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Abstract

The selection of machine learning algorithm used to solve a problem is an
important choice. This paper outlines research measuring three performance
metrics for eight different algorithms on a prediction task involving under-
graduate admissions data. The algorithms that were tested are k-nearest
neighbours, decision trees, random forests, gradient tree boosting, logistic
regression, naive bayes, support vector machines, and artificial neural net-
works. These algorithms were compared in terms of accuracy, training time,

and execution time.
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Chapter 1

Introduction

Selecting the best machine learning algorithm for a problem is of paramount
importance; choosing the correct one can be the difference between the suc-
cess and failure of a project. The goal of this research is to better define the
approach to take when inspecting the differences between machine learning
techniques as applied to a particular task. This knowledge can then assist
machine learning practitioners in making their decision. The task used to test
these techniques is using Ontario Universities’ Application Centre (OUAC)
application data to predict the likelihood of an applicant accepting an offer
of admission to a particular university. The algorithms that will be analyzed
are k-nearest neighbours, decision trees, random forests, gradient tree boost-
ing, logistic regression, naive bayes, support vector machines, and artificial
neural networks. The performance metrics that will be measured are the final

model’s accuracy, training time and execution time. This list of algorithms
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is by no means exhaustive of all known machine learning algorithms. This
subset was selected since they are some of the most commonly used for data
of this nature.

In addition to the information regarding performance metrics, this paper
will also act as a consolidated resource of the mathematical specifications
of the algorithms discussed. This analysis takes advantage of an excellent
machine learning library written for Python — Scikit-Learn [1]. This library
is commonly used among practitioners which ensures the relevancy of the

results herein.

1.1 Definition of the Problem

The research discussed in this paper revolves around a real-world pre-
diction task which involves predicting the likelihood that an applicant will
accept an offer of admission to an undergraduate engineering program at a
specific university given their application data. With this information, the
admissions department will be able to better judge how many offers they

should issue in order to prevent under- or over-enrolment.

1.2 Prior Work

Two fairly recent studies have also analyzed the results of leveraging

machine learning to address a similar problem.
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The first, Offer Acceptance Prediction of Academic Placement [2], pre-
dicts which international applicants to both undergraduate and graduate
level programs will accept offers of admission. This study was conducted by
Macquarie University in Australia. The set of features used by their study
were similar to those used in this study. Some of the notable missing fea-
tures include: course level grades, the location of the applicants’ current
residences, the previous school attended, and their ordered choice of univer-
sity. This study employed most of machine learning techniques used in this
study except for gradient tree boosting. This study found artificial neural
networks to perform best with a classification accuracy of about 67%.

The second, Student Yield Maximization Using Genetic Algorithm on a
Predictive Enrolment Neural Network Model [24], addresses a similar prob-
lem for undergraduate applications to Southern Illinois University with a
focus on distributing scholarships to maximize the number of acceptances.
The features used in this study were American College Testing (ACT) scores,
GPA /class-rank, expected family contributions, Free Application for Federal
Student Aid (FAFSA), zip codes, and scholarship award amounts. The learn-
ing algorithm used for the acceptance prediction component of this study
were artificial neural networks. A genetic algorithm was then used to learn
to allocate scholarship funds in order to maximize the number of acceptances
which, although interesting, is not relevant to this paper. This study found
that their artificial neural network was able to achieve a classification accu-

racy of 80%.



Chapter 2

Algorithms

Since a wide range of different machine learning algorithms will be dis-
cussed in this paper, it is prudent that those algorithms first be described.
This section will go into detail regarding the mathematic mechanics of each of
these algorithms. In addition, some of the known strengths and weaknesses

of each algorithm will also be discussed.

2.1 Kernel Principal Component Analysis

Principal Component Analysis (PCA) is a dimensionality reduction tech-
nique that uses an orthogonal transformation to convert a dataset’s original
features into new ones which are linearly uncorrelated [3]. These new fea-
tures follow orthogonal vectors called principal components which capture

the maximum amount of the data’s variance. With n features, PCA will
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provide n principal components. However, by taking just a subset of the
components that capture the most variance, a reduction in the problem’s
dimensionality can be achieved. This selection is often done by choosing
as many as necessary in order from most to least captured variance until a
desired percentage of the variance is captured.

PCA’s limitation is that since it only maps along linear axes it can lead to
inadequate transformations. Kernel Principal Component Analysis (KPCA)
is the answer to that problem. KPCA uses a kernel function to map the
original features into the new space in a non-linear fashion [3]. Along with
the advantage of being able to represent non-linear relations, KPCA has the
added advantage that the extracted features do not depend on the original
coordinate system used to represent the data [3].

The following process is described in [3]. The first step in performing

KPCA is computing the kernel matrix, K, where k is the kernel function, as:

Kij = fi(zi, )

The following eigenvalue problem where K is the M x M kernel matrix must
then be solved:

MM = Ka

Once the above is solved, the eigenvector expansion coefficients must be
normalized by requiring:

/\k(Oék . ozk) = 1
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Projecting a new point, x, along the principal components can be accom-

plished by using the eigenvectors, «, as:

M
VFE.d(z) = Z of fr(zi, )
i=1

2.2 K-Nearest Neighbours

K-Nearest Neighbours (k-NN) is a relatively simple classification or re-
gression algorithm. When a new data point is introduced, its technique is to
first locate the k closest data points from the training dataset and then use
the class of each of those points to determine the class of the unknown data
point.

The distance of these points can be calculated using any one of several
distance metrics. In this analysis, the chosen distance metric is the Euclidean
distance and a weighted version of majority voting is used to predict the
unknown class.

