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Abstract

Perceptual learning occurs because observers become more sensitive to informative
aspects of the stimuli. Learning the informative aspects of one stimulus set does not
transfer to another stimulus set of the same class. In this dissertation, the argument
will be made that if observers learn how to discover informative aspects, learning will
be more generalizable. However, discovery requires that the informative aspects are
not easily apparent. To this end, stimulus orientation structure can be manipulated to
contain informative structure in one orientation band, and non-informative structure
in the other orientation band. Such a manipulation was inspired by research on
face perception: Faces are best identified when decisions are based more on the
horizontal relative to the vertical facial structure. Hence, the first three chapters
focus on understanding the horizontal bias during face identification, and the final
two chapters introduce a novel stimulus set for which horizontal bias may be learned.
Chapter 2 identifies a neural marker of horizontal bias that is correlated with face
identification accuracy, suggesting that we can predict how well observers identify faces
based on their neural sensitivity to horizontal relative to vertical structure. Chapter
3 shows that when face identification accuracy declines due to healthy ageing, so
too do behavioural and neural horizontal bias, but Chapter 4 shows that perceptual
learning can increase horizontal bias in healthy older adults. Chapter 5 uses texture
stimuli and shows that observers can learn to discover informative horizontal structure
embedded in uninformative vertical structure. Chapter 6 extends these findings to
show that adequate practice results in learning that generalizes to novel textures for
which the orientation-selective processing is relevant. The results presented inform
our understanding of the neural representations associated with orientation-selective
processing, and suggest that observers can learn to discover informative structure
conveyed by a particular orientation band.
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Chapter 1

General Introduction

1.1 Perceptual Learning

Normal perceptual development requires adequate sensory experience. Visual devel-
opment is characterized by the existence of sensitive periods, during which times the
development of the visual system is particularly sensitive to the influence of visual
experience (Lewis and Maurer, 2005; Siu and Murphy, 2018). For example, the de-
velopment of normal stereopsis requires normal binocular visual experience before 6
months of age (Birch and Petrig, 1996), whereas normal motion perception is sensitive
to visual experience until up to 8 years of age (Hadad et al., 2015). Importantly,
although visual developmental is most responsive to experience during sensitive periods,
changes in visual perception do occur throughout the lifespan (Karni and Bertini,
1997). For example, changes in vision and other sensory modalities can occur as a
result of perceptual learning: such changes are often long-lasting (Karni and Sagi,
1993) and are thought to reflect changes in the properties of sensory neurons (for a
review see Sagi, 2011).

One of the hallmarks of perceptual learning is that performance improvements
often are stimulus-specific. In vision, perceptual learning is specific to stimulus
orientation, retinal position, and sometimes even the input eye (e.g., Karni and Sagi,
1991). Stimulus-specificity has been found in several tasks: for example, practice
discriminating a vertical vernier stimulus does not transfer to a horizontal stimulus
(McKee and Westheimer, 1978); practice discriminating the orientation or spatial
frequency of gratings does not transfer to untrained orientations and spatial frequencies
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(Fiorentini and Berardi, 1981); and practice discriminating the motion direction of
moving dots does not transfer to novel directions (Ball and Sekuler, 1987). Stimulus-
specific perceptual learning has also been demonstrated when discriminating complex
textures (Hussain et al., 2009a) and faces (Hussain et al., 2009b), which are of particular
interest to this thesis.

In a series of studies, Hussain and colleagues characterize the perceptual learning
of textures and faces. Practice in a one-of-ten texture identification task improves
accuracy, but the effect of practice does not transfer to novel textures, to trained
textures presented at a novel orientation, or to contrast-reversed versions of the trained
textures (Hussain et al., 2009a). Small amounts of practice are required to observe
the effects of perceptual learning on texture and face identification (Hussain et al.,
2009b), and from the outset of training, the learning is specific for the trained textures
(Hashemi et al., 2013) and faces (Hussain et al., 2012b). Stimulus-specific perceptual
learning of textures persists for at least one year after training (Hussain et al., 2011).
Gold et al. (2004) showed that perceptual learning in a texture discrimination task
reflected observers basing their decisions on more informative aspects of the stimuli.
Observers learned to discriminate textures by extracting diagnostic information from
specific regions of the stimuli. Interestingly, the particular regions differed between
observers, indicating that there was no spatial region that observers universally found
diagnostic across the set of textures. Face discrimination, which is also affected by
perceptual learning (Gauthier et al., 2003; Gold et al., 1999), is based on diagnostic
information conveyed by spatial regions around the eyes and brows (Sekuler et al., 2004;
Peterson and Eckstein, 2012). Unlike with textures, the particular regions used to
discriminate faces are similar across healthy adults (e.g., Sekuler et al., 2004; Gosselin
and Schyns, 2001), which is likely due to fact that the spatial features in faces, unlike
filtered textures, are arranged similarly.

The findings from studies of the perceptual learning of textures and faces suggest
that the probability that observers will adopt a particular strategy is, naturally,
dependent on the distribution of the diagnostic information in stimuli. Thus, the
structure of the stimulus may play a significant role in the stimulus-specificity of
learning. For example, in a texture identification task, sampling from a subset of
informative regions is an effective strategy, but only for the textures in the trained
set. Given that textures used in those studies were generated from noise, there is no
pre-determined configuration of the stimulus aspects that can be predicted in novel
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items, and therefore learning to identify six textures based on information sampled from
several specific spatial regions is unlikely to transfer to a different set of six textures. In
other words, the stimulus-specific nature of perceptual learning is consistent with the
idea that practice enables observers to identify textures based on diagnostic features
of the particular textures seen during training, rather than base identification on
more general processes that can be applied to the entire class of textures seen during
training. Hussain et al. (2012a) showed that if novel stimuli are shown on every trial,
texture identification accuracy still improved significantly with practice, albeit at a
slower rate than when the textures remained constant during training. Since it was
impossible to learn particular aspects tied to any one exemplar, observers must have
learned aspects that apply to the general class of textures, and therefore were able to
generalize learning to novel textures. On the one hand, observers can learn specific
idiosyncrasies of a few stimuli, and on the other hand observers can learn idiosyncrasies
that apply to an entire class of stimuli by being exposed to a significant proportion of
stimuli that belong to that class. Between these two extremes might exist a situation
in which observers learn to discover what stimulus characteristics are diagnostic. In
such a circumstance, it is possible that the observer may discover and therefore base
decisions on which visual channels carry diagnostic and non-diagnostic information.

1.2 Learning through discovery

The idea of learning to discover the diagnostic information resembles how expertise is
acquired by those specialized in using medical imaging to detect often subtle signs of
a disease or dysfunction (e.g., Norman et al., 1989; Nodine et al., 1999). Experts often
can classify medical images taken from healthy and non-healthy patients in a single
glance (Drew et al., 2013), reflecting better detection and processing of diagnostic
aspects of the image (Sowden et al., 2000). Interestingly, experienced radiologists have
higher sensitivity to the low-contrast features of x-ray images, but training novices to
detect these low-contrast features does not result in a better ability to classify x-ray
images (Sowden et al., 2000). This asymmetry in the transfer of perceptual learning
suggests that increased sensitivity to low-contrast features in x-rays is not a sufficient
explanation of the abilities of expert radiologists.

In the identification study by Hussain et al. (2012a), the diagnostic information
could not have been the structure of a particular texture, since no texture was repeated
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twice. Therefore, other than detecting statistical regularities within the entire class
of stimuli (Sagi, 2011), the exact strategy that observers employed, and improved
on, is unknown. Since stimulus structure, and how stimulus structure varies across
trials, influence what is learned with practice, then the stimulus may be manipulated
to promote a desired strategy. For instance, much like medical imaging, diagnostic
information can be embedded in an uninformative context in such a way that the
diagnostic information is not immediately noticeable to the observer. With such
stimuli, it may be possible to train observers with a small set of stimuli, but make it
less likely that they learn idiosyncrasies that are tied to the small set of stimuli, and
therefore be more likely to generalize learning to new stimuli.

One way to modify texture stimuli to hide the diagnostic information is by placing
informative and non-informative structure in different orientation bands. For instance,
the experiments in Chapters 5 and 6 of this thesis used a set of six textures that
were filtered to contain task-relevant structure only in a horizontal orientation band,
while the orthogonal orientation band contained task-irrelevant structure derived from
a texture that was not in the set of six textures. The resulting stimuli appear to
be textures with structure in all orientations, but unbeknownst to the observer only
horizontally oriented structure is informative for the texture identification task. The
working hypothesis is that instead of learning to discriminate structure, observers will
learn to discover discriminable/relevant structure. Learning to discover may be less
specific to particular aspects about the trained stimuli, and therefore generalize to
novel textures where the learned strategy is relevant. Learning to discover task-relevant
information is similar to the idea that perceptual learning occurs in a central location
of the processing pathway, and that specificity to stimulus characteristics is not due
to where learning occurs along the visual pathway, but rather what is learnt (Mollon
and Danilova, 1996). For instance, learning to discover information could come in the
form of knowing what orientation channels to base decisions on and what orientation
channels to ignore.

1.3 Selective processing during face perception

Upright face identification relies on horizontally oriented structures (Dakin and Watt,
2009; Goffaux and Dakin, 2010), and an observer’s relative sensitivity to horizontal
and vertical facial structure is referred to as “horizontal bias” (also known as horizon-
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tal tuning/selectivity). Individual differences in horizontal bias are correlated with
performance in face identification tasks (Pachai et al., 2013), and with the magnitude
of the face inversion effect (Pachai et al., 2013), suggesting that our lifelong experience
with upright faces manifests as a horizontal bias for upright but not inverted faces.

Individual differences in horizontal bias could be due to several factors, including
age, clinical diagnoses, and experience. Indeed, horizontal bias changes across the
lifespan (Goffaux et al., 2015; Obermeyer et al., 2012) and is weaker in people with
prosopagnosia (Pachai et al., 2015). Horizontal bias is greater for familiar than
unfamiliar faces (Pachai et al., 2017), reflecting more extensive perceptual learning for
familiar than unfamiliar faces. Experience-based changes in horizontal bias may be
used to reduce face perception deficits in different populations. For example, older
adults have more difficulty identifying faces than younger adults (Grady et al., 1994;
Konar et al., 2013), and they also show a decreased horizontal bias (Obermeyer et al.,
2012). An important, unresolved issue is whether practice-related improvements in
face identification are accomplished by increasing horizontal bias or by some other
mechanism.

The observation of a horizontal bias in face perception provides a unique opportunity
to study the neural substrates of orientation-selective processing in pre-defined neural
markers of interest. Decades of research on face perception have established that faces
elicit signature brain responses that often behave in predictable ways. For example,
using electroencephalography (EEG) to measure the evoked response to a face has
revealed the N170, a brain response larger to faces than non-face objects (Bentin et al.,
1996; Rossion et al., 2000), and the N250, a brain response larger to familiar than
unfamiliar faces (Tanaka et al., 2006; Kaufmann et al., 2009). Hence, these neural
markers of face perception can be targeted when assessing the neural sensitivity to
horizontal bias – if face processing relies on the strength of horizontal bias, then we
can expect to see more face-typical brain responses to the horizontal structure of faces
than to the vertical structure of faces (i.e., a neural horizontal bias).

1.4 Thesis Experiments

This dissertation investigates the role of information discovery in perceptual learning.
We asked if information discovery can be encouraged through the use of orientation-
selective processing, but first we establish the presence of orientation-selective process-
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ing in a task that we already believe is done through orientation-selective processing. In
Chapter 2, the orientation-selective processing thought to occur during face perception
is measured behaviourally and with EEG, and we asked if there is a neural measure
of horizontal bias that is correlated with face identification performance. Chapter
3 investigates how neural horizontal bias is affected by healthy ageing, which is a
factor associated with face perception deficits. Chapter 4 uses perceptual learning
to improve face identification accuracy in older adults, and assesses the effects of
learning on horizontal bias. Next, Chapter 5 asks if perceptual learning of textures
can be used to encourage the generalizable, orientation-selective processing of novel
textures. Finally, Chapter 6 assesses how the learning found in Chapter 5 is affected by
giving participants substantially more practice and therefore more time to discover the
relevant structure. In summary, this dissertation asks two broad questions: 1) how is
orientation-selective processing in faces reflected in neural correlates of perception; and
2) can observers learn to discover orientation structure in a novel stimulus class (i.e.,
textures). To anticipate the results, below are summaries of each chapter’s findings.

In Chapter 2, we used EEG to record the neural representation of orientation-
selective processing while perceiving faces, a stimulus class for which orientation-
selective processing is known to occur. We confirmed that accurate face identification
relies on the presence of horizontal facial structure more than vertical facial structure.
We refer to the preferential use of horizontal relative to vertical structure as horizontal
bias, and replicate a previous finding that horizontal bias is correlated with full face
identification accuracy. We then show that neural signatures of face processing rely on
the presence of horizontal facial structure. Critically, we isolate a neural marker of
horizontal bias: the difference in evoked activity from processing horizontally versus
vertically oriented structures, and found that the neural horizontal bias also was
correlated with face identification abilities.

In Chapter 3, we investigated if deficits in face perception are reflected in behavioural
and neural measures of horizontal bias. We collected behavioural and neural measures
of horizontal bias from healthy older adults. Although face identification accuracy
was lower in older than younger adults, accuracy was still significantly correlated with
behavioural and neural measures of horizontal bias. Face identification accuracy in
older adults was also correlated with neural horizontal bias at an earlier point in the
evoked response than was found in younger adults. The results support the idea that
orientation-selective processing is a critical part of accurate face identification, even
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when face identification is affected by healthy ageing.
In Chapter 4, we investigated how older adult face identification changes with

practice in a face identification task, and if those changes are associated with changes
in the magnitude of horizontal bias. We measured the magnitude of horizontal bias
before and after upright face identification training. We show that the performance
improvement following the perceptual learning of upright faces was associated with an
increased horizontal bias. Together, these results reinforce not only the importance
of orientation-selective processing during face perception, but that older adults can
re-learn to discover the informative structure in faces.

In Chapter 5, we investigated if observers could discover that stimuli contained
informative structure in a select orientation band. Essentially, we asked if orientation-
selective processing can emerge for a stimulus class that, unlike faces, are not naturally
subject to orientation-selective processing. We manipulated structured noise patterns
(i.e., textures) so that they included diagnostic information at only certain orientations,
and non-diagnostic at others. For this stimulus set the optimal identification strategy
would be to selectively process the diagnostic orientations. In six experiments, we
show that observers can learn to make perceptual decisions which rely more on the
diagnostic orientations. However, the amount of learning was small and was specific
to the trained textures. These experiments point towards a potentially promising
paradigm where observers learn to discover the task-relevant information of stimuli in
which the informative and non-informative structures are not easily separable.

In Chapter 6, we extended the findings from Chapter 5 by providing observers with
more opportunity to discover the informative structure in a texture identification task.
We found that observers varied significantly in how much practice aided their response
accuracy. Pre- to post-training assessment of their orientation-selectivity revealed that
the fivefold increase in the amount of training promoted generalizable learning to novel
textures, suggesting that observers were able to discover the informative structure of
novel textures in which the learned strategy was applicable.

Taken together, this dissertation provides support for the idea that orientation-
selective processing of faces is reflected in the visual system, and that observers
can learn to discover structure in a stimulus according to the orientation of the
structure. Specifically, we provide neural markers for orientation-selective processing
when perceiving faces (Chapters 2 and 3), a stimulus class for which a lifelong of
perceptual learning has resulted in a strong bias for horizontally oriented structures.

7



PhD — A. Hashemi McMaster U. — Psychology, Neuroscience & Behaviour

We also provide evidence that age-related deficits in orientation-selective processing of
faces can be recovered (Chapter 4). We then move on to show that naive observers can
learn to discover select orientation structures of textures according to its diagnostic
value (Chapter 5), and that adequate practice applying the learned strategy can
generalize to novel textures for which the orientation-selective processing is relevant
(Chapter 6). These results inform our understanding of what information we have
access to when making perceptual judgments, and how stimulus characteristics can
dictate the strategy learned to successfully complete a perceptual task.
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Chapter 2

The role of horizontal facial
structure on the N170 and N250

2.1 Abstract

Recent studies have shown that horizontal facial structure is important for face iden-
tification. Also, sensitivity to horizontal structure is associated with the size of the
face inversion effect. However, it is unclear how the N170 and N250, two components
of visual event-related potentials ERPs that have been implicated in face perception,
are modulated by oriented facial structure in an upright face identification task. Here,
we recorded ERPs and behavioural accuracy from adult observers performing a 1-of-6
face identification task in conditions that parametrically manipulated the orientation
structure of upright faces. Faces were filtered with ideal orientation filters centred on
either 0 (horizontal) or 90 deg (vertical). Filter bandwidth was varied across conditions
from ±45 to ±90deg in steps of ±9deg. As has been reported previously, response
accuracy was significantly higher for faces that contained horizontal structure than
vertical structure, and the horizontal-vertical difference was correlated with accuracy
for unfiltered faces. In addition, the N170 and N250 were affected by the manipulation
of horizontal facial structure. Furthermore, for the N250, but not the N170, the
relative sensitivity to horizontal compared to vertical facial structure was significantly
correlated with identification accuracy for unfiltered faces. We suggest that in a
face identification task, the N250 but not the N170 is modulated by the amount of
diagnostic information conveyed by horizontal structure.
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2.2 Introduction

Human adults can identify faces that differ in viewpoint, illumination, and expression,
but have great difficulty identifying faces that are rotated 180 deg in the picture plane
(Yin, 1969). This so-called face inversion effect (FIE) likely is the by-product of
everyday experience with upright, but not inverted faces (Valentine, 1988; Sekuler
et al., 2004), and the influence of experience on recognition has been demonstrated
in several studies that have shown that practice can induce large inversion effects
for non-face objects (Diamond and Carey, 1986; Gauthier et al., 2000; Gauthier and
Bukach, 2007; Husk et al., 2007; Hussain et al., 2009).

Why does inversion impair face identification? One idea is that experience with
upright faces leads to the development, or improvement, of holistic/configural processing
which complements feature-based processing, but which is disrupted by stimulus
inversion (Tanaka and Farah, 1993; Farah et al., 1998; Maurer et al., 2002). However,
the configural/feature framework has been hindered by a lack of consensus about what
constitutes a feature or a configural cue (Piepers and Robbins, 2012). In addition,
Konar et al. (2010) showed that the inversion effect could not be accounted for by
configural processing. Another idea is that qualitatively similar strategies are used
to encode upright and inverted faces (Sekuler et al., 2004, Willenbockel et al., 2010,
Murphy and Cook, 2017), but that experience and learning increases efficiency for
upright faces relative to inverted faces (Gold et al., 1999a, 2004). According to this
hypothesis, if information at particular spatial scales was critical for face identification,
then we might expect to see differences in the spatial frequency selectivity for upright
and inverted face identification. If observers used different spatial scales to identify
upright vs. inverted faces, one would expect to find differences in the spatial frequency
tuning for upright and inverted faces. In fact, human observers do rely most heavily
on facial information in the 8-13 cyc/face spatial frequency range when discriminating
upright faces (Näsänen, 1999; Gold et al., 1999b; Tanskanen et al., 2005; Gaspar
et al., 2008; Keil et al., 2008); however, Gaspar et al. (2008) found no difference in
spatial frequency selectivity for upright and inverted faces (also see Willenbockel et al.,
2010; Royer et al., 2017). Another possibility is that observers use different spatial
sampling strategies to collect information about upright and inverted faces; however,
studies using classification images (Sekuler et al., 2004) and eye-tracking (Williams
and Henderson, 2007; Rodger et al., 2009) have found that observers identify both
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upright and inverted faces using information primarily conveyed by pixels around the
eyes and brows. Hence, previous studies have failed to find dramatic effects of face
orientation on spatial frequency selectivity or spatial sampling of facial information.

Researchers recently have begun studying how observers use information conveyed
by oriented facial structure. Dakin and Watt (2009) noted that the most diagnostic
information of a face’s identity is carried by structure in a horizontal orientation band
centered around 0 deg (Figure 2.1a). Goffaux and Dakin (2010) demonstrated that
selectively removing horizontal facial structure, but not vertical structure, significantly
affected the face inversion effect, facial identity after-effect, face-matching across
different viewpoints, and certain measures of holistic processing. Furthermore, Pachai
et al. (2013) found that greater sensitivity to horizontal relative to vertical structure
was significantly correlated with overall face identification accuracy for upright but
not inverted faces, and that the degree of horizontal tuning was correlated with the
magnitude of the face inversion effect. These results suggest that differential sensitivity
to horizontal facial structure may underlie the face inversion effect. More recently,
sensitivity to horizontal facial structure has been shown to contribute to more accurate
identification of familiar compared to unfamiliar faces (Pachai et al., 2017), whereas
reduced sensitivity to horizontal structure has been linked to prosopagnosia (Pachai
et al., 2015). Sensitivity to horizontal facial structure also plays an important role in
the perception of emotional expressions (Huynh and Balas, 2014; Balas et al., 2015a),
and changes in horizontal tuning have been linked to changes in face perception that
occur during childhood (Goffaux et al., 2015; Balas et al., 2015b), normal ageing
(Obermeyer et al., 2012; Sekuler et al., 2015; de Heering et al., 2016), and central
vision loss (Yu and Chung, 2011).

Horizontal tuning, or bias, also has been found in neural mechanisms underlying
face processing. For example, preferential activation to horizontal compared to vertical
facial structure has been found in neurons in the lateral anterior patch of monkey
inferior temporal cortex (Taubert et al., 2016), and in BOLD activation in the human
fusiform face area (Goffaux et al., 2016). Jacques et al. (2014) examined the influence
of horizontal structure on the N170, the earliest time-window in the event-related
potential (ERP) that is differentially sensitive to faces (Bentin et al., 1996; Rossion
et al., 2000; Rousselet et al., 2004). The N170, like behavioural measures, exhibits a
face inversion effect. That is to say, there is a reliable difference between N170 latency
and/or amplitude evoked by upright and inverted faces (Bentin et al., 1996; Rossion

15



PhD — A. Hashemi McMaster U. — Psychology, Neuroscience & Behaviour

et al., 2000; Eimer, 2000; de Haan et al., 2002; Itier and Taylor, 2002; Rousselet et al.,
2004, 2008a). Interestingly, the N170 and behavioural FIEs are correlated (Jacques
and Rossion, 2007), which suggests that similar changes in perceptual processing
may underlie the behavioural and ERP measures. Consistent with this idea, Jacques
et al. (2014) found that the N170 inversion effect, like the behavioural effect, depends
on horizontal facial structure remaining intact. Specifically, they found that phase-
scrambling horizontal structure, but not vertical structure, in upright faces yielded
N170s that differed from N170s evoked by normal, unscrambled faces.

Using the inversion effect as an index of intact face perception, Jacques et al. (2014)
determined that horizontal structure is required for the N170 latency inversion effect,
much as it is required for the behavioural face inversion effect (Dakin and Watt, 2009;
Goffaux and Dakin, 2010; Pachai et al., 2013, 2018). However, the exact contribution
of horizontal structure in eliciting an N170 during upright face identification remains
unclear. How does the N170 to an upright face change as a function of the orientation
structure present? How are horizontal biases in electrophysiological and behavioural
measures related? The current study examined these questions by measuring the
effects of orientation filtering on face identification accuracy and the amplitude and
latency of the N170.

The N170 is the earliest ERP for faces but, its relation to face identification is
unclear: Although the N170 may habituate to repeated presentations of a single
face identity (Heisz et al., 2006), it generally is not sensitive to face identity (Eimer,
2000; Amihai et al., 2011). A slightly later ERP component, the N250, is more
strongly associated with face identity (Schweinberger et al., 2002, Schweinberger et al.,
2004). Tanaka and colleagues suggested that the N250 is the earliest memory-related
component for object individuation (Scott et al., 2008), including face recognition
(Tanaka et al., 2006). After repeated exposures, the N250 is largest when stimuli
are upright faces, compared to inverted faces or cars (Schweinberger et al., 2004).
Additionally, the N250 is enhanced for repetitions of the same face identity but different
viewpoints (Kaufmann et al., 2009), implicating the N250 in the overall acquisition of
facial identity. Tanaka et al. (2006) further showed that the N250 both was strongest
for long-term familiar faces and for newly learned identities. Based on these results,
we hypothesized that the N250 should be strongest when the facial identity is clearly
observed (i.e., when horizontal structure is most preserved), and less pronounced when
the identity is not clear (i.e., when horizontal structure is removed).
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We compared ERPs elicited by unfiltered upright faces to ERPs evoked by orientation-
filtered faces with varying degrees of horizontal and vertical structure. By parametrically
increasing the amount of facial structure at each orientation, we hoped to understand
what constitutes a typical N170 and N250.

2.3 Methods

2.3.1 Subjects

Twelve students from McMaster University participated in the experiment. One female
participant’s EEG data were excessively noisy, leaving eleven subjects for the analysis
(6 males; range = 18-30 years old, M = 22.4, SD = 3.88). All were right-handed and
had normal or corrected-to-normal Snellen acuity. Informed consent was obtained
from each participant. Participants were reimbursed $10/hour or given partial course
credit for participating. The experimental protocol was approved by the McMaster
University Research Ethics Board.

2.3.2 Apparatus & Stimuli

Stimuli were generated on an Apple Macintosh G5 computer using MATLAB (Math-
works, 2007) and the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997; Kleiner
et al., 2007). Stimuli were presented on a 21-inch ViewSonic G225f display with a
resolution of 1280 × 1024 pixels (32 pixels/cm) and a 85Hz refresh rate. Viewing
was binocular through natural pupils from a viewing distance of 100 cm. The stimuli
were centered on a 256 × 256 pixel matrix and subtended 4.6◦ of visual angle. The
stimuli were constructed from a set of 6 faces (3 male), all having the same amplitude
spectrum, selected from the set of 10 faces used by Gold et al. (1999b). Each face was
filtered with an ideal band-pass orientation filter centered on either 0◦ (horizontal)
or 90◦ (vertical). Orientation bandwidth varied from ±45deg to ±90deg in steps of
±9 deg, which resulted in a total of 11 conditions: five conditions using filters centered
on 0 deg, five using filters centered on 90 deg, and one using an unfiltered face. Face
RMS contrast was 0.05 prior to filtering. After filtering, RMS contrast varied with
filter bandwidth (Table 2.1). Note that at all bandwidths, RMS contrast was ≈ 10%
higher for stimuli constructed with vertical filters than horizontal filters.
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Bandwidth (deg) Vertical Filter Horizontal Filter
±45 0.0372 0.0334
±54 0.0400 0.0359
±63 0.0408 0.0376
±72 0.0442 0.0407
±81 0.0455 0.0418
±90 0.0500 0.0500

Table 2.1 – RMS contrast for for stimuli constructed with orientation filters of various
bandwidths centered on 90 (vertical) or 0 deg (horizontal). For each filter, all six face
identities had the same RMS contrast. The ±90 bandwidth passed all orientations, and
therefore faces in that condition were identical to unfiltered faces.

2.3.3 Procedure

The task was a six alternative forced choice (6-AFC) identification task. The experiment
began with 10 practice trials using only unfiltered faces to avoid prior exposure to
filtered faces before the experimental trials. Each trial started with the presentation
of a fixation point in the center of the display. After a random duration that varied
from 0.9 to 1.1 s, the fixation point was extinguished and immediately followed by
the presentation of a face stimulus for 0.2 s. The stimulus was replaced by a blank
uniform screen for 1 s, and then by a response screen that contained all six faces (Figure
2.1b). The response screen images were always unfiltered and had an RMS contrast of
0.3. The participant indicated his/her response by clicking on one of the faces with a
computer mouse. Auditory feedback was provided after every response in the form
of 600 and 200Hz tones after correct and incorrect responses, respectively. The next
trial started 0.25 s following the response. We did not record response times.
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Figure 2.1 – A) Examples of stimuli constructed from a single identity in all filter
conditions. Horizontal (H) and vertical (V) filters had bandwidths ranging from ±45◦

to ±81◦. The far right image is the full (i.e., unfiltered) face. B) Sample trial structure.
On each trial, a random temporal jitter between -100 and 100 ms was added to the
fixation point duration.
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2.3.4 Design

In each 40 minute session, participants were presented with each face seven times in 11
conditions, yielding a total of 6× 7× 11 = 462 experimental trials per session. Each
participant completed two sessions, or 924 total trials (i.e., 84 trials per condition).
All conditions and faces were randomized across trials. Each session contained three
brief rest periods. There was no a priori hypothesis about sessions, and to improve
the signal-to-noise ratio of the ERPs, data were collapsed across the two days prior to
conducting statistical analyses.

