), (Y,g,ﬂ) are said to be
isomorphic (denoted by (X,f,E)2(Y,g,E)) if there exists
a homeomorphism h:X-»Y such that f=geoh,

The isomorphisms of a covering space (X,f,E) with
itself are called the agutomorphisms of (X,f,E). These
form a group called the automorphism group of (X,f,E).

If (X,£,E), (Y,g,E) are isomorphic with h:X—Y a
homeomorphism, and t:Y—Y a homeomorphism, then t—»h’'th
is an isomorphism of the one automorphism group to the

other.,

(14) We can define a guasi-partial ordering in the class

of all covering spaces of the space E by:
(X,£,8)2(Y,g,E) if and only if there exists a con-
tinuous mapping k:X-—Y such that (X,k,Y) is a covering
space and f=gok,
If (X,f,E)3(Y,g,E) and (Y,g,E)%(X,f,E), then
(X,£,E)2(Y,g,E).

(15) A space £ is said to be gimply connected if it is

connected and locally connected and every covering space
of E is isomorphic to the trivial covering space.

(16) The covering space (X,f,E) is called a gimply connected




covering space if X is simply connected.

(17) Let (X,f,E) be a covering space and\e<a covering
sf E by domains. We say (X,f,E) is evan;hxﬂ if any
VEWQis evenly covered by X with respect to f.

(18) E is called &wsimylv connected if and only if the

only covering space of E even inTﬁ is the trivial covering
space,

(19) A topological group G is the composite object formed

by a group g and a topological space X which satisfy the
following conditions: 1) the set of points of X is the
same as the set of elements of E’:; 2) the mapping (N, L)=V"'
of X*X into X is continuous. The group 5 is called the
underlying group of the topological group G, and the space
X is called its underlying space.

(20) Let G be a topological group. By a covering group

of G, we mean a triple (ii,f,G) composed of a topological
group H and a homowmorphism f:H-G such that (i,f,G) is

a covering space.

All other topological considerations mentioned will
be as defined by Bourbaki except for topelogical space,

by which we will mean Hausdorff space.



2e Relatively Greatest Covering Spaces

Our aim is to prove the following theorem:

Theorem 1: For any covering\@ of E by domains, there

exists a covering space (Eihg*‘ﬂ) unigue up to isomorphism,

even inW@. such that for any covering space (X,f.E) even

Before we prove this theorem, we require a number
of preliminary considerations. The first result needed is

Lemma 1: Let there be given a space E Oy P A=l,40s,.0

pairs of open subsets and homeomorphisms h,:04—F.. Then

the equivalence relation generated by the graphs i(xAh>§xﬁ£

xe0\t of the h, is an open equivalence relation,

Proof: First we will give an explicit description of the
equivalence relation generated by any set CESExE, FPut
Cy=CVTC, CS=CsC0%4+4°Cay Cl=a and 5%\%{3\:‘ Now (i) aeC
(11) TELIT(CH) =\(@C, I =9CL=C  (141) Tala(yeD (U ch)=
K§$§2°C§“}ﬁ£;““5* This shows C is an equivalence relation.,
Now if R is any equivalence relation such that R2C, then
R26C, hence R2C,, hence R2C% for all k, so CER, Thus
€ is the smallest equivalence relation containing C. Now,
let C be the union of the graphs of the hx and YEE be an
open set, Ve must show that the C-saturation of Y is open,
Now ﬁ(Y)f&%ﬁ(y). But g(y)mix/(x,y)eﬁ}aQx/(x,y}ké&ﬂz}
=\ 1x/(x,y)¢C31=JCi(y)s Thus 5(?&’%‘5\‘2{\“’,,(3‘2(3«‘)&30\\:‘3:(y)m

5



Jgﬁﬂ?(Y)ﬁ Thus it is sufficient to show that }#§:(Y) is
é?en, or that C5(Y) is open for all k. The proof is by
induction on ke For k=o, C2(Y)=Y which is open, Assume
C*'(Y) is open. Then C%(Y)=C,(C™(Y)) since:
xeCL(Y)=>there exists Xy¥, 9+ 04, Such that (x,y,)¢C,,

(¥, 272 )€C s onny (., 1% )€C,, where y cYay cCI(Y)=

x¢C (CL'(Y)), Thus CL(Y)EC (CI(Y)). xeC (CY'(Y))=
(x,y)ec*,yech(Y). Then there exists y,¥, ysssy¥<., Such
that (y,¥, )¢C, (¥, 72 )€C 0000y (¥, ¥, J6C s N e Y=HXECT(Y),
Therefore C5(Y)=C, (C¥(Y)).

It is new sufficient to show that C_(CT(Y)) is
open, But C}'(Y) is open, say Z., Then |

C‘(iéﬂ)wx\:{ &x(éinﬁx)vh';(ﬁn?)\ﬂ which is open.

Thus C is an open equivalence relation and Lemma 1
is proved,

Next, we define a space from which, as will be
shown, essentially all covering spaces of E even in‘1§
can be obtained by taking suitable guotients.

Fix HG‘. Then a ehain‘ﬁ.int is a sequence
VosVi seesyV, such that (i) Vﬁﬂ‘ for all \ and Vgy=U,

(ii) Vo N\ A8 for N=l,...,n.

Define the space S(‘ﬁ)m&(vxu L\, taken as a
subspace of ExN where N is the discrete space of natural
nambers.‘ .

Let p@%) be the restriction of the projection
BxN=E to S(%). Thus p(f) restricted to VyxiXl is a



homeomorphism onto Ve

Let ixéﬁ) be the mapping Vy—>VyxiANl by x->(x,\).

