
A COMPARATIVE STUDY OF MACHINE

LEARNING ALGORITHMS

Eric Le Fort



A COMPARATIVE STUDY OF MACHINE

LEARNING ALGORITHMS

By

ERIC LE FORT

A Thesis Submitted to the Department of Computing and Software and the School

of Graduate Studies of McMaster University in Partial Fulfilment of the

Requirements for the Degree of Master of Applied Science

McMaster University c© Copyright by Eric Le Fort, April 2018



M.A.Sc. Thesis McMaster University

Department of Computing and Software Hamilton, Ontario, Canada

TITLE: A Comparative Study of

Machine Learning Algorithms

AUTHOR: Eric Le Fort

B.Eng. McMaster University

SUPERVISORS: Dr. Antoine Deza

Dr. Frantisek Franek

NUMBER OF PAGES: VIII, 39, X

II



Abstract

The selection of machine learning algorithm used to solve a problem is an

important choice. This paper outlines research measuring three performance

metrics for eight different algorithms on a prediction task involving under-

graduate admissions data. The algorithms that were tested are k-nearest

neighbours, decision trees, random forests, gradient tree boosting, logistic

regression, naive bayes, support vector machines, and artificial neural net-

works. These algorithms were compared in terms of accuracy, training time,

and execution time.

III



Acknowledgements

Firstly I’d like to thank my mother, Jack, and my grandmother for contin-

ually going out of their way to provide a stable environment conducive to my

success. Next I’d like to thank Chris McDonald and Guy Meyer for proof-

reading this thesis as well as offering their advice and friendship. Finally,

I’d also like to thank my supervisors, Dr. Antoine Deza and Dr. Frantisek

Franek for their invaluable guidance.

IV



Table of Contents

1 Introduction 1

1.1 Definition of the Problem . . . . . . . . . . . . . . . . . . . . 2

1.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Algorithms 4

2.1 Kernel Principal Component Analysis . . . . . . . . . . . . . . 4

2.2 K-Nearest Neighbours . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Decision Tree Learning . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Random Forest Learning . . . . . . . . . . . . . . . . . . . . . 9

2.5 Gradient Tree Boosting . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 Naive Bayes Classifiers . . . . . . . . . . . . . . . . . . . . . . 11

2.8 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . 13

2.9 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . 15

3 Method 18

3.1 Nature of the Data . . . . . . . . . . . . . . . . . . . . . . . . 18

V



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

3.2 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Feature Engineering . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Algorithm Implementation . . . . . . . . . . . . . . . . . . . . 26

3.5 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Results 29

4.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Conclusions and Future Work 37

Appendix A Application Data V

Appendix B Final Model Accuracies VI

Appendix C Model Training Times VII

Appendix D Model Execution Times IX

VI



List of Tables

3.1 Applicant counts and admission acceptances per year. . . . . . 21

3.2 Categorical features and their aggregated distributions. . . . . 21

3.3 Identifier features and their statistical descriptions. . . . . . . 22

3.4 Numerical features and their statistical descriptions. . . . . . . 22

4.1 The average accuracies measured for the final models. . . . . . 30

A.1 The set of features available as well as their descriptions. . . . V

B.1 The accuracies of each model for each year tested. . . . . . . . VI

C.1 Recorded training times (in seconds). . . . . . . . . . . . . . . VII

C.2 Recorded training times (in seconds). . . . . . . . . . . . . . . VIII

D.1 Recorded execution times (in seconds). . . . . . . . . . . . . . IX

D.2 Recorded execution times (in seconds). . . . . . . . . . . . . . X

VII



List of Figures

4.1 Prediction histograms of the first four models for the 2015 data. 31

4.2 Prediction histograms of the last four models for the 2015 data. 32

4.3 The measured training times of each model. . . . . . . . . . . 34

4.4 The measured execution times of each model. . . . . . . . . . 35

VIII



Chapter 1

Introduction

Selecting the best machine learning algorithm for a problem is of paramount

importance; choosing the correct one can be the difference between the suc-

cess and failure of a project. The goal of this research is to better define the

approach to take when inspecting the differences between machine learning

techniques as applied to a particular task. This knowledge can then assist

machine learning practitioners in making their decision. The task used to test

these techniques is using Ontario Universities’ Application Centre (OUAC)

application data to predict the likelihood of an applicant accepting an offer

of admission to a particular university. The algorithms that will be analyzed

are k-nearest neighbours, decision trees, random forests, gradient tree boost-

ing, logistic regression, naive bayes, support vector machines, and artificial

neural networks. The performance metrics that will be measured are the final

model’s accuracy, training time and execution time. This list of algorithms

1



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

is by no means exhaustive of all known machine learning algorithms. This

subset was selected since they are some of the most commonly used for data

of this nature.

In addition to the information regarding performance metrics, this paper

will also act as a consolidated resource of the mathematical specifications

of the algorithms discussed. This analysis takes advantage of an excellent

machine learning library written for Python – Scikit-Learn [1]. This library

is commonly used among practitioners which ensures the relevancy of the

results herein.

1.1 Definition of the Problem

The research discussed in this paper revolves around a real-world pre-

diction task which involves predicting the likelihood that an applicant will

accept an offer of admission to an undergraduate engineering program at a

specific university given their application data. With this information, the

admissions department will be able to better judge how many offers they

should issue in order to prevent under- or over-enrolment.

1.2 Prior Work

Two fairly recent studies have also analyzed the results of leveraging

machine learning to address a similar problem.

2



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

The first, Offer Acceptance Prediction of Academic Placement [2], pre-

dicts which international applicants to both undergraduate and graduate

level programs will accept offers of admission. This study was conducted by

Macquarie University in Australia. The set of features used by their study

were similar to those used in this study. Some of the notable missing fea-

tures include: course level grades, the location of the applicants’ current

residences, the previous school attended, and their ordered choice of univer-

sity. This study employed most of machine learning techniques used in this

study except for gradient tree boosting. This study found artificial neural

networks to perform best with a classification accuracy of about 67%.

The second, Student Yield Maximization Using Genetic Algorithm on a

Predictive Enrolment Neural Network Model [24], addresses a similar prob-

lem for undergraduate applications to Southern Illinois University with a

focus on distributing scholarships to maximize the number of acceptances.

The features used in this study were American College Testing (ACT) scores,

GPA/class-rank, expected family contributions, Free Application for Federal

Student Aid (FAFSA), zip codes, and scholarship award amounts. The learn-

ing algorithm used for the acceptance prediction component of this study

were artificial neural networks. A genetic algorithm was then used to learn

to allocate scholarship funds in order to maximize the number of acceptances

which, although interesting, is not relevant to this paper. This study found

that their artificial neural network was able to achieve a classification accu-

racy of 80%.