2.3.5 Electrophysiology

EEG data were acquired during the behavioural task using a 256-channel HydroCel
Geodesic Sensor Net (Electric Geodesics Inc., Eugene, Oregon; Tucker, 1993). Data
were referenced online to electrode Cz, and sampled at 500Hz. Offline, data from
each trial were segmented from -200ms to 998ms and transferred to MATLAB for
further processing using the EEGLAB (Delorme and Makeig, 2004) and LIMO EEG
(Pernet et al., 2011) toolboxes. The responses to faces and objects occur primarily in
the 5-15Hz range (Rousselet et al., 2007a), and therefore we applied a 30Hz low-pass
non-causal filter to the EEG data using pop_eegfiltnew. No high-pass filter was used.
Baseline correction was applied using the average of the 200ms of pre-stimulus activity.
Trials with amplitudes above +100µV or below -100µV were rejected. No other artifact
rejection was applied. Unless otherwise noted, statistical analysis was restricted to
the average of two clusters of 15 electrodes, one cluster from each hemisphere, centred
on electrodes PO7 and PO8. The average of clusters was used instead of a single
electrodes to accommodate for the variable fit of the geodesic nets – that is, the same
electrode was not necessarily at the same anatomical spot across participants, but
was always within the cluster we chose to average across. Nonetheless, the pattern of
results were unchanged if we only used electrodes PO7 and PO8.

2.3.6 EEG Analysis

N170 mean amplitude was measured as the average voltage in a 42ms time-window
centred on the N170 peak of the grand-average ERP for each condition and hemisphere.
By centering the time-window on each condition’s grand-average latency, we reduced
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the influence of latency differences across conditions on our measure of amplitude
(Luck, 2005). The P100 mean amplitude was measured using the same technique, but a
smaller time-window of 22ms centered on the P100 peak identified in the grand-average
ERP for each condition and hemisphere.

Latency was measured as the time of the N170 peak, which was automatically
selected as the lowest local peak found in the 140-220ms time-window. The P100
peak latency was measured using the same technique, but between 80-140ms, and was
defined as the highest local peak. All peak selections were verified manually.

It was much more difficult to identify the peak of the N250, so a single time
window of 250-300ms was used to quantify the N250 mean amplitude for all conditions
(Schweinberger et al., 2004, Kaufmann et al., 2009). Given the difficulty in identifying
a discrete peak, no measure of N250 latency was computed.

2.4 Results

2.4.1 Behaviour

To maintain an orthogonal design, the full face condition was omitted from all analyses
of variance (ANOVAs), unless otherwise noted. Where appropriate, the Bonferroni
correction for multiple comparisons was used to control familywise Type I error rate.
For any main effects and interactions including bandwidth as a factor, we did not
assume sphericity and report Huynh-Feldt corrected p-values instead. Effect size was
measured using generalized eta squared (η2

G), as described by Bakeman (2005) and
Olejnik and Algina (2003) for repeated-measure designs. Lakens (2013) suggests that
Cohen (1988)’s suggested benchmarks of effect size can be used when interpreting
η2

G (small: 0.01, medium: 0.04, large: 0.16). For t tests, we report effect size using
Cohen’s d. Statistical analyses were performed with R (R Core Team, 2017).

Response accuracy is plotted for each condition in Figure 2.2, which shows that
response accuracy generally increased as filter bandwidth increased from ±45 to ±81,
and that the increase was greater for vertical filters (V) than horizontal filters (H).
Proportion correct was submitted to a repeated-measures ANOVA with factors of
filter orientation (horizontal and vertical) and bandwidth (±45, 54, 63, 72, and 81
degrees). The main effects of filter orientation (F(1,10) = 180, p < 0.0001, η2

G = 0.63)
and bandwidth (F(4,40) = 189, pHF < 0.0001, η2

G = 0.50) were significant, as was the
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filter orientation × bandwidth interaction (F(4,40) = 37.2, pHF < 0.0001, η2
G = 0.25).

The interaction was significant because the effect of bandwidth was much larger with
vertical filters (F(4,40) = 159, p < 0.0001, η2

G = 0.718) than with horizontal filters
(F(4,40) = 14.9, p < 0.0001, η2

G = 0.162). For instance, response accuracy improved
by 48% from the smallest (V45) to the largest (V81) vertical filter bandwidth, but
improved by only 14% from the smallest (H45) to the largest (H81) horizontal filter.
Note that in the V81 condition, the bandwidth was so large that all orientations
except those within ±9 deg of horizontal were passed by the “vertical” filter. Thus, the
conditions yielding the highest response accuracy always had considerable horizontal
facial structure. Consistent with this idea, accuracy with the narrowest horizontal
filter (H45, M = 0.74) was higher than accuracy in the V72 (M = 0.64) condition
(t10 = 3.17, p = 0.0101, d = 0.955) and did not differ significantly from accuracy in
the V81 (M = 0.81) condition (t10 = −2.04, p = 0.0686, d = 0.615).

Figure 2.2 – Mean proportion correct plotted as a function of bandwidth (degrees),
separately for the horizontal (grey) and vertical (white) filter orientations, and the full
face condition (black). Individual subject results are also plotted, jittered for legibility.
Error bars are ± 1 SEM. Chance performance in the 6-AFC task is indicated with a
horizontal dotted line. The effect of bandwidth is noticeably larger for the vertical filter
orientation than the horizontal filter orientation, and accuracy in all conditions except
the two that used horizontal filters with bandwidths of 72 and 81 deg was significantly
different than from accuracy in the full face condition.

Unfiltered faces contain information at all orientations, so we expected accuracy
to be highest in that condition. Inspection of Figure 2.2 is consistent with that
expectation: accuracy in most conditions that used horizontally-filtered faces, and all
conditions that used vertically-filtered faces, was lower than accuracy obtained with
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unfiltered faces. To evaluate this idea, we used one-tailed paired t tests to compare
accuracy in each filtered-face condition to accuracy in the unfiltered face condition.
We used the Bonferroni method to maintain a familywise Type I error rate of 0.05 by
setting the per-comparison α to 0.005. Compared to full face identification accuracy
(M = 0.90), accuracy with horizontally-filtered faces was significantly lower in the
H45 (M = 0.74, t10 = −4.85, p = 0.00034, d = 1.46), H54 (M = 0.79, t10 = −5.50,
p = 0.00013, d = 1.66), and H63 (M = 0.82, t10 = −3.69, p = 0.0021, d = 1.11)
conditions, but not in the H72 (M = 0.86, t10 = −3.14, p = 0.0053, d = 0.95) or H81
(M = 0.88, t10 = −1.66, p = 0.0637, d = 0.50) conditions. In contrast, accuracy in
all of the vertically-filtered conditions was significantly less than accuracy in the full
face condition (V45: M = 0.33, t10 = −31.1, p < 0.0001, d = 9.38; V54: M = 0.38,
t10 = −25.4, p < 0.0001, d = 7.65; V63: M = 0.49, t10 = −15, 1, p < 0.0001, d = 4.56;
V72: M = 0.64, t10 = −9.32, p < 0.0001, d = 2.81; and V81: M = 0.81, t10 = −6.51,
p < 0.0001, d = 1.96). Differences between filtered and unfiltered faces were noticeably
larger for the vertically-filtered than horizontally-filtered conditions.

2.4.2 Event-Related Potentials

Spatiotemporal Analyses

We started our EEG analysis by inspecting the differences between the spatiotemporal
responses obtained in three main conditions. First, we subtracted the mean ERP in the
full face condition from the mean ERP obtained in the H45 condition. This comparison,
illustrated in Figure 2.3a, reveals differential activation when only horizontal structure
is present compared to when all orientation structure is present. We did the same
comparison between ERPs obtained in the V45 and full face conditions (Figure 2.3b)
to reveal differential activation when only vertical structure is present compared to
when all orientation structure is present. Finally, we computed the difference between
ERPs in the V45 and H45 conditions (Figure 2.3c). This third comparison is between
two conditions that used stimuli that contained structure that fell within a 90 deg band,
and therefore highlights differences between ERPs evoked by vertical and horizontal
facial structure without possible confounds due to differences in stimulus bandwidth.

The topographic difference plots in Figure 2.3a and 2.3b reveal that compared
to H45 and V45, the full faces produced a significantly more negative ERP in the
N170 (≈150-200ms) and N250 (≈250-300ms) time windows. These differences were
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Figure 2.3 – Summary of ERP differences between the A) H45 and full face condi-
tions; B) V45 and full face conditions; and C) H45 and V45 conditions. Each panel
shows the conditions being compared (left image minus right image), and the grand-
average difference waves with 95% confidence intervals calculated for electrodes PO7 and
PO8. Difference waves were evaluated at each point with t tests; significant (p < 0.05,
uncorrected) deviations from zero are indicated by red dots on the bottom of each
difference-wave plot. The bottom of each panel contains a series of topographic plots
from 100ms to 280ms after stimulus-onset, in 20ms intervals. The colour scale for the
topographic plots is shown on the right in (a). White shaded regions in the topographic
plots represent the two 15-electrode clusters averaged for analysis. The LIMO EEG
toolbox (Pernet et al., 2011) was used to construct topographic plots, estimate confidence
intervals, and perform the t tests.
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broadly distributed in the posterior/occipital region. To visualize the effect in a more
typical ERP, we plotted the ERP differences at the PO7 and PO8 electrodes for each
comparison. The comparison between H45 and V45 (Figure 2.3c) revealed that the
two filtered conditions also differed significantly in the N170 and N250 time windows.
These differences were, again, broadly distributed in the posterior/occipital region.

The analyses illustrated in Figure 2.3 were done to visualize the spatiotemporal
distribution of the differential activity seen across critical conditions. As such, no
corrections were done, nor were any additional analyses of the entire time-series across
the entire topography. We focused the remainder of our analysis on the N170 and
N250 time windows, and on two clusters of electrodes centred on PO7 and PO8. As a
control, we also analyzed the P100 time window at the same regions.
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Figure 2.4 – Grand average ERP traces plotted separately for the left and right
hemispheres. A,B) Full face (grey), Horizontal Base 45 (black solid), and Vertical
Base 45 (dashed) are shown in a single plot to reveal how affected the N170 is when
horizontal structure is omitted (VB45) compared to when vertical structure is omitted
(HB45). There is a noticeable difference between parametrically adding vertical structure
to a horizontal base (C,D) and adding horizontal structure to a vertical base (E,F),
demonstrating how it is the presence of horizontal structure that primarily modulates
the N170. The presence or absence of vertical structure affects the N170 minimally.
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N170 amplitude & latency

Average ERPs recorded at PO7- and PO8-centered clusters in the left and right
hemispheres are plotted in Figure 2.4. Inspection of Figure 2.4 suggests that N170
amplitude decreased when horizontal structure was removed from faces, and that
amplitude was affected more by the manipulation of horizontal structure than vertical
structure. These trends are more evident in Figure 2.5 a&b, which plot mean N170
amplitudes measured in the left and right hemispheres as a function of filter orientation
and bandwidth. N170 amplitudes were analyzed with a 2 (filter orientation) ×
5 (bandwidth) × 2 (hemisphere) ANOVA. The main effects of filter orientation
(F(1,10) = 18.9, p = 0.0015, η2

G = 0.007) and bandwidth (F(4,40) = 7.30, pHF = 0.0015,
η2

G = 0.022) were significant. These main effects were qualified by a significant
orientation × bandwidth interaction (F(4,40) = 7.39, pHF = 0.0007, η2

G = 0.010). The
interaction was significant because the effect of bandwidth was much larger with
vertical filters (F(4,40) = 12.3, pHF < 0.0001, η2

G = 0.064) than with horizontal filters
(F(4,40) = 1.15, pHF = 0.34, η2

G = 0.0005). There was no main effect of hemisphere
(F(1,10) = 0.99, p = 0.344, η2

G = 0.009), nor did it interact with filter orientation
(F(1,10) = 0.576, p = 0.466, η2

G = 0.0002). There was a significant hemisphere ×
bandwidth interaction (F(4,40) = 5.23, pHF = 0.0050, η2

G = 0.0013), driven by a stronger
bandwidth effect in the left (F(4,40) = 8.52, pHF = 0.00016, η2

G = 0.033) than right
hemisphere (F(4,40) = 5.29, pHF = 0.0016, η2

G = 0.015). The three way interaction
was not significant (F(4,40) = 0.561, pHF = 0.688, η2

G = 0.0002). Finally, we used
paired t tests to test if the two conditions with the narrowest filters produced N170
amplitudes that differed from the amplitude produced by the unfiltered face, or each
other (αcorrected = 0.05/6 = 0.0083). In the left hemisphere, the N170 to unfiltered
faces (M = −3.67µV ) did not differ from the N170 to H45 stimuli (M = −2.89,
t10 = 1.81, p = 0.100, d = 0.546), but was significantly larger than the N170 to V45
stimuli (M = −0.914, t10 = 6.70, p < 0.0001, d = 2.02), and the N170 amplitude was
larger for H45 than V45 stimuli (t10 = 5.77, p = 0.00018, d = 1.44). The results were
similar in the right hemisphere: N170 amplitude to unfiltered faces (M = −4.13) was
not significantly different than H45 (M = −3.91, t10 = 0.532, p = 0.606, d = 0.16),
but it was significantly more negative than V45 (M = −2.11, t10 = 5.51, p = 0.00026,
d = 1.66), and the N170 amplitude was larger for H45 than V45 stimuli (t10 = 4.39,
p = 0.0013, d = 1.32).

N170 peak latencies are presented in Figure 2.5 c&d. In some respects the latency

27



PhD — A. Hashemi McMaster U. — Psychology, Neuroscience & Behaviour

results were similar to those obtained with N170 amplitude. In particular, N170
latency was affected by filter bandwidth and the effect appeared stronger for vertical
compared to horizontal filters. The latency data were analyzed with an ANOVA that
was identical to the one used to analyze N170 amplitudes. The main effect of filter
orientation on peak latency was not significant (F(1,10) = 1.32, p = 0.28, η2

G = 0.005);
however, the ANOVA did reveal a significant main effect of bandwidth (F(4,40) = 24.4,
pHF < 0.0001, η2

G = 0.15) and a significant filter orientation × bandwidth interaction
(F(4,40) = 8.66, pHF = 0.0003, η2

G = 0.036). The interaction was significant because
the effect of bandwidth was greater for vertical filters (F(4,40) = 33.9, pHF < 0.0001,
η2

G = 0.266) than horizontal filters (F(4,40) = 5.16, pHF = 0.0036, η2
G = 0.072). There

was no significant main effect of hemisphere (F(1,10) = 0.931, p = 0.357, η2
G = 0.0056),

nor did it interact with filter orientation (F(1,10) = 3.89, p = 0.077, η2
G = 0.0015) or

bandwidth (F(4,40) = 2.42, pHF = 0.110, η2
G = 0.0057). The three-way interaction

also was not significant (F(4,40) = 1.66, pHF = 0.179, η2
G = 0.0015). Finally, we used

paired t tests (αcorrected = 0.0083) to test if the two conditions with the narrowest
filters produced N170 latencies that differed from each other and from the latency for
unfiltered faces. In the left hemisphere, N170 latency was shorter for unfiltered faces
(M = 172.5ms) than for H45 (M = 182.9, t10 = 3.99, p = 0.00256, d = 1.20) and
V45 stimuli (M = 188.4, t10 = 4.63, p = 0.00094, d = 1.40). N170 latencies for H45
and V45 stimuli did not differ significantly (t10 = 2.29, p = 0.0451, d = 0.69). The
results were similar in the right hemisphere: N170 latency was significantly shorter for
unfiltered faces (M = 168.4) than H45 (M = 182.0, t10 = 9.11, p < 0.0001, d = 2.75)
and V45 stimuli (M = 188.5, t10 = 7.96, p < 0.0001, d = 2.40), and N170 latency was
significantly shorter for H45 than V45 stimuli (t10 = 3.43, p = 0.0064, d = 1.03).
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Figure 2.5 – N170 mean amplitude (top) and latency (bottom) averaged across all
subjects, separately for left and right hemispheres. Error bars represent ± 1 SEM. Due
to the inherently large between-subject variance in ERP data, and the repeated-measure
design of the experiment, within-subjects corrected SEMs are also plotted as horizontal
ticks on the SEM bars, as described by Loftus and Masson (1994), Cousineau (2005),
and Morey (2008). Individual subject data also is plotted, and is jittered for legibility.
Symbols are unique to each observer and preserved across conditions and figures.
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N250 amplitude

N250 mean amplitudes are presented in Figure 2.6. N250 mean amplitude was more
negative for the horizontal filter than vertical filter conditions. The amplitude became
more negative as the vertical filter’s bandwidth was increased, but was approximately
constant as the horizontal filter’s bandwidth increased. This pattern of results resembles
the effects of stimulus filtering on N170 amplitude. N250 amplitudes were analyzed
with a 2 (filter orientation) × 5 (bandwidth) × 2 (hemisphere) ANOVA. As with
N170 amplitude, there were significant main effects of filter orientation (F(1,10) = 11.3,
p = 0.007, η2

G = 0.015) and bandwidth (F(4,40) = 5.06, pHF = 0.0026, η2
G = 0.023).

The filter orientation × bandwidth interaction also was significant (F(4,40) = 4.14,
pHF = 0.0075, η2

G = 0.007), reflecting the fact that the effect of bandwidth was larger
for vertical filters (F(4,40) = 6.59, pHF < 0.0008, η2

G = 0.053) than horizontal filters
(F(4,40) = 2.93, pHF = 0.037, η2

G = 0.018). There was no significant main effect
of hemisphere (F(1,10) = 1.60, p = 0.235, η2

G = 0.0165), nor did hemisphere interact
significantly with filter orientation (F(1,10) = 0.222, p = 0.65, η2

G = 0.0001) or bandwidth
(F(4,40) = 1.92, pHF = 0.130, η2

G = 0.0009). The three way interaction also was not
significant (F(4,40) = 1.94, pHF = 0.151, η2

G = 0.0016). Finally, we used paired t tests
(αcorrected = 0.0083) to test if the conditions using the two narrowest filters produced
N250 amplitudes different than the unfiltered face, or from each other. In the left
hemisphere, the N250 amplitude evoked by unfiltered faces (M = −2.04µV ) was
significantly larger (more negative) than the N250 evoked by V45 stimuli (M = 0.727,
t10 = 5.26, p = 0.00037, d = 1.56), but not H45 stimuli (M = −0.57, t10 = 2.99,
p = 0.0135, d = 0.902). Also, the N250 was significantly more negative for H45
than V45 stimuli (t10 = 3.33, p = 0.0076, d = 1.01). The results were similar in the
right hemisphere: N250 amplitude to unfiltered faces (M = −2.62) was significantly
more negative than the N250 amplitude to V45 stimuli (M = −0.319, t10 = 6.06,
p = 0.00012, d = 1.83), but did not differ significantly from the N250 amplitude to
H45 stimuli (M = −1.76, t10 = 2.78, p = 0.0193, d = 0.840).

A reviewer suggested that our measure of the N250 1) was potentially too early and
therefore may have included the P200 component; and 2) should be compared across
sessions/blocks to capture effects of learning/familiarity, since the N250 is known to
be sensitive to face familiarity (Kaufmann et al., 2009). To address both of these
issues, we re-analyzed the N250 amplitude using the mean amplitude in a ±30ms
time-window centered on the grand average N250 peak, calculated separately per
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hemisphere, per session (≈306ms). Additionally, we analyzed the P200 using the
similar approach: a ±20ms time-window centered on the grand average P200 peak
(≈234ms), separately per hemisphere, per session.

The new measure of N250 mean amplitude was submitted to a 2 (hemisphere) × 2
(filter orientation) × 5 (bandwidth) × 2 (session) ANOVA. Unlike what was found
with our original measure of N250 amplitude, the main effects of filter orientation
(F(1,10) = 3.67, p = 0.0845, η2

G = 0.003) and bandwidth (F(4,40) = 1.90, pHF =
0.129, η2

G = 0.004) were not significant. Critically, the filter orientation × bandwidth
interaction (F(4,40) = 3.50, pHF = 0.0206, η2

G = 0.005) remained significant because
the main effect of bandwidth was larger for vertically oriented filters (F(4,40) = 3.10,
pHF = 0.0259, η2

G = 0.0116) than for horizontally oriented filters (F(4,40) = 2.17,
pHF = 0.114, η2

G = 0.010). This interaction is similar to the one obtained with our
original N250 measure. Furthermore, as the reviewer predicted, there was a significant
main effect of session (F(1,10) = 11.3, p = 0.0072, η2

G = 0.0139), reflecting the fact
that the N250 amplitude was greater during the first session (−2.78µV ) than the
second session (−1.94). The filter orientation × bandwidth × hemisphere interaction
(F(4,40) = 2.64, pHF = 0.0741, η2

G = 0.0014) was not significant. All other interactions
did not approach significance (F ≤ 1.48, p ≥ 0.25, η2

G ≤ 0.0017).
P200 mean amplitude was submitted to a 2 (hemisphere) × 2 (filter orientation)

× 5 (bandwidth) × 2 (session) ANOVA. There was a significant main effect of
filter orientation (F(1,10) = 5.40, p = 0.0425, η2

G = 0.0105). The main effects of
bandwidth (F(4,40) = 1.24, pHF = 0.309, η2

G = 0.003), hemisphere (F(1,10) = 0.057,
p = 0.816, η2

G = 0.0005), and session (F(1,10) = 2.93, p = 0.118, η2
G = 0.0117) were

not significant. The filter orientation × bandwidth × hemisphere interaction was not
significant (F(4,40) = 2.84, pHF = 0.0559, η2

G = 0.0015). All other interactions also
were not significant (F ≤ 1.49, p ≥ 0.22, η2

G ≤ 0.0033). We analyzed the main effect of
filter orientation by comparing the average of the horizontally filtered (M = 0.557µV )
and vertically filtered (M = 1.23) conditions to the full face condition (M = 0.736).
Average P200 amplitude was larger (i.e., more positive) in the vertical filter condition
than the horizontal filter condition (t10 = 2.32, p = 0.0425, d = 0.701), but the P200
to full faces did not differ from the P200 amplitude in the horizontal (t10 = 0.609,
p = 0.556, d = 0.184) or vertical conditions (t10 = 1.21, p = 0.255, d = 0.364). Like the
N250, the P200 was different for vertically filtered faces than either horizontally filtered
or unfiltered faces. The P200 amplitude was not significantly modulated by bandwidth,
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suggesting that the P200 was less sensitive than the N250 to facial structure.

Figure 2.6 – N250 mean amplitude averaged across all subjects, separately for left and
right hemispheres. Error bars represent ± 1 SEM, and within-subject corrected error
bars are shown as horizontal ticks. Refer to figure 2.5 for details.

P100 amplitude & latency

The N170 is thought to be the earliest ERP component to be sensitive to faces per se.
Differential activity before the N170 usually is thought to reflect differences in low-level
stimulus characteristics (Johnson and Olshausen, 2003; VanRullen and Thorpe, 2001;
Rousselet et al., 2007b). The orientation filtering that we used to construct our faces
clearly produced low-level stimulus differences among our conditions (e.g., Table 2.1 &
Figure 2.1a). These stimulus differences may have produced differences in very early
ERP components (Figure 2.4), which in turn may have affected subsequent components
(i.e., the N170). To investigate this possibility, we submitted P100 amplitudes to
a 2 (filter orientation) × 5 (bandwidth) × 2 (hemisphere) ANOVA. The ANOVA
failed to find any significant effects, and all of the effect sizes were very small (in all
cases, 0.343 ≤ F ≤ 1.76, 0.158 ≤ p ≤ 0.571, 0.0001 ≤ η2

G ≤ 0.0006). This analysis
indicates that the variability in P100 amplitude was not associated with changes
in filter orientation or bandwidth, and that P100 amplitude was similar in the two
hemispheres.

Despite not being significantly modulated by our independent variables, variability
in the P100 amplitude could still be associated with the systematic variability we
saw in the N170 amplitude. To test this idea, we re-analyzed the N170 amplitude
results, but this time included P100 amplitude as a covariate. The ANCOVA revealed
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significant main effects of filter orientation (F(1,9) = 18.3, p = 0.0021, η2
G = 0.0069)

and bandwidth (F(4,39) = 8.07, p < 0.0001, η2
G = 0.0213). The main effect of hemisphere

(F(1,9) = 0.649, p = 0.441, η2
G = 0.0069) was not significant. The hemisphere × filter

orientation interaction (F(1,9) = 2.28, p = 0.166, η2
G = 0.0004) was not significant, but

the hemisphere × bandwidth interaction (F(4,39) = 5.03, p = 0.0023, η2
G = 0.0009) was

significant. The three-way hemisphere × filter orientation × bandwidth interaction
(F(4,39) = 0.128, p = 0.971, η2

G < 0.0001) was not significant. Critically, the filter
orientation × bandwidth interaction (F(4,39) = 5.87, p = 0.0008, η2

G = 0.0055) was
significant. This interaction was analyzed by conducting separate ANCOVAs on the
horizontal and vertical filter conditions. We found that the main effect of bandwidth was
significant for the vertical filter orientation (F(4,39) = 11.2, p < 0.0001, η2

G = 0.0453),
but not the horizontal filter orientation (F(4,39) = 2.17, p = 0.0902, η2

G = 0.0065).
These analyses suggest that the N170 amplitude effects reported earlier are largely
unaffected by incorporating P100 amplitude into the analyses.