This algorithm has a few important strengths including being simple to
implement, flexible to feature and distance metric choices, handling multi-
class problems naturally, and most importantly, it is quite accurate given
a large, representative training set [4]. However, this algorithm has some
significant flaws as well. Most importantly, since this is a lazy algorithm
(work is only performed when an unknown data point is to be classified),

it can be resource intensive in deployment. Every time a new point is to



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

be classified, there is a large search problem through the full training set
which must be solved to find the nearest neighbours. Another difficulty of
this algorithm is selecting a meaningful distance function [4]. It is possible to
mislead the algorithm if the function does not accurately reflect the similarity
between points.

Given a classified point p, and an unknown point v with n features, the

euclidean distance between them is calculated as [4]:

Given a set of k£ neighbours, x, and distances to those neighbours, d, the vote

for class i, v; can be computed as [4]:

k
d.
v = Z I [z; € class i

Note that the square brackets are denoting the Iverson bracket. This term

goes to 1 if the contents are true or to 0 if the contents are false.

2.3 Decision Tree Learning

Decision tree learning is another regression or classification algorithm.
Starting with a root node containing the full training dataset, the learning

phase of this algorithm works to decide how to split the data based on the
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value of one of the features. These splits are meant to homogenize the child
nodes’ data as much as possible until a stopping condition is reached. The
algorithm determines the class for each leaf node as the mean class of its
members [5].

The two main splitting criteria to choose from are the Gini Impurity cri-
terion or the Information Gain criterion. As discussed in [5], both criteria are
often equally accurate and so the selection shall be based on computational
complexity. In this work the Gini Impurity criterion was selected since it only
requires squaring a term compared to computing a logarithm for Information
Gain.

One of the largest benefits of this algorithm is the ease of comprehension
of its models — even a human could make a prediction using the final tree.
Other benefits include its resiliency to noise and outliers [6] which warrants
less data cleaning, its ability to handle both numeric and categoric values
naturally, and having the freedom of being non-parametric [7]. On the other
hand, the two biggest shortcomings of this algorithm is its tendency to overfit
[6] and not being suitable for continuous variables [6]. Luckily, there are some
tricks which can help avoid the former such as limiting the maximum depth
of the tree or the minimum subpopulation size to consider splitting a node.

The Gini Impurity for a dataset, Ig(p), of J classes where p; is the per-

centage of points with class ¢ in the dataset is calculated as [5]:

J
Io(p)=1-=) p}
=1

8
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The split with the lowest Gini Impurity will be chosen.

2.4 Random Forest Learning

Random forest learning is an ensemble learning method. During training,
many decision trees are constructed, each with random subsets of the feature
space. An unknown data point is classified by classifying the point using
each decision tree and then taking the majority vote [8].

Random forest inherits most of the benefits of decision trees at the cost
of losing some of the ease of comprehension associated with singular deci-
sion trees. Another significant advantage is its ability to handle very large,
high-dimensional datasets [9]. This study will mainly focused on supervised
learning, however it is important to note that this algorithm is also useful
for unsupervised learning. Other than the loss of comprehension, another
drawback is that the time to train random forests is significantly longer than

singular decision trees.

2.5 Gradient Tree Boosting

Gradient Tree Boosting is another ensemble learning method based on
decision trees. Boosting is a generalized approach which approximates the
underlying prediction function by using base learners which, in the case of

gradient tree boosting, are decision trees [10]. At each iteration, the new
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base learner fits the residual prediction error of the additive model created
using the current collection of base learners. This new learner is then added
to the collection of base learners [10].

As with random forest, gradient tree boosting loses some of the ease of
comprehension associated with singular decision trees. This algorithm is also
prone to overfitting the data if too many learners are trained [11]. One of
the largest benefits of this technique is that its models have shown to reduce

both variance and bias [11].

2.6 Logistic Regression

Logistic Regression is a binary classification algorithm. This algorithm
starts from random initial parameters and then using the loss function de-
fined below it works to continually decrease its error rate. This allows the
algorithm to learn the parameters which best separate the dataset.

One of the biggest benefits of logistic regression is its ability to provide
prediction with usable likelihoods [12]. This can be a huge help whenever
knowing the model’s confidence for a particular result is useful (which is often
the case). However this model struggles with large feature spaces and cannot
solve for nonlinearities [13]. These issues can be assuaged by performing data
transformation techniques at the cost of added development and training
time.

The hypothesis, hy(x), with 6 as model parameters computes the likeli-

10
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hood of a positive outcome given a certain data point, x [12]:

1

o) = e

The parameters can be optimized by first defining a cost function, C'(#), and
then using its derivative to perform gradient descent. This is shown below

where m is the size of the training set and y € {0, 1}[14]:

C(0) =

1
m

[i y 9 log he(x(i)) +(1-— y(i)) log(1 — h@(l’(i)))]

m
i=1

o) = [Z(hm(“) —y")- x§-”]

Gradient Descent is a minimization algorithm that will update the model

parameters, 6, according to the chosen step size, «, every iteration as [14]:

0
0t+1 = Ht — Q- 8—9750(075)

Training is terminated when some stopping criteria is reached.

2.7 Naive Bayes Classifiers

Naive Bayes Classifiers are a type of multi-class classification algorithm
based on Bayes’ theorem (described below) with an assumption of indepen-

dence among features. The assumption of independence is the source of the

11
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term “Naive” in its title [15]. Since this algorithm typically depends on buck-
eting, it is often used with discrete features although with some work it can
also handle continuous ones. This is achieved by replacing raw probabilities
by modelling Probability Density Functions (PDFs) based on the appropri-
ate type of distribution for the feature [15]. Another simpler alternative is
simply grouping the feature into discrete buckets and using those buckets for
the analysis.

If the feature is discrete, the next step is creating a frequency table which
counts the occurrences of each class for all possible values of the feature.
From this table one can go further and create a likelihood table for each
feature which computes the probability of positive outcomes given the value
of the feature from the frequency table. Lastly, the total probability of each
class for the full dataset must also be calculated. With all this in place,
Bayes’ theorem allows the algorithm to determine the likelihood of a new
data point being a member of a certain class [15].