3



Chapter 2

Algorithms

Since a wide range of different machine learning algorithms will be dis-

cussed in this paper, it is prudent that those algorithms first be described.

This section will go into detail regarding the mathematic mechanics of each of

these algorithms. In addition, some of the known strengths and weaknesses

of each algorithm will also be discussed.

2.1 Kernel Principal Component Analysis

Principal Component Analysis (PCA) is a dimensionality reduction tech-

nique that uses an orthogonal transformation to convert a dataset’s original

features into new ones which are linearly uncorrelated [3]. These new fea-

tures follow orthogonal vectors called principal components which capture

the maximum amount of the data’s variance. With n features, PCA will

4



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

provide n principal components. However, by taking just a subset of the

components that capture the most variance, a reduction in the problem’s

dimensionality can be achieved. This selection is often done by choosing

as many as necessary in order from most to least captured variance until a

desired percentage of the variance is captured.

PCA’s limitation is that since it only maps along linear axes it can lead to

inadequate transformations. Kernel Principal Component Analysis (KPCA)

is the answer to that problem. KPCA uses a kernel function to map the

original features into the new space in a non-linear fashion [3]. Along with

the advantage of being able to represent non-linear relations, KPCA has the

added advantage that the extracted features do not depend on the original

coordinate system used to represent the data [3].

The following process is described in [3]. The first step in performing

KPCA is computing the kernel matrix, K, where k is the kernel function, as:

Kij = fk(xi, xj)

The following eigenvalue problem where K is the M ×M kernel matrix must

then be solved:

Mλα = Kα

Once the above is solved, the eigenvector expansion coefficients must be

normalized by requiring:

λk(αk · αk) = 1

5



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

Projecting a new point, x, along the principal components can be accom-

plished by using the eigenvectors, α, as:

V k · Φ(x) =
M∑
i=1

αki fk(xi, x)

2.2 K-Nearest Neighbours

K-Nearest Neighbours (k-NN) is a relatively simple classification or re-

gression algorithm. When a new data point is introduced, its technique is to

first locate the k closest data points from the training dataset and then use

the class of each of those points to determine the class of the unknown data

point.

The distance of these points can be calculated using any one of several

distance metrics. In this analysis, the chosen distance metric is the Euclidean

distance and a weighted version of majority voting is used to predict the

unknown class.

This algorithm has a few important strengths including being simple to

implement, flexible to feature and distance metric choices, handling multi-

class problems naturally, and most importantly, it is quite accurate given

a large, representative training set [4]. However, this algorithm has some

significant flaws as well. Most importantly, since this is a lazy algorithm

(work is only performed when an unknown data point is to be classified),

it can be resource intensive in deployment. Every time a new point is to

6



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

be classified, there is a large search problem through the full training set

which must be solved to find the nearest neighbours. Another difficulty of

this algorithm is selecting a meaningful distance function [4]. It is possible to

mislead the algorithm if the function does not accurately reflect the similarity

between points.

Given a classified point p, and an unknown point u with n features, the

euclidean distance between them is calculated as [4]:

d(p, u) =

√√√√ n∑
i

(ui − pi)2

Given a set of k neighbours, x, and distances to those neighbours, d, the vote

for class i, vi can be computed as [4]:

vi =
k∑
j=1

dj
dmax

[xj ∈ class i]

Note that the square brackets are denoting the Iverson bracket. This term

goes to 1 if the contents are true or to 0 if the contents are false.

2.3 Decision Tree Learning

Decision tree learning is another regression or classification algorithm.

Starting with a root node containing the full training dataset, the learning

phase of this algorithm works to decide how to split the data based on the

7



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

value of one of the features. These splits are meant to homogenize the child

nodes’ data as much as possible until a stopping condition is reached. The

algorithm determines the class for each leaf node as the mean class of its

members [5].

The two main splitting criteria to choose from are the Gini Impurity cri-

terion or the Information Gain criterion. As discussed in [5], both criteria are

often equally accurate and so the selection shall be based on computational

complexity. In this work the Gini Impurity criterion was selected since it only

requires squaring a term compared to computing a logarithm for Information

Gain.

One of the largest benefits of this algorithm is the ease of comprehension

of its models – even a human could make a prediction using the final tree.

Other benefits include its resiliency to noise and outliers [6] which warrants

less data cleaning, its ability to handle both numeric and categoric values

naturally, and having the freedom of being non-parametric [7]. On the other

hand, the two biggest shortcomings of this algorithm is its tendency to overfit

[6] and not being suitable for continuous variables [6]. Luckily, there are some

tricks which can help avoid the former such as limiting the maximum depth

of the tree or the minimum subpopulation size to consider splitting a node.

The Gini Impurity for a dataset, IG(p), of J classes where pi is the per-

centage of points with class i in the dataset is calculated as [5]:

IG(p) = 1−
J∑
i=1

p2i

8



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

The split with the lowest Gini Impurity will be chosen.

2.4 Random Forest Learning

Random forest learning is an ensemble learning method. During training,

many decision trees are constructed, each with random subsets of the feature

space. An unknown data point is classified by classifying the point using

each decision tree and then taking the majority vote [8].

Random forest inherits most of the benefits of decision trees at the cost

of losing some of the ease of comprehension associated with singular deci-

sion trees. Another significant advantage is its ability to handle very large,

high-dimensional datasets [9]. This study will mainly focused on supervised

learning, however it is important to note that this algorithm is also useful

for unsupervised learning. Other than the loss of comprehension, another

drawback is that the time to train random forests is significantly longer than

singular decision trees.

2.5 Gradient Tree Boosting

Gradient Tree Boosting is another ensemble learning method based on

decision trees. Boosting is a generalized approach which approximates the

underlying prediction function by using base learners which, in the case of

gradient tree boosting, are decision trees [10]. At each iteration, the new

9



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

base learner fits the residual prediction error of the additive model created

using the current collection of base learners. This new learner is then added

to the collection of base learners [10].

As with random forest, gradient tree boosting loses some of the ease of

comprehension associated with singular decision trees. This algorithm is also

prone to overfitting the data if too many learners are trained [11]. One of

the largest benefits of this technique is that its models have shown to reduce

both variance and bias [11].

2.6 Logistic Regression

Logistic Regression is a binary classification algorithm. This algorithm

starts from random initial parameters and then using the loss function de-

fined below it works to continually decrease its error rate. This allows the

algorithm to learn the parameters which best separate the dataset.