We also re-analyzed the results obtained with our original and revised measure
of N250 amplitude using the P100 amplitude as a covariate. For brevity, we report
the ANCOVA results using the original measure of the N250, but the pattern of
results was unchanged for the revised measure of the N250 amplitude. The main
effects of filter orientation (F(1,9) = 12.5, p = 0.0064, η2

G = 0.0118) and bandwidth
(F(4,39) = 4.69, p = 0.0035, η2

G = 0.0208) were significant, but the main effect of
hemisphere (F(1,9) = 0.958, p = 0.353, η2

G = 0.0102) was not. The two-way interactions
between hemisphere and filter orientation (F(1,9) = 0.169, p = 0.691, η2

G < 0.0001), and
between hemisphere and bandwidth (F(4,39) = 1.94, p = 0.123, ]eta2

G = 0.0007) were not
significant, nor was the three-way interaction between hemisphere, filter orientation,
and bandwidth (F(4,39) = 0.923, p = 0.460, η2

G = 0.0007). The filter orientation ×
bandwidth interaction (F(4,39) = 2.33, p = 0.0727, η2

G = 0.0034) was not significant.
Nevertheless, as was done in our other analyses, we conducted separate ANCOVAs to
evaluate the effect of bandwidth in the horizontal and vertical filter conditions. As was
found in the analysis without a covariate, the main effect of bandwidth was significant
for both the vertical filter orientation (F(4,39) = 5.27, p < 0.0017, η2

G = 0.0366) and the
horizontal filter orientation (F(4,39) = 3.13, p = 0.0250, η2

G = 0.0145). These analyses
suggest that incorporating P100 amplitude into our analyses of N250 amplitude slightly
reduced the magnitude of the filter orientation × bandwidth interaction, but otherwise
left the N250 amplitude effects reported earlier largely unaffected.
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The P100 latency was also submitted to a 2× 5× 2 ANOVA. The ANOVA found
significant main effects of filter orientation (F(1,10) = 7.63, p = 0.0201, η2

G = 0.0480)
and bandwidth (F(4,40) = 35.9, pHF < 0.0001, η2

G = 0.175), but not hemisphere
(F1,10) = 1.30, p = 0.281, η2

G = 0.0012). The two-way interactions between filter
orientation × bandwidth (F(4,40) = 1.67, p = 0.176, η2

G = 0.009), filter orientation ×
hemisphere (F(1,10) = 2.72, p = 0.130, η2

G = 0.0007), and bandwidth × hemisphere
(F(4,40) = 1.18, p = 0.333, η2

G = 0.005) were not significant, nor was the three-way
interaction (F(4,40) = 0.0362, p = 0.997, η2

G = 0.00006).
Finally, P100 latency was used as a covariate in a re-analysis of the N170 latency

in a 2 × 5 × 2 ANCOVA, which found that the main effect of bandwidth (F(4,39) =
4.91, p = 0.0027, η2

G = 0.0453) remained significant, and the main effects of filter
orientation (F(1,9) = 0.012, p = 0.916, η2

G < 0.0001) and hemisphere (F(1,9) = 0.064,
p = 0.807, η2

G = 0.0003) remained non-significant. The two-way interaction between
filter orientation × bandwidth (F(4,39) = 8.12, p < 0.0001, η2

G = 0.0470) was significant,
and was due to larger effect of bandwidth in the vertical filter condition (F(4,39) = 11.7,
p < 0.0001, η2

G = 0.1256) than the horizontal filter condition (F(4,39) = 1.79, p = 0.150,
η2

G = 0.0334). The filter orientation × hemisphere interaction (F(1,9) = 12.4, p = 0.0065,
η2

G = 0.0040) also was significant, and was driven by a larger main effect of bandwidth
for the right hemisphere (F(4,39) = 11.1, p < 0.0001, η2

G = 0.1215) than the left
hemisphere (F(4,39) = 2.57, p = 0.0528, η2

G = 0.0318). The bandwidth × hemisphere
interaction (F(4,39) = 2.41, p = 0.0653, η2

G = 0.0079) and the three-way interaction
(F(4,39) = 1.62, p = 0.190, η2

G = 0.0020) were not significant. The analysis suggests
that incorporating P100 latency into our analyses of N170 latency revealed a bandwidth
× hemisphere interaction but otherwise left the other effects, including the filter
orientation × bandwidth interaction, unaffected.

Correlations between behaviour & ERPs

Previous studies have shown that relative sensitivity for horizontal compared to vertical
facial structure is correlated with better performance in a face identification task and
with the magnitude of the face inversion effect (Pachai et al., 2013). Here we examine
whether a horizontal bias in our behavioural and ERP measures were correlated with
face identification accuracy. We computed behavioural horizontal bias as the difference
between accuracy in the H45 and V45 conditions, which are the two conditions that
used the largest non-overlapping horizontal and vertical filters. Using the same formula,
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ERP horizontal bias was also calculated for the P100 amplitude, P100 latency, N170
amplitude, N170 latency, and N250 amplitude, separately for each hemisphere. We
correlated each of our measures of horizontal bias with identification accuracy to full,
unfiltered faces.

The correlation between behavioural horizontal bias and full face identification
(Figure 2.7a) was not significant (r = 0.46, t9 = 1.57, p = 0.076, 1-tailed). Although
the correlation was not statistically significant, its magnitude was similar to the value of
0.52 reported by Pachai et al. (2013) who had a significantly larger sample size (n = 32)
than the one used in the current experiment, and who measured face identification
thresholds, which had greater variability than our measure of proportion correct. Hence,
although the correlation was not statistically significant, our results are consistent with
previous reports that relative sensitivity to horizontal structure is correlated positively
with, and accounts for 20-25% of the variance in, face identification performance.

The relations between response accuracy in the full face condition and horizontal
bias of the P100, N170, and N250 are shown in Figure 2.7 b-f. As expected, full-face
identification accuracy was not significantly correlated with either horizontal bias in
P100 amplitude (Figure 2.7b) or P100 latency (Figure 2.7c). Full-face identification
accuracy also was not correlated with the horizontal bias of N170 amplitude (Figure
2.7d) or N170 latency (Figure 2.7e). However, full-face identification accuracy was
significantly correlated with the horizontal bias of N250 amplitude (Figure 2.7f) in both
hemispheres (left: r = 0.787, t9 = −3.82, p = 0.0041; right: r = 0.666, t9 = −2.68,
p = 0.0253). Averaging the results across hemispheres did not change the results: full
face identification accuracy was not correlated with the horizontal bias of the P100
amplitude (r = −0.308, t9 = −0.97, p = 0.358), P100 latency (r = −0.407, t9 = −1.34,
p = 0.214), N170 amplitude (r = −0.169, t9 = −0.513, p = 0.620), or N170 latency
(r = 0.270, t9 = 0.840, p = 0.423), but was significantly correlated with the horizontal
bias of the N250 amplitude (r = −0.799, t9 = −3.99, p = 0.003).

Given that we re-analyzed the N250 using a reviewer-suggested time-window, and
added a P200 analysis, we asked if either of these measures were correlated with full
face identification. P200 and N250 were averaged across hemispheres, horizontal bias
of the mean amplitudes was calculated, and the horizontal biases were correlated with
full face identification accuracy separately in each session. Full face identification
was not correlated with P200 horizontal bias in the first (r = −0.349, t9 = −1.12,
p = 0.293) or second (r = 0.020, t9 = 0.061, p = 0.953) session, nor was it correlated
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Figure 2.7 – Correlations between full face identification accuracy (y-axes) and different
measures of horizontal bias (x-axes). Horizontal bias was measured for the A) behaviour,
B) P100 amplitude, C) P100 latency, D) N170 amplitude, E) N170 latency, and F)
N250 amplitude. Data are presented separately for the left (grey triangle, dashed line)
and right (white circle, solid line) hemispheres. Pearson’s correlations were computed
using least squares method, with correlation values reported in the text. The only
significant correlations were for the N250 mean amplitude (E) in both hemispheres.
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with the revised N250 horizontal in the first (r = −0.449, t9 = −1.51, p = 0.166) or
second (r = −0.312, t9 = −0.981, p = 0.352) session. However, the revised N250
horizontal bias averaged across sessions was significantly correlated with full face
identification accuracy (r = −0.685, t9 = −2.82, p = 0.020). Given this effect of
session, we re-calculated the correlation between our original N250 measure (averaged
across hemispheres) and behaviour for each session: as was found with the revised N250
measure, the correlation was smaller and non-significant in both the first (r = −0.449,
t9 = −1.51, p = 0.166) and second (r = −0.311, t9 = −0.981, p = 0.352) session.

The fact that the brain-behaviour correlation depended significantly on the precise
definition of the N250 raises the possibility that the significant correlation shown in
Figure 2.7 was spurious and/or driven by a few, sparse time points in the ERP. To
evaluate this idea, we correlated face identification accuracy and ERP-horizontal bias
at every time-point from -200 to 500ms, separately for the left and right hemispheres.
We found that the correlation was significant for sustained periods of 250-285ms
and 264-288ms in the right and left hemispheres, respectively (Figure 2.8). We also
found, unexpectedly, a sustained correlation from 452-500ms, but only in the right
hemisphere.

Figure 2.8 – Time-series of the Pearson’s least-squares correlation coefficient (r) between
neural horizontal bias (H45 - V45) and full face identification accuracy, separately for
the right (solid) and left (dashed) hemispheres. Along the bottom, red and blue dots
indicate statistically significant correlations (p < 0.05, uncorrected) for the right and
left hemispheres, respectively. In both hemispheres, there was a sustained correlation
between approximately 250-300ms, which falls between the nearest peak and trough
in the ERP. In the right hemisphere, there was a second sustained correlation between
450-500ms. As a temporal reference, the grand-average ERP is shown in the thin grey
line – note that the y-axis does not apply to this ERP. See Figure 2.4 for ERP traces.
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2.5 Discussion

We measured response accuracy and ERPs in subjects performing a 1-of-6 identification
task with faces that varied systematically in diagnostic vertical and horizontal structure.
We found that identification was most accurate when faces contained horizontal
structure, and was least accurate when faces lacked horizontal structure (Figure 2.2).
Although the correlation between full face identification accuracy and our behavioural
measure of horizontal tuning was not statistically significant (Figure 2.7a), the direction
and magnitude of the correlation was similar to the one reported by Pachai et al. (2013).
In addition, we found that N170 and N250 amplitudes were greatest (Figures 2.5 a&b
and 2.6, respectively), and N170 latency was shortest (Figure 2.5 c&d), in response to
faces that contained horizontal structure. Finally, we found that the horizontal bias of
the N250 (Figure 2.7f), but not the N170 (Figure 2.7 d&e), was significantly correlated
with response accuracy with unfiltered faces. Overall, our results are consistent with
previous studies showing that horizontal facial structure is important for upright face
identification (Dakin and Watt, 2009; Pachai et al., 2013, 2017), and suggest that the
behavioural effects of manipulating oriented facial structure are more closely associated
with the N250 than the N170.

We found that faces containing horizontal structure evoked the largest and earliest
N170. Interestingly, the presence of horizontal structure had different effects on N170
amplitude and latency. Specifically, horizontal structure was necessary and sufficient
to produce an N170 with an amplitude equal to that evoked by an unfiltered faces;
however, horizontal structure was necessary but not sufficient to evoke an N170 with
the same latency as the one evoked by an unfiltered face. Indeed, we found that,
relative to the unfiltered condition, N170 latencies were longer in both the H45 and
V45 conditions. N170 latency also was longer in the H81 condition, which contained
structure at all orientations except those within ±9 deg of vertical. These results are
similar to those reported by Jacques et al. (2014), who found that phase randomization
of vertical facial structure produced a slightly delayed N170, despite the presence of
undistorted horizontal structure. In their study, all of the faces contained structure at
all orientations, though the phase randomization reduced the information conveyed
by selected bands of orientations. One interpretation of our results, and those of
Jacques et al. (2014), is that N170 latency is more sensitive than N170 amplitude to
image manipulations that render a face less face-like. According to this hypothesis,
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manipulations of orientated structure that do not introduce obvious image distortions
should have minimal affects on N170 latency. Hashemi et al. (2012) provide data that
supports this idea: they used a 1-of-10 identification task with faces whose diagnostic
orientation structure was manipulated using filters that were similar to those used
here. However, instead of removing the filtered orientations, the filtered components
were replaced with non-informative, oriented structure that was derived from the
average of the 10 faces comprising the stimulus set. Hence, all faces in all conditions
contained structure at all orientations and therefore appeared equally face-like in all
conditions (for stimulus examples, see Pachai et al., 2018). When faces contained
diagnostic horizontal structure but non-diagnostic vertical structure, Hashemi et al.
(2012) found the N170 was not delayed relative to the N170 evoked by an unfiltered
face. These results are consistent with the idea that N170 latency is more sensitive
than N170 amplitude to manipulations, such as inversion (Bentin et al., 1996; Rossion
et al., 2000; Itier et al., 2007; Rousselet et al., 2008b), that visibly distort a face: that
is, the shortest latency N170 will be to an unmanipulated, intact, familiar face, and
manipulations that produce visible differences from this baseline face will result in
longer N170 latencies.

Unlike what was found with N170 latency, N170 amplitude in the H45 condition,
which contained horizontal but not vertical structure, did not differ from N170 amplitude
in the full-face condition. On the other hand, N170 amplitude in the V45 condition,
which contained vertical but not horizontal structure, was significantly lower than
N170 amplitude in the H45 and full-face conditions. Taken together, these results
suggest that horizontal facial structure was necessary and sufficient to obtain normal
N170 amplitudes. These results are consistent with Jemel et al.’s (2003) finding that
N170 amplitude is approximately linearly related to the signal-to-noise ratio of full-face
stimuli embedded in white noise if we assume that the effects of the noise were caused
primarily by masking of horizontal facial structure (also see Rousselet et al., 2008b).
Previous studies have shown that sensitivity to horizontal structure also is important
for face discrimination and identification (Pachai et al., 2013; Goffaux and Greenwood,
2016), and therefore one might expect that N170 amplitude would be associated with
behavioural measures of discrimination and identification accuracy. However, contrary
to this hypothesis, we found a very small and non-significant correlation between the
N170 amplitude and behaviour (Figure 2.7d). One potential explanation for this failure
to find a correlation is that N170 amplitude depends on the presence of horizontal
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facial structure regardless of whether that information is or is not informative about
face identity. This hypothesis is consistent with results reported by Hashemi et al.
(2012), who found that N170 amplitude in a face identification task was similar in
conditions that contained informative and non-informative horizontal facial structure.
Also, Jacques et al. (2014) found that scrambling the relative phase spectrum of
horizontal facial structure had negligible effects on N170 amplitude evoked by upright
faces. Both findings are consistent with the idea that N170 amplitude is not particularly
sensitive to the information about face identity that may be conveyed by horizontal
facial structure. Instead, the N170 may reflect neural processes that use horizontal
structure to detect the presence of eyes (Nemrodov et al., 2014; Sekuler et al., 2015;
de Lissa et al., 2014; Bentin et al., 1996; Itier et al., 2007; Rousselet et al., 2014).

Like the N170, the N250 amplitude was most negative for conditions containing
horizontal structure (Figure 2.6). However, we also found a significant correlation
between the horizontal bias of N250 amplitude and full-face identification accuracy
(Figure 2.7f). This result suggests that N250 amplitude, unlike N170 amplitude,
may be associated with diagnostic horizontal facial structure. This hypothesis is
consistent with previous studies showing that the N250 is sensitive to the information
that distinguishes a particular face from the average of an ensemble of faces (Zheng
et al., 2012), and that the N250 responds differentially to familiar and unfamiliar faces
(Schweinberger et al., 2002, 2004; Kaufmann et al., 2009; Tanaka et al., 2006). When
the N250 was measured using a later time-window, the correlation was smaller but
still significant. This result, together with the correlations at each time point in the
ERP (Figure 2.8), suggests that the horizontal bias found between 250 and 300ms
after stimulus onset may not necessarily be constrained to correspond to the N250
per se, or to any other ERP component defined by a peak. Therefore, the so-called
N250 may have varied significantly across subjects and therefore produced a grand
average N250 that was unlike N250s in individual subjects. Even within subjects, the
N250 varied between conditions and between sessions, such that the correlation with
behaviour was smaller and not significant when the N250 was calculated separately in
each session. Furthermore, initial studies of the N250 reported difficulty in finding a
well-defined N250 for all subjects and conditions (Tanaka et al., 2006), and therefore
subsequent studies have used several time-windows to calculate an average N250
amplitude. For instance, Tanaka et al. (2006) used 230-320ms, Kaufmann et al. (2009)
used 240-280ms, and a recent review reports the N250 occurring between 200ms to
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400ms (Schweinberger and Neumann, 2016). In fact, as part of a cognitive model of
face perception, activity starting at 450ms onwards is thought to reflect high level
semantic representations and name retrieval (Schweinberger and Neumann, 2016),
both of which would intrinsically rely on the identity processing which occurs earlier
during the N250 time. In light of the variability in and correlations with the later
parts of the ERP, analyses that are less reliant on pre-defined times-of-interest, such as
the one illustrated in Figure 2.8, or robust approaches such as that seen in Rousselet
et al. (2014), will be useful to investigate the association between neural horizontal
bias in the entire ERP and face identification.

In summary, the current study shows that manipulating the horizontal and vertical
structure of upright faces in a 1-of-6 face identification task similarly affects response
accuracy, N170 amplitude and latency, and N250 amplitude. We found that the
presence of horizontal facial structure was associated with higher response accuracy,
higher amplitude and shorter latency N170s, and higher amplitude N250s. Finally,
we found that the identification accuracy for unfiltered faces was correlated with the
horizontal bias of N250 amplitude but not N170 amplitude. We suggest that both the
N170 and N250 are sensitive to the presence of horizontal facial structure, but only
the N250 is affected by the information value of such structure for face identification.
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Chapter 3

The behavioural and neural
horizontal bias of older adults

3.1 Abstract

Horizontal structure is important for face identification, and recent studies have shown
that younger adults have heightened behavioural and neural sensitivity to horizontal
relative to vertical facial structure (i.e., horizontal bias). Also, older adults make more
errors in face identification, and show a decreased horizontal bias. However, it is unclear
if face identification in older adults is still associated with horizontal bias, or if they
rely on an alternative strategy to identify faces. Specifically, do age-related changes in
face identification translate to similar changes in the neural sensitivity to horizontal
bias? Here, we recorded ERPs and behavioural accuracy from older adult observers (M
= 73 years) performing the same task as Chapter 2: a 1-of-6 face identification task in
conditions that parametrically manipulated the orientation structure of upright faces.
Faces were filtered with ideal orientation filters centred on either 0 (horizontal) or 90 deg
(vertical). Filter bandwidth was varied across conditions from ±45 to ±90 deg in steps
of ±9deg. Relative to the younger adults in Chapter 2, face identification accuracy
was overall lower in older adults. Similar to younger adults, response accuracy was
significantly higher for faces that contained horizontal structure than vertical structure,
and behavioural horizontal bias was correlated with face identification accuracy. Like
younger adults, N250 horizontal bias was correlated with face identification accuracy.
Unlike younger adults, N170 amplitude horizontal bias also was correlated with face
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identification accuracy. We suggest that face identification in older adults still relies
on horizontal bias, but that relative to younger adults, additional factors such as
inefficiencies in early visual processes have a greater effect on face identification.

3.2 Introduction

Identifying faces quickly and accurately is an important, everyday visual task, which
most adults perform effortlessly. Most adults perceive upright faces, but not inverted
faces, effortlessly, and this so-called face inversion effect presumably reflects the
considerably greater experience – and, consequently, perceptual expertise – that most
humans have discriminating and identifying upright faces (Valentine, 1988). One
widely-held hypothesis is that experience with upright faces allows observers to develop
processes that are sensitive to configural/holistic aspects of faces (Tanaka and Farah,
1993; Farah et al., 1998; Maurer et al., 2002). However, it has proven difficult to clearly
define configural processing (Piepers and Robbins, 2012). Furthermore, several studies
have shown that accuracy in face identification tasks are not associated with common
measures of configural processing (Konar et al., 2010; Wang et al., 2012). Finally, the
idea that configural processing contributes to the perception of upright faces, but not
inverted faces, has been challenged by studies showing that inverted faces are processed
similarly to upright faces, just less efficiently (Sekuler et al., 2004; Riesenhuber et al.,
2004; Williams and Henderson, 2007; Gaspar et al., 2008; Willenbockel et al., 2010;
Pachai et al., 2013; Murphy and Cook, 2017).

Recent attempts to characterize expertise have focussed on the importance of
horizontal structure (see Figure 3.1 for an example of horizontal structure). Dakin
and Watt (2009) demonstrated that several aspects of face perception are particularly
sensitive to horizontal facial structure. Horizontal structure is necessary for the face
inversion effect (Goffaux and Dakin, 2010). Importantly, individual differences in how
much observers rely on horizontal structure relative to vertical structure (i.e., horizontal
bias) when identifying faces is correlated with response accuracy and with the size of
the inversion effect (Pachai et al., 2013; Chapter 2). That is, the better you are at using
horizontal structure of upright faces, the larger your advantage in identifying upright
relative to inverted faces. Furthermore, horizontal bias is associated with differences
in face perception across ages and groups: For example, horizontal bias increases
throughout childhood (Balas et al., 2015; Goffaux et al., 2015), decreases in older
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adults (Obermeyer et al., 2012; Goffaux et al., 2015), and is smaller in individuals with
prosopagnosia (Pachai et al., 2015). Finally, horizontal bias is larger for familiar than
unfamiliar faces (Pachai et al., 2017), Hence, behavioural measures of horizontal bias
have thus far provided a consistent narrative in which the efficient use of horizontal
structure is an essential component, if not the critical mechanism, of expert face
perception.

Neuroimaging studies have recently begun investigating the role of oriented structure
in evoking face-related brain activity. For instance, the N170 event-related potential
(ERP) is larger for faces than objects (Bentin et al., 1996; Rossion et al., 2000; Rousselet
et al., 2004), but the face-related enhancement of the N170 is significantly attenuated
when horizontal structure, but not vertical structure, is removed (Chapter 2). The
N170 has a longer latency for inverted than upright faces (Bentin et al., 1996; Rossion
et al., 2000), but only for faces with intact horizontal structure (Jacques et al., 2014).
Furthermore, the human fusiform face area (FFA; Kanwisher et al., 1997), which
exhibits activation that is correlated with the N170 (Deffke et al., 2007; Sadeh et al.,
2010), is preferentially activated by horizontal compared to vertical facial structure
(Goffaux et al., 2016). A slightly later ERP component, the N250 (Tanaka et al., 2006),
also exhibits a bias for horizontal facial structure (Chapter 2). Importantly, variation
across individuals in the horizontal bias of the N250, but not the N170, is correlated
with face identification accuracy (Chapter 2), which is consistent with the idea that the
N170 and N250 are associated with different aspects of face processing. Nevertheless,
these results demonstrate that horizontal structure is important for face-related brain
responses.

Several measures of face perception change during normal, healthy ageing. For
example, ageing is associated with a reduction in the ability to identify faces (Grady
et al., 1994; Konar et al., 2013), a reduction in horizontal bias for facial structure
(Obermeyer et al., 2012), and a reduction in the face inversion effect (Chaby et al.,
2011). Also, the N170 in older adults, relative to younger adults, has an enhanced
amplitude (Wiese et al., 2008) and longer latency (Rousselet et al., 2009). Furthermore,
in older adults the N170 generally is less selective for facial structure (Rousselet et al.,
2010), and the N250 is less sensitive to face identity (Wiese et al., 2008). Hence,
several behavioural and ERP measures of face discrimination and identification change
during ageing.

It is not yet known if the face perception changes during normal, healthy ageing can
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be recovered. If face perception expertise is achieved through mere experience seeing
upright faces, then it is plausible that a perceptual learning task in which older adults
identify faces may recover age-related deficits. We address this possibility in Chapter 4,
and further ask if their improvements are due to changes in horizontal bias. However,
before attempting to train older adults, we wanted to better understand their neural
response to horizontal structure. So far, we know that older adults have: 1) difficulties
in face perception (Grady et al., 1994; Konar et al., 2013), 2) a weaker horizontal bias
(Obermeyer et al., 2012), 3) an enhanced (Wiese et al., 2008), delayed (Rousselet et al.,
2009), and less face-selective (Rousselet et al., 2010) N170, and 4) an N250 that is less
sensitive to face identity (Wiese et al., 2008). These effects appear to be theoretically
linked, but they have not been experimentally tested in a single experiment. We aimed
to fill this gap by testing older adults in a face identification task during which face
stimuli were filtered to preserve different bandwidths of horizontally and vertically
oriented structures, while simultaneously recording EEG. As in our work with younger
adults (Chapter 2), we measured behavioural, N170, and N250 horizontal biases, and
correlated each with full face identification accuracy. We were interested in whether
age-related deficits in face perception can be linked to deficits in the neural markers of
a horizontal bias.

3.3 Methods

3.3.1 Subjects

Nine older adults (3 male; range = 64-84 years old, M=73, SD=7.23) from the
Hamilton area participated in the experiment. All were right handed, except for one
female participant who was ambidextrous. All participants had normal or corrected-
to-normal Snellen acuity, normal Pelli-Robson contrast sensitivity (range = 1.35-1.95,
M=1.78, SD=0.20), and normal scores on the MoCA (range=26-29, M=27.7, SD=1.58;
Nasreddine et al., 2005) and MMSE (range=29-30, M=29.8, SD=0.44; Folstein et al.,
1983).

3.3.2 Apparatus & Stimuli

The experimental apparatus, methods of stimulus generation, and experimental condi-
tions (Figure 3.1A) were identical to those used in Chapter 2, so only a brief summary

54



McMaster U. — Psychology, Neuroscience & Behaviour PhD — A. Hashemi

Figure 3.1 – A) Example stimuli of the 11 different conditions in Experiment 1. B)
Visualization of the trial structure. Response screen alternatives were always presented
in full face form.

is provided here. Six faces (3 male) from Gold et al. (1999) were each filtered with
an ideal band-pass orientation filter centered on either 0 deg (horizontal) or 90 deg
(vertical). Filter bandwidth varied from ±45 deg to ±81 deg in steps of ±9 deg,
resulting in 10 filter conditions: five different filter bandwidths centered on horizontal,
and five different filter bandwidths centered on vertical. In an eleventh condition, the
filter bandwidth was ±90 deg, which covers all orientations: we refer to this as the
‘full face’ condition.

3.3.3 Procedure & Design

Stimuli were generated and responses were collected using MATLAB (MathWorks,
2007) and the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007).
Each trial began with a central fixation point that was displayed for 900-1100ms,
followed by a 200ms of a target face and, after a 1 s blank interval, a six-item response
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screen (Figure 3.1B). The task was to identify the target face by clicking on one item
in the response screen with a computer mouse. The response screen always consisted
of the same six unfiltered faces presented in the same spatial arrangement. The target
stimulus was selected randomly from the 11 filter conditions with the constraint that
each condition occurred with equal frequency. Each combination of six face identities
and 11 filter conditions was repeated 14 times, for a total of 924 trials spread across
two sessions. Data were combined across all face identities but separated by condition,
yielding 84 trials per condition.

3.3.4 Electrophysiology

EEG data were acquired during the behavioural task using a 256-channel HydroCel
Geodesic Sensor Net (Electric Geodesics Inc., Eugene, Oregon; Tucker, 1993). Data
were referenced online to electrode Cz, and sampled at 500 Hz. Data were then epoched
from -200 ms to 998 ms relative to stimulus-onset, after which all post-processing
was done in MATLAB using EEGLAB (Delorme and Makeig, 2004) using the same
in-house pipeline as Chapter 2. ERP waveforms for the regions of interest for each
subject and condition were then exported for plotting and statistical analysis in R
(R Core Team and R Development Core Team, 2017). Both correct and incorrect
response trials were used in forming the ERPs.

3.3.5 EEG Analysis

In general, ERP components such as the P100, N170, and N250 were not as clearly
defined in older adults compared to the younger adults in Chapter 2. To estimate
ERP amplitude and latency measures, we first computed the grand average ERP,
separately in each hemisphere, across all conditions and subjects for two clusters of
fifteen electrodes each centred on PO7 and PO8 (see Chapter 2, Figure 3 to see electrode
cluster location), which are the electrodes that contain the largest face-related evoked
potentials (Bentin et al., 1996; Rossion et al., 2000). We identified three peaks from
the grand average ERP that were used as the centres of three ±20ms time-windows
which were then used to calculate P100, N170, and P200 amplitudes. The latencies of
the peaks, which did not differ between hemispheres, were 144ms, 206ms, and 316ms
for the P100, N170, and P200, respectively. The N250 amplitude was calculated using
a ±25ms time-window centred on 410ms, which is consistent with the time window
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used in previous studies that measured the N250 in older adults (e.g., Wiese et al.,
2008, used 285ms and 410ms for younger and older adults, respectively), and was
confirmed by visual inspection of the ERP to occur slightly after the P200 peak. N170
latency was measured using the 50% area latency method (Luck, 2005) in the same
time window used for measuring N170 amplitude. The 50% area latency is the latency
at which the integral of the curve is split in half; here, the curve used to calculate the
N170 latency was the absolute ERP waveform between 186ms to 226ms.

