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Abstract

Image and video enhancement, a classical problem of signal processing, has remained

a very active research topic for past decades. This technical subject will not become

obsolete even as the sensitivity and quality of modern image sensors steadily improve.

No matter what level of sophistication cameras reach, there will always be more

extreme and complex lighting conditions, in which the acquired images are improperly

exposed and thus need to be enhanced.

The central theme of enhancement is to algorithmically compensate for sensor

limitations under ill lighting and make illegible details conspicuous, while maintaining

a degree of naturalness. In retrospect, all existing contrast enhancement methods

focus on heightening of spatial details in the luminance channel to fulfil the goal, with

no or little consideration of the colour fidelity of the processed images; as a result

they can introduce highly noticeable distortions in chrominance. This long-time much

overlooked problem is addressed and systematically investigated by the thesis. We

then propose a novel optimization-based enhancement algorithm, generating optimal

tone mapping that not only makes maximal gain of contrast but also constrains

tone and chrominance distortion, achieving superior output perceptual quality against

severe underexposure and/or overexposure.
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Besides, we present a novel solution to restore images captured under more chal-

lenging backlit scenes, by combining the above enhancement method and feature-

driven, machine learning based segmentation. We demonstrate the superior perfor-

mance of the proposed method in terms of segmentation accuracy and restoration

results over state-of-the-art methods.

We also shed light on a common yet largely untreated video restoration problem

called Yin-Yang Phasing (YYP), featured by involuntary, intense fluctuation in in-

tensity and chrominance of an object as the video plays. We propose a novel video

restoration technique to suppress YYP artifacts while retaining temporal consistency

of objects appearance via inter-frame, spatially-adaptive optimal tone mapping. Ex-

perimental results are encouraging, pointing to an effective and practical solution to

the problem.
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Chapter 1

Introduction

1.1 Background and Motivation

Photography is an invention of great significance in human history that enables one

to record his or her vision. With the advances of imaging science and technology,

cameras become ever more sophisticated, smaller in size and easier to use, making

digital photography a ubiquitous and effective tool of communication, work and en-

tertainment in daily lives. Bearing a strong resemblance to the human visual system

(HVS) is the Daguerreotype camera, as depicted in Fig. 1.1. This classical design

of cameras is the first and only one ever developed commercially with great success.

Both Daguerreotype camera and HVS rely on a lens to converge the incoming lights

from the physical world onto a sensor array and then transform the lights into two-

dimensional images. Thanks to years of research and development, digital cameras

nowadays are able to produce photos with almost no discernible differences from hu-

man vision. They can even surpass HVS in some aspects of image quality, including

higher resolutions in spatial, spectral and value domains.

1



Ph.D. Thesis - Zhenhao Li McMaster - Electrical Engineering

(a) (b)

Figure 1.1: Structure of human visual system (HVS) (a, [40]) and a digital camera
(b).

However, in one perception attribute, modern image sensors still cannot match the

power and versatility of HVS, that is, high dynamic range vision that can accommo-

date and adjust to extreme and/or complex lighting conditions. Fig. 1.2 exhibits some

frequently encountered typical problems of poor quality images captured by modern

cameras operating under ill illuminations, including underexposure, overexposure,

uneven exposure, low contrast, etc. These problems may aggravate when producing

videos under poor lighting. If the objects and/or cameras move in an environment

of uneven illuminations, the acquired images may drift between underexposure and

overexposure, back and forth over frames, causing severe temporal artifacts as well.

Unlike cameras, human eyes can adapt to drastic changes of light strength in space

and time, and function properly in a very high dynamic range of energy level of visual

stimuli. This is why we can perceive objects and understand the scenes much better

than cameras in poor and fast changing illumination conditions.

Technically there are several causes for failures of cameras to produce good, legible

images, including:

2



Ph.D. Thesis - Zhenhao Li McMaster - Electrical Engineering

(a) (b) (b)

Figure 1.2: Typical scenes of poor lighting conditions such as (a) dark scenes lead-
ing to underexposure, (b) extremely bright scenes leading to overexposure and (c)
backlighting.

• Improper camera settings. In photography, cameras need to adapt to differ-

ent lighting conditions by adjusting photographic parameters (such as exposure

time, aperture, ISO values etc). The parameter setting is done either manu-

ally or automatically. However the quality of acquired images may still suffer

from poor lighting conditions, no matter in manual automatic automatic mode.

Backlighting is such an example with extremely varied illumination in different

regions of an image; the backlit foreground surfaces are severely underlit while

the frontlit background surfaces are comparatively overlit. Hence backlit and

frontlit surfaces require entirely different exposures from each other. This is be-

yond photographers’ control and defies cameras’ automatic exposure settings.

As a result, no photographic settings can prevent serious degradation quality

in some parts, with details lost and colours shifted or washed out.

• Limitations of hardware. Modern digital cameras are known for their high spa-

tial resolutions. However, for compact and inexpensive mass-marketed cameras

high spatial resolutions necessarily shrinks the pixel size. As a result, the opti-

cal energy impinging on the physical pixel area diminishes. In addition, the use

3
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of colour filter array (CFA) for colour reproduction further reduces the light in-

flux. These mean, in the presence of inevitable sensor noises, low signal-to-noise

ratio. The problem will be exacerbated by insufficient illumination, causing low

contrast and poor legibility of captured images.

• Limitations of in-camera digital signal processing (DSP) chip. Digital cameras

employ a DSP pipeline that converts raw sensor data into images by a series of

algorithms, including denoising, gamma correction, colour demosaicking, white

balancing, compression, etc[13, 58, 63]. But due to very tight constraints of

the architecture of system on chip (SoC) [21] and the real-time requirements,

the hardware implemented algorithms have to be streamlined and their perfor-

mances are often subpoptimal.

Granted, the above problems can be alleviated by using a more sophisticated

professional-grade camera, by more experienced photographers, or by using auxiliary

equipment such as flash, tripods and light reflectors. But these solutions are expen-

sive, user unfriendly, or unportable. A far more effective and flexible alternative is

the off-line use of advanced image postprocessing algorithms to repair and enhance

undesired poor quality images. The restoration and enhancement algorithms are typ-

ically implemented in software and executed on smartphones, computers, over even

in cloud, if needed.

Image enhancement and restoration have been active research topics since the

birth of image processing and computer vision fields. A large number of algorithms

have been published to tackle the problem of image quality degradation due to poor

lighting (see Sec. 1.2). Although the existing methods are highly effective in maintain-

ing good image quality against less than ideal lighting conditions, their performances

4
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are still unsatisfactory on images acquired under extremely pathological illuminations.

Pushing the envelope to reproduce legible and visually pleasing images in seem-

ingly impossible lighting conditions is more than just an academic interest. Not only

professional purists, ordinary users have also developed an insatiable appetite for

good images at anytime and anywhere. In fact, good image quality defying adversary

environments, for instances in the night or a dark room, is one of the main tech-

nical merits for which camera and smartphone manufacturers are competing with

each other. In this Ph.D. thesis, we strive to explore and develop new image restora-

tion and enhancement methods that can withstand ill, extreme and complex lighting

conditions and achieve an image quality surpassing the current state of the art.

1.2 Related Work

Existing image enhancement methods can be classified into two categories: 1) local,

or pixel context-sensitive; and 2) global or pixel context-free.

1.2.1 Context-sensitive Enhancement

In the class of context-sensitive enhancement approach, the contrast is viewed as the

rate of change in intensity between neighbouring pixels. The contrast is increased by

exaggerating the local waveform changes on a pixel by pixel basis. High-pass filtering

(HPF) methods, such as unsharp masking and highboost filtering [24], fall into this

class. Since edges and high textures are high-frequency features of an image, they

will be made more prominent by the HPF methods. A common problem with HPF is

that boosting frequency bands is likely to introduce ringing and halo artifacts around

5



Ph.D. Thesis - Zhenhao Li McMaster - Electrical Engineering

edges, because HPF methods may alter the relative ranking of pixel values in a neigh-

borhood [60]. To attenuate such artifacts, improved HPF-type methods are proposed,

including edge-preserving filtering (bilateral filtering) [19, 20] and multiscale wavelet

transform [12, 31].

Homomorphic filtering is another example of HPF enhancement. It is based on the

illumination-reflectance image formation model I(x, y) = l(x, y)r(x, y), where each

pixel I(x, y) is expressed as the product of the illumination l(x, y) and reflectance

r(x, y) components [24]. As illumination signal l(x, y) is predominantly low-pass and

reflectance signal r(x, y) is high-pass, one can enhance details by high-pass filtering

of the logarithm image log I(x, y) = log l(x, y)+log r(x, y). Retinex algorithm and its

variants [22, 23, 35, 36, 70] adopt a more precise decomposition of illumination and

reflectance than homomorphic filtering; they can prevent many artifacts that plague

earlier HPF methods. However, illumination-reflectance decomposition problem is a

severely ill-conditioned; it cannot be solved satisfactorily in many cases. The enhance-

ment techniques based on the illumination-reflectance model are prone to introduce

a degree of unnaturalness in output images.

1.2.2 Context-free Enhancement

The context-free contrast enhancement approach, on the other hand, does not adjust

the local waveform on a pixel by pixel basis. Instead, the class of context-free contrast

enhancement techniques adopt a statistical approach. They manipulate the histogram

of the input image to separate the gray levels of higher probability further apart from

the neighbouring gray levels. In other words, the context-free techniques aim to

increase the average difference between any two altered input gray levels. Compared
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with its context-sensitive counterpart, the context-free approach does not suffer from

the ringing artifacts because it can preserve the relative ordering of altered gray levels.

Among existing methods lying in this category, histogram equalization (HE) is one

of the earliest and most commonly used. It seeks for a tone mapping that best flattens

the luminance histogram. Despite its popularity, HE does not always give satisfying

results, mainly characterized by overexposures and overemphasized textures. Many

authors published works to improve HE, mainly by alleviating its side effects. For

instance, the technique of adaptive histogram equalization (AHE) [56] performs HE on

subimages and then fuses the local HE results. Contrast limited AHE (CLAHE) [78]

is a famous variant of AHE which effectively relieves overexposures. More HE-based

algorithms have been introduced since then for both grayscale and colour images,

including 3-dimensional HE for RGB images [26, 68], optimization based HE [3] and

HE in logarithmic transform domain [2], etc[14, 64]. Note that all the HE variants

mentioned above inherit the spirit of HE that the output histogram should be as

uniformly distributed as possible so as to reach maximal global contrast. This view

is criticized in [72], in which the author reexamines HE-based algorithms and points

out that histogram uniformity is a poor proxy for high contrast.

Another family of methods adopt new design criteria rather than histogram equal-

ization. They try to optimally trade off between high contrast and image natural-

ness. For instance, Arici et al. propose a Langragian optimization scheme to balance

histogram uniformity and histogram faithfulness [3]. The automatic exposure cor-

rection algorithm in [75] tries to find the optimal S-curve mapping according to the

distribution of luminance. Wu proposes an optimization framework named optimal

7
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contrast-tone mapping (OCTM) that maximizes global contrast under a tone distor-

tion constraint. The methods in [6] and [59] use contrast metrics of second-order

statistics.

1.3 Image Contrast and Naturalness

All image enhancement algorithms are designed to serve a common purpose: to boost

the visibility of object surfaces and edges. This design goal agrees with the fact that

human cognition of the physical world is rooted in visual interpretation of object sur-

face and edge properties, such as the geometric, textural and spectral characteristics.

This visibility is largely a synonym to image contrast; therefore, sharp contrast of

edges and local patterns on the object surfaces correlates to high visual quality. The

problematic images in Fig. 1.2 suffer from low contrast (either globally or locally);

details and textures get severely degraded and become illegible. Situation can be

even worse: as shown in Fig. 1.3(a), due to extremely low contrast of some patches

and the image in general, observers can hardly recognize any objects in the scene.

Fortunately, despite the seemingly total illegibility to human observers, the degraded

information is not completely lost in most cases; therefore it is possible for image pro-

cessing techniques to repair the damaged details by increasing the contrast in regions

of low dynamic range (Fig. 1.3(b)). For the same reason, contrast has been used as

a key factor of perceptual image quality [2, 34, 54, 71].

However, perceptual image quality is more than simply high contrast. The natural

appearance of the image is also important and should not be compromised merely for

the sake of high contrast. Many existing methods can indeed achieve high contrast

with heightened textures and details, but at the same time they also introduce various

8
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(a) (b)

Figure 1.3: An image with extremely dark appearance (a) still contains information
that can be repaired by the proposed enhancement technique, resulting in (b).

types of visual artifacts, making images appear unnatural. Below we summarize the

most frequently encountered artifacts with existing image enhancement methods.

• Halo artifact. Halo artifact commonly occurs when applying transform domain

(e.g. frequency or wavelet domain) based or spatially adaptive high-pass filters.

Fig. 1.4(b) shows a typical halo effect: a glowing layer appears between the sky

and the roof of the house. The main cause of halo artifact is that high pass

filtering tends to alter the local order statistics of pixel values.

• Tone distortion. Camera sensors advance rapidly in dynamic range in recent

years. Nowadays, 10-bit (i.e. supporting 1024 intensity levels) image sensors

are commonplace and have been widely adopted in smartphone cameras; sen-

sors in higher-end digital cameras can reach even higher precision up to 16-bit.

However, the raw sensor data has to be quantized into 8-bit precision for display

and transmission. The quantization procedure removes the subtle differences

between adjacent intensity levels as multiple intensity levels are quantized into

9
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(a) (b)

(c) (d)

Figure 1.4: Frequently encountered artifacts with existing image enhancement meth-
ods. (a) Input image; (b) enhancement result by [35] with halo artifact; (c) en-
hancement result by [3] with tone distortion in the clouds, almost washed out; (d)
enhancement result by HE with chromaticity distortion where the colour of the sky
is turned into cyan.

one, resulting in distortion in tone.

Such many-to-one mappings may also occur in image enhancement methods

involving luminance mapping, causing tone distortion. Fig. 1.4(c) shows an

example: the enhancement algorithm improves the visibility of most objects in

the scene, but it also erases the clouds from the sky.

• Chromaticity distortion. By conventional definition, the term contrast is con-

cerning the luminance channel solely, and so are the aforementioned artifacts.

But, observable distortions in chromaticity can also be found as in colour images

generated by many existing enhancement methods. For example, in Fig. 1.4(d),

the colour of the sky is turned from blue to cyan by an enhancement method.
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Such effect also exists in Fig. 1.4(b)(c).

• Noise. As mentioned before, images inevitably have background noises due to

imaging sensor imperfection. The noises are typically white, temporally variant

and independent at each pixel, with considerable contribution in high frequency

range [52]. Since image enhancement algorithms try to amplify the high fre-

quency components of images [24], they cause the side effect of exaggerating

the noises.

Several previous works are dedicated to modeling enhancement artifacts as well as

devising naturalness-aware enhancement methods. [31] propose an empirical image

naturalness metric and utilize it to evaluate enhancement methods. Edge-aware filters

such as bilateral filtering [67] and guided filtering [30] can smooth pixels in an object

surface while preserving edges, thus effective in neutralizing sensor background noises

and suppressing halo artifacts [19]. In [72], the author proposes a mathematical model

of tone distortion, and develops a tone distortion constrained enhancement algorithm

based on the model.

Past research on image enhancement is mostly devoted to the manipulation of the

luminance channel. Chromaticity distortion has been largely overlooked till the writ-

ing of the thesis. Ironically, research on colour science [37] reveals that although the

HVS can only distinguish roughly 450 gray levels, it can detect a significantly larger

number, around one million, of different colours. In other words, the chrominance

channels carry far more information than the luminance channel alone. As such,

colour fidelity plays a vital role in perceptual image quality, in addition to contrast.

This motivates us to study chromaticity distortions and investigate new methods that

can enhance low-lighting images while preserving colour fidelity.
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In summary, increasing contrast is capable of improving the sharpness of edges

and textures, but it can also harm the naturalness of images if done without care. Bal-

ancing between contrast and naturalness is therefore critical in image enhancement.

We address the balancing problem by a novel approach of constrained optimization;

specifically, we formulate and carry out image enhancement as an optimization prob-

lem with contrast being objective function and the aforementioned distortions being

constraints. This methodology of balancing between contrast and naturalness is used

in the development of all the proposed methods in the thesis.