One of the biggest benefits of logistic regression is its ability to provide

prediction with usable likelihoods [12]. This can be a huge help whenever

knowing the model’s confidence for a particular result is useful (which is often

the case). However this model struggles with large feature spaces and cannot

solve for nonlinearities [13]. These issues can be assuaged by performing data

transformation techniques at the cost of added development and training

time.

The hypothesis, hθ(x), with θ as model parameters computes the likeli-

10



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

hood of a positive outcome given a certain data point, x [12]:

hθ(x) =
1

1 + e−θT x

The parameters can be optimized by first defining a cost function, C(θ), and

then using its derivative to perform gradient descent. This is shown below

where m is the size of the training set and y ∈ {0, 1}[14]:

C(θ) = − 1

m

[
m∑
i=1

y(i) log hθ(x
(i)) + (1− y(i)) log(1− hθ(x(i)))

]

∂

∂θ
C(θ) =

1

m

[
m∑
i=1

(hθ(x
(i))− y(i)) · x(i)j

]
Gradient Descent is a minimization algorithm that will update the model

parameters, θ, according to the chosen step size, α, every iteration as [14]:

θt+1 = θt − α ·
∂

∂θt
C(θt)

Training is terminated when some stopping criteria is reached.

2.7 Naive Bayes Classifiers

Naive Bayes Classifiers are a type of multi-class classification algorithm

based on Bayes’ theorem (described below) with an assumption of indepen-

dence among features. The assumption of independence is the source of the

11



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

term “Naive” in its title [15]. Since this algorithm typically depends on buck-

eting, it is often used with discrete features although with some work it can

also handle continuous ones. This is achieved by replacing raw probabilities

by modelling Probability Density Functions (PDFs) based on the appropri-

ate type of distribution for the feature [15]. Another simpler alternative is

simply grouping the feature into discrete buckets and using those buckets for

the analysis.

If the feature is discrete, the next step is creating a frequency table which

counts the occurrences of each class for all possible values of the feature.

From this table one can go further and create a likelihood table for each

feature which computes the probability of positive outcomes given the value

of the feature from the frequency table. Lastly, the total probability of each

class for the full dataset must also be calculated. With all this in place,

Bayes’ theorem allows the algorithm to determine the likelihood of a new

data point being a member of a certain class [15].

The Naive Bayes Algorithm has a couple main benefits that make it ex-

tremely useful in many practical applications. Specifically, its natural han-

dling of multi-class problems and speed of prediction which can make it a

great choice for real-time systems. On the other hand, Naive Bayes also has

two potential flaws. Specifically, its reliance on the validity of the assump-

tion that there is independence between features and being a “bad estimator”

[16]. The latter just means that the actual probabilities it outputs should

not be taken too literally. If these pitfalls are carefully considered before

12



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

implementation Naive Bayes can still be a very strong algorithm.

Given a class, y, and a feature, x, Bayes’ Theorem is defined as [15]:

Pr(y|x) =
Pr(x|y) · Pr(y)

Pr(x)

Classification is performed using the following formula where y∗ is the pre-

dicted class, C is the set of possible classes, and n is the number of features

[15]:

y∗ = arg max
y∈C

Pr(y) ·
n∏
i=1

Pr(xi|y)

2.8 Support Vector Machines

Support Vector Machines (SVMs) are a type of binary classification algo-

rithm. This algorithm searches for a separating hyperplane which optimally

separates the two classes of points. The optimal conditions for this algo-

rithm is to maximize both the accuracy of the separation as well as the

distance from the separating hyperplane to each of the two sets of points

[17]. SVMs can also be extended using kernels to create non-linear separat-

ing hyperplanes [17]. The points from each of the sets that are closest to the

hyperplane are known as the support vectors.

Since these support vectors are all that is necessary to store to define the

trained model, this algorithm is extremely memory efficient. SVMs are also

effective in very high-dimensional spaces and work well if the dataset has

13



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

clear separation [17]. On the other hand, this method is susceptible to noise

as well as being quite slow to train [18]. Also, SVMs do not directly provide

likelihood estimates which could be necessary for certain applications.

SVM relies on minimizing the following equation with n data points where

x is the set of training points with corresponding targets y ∈ {−1, 1}, λ is

a parameter which determines the tradeoff between maximizing the margin

size and the purity of separation between the two sets, w is the normal vector

to the separating hyperplane, and the parameter b
||w|| determines the offset

of the hyperplane from the origin along w [17]:

[
1

n

n∑
i=1

max(0, 1− yi(w · xi − b))

]
+ λ||w||2

Using this algorithm, one can use sub-gradient descent algorithms to solve

directly [19] but the implementation that will be used for this analysis first

solves the Lagrangian dual using the separation constraints. The simplified

problem then becomes solving the following optimization problem [17]:

maximize
n∑
i=2

ci −
1

2

n∑
i=1

n∑
j=1

yici(xi · xj)yjcj

subject to
n∑
i=1

ciyi = 0

0 ≤ ci ≤
1

2nλ

14



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

where ci is defined such that:

w =
n∑
i=1

ciyixi

The decision function is then [17]:

sgn(w · x− b)

2.9 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a regression or classification model

inspired by biological neural networks. There are numerous variations of

these types of systems but this analysis will deal with a relatively simple

variant: multilayer perceptron (MLP). The first step in this algorithm is

defining the structure of the network. This includes the number of hidden

layers, the number of nodes in each layer and the activation function asso-

ciated with each of the nodes. Once the architecture has been defined, it is

common to initialize the weights of the connections randomly before enter-

ing the training phase [20]. Training involves feeding training data forward

through the network (forward-propagation) in batches and then performing

backward-propagation. The backward-propagation step updates the weights

of the connections in order to minimize the error in relation to the previous

batch that was fed through the network [21]. Several hyperparameters are

15



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

defined which define the process of training and can affect everything from

the time to train to how accurate the final model is. These hyperparameters

include the rate of training, the size of the batches, momentum, and more

[21]. Once training is complete, predictions are performed using the result of

forward-propagating the features of the unknown sample through the trained

model.

It is fairly well-known that there are many persuasive arguments in favour

of ANNs including their impressive track record of solving a variety of prob-

lems in industry. They have also been extensively researched over the past

several years and there are various neural network libraries available in a

variety of languages. On the other hand, they also have some frequently

overlooked flaws. For one, the training process necessitates tuning several

problem-specific hyperparameters in a trial-and-error process before good

models are obtained. The length of training itself can also be quite extensive

and the cost of computing resources can become a non-trivial consideration.

Further, although there has been a significant push in this area, there is a

significant lack of understanding in how ANNs actually perform their predic-

tions which leads to difficulties in judging whether the model will generalize

well.