3.4 Results

3.4.1 Behavioural Results

Statistical analyses were performed with R (R Core Team and R Development Core
Team, 2017). To maintain an orthogonal design, the full face condition was omitted
from all analyses of variance (ANOVAs), unless otherwise noted. Instead, filtered
conditions were compared to the full face condition using paired t tests, and a Bonferonni
corrected α was used when appropriate. For all within-subjects effects with more than
one degree-of-freedom, including the five level factor bandwidth, we did not assume
sphericity and instead report Huynh-Feldt corrected p-values. Effect size was measured
using Cohen’s d for t tests, and generalized eta squared (η2

G) for ANOVA factors, as
described by Bakeman (2005) and Olejnik and Algina (2003) for repeated-measure
designs. Lakens (2013) suggests that Cohen (1988)’s suggested benchmarks of effect
size can be used when interpreting η2

G (small: 0.01, medium: 0.04, large: 0.16).
Response accuracy is plotted as a function of filter condition in Figure 3.2A.

Response accuracy was higher for the horizontal filter orientation relative to the
vertical filter orientation, and accuracy increased as filter bandwidth increased for both
filter orientations. The difference between horizontal and vertical filter orientations
remained approximately similar across all bandwidths less than 90 deg. We analyzed the
proportion of correct responses using a repeated-measures ANOVA that incorporated
the factors filter orientation (horizontal and vertical) and bandwidth (± 45, 54, 63, 72,
and 81 deg). The main effects of filter orientation (F(1,8) = 20.0, p = 0.002, η2

G = 0.358)
and bandwidth (F(4,32) = 38.6, pHF < 0.001, η2

G = 0.331) were significant. The filter
orientation × bandwidth interaction (F(4,32) = 1.08, pHF = 0.382, η2

G = 0.009) was not
significant, indicating that the difference between the horizontal and vertical filter
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Figure 3.2 – A summary of behavioural and ERP results. A) Response accuracy
plotted for each condition, with individual subjects depicted as smaller symbols. Dotted
horizontal line represents chance performance. ERP measures are plotted in B-F and all
are averaged across hemispheres: B) P100 mean amplitude, C) N170 mean amplitude,
D) N170 50% area latency, E) P200 mean amplitude, and F) N250 mean amplitude.
Error bars are +/-1 standard error of the mean (SEM), and horizontal ticks on error
bars are within-subject corrected error bars, calculated specifically for repeated-measures
designs (Cousineau, 2005; Morey, 2008). Individual subject data are presented for all
conditions in the behaviour plot, and for aesthetics, for only the full face condition in
the ERP plots to give a sense of the variability in each measure.
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orientations remained approximately constant across bandwidths from 45 to 81 deg
(Figure 3.2A).

We also compared accuracy in each filter condition to accuracy in the full face
condition using two-tailed paired t tests. These contrasts are especially informative if
we assume that response accuracy to full faces is an estimate of the upper limit of face
identification accuracy in the current paradigm. We computed 10 comparisons, and
therefore used a Bonferonni corrected per comparison αP C=0.005 to maintain a family-
wise αF W=0.05. Response accuracy to full faces (MF F = 0.567) was significantly
higher than accuracy in the horizontal filter orientation conditions with the three
smallest bandwidths (MH45 = 0.356, t8 = 5.34, p < 0.001, d = 1.78; MH54 = 0.365,
t8 = 6.54, p < 0.001, d = 2.18; MH63 = 0.438, t8 = 4.66, p = 0.0016, d = 1.55),
but not the two largest bandwidths: (MH72 = 0.489, t8 = 2.79, p = 0.023, d = 0.93;
MH81 = 0.536, t8 = 0.99, p = 0.350, d = 0.33). However, response accuracy to full faces
was significantly higher than accuracy in the vertical filter orientation conditions at all
bandwidths (MV 45 = 0.188, t8 = 7.26, p < 0.001, d = 2.42; MV 54 = 0.204, t8 = 6.85,
p < 0.001, d = 2.28; MV 63 = 0.257, t8 = 6.86, p < 0.001, d = 2.29; MV 72 = 0.317,
t8 = 6.18, p < 0.001, d = 2.06; MV 81 = 0.414, t8 = 4.88, p = 0.001, d = 1.63).

Lastly, we computed a measure of horizontal bias by subtracting V45 response
accuracy from H45 response accuracy, and correlated it with full face identification
accuracy (Figure 3.4A). Horizontal bias was significantly greater than zero (M = 0.168,
t8 = 4.07, one-tailed p = 0.0018, d = 1.98), and, as was found by Pachai et al. (2013)
and in Chapter 2, it was significantly correlated with identification accuracy to full
faces (r = 0.637, t7 = 2.19, one-tailed p = 0.0324).

3.4.2 ERP Results

Visual inspection of the grand average ERPs (Figure 3.3A-C) suggests that orientation-
related modulations of the ERP appeared larger for vertically oriented filters than
horizontally oriented filters, indicating that the ERP to full faces is driven mostly
by the presence of horizontal facial structure. Indeed, pairwise t tests performed at
every time-point (Figure 3.3D-F) show that the ERP to full faces differed most from
the ERP to V45-filtered stimuli (Figure 3.3F) than the ERP to H45-filtered stimuli
(Figure 3.3E). Note that we depict ERP results only from the right hemisphere for
brevity, but the pattern of results was mostly the same in the left hemisphere. All
omnibus ANOVAs include hemisphere as a factor.
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Figure 3.3 – Left: Grand average ERP waveforms for the right hemisphere for the full
face condition (solid thin black line) paired with A) H45 and V45, B) all horizontal filter
conditions, and C) all vertical filter conditions The N170 peak is specifically zoomed
in B and C to better demonstrate the bandwidth related modulation. Right: Grand
average ERP differences between D) V45 and H45, E) H45 and Full face, and F) V45
and Full face. Shaded region represents 95% confidence interval, and red along the x-axis
represents significantly different than 0 at that time point (p<0.05, uncorrected)
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3.4.2.1 P100 Amplitude

P100 mean amplitude was approximately constant across conditions (Figure 3.2B).
P100 amplitudes were submitted to a 2 (filter orientation) × 5 (bandwidth) × 2
(hemisphere) repeated-measures ANOVA. The main effects of filter orientation (F(1,8) =
0.44, p = 0.52, η2

G = 0.005) and bandwidth (F(4,32) = 1.89, pHF = 0.177, η2
G = 0.051),

and the orientation × bandwidth interaction (F(4,32) = 0.44, pHF = 0.78, η2
G = 0.012)

were not significant. The main effect of hemisphere (F(1,8) = 4.82, p = 0.059, η2
G = 0.26)

was qualified by a significant hemisphere × filter orientation interaction (F(1,8) = 11.1,
p = 0.010, η2

G = 0.004), which was driven by a non-significant but larger main effect
of filter orientation in the right (F(1,8) = 1.78, p = 0.219, η2

G = 0.055) than left
(F(1,8) < 0.01, p = 0.95, η2

G < 0.001) hemisphere. The hemisphere × bandwidth
interaction (F(4,32) = 0.34, pHF = 0.85, η2

G = 0.001), and the three-way interaction
(F(4,32) = 0.52, pHF = 0.72, η2

G = 0.004) were not significant.
We computed P100 horizontal bias by subtracting P100 amplitude measured in the

V45 condition from the P100 amplitude in the H45 condition. P100 horizontal bias
was not significantly different than zero in the left (ML = 0.228, t8 = 0.48, p = 0.64,
d = 0.23) or right (MR = 0.285, t8 = 0.49, p = 0.64, d = 0.23) hemispheres. We
then plotted P100 horizontal bias against full face identification accuracy (Figure
3.4B). The correlation was not significant in either the left (r = −0.433, t7 = −1.27,
p = 0.244) or right (r = −0.392, t7 = −1.13, p = 0.297) hemispheres. The correlation
also was not significant if we averaged P100 horizontal bias scores across hemispheres
(r = −0.420, t7 = −1.23, p = 0.260)
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Figure 3.4 – Face identification accuracy (y-axis) plotted as a function of different
measures of horizontal bias (x-axis). Horizontal bias was measured by subtracting
V45 from H45 using measures of A) response accuracy, B) N170 latency, C) P100
amplitude, D) N170 amplitude, E) P200 amplitude, and F) N250 amplitude. Least
squares regression lines are plotted for the left (dashed grey) and right (solid black)
hemispheres, and the corresponding Pearson’s correlation coefficient is shown in the
legend. Single subject symbols match those in Figure 3.3A.
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3.4.2.2 N170 Amplitude

N170 amplitude for the right hemisphere is plotted as a function of filter condition
in Figure 3.2C. At small filter bandwidths, N170 mean amplitude was smaller in the
vertical filter condition than in the horizontal filter condition, but the effect of filter
orientation was very small for bandwidths ≥ ±72 deg. The ANOVA revealed that the
main effect of bandwidth was significant (F(4,32) = 5.26, pHF = 0.0114, η2

G = 0.022),
but the main effect of filter orientation (F(1,8) = 2.59, p = 0.146, η2

G = 0.006) and the
bandwidth × filter orientation interaction (F(4,32) = 1.96, pHF = 0.141, η2

G = 0.008) were
not significant. The main effect of hemisphere (F(1,8) = 1.28, p = 0.290, η2

G = 0.010),
as well as its interactions with filter orientation (F(1,8) = 0.021, p = 0.889, η2

G < 0.001)
and bandwidth (F(4,32) = 0.872, pHF = 0.476, η2

G < 0.001) were not significant, and
neither was the three-way interaction (F(4,32) = 0.243, pHF = 0.912, η2

G < 0.001).
We also analyzed N170 mean amplitude using an ANCOVA with the P100 mean

amplitude as the covariate. As was found in the original ANOVA, N170 amplitude
was still subject to a significant main effect of bandwidth (F(4,31) = 5.77, p = 0.0014,
η2

G = 0.025), and the main effects of filter orientation (F(1,7) = 2.92, p = 0.131,
η2

G = 0.008) and hemisphere (F(1,7) = 0.143, p = 0.717, η2
G = 0.001) were not

significant. There also were no significant filter orientation × bandwidth (F(4,31) = 2.14,
p = 0.100, η2

G = 0.008), filter orientation × hemisphere (F(1,7) = 0.136, p = 0.723,
η2

G < 0.001), bandwidth × hemisphere (F(4,31) = 1.01, p = 0.418, η2
G < 0.001), and

filter orientation × bandwidth × hemisphere (F(4,31) = 1.83, p = 0.148, η2
G < 0.001)

interactions. In summary, including P100 amplitude as a covariate did not appreciably
alter the effects of hemisphere, filter orientation, or filter bandwidth on N170 amplitude.

We analyzed the significant main effect of bandwidth by computing the linear
and quadratic trends of N170 amplitude (averaged across filter orientation) across
bandwidth. Both the linear trend (t8 = 2.75, one-tailed p = 0.0127, d = 0.914) and
quadratic trend (t8 = 2.34, one-tailed p = 0.0238, d = 0.779) were significant. We also
compared N170 amplitude at each filter bandwidth to N170 amplitude in the full-face
condition, using the Bonferroni adjustment to set familywise α to 0.05 (pairwise
α = 0.01). Although N170 amplitude was more negative to full faces (MF F = −5.82
µV ) than to filtered faces at all bandwidths, none of the pairwise comparisons were
statistically significant (M±45 = −4.24, t8 = 3.11, p = 0.014, d = 1.04; M±54 = −4.90,
t8 = 2.03, p = 0.076, d = 0.678; M±63 = −5.58, t8 = 0.766, p = 0.466, d = 0.255;
M±72 = 5.71, t8 = 0.300, p = 0.772, d = 0.100; M±81 = −5.78, t8 = 0.131, p = 0.899,
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d = 0.044).
We calculated N170 amplitude horizontal bias by subtracting N170 amplitude in

the V45 condition from the N170 amplitude in the H45 condition. N170 amplitude
horizontal bias was not significantly different from zero in the left (ML = −1.90,
t8 = −1.86, p = 0.099, d = 0.879) or right (MR = −1.57, t8 = −1.63, p = 0.141,
d = 0.770) hemispheres. We then correlated N170 amplitude horizontal bias with
full face identification accuracy (Figure 3.4C). Full face identification accuracy was
significantly correlated with N170 amplitude horizontal bias in the right hemisphere
(r = −0.882, t7 = −4.95, p = 0.00174), and was similar, and in the same direction,
in the left hemisphere (r = −0.649, t7 = −2.26, p = 0.0586). If we averaged
N170 amplitude horizontal biases across hemispheres, the correlation was significant
(r = −0.813, t7 = −3.70, p = 0.00765).

3.4.2.3 N170 Latency

N170 latency is plotted in Figure 3.2D. N170 latency for full faces was 200ms, and
inspection of Figure 3.2D indicates that all conditions produced a delayed N170 relative
the N170 latency of 177ms measured in younger adults in Chapter 2. Also, the N170
latency was later for the vertical filter conditions than horizontal filter conditions.
The ANOVA revealed a significant main effect of filter orientation (F(1,8) = 7.82,
p = 0.023, η2

G = 0.050), reflecting an overall later N170 for vertically oriented conditions
(MV = 206.8ms) than horizontally oriented conditions (MH = 203.8 ms). Figure
3.2D shows that N170 latency decreased from (approximately) 207 to 204ms as
bandwidth increased from ±45 to ±81deg; however, the main effect of bandwidth
(F(4,32) = 2.68, pHF = 0.096, η2

G = 0.061), and the filter orientation × bandwidth
interaction (F(4,32) = 0.510, pHF = 0.585, η2

G = 0.013) were not significant. Despite
no significant main effect, the linear trend of bandwidth was significant (t8 = 1.96,
p = 0.0428, d = 0.654), and it did not differ between filter orientations (t8 = 1.10,
p = 0302, d = 0.360). The main effect of hemisphere (F(1,8) = 0.026, p = 0.876,
η2

G < 0.001), and its interactions with filter orientation (F(1,8) = 0.119, p = 0.739,
η2

G < 0.001) or bandwidth (F(4,32) = 0.494, pHF = 0.577, η2
G = 0.002) also were not

significant. Finally, the three-way interaction between filter orientation, bandwidth,
and hemisphere was not significant (F(4,32) = 1.15, pHF = 0.345, η2

G = 0.004).
We calculated the N170 latency’s horizontal bias for each hemisphere. N170 latency

horizontal bias was not significantly different than zero for the left (ML = −3.11,
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t8 = −1.98, p = 0.082, d = −0.936) or right (MR = −3.56, t8 = −0.909, p = 0.390,
d = −0.428) hemisphere. We also plotted N170 latency horizontal bias against full
face identification accuracy (Figure 3.4D), and found that the correlations were not
significant in either the left (r = −0.287, t7 = −0.794, p = 0.453) or right (r = −0.363.
t7 = −1.03, p = 0.337) hemispheres. N170 latency horizontal bias averaged across
hemispheres also was not significantly correlated with full face identification accuracy
(r = −0.351, t7 = −0.991, p = 0.355).

3.4.2.4 P200 amplitude

P200 mean amplitude is plotted as a function of filter bandwidth and orientation in
Figure 3.2E. P200 amplitude was smallest for full faces, and was more positive as
the filter bandwidth decreased. At most bandwidths, the vertically oriented filter
conditions produced a larger P200 than the horizontally oriented filter conditions. The
ANOVA revealed a significant main effect of filter orientation (F(1,8) = 10.8, p = 0.011,
η2

G = 0.018), reflecting a smaller P200 for horizontally filtered (MH = −1.05) than
vertically filtered (MV = −0.217) stimuli. The main effect of bandwidth (F(4,32) = 3.50,
pHF = 0.043, η2

G = 0.020) also was significant, reflecting more positive P200 amplitudes
at smaller bandwidths. The filter orientation × bandwidth interaction (F(4,32) = 1.33,
pHF = 0.282, η2

G = 0.008) was not significant. The main effect of hemisphere (F(1,8) =
2.18, p = 0.178, η2

G = 0.010) also was not significant, nor were its interactions with
filter orientation (F(1,8) = 1.20, p = 0.305, η2

G < 0.001) or bandwidth (F(4,32) = 0.659,
pHF = 0.608, η2

G < 0.001). The three-way interaction (F(4,32) = 0.257, pHF = 0.903,
η2

G < 0.001) was not significant.
As indicated in Figure 3.2E, the main effect of bandwidth reflects a higher P200

amplitude to smaller filter bandwidths than larger ones. As with the N170 amplitude,
we conducted linear and quadratic trend analyses to characterize the effect of bandwidth
more accurately. The linear trend of P200 amplitude (averaged across filter orientations)
across filter bandwidth was significant (t8 = 2.44, one-tailed p = 0.020, d = 0.812),
but the quadratic trend (t8 = 0.842, p = 0.212, d = 0.281) was not. Follow up t tests
(two-tailed, Bonferroni-corrected αP C = 0.01) comparing P200 amplitude (averaged
across filter orientations) in each filter bandwidth condition to P200 amplitude in
the full face condition (MF F = −2.10) revealed that only the difference between the
full-face and ±45 bandwidth conditions was significant (M±45 = −0.044, t8 = 3.42,
p = 0.009, d = 1.14; M±54 = −0.206, t8 = 3.21, p = 0.012, d = 1.07; M±63 = −0.727,
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t8 = 3.05, p = 0.016, d = 1.02; M±72 = −1.07, t8 = 1.96, p = 0.085, d = 0.654;
M±81 = −1.14, t8 = 2.96, p = 0.018, d = 0.988).

P200 amplitude horizontal bias was significantly different than zero in the left
hemisphere (ML = −1.11, t8 = −2.80, p = 0.023, d = −1.23), but not the right
hemisphere (MR = −0.502, t8 = −0.869, p = 0.410, d = −0.409). P200 amplitude
horizontal bias is plotted against full face identification accuracy in Figure 3.4E. Full
face identification accuracy and P200 horizontal bias were significantly correlated in the
right (r = −0.719, t7 = −2.74, p = 0.029), but not the left (r = −0.364, t7 = −1.03,
p = 0.336) hemisphere. P200 horizontal bias averaged across the two hemispheres
was not significantly correlated with full face identification accuracy (r = −0.626,
t7 = −2.12, p = 0.0714).

3.4.2.5 N250 Amplitude

N250 mean amplitude is plotted as a function of filter orientation and bandwidth in
Figure 3.2F. As was found with N170 latency and P200 amplitude, N250 amplitude was
more negative as bandwidth increased, and also was more negative in the horizontal
filter than the vertical filter conditions. The 2×2×2 ANOVA revealed significant main
effects of filter orientation (F(1,8) = 7.91, p = 0.023, η2

G = 0.08) and bandwidth (F(4,32) =
5.51, pHF = 0.002, η2

G = 0.012), but their interaction (F(4,32) = 0.905, pHF = 0.467,
η2

G = 0.003) was not significant. The main effect of filter orientation reflected generally
more negative N250 amplitudes for horizontally filtered (MH = −4.22) than vertically
filtered (MV = −3.46) stimuli, and the main effect of bandwidth reflected generally
smaller (less negative) N250 amplitudes for smaller filter bandwidths. The main effect
of hemisphere (F(1,8) = 9.89, p = 0.014, η2

G = 0.013) was significant, reflecting a slightly
more negative amplitude in the left (ML = −4.35) than the right (MR = −3.33)
hemisphere. The filter orientation × hemisphere interaction (F(1,8) = 1.02, p = 0.341,
η2

G < 0.001), bandwidth × hemisphere interaction (F(4,32) = 0.127, pHF = 0.972,
η2

G < 0.001), and the three-way interaction (F(4,32) = 0.310, pHF = 0.869, η2
G < 0.001)

were not significant.
We analyzed the main effect of bandwidth by evaluating the linear and quadratic

trends of N250 amplitude (averaged across filter orientations) across filter bandwidth.
We found that the linear trend was significant (t8 = 3.79, one-tailed p = 0.003,
d = 1.26), but the quadratic trend was not (t8 = −0.111, p = 0.543, d = −0.037). We
also used pairwise comparisons to evaluate differences between N250 amplitude in the
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full face condition and N250 amplitude at each filter bandwidth (two-tailed, Bonferonni
corrected, αP C = 0.01). Although the N250 amplitude to full faces (MF F = −5.30)
was larger (i.e., more negative) than the N250 in all filter conditions, none of the
pairwise differences were statistically significant (M±45 = −3.44, t8 = 2.79, p = 0.024,
d = 0.930; M±54 = −3.09, t8 = 2.94, p = 0.019, d = 0.980; M±63 = −4.12, t8 = 1.97,
p = 0.084, d = 0.658; M±72 = −4.18, t8 = 1.96, p = 0.085, d = 0.654; M±81 = −4.36,
t8 = 1.45, p = 0.186, d = 0.482).

N250 amplitude horizontal bias is plotted against full face identification accuracy
in Figure 3.4F). N250 horizontal bias was not significantly different from zero in either
the left (ML = −0.911, t8 = −2.16, p = 0.063, d = −1.02) or right (MR = −0.346,
t8 = −1.04, p = 0.329, d = −0.490) hemisphere, and was not significantly correlated
with full-face identification accuracy in either hemisphere (left hemisphere: r = 0.189,
t7 = 0.510, p = 0.626; right hemisphere: r = −0.590, t7 = 1.93, p = 0.095), although
the correlation in the right hemisphere is similar in magnitude and direction with the
correlation obtained with younger adults (Chapter 2). N250 horizontal bias averaged
across the two hemispheres was not significantly correlated with full face identification
accuracy (r = −0.215, t7 = −0.583, p = 0.578).

3.4.3 Correlation time-series

Finally, to better characterize the relationship between full face identification accuracy
and the horizontal bias of the ERP without being restricted to pre-defined ERP
components, we calculated the correlation at every time-point in the ERP separately
for the left and right hemispheres (Figure 3.5). We found that the most sustained,
relatively strong correlations occurred in the right hemisphere around the N170 peak
(186 to 222ms) and between the P200 and N250 peaks (322 to 382ms). The sustained
correlation between 322 and 382 ms suggests that our earlier analyses of P200 and
N250 horizontal bias were likely examining the same underlying neural processing
rather than different processing. However, the timing of the correlations, relative to
the ERP peaks, is consistent with reports of similar results in younger adults, where
the brain-behaviour correlation also occur between the peaks of the P200 and N250
(Figure 2.8 in Chapter 2). The sustained correlation around the N170 peak is novel and
not seen in younger adults. There also were correlations at later time points (444-466
ms and 552-572 ms), of which the final correlation corresponds with the N400 peak. A
similar result can be seen in younger adults (Chapter 2). For the most part, significant
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Figure 3.5 – Time-series of the Pearson least squares correlation coefficient (r) between
neural horizontal bias (H45 - V45) and full face identification accuracy for the right (red
solid) and left (blue dashed) hemispheres. Right and left hemisphere horizontal biases
were correlated with each other (black dotted), revealing that horizontal bias was mostly
correlated between the two hemispheres. As a temporal reference, the grand-average
ERP is shown on the bottom. Shaded red and blue regions reflect statistically significant
correlations (p < 0.05, uncorrected) for the right and left hemisphere, respectively.
Two notable periods of sustained significant correlations occur both occur in the right
hemisphere from 186 to 222 ms, and from 322 to 382 ms, which coincide with the peak
of N170 and between the P200 and N250, respectively.

correlations were found primarily in the right hemisphere, but they followed a similar
pattern in both hemispheres; horizontal bias in the left and right hemispheres were
correlated at most times points (dotted black line in Figure 3.5).

3.4.4 Comparison to younger adults

To compare the results here to those obtained in Chapter 2, we combined the data
from younger and older adults into a single analysis, separately for each measure. Age
group was set as a between-subject factor in mixed-design ANOVAs using type III
sums-of-squares. For brevity, we focus primarily on the effects that depend on the factor
age. The correlations between full face identification accuracy and horizontal bias were
compared between younger and older adults using the cocor package (Diedenhofen and
Musch, 2015), which Fisher-transforms the correlation coefficients and computes a z
test on the null hypothesis that the true difference between them is 0. If the difference
was not significant, we report a single correlation collapsed across age groups.
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Figure 3.6 – Face identification accuracy (y-axis) plotted as a function of A) behavioural
horizontal bias and B) right hemisphere N250 horizontal bias. Data are plotted for older
adults (white) and younger adults (grey, obtained from Chapter 2). As outlined in the
text, the correlations were not significantly different between younger and older adults,
so Pearson’s correlations were calculated using both age groups.

Face identification accuracy was subject to a significant main effect of age (F(1,18) =
54.9, p < 0.0001, η2

G = 0.679), reflecting higher accuracy in younger (M = 0.675) than
older adults (M = 0.356). There also was a significant filter orientation × bandwidth
× age interaction (F(4,72) = 15.34, pHF < 0.001, η2

G = 0.0646): the filter orientation
× bandwidth interaction was significant in younger (F(4,40) = 37.2, pHF < 0.0001,
η2

G = 0.254) but not older (F(4,32) = 1.08, pHF = 0.382, η2
G = 0.0091) adults. The

correlation between full face identification accuracy and behavioural horizontal bias
was not significantly different between younger and older adults (∆r = 0.175, z = 0.469,
p = 0.639). When combined across age group, full face identification accuracy and
behavioural horizontal bias were significantly correlated (r = 0.772, t18 = 5.15, one-
tailed p = 0.0001; Figure 3.6A).

P100 amplitude was subject to a significant main effect of age (F(1,18) = 11.1,
p = 0.0037, η2

G = 0.333), reflecting higher P100 amplitudes in younger (M = 3.77µV)
than older adults (M = 0.695µV). There also was a filter orientation × hemisphere ×
age interaction (F(1,18) = 5.20, p = 0.0350, η2

G = 0.0008), reflecting a significant filter
orientation × hemisphere interaction in older (F(1,8) = 11.1, p = 0.0104, η2

G = 0.0087)
but not younger adults (F(1,10) = 1.35, p = 0.272, η2

G = 0.0004). No other main
effects or interactions were significant. The correlation between full face identification
accuracy and P100 horizontal bias was not significantly different between younger and
older adults in either the left (∆r = 0.201, z = 0.308, p = 0.758) or right hemisphere
∆r = 0.149, z = 0.308, p = 0.758). When combined across age group, full face
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identification accuracy and P100 horizontal bias were not significantly correlated in the
left (r = −0.375, t18 = −1.71, p = 0.104) or right hemisphere (r = −0.411, t18 = −1.92,
p = 0.0715). In summary, the effect of filter orientation on P100 amplitude was similar
in younger and older adults, with the exception that the effect of filter orientation was
right-lateralized in older adults, whereas there was no effect of filter orientation in
younger adults.

N170 amplitude was subject to a significant bandwidth × hemisphere × age inter-
action (F(4,72) = 3.20, pHF = 0.0262, η2

G = 0.0009), reflecting a significant bandwidth
× hemisphere interaction in younger (F(4,40) = 3.37, pHF = 0.0326, η2

G = 0.0015) but
not older adults (F(4,32) = 0.872, pHF = 0.491, η2

G = 0.0006). Additionally, the main
effects of filter orientation and bandwidth were significant, but critically, the filter
orientation × bandwidth interaction (F(4,72) = 6.92, pHF = 0.0007, η2

G = 0.010) also
was significant, which is unlike the results from the analysis of older adults alone.
Furthermore, the filter orientation × bandwidth × age interaction (F(4,72) = 0.271,
pHF = 0.831, η2

G = 0.0004) was not significant, indicating that despite the filter
orientation × bandwidth interaction not being significant in older adults, it was not
significantly different than the significant filter orientation × bandwidth in younger
adults. The correlation between full face identification accuracy and N170 amplitude
horizontal bias was significantly different between younger and older adults in the
right (∆r = 0.734, z = 2.29, p = 0.0222) but not the left hemisphere (∆r = 0.565,
z = 1.28, p = 0.202). The significant difference between age groups in the right
hemisphere reflected a significant correlation in older adults (r = −0.882, t7 = −4.95,
p = 0.0017) but not in younger adults (r = −0.148, t9 = −0.449, p = 0.664). In the left
hemisphere, we combined across age group and saw that full face identification accuracy
and N170 amplitude horizontal bias were not significantly correlated (r = −0.358,
t18 = −1.63, p = 0.121). In summary, the lack of a significant difference between
younger and older adults filter orientation × bandwidth interaction suggests that the
effect of orientation filtering on the N170 amplitude was similar in younger and older
adults. However, despite similar effects of orientation filtering, we confirmed that the
correlation between N170 amplitude horizontal bias and face identification accuracy
was significantly different between younger and older adults.