Recall that in Sec. 1.2 we reviewed several optimization-based enhancement meth-

ods; some of them also advocate the above said balancing. But many of the objective

functions and constraints are empirical and quite ad hoc; for examples, assuming that

uniform histogram is optimal, or an S-curve is optimal [75]. In contrast, our opti-

mization criteria are based on a physical image formation model and the knowledge

of colour science. The validity and effectiveness of our optimization methodology are

corroborated by the results of extensive experiments on severely underexposed and

overexposed images.

Moreover, the proposed optimization-based framework can be easily extended (to

gain desired properties, so as to) deal with more complex lighting conditions that

overwhelm most existing image/video processing approaches. A typical example is

to restore images suffering from backlighting (Fig. 1.2(c)), where an image consists

of two types of regions that require drastically different adjustment as mentioned in

Sec. 2.1. Unlike existing context-free enhancement methods that operate on both

regions indiscriminately, we combine our optimization-based method with learning-

based segmentation to employ two optimal tone mappings, one on each region. Such
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combination adds spatial adaptivity to the original enhancement method, without in-

troducing spatial artifacts. We also explore the means to ensure temporal consistency,

apart from spatial adaptivity, when processing videos. This is achieved by an inter-

frame harmonization technique between frames on top of the original enhancement

method.

1.4 Research Contributions

The thesis presents a series of algorithms that restore images and videos of undesirably

illuminated scenes. The major contributions are listed as follows.

• We address the long-time neglected chromaticity distortions with existing en-

hancement methods, which may introduce highly noticeable artifacts degrading

the naturalness of resulting images. We conduct quantitative analysis on the

chromaticity error and devise a novel scheme to suppress it. Based on this,

we propose a novel optimization-based contrast enhancement framework for

colour images that maximizes global contrast with zero halo artifact as well as

constrained tone and chromaticity distortions [44]. We further develop a fast

algorithm that solves the optimization problem by dynamic programming.

• We propose a learning-based spatially adaptive technique of optimal tone map-

ping to restore backlit images. Object surfaces illuminated from behind in a

scene are detected by a soft, binary classifier that is constructed by supervised

learning. Two optimal tone mapping functions, one for backlit regions and the

other for the remainder of the image, are used and their outputs are fused to

restore illegible surface details in backlit regions and at the same time improve
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contrast in overexposed regions, if any [45, 46].

• We extend our work to videos, addressing the problem of Yin-Yang Phasing

(YYP), which is characterized by involuntary and abrupt flip-flop in luminance

and possibly chrominance due to incorrect auto-exposure of cameras. We then

propose a video restoration technique that neutralizes YYP artifacts while re-

taining temporal consistency in terms of exposure and chrominance of object

surfaces in the scene via inter-frame, spatially-adaptive optimal tone mapping

[73].

1.5 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2 we systematically analyze

the causes of artifacts accompanying current image enhancement methods, and in-

vestigate how to minimize them and preserve image naturalness. Having exposed the

weaknesses of existing methods, we propose a novel optimization-based framework

for image enhancement and develop a fast dynamic programming algorithm to solve

the optimization problem in Chapter 3. In Chapter 4, we present a novel solution

to restore backlit images, by combining the above enhancement method and a su-

pervised learning based segmentation method. In Chapter 5, we extend the work in

Chapter 3 from images to videos; we address YYP, a common yet largely untreated

degradation problem with videos, and propose a novel inter-frame, spatially-adaptive

optimal tone mapping algorithm to eliminate YYP artifacts and maintain temporal

tonal consistency between frames at the same time. Finally Chapter 6 summarizes

the thesis.
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Chapter 2

Chrominance Preservation in

Image Enhancement

2.1 Introduction

As pointed out in Sec. 1.3, a common problem with existing image enhancement

methods is that they only focus on heightening spatial details in the luminance channel

with no or little consideration of potential loss of colour fidelity. For certain scenes this

deficiency can be a serious perceptual quality issue, as it produces objectionable colour

distortions in enhanced images, such as hue shifting and low saturation. In pursue

of higher chrominance precision in image enhancement, we launch, in this section,

an in-depth study into the root cause of chrominance distortions of existing contrast

enhancement methods and strive to prevent or at least alleviate such distortions by

improving the existing methods. We discover that the limited range of the 3D colour

spaces used in practice is the main cause of chrominance distortions. This is because

increasing contrast often demands reproduction colours to fall outside of the device
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gamut; the necessary remapping back within the RGB cube of the display hardware

easily shifts the original hues, if done without due care. Accordingly, to prevent

shifted hues, we propose an optimal clipping strategy that keeps the hue intact, while

minimizing the distortion in saturation.

The remainder of this chapter is organized as follows. In Sec. 2.2 we review the

general work flow of enhancement methods in relation to the physical image formation

process. And then in subsequent sections, we explore various means of preserving

colour fidelity when manipulating contrast. In Sec. 2.3, we propose a novel LHS

colour space that is designed to facilitate psychovisually based image enhancement; in

Sec. 2.4 and 2.5 we expose the out-of-gamut problems, the main cause of chrominance

distortions in enhancement methods, and develop an optimal clipping scheme that

aims to minimize such chrominance distortions in Sec. 2.6 and 2.7.

2.2 Image Formation and Enhancement Model

We use a physical image formation model to shed some light on the relationship

between luminance and chrominance. A camera of spectral response s(λ), λ being

the wavelength, generates the colour (spectral) signal at pixel (x, y):

I(x, y, λ) = s(λ)`(x, y, λ)r(x, y, λ), (2.1)

where `(x, y, λ) is the illumination light, r(x, y, λ) is the spectral reflection function

of the small surface area corresponding to pixel (x, y). In natural outdoor scenes, the
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illumination source `(·) is typically white (constant energy level for all λ), thus

I(x, y, λ) = s(λ)`(x, y)r(x, y, λ). (2.2)

More specifically, the spectral reflection r(·) can be modeled by the bidirectional

reflectance distribution function (BRDF) [66]. BRDF splits the spectral reflection

r(·) into two components, said diffuse and specular reflections:

r(x, y, λ) = kd(λ) cosα(x, y) + ks(λ) coss β(x, y), 1 (2.3)

where the first term stands for diffuse reflection, with α(x, y) being the angle between

incident light and the surface normal located at pixel (x, y); the second term approx-

imates specular reflection, with s being the degree of surface glossiness and β(x, y)

being the angle between the view direction and specular direction (see Fig. 2.1). Both

α(·) and β(·) depend on the geometric properties of the surface. On the other hand,

kd(λ) and ks(λ) are both determined by the spectral features of the surface material

but independent of the geometric properties.

Figure 2.1: An illustration of α(x, y) and β(x, y) in BRDF(2.3).

Given the scene to be imaged and the camera, s(λ) is fixed and so is r(·). These

1The formula holds for surfaces made of isotropical material. Most surfaces in natural scenes are
isotropic.
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two terms s(λ) and r(·) are completely determined by the camera and the scene

being imaged. The quality of image I can be interpreted as the amount and fidelity

of details regarding the scene (conveyed by r) that an observer can perceive from

the image. To improve the quality, one can only adjust the illumination term `(·),

either physically (e.g., adding auxiliary lighting, adjusting exposure time and/or lens

aperture), or algorithmically through digital image processing techniques. Indeed,

improper illuminations and/or operator’s errors on exposure time setting are main

causes of poor image quality, in the form of either underexposure (too low an `

to reveal subtle details) or overexposure (so high an ` that the sensors saturate).

Rectifying the problem through physical means like in a professional photo studio

is cumbersome, unportable, and expensive; furthermore, this requires the knowledge

of expert photographers. A much more attractive alternative is to compensate for

the imperfection of illumination conditions or operator’s errors by image processing

methods.

Under white illumination conditions, if one could vary ` to improve image quality,

the changed light source should remain white as well; otherwise, noticeable unnatural

chrominance distortions may occur in the enhanced image. For the same visual

effect the enhancement method should increase contrast with no or little changes

in the spectral distribution of the object surfaces, which is essentially determined by

the spectral response patterns of 1) the camera s(λ) and 2) the surface material at

the pixel kd(λ), ks(λ), but not `. However, none of existing contrast enhancement

techniques are designed to preserve chrominance. When being applied to colour

images, almost all image enhancement methods adopt a näıve separation approach as

illustrated in Fig. 2.2. An RGB input image I is first transformed into another colour
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TransformInput Image I

Luminance L
Enhancement on 

luminance T: L → L’

Inverse transform

Chrominance

Output Image I’

Figure 2.2: A widely used pipeline for existing colour image enhancement techniques.

TransformInput Image I

Luminance L Chrominance-aware 

enhancement on 

luminance T: L → L’

Inverse transform

Chrominance

Output Image I’

Figure 2.3: Pipeline of the proposed enhancement method.

space that decouples luminance and chrominance (a two-dimensional subspace that

specifies spectral distribution independent of luminance). I is then enhanced on the

luminance channel (denoted by L) by a mapping function T , and finally transformed

back to RGB space to form the output image I ′. The last step is carried out by

combining the enhanced luminance (denoted by L′) and the original chrominance

information.

Independent adjustment of luminance, as in current practice, is prone to chromi-

nance distortions in the resulting image, even without any explicit modification of

chrominance components. An image enhancement method should not manipulate

the luminance channel in isolation; instead it should jointly consider the luminance

and chrominance channels to prevent chrominance distortions. This new design prin-

ciple is schematically described by Fig. 2.3.
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2.3 Colour Space

Under most lighting conditions, human perception of colours originates from the

excitations of the three types of cone cells by lights in visible spectrum. The excitation

of a cone cell depends on the intensity and spectrum of the incident light; each

type of cone cells has a specific response function to wavelength of light. As such

the colour sensation is intrinsically a trivariate function, physically corresponding

to the trichromatic cone cell reactions. A colour space is a commonly used tool to

organize (and distinguish) perceivable colours, which is typically three-dimensional

to encode trichromatic colour vision. Existing colour spaces are designed for various

purposes with different meanings of the three components. For example, the RGB

space is hardware oriented, as most cameras and displays work in red, green, and blue

primary colours. The Y UV space is designed for reducing redundancy among colour

components for image/video compression applications.

However, most of these colour spaces are not designed specifically for image en-

hancement tasks. In this work, we investigate the colour space whose dimensions are

most favourable to the goal of enhancement, that is 1) increasing contrast, while 2)

keeping chrominance intact. In the subsequent subsections below, we justify each

selected component of our novel, enhancement-oriented colour model, called LHS.

2.3.1 Luminance Component

As mentioned in Sec. 2.2, most enhancement methods in literature associate contrast

with variance in luminance. To increase contrast, they adopt colour spaces with

a luminance channel along with another two chrominance channels, such as HSI

[14, 76], HSV [27], Y UV [72, 74], etc. But these colour models have a drawback in
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common: there is no explicit correlation between perceptual contrast and luminance.

This leads to inconsistent adjustment on objects with different luminance values,

where some objects are greatly enhanced whereas others are still of low contrast.

Instead, we adopt the L∗ component from the CIELab colour space because of its

property of perceptual uniformity: the distance between two colors in the CIELab

space is approximately linear to the perceptual difference of the two colors. Thanks

to this property, the distance in the L∗ axis can be interpreted as contrast.

For an RGB colour vector c = (r, g, b), the corresponding L∗, ranging from 0 to

100, is defined as

L∗ = f(Y ),

Y = 0.2126r + 0.7152g + 0.0722b,

(2.4)

where Y is weighted average of R, G and B that corresponds to the measured bright-

ness, i.e., perceived luminance by human (on devices under Rec. 709 standards [33]);

human eyes are, as well known, most sensitive to green and least sensitive to bluish

light. Y is subsequently nonlinearly transformed by f(·) to gain perceptual unifor-

mity. Details of f(·) can be found in [17].

For convenience, we adopt the normalized L∗, i.e., L
∆
= 0.01L∗, which ranges from

0 to 1 in the proposed colour space.

2.3.2 Chrominance Components (Hue and Saturation)

Since we adopt the luminance component L∗ from the CIELab space, a straightfor-

ward method is to use the CIELab space directly in image enhancement. But its two

chrominance channels a∗ and b∗ cannot determine a specific spectrum as their ranges
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are correlated with the luminance; therefore preserving chrominance dimensions a∗

and b∗ cannot ensure the constancy of colour spectrum. In order to specify colour

spectrums independent of luminance, the proposed colour space adopts hue and sat-

uration as its chrominance components. Hue corresponds to dominant wavelength of

the spectrum of a colour, specifying the overall colour impression (e.g. red, yellow

and green); saturation corresponds the relative strength of the dominant wavelength

of a colour over other wavelengths, specifying how much the colour is diluted by white

light.

We adopt the mathematical definitions of hue H and saturation S from the HSI

colour space [24]:

H =60◦ ×H ′,

H ′ =



undefined if M = m

g−b
M−m mod 6 if M = r

b−r
M−m + 2 if M = g

r−g
M−m + 4 if M = b

(2.5)

S = 1− m

I
(2.6)

where M = max{r, g, b},m = min{r, g, b}, and I = (r + g + b)/3. Hue H is a

circular value in the polar angle range [0, 360◦); an angle corresponds to a particular

wavelength of the light. Saturation S ranges from 0 to 1, representing the relative

purity of the dominant wavelength in the light; a larger S value corresponds to a

more vivid, “purer” colour.
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As the hue and saturation of a pixel is completely specified by the spectral distri-

bution, they are approximately constant if the object surface area pertaining to the

pixel consists of a consistent material of a given spectral signature. Demonstrated in

Fig. 2.4 is such an example, where pixels of the same object surface material have

similar hue and saturation values regardless of luminance. Thus, an enhancement

approach that adjusts the luminance channel should keep hue and saturation values

intact in order to preserve the naturalness of the resulting image.

(a) (b) (c)

Figure 2.4: Hue and saturation of a set of coloured wool balls. (a) A colour image;
(b) hue map of (a) given by (2.5); (c) saturation map of (a) given by (2.6), where
white corresponds to 1 and black corresponds to 0.

2.4 Basic Colour Constructs

As discussed in Sec. 2.2, adjusting luminance L while keeping hue H and saturation

S intact is a way of increasing contrast without altering chrominance. But working

in the LHS colour space alone cannot guarantee zero error in chrominance. Like

other colour spaces, the LHS space is finite, bounded by surfaces called gamut due

to the limited number of colours supported by display devices and/or perceivable by

HVS, and problem will arise once the enhancement operator T : L → L′ yields a

colour vector outside the gamut. We expose such so-called out-of-gamut problem in
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the following sections, and investigate how to maximally preserve colour fidelity when

contrast enhancement pushes the input colour outside the device gamut.

For convenience and clarity of presentations, we introduce the terms as follows to

be used later.

RGB Cube

As all the three dimensions are orthogonal with each other and range in [0, 1], RGB

colour space is cube-shaped as depicted in Fig. 2.5(a).

Isospectral Line

Looking from (2.5) and (2.6), colours with identical hue and saturation have the same

ratio among r, g and b values, thus located along a ray that emits from the black point

O. Preserving hue and saturation is then equivalent to keeping the colour staying on

the corresponding ray during enhancement process. We call the ray on which colours

have consistent hue and saturation values an isospectral line.

It should be noted that, due to the limitation of gamut, isospectral lines practically

end at a gamut surface.

Saturated Colour

Saturated colours are those without being diluted by white light, in other words with

maximal saturation (S = 1), or min{r, g, b} = 0. The set of pure colours forms the

three surfaces of the RGB cube that include black point O (the shaded surfaces in

Fig. 2.5(a)).
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Figure 2.5: (a) The RGB cube, where pure colours are those on the three shaded
surfaces and vertex colours are those on the red edges; (b) an equihue triangle in the
RGB cube; (c) projection of RGB cube and the equihue triangle in (b) on U -V plane,
marked in black and orange respectively; (d) plane view of the equihue traingle in
I-φ plane.
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Extreme Colour

Extreme colours are saturated colours satisfying max{r, g, b} = 1. They are located

at the edges marked in red in Fig. 2.5(a). Each hue value H corresponds to a unique

extreme colour, denoted by V (H).

Gray Axis

The gray axis I corresponds to the axis along the diagonal vector from black point

O(0, 0, 0) to white point W (1, 1, 1). Colours on the gray axis have zero saturation.

Equihue Triangle

The equihue triangle of hue value H is a triangular planar region enclosed by O, W ,

and a vertex colour point V (H). According to (2.5), all colours lying in the region

have the same hue value H. Fig. 2.5(b) is an example of equihue triangle in the RGB

cube.