ANNs have an input layer of which the values of the nodes are defined

by the input into the model. The inputs to the other layers are computed

using the propagation function, pj(t), where i iterates over the set of nodes

connected to node j, oi is the output from node i, wij is the weight of the

16



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

connection between node i and node j, and t is the current time step [22]:

pj(t) =
∑
i

oi(t)wij

The output from node i is computed using some output function, fout, and

the activation of the node, ai(t), as [22]:

oi = fout(ai(t))

The activation of node i at t + 1 is computed using an activation function,

f , which takes in the node’s current activation, ai, a constant activation

threshold, θi, and the propagation, pi(t), as [22]:

ai(t+ 1) = f(ai(t), pi(t), θi)

Backward-propagation is achieved by performing Stochastic Gradient De-

scent on the model’s loss function. In particular, where α is the learning

rate, C is the loss function, and ξ(t) is a stochastic term, the new weights

can be computed as [22]:

wij(t+ 1) = wij(t) + α
∂C

∂wij
+ ξ(t)

The result of ∂C
∂wij

depends on the activation function at that particular node.

17



Chapter 3

Method

This section addresses important details about the implementation of the

algorithms being compared as well as the data these models are operating

on. A description of these details is crucial in order to fully illustrate the

fairness, and therefore the usability, of the final conclusions. Specifically,

this section will define the initial problem statement, general traits of the

data, preparatory data transformations performed for each algorithm (if any),

how the algorithm’s parameters were fine-tuned, and any other important

implementation details.

3.1 Nature of the Data

The data being analyzed is undergraduate application information. Avail-

able features include Grade Point Average (GPA), high school attended, pre-

18



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

ferred language, location of residence, and more. To ensure the applicants’

anonymity, personally identifying features such as location of residence have

been encoded before being made available for this analysis. This is conve-

nient since this encoding step would have had to be performed regardless.

A complete list with more in-depth descriptions as well as which fields have

been encoded can be found in Appendix A. The initial dimensionality of the

data is quite large and even after preliminary cleaning of this data, there are

still 32 features to consider.

One set of features which poses a unique challenge is the applicant’s or-

dered selection of various programs. These choices can be different programs

within the same university or programs from different universities altogether

and there can be as many as 20 recorded choices. This portion of the data

will be handled by only considering the top five choices. If the university

in question is not in the top five choices, it is assumed they will not accept

an offer. The choices will be simplified to being either 0 (an application

to another university) or 1 (an application to the university in question).

If the applicant has fewer than five choices, the remaining choices will be

superficially filled in with zeros.

The other set of features which poses a challenge to handle are the courses

the applicants took and the corresponding grades the applicant received in

those courses. All applicants will have at least six courses in their application

but the specific ones taken may vary. Therefore the four required courses

(English, Calculus, Chemistry and Physics) are the only ones which can

19



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

be reliably included. The original dataset maintained a separate column

indicating which course the next grade was associated with. The grades will

be stored in a consistent order in the cleaned dataset and so the column of

labels can also be dropped.

Another important topic is the quantity and quality of the data. There

are around 4300 applicants per year on average and there are seven years of

data, from 2009 to 2015. Therefore there are about thirty thousand records

available. Further, since the data is provided through official channels such

as OUAC it is safe to assume it is sufficiently reliable.

3.2 Descriptive Statistics

Descriptive statistics were computed in order to provide a more concrete

description of the dataset. The description of each feature will take on dif-

ferent forms as appropriate in order to most clearly describe that feature.

There are a few types of feature present in this dataset. One such type are

categorical features. These features take on a value from a small set of dis-

crete values. The next type of feature are identifiers. For example, the ID of

a particular high school which could take on values like 25826 or 149. The

last type of feature present in this study are numerical values. For example,

the grade achieved in a particular course or an applicant’s birth year.

A good place to start is with the class distribution. Overall, 18030 appli-

cants (72.68%) did not accept an offer of admission whereas 6776 applicants

20



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

(27.32%) did accept an offer. Table 3.1 below also includes per year admission

acceptance rates.

Year # of Applicants Acceptance %
2009 3340 25.12%
2010 3313 24.82%
2011 3574 29.94%
2012 3512 26.91%
2013 3784 28.36%
2014 4052 27.00%
2015 3231 28.85%

Table 3.1: Applicant counts and admission acceptances per year.

Table 3.2 describes the categorical features using their aggregated distri-

butions across the available data for all years for whatever value they can

take on.

Feature 0 1 2 3 4
Sex - 79.83% 20.17% - -

Immigration Status 80.79% 11.59% 7.44% 0.14% 0.03%
Mother Tongue - 70.60% 28.62% 0.78% -

Choice 1 78.20% 21.80% - - -
Choice 2 70.40% 29.60% - - -
Choice 3 66.83% 33.17% - - -
Choice 4 81.33% 18.67% - - -
Choice 5 87.92% 12.08% - - -

Table 3.2: Categorical features and their aggregated distributions.

Table 3.3 describes the identifier features using their minimum and max-

imum values as well as either their mode and its percentage or the average

value of that feature.

21



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

Feature Mode Mode % Avg. Min. Max.
School ID - - 282610 149 555938

School Region ID - - 48694 2795 83993
Board ID - - 29 1 98

Board Region ID 61 99.15% - 13 84
Province of Residence - - 97 76 98
Region of Residence - - 28 1 98
County of Residence 9987 99.20% - 9987 94986
Country of Residence 9987 80.79% - 9987 99248

Citizenship 97 80.79% - 76 98

Table 3.3: Identifier features and their statistical descriptions.

Table 3.4 describes the numerical features using their average, standard

deviation, minimum and maximum values. Birth year does not quite fit this

mold however so it will be described briefly here. The minimum value is 78

and the maximum is 99. However, 99.32% of them lie between 89 and 97.

Feature Avg. Std. Dev. Min. Max.
Years of Ontario Secondary 3.79 0.93 0 9

Course Count 7.56 1.31 4 12
Total Credits 752.63 131.02 300 1300
Physics Grade 83.37 13.67 0 100

Chemistry Grade 83.03 12.83 0 100
Calculus Grade 84.97 13.55 0 100
English Grade 83.07 7.96 0 100

Average 1 683.96 359.39 0 997
Average 2 873.34 76.88 0 998

Table 3.4: Numerical features and their statistical descriptions.

22



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

3.3 Feature Engineering

Success of machine learning based analyses are often heavily reliant on

a combination of the quality of feature engineering, hyperparameter tuning,

and certain model specific techniques (the optimization algorithm used to

train the model for example). Therefore it is prudent to discuss the han-

dling of these facets of this analysis. There were three feature engineering

techniques used during this analysis that are important to discuss. Every po-

tential technique (and combination of techniques) was tried in tandem with

each algorithm and to ensure that the analysis was comprehensive. The tech-

niques tested include data balancing, normalization of the data, and KPCA

(discussed in the Algorithms section).