This is a homeomorphism of Vy onto Vyx{\} such that
f&%ﬁoixfﬁ) is the identity on V,,

* Define an equivalence relation Z on S(%) by
choosing a connected component Cy, of vanvx for each
A=l,...,n, namely generated by the graphs of the mappings
%1xzcxxi)‘-\}—-) Cy\*iM\} which map (x,\-\)=>(x,\), NN

Define the space 5(h,2) as S(R)/Z and let jth,z)
be the mapping 5(k,Z)E induced by ptk), i.e. if
j(2):s(h)>5(R,2) is the natural mapping, then
p(R)=jh,2)e §(2).

The space S(%,Z) has the following properties:

(1) jth,4) induces a homeomorphism of each j(ﬁ}(?&ti)&)
onto VA’ | .

We have the mappings Vf—é&\vxxix}’gg(m(vxnm )’ﬁz‘s)?,\, Now
Jth,2)03(2)e 1, (R)=p(R)>i, (%) is the identity on V,, thus

jh,2) is one-one, onto, continuous. Also j"({g,ki)nj(ﬁ}ﬂx(&)
which is continuous., Thus j(k,Z) is a homecmorphism and the

assertion is proved.

(2) 3¢k,2) is connected:

From (1), %éﬁ,ﬁ)3S£j(5){VxxtA}) and in this union, the
individual terms are connected and have successive non-void
intersections.

(3) Each j(2)(V,x1l) is open in 5Ch,2):

From Lemma 1, Z is an open equivalence relation, thus the



natural mapping j(2):56k)=S5®%,2) is an open mapping.

Define 5 as the topological sum of the spaces
Sth,2) for all arbitrary sequences ® and all equivalence
relations Z. Let h be the conjunction of the j(%k,2),
i.e. hiSE.

For any VeR, if V=V, in the sequence % and Z is
any equivalence relation on S(R) of the type *, then
j(ﬂ)oixCQ) maps V homeomorphically onto the open set
3(2)(V,x1\}) in 8. These sets, for a fixed VeX are called
the V-replicas in 5.

Let & be the set of eguivalence relations R on 8
such that:

(El) h is constant on the R-classes, i.e, if (x,y)¢R then
h{x)=h(y).

(E2) On VU j(2)(Vyx10}):(x,y)eReph(x)=h(y).

(E3) If V', V" are any two V-replicas in 5 and if there
exists aeV',beV" with (a,b)eR, then for all xeV',yeV"
with h(x)=h(y), we have (x,y)¢R,

The next result we will need is

Lemma 2: For any Ref, if g:S/R-E is induced by h, then

(S5/R.z,E) is a covering space even inW. Iurthermore,
if RER', then (S/R,g,E)3(8/R' g',E),
Proof: S8/R is connected since all 3CK,Z} are and their

images in S/R all bhave points in common by (E2). Let
h, be the natural mepping from 5 onto 3/Rs Take a particular

V-replica, V' in S8, Then R(V') is a union of V-replicas



by (E3). Hence R(V') is open. Thus h“(V')ahR(&(V'))

which is open in 3/R by the definition of quotient space.
Thus h, is an open mapping. This shows that 5/R is covered
by locally connected open sets, thus S/R is locally connected,
It remains to be shown that each Vel ia evenly covered

by 8/R with respect to g. This will be achieved by proving
that for any Ve, g (V) is the hp-image of all V-replicas

in 8. From h=gsh, one has that h"(v)zh:(g“(V)) for any

veX, and since h, maps S onto S/R, 7 (V)=hg(h™(V)). Hence

it is required to prove that h_(K'(V))=Vh,(V'), V' the
V-replica in S, Now xeh™ (V) implies x is in some %@i,é).

If there exists Vy in® with Vy=V, then h (x)eh, (3(2)(V,x1x})).
If not, assume h(x)eV,.. Define % ni“‘:fo,u‘,g",ﬁ‘} by f\& =Vy»
Aém, Gm“wv. Define the equivalence relation 2 by 6A”CA’

A¢m, C.,,, the connected component of h(x) in V,AV. Consider
5%,Z) and S(aqz). imj(g)i,&a)(h(x)) satisfies h“(x)mha(ﬁ}.
For, ha(Vi)wh“ﬁgg) (where A §£ are the replicas in 5(%,2),
S(%w%) respectively), o¢Aem, holds with N=o by (E2) and
implies hn(vjﬂ)“hw(§;~3 by (E3) since h_(y)=h (%) for any
y=d(@)i,, G (2321, () ana F=3(D1, B (@)=3D1, @) (=)
where zeQA“w5A~¢ llence h“(x)eha(j(Z)(%M“ﬁmwll)), thus

g™ (V)=VUhe(V') where V' ranges over all V-replicas in S.

Any two V-replicas in S get mapped to either the same sot

or disjoint sets by (E3), and since the ho (V') are open

and connected in S/R, they are the connected components

of g"(V). Also, each of these is homeomorphic to V under g
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and so (8/H,g,£) is even iﬂ\ﬂ. This proves the first part
of the theorem.

Now, let RESR' and g:S/R-E, g':S/R'DE, We have
h&zﬁ-*sfﬂ, hw=S-+$/ﬁ" Take x¢5/R and define the mapping
B t%X=>h (h7(x)). Now h is constant on the R-classes,
thus by section U, Theorem 1 of Dourbaki's "Topologie
Générale”, it induces a continucus mapping on S/R, which
is hgppe Also hy, by are open mappings and he“hanfha'

Now it is left to show that (5/R,h,,,5/R') is a covering
space, and this will follow immediately from the following
lemma.