N170 latency was subject to a significant main effect of age (F(1,18) = 207.3,
p < 0.0001, η2

G = 0.865), reflecting an earlier N170 for younger (M = 177ms) than
older adults (M = 205ms). The main effect of filter orientation was significant, but
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it was qualified by a significant filter orientation × age interaction (F(1,18) = 7.39,
p = 0.0141, η2

G = 0.0181), reflecting a significant main effect of filter orientation in
older (F(1,8) = 7.82, p = 0.0233, η2

G = 0.0946) but not younger adults (F(1,10) = 0.0199,
p = 0.891, η2

G < 0.0001). The main effect of bandwidth (F(4,72) = 12.3, pHF = 0.0001,
η2

G = 0.088) was significant, and its interaction with age (F(4,72) = 0.38, pHF = 0.679,
η2

G = 0.003) was not significant. All other main effects and interactions were not
significant. The correlation between full face identification accuracy and N170 latency
horizontal bias was not significantly different between younger and older adults in
either the left (∆r = 0.557, z = 1.06, p = 0.290) or right hemisphere (∆r = 0.303,
z = 0.783, p = 0.434). When combined across age group, full face identification
accuracy and N170 latency horizontal bias were not significantly correlated in the left
(r = 0.140, t18 = 0.602, p = 0.555) or right hemisphere (r = −0.0829, t18 = −0.353,
p = 0.728). In summary, despite the large and significant age-related increase in the
N170 latency, N170 latency was affected similarly by filter bandwidth in younger and
older adults. However, the effect of filter orientation on N170 latency was greater in
older than younger adults.

P200 amplitude was subject to a significant bandwidth × age interaction (F(4,72) =
2.80, pHF = 0.0493, η2

G = 0.0062), reflecting a significant main effect of bandwidth in
older (F(4,32) = 3.50, pHF = 0.0435, η2

G = 0.0226) but not younger adults (F(4,40) = 1.56,
pHF = 0.203, η2

G = 0.0064). Like the analysis of older adults, the main effects
of filter orientation and bandwidth were significant, and all other main effects and
interactions were not significant. The correlation between full face identification
accuracy and P200 horizontal bias was not significantly different between younger
and older adults in either the left (∆r = 0.0349, z = 0.0756, p = 0.940) or right
hemisphere (∆r = 0.249, z = 0.731, p = 0.465). When combined across age group, full
face identification accuracy and P200 horizontal bias were not significantly correlated
in the left (r = −0.004, t18 = −0.0171, p = 0.987) or right hemisphere (r = −0.320,
t18 = −1.43, p = 0.170). In summary, the P200 in older adults was more sensitive to
orientation filtering than younger adults, but when combined, P200 horizontal bias
was still not correlated with face identification accuracy.

N250 amplitude was subject to a significant bandwidth × age interaction (F(4,72) =
4.68, pHF = 0.0020, η2

G = 0.0056), reflecting a significant main effect of bandwidth in
older (F(4,32) = 5.51, pHF = 0.0017, η2

G = 0.0131) but not younger adults (F(4,40) = 2.35,
pHF = 0.072, η2

G = 0.0070). There also was a significant hemisphere × age interaction
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(F(1,18) = 7.22, p = 0.0151, η2
G = 0.0146), reflecting a significant main effect of

hemisphere for older (F(1,8) = 9.89, p = 0.0137, η2
G = 0.0142) but not younger adults

(F(1,10) = 2.30, p = 0.161, η2
G = 0.0176). Like the analysis of older adults, the

main effects of filter orientation (F(1,18) = 13.3, p = 0.0019, eta2
G = 0.0058 and

bandwidth (F(4,72) = 3.87, p = 0.0066, eta2
G = 0.0047) were significant. The filter

orientation × bandwidth interaction (F(4,72) = 2.20, pHF = 0.0799, η2
G = 0.0026)

was not significant, nor was the filter orientation × bandwidth × age interaction
(F(4,72) = 0.82, pHF = 0.512, η2

G = 0.001). All other main effects and interactions also
were not significant. The failure to find a significant filter orientation × bandwidth
interaction, or the three-way interaction with age is surprising because the two-way
interaction is significant in younger (Chapter 2) but not older adults. A comparison of
Figure 6 in Chapter 2 and Figure 3.2F suggests that the filter orientation × bandwidth
interaction is similar in both age groups, although smaller in older adults; this suggests
that the failure to find a significant filter orientation × bandwidth age interaction
is likely due to insufficient power. The correlation between full face identification
accuracy and N250 horizontal bias was not significantly different between younger and
older adults in either the left (∆r = 0.699, z = 1.40, p = 0.163) or right hemisphere
(∆r = 0.0362, z = 0.0995, p = 0.0921). When combined across age group, full face
identification accuracy and N250 horizontal bias were significantly correlated in the
right (r = −0.665, t18 = −3.77, p = 0.0014; Figure 3.6B), but not the left hemisphere
(r = 0.0006, t18 = 0.003, p = 0.998). In summary, N250 amplitudes of younger and
older adults were similarly affected by filter bandwidth and orientation. Unlike the
analysis described in Chapter 2, the current, combined analysis suggests that the effect
of bandwidth was not modulated significantly by filter orientation in either age group.

In summary, these analyses found that full face identification accuracy was corre-
lated significantly with horizontal bias measured using behaviour, right hemisphere
N170 amplitude (older adults only), and right hemisphere N250 amplitude. Next, we
assessed if these measures were related by correlating them with each other. Note that
we expect these measures to be correlated to some degree because they are all based
on responses to the same stimuli on the same trials, unlike the correlations with full
face identification accuracy, which were based on an independent set of trials. Indeed,
the correlations between all three indices of horizontal bias were significant (behaviour
& N170: r = −0.510, t18 = −2.51, p = 0.0217; behaviour & N250 r = −0.624,
t18 = −3.39, p = 0.0033; N170 & N250 r = 0.782, t18 = 5.33, p < 0.0001).
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Next, we used analysis of covariance (ANCOVA) to assess if age differences in face
identification accuracy were related to age differences in horizontal bias. Without
any covariate, face identification accuracy differed significantly between the two age
groups (F(1,18) = 38.0, p < 0.0001, η2

p = 0.678). When behavioural horizontal bias
was the covariate (F(1,17) = 42.2, p < 0.0001, η2

p = 0.713), the main effect of age
(F(1,17) = 11.7, p = 0.0033, η2

p = 0.407) was ≈ 40% smaller but still significant. When
right hemisphere N170 amplitude horizontal bias was the covariate (F(1,17) = 23.1,
p = 0.0002, η2

p = 0.576), the main effect of age (F(1,17) = 55.3, p < 0.0001, η2
p = 0.765)

actually increased slightly and was still significant. Finally, when right hemisphere
N250 horizontal bias was the covariate (F(1,17) = 34.2, p < 0.0001, η2

p = 0.668), the
main effect of age (F(1,17) = 26.2, p < 0.0001, η2

p = 0.607) was approximately the same
and remained significant. In all ANCOVAs, the effect of the covariate was significant
and accounted for over 57% the variance in each case.

The ANCOVA analyses indicate that the age difference in face identification
accuracy is not entirely accounted for by changes in any single measure of horizontal
bias. However, it is possible that the measures collectively account for the age difference.
To test this idea, we fit the face identification data with a linear model that included
all three measures of horizontal bias as covariates and found that the main effect of
age was still significant (F(1,15) = 15.4, p = 0.0014, η2

p = 0.506). Finally, to examine
whether the three measures of horizontal bias accounted for the same or different
portions of variation in identification accuracy, we examined the effects of varying the
order in which the three covariates were entered into the linear model. The results
are summarized in Table 3.1. When the first covariate was behavioural horizontal
bias (Models A & B), then the variation accounted for by both of the N170 and N250
biases was drastically reduced; however, when behavioural horizontal bias was the final
covariate (Models C & D), it still accounted for significant variation in identification
accuracy. Interestingly, when N170 amplitude horizontal bias was the first covariate,
the N250 horizontal bias was still a significant covariate; however, when N250 horizontal
bias was the first covariate, N170 amplitude horizontal bias was no longer a significant
covariate. These results suggest that i) the behavioural measure of horizontal bias
accounted for variation that was not accounted for by either ERP measure; and ii)
that the N250 measure of bias accounted for variation that was not accounted for
by the N170 measure; and iii) the N170 measure did not account for any unique
variation. Finally, the ANCOVA analyses suggest that other factors besides horizontal
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bias contribute to age differences in face identification.

Model A: F p η2
p

Behaviour 52.4 <0.0001 0.777
N170 amp 1.16 0.298 0.072

N250 4.03 0.063 0.212
Age 15.4 0.0014 0.506

Model B:
Behaviour 52.4 <0.0001 0.777

N250 4.82 0.044 0.243
N170 amp 0.368 0.553 0.024

Age 15.4 0.0014 0.506
Model C:
N170 amp 21.3 0.0003 0.587

N250 17.7 0.0008 0.542
Behaviour 18.5 0.0006 0.553

Age 15.4 0.0014 0.506
Model D:

N250 38.8 <0.0001 0.721
N170 amp 0.175 0.681 0.012
Behaviour 18.5 0.0006 0.553

Age 15.4 0.0014 0.506

Table 3.1 – Results form four ANCOVA models that included the three covariates (i.e.,
measures of horizontal bias based on behaviour, N170 amplitude, and N250 amplitude)
and one between-subjects factor (age). The models differed in terms of the order in
which the covariates were entered into model. The table shows the F and p values for
the Type I (sequential) sums-of-squares, and a measure of association strength (η2

p), for
each term in the model.

3.5 Discussion

We measured response accuracy and ERPs while in older adults who performed a 1-of-6
face identification task that used faces that contained varying amounts of horizontal or
vertical structure. We then correlated measures of behavioural and neural horizontal
bias with full face identification accuracy. In comparison to younger adults who
completed the same experiment (Chapter 2), and consistent with previous studies of
face perception in older adults (Grady et al., 1994; Konar et al., 2013; Obermeyer
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et al., 2012), we found that older adults made more errors in a face identification
task and had a weaker horizontal bias: not only was response accuracy worse overall,
differences in response accuracy to horizontally and vertically filtered stimuli was
smaller in older than younger adults. Still, we found that behavioural horizontal
bias was significantly correlated with full face identification accuracy. The correlation
(r = 0.637) did not differ significantly from the value (r = 0.46) obtained with younger
adults in Chapter 2 or by Pachai et al. (2013, r = 0.52). Similar to the results obtained
with response accuracy, we found that older adults exhibited ERPs to horizontally
and vertically filtered faces that were less differentiated (Figure 3.2C-F) than ERPs
in younger adults (Chapter 2). The observed correlations between horizontal bias
and identification accuracy is yet another indication that identification is associated
with the preferential processing of horizontally oriented facial structure (Dakin and
Watt, 2009; Goffaux and Dakin, 2010; Pachai et al., 2013), and that between-group
differences in face identification accuracy are due, at least partly, to differences in
horizontal bias. For example, other studies have shown horizontal bias is weaker in
persons with prosopagnosia (Pachai et al., 2015), and is stronger for familiar than
unfamiliar faces in healthy adults (Pachai et al., 2017).

The N170 of older adults showed both similarities and differences to that of younger
adults. Most obviously, we replicated previous reports that the N170 in older adults
was delayed relative to the N170 in younger adults (Wiese et al., 2008; Rousselet et al.,
2009). However, we also found that the effect of orientation of facial structure on the
N170 was similar to that found in younger adults (Chapter 2): in both age groups, N170
amplitude increased when horizontal structure was removed, whereas N170 latency
increased when horizontal or vertical structure was removed. The results are consistent
with the idea that N170 amplitude is sensitive to facial information about the eyes
(Bentin et al., 1996; Itier et al., 2007; Rousselet et al., 2014), whereas N170 latency is
sensitive to accrual of all face-related information (Rousselet et al., 2009, 2010; Bieniek
et al., 2013). This interpretation of the effect of filter orientation on N170 latency is
consistent with the observation that vertical structure carries less information about a
face’s identity than horizontal (Pachai et al., 2013, 2018), which should result in a slower
rate of information accrual for vertical structure. Additionally, the greater sensitivity
of human observers to horizontal facial structure (Pachai et al., 2013, 2018) would
further exacerbate differences in the rate of information accrual. Our experiments
cannot dissociate the potential influences of differential stimulus information and
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perceptual sensitivity on the effects of filter orientation on the N170 latency. It may be
possible to distinguish the effects of these two factors using stimuli that contain normal
facial structure at all orientations but which are diagnostic structure only at particular
orientations (see stimuli in Pachai et al., 2018, or in Chapter 4). This method would
ensure that the visual system receives a input of facial structure at all orientations,
but task-relevant information at only certain orientation bands. Therefore, behaviour
would be driven by the perceptual sensitivity to the task-relevant structure than to
low level processing of stimulus information.

Face identification relies, in part, on the efficient use of horizontal facial structure,
so our result showing a significant correlation between N250 horizontal bias and full
face identification accuracy is consistent with the proposition that the N250 is sensitive
to the identity of a face (Tanaka et al., 2006; Kaufmann et al., 2009). Younger adults’
full face identification accuracy is correlated with their N250 horizontal bias (Chapter
2), and we see a similar relationship in older adults, albeit weaker and right-lateralized
(Figure 3.4F). Importantly, full face identification accuracy in older adults, but not
younger adults, was significantly correlated with the horizontal bias of the N170
amplitude (Figure 3.4C). This correlation may be associated with low-level visual
constraints on face perception in older adults (Grady et al., 1994; Owsley et al., 1981).
According to this idea, face identification accuracy in younger and older adults may
be limited primarily by the strength of their horizontal bias, which is reflected in the
N250, but only older adults are significantly constrained by the amount of task-relevant
information encoded by the early stages of visual processing, which is reflected in the
N170. That is to say, older adults may still have a bias towards processing horizontal
structure, but their behaviour is affected by the effects of horizontal bias on behaviour
as well as the effects of the fidelity of signal in the visual system. The ANCOVA results
presented in Table 3.1 are relevant here. Those analyses showed that the association
between face identification accuracy and the measures of horizontal bias based on
N170 and N250 amplitudes depended on the order in which those terms were entered
into the linear model. In particular, a comparison of Models C & D shows that the
N170 term accounts for significant variation in accuracy when it appears before, but
not after, the N250 term, but the N250 term accounts for significant variation when
it appears before or after the N170 term. This order dependency indicates that the
N250 term accounts for most of the N170-related variance plus a unique component
of variance, and it is consistent with the notion that processes that affect the N170
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measure of horizontal bias are partly responsible for affecting the N250 measure of
horizontal bias. In this framework, the fact that the N170 amplitude measure of
horizontal bias was correlated with full face identification accuracy only in older adults
means that age-related decreases in the amount of information encoded by early visual
processes alter the N170 (Rousselet et al., 2010; Bieniek et al., 2013) and place greater
constraints on face identification in older adults. Of course, these claims, which are
based on post-hoc analyses performed on a fairly small data set, are preliminary and
should be evaluated in future experiments using a larger sample size and planned
comparisons.

In conclusion, the experiment in this chapter showed that face perception in older
adults is significantly constrained by horizontal face information. Relative to younger
adults, older adults have a weaker bias to processing the horizontal structure of a
face, which may be due to a combination of changes in low level visual processing and
changes in the perceptual process(es) tuned to horizontally oriented facial structure.
Although much of the age-related deficits in our sample were accounted for by decreases
in behavioural, N170 amplitude, and N250 horizontal biases, there still remained age-
related changes not accounted for by our measures of horizontal bias. Future studies
should investigate how changes in face identification accuracy correspond to changes
in horizontal bias to link recovery from age-related deficits to the strengthening of
horizontal bias. As our interpretation of the N170 results suggests, care should be
taken to minimize the effects of low level stimulus differences on early neural processes,
and instead focus on changes in the perceptual sensitivity to horizontal information.
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Chapter 4

Practice identifying faces recovers
horizontal bias in older adults

4.1 Abstract

Face identification relies on increased sensitivity to horizontal relative to vertical facial
structure (i.e., horizontal bias). Face identification accuracy declines with age, and
so does horizontal bias. Declines in face identification are associated with declines in
horizontal bias. Additionally, face identification can improve with perceptual learning.
Here, we asked if practice identifying faces leads to changes in the horizontal bias of
older adults. Older adult observers (M = 70.8 years) were trained in a 1-of-10 face
identification task with unfiltered faces. Before and after training, we recorded response
accuracy to faces filtered to contain informative structure in certain orientation bands,
and non-informative facial structure in orthogonal orientation bands. The resulting
stimuli appeared like intact faces, but had informative structure in orientations bands
that were unspecified to the observer. Horizontal bias at pre-training was negligible
and not correlated with overall face identification accuracy, but horizontal bias at post-
training was significant and positively correlated with full face identification accuracy.
Results suggest that older adults deficits in face identification may be linked to a
weakened horizontal bias, but that improved horizontal bias underlies improvements
seen in training.
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4.2 Introduction

For most adults, face discrimination and identification appear to be effortless tasks.
Our ability to perceive upright faces rapidly and accurately is likely due to the fact
that we regularly interact with faces in everyday life (Valentine, 1988). Upright face
expertise contrasts with the relative difficulty in identifying inverted faces (Yin, 1969),
and this so-called face inversion effect is consistent with studies of perceptual learning
in which training to identify textures produces texture inversion effects (Hussain et al.,
2009a) which are long lasting (Hussain et al., 2011). In fact, training to identify
inverted faces abolishes the FIE (Hussain et al., 2009b), further supporting the notion
that better identification of upright faces is due to experience with upright faces.

What causes the face inversion effect? One possibility is that upright and inverted
faces are processed with similar mechanisms, but lifelong learning has resulted in those
mechanisms operating more efficiently with upright faces (Sekuler et al., 2004; Riesen-
huber et al., 2004; Williams and Henderson, 2007; Gaspar et al., 2008; Willenbockel
et al., 2010; Pachai et al., 2013). This idea is supported by studies showing that
horizontal facial structure, which conveys a great deal of information about a face’s
identity, is processed more efficiently in upright than inverted faces (Pachai et al.,
2013; Dakin and Watt, 2009). Indeed, face identification accuracy relies on intact
horizontal structure (Dakin and Watt, 2009), and there are individual differences in
how sensitive an individual is to horizontal relative to vertical face structure (Pachai
et al., 2013). Differential sensitivity to horizontal and vertical facial structure, referred
to as horziontal bias, varies across individuals, and this variation is correlated with
face identification accuracy (Pachai et al., 2013; Pachai et al., 2018; Chapters 2 & 3),
and with individual differences in the magnitude of the face inversion effect (Pachai
et al., 2013). Horizontal bias also appears to be affected by visual experience with
faces. For example, horizontal bias increases through childhood (Balas et al., 2015;
Goffaux et al., 2015), and, in adults, is stronger for familiar than unfamiliar faces
(Pachai et al., 2017). The effect of familiarity on horizontal bias is further evidence
that the process(es) underlying face perception is/are experience-dependent.

Healthy ageing is associated with a decline in the ability to identify faces (Grady
et al., 1994; Konar et al., 2013) and a reduction in horizontal bias (Obermeyer et al.,
2012; Goffaux et al., 2015). Results presented in Chapter 3 show that although older
adults exhibit a reduced horizontal bias, face identification accuracy and horizontal
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bias are correlated with each other. The experiment in Chapter 3 showed that, as is
the case in younger adults (Chapter 2), face identification accuracy in older adults
was correlated with the horizontal bias of the N250, an event-related potential (ERP)
component known to be sensitive to face identity information (Tanaka et al., 2006;
Kaufmann et al., 2009). However, unlike younger adults, identification accuracy in older
adults also was correlated with the horizontal bias of the N170, an ERP component
that is affected by low-level stimulus information (Rousselet et al., 2008), including
the orientation of the facial structure (Chapter 2). We suggested that the correlation
between identification accuracy and the N170 in older but not younger adults is caused
by early visual processes placing greater constraints on face identification accuracy in
older adults than younger adults.

One way to assess horizontal bias is by testing identification accuracy with face
stimuli filtered to contain structure only at certain orientation bands (e.g., Chapters
2 and 3). Although this method is sensitive to the differential perceptual sensitivity
to horizontal and vertical facial structure, it may also be affected by the changes
in the amount of task-relevant information. Horizontal structure typically contains
more information about face identity than vertical structure (Pachai et al., 2013,
2018). Therefore, even without a bias to process horizontal structure, identification
accuracy should be better for faces containing only horizontal structure than only
vertical structure (see Figure 4.1B&C for a simplified model). This difference in
diagnostic information is an especially important issue if face perception in older
adults is disproportionally affected by early visual processes. For example, consider
the possibility that early visual deficits in older adults may prevent them from discov-
ering and/or extracting the diagnostic horizontal structure efficiently from an intact
(unfiltered) face, but once the information is past early vision processes, it is processed
just as well as younger adults. If the stimulus contains only horizontal structure,
then older adults need not discover and extract the diagnostic information from a
full face, since the to-be-extracted information is presented in isolation. With that
in mind, it is possible that our previous findings showing associations between face
identification accuracy and the N170 may have underestimated the effects of early
processes, and subsequently underestimated age differences in the ERP horizontal
bias. Hence, one goal of the current experiment is to evaluate horizontal bias in older
adults using stimuli from Pachai et al. (2018) in which observers must discover the
diagnostic information from within an entire face. Specifically, instead of just removing
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oriented structure as we did in Chapter 3, the oriented structure was replaced with
uninformative facial structure (see Figures 4.1D&E & 4.2). For example, in a 1-of-10
face identification task, a stimulus may contain diagnostic structure from a target
face in a narrow horizontal orientation band, and non-diagnostic structure from the
average of all 10 faces in all remaining orientation bands. Together, the stimulus
resembles an intact face, yet only a particular orientation band contains diagnostic
structure. A more face-like stimulus allows for the measuring of how identification
accuracy is affected by differently informative structure in different orientation bands,
while increasing the likelihood that observers use their usual face processing strategy
in all stimulus conditions. Figure 4.1 depicts a simplified model where the strategy
is to assign higher weights to information in horizontally tuned orientation channels
than vertically tuned orientation channels. Figures 4.1D&E demonstrate how such a
system will behave when the stimulus contains structure at all orientations, but the
structure is informative only in the horizontal (D) or only in vertical (E) orientation
bands.

Another goal of this experiment is to see if face perception in older adults can
improve with practice and, critically, if improvements are associated with changes in
horizontal bias. Horizontal bias is greater for familiar faces relative to unfamiliar faces
(Pachai et al., 2017), and therefore we expect to see that practice-induced improvements
in face identification are associated with increases in horizontal bias for those faces. In
the current experiment, older adults were trained in a 1-of-10 identification task with
a set of 10 unfiltered faces for three consecutive days. We measured their behavioural
horizontal bias with filtered faces before and after training, and correlated those
measures of horizontal bias with identification accuracy for unfiltered faces.
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Figure 4.1 – An illustration of the effects of re-weighting horizontal and vertical facial
structure to reflect differences in the amount of information conveyed by the two bands
of orientations. In each panel, the faces on the left represent the input to the visual
system, and the faces on the right represent task-relevant information at the level of
the decision variable. The arrows on the left represent the signal entering the visual
system, and the arrows on the right represent the processed signal reaching the decision
variable. Green and red arrows indicate that the orientation band does or does not
contain task-relevant information, respectively. Thickness of arrows/lines reflect the
amount of facial information carried in/by a channel. For example, faces intrinsically
have more facial information in horizontal than vertical orientation structures, hence
the slightly thicker arrow for the horizontal signal on the left. Efficient processing would
place greater weight on horizontal structure, hence an even thicker line/arrow for the
horizontal signal on the right. A) Structure at all orientations is visible and informative.
B) Horizontal structure is the only structure visible, hence no signal in the vertically
tuned input and processing channels. C) Vertical structure is the only structure visible,
hence no signal in the horizontally tuned input and processing channels. D) Structure
is visible at all orientations, but horizontal structure is informative whereas vertical
structure is not. E) Reverse of D. Notice that after horizontally biased processing, the
signal at the decision making level better reflects the target identity in D, but is less
representative of the target identity in E. We assumed that re-weighting occurs only for
the horizontal signal (up-weighted) and that the weight of the vertical channels remains
true to the incoming signal. If we assumed that vertical information is down-weighted,
the decision-level estimates would veer to an even better representation of the target in
D, and a worse representation in E.
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4.3 Methods

4.3.1 Subjects

Twelve older adults (6 male; range = 67-77 years old, M=70.8, SD=3.55) from
the surrounding community participated in the experiment. All participants had
normal or corrected-to-normal Snellen acuity, a normal Pelli-Robson contrast sensitivity
(range=1.65-1.95, M=1.86, SD=0.14), and normal MoCA (range=24-30, M=27.5,
SD=1.88; Nasreddine et al., 2005) and MMSE scores (range=27-30, M=28.5, SD=1.17;
Folstein et al., 1975).

4.3.2 Apparatus & Stimuli

Stimuli were generated on an Apple Macintosh G5 computer using MATLAB 7.10.0
(Mathworks, 2007) and the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997; Kleiner
et al., 2007). Stimuli were presented on a 17-inch NECMultiSync FE700+ CRT monitor
with a resolution of 1024 × 768 (32 pixels/cm) and an 85 Hz refresh rate. Viewing
was binocular through natural pupils from a viewing distance of 100 cm. The monitor
had an average luminance of 49.7 cd/m2. Stimuli were centered on a 256 × 256 pixel
matrix and subtended 4.6 deg of visual angle. Stimuli were generated using the 10 faces
from Gold et al. (1999a), and were each filtered with an ideal band-pass orientation
filter centered on either 0 deg (horizontal) or 90 deg (vertical). Filter bandwidth varied
form ±10 deg to ±70 deg in steps of ±10 deg, resulting in 16 filter conditions (Figure
4.2A): eight different filter bandwidths centered on horizontal, and eight different filter
bandwidths centered on vertical. In a seventeenth condition, the filter bandwidth was
±90 deg, which covers all orientations: we refer to this as the ‘full face’ condition. For
the filtered conditions, the empty orientation bands were filled with non-informative
structure, which we refer to as a face context. The face context was derived by
computing a pixel-by-pixel average of all 10 faces and therefore was non-diagnostic
in an identification task. In each filtered-face condition, the orientations that were
removed by the filtering operation were replaced by structure at the corresponding
orientations in the face context. Prior to filtering, target and context each had an
RMS contrast of 0.2. After filtering and combining the two, the final stimulus RMS
contrast was fixed at 0.2. The stimulus was embedded in a white noise that had an
RMS contrast of 0.1.
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Figure 4.2 – A) Example stimuli of the 17 different conditions using in the pre- and
post-training sessions. Only the full face condition was used during training trials. B)
Visualization of the trial structure. During both training and testing, response screen
alternatives were full faces.

4.3.3 Procedure

The trial structure is pictured in Figure 4.2B. Each trial began with a central black
fixation point on a grey screen for 0.5 s, followed by a blank screen for 0.25 s. The
stimulus was then presented for 0.5 s, followed by a 0.1 s blank screen, and then, finally,
the response screen with the 10 alternatives until response selection. The ten response
screen thumbnails each subtended 2.6 deg of visual angle, had 0.4 RMS contrast,
always were full faces without any filtering, and were presented in the same spatial
arrangement on every trial. Participants indicated their response by clicking on one of
the faces with a computer mouse. Auditory feedback was provided after every response
in the form of 600 and 200Hz tones after correct and incorrect trials, respectively. The
next trial started immediately following the response.