Data balancing was achieved by evening out the number of samples of

each class. Since the typical ratio of acceptances to non-acceptances is about

1:3, the non-acceptance subset of the data was under-sampled in order to

force a 1:1 ratio. Interestingly, balancing the data in this way significantly

harmed the performance of every model. For example, considering the SVM

model for the year 2015, the final prediction error without balancing was

about 2% while the error with balancing was over 56%. This is likely due to

the importance of preserving the original proportion of acceptances to non-

acceptances which introduces a beneficial bias for the algorithms to learn

[23].

Normalization refers to the process of modifying the values of a feature

23



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

by centering the mean about zero and forcing a unit variance for that feature

when inspected across all samples. This can often improve the effectiveness

of optimization algorithms which in turn can improve the quality of the

resulting models. Another added benefit is that the speed of convergence

can be improved as a result of reducing the geometric distance from the

minima. This allows a similar step size to converge quicker than it would

with the original data.

Another benefit of normalization is that it forces the variables to adhere

to the same range of values. The reason this benefits some algorithms can

be explained using the following example. If one variable takes values in

the scale of thousands and another takes values in the scale of percentages,

the large value can have an artificially magnified influence on the results.

The smaller value’s contribution could then be shadowed even if it happened

to be a more important predictor. However it is prudent to analyze the

impact it has on the models being trained before indiscriminately applying

normalization.

Although this technique was experimented with for each of the models,

the only algorithm which benefitted from using normalized data were the

neural networks. The other algorithms performed significantly worse with

normalized data. An interesting peculiarity is that normalizing the testing

data separate from the training data tended to perform slightly better than

using the same normalization measures on the testing set that were applied

to the training set. In this specific case, this could be due to factors such

24



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

as grade inflation – it is more important to measure the applicant’s grade

relevant to the current year’s grades rather than previous years’ grades.

The KPCA algorithm is explained in detail in the Algorithms section.

Characteristics specific to this analysis include the kernel used and how many

principal components were calculated. Several standard kernel functions were

experimented with including radial basis function (rbf), linear, sigmoid, co-

sine, and polynomial. For each kernel, an attempt was made to adjust the

available hyperparameters available to that kernel function. All but the poly-

nomial kernel resulted in every model performing anywhere from marginally

to significantly worse. The polynomial kernel of degree 3 showed some pos-

itive results but the polynomial kernel of degree 2 performed even better.

Further, extracting 5 principal components performed very well. Extracting

9 performed marginally better, but the combination of using more compo-

nents and taking significantly longer to fit lead to the selection of just 5

principal components. Considering these results, the final KPCA transfor-

mation used a polynomial kernel of degree 2 with 5 principal components.

A further indicator that this is a strong choice is that it consistently per-

formed the best across the various machine learning algorithms. The two

algorithms that were found to benefit from the KPCA transformation were

k-NN and Naive Bayes. The KPCA transformation gave an average improve-

ment of 0.18% and 0.06% to the random forest and decision tree algorithms,

respectively. However, considering the added time required to compute this

transformation as well as the loss of interpretability due to transforming the

25



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

features, KPCA was not used in the final versions of these models.

3.4 Algorithm Implementation

As mentioned previously, the specifics of feature engineering, hyperpa-

rameter tuning, and certain model specific techniques used are important

factors to discuss when describing an analysis. This section will now de-

scribe the latter two of these factors.

Hyperparameter tuning was handled in a manual fashion. Various combi-

nations of hyperparameters from one extreme to the other of their respective

ranges were used to train an initial set of models. For example, if a hyper-

parameter could take on values between 0 and 20, the values 0, 5, 10, 15,

and 20 would be tried first. If 5 and 10 produced the best results, then 6,

7, 8, and 9 would be tried. This process was repeated until modifying the

hyperparameter stopped having an effect. Depending on what’s appropriate

for the specific hyperparameter, the efficacy of these selections can then be

measured by inspecting the final model accuracy, ensuring that the train-

ing algorithm actually converges, or measuring the algorithm’s training and

execution times.

Some of the hyperparameters available to certain models must be dis-

cussed in this paper since they can affect the training and execution times

of the algorithms. In particular, these include the maximum depth for the

regression tree algorithms, the number of trees used in the ensemble algo-

26



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

rithms, the number of neighbours considered in k-NN and the data structure

used to find those neighbours, the size of the neural network, and the step

size of the optimization algorithms. The optimal maximum depth was a

much stricter 6 for the ensemble methods compared to 10 for the singular

decision tree model. This makes intuitive sense since the ensemble methods

are meant to benefit from utilizing weaker learners relative to the singular

method. Both ensemble methods ended up using 200 estimators. This count

was selected by finding the least number of estimators which could still arrive

at an optimal result. k-NN looked at the 9 nearest neighbours and used a

distance-weighted metric to calculate the votes of those neighbours. Further,

a k-d tree of size 30 was used by this algorithm in order to reduce the lookup

time of the nearest neighbours. The neural network used two hidden lay-

ers, each containing 20 nodes. Combinations of one to three hidden layers

with varying numbers of nodes at each layer were also experimented with be-

fore arriving at the best-performing hidden layer selection mentioned above.

Most of the models performed nominally with the default learning rate of 0.1

except for the gradient boosting trees. For that algorithm a smaller learning

rate of 0.01 was used.

3.5 Measurements

Accuracy for these models was measured by inspecting the results of pre-

dicting the number of acceptances for four different years using the data from

27



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

the prior three years to train. For example, the models would be trained on

the application data from the years 2009-2011 and then tested using the ap-

plication data from year 2012. This was repeated as many times as possible

given the full set of available data. In other words, each model was tested on

how well it could predict the number of acceptances for the years 2012, 2013,

2014, and 2015. The following equation was used to predict the model’s accu-

racy where the predicted number of acceptances is the sum of the predicted

soft probabilities.

accuracy =
|actual − predicted|

actual

All timing measurements used the 2012-2014 application data (3,512,

3,784, 4,052 samples respectively – 11,348 samples in total) as the training

set and the 2015 application data (3231 samples) as the testing set. Being

consistent is of course necessary to ensure accurate comparisons between al-

gorithms. These experiments were performed using an Intel Core i7 4770HQ

at a 2.2GHz clock speed.

28



Chapter 4

Results

The discussion of this study’s results are separated into those concerning

accuracy and those concerning time in order to make it easier for readers to

locate the results they are most interested in. The data used to calculate

these results (other than the application data itself of course) is available in

this document’s appendices.