Lemma 3: If (X.f,F),(Y,g,BE) are two covering spaces

ven nd there exists a continuocus mapping h:V—IX
with g=foh, then (Y, E)2(X,f,E), i.e, (Y,h,X) is a covering
Space.

Proof: Since (Y,g,E) is a covering space, Y is connected
and locally connected. Take xeX, f(x)ekE, and vel sueh
that f(x)eV, Take V, as the connected component of x in
£7(Vv). 1If V* is any connected component of g™(V) with
Veal(V,)#A@, then h(V*)SV, since h(V*) is the coentinuous
mapping of a connected set and so is connected, and it

is in one connected component of £7'(V), i.e. in the one

it meets. Then the &annectéd‘eampmnents of hd(V*) are
just connected components of g'(V)., Thus V*<h™(V,) and
h'(V,) is a union of these, Suppose there exists y, ,y,eV*

with h(y, )=h(y, ). Then £(h(y,))=f(h(y,)) and so g(y, )=&(y,)
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since gwfoh.i Thus ¥.~y, since g is one-one on any connected
comnonengqtggﬁ so h is one-one on V*, Take x¢V,, f(x)eV,

Then there exists yeV* such that g(y)=f(x). Take h(y)eV,.
f(h(y))=g(y)=£f(x), but £ is one-one on V,, so x=h(y). Thus

h is onto, and since it is open, V* is4mapped homeomorphically
to V, by h, Thus we see that (Y,h,X) is a covering space

as reqguired. B

The next required result is

Lemma 4: Any covering space (X,f,E) even in® is isomorphic

to some (S/R,g,E), Furthermore, if (X,f E)}2(X',f',E),

then R, R' can be chosen such that RSR',

Proof: The idea of the proof is to find a mapping k:S—X,
open and continuous, such that R=$(x,y)/x,ye¢S,k(x)=k(y)]}

is in¥ . Now we have®=1V,,V,,...,V,} and $¢h,2}=V)u.. oA},
Take the fixed HGW; and V' one connected component of

£(U). Assume for each i, o¢ig)\n, we are given local
inverses 8, of f on each V. such that the conjunction

of the g.oj(%,ﬁ) is continuous from V'uv...uVy onto
VJ’u”.uVX =g, (V, )ug (V, Juesoug (VX) where each VY, og¢ighmn

is a connected component of £7'(V,). Let g,,,be the local

onto that connected

inverse of f on V*“ which maps VX+\

e ) o o £ €
component of f (qu) which contains @x( A+9' Since C,,, is
connected and evenly covered (since it lies in an evenly
covered set) there can be only one such connected component,
Now, on C, , 8y =8,,¢ Hence on C' =V'AV' we have 8, oh,

Ay h A gk+\
Thus the conjunction k:S—X of all the mappings gkoh,



i=0,40¢N%) i8 continuous, open, and one-one from ‘.Q,'u....\ﬂf):M
onto V,"u...uv):'“ag°(v° )uu.ug)‘(’%!x). Take the relation
R=§(x,y)/k(x)=k(y)} ; it follows that S/R is homeomorphic

to X since kmk‘o h, is open. Then Ref since:

(E1) For S(R,Z)=Vu...uV!, k on each V! & V]u...wV} is
defined by V.L'b-xv-ﬁ-“a”f.:* where g, is a suitahle local inverse
of £, Thus kagLoh, 80 fok=feg o h=h on any V-replica in S.
(E2) True by definition.

(E3) Let V', V" be any two V-replicas on 5 and assume

that for some ae¢V', beV", k(a)=k(b). Then it has to be
shown that k(x)=k(y) for any xeV', yeV" with h(x)=h(y).

Now k=g'eh 6n V', k=g"oh on V" with suitable local inverses
g', g" of £ on V., Then k(a)=g'(h(a)), k(b)=g"(h(b)) and
k(a)=k(b) means that g', g" have the same value at h(a)=h(b).
But then g'=g" and hence h(x)=h(y) implies k(x)=g'(h(x))=
g"(h(y))=k(y).

Now we have 5 35/0.0X where g is defined by geh, =h.

“\9)\.13{4
Take x¢5/R, y in 8 such that h.(y)=x. By definition
g(x)=h(y)=f(k(y))=£(k (h (¥y)))=f(k (x)). Thus g=fek and
the first part of the lemma is proved.

Now let (X,f,E)3(X',f',E)., Then there exists a
continuous mapping f£*:X—X' such that (X,f*,X') is a
covering space and f=f'of*, We choose k:5 =X as above
and have for R={(x,y)/k(x)=k(y} that (X,f,E)2(S/R,g,E).
Define R'= §(x,y)/£*(k(x))=f*(k(y))}. Thus RER' and
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kgrzﬁ/ﬁ'—éx' is a homeomorphism. Now take xe¢S/R', yeS
with h (y)=x. Then g'(x)=h(y)=g(ha(y))=£(ka(hy(y)))=
£(k(y)) =" (£*(k(y)))=£" (ky(h (¥))) =1 (kglx)). Thus g'=f'ek.,
and (8/R',g',E)2(X',f',E) proving the lemma,

Finally, we require

Lemma 5: NRs=R e}
o el T |

Proof: (E1) (x,y)eR =>(x,y)eéR all Ref=ph(x)=h(y).

(E2) If h(x)=h(y), where x,ye\ j(Z)(V, x%0}) then
(x,y)eR for éach Ref(x,y)elt, .