The Naive Bayes Algorithm has a couple main benefits that make it ex-
tremely useful in many practical applications. Specifically, its natural han-
dling of multi-class problems and speed of prediction which can make it a
great choice for real-time systems. On the other hand, Naive Bayes also has
two potential flaws. Specifically, its reliance on the validity of the assump-
tion that there is independence between features and being a “bad estimator”
[16]. The latter just means that the actual probabilities it outputs should

not be taken too literally. If these pitfalls are carefully considered before

12
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implementation Naive Bayes can still be a very strong algorithm.

Given a class, y, and a feature, x, Bayes’ Theorem is defined as [15]:

Pr(zly) - Pr(y)

Pr(y|z) = Pr(7)

Classification is performed using the following formula where y* is the pre-
dicted class, C' is the set of possible classes, and n is the number of features
[15]:

y* = argmax Pr(y) - H Pr(z;|y)
i=1

yel

2.8 Support Vector Machines

Support Vector Machines (SVMs) are a type of binary classification algo-
rithm. This algorithm searches for a separating hyperplane which optimally
separates the two classes of points. The optimal conditions for this algo-
rithm is to maximize both the accuracy of the separation as well as the
distance from the separating hyperplane to each of the two sets of points
[17]. SVMs can also be extended using kernels to create non-linear separat-
ing hyperplanes [17]. The points from each of the sets that are closest to the
hyperplane are known as the support vectors.

Since these support vectors are all that is necessary to store to define the
trained model, this algorithm is extremely memory efficient. SVMs are also

effective in very high-dimensional spaces and work well if the dataset has

13



M.A.Sc. Thesis - E. Le Fort CAS, McMaster University

clear separation [17]. On the other hand, this method is susceptible to noise
as well as being quite slow to train [18]. Also, SVMs do not directly provide
likelihood estimates which could be necessary for certain applications.

SVM relies on minimizing the following equation with n data points where
x is the set of training points with corresponding targets y € {—1,1}, A is
a parameter which determines the tradeoff between maximizing the margin
size and the purity of separation between the two sets, w is the normal vector
to the separating hyperplane, and the parameter HTbH determines the offset

of the hyperplane from the origin along w [17]:

1 n
- Zmax((), 1 —yi(w-z; — b)) | + M|wl|]?

=1

Using this algorithm, one can use sub-gradient descent algorithms to solve
directly [19] but the implementation that will be used for this analysis first
solves the Lagrangian dual using the separation constraints. The simplified

problem then becomes solving the following optimization problem [17]:

maximize E G — = E E yici(x % Y;Ci

11]1

subject to Z ¢y =0

i=1

1
0<c; < —
C_Qn)\

14
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where ¢; is defined such that:

w = Z Cilfili
i=1
The decision function is then [17]:

sgn(w - x — b)

2.9 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a regression or classification model
inspired by biological neural networks. There are numerous variations of
these types of systems but this analysis will deal with a relatively simple
variant: multilayer perceptron (MLP). The first step in this algorithm is
defining the structure of the network. This includes the number of hidden
layers, the number of nodes in each layer and the activation function asso-
ciated with each of the nodes. Once the architecture has been defined, it is
common to initialize the weights of the connections randomly before enter-
ing the training phase [20]. Training involves feeding training data forward
through the network (forward-propagation) in batches and then performing
backward-propagation. The backward-propagation step updates the weights
of the connections in order to minimize the error in relation to the previous

batch that was fed through the network [21]. Several hyperparameters are

15
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defined which define the process of training and can affect everything from
the time to train to how accurate the final model is. These hyperparameters
include the rate of training, the size of the batches, momentum, and more
[21]. Once training is complete, predictions are performed using the result of
forward-propagating the features of the unknown sample through the trained
model.

It is fairly well-known that there are many persuasive arguments in favour
of ANNs including their impressive track record of solving a variety of prob-
lems in industry. They have also been extensively researched over the past
several years and there are various neural network libraries available in a
variety of languages. On the other hand, they also have some frequently
overlooked flaws. For one, the training process necessitates tuning several
problem-specific hyperparameters in a trial-and-error process before good
models are obtained. The length of training itself can also be quite extensive
and the cost of computing resources can become a non-trivial consideration.
Further, although there has been a significant push in this area, there is a
significant lack of understanding in how ANNs actually perform their predic-
tions which leads to difficulties in judging whether the model will generalize
well.

ANNSs have an input layer of which the values of the nodes are defined
by the input into the model. The inputs to the other layers are computed
using the propagation function, p;(¢), where ¢ iterates over the set of nodes

connected to node j, o; is the output from node ¢, w;; is the weight of the

16
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connection between node i and node j, and ¢ is the current time step [22]:
pi(t) =) oi(t)wy;

The output from node 7 is computed using some output function, f,,;, and

the activation of the node, a;(t), as [22]:

0; = fout(ai (t))

The activation of node ¢ at t + 1 is computed using an activation function,
f, which takes in the node’s current activation, a;, a constant activation

threshold, 6;, and the propagation, p;(t), as [22]:

ai(t + 1) = f(ai(t)api(t)’ '91)

Backward-propagation is achieved by performing Stochastic Gradient De-
scent on the model’s loss function. In particular, where « is the learning
rate, C' is the loss function, and £(t) is a stochastic term, the new weights

can be computed as [22]:

Wiyt 4+ 1) = wy(t) + a0 1 &(t)

8wij

The result of % depends on the activation function at that particular node.