4.1 Accuracy

There are two factors to consider when analyzing the accuracy of the

trained models in this analysis. The first is to simply calculate the differ-

ence between the predicted number of acceptances and the actual number of

acceptances. A baseline was established by building a much simpler model

which uses the average acceptance rate of the three years prior to a given

29



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

year in order to predict that given year’s acceptance rate. We can then use

the baseline’s accuracy to gauge the effectiveness of the other algorithms.

Algorithm Accuracy Std. Dev.
SVM 97.80 1.02
k-NN 97.30 2.51

Boosting 97.09 2.03
Decision Tree 96.75 1.73

Random Forest 96.49 2.47
Baseline 96.22 1.91

Naive Bayes 95.59 3.51
Neural Network 94.80 3.71

Logistic Regression 93.69 7.86

Table 4.1: The average accuracies measured for the final models.

Table 4.1 lists the resulting average accuracies for each model sorted in

descending order as well as the accompanying standard deviation of the ac-

curacy across the years tested. The full list of results is available in Appendix

B. The naive bayes, neural network, and logistic regression algorithms all

performed at a rate that did not even exceed the baseline. Looking at the

individual scores reveals an interesting discovery. These models did not tend

to consistently perform poorly, rather they would have an outlying year in

which they would perform significantly worse which would drag down their

overall average. These accuracies have been bolded in the table of accuracies

in Appendix B. On the other extreme, SVM performed extremely well. It

had the best accuracy and, perhaps just as important, was consistently ac-

30



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

curate with a lowest score of 96.26%. The next best in terms of consistently

strong results was the decision tree with a lowest score of 94.29%.

The second factor is more nuanced. By inspecting histograms of the

models’ predictions (Figures 4.1 and 4.2), it can be seen that some of the

approaches varied significantly in the predictions for individual applicants.

When inspecting these diagrams, it is important to take careful note of the

scale of the x-axis as it is not consistent among the histograms. The first

Figure 4.1: Prediction histograms of the first four models for the 2015 data.

31



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

Figure 4.2: Prediction histograms of the last four models for the 2015 data.

interesting result is that many of the models have a spike at or near 27%.

This is likely due to the fact that the average percentage of acceptances

among all years is about that so there would be a benefit to predicting that

specific likelihood. Another interesting result is that the histograms for all

of the tree-based learning methods are quite similar in that they never (or

at most rarely) predict a likelihood lower than 10% or greater than 70%. It

is likely that this is an artifact of the core similarities of these models. A

32



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

second set of histograms which were similar in nature were those of k-NN,

logistic regression, and the neural network. The predictions by these models

ranged all, or almost all, the way between 0% and 100%.

The last two models were quite unique in their results as viewed through

the predictions histogram. The first of these is SVM, our best performer

according to the average accuracy measurement. Looking at its histogram

tells an interesting story – it refused to make a definitive prediction. Every

one of its predictions lay in the range of 27% and 33%. If the goal was

to actually classify applicants based on whether or not they would accept

(i.e. hard classification), this would be an absolute failure. Also, if there

happened to be a larger percentage of students who were actually likely to

accept an offer in a year, this model will likely prove ineffective. The second

unique model was naive bayes. This model’s prediction histogram is much

less continuous than the rest and had clusters of predictions around a few

likelihoods.

4.2 Time

The box plots in figures 4.3 and 4.4 graphically depict the results of

measuring the time taken by each algorithm in both the training and the

testing steps. The full set of results are also available in appendices C and

D.

In terms of training times, the algorithms can easily be ordered from

33



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

Figure 4.3: The measured training times of each model.

slowest to fastest. The slowest being boosting and neural networks; the

fastest being naive bayes and k-NN. In terms of execution time, it is more

difficult to confidently order certain algorithms although there are still clear

fastest and slowest algorithms. The slowest being k-NN and SVM; the fastest

being decision trees and logistic regression. This is not quite the full story

though.

An important element to keep in mind is the time used by any necessary

34



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

Figure 4.4: The measured execution times of each model.

data preparation steps. Since data balancing was not found to be useful for

any of the models in solving this particular problem, it was not necessary to

measure that process for this study. However, since some of the algorithms

benefitted from and ended up employing data normalization techniques or

KPCA, it is necessary to measure those processes.

Normalizing the data is a fairly quick process taking time in the neigh-

bourhood of a couple milliseconds. Only the neural network algorithm was

found to benefit from normalization and as mentioned previously, the train-

ing time for that algorithm was in the order of seconds. Further, transforming

new data is as simple as performing a single addition and division operation

which is extremely quick. Therefore the additional time arising from the

normalization step is negligible and can be ignored.

On the other hand, KPCA is a time intensive process and so its per-

35



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

formance must be inspected more closely. The time required to perform

the KPCA transformation in both the testing and the training steps was

measured 25 times. The recorded times are available in the second table

of Appendices C and D. The resulting average times for the training and

testing steps were about 14.93 and 1.36 seconds respectively.

Now that the full picture has been considered, the final results change

slightly. Naive bayes was the fastest algorithm in terms of training time

and one of the fastest in terms of execution time. k-NN was also extremely

quick to train but was already one of the slowest in terms of execution time.

However since these algorithms relied on KPCA to be competitive in terms

of accuracy, they easily become the slowest overall across the board. The

fastest algorithm in terms of training time is then decision trees. The fastest

algorithm in terms of execution time remains a tie between decision trees

and logistic regression.

36



Chapter 5

Conclusions and Future Work

As can be noted from the results in the previous section, this research

leads to some definitive conclusions involving both the efficacy of these ma-

chine learning techniques as applied to this specific problem as well as how

the models relate to one another in terms of their training and execution

time.

In terms of accuracy a couple conclusions can be made. First, naive bayes,

artificial neural networks, and logistic regression did not perform well, they

did not even surpass the baseline accuracy. On the other hand, SVM, k-NN,

and boosting all performed quite well (other than SVM’s tendency to only

predict within a +/- 3% range). These conclusions can be useful for selecting

which algorithms to prioritize experimentation with for problems which are

similar in nature to this one.

In terms of speed a couple conclusions can be made. If execution speed

37



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

is of concern for a given problem, the best candidates are logistic regression,

decision trees, naive bayes, or small neural networks. Some examples where

this may be the case include Intrusion Detection Systems (IDSs), autonomous

robotics such as self-driving cars, or system controllers to name a few. If

training speed is of concern for a given problem, the best candidates are

naive bayes or k-NN. Training speed will typically only be a major concern if

the application deals with active learning. However, if a dataset is extremely

large, the cost in development time may also become a concern. For the

problem considered in this paper, execution time is not a concern. Therefore

the best model for the job is simply the one which reliably performed the

best and also displays the ability to adapt to change.