(E3) Suppose there exists aeV', beV" with (a,b)eR,.
Then (a,b)¢R for all Ref. Thus if h(x)=h(y) for xeV',
yev", then’(x,y)eﬁ for all Ref=(x,y)eR, .

This proves the lemma,

Theorem 1 is now proved if we can show that
(8/Rg48,,E) is the required covering space.
Froof: By Lemma 2, (5/R,,g,,E) is a covering space even
inR. By Lemma 4, if (X,f,E) is any covering space even
in'\‘, then there exists Ref such that (S/R,g,E)2(X,f,E),
By Lemma 2, (8/R,,g,,E)2(S/R,g,E) since R_ER for all R¢f,
Now (8/R,g,E)2(X,f,E) means there exists a homeomorphism
t:S/R=X such that g=fet. (5/Ry,8,,E)>(5/R,g,E) means
there exists a continuous mapping t':5/R,—5/R such that
(5/R,4t',8/R) is a covering space and g, =got'. Ve want to
show that (8/R,,g,,E)2(X,f,E), i.e. that there exists a
continuous mapping k':S/R,~»X such that g =fek' and

(8/Rq3k',X) is a covering space. Choose k'stet' which is
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continuous. Then g =get'=fetot'=lfek', Thus by Lemma 3,
(8/Ro 84 E)2(X,f,E).

Also, if there exists a covering space (M,m,E)
even inW such that (M,m,E)2(S/R,,g.,E), then since
(M,m,E)$(8/Rq,84+E), the two covering spaces are isomorphic.,
Therefore (8/Rg,8,,E) is unique up to isomorphism.

From the definition of a guasi-partial ordering
in the class of all covering spaces, we see that Theorem 1
determines the existence of a greatest covering space in

the class of all covering spaces of E even in\e.



3« Relatively Simply Connected Spaces

Our aim is to prove the following theorem:

~
Theorem 2: For the covering space (Emg.f), letW be

the covering of E#»by the connected components of the

~
open sets g B VFW. Then Fe. is W-simply connected.
2p f

Before we prove this theorem, we require the
following lemma:

Lemma 6: Assume that (X,f.,E) is a covering space. Let

g, &' be continuous mappings of a connected space W into

X such that fog=fog', If g(we)=g'(wg) for at least one

peint w,, then g=g',

Proof: Let A={w/g(w)=g'(w)}. Since g(wo)=g'(w,), A is
not empty. Consider the mapping wfi(g(w),g‘(w)). This
is a continuocus mapping and td(b)aﬁ proving A is closed.
The lemma will be proved if we can show that A is open,
since in that case we must have A=W, If weA, then f£(g(w))
has a neighbourhood V which is evenly covered by X with
respect to f, By Lemma 1, Chapter 2, section 6 of
Chevalley's "Theory of Lie Groups", the component V' of
g(w)=g'(w) in £*(V) is a neighbourhood of g(w) in X.

It follows that there exists a neighbourhcod U of w in

W such that g(Uu)eVv', g'(U)&V', Decause { maps V'
homeomorphically and feg=fog', w'eU implies g(w')=g'(w'),
thus w'e¢ A whence U €A proving the lemma,

Now we can proceed with the proof of Theorem 2,
' 15
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Proof: Ve must show that if (Y,f,&‘b is any covering space
even in;?, then f is one-one. This will be accomplished
if we can show that (Y,g?cf,iii) is a covering space even
in\?. Now Y is connected and locally connected. Thus it
remains to show that each VGV is evenly covered by Y with
respect to g;,,eof, i,e. that any connected component of
f"‘(g;;}(v)) is mapped homeomorphically to V by g,,‘,of. Now
g:é(V}aUV’ where V'e'?(, V' the connected components of
g;“,(‘sf). Also f"(g,’,}(‘e’))an‘"(V')mUV“ where the V" are the
connected components of the £*(V'), Now each V" is mapped
hiomeomorphically to a V' by f and each V' is mapped homeo-
morphically to V by g,v. Hence each V" is mapped homeomor-
phically to V by g”of. Also, the V" are all connected;
those belonging to the same £~(V') are disjoint and so are
those belonging to different f"(V’). Therefore, they are
the connected components of f'YQ}(V}). Thus (Y,gwpf,ﬁ)

is a covering space even inﬂ‘, Now, as in Lemma 4, we
have the mapping k:5S-9Y which maps each VJu...uV] €S8 onto
some V,"u.;guvx €Y where V' is a fixed connected component
of f‘(gxéU)), which is constant on the R,-classes and
induces a continuous mapping g':waéY such that gvpg;fog'.
Now, let ?JSET be the image of all first U-replicas in 8
with respect to the natural mapping S—)Eil.,r and let U'SY

be that connected component of f”(g;;(v)) ontc which k maps
all first U-replicas in 8., Without loss of generality,

j -}
it may be assumed that U' is a connected component of f '(U),
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and then g' induces on f'} the local inverse of f on ‘5. Hence
fog' is the identity on U and so by Lemma 6, feog' is the
identity on E,. Let y WYY with £(y,)=£f(y, ). Take

X | Xk Hay with g'(x, )=y,, g'(}.’.‘h)m;gr‘1 (which is possible

since g' is onto), Thus f(@;'(x‘))ui‘(y!)af(y‘)af(@;‘(xz)).

But fog' is the identity., Therefore X, =X It then follows

2
that y, =y, so f is one-one and the theorem is proved.