17



Chapter 3

Method

This section addresses important details about the implementation of the
algorithms being compared as well as the data these models are operating
on. A description of these details is crucial in order to fully illustrate the
fairness, and therefore the usability, of the final conclusions. Specifically,
this section will define the initial problem statement, general traits of the
data, preparatory data transformations performed for each algorithm (if any),
how the algorithm’s parameters were fine-tuned, and any other important

implementation details.

3.1 Nature of the Data

The data being analyzed is undergraduate application information. Avail-

able features include Grade Point Average (GPA), high school attended, pre-

18
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ferred language, location of residence, and more. To ensure the applicants’
anonymity, personally identifying features such as location of residence have
been encoded before being made available for this analysis. This is conve-
nient since this encoding step would have had to be performed regardless.
A complete list with more in-depth descriptions as well as which fields have
been encoded can be found in Appendix A. The initial dimensionality of the
data is quite large and even after preliminary cleaning of this data, there are
still 32 features to consider.

One set of features which poses a unique challenge is the applicant’s or-
dered selection of various programs. These choices can be different programs
within the same university or programs from different universities altogether
and there can be as many as 20 recorded choices. This portion of the data
will be handled by only considering the top five choices. If the university
in question is not in the top five choices, it is assumed they will not accept
an offer. The choices will be simplified to being either 0 (an application
to another university) or 1 (an application to the university in question).
If the applicant has fewer than five choices, the remaining choices will be
superficially filled in with zeros.

The other set of features which poses a challenge to handle are the courses
the applicants took and the corresponding grades the applicant received in
those courses. All applicants will have at least six courses in their application
but the specific ones taken may vary. Therefore the four required courses

(English, Calculus, Chemistry and Physics) are the only ones which can

19
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be reliably included. The original dataset maintained a separate column
indicating which course the next grade was associated with. The grades will
be stored in a consistent order in the cleaned dataset and so the column of
labels can also be dropped.

Another important topic is the quantity and quality of the data. There
are around 4300 applicants per year on average and there are seven years of
data, from 2009 to 2015. Therefore there are about thirty thousand records
available. Further, since the data is provided through official channels such

as OUAC it is safe to assume it is sufficiently reliable.

3.2 Descriptive Statistics

Descriptive statistics were computed in order to provide a more concrete
description of the dataset. The description of each feature will take on dif-
ferent forms as appropriate in order to most clearly describe that feature.
There are a few types of feature present in this dataset. One such type are
categorical features. These features take on a value from a small set of dis-
crete values. The next type of feature are identifiers. For example, the ID of
a particular high school which could take on values like 25826 or 149. The
last type of feature present in this study are numerical values. For example,
the grade achieved in a particular course or an applicant’s birth year.

A good place to start is with the class distribution. Overall, 18030 appli-

cants (72.68%) did not accept an offer of admission whereas 6776 applicants

20
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(27.32%) did accept an offer. Table 3.1 below also includes per year admission

acceptance rates.

Year | # of Applicants | Acceptance %
2009 3340 25.12%
2010 3313 24.82%
2011 3574 29.94%
2012 3512 26.91%
2013 3784 28.36%
2014 4052 27.00%
2015 3231 28.85%

Table 3.1: Applicant counts and admission acceptances per year.

Table 3.2 describes the categorical features using their aggregated distri-
butions across the available data for all years for whatever value they can

take on.

Feature 0 1 2 3 4

Sex - 79.83% | 20.17% - -

Immigration Status | 80.79% | 11.59% | 7.44% | 0.14% | 0.03%

Mother Tongue - 70.60% | 28.62% | 0.78% -
Choice 1 78.20% | 21.80% - -

Choice 2 70.40% | 29.60% - - -
Choice 3 66.83% | 33.17% - - -
Choice 4 81.33% | 18.67% - - -
Choice 5 87.92% | 12.08% - - -

Table 3.2: Categorical features and their aggregated distributions.

Table 3.3 describes the identifier features using their minimum and max-
imum values as well as either their mode and its percentage or the average

value of that feature.
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Feature Mode | Mode % | Avg. | Min. | Max.
School 1D - - 282610 | 149 | 555938
School Region ID - - 48694 | 2795 | 83993
Board 1D - - 29 1 98
Board Region ID 61 99.15% - 13 84
Province of Residence - - 97 76 98
Region of Residence - - 28 1 98
County of Residence 9987 99.20% - 9987 | 94986
Country of Residence | 9987 80.79% - 9987 | 99248
Citizenship 97 80.79% - 76 98

Table 3.3: Identifier features and their statistical descriptions.

Table 3.4 describes the numerical features using their average, standard

deviation, minimum and maximum values. Birth year does not quite fit this

mold however so it will be described briefly here. The minimum value is 78

and the maximum is 99. However, 99.32% of them lie between 89 and 97.

Feature Avg. | Std. Dev. | Min. | Max.
Years of Ontario Secondary | 3.79 0.93 0 9
Course Count 7.56 1.31 4 12

Total Credits 752.63 131.02 300 1300
Physics Grade 83.37 13.67 0 100
Chemistry Grade 83.03 12.83 0 100
Calculus Grade 84.97 13.55 0 100
English Grade 83.07 7.96 0 100
Average 1 683.96 359.39 0 997
Average 2 873.34 76.88 0 998

Table 3.4: Numerical features and their statistical descriptions.

22
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3.3 Feature Engineering

Success of machine learning based analyses are often heavily reliant on
a combination of the quality of feature engineering, hyperparameter tuning,
and certain model specific techniques (the optimization algorithm used to
train the model for example). Therefore it is prudent to discuss the han-
dling of these facets of this analysis. There were three feature engineering
techniques used during this analysis that are important to discuss. Every po-
tential technique (and combination of techniques) was tried in tandem with
each algorithm and to ensure that the analysis was comprehensive. The tech-
niques tested include data balancing, normalization of the data, and KPCA
(discussed in the Algorithms section).