By simply going by the numbers, SVM would be selected since it predicted

the number of applicants most accurately. However, looking at the prediction

histograms shows that this model was hardly modifying its prediction from

applicant to applicant. Therefore, if a new year’s dataset had a different

proportion of acceptances, this model’s prediction would likely suffer. Since

k-NN did not share this prediction behaviour and still performed well, it

should be the one selected as the best model for this task.

One of the most surprising results was that arguably the most elementary

of the models, plain decision trees, performed so amicably. As always, the

“no free lunch” theorem remains valid. Perhaps with more studies of this

nature performed, the scientific community will one day be able to discover a

technique which reliably predicts which algorithm best suits a given problem.

38



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

However, until that day comes, it is important not to eliminate algorithmic

alternatives without first testing their efficacy for that specific problem.

39



Bibliography

[1] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-

plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine

Learning Research, vol. 12, 2011.

[2] R. Shrestha, M. Orgun, and P. Busch, “Offer acceptance prediction of

academic placement,” Neural Computing and Applications, 2016.

[3] B. Scholköpf and A. Smola, “Nonlinear component analysis as a kernel

eigenvalue problem,” Neural Computation, 1998.

[4] S. Imandoust and M. Bolandraftar, “Application of k-nearest neigh-

bor (KNN) approach for predicting economic events: Theoretical back-

ground,” International Journal of Engineering Research and Applica-

tions, 2013.

I



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

[5] L. Raileanu and K. Stoffel, “Theoretical comparison between the gini in-

dex and information gain criteria,” Annals of Mathematics and Artificial

Intelligence, 2004.

[6] J. Quinlan, “Induction of decision trees,” Machine Learning, 1986.

[7] M. Friedl and C. Brodley, “Decision tree classification of land cover from

remotely sensed data,” Remote Sensing of Environment, 1998.

[8] L. Breiman, “Random forests,” Machine Learning, 2001.

[9] A. Liaw and M. Wiener, “Classification and regression by random for-

est,” The R Journal, 2002.

[10] J. Friedman, “Stochastic gradient boosting,” Computational Statistics

& Data Analysis, 1999.

[11] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:

A statistical view of boosting,” The Annals of Statistics, 2000.

[12] D. Cox, “The regression analysis of binary sequences,” Journal of the

Royal Statistical Society, 1958.

[13] A. Genkin, D. Lewis, and D. Madigan, “Large-scale bayesian logistic re-

gression for text categorization,” American Statistical Association, 2007.

[14] Feature Selection for High-Dimensional Genomic Microarray Data, Mor-

gan Kaufmann, San Francisco, CA, 2001.

II



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

[15] A. Ng and M. Jordan, “On discriminative vs. generative classifiers: A

comparison of logistic regression and nave bayes,” Neural Processing

Letters, 2008.

[16] The Optimality of Naive Bayes, AAAI Press, Miami Beach, Florida,

2004.

[17] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learn-

ing, 1995.

[18] T. Joachims, “Making large-scale SVM learning practical,” Technical

Report, SFB 475: Komplexitätsreduktion in Multivariaten Datenstruk-

turen, Universität Dortmund 1998,28, Dortmund, 1998.

[19] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Pri-

mal estimated sub-gradient solver for SVM,” Mathematical Program-

ming, 2011.

[20] Weight Initialization Methods for Multilayer Feedforward, 2001.

[21] M. Gardner and S. Dorling, “Artificial neural networks (the multilayer

perceptron) – a review of applications in the atmospheric sciences,” At-

mospheric Environment, 1998.

[22] J. Li, J. Cheng, J. Shi, and F. Huang, “Brief introduction of back prop-

agation (BP) neural network algorithm and its improvement,” 2012.

III



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

[23] G. Batista, R. Prati, and M. Monard, “A study of the behaviour of

several methods for balancing machine learning training data,” ACM

SIGKDD Explorations Newsletter, 2004.

[24] Z. Sarafraza, H. Sarafraza, M. Sayeha, and J. Nicklowb, “Student yield

maximization using genetic algorithm on a predictive enrollment neural

network model,” Procedia Computer Science, 2015.

IV



Appendix A:

Application Data

Feature Description

School ID* Ontario Secondary School number of the applicant’s school.

School Board* Ontario Secondary School board of the applicant’s school.

School Region* County/region of school of the applicant’s school.

Sex* Applicant’s gender.

Birth Year Applicant’s birth year.

Location of Residence* Applicant’s country, province, county, and postal code of residence.

Immigration Status* Applicant’s immigration status.

Citizenship* The citizenship country and region of this applicant.

Mother Tongue* Applicant’s native tongue.

Applicant Type* The type of applicant.

Confirmed Details*
The confirmed university, program group, program, program year

level, term, and choice preference.
Choice Ranking This applicant’s OUAC confirmed choice preference.

Registered Details*
The registered university, program group, program, program year

level, term, and choice preference.
Senior Level Courses

Data
Applicant’s 12 senior level courses including course codes, course

credits, and final marks.
Senior Level Courses

Summary
The number of senior level courses this applicant took and their

total senior level credits.
Years in Secondary The number of years this applicant was in secondary school.

Average 1 The average of the best 6 senior level course finals from this year.

Average 2 The average of the best 6 senior level course finals from all years.

More than 20 A flag indicating the applicant has more than 20 choices.

Application Choice
Data*

Up to 20 of the applicant’s ranked preferences. Each choice
contains: university, program group, program, full-time or
part-time, term, major, co-op or not co-op, and year level.

Offer Data* The program group, program, term, and year level offered.

Confirmed Indicator Whether the applicant has confirmed their offer.

Registered Indicator Whether the applicant has registered.

Sequence Number The sequence number of this application.

Table A.1: The set of features available as well as their descriptions.

* - This field has been encoded to maintain the applicants’ anonymity.

V



Appendix B:

Final Model Accuracies

Algorithm 2012 2013 2014 2015
Baseline 98.98 96.03 94.81 95.06

SVM 97.77 96.26 99.12 98.05
k-NN 99.97 97.76 93.18 98.29

Boosting 99.46 93.91 97.98 96.99
Decision Tree 98.13 94.29 98.61 95.97

Random Forest 99.76 93.71 97.97 94.54
Naive Bayes 97.98 98.24 89.62 96.52

Neural Network 93.64 98.95 97.30 89.31
Logistic Regression 80.22 99.52 96.43 98.58

Table B.1: The accuracies of each model for each year tested.