4.3.4 Design

During training, the stimulus was always a full face, and face identities were randomly
interleaved. Each face identity was presented on 120 trials, for a total of 1200 trials of
training. Training trails were separated across three consecutive days (400 trials per
session), with exactly 24 hours between sessions. Participants completed testing trials
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on the days immediately before and after training. Test trials were identical to training
trials, with the exception that the stimuli included all sixteen filtered conditions and
the full-face condition. Each condition was repeated 20 times (twice per identity) for
a total of 340 trials (10 identities × 17 conditions × 2 repetitions per condition) in
each testing session. In total, participants completed 5 consecutive sessions: pre- and
post-training test sessions, and three training sessions. At the start of each session,
participants completed 10 practice trials with unfiltered faces.

4.4 Results

To maintain an orthogonal design in the analysis of testing data, the full face condition
was omitted from the analyses of variance (ANOVA) on testing data. For any effect
including the factor bandwidth, we did not assume sphericity and report Huynh-Feldt
corrected p-values instead. Effect size was measured using Cohen’s d for t tests, and
generalized eta squared (η2

G) for repeated-measure ANOVAs, as described by Bakeman
(2005) and Olejnik and Algina (2003). Lakens (2013) suggests that Cohen (1988)’s
suggested benchmarks of effect size can be used when interpreting η2

G (small: 0.01,
medium: 0.04, large: 0.16). For t tests, we report effect size using Cohen’s d. Statistical
analyses were performed with R (R Core Team and R Development Core Team, 2017).

Response accuracy during the training sessions was calculated for 12 blocks of
100 trials. Results from the training sessions are displayed in Figure 4.3. Overall,
participants response accuracy increased from 65% to 89%. One participant performed
at ceiling throughout all of training, and another reached ceiling within the first session.
A third participant did not complete all trials during the first training session, but did
complete all of the trials in sessions 2 and 3. Otherwise, all participants showed an
increasing trend across training bins. Training data were analyzed using linear trend
analysis. Linear trends were calculated for each session, and submitted to a one-way
ANOVA with session as a factor. The average linear trend (F(1,11) = 14.3, p = 0.003,
η2

G = 0.428) was significant, and the difference between sessions (F(2,22) = 3.04,
pHF = 0.097, η2

G = 0.105) was not significant. Therefore, response accuracy increased
similarly across training sessions.

Results from the testing sessions are plotted in Figure 4.4. In both the pre-
and post-training test sessions, identification accuracy was higher for 1) the full
face stimulus relative to filtered stimuli; 2) horizontally filtered stimuli relative to
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Figure 4.3 – Mean response accuracy (+/− 1 SEM) during training, calculated for 100
trials per bin. Single subject training performance is plotted in thin coloured lines. A
single subject (grey dashed) mistakenly quit the experiment after ~ 300 trials during the
first session, but they returned and completed the final two sessions in total. Dashed
horizontal line represents chance performance, and vertical lines separate indicate session
boundaries.

vertical filtered stimuli; and 3) broader relative to narrower filter bandwidth stimuli.
A comparison of Figures 4.4A and 4.4B suggests that post-training accuracy was
higher than pre-training accuracy at most bandwidths. Response accuracy from
testing was submitted to a 2 (filter orientation) × 4 (bandwidth) × 2 (training)
within-subjects ANOVA. Only filter bandwidths up to ±40deg were included, as
±40 deg is the largest bandwidth used in which the horizontally and vertically oriented
filters were orthogonal. All broader bandwidths contained overlapping structures
between horizontal and vertical filter orientations. The main effect of filter orientation
(F(1,11) = 11.8, p = 0.0055, η2

G = 0.190) was significant, reflecting higher accuracy
for horizontally (MH = 0.33) than vertically (MV = 0.29) filtered stimuli. The main
effect of bandwidth (F(3,33) = 42.3, pHF < 0.001, η2

G = 0.378) was significant, reflecting
a monotonic increase in accuracy as bandwidth increased from ±10deg to ±40deg
(accuracy increased from 16% to 38%). The main effect of training (F(1,11) = 90.6,
p < 0.001, η2

G = 0.219) also was significant, reflecting overall higher accuracy in the
post-training (Mpost = 0.33) than the pre-training (Mpre = 0.22) session. Additionally,
the training × bandwidth interaction (F(3,33) = 3.83, pHF = 0.019, η2

G = 0.024)
was significant, reflecting a larger improvement from pre- to post-training for larger
bandwidths: as bandwidth increased, changes in response accuracy increased from 0.06
to 0.12. The filter orientation × bandwidth interaction (F(3,33) = 3.83, pHF = 0.019,
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Figure 4.4 – Response accuracy in the pre-training (A) and post-training (b) test
sessions. In each plot, mean response accuracy (+/− 1SEM) is shown for each filter
bandwidth in the horizontal filter (white), vertical filter (grey), and full-face (black)
conditions. Accuracy for vertical filters was subtracted from the appropriate horizontal
filter conditions and plotted as the dashed line (shaded region is +/− 1 standard error
of the difference). The critical bandwidth is the +/− 40deg filter, as it is the largest
bandwidth in which the horizontal and vertical filters contain completely orthogonal
orientations without any overlap. The horizontal-vertical differences were used to
calculated horizontal bias scores per participant.

η2
G = 0.037) was significant, reflecting larger differences between horizontally and

vertically filtered stimuli for certain bandwidths. The filter orientation × training
interaction (F(1,11) = 0.21, p = 0.66, η2

G = 0.001), and the three-way filter orientation
× bandwidth × training interaction (F(3,33) = 1.48, pHF = 0.238, η2

G = 0.013) were not
significant.

The dashed line in Figure 4.4 reflects the difference in response accuracy between
horizontal and vertical conditions, calculated at each bandwidth. As found by Pachai
et al. (2017), the difference in scores were approximately a quadratic function of
bandwidth. This type of trend is expected if subjects have a horizontal bias, since
the mid bandwidth (±40deg) is the largest bandwidth in which the horizontal and
vertical conditions differ completely. At all larger bandwidths, the two types of stim-
uli become increasingly similar, so identification accuracy also becomes increasingly
similar. Furthermore, Pachai et al. (2018) showed that observers need a broad band-
width (±35deg) of horizontal structure for accurate face identification, despite the
fact that most diagnostic structure is in a narrow 10 deg bandwidth. We analyzed
the horizontal-vertical differences by computing the quadratic trend score for each
participant, separately for pre- and post-training. Increasing horizontal bias should
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Figure 4.5 – Horizontal bias was measured at pre- and post-training sessions. Bars
represent group means, and individual points/lines correspond to individual subjects.
Subject colours are consistent with Figure 8. Horizontal bias was measured by first
subtracting response accuracy to vertical conditions from horizontal conditions, and then
computing a quadratic trend of the difference across all 8 filter bandwidths (ignoring
full face). A quadratic trend (horizontal bias) score above zero represents a horizontal
advantage in response accuracy that peaked at mid-size bandwidths.

increase the strength of the quadratic trend. Hence, if training increases horizontal
bias in older adults, then the quadratic trend scores should be more positive after
training than before training.

In a sense, the described quadratic trend score is a better measure of horizontal
bias than the horizontal-vertical difference at the largest orthogonal bandwidth (e.g.,
±40deg; Chapters 2 and 3) because it is calculated using data from all bandwidths
rather than a single bandwidth. If quadratic trend scores are measuring the same
phenomenon as horizontal bias scores calculated using previous techniques, the two
measures should be significantly correlated. Indeed, the correlation between quadratic
trend scores and horizontal bias was significant at pre-training (r = 0.795, t10 = 4.15,
p = 0.002) and post-training (r = 0.903, t10 = 6.63, p < 0.0001), suggesting that if
quadratic trend scores are not equivalent to horizontal bias scores, they are at least
tightly linked to each other.

Quadratic trend scores for pre- and post-training are plotted in Figure 4.5. On
average, pre-training quadratic trend scores were near zero, and post-training quadratic
trend scores were greater than zero. One-tailed t tests on quadratic trend scores
confirmed that pre-training scores (M = 0.043, t11 = 1.36, p = 0.101, d = 0.541) were
not significantly greater than zero, but post-training scores (M = 0.156, t11 = 2.43,
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Figure 4.6 – Full face identification accuracy (y-axes) plotted against quadratic trend
scores (x-axes). Full face identification accuracy calculated across all training trails
plotted against quadratic trend scores measured at A) pre-training, B) post-training,
and C) the pre- to post-training difference. Pearson’s least squares correlations, and the
corresponding correlation coefficients and one-tailed p-values are provided.

p = 0.0167, d = 0.970) were significantly greater than zero, and also greater than
pre-training quadratic scores (MD = 0.112, t11 = 2.01, p = 0.0348, d = 0.580). These
results indicate that training older adults to identify full faces improved their response
accuracy most to the mid-size bandwidths of horizontal filter stimuli.

Face identification accuracy was predicted to be positively correlated with quadratic
trend scores, so one-tailed p-values are reported. Face identification accuracy across all
training trials was not significantly correlated with pre-training quadratic trend scores
(r = 0.401, t10 = 1.39, one-tailed p = 0.098, Figure 4.6A), but it was significantly
correlated with post-training quadratic trend scores (r = 0.732, t10 = 3.40, one-
tailed p = 0.0034, Figure 4.6B) as well as the the pre- to post-training change in
quadratic trend scores (r = 0.609, t10 = 2.43, one-tailed p = 0.018, Figure 4.6C). We
also inspected the correlations by correlating pre- and post-training quadratic trends
with face identification accuracy separately for each block of training. When face
identification accuracy was calculated separately for 12 training bins (Figure 4.7),
pre-training quadratic trend scores were significantly correlated with accuracy only
in the first bin (r = 0.54, p = 0.034 for block 1, and r ≤ 0.47, p ≥ 0.07 for blocks
2-12), whereas, post-training quadratic trend scores were significantly correlated with
accuracy in all twelve bins (r ≥ 0.53, p ≤ 0.04 for blocks 1-12).
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Figure 4.7 – Correlation coefficients for the association between face identification
accuracy and pre-training (grey, dashed) and post-training (white, solid) quadratic trend
scores. Face identification accuracy was calculated separately for each block of 100 trials.
Red dotted line represents the critical r value (one-tailed p < 0.05; df=10 for all blocks
except block 4 (df=9). Post-training quadratic trend scores were significantly correlated
with face identification accuracy throughout all training blocks, whereas pre-training
quadratic trend scores were significantly correlated with only the first training block.

4.5 Discussion

We trained older adults in a 1-of-10 face identification task. Response accuracy
improved significantly throughout training. Before and after training, we measured
horizontal bias of older adults. Horizontal bias at pre-training was negligible and not
correlated with overall face identification accuracy. Critically, post-training horizontal
bias was significant, and positively correlated with full face identification accuracy.
Our results suggest that older adults deficits in face identification may be linked to a
weakened horizontal bias, but that improved horizontal bias underlies improvements
seen in training.

Post-training horizontal bias in older adults was very similar to horizontal bias to
unfamiliar faces in younger adults (Pachai et al., 2017, 2018). That is, the bandwidth
at which the horizontal-vertical difference peaked was ±50 deg, similar to the previously
reported peaks at ±45deg (Pachai et al., 2017, 2018). The small difference in peak
bandwidth between these studies is likely due to the fact that we did not have a ±45 deg
filter bandwidth in our study. Our results are consistent with the idea that human
observers pool information over a broad bandwidth. For example, using the same
stimulus type as here, Pachai et al. (2018) revealed that human observer performance
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in a 10-AFC task is best modelled by pooling information within ±35 deg of horizontal,
despite the fact that most diagnostic information is conveyed by a ±5deg horizontal
orientation band. This suggests that face identification decisions are informed by
broadband orientation channels. Horizontal-vertical differences peak at narrower
bandwidths for familiar than unfamiliar faces (Pachai et al., 2017), consistent with
the idea that the bandwidth of orientation channels can adjust/narrow to match the
stimulus (Taylor et al., 2014) with training. Results from other studies indicate that
human observers pool horizontal facial structure within a much narrower orientation
bandwidth (±12.5deg: Goffaux and Greenwood, 2016), which may also be due to
a narrowing of the adjustable bandwidth orientation channels to match the stimuli.
However, Goffaux and Greenwood (2016) simply removed filtered orientations instead
of replacing with a face context like that done here and in Pachai et al. (2018).
Hence, it is possible that observers internal orientation filters were better able to
adjust/narrow to stimuli containing structure in limited orientation bands, or that
observers were also pooling across a broad ±35 bandwidth, but that broadband pooling
does not hurt performance when orientations outside of the signal’s bandwidth are left
empty. One way to investigate the difference between Pachai et al. (2018) and Goffaux
and Greenwood (2016) is to still embed informative horizontal structure within an
uninformative face context, but leave an orientation band between the horizontal and
vertical bands empty. The influence of oblique orientations on horizontal bias can be
tested by varying the size of the empty bandwidth.

Full face identification accuracy was not correlated with pre-training horizontal
bias, but it was significantly correlated with post-training horizontal bias. This result
is consistent with the notion that perceptual learning of faces enhances older adults’
sensitivity to horizontal facial structure. Similar relationships between horizontal
bias and upright face identification accuracy of untrained faces have been reported
in younger adults (Pachai et al., 2013; Chapter 2). Although we show a significant
increase in horizontal bias from pre- to post-training, we do not have evidence that the
same older adults will show an increased horizontal bias to an untrained set of faces. In
fact, horizontal bias within the same set of younger adults manifests via significantly
stronger horizontal bias to familiar relative to unfamiliar faces (Pachai et al., 2017), and
perceptual learning of faces is stimulus-specific (Hussain et al., 2012b), indicating that
the strength of horizontal bias is at least partly stimulus-specific. Generalization of a
strengthened horizontal bias is critical to creating a viable face-training regimen to aide
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those with deficits in horizontal bias. One possibility is to introduce adequate stimulus
variability across trials in order to prevent perceptual learning’s stimulus-specificity
(Hussain et al., 2012a).

One explanation for the mechanism underlying the training-induced increase in
horizontal bias is that that face identification judgments are made using a decision
variable that relies on weighted input from lower level orientation channels, and that
improvements in response accuracy are a result of the decision variable relying more
on horizontally than vertically oriented channels (Figure 4.1). This interpretation is
consistent with a re-weighting model of perceptual learning (Petrov et al., 2005) in
which re-weighting increases the signal-to-noise ratio through increasing the weights
of the signal (Gold et al., 1999b). The results can also be interpreted within the
reverse hierarchy model of perception (Ahissar and Hochstein, 2004): pre-training face
identification relies on a higher-level signal in which information is pooled across many
orientations, and practice identifying faces manifests as a post-training face identifica-
tion strategy which relies on a lower-level signal in which information is pooled across
fewer orientations, and therefore informative horizontal and non-informative vertical
structures can be separated. Other results suggest that the decision variable that
relies most on horizontal structure may exist in the fusiform face area (Goffaux et al.,
2016), further strengthening the role of a horizontally biased mechanism underlying
face perception.

We show that older adults’ deficits in horizontal bias (Obermeyer et al., 2012;
Goffaux et al., 2015) corresponds to their overall worsened face identification accuracy.
Practice in identifying a set of faces improves both face identification accuracy and
horizontal bias, suggesting that deficits in face perception are likely due to a weakened
horizontal bias to all faces. However, given that horizontal bias in younger adults
is stronger for personally familiar than unfamiliar faces (Pachai et al., 2017), it is
possible that older adults retain a strong horizontal bias for familiar faces, and they
are merely less effective at identifying novel faces. This is especially likely since face
identification accuracy rapidly increased after only 100 training trials (Figure 4.3); a
rapid ‘recovery’ of horizontal bias may be indicative of an intact horizontal bias process
that is only active for familiar faces. To better address this, we need to evaluate older
adults’ horizontal bias to personally familiar faces, as well as track the time-course
of horizontal bias throughout training with unfamiliar faces. Future studies should
build on the finding that horizontal bias to faces can be strengthened, and focus on

99



PhD — A. Hashemi McMaster U. — Psychology, Neuroscience & Behaviour

the generalizability of the improvements to novel faces.
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Chapter 5

Learning to discover
orientation-specific structure in
textures

5.1 Abstract

Perceptual learning refers to long-lasting improvements in performance that occur as
a result of practice in a perceptual task. One prominent characteristic of perceptual
learning is its high degree of stimulus specificity. For example, perceptual learning in
a texture identification task is specific to the trained textures. In a typical texture
identification task, perceptual learning occurs because observers become more sensitive
to diagnostic stimulus components, but the particular components that are learned vary
across observers. Here, we encouraged observers to adopt a specific processing strategy
by manipulating the diagnostic orientation structure of textures, such that one broad
orientation band contained informative target structure, and the orthogonal orientation
band contained non-informative context structure. Participants practiced identifying
textures containing the informative structure alone (“target-alone”) or embedded
within the non-informative context (“target+context”). We hypothesized that practice
with target+context textures will encourage observers to discover the informative
structure, and learning to discover informative structure will better generalize to
different textures. The results reveal that practice with target-alone textures did not
transfer to target+context textures, which is unsurprising since target-alone textures did
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not promote the discovery strategy. However, practice with target+context textures
generalized to familiar targets presented alone, indicating that participants could
recognize the target structure from training, independent of the trained context. In
both training groups, learning did not generalize to novel targets, suggesting that
participants are learning orientation structures particular to the trained targets. In
several experiments, we assess how generalization is affected by task difficulty, context
variability, and ease-of-discovery. The results are interpreted using a re-weighting
framework, and further discussed in different theories of perceptual learning, with
special affinity to the reverse hierarchy model of perception.

5.2 Introduction

Perceptual learning refers to long-lasting improvements in performance that occur as
a result of practice on many perceptual tasks (Sagi, 2011). Perceptual learning often
is remarkably specific to the stimuli seen during training. For example, perceptual
learning in vernier discrimination tasks (McKee and Westheimer, 1978) is specific to
the stimulus orientation and retinal position seen during training (Poggio et al., 1992;
Fahle et al., 1995); learning in grating discrimination tasks is specific to the spatial
frequency and orientation of the trained stimulus (Fiorentini and Berardi, 1981); and
direction discrimination is specific to the trained direction of motion (Ball and Sekuler,
1987). Stimulus-specific learning also occurs in arguably more complex situations such
as texture identification tasks: for example, improvements in texture identification,
which can last for at least one year (Hussain et al., 2011), are disrupted by changes
in stimulus contrast polarity (Hussain et al., 2009a), orientation (Hussain et al.,
2009c), and position (Bennett et al., 2015). Perceptual learning has been implicated
in face perception as well. Life-long practice seeing faces has lead to expertise in face
processing (Diamond and Carey, 1986; Gauthier et al., 2000), and since the majority
of perceived faces are upright, the expertise is orientation-specific to upright, but not
inverted, faces (Diamond and Carey, 1986; Sekuler et al., 2004). This phenomena
is known as the face inversion effect (Yin, 1969). Inversion effects have also been
observed in short-term training studies to non-face objects (Gauthier and Tarr, 1997;
Rossion et al., 2002; Hussain et al., 2009a), and perceptual learning of inverted faces
has even abolished the face inversion effect (Hussain et al., 2009c).

Perceptual learning occurs because practice enables observers to base their decisions
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on more informative aspects of the stimuli. For example, Gold et al. (2004) showed that
observers in a texture discrimination task learned to base discrimination on analyses of
informative spatial regions. In other words, observers learned to discriminate textures
by extracting diagnostic information from small portions of the stimuli. Similarly,
the discrimination of static faces, which is affected by perceptual learning (Hussain
et al., 2009b,c, 2012b; Gauthier et al., 2003), is based on diagnostic information
conveyed by visual structure near the eyes and brows (Gold et al., 2004; Sekuler et al.,
2004; Mangini and Biederman, 2004; Peterson and Eckstein, 2012; Rousselet et al.,
2014). Discrimination of inverted faces is based on diagnostic information conveyed by
the same visual structures as in upright faces, but the information is processed less
efficiently (Sekuler et al., 2004; Pachai et al., 2013). Perceptual learning of inverted
faces increases the efficiency of processing the most diagnostic structure (Pachai et al.,
2018a), consistent with the notion that perceptual learning leads to more efficient
processing (Gold et al., 1999).

Why is perceptual learning often stimulus-specific? One suggestion by Sagi (2011)
is that observers learn idiosyncratic features of a response to the (often very small) set
of stimuli, and their learned representations are faithful to the trained stimuli. Hence,
much like a statistical algorithm can overfit data and therefore fail to account for
slightly different data, observers may not be able to map similarities in stimuli that are
slightly different than their learned representations. Hussain et al. (2012a) examined
this idea by measuring perceptual learning in a texture identification task in conditions
that differed in the amount of variation among stimuli presented during training. For
example, one condition use a fixed set of stimuli whereas another condition used novel
stimuli on every trial, which made it impossible to do the task based on information
conveyed by a small set of exemplars. The result was that learning in the variable
condition was much slower than in the fixed condition, but variable learning generalized
to new items whereas learning in the fixed condition did not.

In the Hussain et al. (2012a) study, observers could only learn to perform the
identification task in the variable condition by developing a strategy that could be
applied to the general class of band-limited textures that were used as stimuli. Hence,
it is not surprising that they could generalize learning to new textures. In the current
experiments we take a different approach by examining generalization of learning in
an identification task which uses a small number of fixed items during training, but
the diagnostic information is embedded in a non-informative context. Our working
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hypothesis is that presenting observers with a situation in which they must discover
the task-relevant information will lead to greater generalization of learning. Specifically,
this approach may reduce the likelihood that observers will learn idiosyncrasies tied
to a small set of stimuli, while still using only a small set of stimuli in training. This
approach is reminiscent of some practical situations where expert observers must
detect a subtle signal, such as early signs of a tumour, in an unstructured and non-
informative context (see Norman et al. (1989) and Nodine et al. (1999) for examples
in dermatology and mammography, respectively). Furthermore, discovering the most
informative structure may be the learned strategy underlying face expertise, wherein
observers have learned to discover the horizontal structure of a face (Dakin and Watt,
2009; Pachai et al., 2013), which conveys important identity-related features such as
the eyes and brows.

The approach to designing stimuli that require discovery of the diagnostic structure
was taken from recent research on face perception. Face identification relies on a
horizontal orientation band (Dakin andWatt, 2009) which conveys the most informative
information about human face identity (Pachai et al., 2013). One way that horizontal
selectivity has been assessed is by combining informative structure from the horizontal
band of a target face with the structure from the vertical band of a non-informative
face context (Pachai et al., 2018b). The result is a stimulus that appears like a
full face with no visual cue about the manipulation of which orientations convey
informative or non-informative structure. Therefore, identification accuracy depends
on the observer’s ability to accurately rely on the more informative orientation band.
In the experiments presented here, stimuli were constructed using textures (e.g., Gold
et al., 1999, and Figure 5.1A) instead of faces. Textures were filtered to contain
informative structure in a certain orientation band (i.e., target), and combined with
non-informative structure in the orthogonal orientation band (i.e., context). These
stimuli, referred to as target+context stimuli, were used in a texture identification
task, and were predicted to promote the discovery strategy mentioned earlier. In
Experiments 1 and 2, the context is constant across items and trials (Figure 5.1D&E),
whereas in Experiments 3-6, the context varies across items and trials (e.g., Figure
5.1 F&G). In contrast, textures were also used that contained informative structure
in an orientation band, and no structure in the orthogonal orientation band. These
stimuli, referred to as target-alone stimuli (Figure 5.1B&C), were predicted to not
require any discovery of informative structure. If practice with target+context stimuli
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promotes a discovery of the informative structure, then we should expect post-training
generalization to the same targets when presented alone. Since there is no opportunity
for discovery with target-alone stimuli, we do not expect practice with target-alone
stimuli to generalize to the same targets when presented within a context.
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Figure 5.1 – Example sets of stimuli used: A) hT + vT : textures formed from 2-4
cycles per image spatial frequency band-limited white noise patches. They contain
unique structure in all orientations (i.e., [h]orizontal and [v]ertical orientations contained
diagnostic [T]arget structures, as indicated by the blue stripes in the icon). B) hT -alone:
textures containing only horizontal structure of the textures from A, and no vertical
structure. C) vT -alone: same as B but horizontal and vertical swapped. D) hT+vC: the
hT -alone targets from B are each combined with the same [v]ertical [C]ontext; therefore,
all six targets are identical in their vertical contexts but differ in their horizontal targets.
Manipulation is indicated in the icon with the blue target and red context areas. E)
vT + hC: same as D but with horizontal and vertical swapped. F) hT + vC (variable):
Example stimuli where the all three textures contain the same horizontal target (the
target identified with the dotted black line from B), but a different vertical context in
each exemplar. The final percept of these textures with a variable context demonstrates
how different the textures appear, even though the horizontal structure is the same in all
three. G) vT +hC (variable): same as F but with a horizontal and vertical swapped. In
Experiments 1 and 2, target+context textures refer to D and E, whereas in Experiments
3-6, the target+context textures always contained novel contexts on all presentations, as
demonstrated in F and G.
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5.3 Experiment 1: The effect of context on
texture identification

5.3.1 Methods

5.3.1.1 Participants

Twenty-four undergraduate students (7 males) from McMaster University participated
in the experiment. Participants had normal or corrected-to-normal visual acuity; their
ages ranged from 18 to 27 years (M = 20.5, SD = 3.15). Two participants from
the target+context group failed to exhibit any learning during the training phase –
i.e., the difference between accuracy in the last and first two bins was ≤ 0 – and
therefore were excluded from the analysis. This criterion for excluding participants,
which we used in subsequent experiments, seemed reasonable because the primary
aim of the experiment was to investigate the factors that influence the generalization
of learning. The experimental protocol was approved by the McMaster University
Research Ethics board, and informed consent was obtained from each participant
prior to the experiment. Each participant received partial course credit or was paid
$10/hour for their participation.

5.3.1.2 Apparatus & Stimuli

Stimuli were generated on an Apple Macintosh G5 using Matlab R2014b and the Psy-
chophysics and Video toolboxes (Brainard, 1997; Pelli, 1997). Stimuli were presented
on a 19 inch NEC MultiSync FE992 CRT monitor, with a resolution of 1024×768
pixels (28 pixels/cm), a frame rate of 85Hz, and an average luminance of 74.7 cd/m2.
Viewing was binocular through natural pupils, and a chin rest stabilized the viewing
distance at 60 cm. The monitor was the only source of illumination in the room.

Stimuli were band-limited noise textures that were created by first applying an
isotropic, band-pass (2-4 cycles/image) ideal spatial frequency filter to six 256 × 256
pixel (4.6 × 4.6 degrees of visual angle) images of Gaussian white noise. These textures
were used to construct the targets for our identification tasks: they contained unique
(i.e., target-specific) structure at all orientations, and therefore are referred to as
horizontal-target + vertical-target (hT + vT ) stimuli (Figure 5.1A). These textures
were then passed through an ideal orientation filter that had a full bandwidth of 90◦
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and was centered either at 0◦ (i.e., horizontal) or 90◦ (i.e., vertical). The resulting
images contained only horizontal or vertical structure and therefore we refer to them as
horizontal target-alone (hT -alone) and vertical target-alone (vT -alone) stimuli (Figure
5.1B & C, respectively). Additionally, we created textures that contained diagnostic
target structure in one orientation band and non-diagnostic contextual structure in
the orthogonal orientation band. Vertical contextual structure (vC) was created by
averaging six vT -alone textures: adding this single image to the six (hT -alone images
resulted in six new textures (hT + vC) that contained structure at all orientations,
but diagnostic (i.e., target-specific) structure only in the horizontal band (Figure
5.1D). Similarly, horizontal contextual structure (hC), created by averaging six (hT -
alone textures, was added to vT -alone images to create six vT + hC stimuli that
had diagnostic structure only in the vertical orientation band (Figure 5.1E). During
training, stimulus RMS contrast was 0.035, which is well above detection threshold.
To avoid possible ceiling effects on response accuracy, stimulus RMS contrast was
reduced to 0.025 during the test phase.