Data balancing was achieved by evening out the number of samples of
each class. Since the typical ratio of acceptances to non-acceptances is about
1:3, the non-acceptance subset of the data was under-sampled in order to
force a 1:1 ratio. Interestingly, balancing the data in this way significantly
harmed the performance of every model. For example, considering the SVM
model for the year 2015, the final prediction error without balancing was
about 2% while the error with balancing was over 56%. This is likely due to
the importance of preserving the original proportion of acceptances to non-
acceptances which introduces a beneficial bias for the algorithms to learn
[23].

Normalization refers to the process of modifying the values of a feature
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by centering the mean about zero and forcing a unit variance for that feature
when inspected across all samples. This can often improve the effectiveness
of optimization algorithms which in turn can improve the quality of the
resulting models. Another added benefit is that the speed of convergence
can be improved as a result of reducing the geometric distance from the
minima. This allows a similar step size to converge quicker than it would
with the original data.

Another benefit of normalization is that it forces the variables to adhere
to the same range of values. The reason this benefits some algorithms can
be explained using the following example. If one variable takes values in
the scale of thousands and another takes values in the scale of percentages,
the large value can have an artificially magnified influence on the results.
The smaller value’s contribution could then be shadowed even if it happened
to be a more important predictor. However it is prudent to analyze the
impact it has on the models being trained before indiscriminately applying
normalization.

Although this technique was experimented with for each of the models,
the only algorithm which benefitted from using normalized data were the
neural networks. The other algorithms performed significantly worse with
normalized data. An interesting peculiarity is that normalizing the testing
data separate from the training data tended to perform slightly better than
using the same normalization measures on the testing set that were applied

to the training set. In this specific case, this could be due to factors such
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as grade inflation — it is more important to measure the applicant’s grade
relevant to the current year’s grades rather than previous years’ grades.
The KPCA algorithm is explained in detail in the Algorithms section.
Characteristics specific to this analysis include the kernel used and how many
principal components were calculated. Several standard kernel functions were
experimented with including radial basis function (rbf), linear, sigmoid, co-
sine, and polynomial. For each kernel, an attempt was made to adjust the
available hyperparameters available to that kernel function. All but the poly-
nomial kernel resulted in every model performing anywhere from marginally
to significantly worse. The polynomial kernel of degree 3 showed some pos-
itive results but the polynomial kernel of degree 2 performed even better.
Further, extracting 5 principal components performed very well. Extracting
9 performed marginally better, but the combination of using more compo-
nents and taking significantly longer to fit lead to the selection of just 5
principal components. Considering these results, the final KPCA transfor-
mation used a polynomial kernel of degree 2 with 5 principal components.
A further indicator that this is a strong choice is that it consistently per-
formed the best across the various machine learning algorithms. The two
algorithms that were found to benefit from the KPCA transformation were
k-NN and Naive Bayes. The KPCA transformation gave an average improve-
ment of 0.18% and 0.06% to the random forest and decision tree algorithms,
respectively. However, considering the added time required to compute this

transformation as well as the loss of interpretability due to transforming the
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features, KPCA was not used in the final versions of these models.

3.4 Algorithm Implementation

As mentioned previously, the specifics of feature engineering, hyperpa-
rameter tuning, and certain model specific techniques used are important
factors to discuss when describing an analysis. This section will now de-
scribe the latter two of these factors.

Hyperparameter tuning was handled in a manual fashion. Various combi-
nations of hyperparameters from one extreme to the other of their respective
ranges were used to train an initial set of models. For example, if a hyper-
parameter could take on values between 0 and 20, the values 0, 5, 10, 15,
and 20 would be tried first. If 5 and 10 produced the best results, then 6,
7, 8, and 9 would be tried. This process was repeated until modifying the
hyperparameter stopped having an effect. Depending on what’s appropriate
for the specific hyperparameter, the efficacy of these selections can then be
measured by inspecting the final model accuracy, ensuring that the train-
ing algorithm actually converges, or measuring the algorithm’s training and
execution times.

Some of the hyperparameters available to certain models must be dis-
cussed in this paper since they can affect the training and execution times
of the algorithms. In particular, these include the maximum depth for the

regression tree algorithms, the number of trees used in the ensemble algo-
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rithms, the number of neighbours considered in k-NN and the data structure
used to find those neighbours, the size of the neural network, and the step
size of the optimization algorithms. The optimal maximum depth was a
much stricter 6 for the ensemble methods compared to 10 for the singular
decision tree model. This makes intuitive sense since the ensemble methods
are meant to benefit from utilizing weaker learners relative to the singular
method. Both ensemble methods ended up using 200 estimators. This count
was selected by finding the least number of estimators which could still arrive
at an optimal result. k-NN looked at the 9 nearest neighbours and used a
distance-weighted metric to calculate the votes of those neighbours. Further,
a k-d tree of size 30 was used by this algorithm in order to reduce the lookup
time of the nearest neighbours. The neural network used two hidden lay-
ers, each containing 20 nodes. Combinations of one to three hidden layers
with varying numbers of nodes at each layer were also experimented with be-
fore arriving at the best-performing hidden layer selection mentioned above.
Most of the models performed nominally with the default learning rate of 0.1
except for the gradient boosting trees. For that algorithm a smaller learning

rate of 0.01 was used.