VI



Appendix C:

Model Training Times

Test
#

Boosting
Decision
Tree

k-NN
Logistic

Regression

1 6.014579 0.032445 0.021921 1.168239

2 6.060366 0.034278 0.024611 0.635102

3 6.017735 0.035130 0.020322 0.939361

4 6.015630 0.031482 0.019323 1.109485

5 6.013562 0.033569 0.019992 1.104097

6 5.954664 0.031232 0.021686 0.990864

7 5.979299 0.034273 0.020652 1.179635

8 6.054811 0.033395 0.020216 1.120850

9 5.957272 0.031599 0.019249 1.060616
10 5.996466 0.031738 0.020033 0.869333

11 5.930105 0.034821 0.020904 1.029269

12 5.917739 0.031680 0.019462 1.071033

13 5.960781 0.033725 0.019386 1.009424

14 5.957456 0.034754 0.019507 1.080049

15 5.997807 0.030992 0.019638 1.065849
16 6.001351 0.031175 0.020336 1.038358

17 6.017457 0.031006 0.01945 0.807184

18 5.969680 0.032123 0.021128 0.937696
19 5.948551 0.035235 0.022022 1.101875

20 5.975451 0.034017 0.019832 1.004352

21 5.976886 0.033061 0.019582 0.937616

22 5.981837 0.036824 0.021396 1.074481

23 5.954940 0.031187 0.019696 1.071317

24 5.987484 0.031624 0.019306 1.073245

25 5.969200 0.034412 0.019542 1.212441

Table C.1: Recorded training times (in seconds).

VII



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

Test
#

Naive
Bayes

Neural
Network

Random
Forest

SVM KPCA

1 0.008159 3.505126 1.566178 2.287402 14.240538

2 0.004718 3.473786 1.566805 2.131824 15.893182

3 0.004940 3.492679 1.568548 2.154087 14.650137

4 0.005550 3.485388 1.576334 2.172097 14.594341

5 0.004792 3.449026 1.588099 2.324865 14.629999

6 0.004594 3.444341 1.549295 2.124706 14.621863

7 0.005569 3.462723 1.558287 2.310966 14.687193

8 0.005428 3.456469 1.568966 2.168869 14.867636
9 0.004831 3.435878 1.554109 2.114290 14.603836

10 0.004974 3.420343 1.562342 2.134637 15.658565

11 0.005153 3.434086 1.578996 2.248318 15.265155

12 0.005344 3.418523 1.551412 2.331544 14.647819

13 0.004958 3.417171 1.581576 2.299722 14.169253

14 0.004927 3.459040 1.561475 2.302909 14.066407

15 0.005374 3.442721 1.490999 2.495037 14.139257

16 0.005086 3.447201 1.467739 2.311589 14.182458

17 0.005025 3.465676 1.497569 2.411274 16.323833

18 0.005077 3.433271 1.499206 2.243295 17.496630

19 0.004753 3.477900 1.482648 2.443555 15.018163

20 0.005506 3.449088 1.458587 2.295928 14.636940

21 0.004782 3.433294 1.425397 2.230634 14.577261

22 0.004638 3.411233 1.429310 2.514056 14.704826

23 0.005480 3.413155 1.421311 2.612107 15.338391

24 0.004851 3.468480 1.425698 2.522150 14.839778

25 0.005192 3.441341 1.449023 2.474955 15.084180

Table C.2: Recorded training times (in seconds).

VIII



Appendix D:

Model Execution Times

Test
#

Boosting
Decision
Tree

k-NN
Logistic

Regression

1 0.014745 0.000816 0.086484 0.000692

2 0.018366 0.000815 0.085454 0.000579

3 0.014911 0.000772 0.084303 0.000621

4 0.015195 0.000711 0.076118 0.000630

5 0.014597 0.000785 0.084428 0.000675

6 0.014995 0.000857 0.084832 0.000660

7 0.018093 0.000841 0.084614 0.000698

8 0.014512 0.000779 0.077617 0.000742

9 0.016340 0.001203 0.085100 0.000783

10 0.014792 0.000811 0.079556 0.000645

11 0.015412 0.000782 0.079321 0.000738

12 0.014813 0.000773 0.082753 0.000671

13 0.014710 0.000793 0.077198 0.000947

14 0.014737 0.000726 0.079738 0.000648

15 0.014730 0.000803 0.079055 0.000799

16 0.014653 0.000723 0.082422 0.000780

17 0.016565 0.000695 0.087120 0.000646

18 0.016811 0.000758 0.073115 0.000706

19 0.014936 0.001364 0.078493 0.000681

20 0.014524 0.000699 0.080206 0.000715
21 0.017593 0.000755 0.085010 0.000653

22 0.014353 0.000813 0.084700 0.001009

23 0.015566 0.000729 0.086108 0.000663

24 0.015575 0.000797 0.079523 0.000662

25 0.014444 0.000780 0.085377 0.000671

Table D.1: Recorded execution times (in seconds).

IX



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

Test
#

Naive
Bayes

Neural
Network

Random
Forest

SVM KPCA

1 0.002021 0.003932 0.053894 0.084272 1.312920

2 0.001504 0.002509 0.057545 0.079924 1.568186

3 0.001486 0.002706 0.052212 0.076127 1.347254

4 0.001829 0.003109 0.053566 0.081387 1.349163

5 0.001591 0.002784 0.054663 0.074027 1.405964

6 0.001462 0.002302 0.052820 0.080510 1.358854

7 0.001924 0.002266 0.055589 0.077143 1.327478

8 0.001721 0.003042 0.056165 0.073817 1.325931
9 0.001513 0.002822 0.054600 0.074220 1.351180

10 0.001490 0.002999 0.055901 0.073402 1.271649

11 0.001744 0.002371 0.055302 0.081237 1.295780

12 0.001495 0.002912 0.053409 0.076959 1.321630

13 0.001555 0.002586 0.059653 0.075698 1.323139

14 0.001577 0.003157 0.053677 0.075555 1.281131

15 0.001584 0.002677 0.051444 0.073635 1.292695

16 0.001467 0.002432 0.049673 0.078155 1.304743

17 0.001630 0.002387 0.054081 0.079193 1.337067

18 0.001872 0.002246 0.057015 0.087499 1.565558

19 0.001484 0.002732 0.055404 0.082698 1.501984

20 0.001717 0.002873 0.057610 0.073436 1.311435

21 0.001638 0.002999 0.047760 0.073338 1.410371

22 0.001517 0.002655 0.048180 0.083189 1.272483

23 0.001910 0.002392 0.047643 0.092331 1.541743

24 0.001539 0.002106 0.047704 0.083208 1.298361

25 0.001733 0.002159 0.052760 0.089914 1.331161

Table D.2: Recorded execution times (in seconds).

X