5.3.1.3 Design & Procedure

At the start of the experiment, participants viewed a blank grey screen for 60 s to adapt
to the average luminance of the display. Each trial consisted of a 0.5 s presentation of
a high-contrast fixation in the center of the display followed by a 0.15 s presentation of
a single randomly-selected target texture. A response screen consisting of six textures
was presented 0.5 s after target offset, and participants were instructed to use the
mouse to select the item on the response screen that matched the target texture. After
each response, the response screen was replaced by a blank display and participants
received auditory feedback in the form of brief high- or low-pitched tones for correct
and incorrect responses, respectively. The next trial started 0.2 s after the auditory
feedback. Observers were instructed to select the alternative that looked like the target.
The task instructions were identical for the testing and training sessions.

Half of the participants were trained on six hT -alone (i.e., target-alone) textures,
while the other half trained on six hT + vC (i.e., target+context) textures. Training
consisted of 960 trials total (160 repetitions per target), split equally across two
consecutive days. There also were two testing sessions split across two days: On Day
1, the testing session occurred prior to the training trials, and on Day 2 the testing
session occurred after the training trials. Each testing session had two blocks. Block A
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consisted of hTF -alone, vTN -alone, and hTF + vTN stimuli, where the subscripts F and
N denote Familiar and Novel target textures, respectively. Testing block B consisted
of hTF + vC, vTN + hC, and hTF + vTN stimuli. In each testing block, each stimulus
was presented 60 times in a random order, yielding a total of 180 trials per block.
The order of blocks A and B were randomized across participants, but within each
participant the same order was used on days 1 and 2. The conditions are summarized
in Table 5.1.

As noted above, during each testing phase subjects were presented with stimuli
that were designated as familiar or novel. A stimulus was designated as familiar if
it corresponded to a pattern that was seen during the training phase (Table 5.1).
For example, hTF -alone would correspond to a horizontally-filtered texture that was
presented during training, whereas hTF + vTN would be a texture that consisted of a
familiar, horizontally-filtered texture and a novel, vertically-filtered texture (Figure
5.1B&A). The vTN -alone and vTN + hC stimuli were novel in two respects. First,
these filtered stimuli were constructed from white noise textures that were different
from the ones used to generate the horizontal patterns seen during training. Second,
the informative parts of the textures were oriented vertically instead of horizontally
(Figure 5.1C&E). Based on the findings of Hussain et al. (2009a), we expected that the
effects of practice with horizontal textures would not transfer to novel, vertical textures.
We can therefore use improvements with the vertical target textures (vTN -alone and
vTN + hC) as a measure of learning that is unrelated to the stimulus, and include
these conditions in our ANOVAs and follow-up t-tests as a standard for measuring
improvements in the horizontal target conditions.

Day 1
Testing Block A hTF -alone vTN -alone hTF + vTN

Testing Block B hTF + vC vTN + hC hTF + vTN

Training 6 hT -alone textures or 6 hT + vC textures
Day 2
Training 6 hT -alone textures or 6 hT + vC textures
Testing Block A hTF -alone vTN -alone hTF + vTN

Testing Block B hTF + vC vTN + hC hTF + vTN

Table 5.1 – Experimental conditions in Experiment 1. The order of Blocks A and B
was randomized for each participant but was the same on both days. During training,
half of the subjects saw hT -alone textures and half saw hT + vC textures.
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5.3.2 Results

All statistical analyses were performed with R (R Core Team and R Development
Core Team, 2017). For F tests, effect size was measured using generalized eta squared
(η2

G) because it provides comparable values for between- and within-subject measures
(Bakeman, 2005; Olejnik and Algina, 2003). Lakens (2013) suggests that Cohen
(1988)’s suggested benchmarks of effect size can be used when interpreting η2

G (small:
0.01, medium: 0.04, large: 0.16). Unless stated otherwise, the reported t tests and
p values are all two-tailed, and are accompanied by mean difference values (MD).
Additionally, for the reader’s benefit, F tables for most of the described ANOVAs on
the testing data are reproduced in full in the Appendix.

5.3.2.1 Training Phase

Response accuracy during training trials is shown in Figure 5.2A. Overall response
accuracy during training was significantly better for the target-alone trained group
compared to the target+context group (MD = 0.107, t20 = 3.68, p = 0.001). Training
data were split into 10 bins of 96 trials each, and a preliminary trend analysis indicated
that response accuracy increased approximately linearly across the 10 training trial bins,
and that the higher-order trends were small and non-significant (F ’s< 1). Therefore
our analyses of the training data focussed on the linear trend of proportion correct
across the 10 training trial bins. We found that the linear trend was significant
(F(1,20) = 165.2, p < 0.0001, η2

G = 0.892) and that the linear trend did not differ across
groups (F(1,20) = 1.40, p = 0.251, η2

G = 0.065). Hence, the data indicate that overall
accuracy during training was higher in the target-alone than the target+context group,
but that learning occurred in both groups and that the rate of learning, as indexed by
the linear trend, did not differ between groups.

5.3.2.2 Pre- & Post-training Test Phases

Differences between pre- and post-training scores in each test condition are shown in
Figure 5.2B. Data from the hTF -alone, hTF +vC, vTN -alone, and vTN +hC conditions
were analyzed with a 2 (training condition) × 2 (testing context) × 2 (stimulus novelty)
ANOVA, which revealed a significant three-way interaction between training condition
(target-alone vs. target+context), testing context (target-alone vs. target+context),
and stimulus novelty (familiar horizontal vs. novel vertical targets) (F(1,20) = 44.3,
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p < 0.0001, η2
G = 0.212). Therefore we analyzed the data from each training group

with separate 2 (testing context) × 2 (stimulus novelty) within-subject ANOVAs.
For the target-alone trained group (white bars in Figure 5.2B), the ANOVA revealed

a significant intercept (F(1,11) = 44.5, p < 0.0001, η2
G = 0.534), indicating that, overall,

accuracy was higher after training. The main effect of testing context (F(1,11) = 8.17,
p = 0.0156, η2

G = 0.179) was significant, but the main effect of stimulus novelty
(F(1,11) = 2.14, p = 0.171, η2

G = 0.050) was not. The testing context × stimulus novelty
interaction (F(1,11) = 11.6, p = 0.0059, η2

G = 0.136) was significant, and follow-up
paired t-tests (two-tailed) showed that accuracy increased more for trained textures
than untrained textures that were presented alone (i.e., hTF -alone > vTN -alone;
MD = 0.136, t11 = 3.50, p = 0.006), but not when the textures were embedded within
a non-informative context (i.e., hTF + vC 6> vTN + hC; MD = −0.036, t11 = −0.788,
p = 0.447). These results suggest that training with horizontal target-alone textures
resulted in stimulus specific learning (hTF -alone > vTN -alone) that did not generalize
to a situation where the familiar horizontal targets were embedded in a novel context
(hTF + vC 6> vTN + hC).

For the target+context trained group (grey bars in Figure 5.2B), the ANOVA
found that the intercept was significantly different from zero (F(1,9) = 14.1, p = 0.0045,
η2

G = 0.341), indicating that, like what was found for the target-alone group, overall
accuracy in the test conditions was higher after training. As was found for the
target-alone group, the main effect of testing context (F(1,9) = 10.65, p = 0.0010,
η2

G = 0.227) was significant, the main effect of stimulus novelty (F(1,9) = 0.0063,
p = 0.808, η2

G = 0.002) was not significant, and the testing context × stimulus novelty
interaction (F(1,9) = 55.0, p < 0.0001, η2

G = 0.313) was significant. The interaction
reflects the fact that accuracy improved more for familiar horizontal textures than novel
vertical textures when they were embedded in context (i.e., hTF + vC > vTN + hC;
MD = 0.135, t9 = 2.95, p = 0.0161), which was not true for textures presented without
context (i.e., hTF -alone < vTN -alone; MD = −0.117, t11 = −3.42, p = 0.0077). These
results show that, as was found with the target-alone trained group, training with
horizontal targets embedded in a non-informative vertical context produced stimulus
specific learning (hTF + vC > vTN +hC) that did not generalize to the case where the
same horizontal targets were presented without a non-informative context (hTF -alone
6> vTN -alone).

Our results indicate that stimulus-specific learning was significant in both groups:
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response accuracy after training was most improved when subjects were presented with
the same stimulus seen during training. In addition, we found that that neither group
showed evidence of context-generalization: the effects of training were significantly
reduced if the familiar targets were placed in a non-informative context, or if the
familiar targets were presented without the non-informative context that was present
during training. In addition, the magnitude of stimulus-specific learning, which was
defined in the above tests as hTF -alone > vTN -alone for the target-alone group, and
as hTF + vC > vTN + hC for the target+context group, did not differ between the
two training groups (MD = 0.001, t20 = 0.019, p = 0.985). Similarly, the magnitude of
context-generalization, which was defined in the above tests as hTF + vC > vTN + hC

for the target-alone group, and as hTF -alone > vTN -alone for the target+context group
(MD = 0.0081, t20 = 1.36, p = 0.189) did not differ between the two training groups.
Hence, our results suggest that the two training groups exhibited similar behaviour in
the training phase.

Finally, we compared the effect of training on response accuracy in the hTF -alone
and hTF + vC testing conditions with the hTF + vTN (full target textures as in the
top of Figure 5.1A; data on far right of Figure 5.2B). hTF + vTN textures contain
diagnostic target structure in all orientations, unlike the other two hTF textures
that contain informative structure only in the horizontal orientations. Therefore,
hTF + vTN stimuli provide an opportunity to assess the effect of training on stimuli
that appear like hTF + vC textures, but in which the structure at the horizontal and
vertical orientations is informative. In the target-alone group, training resulted in a
significant improvement in response accuracy with hTF + vTN textures (M = 0.108,
t11 = 3.29, p = 0.0072). This change in response accuracy was significantly smaller
than improvements to hTF -alone textures (MD = −0.126, t11 = −2.70, p = 0.0207),
and was slightly, but not significantly, larger than improvements to hTF + vC textures
(MD = 0.061, t11 = 1.94, p = 0.0782). Therefore, training in the target-alone condition
had similar effects on accuracy for test stimuli in which the vertical context was or
was not informative. Participants who trained on target+context textures showed
improvements to hTF + vTN textures (M = 0.117, t9 = 4.16, p = 0.002) that were
slightly but not significantly smaller than the training effect for hTF + vC textures
(MD = −0.068, t9 = −2.21, p = 0.0545), and was significantly larger than the effect
for hTF -alone textures (MD = 0.158, t9 = 4.91, p = 0.0008). Therefore, in the
target+context group, removing all vertical structure (hTF -alone) from the trained
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stimulus reduced the effect of training more than replacing the non-informative context
with diagnostic structure (hTF + vTN). In both training conditions, improvements
were largest when the textures contained the same target and context seen during
training.

5.3.3 Discussion

Results from Experiment 1 suggest that training to identify horizontal textures that
were or were not embedded in non-informative vertical structure produced similar
learning: the rate of learning during the training phase did not differ significantly
between groups, and the learning in both groups exhibited similar patterns of stimulus-
specificity. Specifically, training improved response accuracy most for the trained
patterns presented in the trained context. Contrary to our hypothesis, we found no
evidence that embedding the diagnostic structure within a non-informative context
produced greater generalization of learning.
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Figure 5.2 – A) Mean proportion correct for each bin of 96 trials across both training
sessions from Experiment 1 (Day 1: bins 1-5: Day 2: bins 6-10). Dotted line represents
chance performance. B) Change in the mean proportion correct from pre- to post-
training for the different testing conditions from Experiment 1. C & D) Same as A &
B except for Experiment 2. Note that the ANOVA performed on the test data did not
include the hTF + vTN condition. Error bars represent ±1 SEM.
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5.4 Experiment 2: The effect of target contrast
on training task difficulty

One potential criticism of Experiment 1 is how we constructed our images. Our
stimuli were constructed by setting the RMS contrast after the target and context
were combined; hence, the contrast power for the diagnostic horizontal structure was
lower in the target+context condition compared to the target-alone condition. In
other words, stimulus contrast was set for the final texture, and therefore the target
structure had a slightly higher contrast in target-alone textures than in target+context
textures. The contrast difference may explain why response accuracy was higher in
the target-alone group than the target+context group. Differences in difficulty are
especially interesting since increasing task difficulty during training may increase the
stimulus-specificity of perceptual learning (Ahissar and Hochstein, 1997). Hence, it is
possible that an effect of context on learning generalization was counteracted by the
effect of increased difficulty in the target+context condition. Therefore, in Experiment
2 we examined how accuracy in the training and test phases might be affected by
equating RMS contrast of the diagnostic structure in the two training conditions.

5.4.1 Methods

Twenty four naïve participants (9 males, range=18-25 years old, M=20.0, SD=2.71),
12 in each training condition, were tested in this experiment. One participant from
the target-alone group failed to exhibit any learning and was thus excluded from the
analysis. The apparatus, procedure, and experimental design were identical to those
used in Experiment 1, with the exception that the target RMS contrast was the same in
the target-alone and target+context textures (0.035 during training and 0.025 during
testing), and the context in the target+context stimuli had the same RMS contrast as
the target.

5.4.2 Results

5.4.2.1 Training Phase

Training data is presented in Figure 5.2C. During training, mean response accuracy
was significantly better in the target-alone group than the target+context group
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(MD = 0.102, t21 = 2.51, p = 0.020). Proportion correct improved approximately
linearly across 96-trial bins: the linear trend was statistically significant (F(1,21) = 137.2,
p < 0.0001, η2

G = 0.867) and did not significantly differ between groups (F(1,21) = 2.35,
p = 0.140, η2

G = 0.101).
The difference between accuracy in the two training groups was similar in Exper-

iment 2 (MD = 0.102) and Experiment 1 (MD = 0.107). Mean response accuracy
during the training phase was submitted to a 2 (training group) × 2 (experiment)
ANOVA. The main effect of training group (F(1,41) = 17.2, p = 0.0002, η2

G = 0.296) was
significant, but the main effect of experiment (F(1,41) = 0.017, p = 0.897, η2

G < 0.001)
and the two-way interaction (F(1,41) = 0.009, p = 0.923, η2

G < 0.001) were not signifi-
cant. Furthermore, a 2 (Experiment) × 2 (Training Group) ANOVA on the linear trend
scores showed that the linear increase of accuracy across the 96-trial bins of training
trials did not differ across experiments (F(1,41) = 2.28, p = 0.139, η2

G = 0.053) and
training condition (F(1,41) = 3.70, p = 0.0615, η2

G = 0.083), and the difference between
conditions did not vary significantly across experiments (F(1,41) = 0.248, p = 0.621,
η2

G = 0.006).
Finally, we conducted a 2 (training group) × 2 (experiment) × 10 (bin) ANOVA

and found that the the main effects of training group (F(1,41) = 17.2, p = 0.0002,
η2

G = 0.229) and bin (F(9,369) = 74.2, pHF < 0.0001, η2
G = 0.347) were significant, as

was the bin × training group interaction (F(9,369) = 2.40, pHF = 0.021, η2
G = 0.017)

also was significant. All other main effects and interactions were not significant (in
each case, F< 0.8, p> 0.68, & η2

G < 0.006). Inspection of Figure 5.2 suggests that the
significant bin × training group interaction reflects the fact that in both experiments the
difference between training groups was slightly larger in the first half of training than
the second half. We evaluated this hypothesis by computing average response accuracy
in training session 1 (i.e., bins 1-5) and training session 2 (i.e., bins 6-10) for each
participant, and submitting those scores to a 2 (training group) × 2 (session) ANOVA.
As expected, the training group × session interaction was significant (F1,43 = 6.12,
p = 0.012, η2

G = 0.0125), indicating that the difference between groups was smaller in
session 2 than session 1.

Overall, these analyses suggest that response accuracy during training did not
differ significantly between Experiments 1 and 2: In both experiments, overall response
accuracy during the training phase was significantly lower in the target+context group
than the target-alone group, but that the change in accuracy, as indexed by the linear
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trend, was similar in the two groups.

5.4.2.2 Pre- & Post-training Test Phases

Differences between pre- and post-training scores in each test condition are shown in
Figure 5.2D. Differences between pre- and post-test scores in the hTF -alone, hTF +vC,
vTN -alone, and vTN + hC conditions were analyzed with a 2 (training condition) × 2
(testing context) × 2 (stimulus novelty) ANOVA, which revealed that the overall change
in performance differed significantly from zero (F(1,21) = 53.9, p < 0.0001, η2

G = 0.530),
indicating that performance was better, on average, after training. As was found in
Experiment 1, the ANOVA also found a significant three-way interaction between
training condition, testing context, and stimulus novelty (F(1,21) = 21.2, p = 0.0002,
η2

G = 0.157), so we analyzed the data from each training group with separate 2 (testing
context) × 2 (stimulus novelty) within-subject ANOVAs.

In the target-alone trained group (white bars in Figure 5.2D), the grand mean
differed significantly from zero (F(1,10) = 34.4, p = 0.0002, η2

G = 0.640), indicating
that, overall, accuracy in the test conditions improved with training. The main effect
of testing context (F(1,10) = 3.92, p = 0.0758, η2

G = 0.075) was not significant, but
the main effect of stimulus novelty (F(1,10) = 8.70, p = 0.0145, η2

G = 0138) and the
testing context × stimulus novelty interaction (F(1,10) = 17.5, p = 0.0019, η2

G = 0.138)
were significant. Follow-up t tests revealed that accuracy increased more for trained
textures than untrained textures that were presented alone (hTF -alone > vTN -alone,
MD = 0.179, t10 = 5.12, p = 0.0004) but not when those textures were embedded in a
non-informative context (hTF + vC 6> vTN + hC, MD < 0.001, t10 < 0.001, p > 0.99).
Hence, these results suggest that training with horizontal target-alone textures resulted
in stimulus specific learning (hTF -alone > vTN -alone) that did not generalize to a
situation where the familiar horizontal targets were embedded in a novel context
(hTF + vC 6> vTN + hC).

In the target+context trained group (grey bars in Figure 5.2D), the grand mean
differed significantly from zero (F(1,11) = 18.6, p = 0.0012, η2

G = 0.381), indicating
that, overall, accuracy was higher after training. The main effect of testing context
(F(1,11) = 32.7, p = 0.0001, η2

G = 0.314) and the main effect of stimulus novelty
(F(1,11) = 11.8, p = 0.0055, η2

G = 0.182) were significant, and they were qualified by
a significant testing context × stimulus novelty interaction (F(1,11) = 8.65, p = 0.013,
η2

G = 0.178). Follow-up t tests indicated that the interaction reflected the fact that
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accuracy improved more for the familiar horizontal textures than the novel vertical
textures when the textures were embedded in non-informative context (hTF + vC

> vTN + hC, MD = 0.203, t11 = 4.33, p = 0.0012), but not when the textures
were presented without a context (hTF -alone 6> vTN -alone, M = 0.001, t11 = 0.032,
p = 0.975). Hence, these results show that, as was found with the target-alone trained
group, training with horizontal targets embedded in a non-informative vertical context
produced stimulus specific learning (hTF + vC > vTN + hC) that did not generalize to
the case where the same horizontal targets were presented without a non-informative
context (hTF -alone 6> vTN -alone).

As was found in Experiment 1, both training groups demonstrated significant
stimulus-specific learning but no evidence for context-generalization. Furthermore,
as in Experiment 1, the magnitude of stimulus-specific learning (MD = −0.023,
t21 = −0.40, p = 0.69) and context-generalization (MD = −0.001, t21 = −0.02,
p = 0.98) did not differ between training conditions.

Finally, we compared the effect of training on response accuracy in the hTF -alone
and hTF + vC testing conditions with the hTF + vTN testing condition. In the target-
alone group, the effect of training on the hTF + vTN textures (M = 0.204, t10 = 4.94,
p = 0.0006) was significant. This effect was slightly but not significantly smaller than
the training effect on hTF -alone textures (MD = −0.066, t10 = −2.08, p = 0.064), but
was larger than the training effect on hTF + vC textures (MD = 0.087, t10 = 3.21,
p = 0.0092). Therefore, unlike Experiment 1, the effect of training on familiar targets
in an informative context was more similar to the the stimuli used during draining,
than the stimuli with an uninformative context. In the target+context trained group,
the effect of training on accuracy for the hTF + vTN textures (M = 0.062, t11 = 2.15,
p = 0.055) was not significant. This effect was smaller than the effect of training
on hTF + vC textures (MD = −0.198, t11 = −6.87, p < 0.0001), and was slightly
but not significantly greater than the effect on hTF -alone textures (MD = 0.049,
t11 = 1.14, p = 0.277). Therefore, in the target+context group, removing all vertical
structure (hTF -alone) from the trained stimulus reduced the effect of training more
than replacing the non-informative context with diagnostic structure (hTF + vTN ). As
was found in Experiment 1, in both training conditions, improvements were largest
when the textures contained the same target and context type as the textures seen
during training, although, relative to Experiment 1, the target-alone group showed
greater improvements to targets with an informative context.
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5.4.2.3 Test Phase Data combined across Experiments 1 & 2

To examine whether the test data differed between experiments, the difference between
pre- and post-training accuracy in the hTF -alone, hTF +vC, vTN -alone, and vTN +hC

conditions in both experiments were analyzed with a 2 (experiment) × 2 (training
condition) × 2 (testing context) × 2 (stimulus novelty) ANOVA. The ANOVA found
a significant experiment × novelty interaction (F(1,41) = 4.08, p = 0.05, η2

G = 0.024),
which reflected the fact that effect of novelty was larger in Experiment 2 (F(1,22) = 21.37,
p < .001, η2

G = 0.21) than in Experiment 1 (F(1,21) = 1.61, p = 0.21, η2
G = 0.034).

None of the other effects involving experiment were significant (in each case, F ≤ 1.76,
p ≥ .19, η2

G ≤ 0.014). As was found in the analyses of the individual experiments, the
ANOVA also yielded a significant three-way interaction between training, stimulus
novelty, and testing context (F(1,41) = 58.75,p < .001, η2

G = 0.183). This three-way
interaction was analyzed by performing separate 2 (testing context) × 2 (stimulus
novelty) within-subject ANOVAs on the target-alone and target+context groups while
combining data across experiments: in both ANOVAs, the main effects of testing
context and stimulus novelty, as well as the two-way interaction, were significant
(in all cases, F ≥ 5.82, p ≤ .025, η2

G ≥ 0.074). The testing context × stimulus
novelty interaction in both training groups, after combining data across experiments, is
illustrated in Figure 5.3. Inspection of Figure 5.3 shows that the two-way interaction
reflects the fact that both training groups exhibited more learning to the stimuli seen
during training than to the same targets presented in a different context. In other
words, the pattern of test results for the combined data was quantitatively similar to
the patterns observed in the individual experiments (Cf. Figure 5.3 and Figures 5.2B
& 5.2D).
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Figure 5.3 – The difference between pre- and post-training response accuracy for the
test conditions in Experiments 1 & 2. The means are shown for the data combined
across experiments. Error bars represent ±1 SEM.
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5.4.3 Discussion

Experiment 2 examined whether the difference in task difficulty during training in
Experiment 1 was due to differences in the stimulus’ target contrast, and if so, if it
affected the stimulus-specificity of learning in the target-alone and target+context
training groups. Unlike Experiment 1, in Experiment 2 the target contrast was equated
in the target-alone and target+context textures. This change in the stimulus did
not significantly reduced the difference between the two training groups (cf., Figures
5.2A&C), suggesting that differences in task difficulty were not due to target contrast
differences, but were due to the status of the uninformative context. Indeed, statistical
comparisons between Experiments 1 and 2 found that the main effect of experiment, as
well as all of the interactions including experiment, accounted for very small amounts of
variation in response accuracy (i.e., η2 < 0.006). Unsurprisingly, the manner in which
learning in the two groups generalized across several test conditions was essentially the
same in Experiments 1 and 2. In particular, both experiments found that improvements
in response accuracy were largest for the stimulus that used the same stimulus seen
during training, and that neither training group generalized learning to the same
targets presented in a new context. Specifically, participants trained with hT -alone
stimuli did not generalized learning to hT + vC stimuli, and participants trained with
hT + vC stimuli failed to generalize learning to hT -alone stimuli (see, for example, the
asymmetry in the two leftmost pairs of bars in Figure 5.2B&D). Hence, contrary to
our original hypothesis, both experiments suggest that training to discriminate targets
in the target+context condition does not lead to more generalizable learning than
training in the target-alone condition.

In some respects the current results are surprising. For example, both experiments
found that accuracy in the target+context condition increased with training, and
that training improved observers’ sensitivity to the textures’s diagnostic, horizontal
target structure. One simple explanation for this finding is that observers perform the
texture identification task using a decision variable that is constructed by combining
the responses of an ensemble of orientation-selective channels (DeValois and DeValois,
1990), and that training enables observers to increase the relative weight assigned to
channels tuned to horizontal structure, which conveys diagnostic information (Dosher
and Lu, 1999; Petrov et al., 2005). This simple framework predicts that learning in the
target+context condition ought to generalize to the target-alone condition. However,
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the results of Experiments 1 and 2 are inconsistent with this hypothesis, which fails
to account for the fact that in both experiments learning in the target+context
condition did not generalize to the target-alone condition, in which the same diagnostic
information was presented in the absence of the non-informative context. Hence, our
results suggest that the non-informative context significantly influenced performance
even after training, and therefore that it is incorrect to say that participants were
learning to ignore, or de-emphasize, the non-informative context during training. If
the mechanism of learning is through channel re-weighting, the results suggest that the
decision variable relies on the re-weighting of channels that have already combined the
outputs of all, or many, orientation-selective channels (i.e., the pooled representation
of the target and context, as in Olzak and Thomas, 1999).

Of course, it is possible that observers could learn to ignore the non-informative
context in other situations. Suppose, for example, that observers performed the
texture identification task by performing local spatial analyses on representations that
combined target and context structure, and that during training they came to rely
on local regions that varied significantly across textures (Gold et al., 2004). Such a
strategy would be difficult to implement in situations in which the contextual structure
– and therefore the overall spatial structure – varied randomly across trials. Hence,
introducing trial-by-trial variation in stimulus context might force observers to use a
strategy that relies solely on the target structure and, consequently, produce learning
that generalizes across changes in stimulus context. The following experiments test
this hypothesis.

5.5 Experiment 3: Distinguishing the target from
a variable context

In Experiment 3, we altered the stimuli in ways that we hoped would discourage
participants from learning texture representations that include the non-informative
context. Specifically, instead of using the same, non-informative context in all textures,
we appropriately filtered novel, random noise fields to create a new, non-informative
contextual structure for each pattern. In other words, the texture stimulus and the six
alternatives on the response screen all contained a different random context on every
trial. In addition, to make it easier to distinguish the target and contextual structure,
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we reduced the orientation bandwidths of the target and context from ±45 to ±30 deg
and removed all frequency components with orientations of 45± 15 and 135± 15 deg.

5.5.1 Methods

The stimuli were band-pass (2-4 cyc/image) filtered textures that consisted of horizontal
(0± 30deg) target and vertical (90± 30deg) contextual structure. Spatial frequency
components at oblique orientations (45 ± 15 & 135 ± 15 deg) were removed from
the images. As in previous experiments, there were six unique targets that remained
constant across participants and trials. However, unlike previous experiments, new
contextual structure was created for each stimulus on every trial by appropriately
filtering novel, random noise fields. All other aspects of the apparatus, experimental
procedure, and stimuli, including the target and context contrast, were the same as in
Experiment 2.

Twenty-four naïve participants (3 males, range = 18-28 years old, M = 20.3, SD =
2.58) completed this experiment, 12 in each target-alone and target+context training
group. Three participants from the target+context group failed to exhibit any learning
during the training phase.