3.5 Measurements

Accuracy for these models was measured by inspecting the results of pre-

dicting the number of acceptances for four different years using the data from
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the prior three years to train. For example, the models would be trained on
the application data from the years 2009-2011 and then tested using the ap-
plication data from year 2012. This was repeated as many times as possible
given the full set of available data. In other words, each model was tested on
how well it could predict the number of acceptances for the years 2012, 2013,
2014, and 2015. The following equation was used to predict the model’s accu-
racy where the predicted number of acceptances is the sum of the predicted

soft probabilities.

lactual — predicted|

accuracy = rual
actua

All timing measurements used the 2012-2014 application data (3,512,
3,784, 4,052 samples respectively — 11,348 samples in total) as the training
set and the 2015 application data (3231 samples) as the testing set. Being
consistent is of course necessary to ensure accurate comparisons between al-
gorithms. These experiments were performed using an Intel Core i7 4770HQ

at a 2.2GHz clock speed.
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Chapter 4

Results

The discussion of this study’s results are separated into those concerning
accuracy and those concerning time in order to make it easier for readers to
locate the results they are most interested in. The data used to calculate
these results (other than the application data itself of course) is available in

this document’s appendices.

4.1 Accuracy

There are two factors to consider when analyzing the accuracy of the
trained models in this analysis. The first is to simply calculate the differ-
ence between the predicted number of acceptances and the actual number of
acceptances. A baseline was established by building a much simpler model

which uses the average acceptance rate of the three years prior to a given
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year in order to predict that given year’s acceptance rate. We can then use

the baseline’s accuracy to gauge the effectiveness of the other algorithms.

Algorithm Accuracy | Std. Dev.
SVM 97.80 1.02
k-NN 97.30 2.51
Boosting 97.09 2.03
Decision Tree 96.75 1.73
Random Forest 96.49 2.47
Baseline 96.22 1.91
Naive Bayes 95.59 3.51
Neural Network 94.80 3.71
Logistic Regression 93.69 7.86

Table 4.1: The average accuracies measured for the final models.

Table 4.1 lists the resulting average accuracies for each model sorted in
descending order as well as the accompanying standard deviation of the ac-
curacy across the years tested. The full list of results is available in Appendix
B. The naive bayes, neural network, and logistic regression algorithms all
performed at a rate that did not even exceed the baseline. Looking at the
individual scores reveals an interesting discovery. These models did not tend
to consistently perform poorly, rather they would have an outlying year in
which they would perform significantly worse which would drag down their
overall average. These accuracies have been bolded in the table of accuracies
in Appendix B. On the other extreme, SVM performed extremely well. It

had the best accuracy and, perhaps just as important, was consistently ac-
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curate with a lowest score of 96.26%. The next best in terms of consistently
strong results was the decision tree with a lowest score of 94.29%.

The second factor is more nuanced. By inspecting histograms of the
models’ predictions (Figures 4.1 and 4.2), it can be seen that some of the
approaches varied significantly in the predictions for individual applicants.
When inspecting these diagrams, it is important to take careful note of the
scale of the x-axis as it is not consistent among the histograms. The first
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Figure 4.1: Prediction histograms of the first four models for the 2015 data.
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Figure 4.2: Prediction histograms of the last four models for the 2015 data.

interesting result is that many of the models have a spike at or near 27%.
This is likely due to the fact that the average percentage of acceptances
among all years is about that so there would be a benefit to predicting that
specific likelihood. Another interesting result is that the histograms for all
of the tree-based learning methods are quite similar in that they never (or
at most rarely) predict a likelihood lower than 10% or greater than 70%. It

is likely that this is an artifact of the core similarities of these models. A
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second set of histograms which were similar in nature were those of k-NN,
logistic regression, and the neural network. The predictions by these models
ranged all, or almost all, the way between 0% and 100%.

The last two models were quite unique in their results as viewed through
the predictions histogram. The first of these is SVM, our best performer
according to the average accuracy measurement. Looking at its histogram
tells an interesting story — it refused to make a definitive prediction. Every
one of its predictions lay in the range of 27% and 33%. If the goal was
to actually classify applicants based on whether or not they would accept
(i.e. hard classification), this would be an absolute failure. Also, if there
happened to be a larger percentage of students who were actually likely to
accept an offer in a year, this model will likely prove ineffective. The second
unique model was naive bayes. This model’s prediction histogram is much
less continuous than the rest and had clusters of predictions around a few

likelihoods.

4.2 Time

The box plots in figures 4.3 and 4.4 graphically depict the results of
measuring the time taken by each algorithm in both the training and the
testing steps. The full set of results are also available in appendices C and

D.

In terms of training times, the algorithms can easily be ordered from
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Figure 4.3: The measured training times of each model.

slowest to fastest. The slowest being boosting and neural networks; the

fastest being naive bayes and k-NN. In terms of execution time, it is more

difficult to confidently order certain algorithms although there are still clear

fastest and slowest algorithms. The slowest being k-NN and SVM; the fastest

being decision trees and logistic regression. This is not quite the full story

though.

An important element to keep in mind is the time used by any necessary
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Figure 4.4: The measured execution times of each model.

data preparation steps. Since data balancing was not found to be useful for
any of the models in solving this particular problem, it was not necessary to
measure that process for this study. However, since some of the algorithms
benefitted from and ended up employing data normalization techniques or
KPCA, it is necessary to measure those processes.

Normalizing the data is a fairly quick process taking time in the neigh-
bourhood of a couple milliseconds. Only the neural network algorithm was
found to benefit from normalization and as mentioned previously, the train-
ing time for that algorithm was in the order of seconds. Further, transforming
new data is as simple as performing a single addition and division operation
which is extremely quick. Therefore the additional time arising from the
normalization step is negligible and can be ignored.

On the other hand, KPCA is a time intensive process and so its per-
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formance must be inspected more closely. The time required to perform
the KPCA transformation in both the testing and the training steps was
measured 25 times. The recorded times are available in the second table
of Appendices C and D. The resulting average times for the training and
testing steps were about 14.93 and 1.36 seconds respectively.