U-V Plane

U -V plane is a plane orthogonal to the gray axis and thus orthogonal to every equihue

triangle. Here u = −0.0999r−0.3261g+0.4360b and v = 0.6150r−0.5586g−0.0564b

are from the Y UV colour space [9]2. In the polar coordinate system with the pole

located at (u, v) = (0, 0), colours along any polar axis have the same hue due to the

fixed ratio between r, g and b, as illustrated in Fig. 2.5(c). We denote the polar angle

corresponding to the equihue triangle of hue H by φ(H); the polar axis in vector

2Both vectors (−0.0999,−0.3261, 0.4360), (0.6150,−0.5586,−0.0564) are orthogonal to the gray
axis (1, 1, 1).
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form is then p(H)
∆
= û cosφ(H) + v̂ sinφ(H), û = (−0.0999,−0.3261, 0.4360), v̂ =

(0.6150,−0.5586,−0.0564) in RGB space.

Plane View of Equihue Triangles (on I-p Plane)

We can obtain the plane view of an equihue triangle by taking the plane determined

by its corresponding polar axis p(H) and the gray axis I, as depicted in Fig. 2.5(d).

This plane view offers us a more intuitive understanding on equihue triangles than

the RGB cube view (Fig. 2.5(b)).

Isospectral lines correspond to the rays emitting from the origin O. As depicted

in Fig. 2.5(d), saturation is 0 on the gray axis (OW ), and 1 on (OV ). Saturation

value decreases as the slope of the ray goes up.

Maximal Adjustable Luminance

Recall that ideally our goal is to change the luminance of a colour without changing its

hue or saturation. As the isospectral lines are bounded by the gamut, there is an upper

limit of the output luminance, which is determined by the end of the corresponding

isospectral line segment. For any colour vector c = (r, g, b), the corresponding in-

gamut end color point is, as illustrated in Fig. 2.6,

cV = c · 1

max{r, g, b}
(2.7)

The luminance of cV , L(cV ) or the maximal adjustable luminance of c is

η(c) = L

(
c · 1

max{r, g, b}

)
(2.8)
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2.5 Necessity of Colour Clipping

Unless c is colourless (i.e. with zero saturation), the maximal adjustment luminance

η(c) is always strictly less than 1. The out-of-gamut problem will arise if we increase

the luminance of c to a value greater than η(c), in which case the colour point falls

outside the RGB gamut. This is quite common in image enhancement, especially

when coping with underexposed images.

The out-of-gamut problem has been investigated in a number of research projects,

but most of them are on the topic of device gamut mapping [38, 65]. Device gamut

mapping techniques aim to harmonize the different gamuts of display devices and

printers, in order to optimize the visual quality of colour printing and display.

More relevant to the theme of this thesis are a couple of papers that discuss how

to move out-of-gamut colours created by image processing algorithms back into a

realizable gamut. A straightforward method is to truncate all RGB values greater

than 1 after the inverse transform in Fig. 2.2. This typically introduces errors in

all three colour attributes (i.e. luminance, hue and saturation) as the truncation is

likely to push a colour vector away from the isospectral line, and even out of the

equihue triangle. Moreover, such errors in the three dimensions may be inconsistent

among different pixels, further aggravating the colour artifacts. An alternative solu-

tion is to normalize the resulting R, G, B values after the inverse transform such that

max{r, g, b} = 1, as done in [14, 74]. Although causing no chrominance error, the

above method is too conservative because it greatly reduces the extent of luminance

adjustment and thus cancels out the effects of contrast enhancement. Other schemes

in the literature include [74] that clips saturation in Y IQ colour space, and [51] that

makes the tone mapped results fall within the RGB gamut. But we find the above
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two algorithms to have large distortions in chrominance or/and luminance.

Fig. 2.6 illustrates a typical out-of-gamut problem where a luminance mapping

function attempts to brighten c to a luminance value l′ along the isospectral line (S =

s, s being the saturation of c), resulting in an out-of-gamut colour vector c′, which

must be clipped back into the gamut so as to be rendered on RGB display devices. In

this case, there is no perfect clipping scheme that preserves both hue and saturation,

unless we alter the luminance from the value L′ determined by the enhancement

operator T : L → L′. But L′ should not change in order not to negate the effects

of contrast enhancement operator. Therefore, the performance of a colour clipping

scheme is determined by the level of chrominance distortions caused by altering hue

and/or saturation.

cos ( ) sin ( )u H v H O

W

I

( 0)S 

c

c

( )L  c

'L l

1S 

L l

( )V H

L

S s

Vc

Figure 2.6: An example of out-of-gamut problem. Given a colour vector c, out-of-
gamut problem arises if an enhancement algorithm changes the luminance of c from
l to l′
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2.6 Perceptual Sensitivity of Hue and Saturation

In order to discover ways to best preserve colour fidelity in image enhancement, we

study the sensitivity of the human visual system to changes in hue and saturation.

The perceptual difference between two colours is very difficult to quantify linearly.

This requires a colour space that is perceptually uniform; namely, in a uniform colour

space the Euclidean distance between any two colour points accurately measures

their perceptual distance. The CIELCh colour space (the polar coordinate variant

of the CIELab space) [17] is the one that achieves the best approximate perceptual

uniformity up to now, and hence we adopt it in the following analysis.

The CIELCh space consists of three dimensions: luminance (L), chroma (C) and

hue (h). Chroma, defined by C =
√
a2 + b2 (for simplicity, we drop the star super-

script of a∗, b∗ in the CIELab notation), describes the colourfulness of a colour; thus

chroma has similar physical meaning to saturation3. The CIELCh hue is highly cor-

related with the hue in LHS colour space, defined by H = arctan(b∗/a∗). To avoid

ambiguity with the hue defined by (2.5), we denote the CIELCh hue by HU . It can

be inferred from the definitions of C and HU that, the a-b plane and the C-HU plane

corresponding to the same luminance are identical.

In the CIELCh colour space, let ∆L, ∆C and ∆HU be the difference between two

colour points in luminance, chroma and hue, respectively. The CIEDE2000 perceptual

difference ∆E between the two colours has the form [47]

∆E =

√(
∆L

kLSL

)2

+

(
∆C

kCSC

)2

+

(
∆HU

kHSH

)2

+RTf(∆C∆HU) (2.9)

3The main difference between chroma and saturation is that the range of chroma depends on
luminance and hue, but that of saturation is constant to be [0, 1]. More saturated colours take
larger values in both chroma and saturation.
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where k{L,C,H}, S{L,C,H}, RT are approximately constant here and f(0) = 0. The

formula (2.9) originates from psychophysical experiments revealing that the set of

just-noticeable different colours with respect to a reference colour form an elliptical

pattern, called colour discrimination ellipse, in the C-HU plane (i.e. a-b plane), as

shown in Fig. 2.7. For our design purposes, the colour discrimination ellipse manifests

an important property: human vision has different sensitivities to hue and chroma.

In order to analyze LHS colours using the CIEDE2000 formula (2.9), we need

to associate the hue H and saturation S in the LHS space with CIELCh hue HU

and chroma C. As demonstrated in Fig. 2.8, for a fixed luminance, there is an

approximately linear relationship between H and HU , as well as between C and S.

As a result, colour discrimination ellipses still roughly hold the elliptical shapes in

H-S planes; and HU and C can be treated as proxies for H and S when measuring

the perceptual difference between two LHS colours.

Given a reference colour point c, we slightly shift it along the tangential and radial

directions by the same small distance r in the H-S plane. In the above two cases,

the resulting increments in the H and S axes are:

• in the case of colour shifting in tangential (hue) direction: hue increment ∆tH =

r
S
× 180◦

π
, saturation increment ∆tS = 0, S being the saturation of c;

• in the case of colour shifting in radial (saturation) direction: hue increment

∆rH = 0, saturation increment ∆rS = r.

Due to the approximate linearity mentioned in the previous paragraph, we have

∆tH ' ∆tHU ,∆rC ' α∆rS, α = C/S being a constant4. According to (2.9),

4α can be deemed as a constant given fixed hue and luminance, as verified in Fig. 2.8(b).
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Figure 2.7: Colour discrimination ellipses in CIELab (CIELCh) colour space [47].
The contour of each ellipse is the just-noticeable different colour against the colour
at centroid.

(a) (b)

Figure 2.8: Relationship between (a) H and HU , and (b) between chroma C and
saturation S for colours with L = 0.5. The red line in (b) is the set of colours
with L = 0.5, HU = 0, indicating the approximate linearity between chroma and
saturation.

32



Ph.D. Thesis - Zhenhao Li McMaster - Electrical Engineering

the perceptual differences caused by the shifting in the two cases are

∆tE =
1

kHSH
∆tHU

∆rE =
1

kCSC
∆rC.

(2.10)

We then define the hue-saturation sensitivity ratio with respect to a colour point c

by ∆tE/∆rE:

∆tE

∆rE
=
kCSC∆tHU

kHSH∆rC
' kCSC∆tH

kHSHα∆rS
=
kCSC
kHSH

· 180

πC
(2.11)

The ratio reveals the relationship between the sensitivity of HVS to hue and to satu-

ration. If it is greater than 1, then HVS is more sensitive to tangential (hue) changes

than radial (saturation) changes given the reference colour c. Conversely, if the ratio

is less than 1, then HVS is more sensitive to alterations in saturation than in hue.

(2.11) shows that the ratio is independent of r and the luminance of c; instead it

only depends on the hue HU and the chroma C of c. Specifically, according to [47],

KH = KC = 1

SH = 1 + 0.015CT

SC = 1 + 0.045C,

(2.12)

where

T = 1−0.17 cos(H−30◦)+0.24 cos 2H+0.32 cos(3H+6◦)−0.2 cos(4H−63◦) (2.13)

We plot the ratio ∆tE/∆rE in the a-b plane, where a = C cosHU , b = C sinHU ,
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Figure 2.9: Contour map of ∆E1/∆E2 over a-b (C-H) plane.

both ranging from −80 to 80 for 98% types of RGB colours5, as shown in Fig. 2.9.

It can be seen that ∆tE/∆rE > 1 holds for overwhelmingly majority of colours,

which implies that HVS is more sensitive to changes in hue than in saturation. This

(Such observation) also agrees with the colour discrimination ellipses in Fig. 2.7, in

which the major axes of the ellipses are mostly aligned with radial lines (in other

words, a larger variation in saturation than in hue is required to make just noticeable

difference).

Therefore we draw the conclusion that it is more important to preserve hue than

to preserve saturation.
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cos ( ) sin ( )u H v H O
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Figure 2.10: Various hue-preserving clipping methods that puts an out-of-gamut
colour point c′ back into the gamut, resulting in: cA by optimal mapping, cB by
the method [72], cC by the method [51] and cD by the methods mentioned in [57] and
[74]. Note that cA, cB and cC have the same hue and luminance as c′ but cC has the
largest saturation error while cA the smallest. cD has distortions in both saturation
and luminance.

2.7 Optimal Clipping Scheme

As discussed previously, an image enhancement algorithm should preserve hue, that

is, confine the colour clipping within each equihue triangle. The optimal clipping

is then the one that minimizes saturation error within the corresponding equihue

triangle.

Consider an out-of-gamut problem where the luminance of a colour point c is

changed from l to l′ > η(c) resulting in c′. As illustrated in Fig. 2.10, the optimal

solution to the out-of-gamut problem is to move the problematic colour c′ along the

5We investigate the corresponding coordinates in the CIELab space of 1 million random RGB
colours. Merely 14136 colours have a or b exceeding [−80,+80].
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(a) (b)

(c) (d)

(e) (f)

Figure 2.11: Results of HE using different clipping schemes: (a)original image;
(b)traditional HE with simple clipping; (c)HE with Naik’s method [51]; (d)HE in
Y UV colour space; (e)HE with clipping method in [57] and [74]; (f) HE with the
optimal clipping in LHS colour space.
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equi-luminance line L = l′ to the gamut surface, resulting in cA. Also exhibited in the

figure are the clipping results from several other hue-preserving methods. A common

practice of shifting luminance in Descartes coordinate system-based colour spaces

(such as YUV, YCbCr and CIELab) maps the original colour vector c to cB, leading

to greater saturation error. The clipping technique proposed in [51] tries to keep

colours staying within the device gamut either in RGB or CMY (the inverted RGB)

space by moving input colour c towards the white point W , resulting in cC , which

suffers from even greater distortion comparatively. The clipping methods in [57] and

[74] have the same spirit with the optimal clipping, but moves colours along incorrect

equi-luminance lines6 resulting in cD, causing distortions not only in saturation but

also in perceptual luminance.

Fig. 2.11 demonstrates the impact of clipping, where (b)(c)(d)(e)(f) are all en-

hanced by HE on the luminance channel, but with different colour clipping schemes

on the chrominance channels. Simple clipping severely distorts the hue, turning the

blue car paint into cyan; the conventional method of luminance shifting in the Y UV

space and the method of forcing colours within in gamut [51] tend to desaturate the

image, making the images look dull. The clipping methods in [57] and [74] go to

the other extreme making colours over-saturated in some cases (see Fig. 2.11(e)). In

contrast, the proposed optimal clipping method best preserves the chrominance with

the same luminance mapping as HE. But it should be noted that even the above

optimal clipping is not free of chrominance distortions , for instance the pale looking

car doors in Fig. 2.11(f). This motivates us to find better enhancement algorithms

to control chrominance distortions more tightly.

6[57] and [74] adopt I = (r+g+b)/3 and Y = 0.299r+0.587g+0.114b as luminance respectively.
Neither of them corresponds to the perceptual luminance of HVS.
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Chapter 3

Algorithm for Image Enhancement

with Bounded Perceptual

Chrominance Errors

3.1 Introduction

As pointed out in the proceeding chapter, adjusting luminance to increase contrast

as in existing image enhancement methods, may carry some colour points out of

the device gamut. These points have to be clipped back into the gamut to be visu-

ally presentable. No matter what clipping methods are used, including our optimal

hue-preserving clipping method, loss of chrominance fidelity is inevitable. In this

chapter we address the root of the problem, and develop a more principled algorith-

mic approach for chrominance-preserving image enhancement. The idea is to reduce

the chances of out-gamut occurrences by adaptively setting upper bounds of lumi-

nance adjustment range in the process of contrast stretching. The proposed adaptive
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gamut-aware luminance adjustment and the hue-preserving clipping are integrated

into an algorithmic framework of constrained optimization for image enhancement

with bounded chrominance errors, formulated as

max
T

G(T )− λtDt(T )− λcDc(T ) (3.1)

The above objective function consists of three reward/penalty terms. The first term

G(T ) is the luminance contrast gain made by the colour mapping function T ; the

second term Dt(T ) is the distortion in tonal reproduction by T ; the third term Dc(T )

is the distortion in chrominance caused by T . This optimization framework allows us

to boost the conspicuity of image details while maintaining naturalness of enhanced

images. We develop, in this chapter, an efficient, dynamic programming algorithm

to solve (3.1), which can be proven to be even faster than existing OCTM-type algo-

rithms. Experiment results validate the effectiveness of the proposed algorithm as to

meet its design goal. It can restore severely underexposed/overexposed images with-

out noticeable chrominance distortions and other artifacts that plague the existing

methods.

The rest of the chapter is organized as follows. We begin with elaborating the

formulation of the optimization problem for enhancement in Sec. 3.2. In Sec. 3.3,

we present a dynamic programming based algorithm that solves the optimization

problem efficiently. In Sec. 3.4 we introduce a technique to perform fast transform

between RGB and LHS colour spaces, which can further accelerate the algorithm.

Next in Sec. 3.5 we discuss the impact of each user-specified parameter in (3.1) to

output images. Finally in Sec. 3.6 we present the experimental results and make

a comparison between the proposed method and several mainstream enhancement

39



Ph.D. Thesis - Zhenhao Li McMaster - Electrical Engineering

methods in terms of both objective and subjective image quality.

3.2 Algorithmic Framework for Enhancement

In [72], Wu argues that tone continuity is a key element for image enhancement ap-

proaches other than high global contrast. Those methods with poor tone continuity

are likely to suffer from tone distortion artifacts that wash out the gradients and

textures on object surfaces. The author proposes the OCTM algorithm that views

contrast enhancement as an optimization problem that maximizes output global con-

trast while confining tone distortion, which is formulated as

max
T

G(p, T )− λtDt(p, T ) (3.2)

where G(p, T ) is a metric of the contrast gain made by tone mapping function T

over the initial histogram p = (p0, · · · , pK−1) pertaining to K existing intensity levels

{0, · · · , K − 1}, and Dt(p, T ) is a measure of tone distortion caused by T weighted

by Lagrangian coefficient λt.