In general, if (X,f,E), (Y,g,X) are covering spaces,
(Y,feg,E) need not be a covering space, but we have seen
that if (X,f,E) is even in¥ and (Y,g,X) is even inz;‘f as

above, then (Y,feg,E) is a covering space even ixﬂe.

Corollary 1: 1If E=VVy where the V, are simply connected

domains of E, then F possesses simply connected covering

Spaces.,

Proof: By Lemma 3, Chapter 2, section 6 of Chevalley's
S, y s ;

"Theory of Lie Groups", any covering space of a space E
covers any simply connected domain evenly. Let\( be a
covering of E by simply connected domains, Then any
covering space of I is even in")(. Hence, if E is also
‘ﬂmsimply connected, I is simply connected,

If’)( is a covering of E by simply connected domains,
E.‘ is:\ve--simply connected by Theorem 2 am}')? is a covering
of E,‘by simply connected domains since each set in')‘é is
homeomorphic to some set irﬂ«. Thus E,( is simply connected
and so (ﬂ,‘;,gv}ﬁ) is a simply connected covering space.

Corollary 2: If (X,f,E) is a covering space even in¥ which
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~N ~N
is\g*$imply connected with respect to the cevering1( of X

consisting of all connected components of the sets f“(v),

veR, then (X,£,E)2(BogufiogsB).

Proof: There exists, by Theorem 1, a continuous mapping
g:Esg2X such that (Eﬁ,g,fﬁ() is a covering space and g*wfeg;.
Now, for any 9‘6&’, g-‘(?)gg;}(%f) if wa(?/';)e')f. Now, if any
connected component V' of gq'é(\f) meets g"(g), then V'c g"(g’,)
since g(V') is connected and hence can only meet one
connected component of £(V), Thus g“(g) is the union of
such V'; these are then the connected components of g‘(?)
and each of them is mapped homeomorphically onto v by g
since fogwgi' 1t foilowa that g is one-one and the corollary
is proved.

This shows that, up to isomorphism, there exists
for each cevering)@ of E by domains exactly one covering
space of E even in)@ andﬂémﬁimply connected with respect to
the coveringi@ determined hy\f. This constitutes a new
conceptual description of the covering spaces (E*,gf,ﬁ).

Lemma 7: Let E be a connected, locally connected space,

K a covering of E by domains and £, :X 9E a continuous

mapping such that X, is locally connected and each V&Wf

is evenly covered by X, with respect to f,, Let X be any

connected component of Xt and £ the restriction of fs to X:

then (X,f,F) is a covering space even in)(.

Proof: W%e first prove f(X)=E. Assume p¢E and let Véﬁ’be

a neighbourhood of p. Let V, be the connected components
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of f'\"(V). If, for somea , V,nX#@, then V, is entirely
contained in X, whence Xaf}'(V)=VV, over all suchd. It
follows that, if Vaf(X)##, we have V&€ f(X); in particular,
if p is adherent to f(X), then p is interior to f(X)., Thus
£(X) is open and closed in E, whence f(X)=E. For any Ve&¥,
the connected components of f™'(V) are tAhe sets Vy where
V*n:(%ﬁé, since each V, is a maximal connected subset of
£(V), and so of £*(V)., It follows that (X,f,E) is a
covering space even in ¥ and the lemma is proved.,

Theorem 3: Let ¥ be q'ﬂ -gimply connected space where\«

is a covering by domains, and let (X,f,F) be a covering

space even inW., Let g:W—F be a continuous mapping such
that for each VeX, g(V)S U for some UEW, Then, for any

(we yXo)eWxX such that g(wo)=f(x,), there exists a unique

continuous mapping h:¥ =X such that g=feh and h(w, )=Xg.

Proof: The restriction of pr, :(w,x)-»w of WxX onto ¥ to
@X=§(w,x)/f(x)=g(w)} is a continuous mapping k:W@X-¥,

If weW, take UfWwith g(w)eU (a connected neighbourhood of
f(x)=g(w)) and note the U is evenly covered by X with respect
to £, Let U' be a connected component of f-\U). Let £*

be the local inverse of f on U with £*:U=', Let veX be

a connected neighbourhood of w with g(V)S U. Then the set
F={(z,£*(g(2)))/2eV} is mapped continuously to V by k. The
mapping 2-9(z,f*(g(2))) maps V continuously onto F and
k(z,f*(g(z)))=z. Thus k maps F to V homeomorphically,

Also, individual F's are disjoint since they come from
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disjoint U''s, Now K'(V)=UF since k(w,x)=weV means
xesome U' which implies the sets F are the connected com-
ponents of K'(V) and so V is evenly covered by W®X with
respect to ks Let C be the connected component of (w,,xo)
in W@X and let k, be the restriction of k to C. Then by
Lemma 7, (C,k,,#) is a covering space éven irﬂe and so is
trivial. Thus k"“ exists, We define h by k-:(w}n(w,h(w))
and note h is unique by Lemma 6,

Theorem 4: Let & be a\e—&;im;}ly connected space wiwref

is a covering of E by domains, and let DS ExE be a connected

neighbourhood of the diagonal such that V»VED for each

vef. Now, let a non-empty set T4 be assigned to each

xeb such that TyaTy=@ if x£y, and let a mapping Q,,,:T,I-)T,”

one-one and onto, be assigned to each (x,y)éD such that

(i) @y, is the identity for each x¢E.

ii - °oQ. for any (z.,x), (z,y), (y.x)eD,

Then, given any X.e¢F and t €T, ., there exists a unigue
e

mapping W:E=VU T, such that

(L)\W(x)eT, for each xeii,
(i) W(x )=tqg.