Now that the full picture has been considered, the final results change
slightly. Naive bayes was the fastest algorithm in terms of training time
and one of the fastest in terms of execution time. k-NN was also extremely
quick to train but was already one of the slowest in terms of execution time.
However since these algorithms relied on KPCA to be competitive in terms
of accuracy, they easily become the slowest overall across the board. The
fastest algorithm in terms of training time is then decision trees. The fastest
algorithm in terms of execution time remains a tie between decision trees

and logistic regression.
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Chapter 5

Conclusions and Future Work

As can be noted from the results in the previous section, this research
leads to some definitive conclusions involving both the efficacy of these ma-
chine learning techniques as applied to this specific problem as well as how
the models relate to one another in terms of their training and execution
time.

In terms of accuracy a couple conclusions can be made. First, naive bayes,
artificial neural networks, and logistic regression did not perform well, they
did not even surpass the baseline accuracy. On the other hand, SVM, k-NN,
and boosting all performed quite well (other than SVM’s tendency to only
predict within a + /- 3% range). These conclusions can be useful for selecting
which algorithms to prioritize experimentation with for problems which are
similar in nature to this one.

In terms of speed a couple conclusions can be made. If execution speed
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is of concern for a given problem, the best candidates are logistic regression,
decision trees, naive bayes, or small neural networks. Some examples where
this may be the case include Intrusion Detection Systems (IDSs), autonomous
robotics such as self-driving cars, or system controllers to name a few. If
training speed is of concern for a given problem, the best candidates are
naive bayes or k-NN. Training speed will typically only be a major concern if
the application deals with active learning. However, if a dataset is extremely
large, the cost in development time may also become a concern. For the
problem considered in this paper, execution time is not a concern. Therefore
the best model for the job is simply the one which reliably performed the
best and also displays the ability to adapt to change.

By simply going by the numbers, SVM would be selected since it predicted
the number of applicants most accurately. However, looking at the prediction
histograms shows that this model was hardly modifying its prediction from
applicant to applicant. Therefore, if a new year’s dataset had a different
proportion of acceptances, this model’s prediction would likely suffer. Since
k-NN did not share this prediction behaviour and still performed well, it
should be the one selected as the best model for this task.

One of the most surprising results was that arguably the most elementary
of the models, plain decision trees, performed so amicably. As always, the
“no free lunch” theorem remains valid. Perhaps with more studies of this
nature performed, the scientific community will one day be able to discover a

technique which reliably predicts which algorithm best suits a given problem.
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However, until that day comes, it is important not to eliminate algorithmic

alternatives without first testing their efficacy for that specific problem.
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Appendix A:

Application Data

Feature

School ID*

Description

School Board*

Ontario Secondary School number of the applicant’s school.

Ontario Secondary School board of the applicant’s school.
School Region* County /region of school of the applicant’s school.
Sex* Applicant’s gender.
Birth Year

Location of Residence*

Applicant’s birth year.

Immigration Status*

Applicant’s country, province, county, and postal code of residence

Citizenship*

Applicant’s immigration status.

Mother Tongue*

The citizenship country and region of this applicant.

Applicant Type*

Applicant’s native tongue.

The type of applicant.

Confirmed Details*

Choice Ranking

The confirmed university, program group, program, program year
level, term, and choice preference.

This applicant’s OUAC confirmed choice preference.

Registered Details*

Senior Level Courses

The registered university, program group, program, program year
level, term, and choice preference.

Applicant’s 12 senior level courses including course codes, course

Data credits, and final marks.

Senior Level Courses The number of senior level courses this applicant took and their
Summary total senior level credits.

Years in Secondary The number of years this applicant was in secondary school.
Average 1 The average of the best 6 senior level course finals from this year.
Average 2 The average of the best 6 senior level course finals from all years.

More than 20

A flag indicating the applicant has more than 20 choices.

Application Choice
Data*

Offer Data*

Up to 20 of the applicant’s ranked preferences. Each choice
contains: university, program group, program, full-time or
part-time, term, major, co-op or not co-op, and year level.

Confirmed Indicator

The program group, program, term, and year level offered.

Registered Indicator

Whether the applicant has confirmed their offer.

Sequence Number

Whether the applicant has registered.

The sequence number of this application.

Table A.1: The set of features available as well as their descriptions.

* - This field has been encoded to maintain the applicants’ anonymity.
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Appendix B:

Final Model Accuracies

Algorithm 2012 | 2013 | 2014 | 2015
Baseline 98.98 | 96.03 | 94.81 | 95.06
SVM 97.77 1 96.26 | 99.12 | 98.05
k-NN 99.97 | 97.76 | 93.18 | 98.29
Boosting 99.46 | 93.91 | 97.98 | 96.99

Decision Tree 98.13 | 94.29 | 98.61 | 95.97
Random Forest 99.76 | 93.71 | 97.97 | 94.54
Naive Bayes 97.98 | 98.24 | 89.62 | 96.52
Neural Network 93.64 | 98.95 | 97.30 | 89.31
Logistic Regression | 80.22 | 99.52 | 96.43 | 98.58

Table B.1: The accuracies of each model for each year tested.
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Appendix C:
Model Training Times

Test Boosting Decision k-NN Logisti.c
" Tree Regression
1 6.014579 0.032445 0.021921 1.168239
2 6.060366 0.034278 0.024611 0.635102
3 6.017735 0.035130 0.020322 0.939361
4 6.015630 0.031482 0.019323 1.109485
5 6.013562 0.033569 0.019992 1.104097
6 5.954664 0.031232 0.021686 0.990864
7 5.979299 0.034273 0.020652 1.179635
8 6.054811 0.033395 0.020216 1.120850
9 5.957272 0.031599 0.019249 1.060616
10 5.996466 0.031738 0.020033 0.869333
11 5.930105 0.034821 0.020904 1.029269
12 5.917739 0.031680 0.019462 1.071033
13 5.960781 0.033725 0.019386 1.009424
14 5.957456 0.034754 0.019507 1.080049
15 5.997807 0.030992 0.019638 1.065849
16 6.001351 0.031175 0.020336 1.038358
17 6.017457 0.031006 0.01945 0.807184
18 5.969680 0.032123 0.021128 0.937696
19 5.948551 0.035235 0.022022 1.101875
20 5.975451 0.034017 0.019832 1.004352
21 5.976886 0.033061 0.019582 0.937616
22 5.981837 0.036824 0.021396 1.074481
23 5.954940 0.031187 0.019696 1.071317
24 5.987484 0.031624 0.019306 1.073245
25 5.969200 0.034412 0.019542 1.212441