Operating only on the luminance component, the algorithm suffers the same prob-

lem of loss of colour fidelity as other enhancement techniques when dealing with colour

images. But, based on the discussions in Sec. 2.4, we can refine the framework by

adding a chrominance distortion constraint term:

max
T

G(p, T )− λtDt(p, T )− λcDc(p, T ) (3.3)

where Dc(·) denotes the chrominance distortions caused by T .
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Note that, because image pixel values are represented using integer numbers in

practice, we assume the mapping function T (·) to be:

T : {0, 1, ...,M − 1} → {0, 1, ..., N − 1}, (3.4)

given an input image with M intensity levels as well as an output image supporting N

intensity levels. Either set of intensity levels is uniformly quantized from luminance

value L as defined in (2.4). In addition, T should be monotonically nondecreasing so

as not to revert the order of input intensity levels.

Furthermore we write T in the following form:

T (i) =
∑

0≤j≤i

sj, i = 0, 1, . . . ,M − 1, (3.5)

introducing

sj
∆
=


T (j)− T (j − 1) j = 1, . . . ,M − 1

T (0) j = 0

(3.6)

which corresponds to the increment in output luminance versus one unit step up in

input luminance. Step size sj essentially represents the gradient of T at luminance

j: when sj > 1, the dynamic range around j is stretched leading to larger contrast,

and oppositely sj < 1 compresses neighbouring dynamic range and thus decrease the

contrast.

It follows from (3.5) and (3.6) that there is a one-to-one mapping between T and

{sj}. For ease of algorithm development, we prefer to use s
∆
= [s0, s1, · · · , sM−1], called

tone mapping vector, in sequel. In the following subsections we detail the formulation

of the optimization problem (3.3) by elucidating the concrete definitions of G(·), Dt(·)
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and Dc(·), with respect to s.

3.2.1 Global Contrast Gain Metric

We state in Sec. 1.3 that sufficient contrast in edges and local patterns of object

surfaces plays an important role in human cognition. Edges and object surfaces with

low contrast are hardly legible, hence perceived as poor image quality. Statistically,

areas of low contrast in an image tend to have rather narrow dynamic ranges, where

the differences between adjacent pixels are much too small. In order to expand

the narrow dynamic ranges, we need to design the tone mapping function T , or

the corresponding tone mapping vector s, according to the scene. Recall that the

luminance dimension in the LHS colour space is perceptually uniform, so intensity

level increment sj is linear in perceived contrast gain of luminance level j, i.e. how

much the corresponding dynamic range gets amplified by T . For example, given a

low contrast object in a scene whose luminance is around j, we can let sj > 1 so

as to boost the visibility of the object. The mapping also affects pixels that have

luminance j yet do not belong to the object. But in natural images, edge pixels are

much fewer than those of low contrast [59]; hence we neglect the side effects of T on

high contrast pixels. In fact, no visual artifacts have ever been found on those high

contrast pixels in our experiments.

It should be noted that the adjustment of s is not simply making every element

as large as possible, as one has to respect the finite number of output intensity levels.

To take full advantage of the output levels, a natural idea is to grant larger dynamic

range to more populated luminance levels prior to less populated ones, as pixels of

more populated luminance levels typically have larger impact to the image quality.
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Therefore, we define the global contrast gain metric G(s) by

G(p, s) =
M−1∑
j=0

pjsj (3.7)

so that the optimization result tends to have larger s values on more populated

luminance levels.

3.2.2 Tone Distortion Metric

Tone distortions occur when a mapping function compresses dynamic range by map-

ping multiple consecutive intensity levels into one, during which the tonal details

in the compressed levels are totally lost. Such distortions are typically inevitable

especially when N ≤M due to limited number of output intensity levels available.

The OCTM framework defines the tone distortion, D(s), by

D(s) = max
0≤j<k<M

{k − j|T (lj) = T (lk)} , (3.8)

which can be interpreted as the maximal number of adjacent gray levels that map into

a single one. The larger D(·) is, the greater distortion there exists in tone continuity.

OCTM then imposes an upper bound on D(s) with a linear inequality constraint:

max
T

G(p, s),

s.t.
∑

n≤j≤n+d

sj ≥ 1, 0 ≤ n < M − d,
(3.9)

so that sj cannot be zero for more than d consecutive input gray levels. In other

words, d functions as an upper limit of D(s).
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However, the definition (3.8) has a drawback that it is simply a constraint on

s without consideration of the statistics of the image. As a result it overlooks an

important fact that compressing (the dynamic range of) less populated gray levels

causes smaller tone distortion than compressing (that of) higher populated ones.

Taking the fact into consideration, we develop a new histogram-based tone dis-

tortion metric Dt(p, s):

Dt(p, s) =
M−1∑
j=0

pjδ(sj), (3.10)

where δ(·) is discrete Dirac function taking 1 at sj = 0 and 0 elsewhere. It essentially

corresponds to the proportion of pixels that get distorted in tone by the mapping

function.

3.2.3 Chrominance Distortion Metric

As discussed in Sec. 2.5, chrominance distortions are caused by out-of-gamut prob-

lems where a colour point c is brightened to a luminance beyond the corresponding

maximal adjustable luminance η(c). The chrominance distortion term λcDc(·) in (3.3)

aims to penalize such over-adjustment on luminance.

Note that maximal adjustable luminance is not consistent among the pixels of the

same luminance. Accordingly, we define

ηmin(l) = min
c
{η(c)|c ∈ I, L(c) = l}, (3.11)

which is the maximal adjustable luminance for all the colours c in the image I of a

given luminance value l. Ideally, the mapping function T satisfying T (l) ≤ ηmin(l)

should be free of chrominance error. However, the room for luminance adjustment
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may be too small to achieve high contrast under such circumstance, especially for

bluish colours. Take pure blue colour (0, 0, 1) as example: its luminance is merely

0.323 that appears rather dark for human vision. But because c is on the edge of RGB

gamut, its luminance cannot be increased any more. The blue colour also blocks other

colours with luminance 0.323 from being increased if the constraint T (l) ≤ ηmin(l) is

strictly imposed on the image.

To overcome the limitation of the excessively strong constraint T (l) ≤ ηmin(l), we

relax the maximal adjustable luminance with respect to equi-luminance pixels, tol-

erating chrominance distortions to some extent. Consequently, we adopt the average

maximal adjustable luminance of equi-luminance pixels instead of the minimum:

η̄(l) = Ec|c∈I,L(c)=l [η(c)] (3.12)

And then we define the chrominance distortion metric using η̄(l):

Dc(p, T ) =
M−1∑
j=0

pj
ReLU (T (j)− η̄(j))

M
(3.13)

penalizing any luminance level j violating T (j) ≤ η̄(j). Here ReLU(x)
∆
= max{0, x}

is rectified linear unit (ReLU) function.

3.2.4 Optimization Objective

Apart from constraining tone and chrominance distortions, we enforce an upper bound

u on each element of s to avoid excessive boost on contrast as otherwise the tone map-

ping may result in a binary image with watershed at the most populated luminance
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level.

To sum up, the optimization problem (3.3) is formulated as:

max
s∈NM

M−1∑
j=0

pj

[
sj − λtδ(sj)− λc

ReLU (T (j)− η̄(j))

M

]

s.t.
M−1∑
j=0

sj = N − 1

s � u

(3.14)

3.3 Dynamic Programming Solution to the Opti-

mization Problem (3.14)

The optimization problems in OCTM [72] as well as its variants [44, 59] are linear

programming (LP). They can be easily solved by LP solvers. On the other hand,

in the proposed optimization problem (3.14), the objective function and constraints

are nonlinear; solving it requires more sophisticated algorithm techniques. In this

section we develop an efficient scheme to solve the optimization problem (3.14) based

on dynamic programming (DP).

The problem (3.14) can be divided into a set of subproblems formulated as

max
s∈Nµ

µ−1∑
j=0

pj

[
sj − λtδ(sj)− λc

ReLU(T (j)− η̄(j))

M

]

s.t.

µ−1∑
j=0

sj = ν − 1

s � u

(3.15)
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We call the optimization problem above subproblem (µ, ν), and denote the corre-

sponding optimal solution and objective function value by s(µ,ν) and F (s(µ,ν)), respec-

tively:

F (s(µ,ν)) =

µ−1∑
j=0

pj

[
s

(µ,ν)
j − λtδ(s(µ,ν)

j )− λc
ReLU(T (µ,ν)(j)− η̄(j))

M

]
, (3.16)

T (µ,ν) being the tone mapping function corresponding to s(µ,ν) using (3.5). Further-

more, let s∗ be the optimal solution to (3.14) with the objective function denoted by

F (s∗). Obviously, subproblem (M,N) is equivalent to (3.14), i.e. s∗ = s(M,N).

It can be shown that F (s(µ,ν)) has the following recursive form

F (s(µ,ν)) = max
i=0,...,µ−1
j=0,...,u

F (s(µ−i,ν−j)) + pµ−1j −
µ−2∑
k=i

pk

[
λt + λc

ReLU(j − η̄(k))

M

]
− λcpµ−1ReLU(ν − η̄(µ− 1))

(3.17)

Therefore, subproblem (µ, ν) can be solved via bottom-up recursion: given the op-

timal solutions of all subproblems s(µ−i,ν−j), i = 0, · · · , µ − 1, j = 0, · · · , u, we can

find the optimal i∗ and j∗ that maximize F (s(µ,ν)), and s(µ, ν) is formed by s(µ−i,ν−j)

appended by (i∗ − 1) zeros and one j∗ at the end:

s(µ,ν) =

[
s(µ−i∗,ν−j∗), 0 . . . 0︸ ︷︷ ︸

i∗−1

, j∗

]
(3.18)

Starting from s(1,1) = [0], we can progressively obtain the final solution s(M,N)

following the idea. As shown in Fig. 3.1, we consider the problem as seeking for

an optimal path on an M × N chessboard from the bottom-left point (1, 1) to the

top-right point (M,N), along which F (s) takes the maximum. We can know the
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(a)

(1, 1)

(M, N)

(b)

Figure 3.1: A sample tone mapping function (a) together with its corresponding “path
on the chessboard” (b), represented by black arrows.

(a) (b) (c)

Figure 3.2: The directed graph g = {V,E} of Fig. 3.1. (a) The vertex set V ; (b) the
graph formed by the forward pass; (c) the key nodes (marked as red) given by the
backward pass, finally leading to the optimal path.
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following facts regarding the optimal path from the discussions above:

• The path must start from (1, 1). F (s(1,1)) = 0;

• Some points on the chessboard can never be passed by the path due to the

constraint s � u, hence can be simply excluded (corresponding to the points

marked by gray in Fig. 3.1(b));

• The path consists of M − 1 steps: in each step i (i = 1, · · · ,M − 1) the piece

goes one unit right and si units up. The points after each step (the red points

in Fig. 3.1 (a)(b)) together with the starting point (1, 1) then determine the

mapping function T .

• According to (3.17), any subproblem (µ, ν) cannot be solved until we have the

solutions to subproblems (x, y), x < µ, y < ν before hand; ultimately, subprob-

lem (M,N) has to be solved after we have solutions to all the other subproblems.

• Also, (3.17) associates a point (µ, ν) with the solution of subproblem (µ, ν),

corresponding to point (µ− i∗, ν − j∗) on the chessboard. 1

Following the rules above, we define a directed graph g = {V,E} corresponding

to the chessboard: the vertex set V is the set of candidate points of the path (namely

those not marked by gray in Fig. 3.1(b)), and the edge set E comprises the connections

that end at each candidate point (µ, ν) and start from the node corresponding to the

optimal solution of subproblem (µ, ν), at (µ − i∗, ν − j∗). Because each node of V

has a unique parent node (except the starting point (1, 1) which is without parent),

there exists a path solely connecting (1, 1) and (M,N).

1We assume that each subproblem has a unique solution {i = i∗, j = j∗}. If it is not the case in
practice, we adopt the solution with the smallest i and j.
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We operate a two-pass scheme to determine the optimal path, including one for-

ward pass and a subsequent second backward pass. The forward pass aims to con-

struct the edge set E in the directed graph by traversing each node and having each

subproblem solved. Specifically, we let the input luminance µ iterate from 2 to M ,

and for each µ we solve all subproblems (µ, ν), ν iterating from the smallest to the

largest. The backward pass then backtracks from (M,N) and keeps visiting the par-

ent node until reaching (1, 1). We call the nodes visited in the backward pass key

nodes as they determined the entire optimal path, which can be obtained by filling

the remaining nodes using (3.18). The two-pass scheme is graphically illustrated in

Fig. 3.2.

3.3.1 Time and Memory Efficiency

We briefly discuss the time and memory cost of the DP-based solver. In the forward

pass, we need to solve O(M ×N) subproblems; for each subproblem (µ, ν), the solver

has to find the maximum value of at most O(µ × u) candidates. Thus the forward

pass has O(uM2N) complexity. The backward pass takes O(M) computations to

determine the optimal path because the path is always of M length with no more

than M key nodes. In total, the solver is of O(uM2N) time complexity. Note that

it is independent of image size. The memory complexity is O(MN), as the solver

maintains a directed graph with O(MN) nodes, each node having one ingoing edge

and one outgoing edge respectively.

In the common case where M = N = 256, uM2N is typically far greater than

the number of image pixels. Based on the observation that the optimal i∗ of (3.17)

typically takes small values, we adopt a technique to reduce time complexity by
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shrinking the searching range i = 0, · · · , µ−1 in (3.17) to i = max{0, µ−d}, · · · , µ−1.

Such shrinkage essentially imposes another tone distortion constraint that is the same

as the one in (3.9): ∑
n≤j≤n+d

sj ≥ 1, 0 ≤ n < M − d, (3.19)

i.e., sj cannot be zero for d contiguous intensity levels. As discussed in Sec. 3.2.2,

(3.19) is a weaker constraint than Dt(·) defined by (3.10) (unless d is rather small).

Applying (3.19) can significantly speed up the algorithm by reducing the time com-

plexity from O(uM2N) to O(udMN), without affecting the optimization result.

We time the OCTM method and the proposed method on a set of 10 underexposed

colour2 images. The tested algorithms include: 1) OCTM with LP solver; 2) OCTM

with the DP solver presented in the thesis, which is of O(udMN) time complexity;

3) the proposed method with the DP solver without the constraint (3.19); 4) the

proposed method with the DP solver with the constraint (3.19), d being 10. All the

algorithms are implemented in C++3 and run on Windows R© 7 with a single core of

Intel R© Core-i7 CPU. The running times of the above algorithms are listed in Table

3.3.1.

Table 3.1: Consumed time of solving the optimization problem of OCTM and the
proposed method (in milliseconds).

OCTM (LP) OCTM (DP)
Proposed

method (DP,
without d)

Proposed
method (DP,
d = 10)

31.68 25.18 78.98 6.78

The timing results demonstrate the higher efficiency of the proposed DP algorithm.

2All test images are 8-bit RGB images where each colour channel has 256 intensity levels, i.e.
M = N = 256.

3The LP solver is from the open source COIN-OR CLP library.
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Remarkably, by introducing a weak constraint (3.19), the proposed algorithm can

achieve an even shorter running time than OCTM, although dealing with a more

complicated optimization problem.

3.4 Fast Colour Space Transform

As depicted in Fig. 2.2, the proposed method needs to perform colour space trans-

forms between RGB and the proposed LHS. Here we introduce a technique that

realizes more efficient colour space conversion than applying the formulae (such as

(2.4)(2.5)(2.6)) pixelwise.

Suppose the luminance mapping function maps the luminance of a given colour

vector c = (r, g, b), denoted by l, to l′. We can then derive the corresponding output

colour vector cA by optimal clipping.

If l′ ≤ η(c), there is no out-of-gamut issue. We have

cA =
y′

y
c. (3.20)

where

y = f−1(l), y′ = f−1(l′). (3.21)

If l′ > η(c),we have to perform clipping, as illustrated in Fig. 2.10. Let yη =

f−1(η(c)). Note that I = (1, 1, 1), cA and cV = yη
y

c are collinear, satisfying

cA − cV
I− cV

=
y′ − yη
1− yη

(3.22)
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⇔ cA =
y′ − yη
1− yη

I +
1− y′

1− yη
cV . (3.23)

Therefore the output colour vector cA can be computed without performing ex-

plicit colour space transform from LHS to RGB, as long as l and l′ are given:

cA =


y′

y
c

y′

y
max{r, g, b} ≤ 1

y′ − yη
1− yη

I +
(1− y′)yη
(1− yη)y

c otherwise

(3.24)

Finally, the proposed enhancement algorithm in pseudocode is presented in Algo-

rithm 1.