{ iii}ggxgmg‘,lgy(y)) for any (x,v)eD.

Proof: Set F‘;}{,_Tx and let p:F—E be defined such that

p(Ty)=1x}. For any ASE, we call a mapping s:A—F a section
on A if

(i) p(s(a))=a, aeA (i.e. s(a)eT,).

(ii)Q“‘fs(a‘))zs(a‘) for all (a,,a,)e(AxA)aD.
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We define a topology on F by taking the images
of sections on open sets U as the generating sets., If

UsUeD, uel, teT then there exists one and only one

g !
section s on U with s(u,)=t,, since s(u)=Q,,(t,) is defined
for all ueU and is clearly such a section, and if s':U-F
is another such section, then s'(u)uQ\h;_(to)ws(u). Thus
for UnUE D, p"(U)=Vs(U), where the union is over all
sections on U, which is open by definition., It follows
now that p is continuous; for, if WEE is open, then
W=\JU, with UrxU, €D, since any we¢W¥ has a neighbourhood
V such that VEW, V»VED, and then p ' (W)=\0p'(U,) which
is open,
Also, if U+U<SD and s is a section on U, then
p induces a homeomorphism on s(U) with U, First, p is
continuous and one-one. Also, all open sets are arbitrary
unions of finite intersections of images of sections by
the way we defined the topology. Now s(U)r\U(f\s“(*«; })e=
V(N s(U)as, (V. )). Here, if s(U)ns, (V,)#@, then s and
8, have the same value at some point of UnV,, hence they
coincide on the whole of UnV; and s(U)ns,(V, )=s(UnV,).
Thus s(U)AVUJ(N s, (V, ))=VU(Ns(UnVy))=s(Un(UNV,)). Thus
any open set ¥ in s(U) is the image of an open subset
of U with respect to the section s, and hence p(¥W) is ’open;
so p is an open mapping, thus a homeomorphism on s(U) with U,
This implies that F is locally connected since

F=\Js(U) over all UsUc D, and these s(U) are homeomorphic
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to U, and hence locally connected,

Now for any UsUSD, p(U)=VUs(U)., Each 8(U) is
connected, and distinct s(U) are disjoint, i,e., the s(U)
are the connected components of p'(U) and p, as we have
seen, induces a homeomorphism on éach of them onte U,

Thus the U are evenly covered. Since i‘car any Vﬂ‘, VxVebD,
the V are also evenly covered,

Take F,, the connected component of t,, and let
p, be the restriction of p to Fy. Then by Lemma 7, (F,,p,,E)
is a covering space even inW., This implies that Po i8
one-one $o p;‘ exists, Then we define the mapping W=p_'
where p7 maps E~»F such that p;'(x,)ut,.

It remwmains only te prove the uniqueness of the
mappingw. Let w' be any mapping which satisfies the
same conditions as W (including W'(x,)=ty). Let
A=§x/Y' (x)=\(x)} ; we know that A is not empty. Let x be
any point of E ~ud let N be a neighbourhood of x such that
NxNeD, Assume that N has a point x, in common with Aj;
then @y , (W' (x))=w'(x)=N(x,)=Q, , (y(x)), whence W(x)=y'(x).
It follows immediately that A is open and closed in E,
whence A=E as required.

Corollary: Theorem 4 remains valid if x£y does not

necessarily imply Tini =

Proof: Set Ti=14xT, and let Q:‘ :‘i;:—»'i‘; by (y,t)-—a(x,@,‘(t)}
where te’i“. This satisfies all of the required conditions

with T} and (?& in place of T, and Q"%' Then consider



F'ﬁké?; and the mapping k:F'=F by (x,t)=t. Thenw=key'
where\v':ﬁ-ﬂkﬁT: is the mapping with the desired properties

and this must be unique by the same argument as above,



4, The iutomorphism Groups of Relatively Greatest

Covering Spaces

Lemma 8: The automorphisms of a covering space (X,f.E)

form a group.

Proof: Let Y, T be automorphisms of the covering space
(X,£,E) with f=feN, f=foT, Then fo(N e =(fR)sL=feT=f,
Also fe€=f where £ is the identity transformation. Finally,
if f=fo¥, then fo¥ =(foT)oW '=fo(TeNY=fog =f and the lemma
is proved,

Remark 1l: If Y,\ are two automorphisms of the covering
space (X,f,E) and Y(a)=Wa) for some aecX, thenW="C (by
Lemma 6).

Remark 2: For any acE, a'ef™(a), the W(a'), N the auto-
morphisms of (X,f,E), form a subset of £ '(a), This may be
a proper subset, If it is equal to £ '(a) for each aell,
then (X,f,E) is said to be normal.

Theorem 5: For a connected, locally connected space E,

each of the covering spaces (Eimﬁi)ﬂ@ a_covering of &

by domains, is normal.

Proof: Take any a¢E, and let a’,a"é-g;',;(a). Then by Thecrem 3
there exists a continuous mapping@:fz‘.\,-) E,,‘ such that
g,'cng" and ?(a’)na“. Similarly there exists a continuous
1B, E , = g ")=a', ’
mapping WV Fag E‘,,‘ such that g.,‘d( Bag and\(a")=a Thus
Bago QoW=Ep and @(Y(a"))=a", hence by Lemma 6, ®oy is the

24
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identity. Similarly WeQ is the identity. Thus Q) are
homeomorphisms of EW onto itself and inverse to each other
such that Q,N**g,ﬂ =Eoge ‘I‘husQ,w are aufomorphisms of the
covering space (ﬂf,g?,ﬁ) with the desired properties and
the theorem is proved,

Corollary: Given any covering space (X,f,E), there exist

normal covering spaces (Y,g E) (X, £,1),

Proof: 1If (X,f,E) is any covering space, there exists a
covering W of E by domains in which (X,f,E) is even, But
(ﬁw,gw,E}E(X,f,E) and by Theorem 5, (E*“gv,ﬂ) is normal,

proving the corollary.