Table C.1: Recorded training times (in seconds).
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Tost Naive Neural Random SVM KPCA

I Bayes Network Forest

1 0.008159 3.505126 1.566178 2.287402 14.240538
2 0.004718 3.473786 1.566805 2.131824 15.893182
3 0.004940 3.492679 1.568548 2.154087 14.650137
4 0.005550 3.485388 1.576334 2.172097 14.594341
5 0.004792 3.449026 1.588099 2.324865 14.629999
6 0.004594 3.444341 1.549295 2.124706 14.621863
7 0.005569 3.462723 1.558287 2.310966 14.687193
8 0.005428 3.456469 1.568966 2.168869 14.867636
9 0.004831 3.435878 1.554109 2.114290 14.603836
10 0.004974 3.420343 1.562342 2.134637 15.658565
11 0.005153 3.434086 1.578996 2.248318 15.265155
12 0.005344 3.418523 1.551412 2.331544 14.647819
13 0.004958 3.417171 1.581576 2.299722 14.169253
14 0.004927 3.459040 1.561475 2.302909 14.066407
15 0.005374 3.442721 1.490999 2.495037 14.139257
16 0.005086 3.447201 1.467739 2.311589 14.182458
17 0.005025 3.465676 1.497569 2.411274 16.323833
18 0.005077 3.433271 1.499206 2.243295 17.496630
19 0.004753 3.477900 1.482648 2.443555 15.018163
20 0.005506 3.449088 1.458587 2.295928 14.636940
21 0.004782 3.433294 1.425397 2.230634 14.577261
22 0.004638 3.411233 1.429310 2.514056 14.704826
23 0.005480 3.413155 1.421311 2.612107 15.338391
24 0.004851 3.468480 1.425698 2.522150 14.839778
25 0.005192 3.441341 1.449023 2.474955 15.084180

Table C.2: Recorded training times (in seconds).
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Appendix D:

Model Execution Times

Test Boosting Decision k-NN Logisti.c
I Tree Regression
1 0.014745 0.000816 0.086484 0.000692
2 0.018366 0.000815 0.085454 0.000579
3 0.014911 0.000772 0.084303 0.000621
4 0.015195 0.000711 0.076118 0.000630
5 0.014597 0.000785 0.084428 0.000675
6 0.014995 0.000857 0.084832 0.000660
7 0.018093 0.000841 0.084614 0.000698
8 0.014512 0.000779 0.077617 0.000742
9 0.016340 0.001203 0.085100 0.000783
10 0.014792 0.000811 0.079556 0.000645
11 0.015412 0.000782 0.079321 0.000738
12 0.014813 0.000773 0.082753 0.000671
13 0.014710 0.000793 0.077198 0.000947
14 0.014737 0.000726 0.079738 0.000648
15 0.014730 0.000803 0.079055 0.000799
16 0.014653 0.000723 0.082422 0.000780
17 0.016565 0.000695 0.087120 0.000646
18 0.016811 0.000758 0.073115 0.000706
19 0.014936 0.001364 0.078493 0.000681
20 0.014524 0.000699 0.080206 0.000715
21 0.017593 0.000755 0.085010 0.000653
22 0.014353 0.000813 0.084700 0.001009
23 0.015566 0.000729 0.086108 0.000663
24 0.015575 0.000797 0.079523 0.000662
25 0.014444 0.000780 0.085377 0.000671

Table D.1: Recorded execution times (in seconds).
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Tost Naive Neural Random SVM KPCA
I Bayes Network Forest
1 0.002021 0.003932 0.053894 0.084272 1.312920
2 0.001504 0.002509 0.057545 0.079924 1.568186
3 0.001486 0.002706 0.052212 0.076127 1.347254
4 0.001829 0.003109 0.053566 0.081387 1.349163
5 0.001591 0.002784 0.054663 0.074027 1.405964
6 0.001462 0.002302 0.052820 0.080510 1.358854
7 0.001924 0.002266 0.055589 0.077143 1.327478
8 0.001721 0.003042 0.056165 0.073817 1.325931
9 0.001513 0.002822 0.054600 0.074220 1.351180
10 0.001490 0.002999 0.055901 0.073402 1.271649
11 0.001744 0.002371 0.055302 0.081237 1.295780
12 0.001495 0.002912 0.053409 0.076959 1.321630
13 0.001555 0.002586 0.059653 0.075698 1.323139
14 0.001577 0.003157 0.053677 0.075555 1.281131
15 0.001584 0.002677 0.051444 0.073635 1.292695
16 0.001467 0.002432 0.049673 0.078155 1.304743
17 0.001630 0.002387 0.054081 0.079193 1.337067
18 0.001872 0.002246 0.057015 0.087499 1.565558
19 0.001484 0.002732 0.055404 0.082698 1.501984
20 0.001717 0.002873 0.057610 0.073436 1.311435
21 0.001638 0.002999 0.047760 0.073338 1.410371
22 0.001517 0.002655 0.048180 0.083189 1.272483
23 0.001910 0.002392 0.047643 0.092331 1.541743
24 0.001539 0.002106 0.047704 0.083208 1.298361
25 0.001733 0.002159 0.052760 0.089914 1.331161

Table D.2: Recorded execution times (in seconds).