3.5 Parameter Tuning

The proposed algorithm takes several user-specified arguments including M , N , u, λt

and λc. In this section we discuss their impact on the output, and the optimal values

assigned to them.

3.5.1 u, Upper Bound of s

As mentioned in (3.6), sj reflects the contrast gain at input luminance level j. Hence

its upper bound u positively correlates with output global contrast gain (see the

examples in Fig. 3.3). Fig. 3.4 reveals that the resulting tone mapping function gets

sharper especially around the highly populated levels as u increases. A much too large

(overexaggerated) u causes severe overexposure patterns as exampled in the u = 10

case; therefore u should be carefully adjusted to balance between contrast gain and

the distortions.
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input : Input image I, λt, λc, u, M , N , (d)
output: Output image I ′

begin
Compute the luminance map L pixelwise using (2.4) and the luminance
histogram p;

Compute η̄(l);
Initialize T ;
// Initialize directed graph g = {V,E}
V ← {(x, y)|x = 1, · · · ,M, y = 1, · · · , N};
// Forward pass

for x← 2 to M do
y min ← max{1, N − u(M − x)− 1};
y max ← min{η̄(x− 1), u(x− 2) + 1}; // the two lines exclude

gray nodes in Fig.3.1(b)

for y ← y min to y max do
// Solve subproblem (x, y) using (3.17)
// Can be speeded up by (3.19), given d

(i∗, j∗)← arg maxi,j F (s(x,y));
V(x, y).parent ← V(x− i∗, y − j∗);

end

end
// Backward Pass

P ← (M,N);
T (M)← N ;
while P 6= (1, 1) do

for i← P.parent.x to P.x −1 do
T (i− 1)← P.parent.y −1;

end
P ← P.parent;

end
// Perform luminance mapping together with inverse colour

transform

foreach (x, y) ∈ I do
L′(x, y)← T (L(x, y));
I ′(x, y)← result of (3.24) on pixel (x, y);

end
return I ′;

end

Algorithm 1: Proposed enhancement method (in pseudocode).
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It is common that low contrast images occupy merely a portion of available lumi-

nance levels like the histogram in Fig. 3.4. An ideal mapping function should then

expand them to all output luminance levels so as to gain maximal dynamic range.

In this sense, we suggest {sj} have an average value close to N/ND(I), with ND(I)

being the number of luminance levels occupied by image I. In practice, we estimate

ND(I) by the number of levels whose frequency is no smaller than 1/M (thus exclud-

ing outlier levels with rather small population as well as those unpopulated). Finally,

we let

u =

⌈
N

ND(I)

⌉
, (3.25)

taking 3 for the example image in Fig. 3.3.

3.5.2 Tone Distortion Coefficient λt

The tone mapping functions in Fig. 3.4 are more or less with flat segments where

multiple contiguous luminance levels are mapped into one, resulting in tone distortion.

Hence we introduce the tone distortion term (3.10) weighed by a coefficient λt.

Fig. 3.5 and 3.6 reveal the impact of λt with other parameters kept fixed: as it

increases, more local details can be conserved (such as the clouds and water waves)

and the mapping function appears to be smoother while the global contrast is slightly

sacrificed. Empirically we assign 0.5 to it in our application.

3.5.3 Chrominance Distortion Coefficient λc

The enhancement results in Fig. 3.3 and 3.5 all suffer from some extent of overexposure

in the sky with unnatural cyan colour. We show in Fig. 3.7 that it can be effectively

constrained by the chrominance distortion term that forces the tone mapping function
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Input u = 2 u = 3

u = 5 u = 10

Figure 3.3: Results of the proposed method with different u values (λt = λc = 0).

Figure 3.4: Tone mapping functions given by the proposed method under different u
values.
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Input λt = 0 λt = 0.2

λt = 0.5 λt = 1 λt = 2

Figure 3.5: Results of the proposed method with different λt values (u = 3, λc = 0).

Figure 3.6: Tone mapping functions given by the proposed method under different λt
values.
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Input λc = 0

λc = 0.1 λc = 0.2 λc = 0.5

Figure 3.7: Results of the proposed method with different λc values (u = 3, λt = 0.5).

Figure 3.8: Tone mapping functions given by the proposed method under different λc
values.
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to be below η̄(L) (the black curve in Fig. 3.8) with a strength specified by coefficient

λc. We adopt λc = 0.2 in our application.

3.5.4 Number of input luminance levels M and output lumi-

nance levels N

Recall Sec. 2.3.1 that luminance L of LHS space is a continuous value lying in [0, 1].

We must quantize it into M separate levels before running the proposed algorithm

(as (3.5) does), and map the N -leveled algorithm output back to [0, 1]. We set M and

N according to the number of intensity levels of the input image; as images are most

commonly stored in a bitmap format where each channel of a pixel occupies 8 bits,

we adopt M = N = 256 generally. Users can also apply greater M and N values for

less quantization error or under particular conditions such as processing HDR images

with even more intensity levels.

3.6 Experimental Results

In this section the proposed enhancement algorithm is compared with some main-

stream context-free contrast enhancement approaches including classical HE algo-

rithm, modified HE by Arici et al. [3], multiscale Retinex (MSR) algorithm [35] and

OCTM algorithm [72]. The comparison study is carried out on a set of illy acquired

colour images of poor contrast covering a diverse range of scenes. The performance

of the algorithms is evaluated in both objective (in terms of image fidelity metrics)

and subjective (in terms of perceptual quality) aspects. Note that, the latter five

algorithms perform enhancement on the luminance channel with insufficient (or even
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little) attention to the tone and chrominance distortion issue which is addressed in

the thesis.

3.6.1 Objective Evaluation

We measure the enhanced images by the following four metrics:

• Global Contrast Gain. Most low contrast images cover merely a subset of the

M available intensity levels. We denote the subset by l = {l0, · · · , lK−1}, K ≤

M and the corresponding histogram by p̃ = {p̃0, · · · , p̃K−1}. p̃ can de deemed

as the original histogram p = {p0, · · · , pM−1} with zero entries excluded. In

[72], the author proposes a context-free contrast metric C with respect to p̃:

C(p) = p0(l1 − l0) +
K−1∑
k=1

pk(lk − lk−1) (3.26)

which takes maximum K − 1 for binary black-and-white images and minimum

0 for constant images. Image enhancement is to amplify the difference between

two adjacent intensity levels in l in order to expand dynamic range, increasing

contrast C(p̃). Then we define global contrast gain by C(p̃′)/C(p̃), p̃′ being

the histogram p̃ after tone mapping.

• Histogram Entropy Gain. Performing enhancement on low contrast images

tends to stretch a histogram broadening luminance distribution, resulting in a

rise in histogram entropy H(p) = −
∑

j pj log(pj) [28].

To measure gain in entropy, we uniformly quantize the luminance range [0, 1]

into 16 levels and then obtain the 16-quantized histograms for both input and

60



Ph.D. Thesis - Zhenhao Li McMaster - Electrical Engineering

Table 3.2: Performance comparison in contrast and colour metrics.
Metric HE Arici et al. MSR OCTM Proposed

Contrast gain 1.997 1.374 1.211 1.722 1.425
Histogram entropy 1.148 1.074 1.045 1.079 1.099

AHD (degree) 6.795 3.209 5.880 0.008 0.488
ASD 0.054 0.011 0.019 0.069 0.004

output image (denoted by pn and p′n) and compute the entropy values H(pn)

and H(p′n) accordingly. Histogram entropy gain is given by H(p′n)/H(pn).

• Average Hue Distortion (AHD) and Average Saturation Distortion

(ASD), defined by the average difference in hue and saturation over each pixel.

We exclude pixels with luminance under 0.15 or over 0.85 owing to their low

precision4.

These quality metrics for the five enhancement algorithms are reported in Table

3.6.1; the values in the table are averages over all test images. As shown HE makes the

highest contrast gain and entropy than any other method, but it suffers from much

larger errors both in hue and saturation meanwhile. The method [3] and MSR also

enhance images with a price of chrominance error. As the original OCTM and the

proposed algorithm keep colour vectors on the equihue triangle when manipulating the

luminance (recall from Fig. 2.10), they should have zero error in hue; the very small

errors in hue for these two methods are caused by quantizing the real luminance and

chrominance values to integer R, G, B coordinates. Remarkable is that the average

saturation error of the proposed algorithm is made orders of magnitude smaller than

that of the original OCTM algorithm and other subject methods, without affecting

4Hue and saturation have relatively low precision for very dark or bright colours. For example,
RGB colours (0.01, 0, 0), (0, 0, 0.01), (0.01, 0.01, 0.01) look almost the same for human observers,
but differ greatly in hue and saturation.
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the performance on contrast enhancement.

3.6.2 Subjective Evaluation

To assess the perceptual image qualities of the tested enhancement algorithms, four

test images and the corresponding enhancement results produced by the five algo-

rithms are presented in Fig.3.9. The output images of HE appear overexposed and

have large chrominance errors; for example, HE distorts hue severely in Case 2, 3, 4

(especially shift from blue to cyan), which is unacceptable to most users. The same

problem exists in the method by Arici et al. and MSR as well: The former greatly

desaturates the input in Case 3 and 5 and MSR on the other hand produces over-

saturated colours together with halo artifacts. Although OCTM algorithm retains

the original hue, which is expected based on the analysis of the thesis, it suffers from

serious saturation distortions as well. The colours generated by OCTM algorithm

look rather pale in Case 1, 2 and 4, due to much reduced saturation as the side effect

of luminance stretching. In comparison, the output images of the proposed algorithm

appear visually more pleasing, with both enhanced details and faithful colour repro-

duction at the same time. These observations are in agreement with the results in the

objective colour metrics reported in Table 1. In addition, Case 5 demonstrates the

superior performance of the proposed method over its competitors on overexposed

images with the most proper adjustment in luminance channel as well as the most

natural colour appearance.
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CASE 1

Input HE Arici et al.

MSR OCTM Proposed

CASE 2

Input HE Arici et al.

MSR OCTM Proposed
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CASE 3

Input HE Arici et al.

MSR OCTM Proposed
CASE 4

Input HE Arici et al.

MSR OCTM Proposed
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CASE 5

Input HE Arici et al.

MSR OCTM Proposed

Figure 3.9: Results of enhancement algorithms on poor contrast images. The pre-
sented algorithms include: HE, modified HE by Arici et al. [3], multiscale Retinex
algorithm, OCTM [72] and the proposed method.
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3.7 Conclusion

In Chapter 2 and 3, we address the long-time overlooked problem of colour fidelity

preservation in image enhancement algorithms. We discuss the means to retain colour

fidelity in several aspects, including: construction of the colour space that best suits

for enhancement, optimal solution to out-of-gamut problems and the optimization-

based framework for enhancement that maximizes output global contrast while con-

taining tone and chrominance distortion. Based on them, we propose a novel algo-

rithm solving the optimization problem efficiently by dynamic programming. Finally,

our objective and subjective evaluations indicate that the proposed enhancement al-

gorithm meets its design goal and is largely free of the chrominance errors that plague

the existing enhancement methods without sacrificing output contrast.
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Chapter 4

Learning-based Restoration of

Backlit Images

4.1 Introduction

For many users of mass-marketed consumer cameras, the most annoying type of im-

age quality degradation is, arguably, that of backlighting, which is characterized by

under- and/or over-exposed object surfaces in patchy appearances of abrupt intensity

changes. Illuminating objects from behind tends to cause incorrect, extremely varied

exposures of different regions in an image, with backlit surfaces being severely under-

exposed and possibly at the same time front-lit surfaces being overexposed, resulting

in loss of details and poor contrast. Although backlighting may render surface details

illegible and it is a commonly encountered ill shooting condition that is beyond pho-

tographers’ control and defies cameras’ exposure settings, scanty research has been

done on the restoration of backlit images. The vast majority of published papers

on image restoration were devoted to denoising and superresolution, despite the fact
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that noise corruption and resolution insufficiency are nowadays hardly any issues for

ever improving modern digital cameras.

Largely motivated to combat the problem of backlighting and compensate for

extreme lighting conditions, high-dynamic-range (HDR) imaging techniques [10] have

been researched and developed. In HDR imaging, cameras take two or more successive

photos with different exposure settings. The resulting multiple photos are then fused

to generate an image of much improved visual quality. However, HDR is susceptible

to motion artifacts when fusing differently exposed images; furthermore, HDR can

only be used for image acquisition in backlighting, not restoration of existing backlit

images of poor quality.

In this work, we investigate how to repair single-exposure backlit images and

improve their visual quality. A novel approach of spatially adaptive tone mapping in

conjunction with soft segmentation is proposed to solve the problem of backlit image

restoration. Conventional image enhancement methods can be applied to improve

backlit images, but their effectiveness is quite limited albeit without the shortcomings

of multi-image HDR. Global enhancement methods, such as histogram equalization

(HE), can hardly correct the problems of underexposure and overexposure with a

single tone mapping function. Local context-sensitive enhancement methods, such

as contrast limited adaptive histogram equalization (CLAHE) [78] and the Retinex

algorithm [35], are more suitable for enhancing backlit images than HE because they

can adapt to different local intensity distributions of backlit images. However, these

methods are susceptible to halo artifacts. The halo artifact problem can be somewhat
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alleviated by edge-aware image enhancement techniques, e.g. those based on edge-

preserving decomposition [19] and local Laplacian filtering [55]. Although the edge-

aware image enhancement approach can amplify image details by stretching dynamic

range around edges, it tends to destroy tone smoothness when applied to backlit

images.

A common flaw with the existing enhancement methods, if directly used to restore

backlit images, is that they operate on back-lit and front-lit regions indiscriminately,

ignoring the fact that these two types of regions exhibit drastically different colour

distributions. Relatively few papers were devoted explicitly to backlit image restora-

tion, although backlighting is a big culprit for poor image quality and a common

nuisance for almost all camera users. In [69] Tsai and Yeh proposed a simple method

of backlit region detection by thresholding the luminance. The detected backlit re-

gions were linearly stretched to increase the contrast. This method was refined in

[43] by quad-tree region growing and guided filtering [30], but still relying on thresh-

olding. Although simple thresholding meets intuition that backlit objects have lower

luminance, it could misclassify dark pixels inside front-lit regions into the class of

backlit regions. Another work [32] was inspired by the dark channel method, which

was initially proposed for haze removal [29]. However, light transmittance is not a

reliable indictor to distinguish the back-lit and front-lit surfaces. Lu and Sun pro-

posed an automatic exposure correction algorithm that was used on backlit image

restoration [75]. This is a hybrid approach of tone mapping and edge-aware filtering.

In this research, we develop a new, spatially adaptive technique to restore backlit

images. The key innovation of the new technique is learning-based classification of

backlit and frontlit regions, denoted by �-regions and ♦-regions. This classifier allows
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Input image

Segmentation into 

patches

Feature vectors of 

each patch

Intra-patch

fuzzy classifier

Inter-patch

fuzzy classifier

CRF-based labeling

Guided filtering

◆-region histogram ◇-region histogram

Tone mapping 

function T◆

Tone mapping 

function T◇

Fusing the mapping 

results

(Eq. 4.13)

Output image

Segmentation

Phase

Enhancement

Phase

Figure 4.1: Flow of the proposed backlit image restoration method.
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us to design two optimal tone mapping functions, one for enhancing each type of ill-

illuminated regions. Following this line of thinking, we propose a two-phase backlit

image restoration technique, as illustrated in Fig. 4.1, that performs an object-guided

segmentation of �- and ♦-regions followed by spatially adaptive tone mapping.

The main difficulty of the proposed backlit restoration approach lies in accurate

segmentation of �-regions, due to the ambiguity between �-regions and the dark

areas that belong to ♦-regions, such as dark coloured surfaces and shadows. The

problem of �- and ♦-regions separation is different from that of shadow detection;

the latter has been studied far more extensively than the former [25, 39, 53, 77].