5. Relatively Greatest Covering Groups

Theorem 6: Let (Gip.gyG) be the greatest covering space

even in'\e where G is a topological group and"e is a

covering of G by domains, Assume for each Vef. aV@f for

all aeG, Then (i,,‘ can be made in one and only one way

inteo a topological group such that ({}W‘G) is a_covering

group.
Eroof: Let ‘éeg;(e), e the unit in G, be fixed throughout
the following. This € will turn out to be the unit in the
group structure we are gﬂing to define on Gy

Now (}.,‘ is ;f—-sim{;ly connected where ”;e is the covering
of Gapby the connected components of the sets gf;“,(%f)", Ve,
Let the mapping T, :G>G by x-dax, xeG be the left translation
of G onto itself. Then we have T&(@g?ﬁ")}a'{‘o‘(if)ma*v’ef by
hypothesis, Thus for any given ?éegg;(a) there exists, by
Theorem 3, a unigue, continuous mapping Sa:(},’—bﬁ? such
that T o gq‘mg_.{o:iia and S.&('é)xﬁ,

Now for Tc.o;:g?:(i?—){;, there also exists a continuous
mapping 5:G,;>G,e such that $(8)=8 and Torolpg=Cap®S + Then
T e g,'mg?oﬁaay%a’i‘c.o’?‘_o gg,rm’i‘wog”oii&mgvo%osa, hence gfmgg,',ofiﬁo Sy e
But 5(85(8))=5(%)=8 so Se8y leaves one point fixed, thus
SeS¢ =g, the identity transformation of Gf. Also, gy=
Tyo Tc,og;*mfro‘e gwoiﬁwgwoﬁto@ m;d S&(:%s(ﬁ))gf%%&(é)aé, hence also

Lo o # o . T ’
5° 8= Thus 5, Sy are one-one, onte and 5=5g, hence

26



8 3 is a homeomorphism,

Actually, S5=5 since: from T_.eg;,‘sg o3 we have

S (&) o L4
a =’I‘..{g,f(’é)')=gqf(ﬁ‘»(é}), hence iﬁ%(é}ea‘“(&"}- Thus guo8=T .oGp=

g,‘o s(g) and since us.,(e)-m(e), we have ’:‘”“sce)'

Now we wish to show that Lu&/ag(,x-,‘,} form a group.
We have just seen that for each Sy, there exists 3& such
that SgeS7=€=Sye54. Next, take Sy, Sz and show Sye S¢=85 ()
Since ‘wo (6)»~7§~(C) and T o° B=6 om&, T og,,‘rug; o8, then we
have To.°é§ag°3?"¢',“§§qg°ﬁ’§‘,°§5z" But T og‘*,)‘,o::wmf o T ””fai ol ,‘,
Thus T o g;”,"@“,'omut'bz. Then g‘v(a-.(c); ‘.,'( a..(m(e))}w
Voo @,V(e) T, (e)=ac, so S..(c)e ,eﬁac) Thus T o *.,fag,'f sa_(u
80 g",'eam .)ngwo; 3y*8, and since %S&Q(e)a%,{c) and Sg(5z(8))=

g ~ ] » 4
54(¥), we have fg o Gy = ing that iba/am,,'} is closed

u oV
Sﬁ‘.(..) P
under multiplication., Next, since Sg=f, there exists an
identity. Thus we see that the &3& form a group of homeo-
morphisms of G.,‘ onto itself.
Now consider the mapping ?'x—bi%& which is a mapping

s L - ~ % » SR 4 i A ~ iy A ...N

from Gog to {ba/ae(i-.‘,}. If Sg=Sy, then a=5,(8&)=5.(e)=c, so
ity » (4 P ~ > k3

the mapping is one-one. Ve define "z'xbak::a(b). This is a

law of composition in G,‘, such that ;~~m:> =5,.0 5~, hence

EPTO I Y
this law of composition makes (3,,‘; into a group, isomorphic
to the group of homeomorphisms i 5g/8€Gqgh.

Next we wish to show that fg.,e is a homomorphism,
Now g..e(aéh) g'e(m(h})agw(m(%(e)))n M(w(e))wabw* (a)*‘.‘,(b),

showing 6 is a howomorphism,

To show that G"?’ with its topology as a covering



space of G and the group structure just defined is a

~o =)

topological group, the continuity of the mapping (‘i't,g*)—)xy’
has to be shown, Since &%a:'i':ﬁ'éic is a homeomorphism, the
sets E?a&?z(‘\?), V the neighbourhoods of €, form the neighbour-
hoods of € for any 'é'e(},‘,‘ Thus it has to he shown that for
any neighbourhood V of 'é', there exist neighbourhoods ﬁ,?

of € such that 30(BF)'e%b'V, This condition means that
(%6%")(%%“5")9%, and if one can find neighbeurhwoéé 3:,3%
of € such that 3‘("&?{, XX E":f and 'i)‘i’f)"sﬁ, then gm;?m;i’ will
satisfy this,

Now, first, v may be assumed to be the connected
component of 2 in g;&(%’) with some evenly covered neighbour-
hoed V of e in G. Then there exists an open connected
neighbourhood X of e with X=X and XX€ V;j let X be the
connected component of g’,}(ﬁ) which lies in ?. if 5&6?(
then ?c"ﬁuﬁ;(g) is connected, meets V (at 3) ana lies in
g;&(\f); hence%‘:g—% and thus 3'{"6;;. Since g,*(ﬁ")ax"ex,
one even has ¥'¢X, and thus %*eX which gives g
Again, for any Xe¢X, %X is connected, lies in g;}(V) and
meets V (at %) such that %X<V, and hence =9,

, Next, it has to be shown that G.,‘uui“ (k=1,2,444)
where X"={%,...% /% X}, First, this union is open since
for any X,...%_, the set %, 00X, XSX"" is a neighbourhood
of %,.ss%,. Next, let c belong to the closure of this
union. Then, in particular, cXnX"#@ for some k, i.e.