Shadow detection algorithms cannot be used for the purpose of restoring backlit

images, because shadows in ♦-regions are often meaningful and desired characteristics

of the scene; they should not be confused with �-regions and consequently get removed

or diluted. In terms of physical causes backlit areas have much in common with

shadows, namely, both are the results of low exposure to the light sources. But the two

phenomena differ in semantics. Shadows and �-regions have different characteristics

in their contours. As the shadow of an object is cast on other objects, its contour does

not coincide with an object boundary in general. As a result, pixels on both sides of

shadow contours belong to the same surface, so they are almost the same in many

features except luminance, such as texture, chrominance, etc. This property has been

exploited by shadow detection methods [25, 77]. On the other hand, the contours

of backlit regions generally agree with object boundaries, so pixels on opposite sides

of the boundary of a backlit region differ significantly in more features in addition

to luminance, due to different surface properties. The above correlation between

natural object boundaries and �-♦ boundaries offers useful features for detecting the
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�-♦ borders and for distinguishing �-regions from shadows.

In the segmentation phase, the input backlit image is partitioned into �- and

♦-regions by a soft binary classifier. Two support vector machine (SVM) based sub-

classifiers are formed to locate backlit patches and �-♦ borders respectively, trained

via supervised learning. These SVM results are further combined by a conditional

random field (CRF) [42] based labeling technique to generate the final segmentation.

Next in enhancement phase, we apply different tone mappings on both regions

respectively. The mapping functions are obtained by optimization maximizing con-

trast gain with bounded distortions in tone and chrominance. The separate enhanced

results are finally fused into one to form the output.

The chapter is organized as follows: Sec. 4.2 details the segmentation phase,

Sec. 4.3 concentrates on the enhancement phase, and Sec. 4.4 presents the results of

the proposed method on a variety of backlit scenes, together with a comparison with

related methods, and we come to conclusions in Sec. 4.5.

4.2 Backlit Region Detection

In this section, we present a data-driven scheme for segmenting input images into ♦-

and �-regions by exploiting statistical differences between �- and ♦-regions and the

characteristics of the boundaries between these two types of regions.

We first segment the image into small patches {xi} by simple linear iterative

clustering (SLIC) algorithm [1], such that all pixels of a given patch are either in

or outside of a �-region. A graph is constructed in which the patches xi form the

vertices and the borders between every pair of adjacent patches {xi,xj},∀{i, j} ∈ N

form the edges, N being the neighbourhood system which is a set of all adjacent
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patches.

Next we develop a labeling technique to assign every patch xi a corresponding

label yi, which takes 0 if the patch lies in an ♦-region, or 1 if it lies in a �-region. We

solve the labeling problem by seeking for the maximum a posteriori (MAP) solution:

ŷ = arg max
y

p(y|x) (4.1)

We model the conditional probability p(y|x) by CRF [42], in which the labeling

of xi given the observation x is completely dependent on that of xi’s neighbouring

patches, due to the Markovianity:

p(yi|yj,x, j 6= i) = p(yi|yj,x,∀j s.t.{i, j} ∈ N ) (4.2)

The joint distribution over the labels y given x in CRFs has the form [42]

p(y|x) ∝ exp

−
∑

i

V1(yi|x) + λ
∑
{i,j}∈N

V2(yi|yj,x)

 (4.3)

where the exponent (called Gibbs energy [5]) consists of a unary potential V1(·) and

a pairwise potential V2(·) weighed by a coefficient λ, representing intra-patch and

inter-patch confidence of labeling respectively. Both of the potentials should be non-

negative. Hence the MAP solution can be obtained by minimizing the Gibbs energy

function above; in other words, the smaller the Gibbs energy is, the closer the labeling

is to the ground truth. We detail the definitions of V1(·) and V2(·) in the following

discussions.
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4.2.1 Intra-patch Term V1

As shown in Fig. 4.1, we train a binary SVM classifier with Gaussian radial basis

function (RBF) kernel (in which σ = 1) for whether an arbitrary patch xi belongs

to a backlit or frontlit region. The training backlit images are manually labeled into

backlit and frontlit regions. For patch xi, a feature vector vi is chosen to drive the

classifier. Features to discriminate �- and ♦-regions include the spatial distribution

of illumination and several statistics of the patch, such as the bright channel value,

the skewness and average saturation. The discrimination power of these features is

demonstrated in Fig. 4.2, and they are explained and justified one by one in the

following subsections.

Estimated Illumination

Illumination is a decisive cue for separating �- and ♦-regions. Recall the image

formation model (4.5) that, the illumination ` satisfies

I(x, y, λ) = s(λ)`(x, y, λ)r(x, y, λ) (4.4)

However ` is hard to extract from 2D images directly. As ` is white for natural scenes,

we can imply from (4.4) that

logL(x, y) = log `(x, y) + log r(x, y) + C (4.5)

where C is a constant. Hence we can apply homomorphic filtering which low-pass

filters logL(x, y) to make a coarse estimation of `(x, y), because ` tends to be of low

frequency, whereas the reflectance signal r dominates the high frequency part in most
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Features applied in the proposed SVM classifier. (a) Original image; (b)
segmentation result by SLIC [1]; (c) estimated likelihood of being backlit by (4.7); (d)
bright channel (4.9); (e) skewness; (f) saturation. In (c)(d)(f), patches with higher
intensity are with larger values; in (e), red patches are with positive skewness and
blue ones have negative skewness.

Figure 4.3: The luminance histogram of Fig. 4.2(a) (the yellow curve) modeled by
2-GMM (the blue curve for w� and the red curve for w♦).
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natural scenes.

It can be observed that the histogram of the illumination signal ` is typically of two

peaks, corresponding to �- (the low-intensity peak) and ♦-regions (the high-intensity

peak) respectively. This distribution of luminance l can be effectively modeled by a

mixture of two Gaussian components (2-GMM) w� and w♦ (see Fig. 4.3):

p(l) =
∑
k

P (wk)p(l|wk), k ∈ {�,♦} (4.6)

where p(l|wk) ∼ N(µk, σk) is the PDF of the Gaussian component wj (including w�,

the �-region component and the ♦-region component w♦) specified by mean µj and

covariance matrix Σk, and P (wk) is the prior probability of the pixels generated from

the component wk. The unknown parameters of the GMM model θ = {P (wk), µk, σk}

are estimated by expectation-maximization (EM) method [15].

The likelihood of being backlit for a patch xi in a GMM sense, denoted by φ(·),

can be coarsely approximated by the posterior probability generated by the �-region

component w� regarding the average patch illumination on the patch, denoted by L̄i:

φ(L̄i) = P (w�)p(L̄i|w�). (4.7)

which ranges between 0 (if the patch luminance L̄i is generated solely by w♦) and 1

(if L̄i is generated by w� solely). The larger φ(L̄i) is, the more likely the patch xi

belongs to the �-region.

As shown in Fig. 4.2(c), φ(·) is statistically close to the ground truth though with

some misclassified patches, thus adopted into the feature vector.

However, there are cases where the 2-GMM cannot fit the histogram of an input
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backlit image well; the resulting segmentation result may not be sufficiently accurate

(see Fig. 4.7 (d) for such examples). This motivates us to seek for more features to

make the patch classifier more robust, which are introduced in the following subsec-

tions.

Bright Channel

Based on the observation that all three RGB channels have low values for pixels where

little light arrives, Panagopoulos et al. proposed the concept of bright channel [53].

The bright channel β(·) with respect to an RGB pixel cj = {c(r)
j , c

(g)
j , c

(b)
j } is defined

by

β(cj) = max
n∈{r,g,b}

max
k∈Ωj

c
(n)
k (4.8)

where Ωj is a rectangular neighbourhood patch centered at the pixel cj. This metric

was applied in shadow detection [53] as pixels with high bright channel values have

little probability to be shaded.

In backlit scenes, we find the �-regions have even lower bright channel value in

contrast to ♦-regions. We extend the pixel-based definition to an arbitrary patch xi:

β(xi) = max
n∈{r,g,b}

max
c∈xi

c(n) (4.9)

Refer to Fig. 4.2(d) for a bright channel image.

Skewness

As discovered by Motoyoshi et al. in [50], the skewness of luminance histogram

reflects the properties of object surfaces. We find there is significant difference in
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(a) (b)

(c) (d)

Figure 4.4: Statistics of all �- (blue) and ♦-region (red) patches in dataset images
including the distribution of luminance (a), bright channel values (b), skewness (c)
and saturation (d). Note that the luminance histograms of ♦- and �- regions are
biased towards opposite direcitons, resulting in skewness of opposite signs.
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: The segmentation phase. (a) Original image; (b) ground truth of segmen-
tation; (c) binary output of the SVM classifier; (d) fuzzy output of the SVM classifier
S1 (4.10), where red coloured patches are classified as �-region, and blue coloured
ones are ♦-regions; (e) fuzzy output of the �-♦ border classifier S2 (Sec. 4.2.2); (f)
segmentation result of (4.1).
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the distribution of luminance skewness between �- and ♦-regions, as depicted in

Fig. 4.4(c): skewness of patches in �-region are almost all positive, but that of ♦-

region patches tends to be negative instead. This is mainly because skewness is

indicative of the shape of the luminance histogram: as shown in Fig. 4.4(a), the

luminance histogram of �-regions is typically tailed on the right, resulting in positive

skewness, whereas the tail of ♦-region histogram is to the left, generating negative

skewness.

Saturation

Apart from the luminance-based features above, we also consider the difference be-

tween �- and ♦-regions in terms of chrominance. In most natural scenes, the incident

light is almost white so that it dilutes the colour of the objects illuminated, resulting

in lower saturation than the ones receiving less illumination (see Fig. 4.2(f)). As

revealed in Fig. 4.4(d), the saturation of ♦-regions is more biased toward low values,

compared with the saturation of �-regions.

Formation of Feature Vectors

We include the aforementioned four features in the feature vector. In addition to the

features of the patch xi itself, we also include the four features regarding a neigh-

bourhood of the patch N(xi), with N(xi) covering all adjacent pixels of xi within a

radius. Therefore, the feature vector of xi is 11-dimensional: three dimensions for the

colour centroid vector of xi, four for the features of xi, together with the other four

for the features of N(xi).

In practice, instead of applying the binary output by the trained SVM directly,
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we adopt the distance between the projection of the input vector in the feature space

and the separating hyperplane, which implies higher confidence if larger, to provide

a “fuzzy” segmentation. Let di be the distance to the separating hyperplane in the

SVM feature space, ςi be the binary SVM output (±1, positive for being backlit), and

then the soft SVM output S1(vi) is given by

S1(vi) =
1

2

(
1 + f(ςi ·

di
maxi{di}

)

)
(4.10)

where f(·) is a sigmoid function, normalizing S1 in the range [0, 1]. As di increases,

S1 approaches to either 0 or 1, meaning that the confidence level of the classifier

increases.

We can see from Fig. 4.5(c) that the backlit regions estimated by the trained SVM

classifier are rather close to the ground truth, while some isolated outliers still exist.

Finally, we combine two likelihood proxy terms, the soft SVM result S1 and the

GMM inference φ(·), so that 1
2
(S1 + φ(·)) is a better estimate of the probability that

a patch is in a backlit region. The intra-patch potential V1(yi|x) is then given by:

V1(yi|x) =

(
yi −

1

2
(S1(vi) + φ(L̄i))

)2

(4.11)

which takes smaller value when the labelling result is closer to the estimate.

4.2.2 Inter-patch Term V2

The segmentation result given by the patch classifier proposed in Sec. 4.2.1 is still

imperfect, because the observation x is the only prior used; the correlation between

the labelings of adjacent patches is neglected. Hence the pairwise potential V2 in (4.3),
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also called smoothness term in literature, is also important in the labeling scheme as

it exploits such correlations.

Several existing CRF-based shadow detection methods embody V2(yi|yj,x) by

(yi − yj)
2 [25, 39, 77] to impose penalty on the event that any adjacent pixels or

regions are labeled (as shadows or not) differently, defying the common sense that

the shaded area is mostly connected not scattered. However, the penalty should not

be equal over all pairs, for the discontinuity in labeling is necessary at the boundaries

of shadows, which is overlooked in those methods. In this work, we do consider the

effect of the �-♦ borders in determining the penalty term V2(yi|yj,x).

The correlations between adjacent labels can be summarized into two points: 1)

the labels should be constant over patches that belong to the same surface as they are

almost equally exposed; 2) discontinuity of labels should only exist at �-♦ borders. So

V2 should be zero if both are satisfied, or take larger values to penalize the situation

of discontinuity in labeling at any location but �-♦ borders. Based on this, V2 is

given by:

V2(yi|yj,x) =(1− S2(vi,vj))(yi − yj)2+

S2(vi,vj)((1− (yi − yj)2)

=S2(vi,vj) + (1− 2S2(vi,vj))(yi − yj)2

(4.12)

where S2 is obtained from a �-♦ border classifier (to be shown later). V2 imposes

penalty against two situations in labeling: continuity at �-♦ borders, and disconti-

nuity elsewhere.

The �-♦ border classifier is a linear SVM regarding the feature vectors of the

patches on both sides vi,vj, namely a 22-dimensional feature vector for each pair of
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adjacent patches. It also gives binary results as the intra-patch classifier in Sec. 4.2.1

does where 1 means the border of the given pair of patches is a �-♦ border and 0

means not. We apply the same normalization technique as (4.10) to provide a “fuzzy”

classification, which forms the definition of S2.

4.2.3 Solving the CRF

After constructing the graph, we apply graph cuts algorithm [41] to obtain the solution

to (4.3), where the Lagrangian multiplier λ is empirically set to 0.3. The output is

finally refined by guided filtering [30] so that it aligns closely with object boundaries

in the original image. Meanwhile, as the labeling is binary, guided filtering can also

“soften” the segmentation result to better suppress any possible artifacts at �-♦

borders.

Fig. 4.5 gives an example of how the proposed segmentation scheme prevents

misclassifying dark objects and shadows into �-regions: although outliers still exist

in the result given by the intra-patch classifier, they are effectively eliminated as the

�-♦ border classifier does not output high confidence around them (see the pole and

plants behind the person).

4.3 Restoration of Backlit Images

Based on the fuzzy binary segmentation of a backlit image I into the �-regions and

♦-regions, we enhance the image by applying respective tone mapping functions T�(·)

and T♦(·) on the �- and ♦-regions.

As shown in Fig. 4.4(a), the luminance histograms of �- and ♦- regions (denoted
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by p� and p♦) differ significantly, both having a relatively small dynamic range.

Thus image details in both �-regions and ♦-regions can be enhanced by separate

tone mapping functions T�(·) and T♦(·) that stretch the dynamic range of p� and

p♦, respectively, using the contrast enhancement algorithm presented in Chapter

3. Specifically we construct p� with the pixels where the fuzzy segmentation result

yi ≥ 0.5 and p♦ with the remaining pixels.

To prevent possible artifacts around �-♦ borders due to different tone mappings

T�(·) and T♦(·), we apply both tone mappings T�(li) and T♦(li) to pixels on or near

the borders, where li is the luminance of the pixel ci, and then fuse the results to

generate the output luminance l′i:

l′i = yiT�(li) + (1− yi)T♦(li) (4.13)

so that each output pixel can be obtained using (3.24).

We present the proposed backlit image restoration algorithm in pseudocode at

Algorithm 2.

4.4 Experimental Results

The experiments are conducted on a dataset of 64 images, captured in various backlit

scenes by different devices. Half of the images are used to train the classifiers, and

the remaining are for validations.
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input : Input image I
output: Output image I ′

begin
{xi} ← slic(x) ; // Perform SLIC segmentation

{vi} ⇐ {xi} ; // Compute the feature vector of each patch xi
// Construct the CRF

{S1(vi)} ⇐ {vi} ; // Run Intra-patch SVM on each patch using

(4.10)
{S2(vi)} ⇐ {(vi,vj)} ; // Run Inter-patch SVM on each patch

// Solve the CRF using graph-cut algorithm

V1(y)← S1, V2(y)← S2 ; // Using (4.11) and (4.12)
y← arg miny(V1 + λV2);

// Perform guided filtering

{yi} ← guidedfilter(y) ; // yi is classfication result for pixel

ci in I
// Run Algorithm 1 on both regions

RB ← {ci|yi ≥ 0.5}; T� ←algorithm1(RB);
RF ← {ci|yi < 0.5}; T♦ ←algorithm1(RF);
// Perform luminance mapping together with inverse colour

transform

foreach ci ∈ I do
L′i ← yiT�(li) + (1− yi)T♦(li);
c′i ← result of (3.24) on pixel ci;

end
return I ′;

end

Algorithm 2: Proposed backlit image restoration method (in pseudocode).
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4.4.1 Accuracy of Segmentation

First, we demonstrate the power of the proposed learning-based segmentation in the

restoration of backlit images. In Fig. 4.6 we compare restored backlit images that

are generated by optimal tone mapping technique in Chapter 3, without versus with

segmentation. It is evident that the new segmentation-based backlit image restora-

tion method, by spatially adaptive tone mapping, achieves close to ideal harmonized

lighting conditions, with all parts of the image properly exposed, leading to superior

image quality. In contrast, the original OCTM method without segmentation fails

to achieve the same level of visual quality in both �- and ♦-regions as the proposed

method; for instance, the frontlit regions of Fig. 4.6 (b.2) have reduced contrast, low

dynamic range and tone artifacts.

Next, we closely evaluate the performance of the segmentation method, and the

final restoration results in comparison with those of existing methods. We com-

pare results of our segmentation phase with several other methods mentioned above,

including the 2-GMM illumination estimator (4.7), the intra-patch SVM classifier

(Sec. 4.2.1), and the method by Lee et al. [43], in both quantitative and qualitative

aspects.

The accuracy of classification and the root-mean-square error (RMSE) against

the ground truth of them are tabulated in Table 4.1. As revealed by the comparison,

machine-learning based classifiers have superior performance over methods based on

image statistics only. Next we present more examples that further differentiate the

capabilities of intra-patch classifier and the proposed method, though they are close

in objective assessment.

Fig. 4.7 exhibits the results of these methods versus hand labeled ground truth on

86



Ph.D. Thesis - Zhenhao Li McMaster - Electrical Engineering

(a.1) (a.2)

(b.1) (b.2)

(c.1) (c.2)

Figure 4.6: Backlit image restoration results without and with the proposed seg-
mentation phase. First row: original images; second row: restored images without
segmentation; third row: restored images with segmentation phase.
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(a) (b) (c) (d) (e) (f)

Figure 4.7: Comparison of various backlit region detection methods. (a) Original
image; (b) ground truth of segmentation; (c) method by Lee et al. [43]; (d) likelihood
φ with respect to the estimated illumination (4.7); (e) binary output of the intra-patch
SVM classifier (Sec. 4.2.1); (f) segmentation result (4.1).
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several representative images in the dataset. These images contain patches that are

prone to misclassification, for instance the dark green bushes in the background (in

the first row), the white text on the sign (in the second row) and the light-coloured

part on the girl’s dress (in the third and fourth row), making the segmentation more

challenging. We can see from Fig. 4.7 (c) that [43] makes most misclassifications by

simply classifying all dark pixels into �-regions. The misclassifications get somewhat

relieved by the 2-GMM classifier (Fig. 4.7 (d)), but it may fail in some cases with

too much ambiguity (for instance, the dark-coloured sky in the third row is classi-

fied as �-region). The intra-patch SVM classifier (Fig. 4.7 (e)) provides more precise

segmentation results than the former two methods, but the outputs are still vulner-

able to the ambiguity brought by e.g. dark objects and shadows, with observable

“orphans” in both �- and ♦-regions. With help of the �-♦ border classifier, the pro-

posed method (Fig. 4.7 (f)) can effectively get rid of those outliers, producing results

closest to the ground truth. Remarkably, the CRF-based labeling process still pre-

serves isolated patches with high labeling confidence, as shown in the third row where

the gap between the woman’s arm and waist is not smoothened into the �-region,

which demonstrates the robustness of the proposed segmentation scheme.

Table 4.1: Performance comparison of segmentation methods.
Method Accuracy(%) RMSE

Lee et al. [43] 74.61 0.3938
2-GMM 82.59 0.3423

Intra-patch SVM 94.36 0.1950
Proposed 96.10 0.1547
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Input HE CLAHE Retinex

Farbman et al. Yuan and Sun’s Paris et al. Proposed

Input HE CLAHE Retinex

Farbman et al. Yuan and Sun’s Paris et al. Proposed
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Input HE CLAHE Retinex

Farbman et al. Yuan and Sun’s Paris et al. Proposed

Input HE CLAHE Retinex

Farbman et al. Yuan and Sun’s Paris et al. Proposed

Figure 4.8: Backlit images enhanced by existing contrast enhancement methods and
the proposed method. The presented existing methods include: HE, CLAHE, multi-
scale Retinex method, edge-preserving decomposition [19] by Farbman et al. , Yuan
and Sun’s exposure correction method [75] and local Laplacian filtering by Paris et
al. [55].
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4.4.2 Subjective Evaluation

We invite the reader to compare the proposed method with existing mainstream en-

hancement methods in terms of the perceptual quality of the restored backlit images,

by examining the experimental results in Fig. 4.8. It is evident that HE and the

method of [75], which are based on global tone mapping, fail to mitigate the prob-

lems of underexposure and overexposure. Both algorithms CLAHE and Retinex, if

applied to backlit images, suffer from severe halo artifacts; they hardly improve the

visual quality of backlit images. The methods of [19] and [55], which are considered

among the best image enhancement methods, are apparently not suited to the task

either, producing severe artifacts in colour and tone; of course, this should not be

a surprise because these methods are not meant to restore backlit images. In sum-

mary, none of the existing tone mapping and enhancement techniques is suited for

backlit image restoration, justifying the need for dedicated backlit image restoration

algorithms as developed in this paper. Indeed, the proposed method of backlit image

restoration appears to produce visually most pleasing results, without introducing

objectionable artifacts.

4.4.3 Objective Evaluation

We also evaluate these methods with two objective metrics of image quality for con-

trast enhancement operations. They are the histogram entropy and the luminance

ordinal distortion (LOD). The histogram entropy is an information theoretical metric

for the richness (variability) of image details, which may be considered as a proxy

for contrast. Generally speaking, higher entropy corresponds to higher contrast and

perceptual quality. LOD, on the other hand, is a measure on the distortion of order
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statistics caused by the contrast enhancement process in sliding windows. It is defined

as

LOD =
1

N

N∑
i=1

√∑n
k=1(v̂ik − vik)2

n
(4.14)

where N is the total number of sliding windows, n is the number of pixels inside a

window, and vi and v̂i are the ordinal vectors of the i-th window in the input and

processed images, respectively. Ideally the processed image should not violate the

order statistics of pixel values with a zero LOD; artifacts such as contours, halos and

ghosts are associated with errors in order statistics. Therefore, LOD is an objective

measure of artifacts due to over-enhancement.

We compute the above two objective quality metrics on the ♦- and �-regions,

separately. The results over the set of 32 test images are reported in Table 4.2 and

4.3. Table 4.2 shows that the proposed method achieves the highest entropy in backlit

regions, as it should because it is designed explicitly for enhancing underexposed

regions. As frontlit regions typically do not suffer from low contrast problem, it is

less critical to increase the entropy of the ♦-regions. All other methods perform

almost as well as the proposed method in the entropy measure, except methods [35]

and [75] actually reduce the entropy of �-regions. On the other hand, in the LOD

Table 4.2: Objective evaluation by histogram entropy [28].
Method ♦-region �-region
Input 1.7791 2.0159
HE 1.6857 2.2413

CLAHE 1.9560 2.2748
Retinex 1.9615 1.8696

Farbman et al. 1.9463 2.2830
Yuan and Sun’s 1.6976 1.9519

Paris et al. 1.8675 2.1056
Proposed 1.7953 2.3096
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Table 4.3: Objective evaluation by local ordinal distortion.
Method ♦-region �-region

HE 6.5594 6.1195
CLAHE 6.5141 6.0965
Retinex 7.7811 8.1528

Farbman et al. 6.9688 7.1189
Yuan and Sun’s 5.7147 5.4613

Paris et al. 7.4335 6.8186
Proposed 2.3142 3.7818

measure, the competing methods are much inferior to the proposed method, reflecting

the fact that they are prone to over-enhancement artifacts, as evident in Fig. 4.8 and

discussed in the proceeding subsection. On balance the proposed method achieves

superior perceptual quality by boosting contrast without introducing objectionable

artifacts.

4.5 Discussions

We have presented a novel, learning-based, spatially adaptive technique of optimal

tone mapping for the restoration of backlit images. The new technique first identifies

the backlit regions using a binary soft classifier, and then enhances degraded image

details due to poor illuminations by fusing the results of two optimal tone mapping

functions, one designed for backlit regions and the other for the remainder of the

image. The binary classifier for segmentation is trained via supervised learning on

manually labeled segmentation data. Empirical results and objective measures are

presented to establish the efficacy of the proposed technique.

Nonetheless, the new method has its limitations: the quality of output heavily

relies on the accuracy of segmentation. Although techniques have been applied to
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(a) (b) (c)

Figure 4.9: A failure case with incorrect segmentation. (a) Input image; (b) segmen-
tation result; (c) output after enhancement.

refine the segmentation result, such as CRF optimization and guided filtering, failure

may still occur. Fig. 4.9 is an example in which the complicated window grids confuse

the classifier.
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Chapter 5

Video Restoration against

Yin-Yang Phasing

5.1 Introduction

5.1.1 The problem and background

A highly irritating type of video degradation, called Yin-Yang Phasing (YYP) in this

paper, is spatially patchy and temporally inconsistent objects appearance, with parts

of the scene turning in and out the state of under-exposure (yin) or over-exposure

(yang), back and forth. Such effects are quite common in impromptu-made video

materials in daily life. An example is presented in Fig. 5.1: in a short progression

of few video frames, which are produced by an iPhone 6 camera, the person’s face

alters from normally lit to unintelligibly dark as she moves her head. Moreover, the

involuntary, dramatic changes in the intensity (luminance) and possibly chrominance

are compounded by low contrast due to wrongly exposed objects. The YYP effects
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Frame 1 Frame 15 Frame 85 Frame 150 Frame 200

Figure 5.1: Top row: temporally inconsistent frames due to changes in exposure time.
Bottom row: frames restored by the proposed method.

are caused by unevenness of illumination, significant changes in the directions of

incident and reflection lights due to object and/or camera motions, and improper

camera operations by amateur users. These scenarios tend to confuse the ubiquitous

“dumb” cameras and lead to incorrect and time-lagged settings of auto-exposure and

white point. Unfortunately, the above root cause of YYP is an inherent weakness

of mass-produced cameras that will trouble average users for a foreseeable future,

particularly when shooting videos in unevenly-lit scenes.

In difficult illumination conditions, disabling camera’s auto-exposure functionality

cannot cure but rather aggravate the YYP problem for most users. For example, in

backlit scenes like in Fig. 5.1, without auto-exposure the person in the foreground,

the very focus of the video session, will be severely underexposed in most frames.

Also, out of question is the use of auxiliary lighting to compensate for problematic
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illumination in the scene, as it is beyond the means and knowledge of amateur camera

users.

The YYP type of video degradation is becoming a major culprit of poor video

quality, much more so than insufficient spatial resolution, low frame rate, sensor

noises, and compression distortions. Nowadays even consumer-grade cameras boast

very high pixel counts, frame rates of 60Hz and above, and low senor noise level; fur-

thermore, modern communication infrastructures can support high throughput visual

data exchanges. While these hardware advances are making superresolution, frame

rate upconversion, denoising, compression artifacts removal, etc., less important in

practice, they can do nothing to repair the YYP degradation as the lighting condi-

tions in the scene and non-expert video shooting behaviors are beyond the control

of video acquisition and communication equipment. Despite the daily encountering

of the YYP video degradation problem in a wide range of video applications, such

as social media, on-line video sharing, video monitoring, spontaneous video report-

ing, etc., very little research has been carried out on the YYP phenomenon and its

mitigation. In this paper we investigate how to algorithmically remove the undesired

YYP effects, aiming to restore the video to the state as though it was shot in spatially

uniform and temporally steady lighting conditions. For lack of better wording, we

call such a process YYP removal.

Unlike in the studies of traditional image/video restoration problems, such as

deshaking [49], denoising [48], deblurring [7], superresolution [61], etc., the source

of YYP degradation is not purely physical and hence difficult to model analytically.

As a result, casting YYP removal as an inverse problem or into a mathematical

programming formulation is not as easy as for other restoration problems.
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5.1.2 Our approach

As tonal reproduction primarily depends on global image statistics, it is difficult

to perform the YYP removal solely in pixel domain by tracking motion trajectory

across frames and enforcing temporal tone consistency guided by the motion flow.

Instead, we formulate the YYP removal as an inter-frame, spatially-adaptive, optimal

tone mapping problem and propose an optimization approach to solve it, aiming to

neutralize temporally unsteady intensity levels of the objects. The basic premise of

our approach is that the overall appearance of an image is governed by the shape of its

intensity histogram [50]. Therefore, we propose to retain the temporal consistency of

tonal reproduction by mapping the intensity histograms of input frames to a common

target histogram per a given scene. The other reason for adopting a histogram-based

tone mapping approach is that it can be tuned to boost contrast as well, hence

unifying the tasks of tonal stabilization and image enhancement.

As the human visual system can rapidly adapt to different luminance levels, our

histogram targeting strategy for YYP harmonization can be made more effective if

the tone mapping is tailored to image regions under different illumination conditions.

Specifically, we segment a YYP-affected video frame into two types of regions, by the

likelihood of a pixel being on a weakly or strongly illuminated object surface, denoted

by the �-region and ♦-region.

In order to prevent the �-regions from being underexposed and the ♦-regions from

being overexposed sporadically, we temporally track the �-regions and ♦-regions.

For a fixed video scene of N frames, let R
(n)
� and R

(n)
♦ , 1 ≤ n ≤ N , be the sets of

�-regions and ♦-regions in frame n, respectively. Using the statistics of the data

set {R(n)
� }Nn=1, an anchor intensity histogram p∗� is constructed as the target for the
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YYP harmonization of �-regions through all N frames, which can be viewed as a

generalized centroid in terms of Kullback-Leibler distance of probability distributions

[8]. Then, for each frame n, a tone mapping (histogram transformation) T
(n)
� is

computed to best match the histogram of R
(n)
� to p∗�. By forcing all N histogram

transformations T
(n)
� , 1 ≤ n ≤ N , to approach the same output histogram p∗�, we

make the tone reproduction of an object temporally consistent. In case the anchor

histogram p∗� is ill-shaped, which is common in YYP-degraded videos, one can employ

the contrast enhancement technique in Chapter 3 prior to histogram matching. The

same procedure outlined above can be applied to the set of ♦-regions {R(n)
♦ }Nn=1

to compute p∗♦ and T
(n)
♦ , 1 ≤ n ≤ N . The main objective of the proposed YYP

harmonization algorithm is to stabilize throbbing intensity levels in any given �-

or ♦-region. But it can also stabilize shifting chrominance of any given region, if

required. We only need to first decompose the original video signal into luminance

and chrominance components, and then apply the same region-adaptive inter-frame

harmonization method to the chrominance component of the input video.

To summarize our novel YYP harmonization approach, objects under similar

lighting conditions are spatially grouped and temporally tracked, the luminance and

chrominance distributions of the these similarly-lit objects are optimized in terms of

perceptual quality, and set as the objectives of tone mapping for all frames in a given

scene of the YYP-degraded video. For each frame n, to prevent possible boundary

effects of region-based tone mapping functions T
(n)
� and T

(n)
♦ , the results of T

(n)
� and

T
(n)
♦ are weighted based on a fuzzy light field segmentation.
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5.1.3 Related works

Thus far most of research efforts on video restoration against adverse acquisition

conditions are devoted to the stabilization of shaky frames caused by large, irregular

camera jitters [49]. Of most relevance to this work is a 2011 publication by Farbman

and Lischinski on tonal stabilization of video [18]. The authors addressed the problem

of tonal inconsistency in consecutive video frames caused by improper auto-exposure

and white points, and proposed a method to make global, smooth tone transitions

from one frame to the next guided by selected anchor frames. In comparison, YYP is

a different and more challenging video degradation problem: severe tonal fluctuations

compounded by low contrast, which are caused by uneven, incorrect exposures. In [18]

two assumptions are made: 1) lighting conditions in the scene do not change abruptly;

2) the tonal fluctuations are of a global nature not spatially varying; moreover, there is

no significant loss of contrast due to under and/or over exposures. The YYP problem

differs from the one in [18] in both the effect and the cause. YYP removal requires an

approach of joint tone stabilization and contrast enhancement, as proposed by this

paper.

The YYP phenomenon has similar visual characteristics as poor tone reproduction

in HDR images. If each video frame is treated in isolation, it is tempting to try some

of the many HDR tone mapping methods [16, 62] to correct poor use of dynamic

range and improve the visual quality. However, this naive approach is highly prone

to objectionable temporal artifacts. Very recently, Aydin et al. addressed the problem

of temporal coherence in tone mapping of HDR video [4]. They proposed a method of

edge-aware filtering method through pixel motion paths to achieve temporal stability

of the enhanced video. But this work, like other HDR tone mapping methods, is
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mainly about how to compress the intensity dynamic range while maintaining contrast

and preventing artifacts; hence it is not suited to compensate for drastic changes in

object appearance in time as required by the restoration of YYP videos.