N e YRY YR
cR=%, +0.%, with %,% eX, hence c=K,...% &'eX“X"=X""

[



Thus, the union is also clesed, and since it is non-void
it must be equal to G-q,
’ P o~ ~ " ~ N v
It follows that b=X,...X¢ with suitable X.¢X, Now,
since G is a topological group, there exist open connected

neighbourhoods X,,+..,X, of ¢ in G such that X=X 2X2...2X

Ay " - . :
and x X XUS X ,000,X; fx‘_xb-x.k_‘,....,x‘};kxngx‘_\ where

x.‘.ag..'(x'k)_ Let }{»\_ be the conixect@d component of gf"(xt)
~ ~ N ~ o~ ~ ~~ ~
which lies in V. Then X=X, 2X 2 ...2X_ and xleX, XXV

implies that X‘_ :_‘c V. Since g.,‘, induces a homeomorphism
o4 ~ ~at

&) e
on V and maps X X onto X.x T X X3

-

L is connected and open,
a)
X

3 2 ~ ',1‘ - -\ - ur - 7 kY
hence so is XX, ¥;. From g,‘(‘)"c X, X) x-h.\_x.‘c X, ., it follows

L S (ol 1

that X }E.&'ch;}(}i-\_ D, and since % X.% meets X, (at %)

~
one has %LX‘_XLSX Combining all these relations for

Ll 1}

2 bX b .
- "5

b c Xk, and

i=041,44+,% one has X2 ;c‘;(\&""g X, szlx;'"'"'?_..
Hence 5('“ is a neighbourhood of ¢ such that (53
by the remarks at the beginning of this proof, this
establishes the continuity of the mapping (¥,¥)->%%".

Now we must show that the structure of G\o as &a
topological group such that (G,‘,,gv,{}) is a covering group
is unique. If there is another group structure on G,‘,
(whose multiplication may be denoted by %*¥) such that
these conditions are satisfied, let :?T%i be the left trans-
lation by & in this structure, i.e. S{:?{—)&*S’c’. Then,
for ';cc-g,’,"!(x): g,‘,(ﬁi(i))saxu’ru(x), hence g,.'o%* =T ’gofgv°5‘&'
Since also &Sé(‘é)u&'mﬁa(é), one has S¢=S by Lemma 6. This

(1
implies a*%=8X for any 2,%¢Gyp, hence the multiplication



defined above is unique.

Lemma 9: Let HEG where i is a discrete, normal subgroup

of a connected topological group G. Then ax=xa for any

Proof: The mapping x-9x>ax (at¢Hl) is continuous and maps
G into H, Hence ixJax/xeG} is cannectéd and contains a.
Since H is discrete {x™ax/xe¢GY={al or ax=xa. Thus H is

abelian.,

Corollary: The automorphism group of the covering space

gi",i#\,g:,‘,(}) is abelian,

Proof: First we must show that the automorphism group #

of the covering space ({}.,e,g,‘,,{;) is isomorphic to ker(g‘?).

Now, the left translation Te:Gﬁriﬁw,(e’eg%ﬂa)m
ker{g10) is a homeomorphism such that g?o’enTeogvagwu
thus Te.tﬁ‘.

Next, ifVes, ti,:en“’m'i‘q_&) since: g,rg;,eav by
definition of ¥, and Eg=tgoTy gy 18O ’i‘q.és(é')mﬁ'(é'),
thus W“TT&)’ 80 each WeA is of this form,

Now the mapping e'—T, maps ker(gv) ontoR; also
Téer“TETE“so the mapping is a homoworphism. Now, if Ta=E
the identity automorphism, e'nqy(ﬁ)wéie')ae', thus e'=e
and soj?éker(gv). By Lemma 9, ker(g1ﬁ‘is ab&;ian, thus
is abelian as required.

Finally the following two theorems may be proved:

Theorem 7: If G is a'ﬂwaimplv connected topological groun

and h a local homomorphism into a group i, defined on

Cd



NV (ve€), then h has an extension h' to a homomorphism

of G into H.

Theorem 8: If h is a local homomorphism from a topological

group G into a group H defined on a neighbourhood W of e in

G, then there exists a covering group (5,@;.':}) and a homomor-

phism h:G—H such that ﬁ(s)uh(g(&;)) for s in the connected

component of © in g-W(W).

The proof of Thecrem 7 is based on Theorem 4 and is
essentially the same as that of Theorem 3, Chevalley, page 49.
Theorem 8 is obtained by applying Theorem 7 to the covering
group (G,f,gt,s:;) where“’m{m’/ae{}} and V is a connected
neighbourhood of e such that V'VE W, % is the extension of
the local homomorphism G,‘,-»H given on the connected component

of @ in g;}(%ﬁs‘) by s—h(g,ls)).
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