This chapter is structured as follows. Sec. 5.2 presents an algorithm for temporally-

constrained fuzzy light field segmentation, which is a preparation step for the main

task of inter-frame region-adaptive YYP harmonization. Sec. 5.3 details the YYP

harmonization algorithm, in particular explaining the choice of an anchor frame and

the histogram targeting process. Sec. 5.4 discusses how to improve the performance

of YYP harmonization by using an enhanced anchor frame to drive the algorithm

developed in Sec. 5.3. Sec. 5.5 reports experimental results and performance evalua-

tions.

5.2 Temporally-constrained fuzzy light field seg-

mentation

As reasoned in the introduction, our YYP harmonization method needs to analyze

an unevenly-illuminated video scene, and separate weakly-illuminated �-regions from

strongly-illuminated ♦-regions in the input frame. This can be implemented by ho-

momorphic filtering and the 2-GMM fitting as described in Sec. 4.2.1. For particular

scenes we also apply more sophisticated methods to achieve more precise segmenta-

tion, for instance the learning-based segmentation algorithm in Chapter 4 for backlit

scenes, and face matting algorithm [11] for human head-and-shoulder scenes.

As the reader will appreciate shortly when we present the details of the YYP

harmonization algorithm, the precision of region boundaries is less critical for the
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algorithm performance. For visual quality of video restoration, more important than

boundary precision is that the segmentation results should be consistent in time.

Under the assumption that in a given video scene, the foreground object motion

or/and camera motion is modest, we can achieve the desired temporal consistency by

the following simple and fast inter-frame segmentation technique:

R(n)
j = ((R(n−1)

j ∩R(n)
j )⊕ τ) ∩ (R(n−1)

j ∪R(n)
j ),

j ∈ {�,♦}
(5.1)

where τ is the core for morphologic dilation, R(n)
� (R(n)

♦ ) is the temporally smoothed

R
(n)
� (R

(n)
♦ ) with respect to its counterpart R(n−1)

� (R(n−1)
♦ ) in the previous frame.

Set R(n)
� (or reciprocally set R(n)

♦ ) deterministically classifies every pixel in frame n

to be on a weakly-illuminated (or strongly-illuminated) object surface or not. Such

a hard-decision classification may, due to segmentation errors, generate boundary

artifacts after pixels in R(n)
� and R(n)

♦ are gone through two different tone mappings

T
(n)
� and T

(n)
♦ . Like Chapter 4, we introduce a simple fuzzy classification technique to

eliminate the boundary artifacts. The idea is to fuse the results of T
(n)
� and T

(n)
♦ by the

likelihood of a pixel being on a weakly-illuminated object surface. The likelihood is

determined by a fuzzy classifier w(n), given by the output of guided filtering of the hard

segmentation resultR(n)
� .The value of w(n)(x, y) will be used as the likelihood for pixel

(x, y) being on weakly-illuminated object surface. Fig. 5.2 summarizes the temporally-

constrained fuzzy segmentation-classification process presented in this section.
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Figure 5.2: Steps of temporally-constrained fuzzy segmentation.

5.3 Interframe region-adaptive YYP harmoniza-

tion

Now we discuss how to construct the tone mappings T
(n)
� and T

(n)
♦ for restoring the

interframe consistency of frame n in a YYP-degraded video. All of the following

technical developments, conclusions and methods apply exactly the same way to the

construction of T
(n)
� and T

(n)
♦ . Therefore, we can drop the subscripts in previous

notations T�, R(n)
� , T♦, R(n)

♦ , etc. to avoid symbol clutter, and discuss the case of T
(n)
�

only.

Let p(1),p(2), · · · ,p(N) be the intensity histograms of �-regions for the N input

frames in a given video scene. We need to select, among the N input frames, frame

n∗ such that p(n∗) is statistically the best representative of all other N−1 histograms.
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Histogram p(n∗) can be viewed a generalized centroid of the set {p(1),p(2), · · · ,p(N)}

and is used as the target intensity distribution for all tone-mapped frames by T (n),

1 ≤ n ≤ N , to closely obey.

Using the Kullback-Leibler distance D(·||·) between distributions, the generalized

centroid histogram p(n∗) can be computed as below:

p(n∗) = arg min
p∈{p(n)}N

n=1

N∑
j=0

D(p(j)||p) = arg min
p

N∑
j=0

H(p(j),p)

= arg min
p

H(p̄,p)

(5.2)

In other words, among all N frames of the scene, frame n∗ is the one whose histogram

has the minimum cross entropy with respect to the average histogram p̄ of the group.

Upon having selected the anchor intensity histogram p(n∗), the tone mapping

function T (n) for �-regions of frame n, 1 ≤ n ≤ N , is computed via histogram

matching:

T (n)(k) = arg min
j
|C(n)(k)− C(n∗)(j)| (5.3)

where C stands for the cumulative density function of the corresponding histograms.

The next step is to eliminate possible boundary artifacts caused by separate tone

mappings T
(n)
� and T

(n)
♦ on �- and ♦-regions, respectively, as explained in the previous

section. Recall that the proposed fuzzy segmentation assigns each pixel (x, y) a

likelihood value w(x, y) ∈ [0, 1], with the pixels around the border of �- and ♦-

regions being far off from 0 and 1. In the interest of robustness, the input intensity

value I(x, y) is finally mapped to Ĩ(x, y) via the following affine weighting by the
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region likelihood w(x, y) of the pixel:

Ĩ(x, y) = w(x, y)T
(n)
� (I(x, y)) + (1− w(x, y))T

(n)
♦ (I(x, y)) (5.4)

In the same approach to harmonizing time-varying luminance in YYP-degraded

video, we can neutralize temporal variations of chrominance, if necessary, by matching

the chrominance distributions of all frames to that of the anchor frame n∗. Any two-

dimensional chrominance space, such as (U, V ) in Y UV or (H,S) in HSI, can be

used; in this paper we adopt the (U, V ) chrominance space. In order for the (U, V )

distribution of frame n with mean vector µ(n) and covariance matrix Σ(n) to match

that of the anchor frame n∗ with mean vector µ∗ and covariance matrix Σ∗, we solve

the following optimization problem

{A(n), t(n)} =

arg min
A,t

‖Aµ(n) + t− µ∗‖2

2 + λ‖AΣ(n)AT −Σ∗‖2

F .
(5.5)

to determine the affine transform A(n) and the translation vector t(n) which achieves

the best chrominance match between anchor frame n∗ and input frame n in a least-

squares sense when applying to all pixel chrominance vectors (U, V ) of frame n.

Fig. 5.3 is an example of performing the matching on images to fit the chrominance

distributions of given anchor images by solving (5.5), λ being 0.05.
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(a) (b)

(c) (d)

Figure 5.3: Chrominance matching by solving the optimization problem (5.5). (a)(b)
Input images; (c) result of matching (a) to the anchor image (b); (d) result of matching
(b) to the anchor image (a).
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5.4 Contrast enhancement in YYP restoration

Often after the YYP degradation, the representative frame n∗ chosen by (5.2) is still

of poor visual quality, with ill-shaped histograms p
(n∗)
� and p

(n∗)
♦ . In such cases we

can and should first enhance the anchor frame n∗, and then drive the YYP harmo-

nization algorithm with the histograms of the enhanced anchor frame. Any contrast

enhancement technique can be applied, for example the one presented in Chapter 3.

Finally, the flow of the proposed YYP harmonization method is presented in

Fig. 5.4.

Figure 5.4: Pipeline of the proposed YYP harmonization method.
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5.5 Experimental Results

We conducted extensive experiments with the proposed YYP restoration method on

videos captured by smartphones and laptops under poor, uneven illumination condi-

tions and with both camera and object motions. Some samples of our experimental

results are presented below; more example videos are available as supplementary ma-

terials on the internet.

Because the YYP-type of video degradation as identified by this paper has hardly

been treated in the literature, there are no previous YYP video restoration methods to

compare with. A technique of close spirit to ours is the one on video tonal stabilization

by Farbman et al. [18]; this work is compared with the proposed YYP harmonization

method. Since a simple way of attacking the YYP problem is to perform tone mapping

on each input frame, we add to our comparison and evaluation group two single-frame

methods: the contrast limited adaptive histogram equalization (CLAHE) [78], which

represents the family of histogram transform-based global tone mapping methods; and

the enhancement method based on edge-preserving decomposition (EPD) by Farbman

et al. [19], which represents the family of edge-aware local filter-based tone mapping

methods. The video tonal stabilization method also requires an anchor frame; this

anchor frame is chosen manually to be an input frame of best visual quality for fair

comparison.

In Fig. 5.5 we compare the above four methods and demonstrate how they behave

when applied to a YYP-degraded head-and-shoulder video. This scenario of face-to-

face video communication is very common in social media (e.g., Apple’s FaceTime),

and it is highly susceptible to YYP degradation because the video is frequently shot

in unfavorable indoor lighting, inexpensive cameras on mobile devices are limited in
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optical capability, and users tend to be naive in operating the camera.

The video scene in Figures 5.5 and 5.1 is backlit. The uneven illumination, as

explained in the introduction, causes the camera’s auto-exposure to flip-flop accom-

panying the motions of the person or/and camera. The foreground person (�-region)

becomes severely underexposed from time to time, meanwhile the background (♦-

region) is also unstable and suffers from overexposure intermittently (see the up-

loaded video supplementary materials). As shown in Fig. 5.5 and the supplementary

video file, the two single-frame methods are ineffective to neutralize the temporal in-

tensity fluctuations, particularly on the face. The method [18] performs much better

than the single-frame methods in terms of the temporal consistency in the foreground

intensity, but it fails to correct the overexposure problem in the background. The

proposed method appears to be more effective and robust than all others; it removes

frame-to-frame intensity drifting in both foreground and background and at the same

time enhances under- and over-exposed regions, greatly boosting the video quality.

The YYP degradation shown in Fig. 5.6 has a different polarity from that in

Fig. 5.5: the background is underlit and underexposed, where the person in the fore-

ground is well lit. The background becomes even darker as the person moves closer

to the light source (frame 170 in the figure). This generates serious halo artifacts in

CLAHE output. The method [19] fails to bring any temporal consistency to the back-

ground intensity. The method [18] stabilizes the time-varying background intensity

but in the process it leaves the foreground object overexposed. Again, the proposed

method performs noticeably better than others in both �-region (the background)

and ♦-region (the foreground object), retaining temporal consistency and rich spatial

details.
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Figure 5.5: Rows: two YYP-degraded frames and corresponding restored results.
Columns: (a) original; (b) output by CLAHE [78]; (c) output by method [19]; (d)
output by method [18]; (e) output by the proposed method.
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Figure 5.6: Rows: three YYP-degraded frames and corresponding restored results.
Columns: (a) original; (b) output by CLAHE [78]; (c) output by method [19]; (d)
output by method [18]; (e) output by the proposed method.

112



Ph.D. Thesis - Zhenhao Li McMaster - Electrical Engineering

F
ra

m
e

1
F

ra
m

e
10

0

(a) (b) (c) (d) (e)

Figure 5.7: Rows: two YYP-degraded frames and corresponding restored results.
Columns: (a) original; (b) output by CLAHE [78]; (c) output by method [19]; (d)
output by method [18]; (e) output by the proposed method.

(a) (b)

(c) (d)

Figure 5.8: Performance comparison of different methods on the video sequence of
Fig. 5.1. (a) Entropy of the �-region; (b) Entropy of the ♦-region; (c) Average
intensity of the �-region; (d) Average intensity of the ♦-region.
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Fig. 5.7 shows a YYP-degraded video shot in an outdoor situation, together with

restored results by the four different methods. Here the YYP phenomenon happens

when the camera focus moves from the book (frame 1) to the sky (frame 100). The

two single-frame methods fail to correct the underexposure problem in the foreground

(frame 100) and they leave the drastic intensity changes in time largely uncompen-

sated. The method [18], on the other hand, does a better job in the temporal con-

sistency of overall intensity; but it makes the sky severely overexposed, wiping out

details such as the clouds. In comparison, the proposed method effectively miti-

gates the underexposure problem in the �-region (the book) without overexposing

the ♦-region (the sky); its restored video has a more steady tone reproduction largely

immune to camera motion.

To further validate the efficacy of the proposed YYP harmonization method, we

evaluate it and its alternatives in two objective metrics as well. The first metric

is the entropy of the restored video. The entropy can measure both the temporal

consistency and the detail richness of the restored video. In Fig. 5.8 we plot sepa-

rately the entropies of �-regions and ♦-regions that are restored by the four different

methods. The plotted curves step through all frames of the video scene in Fig. 5.1

to demonstrate the temporal behaviors of the different methods. As being evident

in the figure, the proposed method has the highest entropy in �-regions by a sig-

nificant margin and almost ties for the highest entropy in ♦-regions, corroborating

our empirical findings that the proposed method reproduces richer details than other

methods. Moreover, the proposed method has nearly flat entropy curves, whereas

other methods have much varied entropy values in time. This distinction is also clear

by the second objective metric: the average frame luminance (Fig. 5.8(c)(d)). The
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restored video by the proposed method keeps a nearly constant luminance in both �-

and ♦-region, while the two single-frame methods suffer from intensity fluctuations,

and the tonal stabilization method sits in between.

5.6 Conclusion

We address in this chapter a common yet understudied video degradation problem

named YYP, characterized by involuntary and dramatic flip-flop in the luminance

and chrominance of an object as the video plays. We investigate the problem and

propose a video restoration technique to suppress YYP artifacts and retain temporal

consistency of object appearance via inter-frame, spatially-adaptive, optimal tone

mapping. Experimental results are encouraging, pointing to an effective, practical

solution to degradations caused by YYP.
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Chapter 6

Conclusion

Recent years have witnessed a rapid development in digital cameras. However, exist-

ing imaging technologies are still far from being able to guarantee high quality output

in every condition, especially for poorly or unevenly illuminated scenes. Given an im-

age of non-ideal lighting, algorithmically recovering the details of the scene by the

means of image enhancement is necessary. Existing image enhancement methods how-

ever often introduce various observable artifacts, adversely affecting the naturalness of

the contrast enhanced image. One of the most annoying but often overlooked artifacts

is chrominance distortion, which is caused by the seemingly reasonable practice of en-

hancing the luminance channel without touching the chrominance channels. In this

research, we analyze this common flaw in existing image enhancement techniques and

propose the optimal clipping scheme for reducing the chrominance distortion artifacts.

Furthermore we propose a novel optimization-based image enhancement framework,

which generates optimal tone mapping by maximizing global contrast gain with con-

strained tone and chrominance distortions. Additionally, we devise a highly efficient
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algorithm to solve the optimization problem using dynamic programming. Experi-

mental results demonstrate the remarkable output perceptual quality of the proposed

method against severe underexposure and/or overexposure.

Based on the enhancement framework above, we propose a new method that

restores images acquired in more challenging backlit scenes. The idea of the method

is to fuse our enhancement method with image segmentation. The segmentation is

driven by feature-based classifiers constructed by supervised learning from our backlit

image dataset. Our experiment shows the superior performance of the proposed

method over several state-of-the-art methods in terms of segmentation accuracy and

restoration results on backlit photographs.

We also address the problem of Yin-Yang Phasing (YYP), a common but largely

untreated video degradation problem characterized by involuntary and severe incon-

sistency in the exposure of objects between frames. We propose a video restoration

method based on inter-frame, spatially-adaptive optimal tone mapping, to suppress

YYP artifacts; it can maintain temporal consistency of luminance and chrominance of

surfaces at the same time. Experimental results demonstrate significant performance

gains of the new approach over existing video stabilization methods.

The above two restoration methods are examples of extending a context-free en-

hancement method to gain more desired properties such as spatial adaptivity and

temporal consistency without causing artifacts. These extensions follow the same

philosophy: 1) the ranking of pixel luminance can be changed, if done properly, to

further increase the output contrast; 2) the adjustment (tone mapping) on pixels un-

der the same lighting condition should be consistent. Following the same philosophy,

the optimization-based enhancement method in Chapter 3 can be further improved
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by combining more cutting-edge image segmentation algorithms, especially semantic

segmentation based on deep learning. This is a promising research direction for future

studies in the area of image and video enhancement.
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