5.5.2 Results

5.5.2.1 Training Phase

The performance during the training phase is plotted in Figure 5.4A. During training,
response accuracy, averaged across bins, was significantly higher in the target-alone
group than in the target+context group (MD = 0.42, t22 = 16.7, p < 0.0001).
The linear trend of accuracy across bins was significant (F(1,22) = 75.8, p < 0.0001,
η2

G = 0.775); however, unlike what was found in previous experiments, the linear
trend significantly differed between groups (F(1,22) = 4.70, p = 0.041, η2

G = 0.176).
Follow-up analyses indicated the linear trend was significant in both groups (target-
alone: M = 0.179, t11 = 7.51, p < 0.0001; target+context: M = 0.108, t11 = 4.73,
p = 0.0003), but was larger in the target-alone group. Hence the difference between
groups in response accuracy increased across training bins.

Accuracy was compared between training conditions and between Experiments
2 and 3. The difference in accuracy between training conditions was significantly
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larger in Experiment 3 than in Experiment 2 (F(1,43) = 45.9, p < 0.0001, η2
G = 0.517),

reflecting the lower response accuracy for the target+context group in Experiment
3 due to the variable context. Importantly, the linear increase across the 96-trial
bins of training trials differed across experiments for different training conditions
(F(1,43) = 6.59, p = 0.0138, η2

G = 0.13), reflecting a smaller linear trend for the
target+context group in Experiment 3 than all other groups.

5.5.2.2 Pre- & Post-training Test Phases

The difference between pre- and post-training accuracy is shown for each group and
test condition in Figure 5.4B. The ANOVA on the difference scores revealed that
the grand average differed from zero (F(1,22) = 60.8, p < 0.0001), indicating that
overall accuracy was higher after training. As was found in Experiments 1 and 2, the
training condition × testing context × stimulus novelty interaction was significant
(F(1,22) = 10.4, p = 0.0039, η2

G = 0.073), and therefore we completed the rest of our
analysis using separate 2 (testing context) × 2 (stimulus novelty) ANOVAs for each
training group.

In the target-alone group (white bars in Figure 5.4B), the intercept was significantly
different from zero (F(1,11) = 26.9, p = 0.0003, η2

G = 0.469), indicating that accuracy
was higher after training. The main effects of testing context (F(1,11) = 17.0, p = 0.0017,
η2

G = 0.326) and stimulus novelty (F(1,11) = 20.0, p = 0.0009, η2
G = 0.283) were

significant, as was the testing context × stimulus novelty interaction (F(1,11) = 46.4,
p < 0.0001, η2

G = 0.317). Paired t tests showed that accuracy increased more to the
trained than untrained targets that were presented alone (i.e., hTF -alone > vTN -alone;
MD = 0.25, t11 = 6.25, p < 0.0001) but not when they were embedded in a non-
informative context (hTF + vC 6> vTN + hC; MD = −0.01, t11 = −0.42, p = 0.686).
Hence, as was found in Experiments 1 and 2, training with (hT -alone textures resulted
in stimulus specific learning (hTF > vTN) that did not generalize to a condition in
which the familiar targets were embedded in a new, non-informative context (hTF +vC

6> vTN + hC).
In the target+context group (grey bars in Figure 5.4B), the intercept was sig-

nificantly different from zero (F(1,11) = 45.1, p < 0.0001, η2
G = 0.404), indicating

that overall, accuracy was higher after training. The main effect of testing context
(F(1,11) = 0.724, p = 0.413, η2

G = 0.009) was not significant, but the main effect of
stimulus novelty (F(1,11) = 5.90, p = 0.033, η2

G = 0.194) was significant, indicating
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that accuracy improved more for the familiar than unfamiliar targets. Interestingly,
unlike the target-alone group, the testing context × stimulus novelty interaction
(F(1,11) = 1.79, p = 0.208, η2

G = 0.039) was not significant. Hence, the ANOVA sug-
gests that the orientation-specific improvement in identification accuracy was similar
for targets embedded within an informative context or presented alone, despite the
fact that participants were trained to identify targets only within a non-informative
context. For example, inspection of the two left grey bars in Figure 5.4B indicates
that there was a significant increase in response accuracy for the familiar horizontal
targets presented alone (hTF -alone, M = 0.110, t11 = 5.04, p = 0.0004) and embedded
in a context (hTF + vC, M = 0.093, t11 = 3.53, p = 0.0047), and these improvements
did not differ from each other (MD = −0.017, t11 = −0.691, p = 0.504). The change
in response accuracy was not significant for novel vertical targets presented alone
(vTN -alone, M = 0.003, t11 = 0.109, p = 0.915), but was significant for novel vertical
targets embedded in a non-informative context (vTN + hC, M = 0.0486, t11 = 2.61,
p = 0.0243), although the change in the two conditions did not differ from each other
(MD = 0.0458, t11 = 1.38, p = 0.194). Paired t tests failed to find strong evidence of
stimulus-specific learning (hTF +vC 6> vTN +hC; MD = 0.0444, t11 = 1.13, p = 0.281),
but did find evidence for generalization of learning to a condition in which the familiar
targets were no longer embedded in a non-informative context (hTF -alone > vTN -alone;
MD = 0.107, t11 = 2.76, p = 0.0185). Unlike what was found in Experiments 1 and 2,
and the target-alone group in Experiment 3, training with hT +vC textures resulted in
learning that generalized to the trained targets presented alone, despite being trained
with the targets embedded in a non-informative context.

The ANOVAs on the pre- and post-testing accuracy data suggest that the tar-
get+context group demonstrated learning that was less stimulus-specific than learning
the target-alone group, but also demonstrated greater generalization of learning to
familiar targets when the context was removed. Other comparisons confirm this result:
stimulus-specific learning, which was defined for the target-alone group as hTF -alone
> vTN -alone, and for the target+context group as hTF + vC > vTN + hC, was sig-
nificantly greater in the target-alone group (MD = 0.201, t22 = 3.63, p = 0.0015).
Context-generalization, which was defined for the target-alone group as hTF + vC >

vTN + hC, and for the target+context group as hTF -alone > vTN -alone, was greater
in the target+context group (MD = −0.117, t22 = −2.58, p = 0.0172). These results
differ notably from those obtained in Experiments 1 and 2, where we found no evidence
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Figure 5.4 – Results from Experiments 3 and 4. Refer to Figure 5.2 caption for details
of figure. A) Training data for Experiment 3: Performance was significantly worse for
the target+context trained group (grey) than the target-alone trained group (white)
throughout all of training. The learning rate also was lower for the target+context
training group. B) Testing data for Experiment 3: Training with target-alone textures
(white) led to the greatest improvements to the hTF -alone textures, whereas training with
target+context textures (grey) led to context-generalization: the greatest improvements
were seen in both the hTF +vC and hTF -alone textures. C) Training data for Experiment
4: Groups were trained with different sets of target+context textures, but performed
similarly throughout training trials. D) Testing data for Experiment 4: Training to
identify horizontal targets within a vertical context did not meaningfully transfer to
horizontal but novel targets (grey hTF/N bars) relative to horizontal but familiar targets
(white hTF/N bars). Individual subject data points are consistent with the colour coding
used in C.
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of context-generalization in either training condition.
Lastly, we compared the effect of training on response accuracy for hTF + vTN

textures with hTF -alone and hTF + vTN textures. Similar to what was found in
Experiment 1, the effect of training on response accuracy in the target-alone trained
group was smaller for hTF + vTN textures than hTF -alone textures (MD = −0.219,
t11 = −5.38, p = 0.0002), and slightly but not significantly higher than hTF + vC

textures (MD = 0.040, t11 = 1.94, p = 0.0789). Therefore, training in the target-alone
condition had similar effects on accuracy for test stimuli in which the vertical context
was or was not informative. In the target+context trained group, the effect of training
on accuracy for the hTF + vTN textures was not significantly different than than the
effect of training on hTF + vC textures (MD = −0.026, t11 = −0.946, p = 0.365),
and was slightly but not significantly lower than the effect on hTF -alone textures
(MD = −0.043, t11 = −2.17, p = 0.0527). Unlike Experiments 1 and 2, and the
target-alone group in the current experiment, training with target+context textures
led to similar effects of training for textures with non-informative or informative vertical
structures. Although different from Experiments 1 and 2, this is not surprising given
the stimulus: here, the context in target+context textures was different on every trial,
and therefore, to the naïve participant, the informative vertical structure in hTF + vTN

textures is no different than the uninformative vertical structure in hTF + vC textures.

5.5.3 Discussion

The aim of Experiment 3 was to test the hypothesis that randomly varying the non-
informative context would discourage participants from including the context in their
learned representation of the targets. Our results are consistent with this hypothesis.
Training to identify targets embedded in a novel context on every trial resulted in
increased accuracy for the trained targets embedded in a non-diagnostic context, and,
critically, to the trained targets presented alone. This is our first demonstration of
context-generalization. However, acquiring context generalizable learning came at the
cost of completing a significantly more difficult training task: overall accuracy, and
the rate of improvement during training, was significantly reduced.

Our demonstration that individuals learn to identify a fixed set of horizontal targets
in a virtually infinite set of vertical contexts, and then successfully identify those
targets when the context is removed, is consistent with the idea that randomization
of the non-informative context made it easier for individuals to selectively re-weight
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orientation-selective channels to produce a decision variable that was influenced more
by horizontal structure than vertical structure. Such re-weighting might occur by
reducing the weight of vertically-tuned channels; however, some of our results are
inconsistent with this idea. For example, response accuracy during the training phase
was much lower in the target+context group, and the difference between groups
increased with training. Hence, it seems clear that observers could not ignore the non-
informative, vertical context. Furthermore, if learning reflected the down-weighting of
vertically tuned channels, then post-training accuracy for textures with novel, vertically
oriented targets (i.e., vT -alone & vT + hC textures) should have decreased relative to
pre-training. We do not see this effect: Accuracy in those conditions (i.e., the third
and forth grey bars in Figure 5.4B) did not decrease, which suggests that training did
not cause participants to discount the responses of vertically tuned channels. Instead,
our results suggest that training resulted in an increase in the weight assigned to
horizontally tuned channels.

An important result found in the first three experiments is that training with
target-alone textures did not generalize to target+context textures. This finding, in
conjunction with the context-generalization observed for the target+context trained
group, suggests that the re-weighting of orientation channels may require a non-uniform
distribution of diagnostic value in the visual signal. Restricting the signal to a certain
orientation bandwidth is not adequate to force the up-weighting of those orientation
channels, but rather, certain channels must contain a diagnostic signal (e.g., horizontal
target), and at least some other channels must contain a non-diagnostic signal (e.g.,
vertical context). It is with a non-uniform distribution of diagnostic information the
decision variable will differentially rely on the signal from certain orientations. If,
instead, there was a non-uniform distribution of the visual signal (e.g., hT -alone
textures), then the decision variable would not need to differentially rely on certain
orientations for the diagnostic information, since the incoming signal would already be
entirely diagnostic. In other words, the fact that we do not see context-generalization
when training on target-alone textures, but do see context-generalization when training
on target+context textures, suggests that channel re-weighting requires some sort
of selective attention that extracts the diagnostic signal that is embedded in non-
diagnostic signals. For instance, learning to identify target+context textures may
be best achieved through the selective attention to, or the increased processing of,
the horizontally oriented target structure embedded within non-informative structure
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in all other orientations. However, learning to identify target-alone textures does
not demand selective attention/processing, as the stimulus itself is limited in what it
contains, so no additional processing/perceptual strategy is needed to separate target
from context. With target-alone textures, the target’s informative signal is delivered
to the decision variable as a pure representation without the need to filter out any
non-informative contextual signals.

If learning is happening by selective re-weighting of horizontal orientation channels,
then it remains unclear if the re-weighting of channels reflects a refinement (or creation
of) perceptual templates specific to the six trained horizontal targets, or if it reflects
the refinement of all, or most, horizontally tuned channels that will therefore allow
better identification of any horizontally oriented target. The stimulus-specificity often
observed in perceptual learning suggests that we should not expect transfer of learning
to novel horizontally oriented targets, but some evidence suggests that training with a
new set of textures on every trial is not only slow like the target+context condition,
but also produces learning that transfers to novel textures (Hussain et al., 2012a). We
test for the transfer to novel, horizontal targets in the Experiment 4.

Regardless of the mechanism, the evidence of context-generalization suggests that
randomly varying non-informative context altered what was learned during training, so
that visual processing more effectively ignored the non-informative vertical structure.
Alternatively, exposure to a randomly varying context may simply have slowed the
acquisition of stimulus-specific learning (Jeter et al., 2010). The change in response
accuracy during training was significantly less in the target+context group than the
target-alone group. Therefore, if stimulus-specificity emerges gradually over the course
of training, then perhaps differences between the two groups would diminish if the rate
of learning was equated across conditions. We examine this possibility in Experiment
5.

5.6 Experiment 4: Target- and
orientation-specificity of learning

Experiment 3 demonstrated that training to identify horizontal targets embedded in
a context produces learning that transfers to those same targets presented alone. In
Experiment 4, we examine whether such learning also transfers to novel horizontally-
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oriented targets. Before and after training on a set of six target+context textures,
participants were either tested on trained (familiar) or untrained (novel) horizontal
targets, presented alone and embedded in a vertical context. Like previous experiments,
they were also tested on vertical targets presented alone or embedded in a horizontal
context. The condition where participants viewed familiar horizontal targets at test is
a replication of the target+context condition from Experiment 3.

5.6.1 Methods

Horizontal targets were derived from two sets of noise patterns: either the same noise
patterns used in deriving horizontal targets in Experiment 3 (set A), or a novel set of
patterns (set B). Half of all participants were trained on set A, and half were trained on
set B. In each group, half of the participants were tested with the same set they were
trained on (“familiar” group), and half were tested with the set they were not trained
on (“novel” group). During testing, as with previous experiments, the vertical targets
always were novel textures. All groups were trained with target+context (hT + vC)
textures. All other aspects of the stimuli, apparatus, and experimental procedure were
the same as in Experiment 3.

Experiment 3 found that the rate of learning and overall accuracy during training
were low when the non-informative context varied randomly across trials. To maintain
the same exclusion criteria used in the previous experiments (i.e., improvements
in accuracy during training was greater than 0) and have our desired number of
participants per training group, we excluded 19 out of the 43 recruited participants1.
The final sample consisted of 24 naïve participants (5 males, range = 18-22 years old,
M = 19.2, SD = 1.41), 12 in each training group.

5.6.2 Results

5.6.2.1 Training Phase

Response accuracy during the training phase is plotted in Figure 5.4C. Our analysis
of training data was focused on ensuring the two groups (familiar vs. novel horizontal
targets at test) improved similarly during training, so the data was submitted to a
2 (horizontal novelty) × 2 (target set) factorial ANOVA. The ANOVA on overall

1We address the high exclusion rate using an alternative paradigm in Experiment 6.
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response accuracy found that the main effects of novelty group (F(1,20) = 2.60, p = 0.122,
η2

G = 0.115) and target set (F(1,20) = 0.040, p = 0.843, η2
G = 0.002), and the interaction

(F(1,20) = 0.849, p = 0.368, η2
G = 0.041) were not significant. Furthermore, the

ANOVA on the linear trend (of accuracy across training bins) scores found that the
grand mean of the linear trend scores differed significantly from zero (F(1,20) = 30.0,
p < 0.0001, η2

G = 0.600), and that the linear trend did not differ significantly across
groups (F(1,20) = 0.485, p = 0.494, η2

G = 0.024), which suggests that accuracy did
improve with training and that the rate of learning, as indexed by the linear trend, did
not differ between the novelty groups. The linear trend did differ significantly between
groups trained with the two sets of targets (F(1,20) = 4.51, p = 0.0464, η2

G = 0.184),
reflecting a smaller linear trend in the group who saw target set B (M = 0.048,
t12 = 2.83, p = 0.0152) than target set A (M = 0.112, t10 = 4.90, p = 0.0006); however,
the effect of target set did not interact with novelty group (F(1,20) = 0.140, p = 0.712,
η2

G = 007). These analyses suggest that the rate of learning during training differed
between participants trained with stimulus sets A and B, but not between subjects
who were tested with novel or familiar textures during testing.

5.6.2.2 Pre- & Post-training Test Phases

The change in accuracy from pre- to post-training is shown for each group and
test condition in Figure 5.4D. Inspection of the individual data points in Figure
5.4D suggests that there were no obvious differences during the test phase between
participants trained with stimulus sets A and B. The ANOVA on the difference
scores revealed that, on average, accuracy was higher after training (F(1,22) = 15.9,
p = 0.0006, η2

G = 0.201). The main effects of training group (F(1,22) = 2.06, p = 0.165,
η2

G = 0.032), testing context (F(1,22) = 2.99, p = 0.0979, η2
G = 0.030), and stimulus

novelty (F(1,22) = 0.709, p = 0.409, η2
G = 0.005) were not significant. Furthermore,

the training group × stimulus novelty interaction was not significant (F(1,22) = 1.21,
p = 0.284, η2

G = 0.009), nor were all of the other two- and three-way interactions
(F < 1, p > 0.38, η2

G < 0.01, in all cases). Hence, the ANOVA on changes in pre-
and post-training accuracy suggests that overall accuracy was better after training
(M = 0.056), but that the change in accuracy did not differ significantly between
training groups or stimulus conditions. This pattern may be interpreted as evidence of
generalization to stimulus conditions, but, given that the ANOVA suggests there were
no differences in improvement of hTF -alone and hTF + vC textures from vTN -alone
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and vTN + hC textures, which were included as control stimuli, we interpret the lack
of significant effects in the ANOVA as evidence that stimulus-related learning was
minimal.

To directly compare context generalization across Experiments 3 and 4, we analyzed
the data from the familiar training group in Experiment 4 and the data from the
target+context training group in Experiment 3 in a 2 (testing context) × 2 (stimulus
novelty) × 2 (experiment) ANOVA. Note that in Experiment 3, evidence for context
generalization was provided by a significant main effect of stimulus novelty that did not
interact with testing context. The ANOVA here also revealed a significant main effect
of stimulus novelty (F(1,22) = 6.32, p = 0.0197, η2

G = 0.084) that did not interact with
testing context (F(1,22) = 0.305, p = 0.586, η2

G = 0.003) or experiment (F(1,22) = 0.755,
p = 0.394, η2

G = 0.011). The main effects of testing context and experiment were
not significant (F < 1, p > 0.38, η2

G < 0.008, in each case), nor was their two-way
interaction (F(1,22) = 2.90, p = 0.103, η2

G = 0.026), or their three-way interaction
with stimulus novelty (F(1,22) = 1.22, p = 0.281, η2

G = 0.012). Hence, the evidence for
context generalization was comparable and consistent across Experiments 3 and 4.

5.6.3 Discussion

Experiment 4 examined whether the context-generalizable learning we observed in
Experiment 3 reflected participants learning to discriminate a specific set of six hor-
izontally oriented targets in any context, or whether they were learning to better
extract horizontal structure from textures, and therefore better identify any horizon-
tally oriented targets in any context. Results from Experiment 4 were not conclusive,
but given the similarities with results from Experiment 3, we combined Experiments
3 and 4 for a more powerful analysis. The combined results suggest that training to
identify horizontal targets embedded within a vertical context produces learning that
generalizes to familiar/trained targets in the absence of a vertical context, but does
not transfer to identifying novel/untrained horizontal targets.

The current experiment failed to find statistically significant evidence for transfer of
learning to novel, horizontal targets. Such evidence would manifest as greater improve-
ments for hTN or hTN + vC relative to vTN -alone or vTN + hC stimuli, respectively;
this difference would first appear as a main effect of stimulus novelty, but it was not
significant. However, inspection of Figure 5.4D reveals that participants improved
more, on average, at identifying novel horizontal targets when they were presented
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alone (hTN -alone, first left grey bar) than novel horizontal targets presented within a
context (hTN + vC, second left grey bar). Hence, it is still possible that participants
are able to better identify novel horizontal targets, but given small learning effects, it
was too difficult to obtain significant effects. In fact, for us to detect a significant effect
of context-generalization to familiar targets, we had to combine data from Experiments
3 and 4. Therefore, it is possible that generalization to novel targets occurred, but
we lacked statistical power to detect it. In the upcoming set of studies, we redesign
our experiment to be more sensitive to small effects (Experiment 5), and increase the
reliability of the effect (Experiment 6).

5.7 Experiment 5: The role of difficulty during
training on the context-generalization of
learning

Experiment 3 revealed that participants who were trained with target+context stimuli
exhibited significantly lower identification accuracy and a slower rate of improvement
compared to participants trained with target-alone stimuli. These differences in
accuracy may have produced a slower acquisition of stimulus-specific learning (Jeter
et al., 2010) in the target+context trained group than the target-alone trained group.
The current experiment examines this possibility by examining the effects of increasing
the difficulty of the task with low-contrast, target-alone textures. In addition, the
current experiment re-examines how learning transfers to novel targets in the trained
orientation. Experiment 4 indicated that some transfer of learning to novel targets
may be possible, but context generalization and transfer to novel targets were not
measured in the same participants. Therefore, we modified the experimental design
such that stimulus-specificity, context-generalization, and transfer to novel horizontal
targets were all within-subject variables.

5.7.1 Methods

Thirty-seven naïve participants completed the task, but 13 were excluded using the
same exclusion criteria as Experiment 3 (i.e., they failed to show any improvement
in response accuracy during training). The final sample comprised 24 participants (8
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males, range = 17-35 years old, M = 21.2, SD = 5.1). The participants were assigned
randomly to two groups of 12 individuals who were trained with either target-alone
(hT -alone) or target+context (hT + vC) textures. All participants completed the same
pre- and post-training testing conditions: i) familiar horizontal targets presented alone
(hTF -alone); ii) familiar horizontal targets presented within a non-informative vertical
context (hTF + vC); iii) novel horizontal targets presented alone (hTN -alone); iv) novel
horizontal targets presented within a non-informative vertical context (hTN + vC);
v) novel vertical targets presented alone (vTN -alone); and vi) novel vertical targets
presented within a non-informative horizontal context (vTN + hC).

To equate performance in the two training groups, the contrast of the target texture
was lower in the target-alone stimulus than in the target+context stimulus. A pilot
experiment on three naïve participants, not included in the final sample, indicated that
response accuracy was approximately equal when target RMS contrast was 0.0088 and
0.035 in the target-alone and target+context conditions, respectively. Therefore, we
used these values of RMS contrast for the training and testing components of the main
experiment. All other aspects of the stimuli, apparatus, and experimental procedure
were the same as in Experiments 3 and 4.

5.7.2 Results

5.7.2.1 Training Phase

Performance during training is plotted in Figure 5.5A. Response accuracy during
training was, on average, not significantly different between the two training groups
(MD = 0.04, t22 = 1.62, p = 0.120). The linear trend of accuracy across training
bins was significant (F(1,22) = 56.2, p < 0.0001, η2

G = 0.719), indicating that accuracy
improved with training, but the linear trend differed significantly between training
groups (F(1,22) = 6.84, p = 0.0158, η2

G = 0.237). Follow-up tests indicated that the
linear trend was significant in both the target-alone group (M = 0.137, t11 = 5.58,
p < 0.0001) and the target+context group (M = 0.066, t11 = 5.75, p < 0.0001), but it
was smaller in the target+context group. These analyses suggest that overall accuracy
was similar in the two groups but, as was found in Experiment 3, accuracy improved at
a faster rate in the target-alone group. Figure 5.5A indicates that target-alone trained
participants began to outperform the target+context group on bin 6, which is the
start of day 2 training, hinting at a potential role of consolidation during sleep in the
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target-alone group (Censor et al., 2006). Despite these group differences, performance
during training was, overall, similar between the groups, and our manipulation of target
contrast dramatically reduced the group differences found in the previous experiments.

5.7.2.2 Pre- & Post-training Test Phases

Changes in response accuracy from pre- to post-training are shown in Figure 5.5B.
Difference scores were submitted to a 2 (training condition) × 2 (testing context) × 3
(stimulus type) ANOVA. We grouped familiar horizontal targets (hTF), novel horizontal
targets (hTN), and novel vertical targets (vTN) into a single factor of stimulus type
because familiarity and orientation were not factorially crossed. The ANOVA revealed
that overall, response accuracy increased significantly (F(1,22) = 4.98, p = 0.0361,
η2

G = 0.061). The main effects of training condition (F(1,22) = 0.0005, p = 0.982,
η2

G < 0.001), testing context (F(1,22) = 0.907, p = 0.351, η2
G = 0.007), and stimulus type

(F(2,44) = 1.20, p = 0.310, η2
G = 0.014) were not significant. The two-way interactions

of training condition × stimulus type (F(2,44) = 1.09, p = 0.346, η2
G = 0.013), stimulus

type × testing context (F(2,44) = 1.66, p = 0.203, η2
G = 0.020), and training condition ×

testing context (F(1,22) = 4.22, p = 0.0521, η2
G = 0.032) were not significant. Finally, the

three-way interaction also was not significant (F(2,44) = 0.167, p = 0.847, η2
G = 0.002).

In summary, the ANOVA showed that accuracy improved after training, but that the
improvement did not vary significantly across groups or conditions. Separate 2 (testing
context) × 3 (stimulus type) ANOVAs performed on the data from each testing group
also failed to find significant differences across stimulus conditions.

The pattern of results in Experiments 3 (Figure 5.4B), 4 (white bars in Figure 5.4D),
and 5 (Figure 5.5B) look similar: In each experiment, the target-alone group showed
an effect of training to hTF -alone but not hTF + vC textures, but the target+context
trained group showed similar improvements to hTF + vC and hTF -alone textures.
Hence, we combined the data across the Experiments 3 and 5 for the target-alone
training condition, and Experiments 3, 4, and 5 for the familiar target+context training
condition, and assessed stimulus-specificity and context-generalization using the larger,
combined samples. For the target-alone group, stimulus-specificity was defined as the
difference in improvements between hTF -alone and vTN -alone stimuli, and context-
generalization was defined as the difference in improvements between hTF + vC and
vTN + hC stimuli. For the target+context group, stimulus-specificity was defined as
the difference in improvements between hTF + vC and vTN + hC stimuli, and context
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generalization was defined as the difference in improvements between hTF -alone and
vTN -alone stimuli. We found that for the target-alone group, stimulus-specific learning
(hTF -alone > vTN -alone; MD = 0.137, t23 = 3.72, p = 0.0011) was significant, but
context-generalization (hTF +vC 6> vTN +hC; MD = −0.015, t23 = −0.879, p = 0.388)
was not significant. Opposite results were obtained for the target+context group:
stimulus-specific learning (hTF + vC 6> vTN +hC; MD = 0.042, t35 = 1.81, p = 0.0796)
was not significant, but context-generalization (hTF -alone > vTN -alone; MD = 0.064,
t35 = 2.91, p = 0.0062) was significant. Stimulus-specific learning in the target-
alone group was significantly greater than the target+context group (MD = 0.096,
t58 = 2.32,p = 0.0239), and context generalization in the target+context group was
significantly greater than the target-alone group (MD = 0.080, t58 = 2.60,p = 0.0117).
Lastly, we combined the data across experiments 4 and 5 for the novel target+context
condition, and assessed generalization to novel targets presented alone or embedded
within an uninformative context. We found that generalization to novel targets
presented in a non-informative vertical context (hTN +vC 6> vTN +hC; MD = −0.026,
t23 = −1.15, p = 0.263 was not significant, and generalization to novel targets
presented alone (hTN -alone 6> vTN -alone; MD = 0.015, t23 = 0.565, p = 0.577 also was
not significant. Therefore, after achieving greater power by combining participants
from Experiments 4 and 5, we see that there was no significant effect of training on
generalization to novel but horizontally oriented targets.
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Figure 5.5 – Results from Experiment 5. Refer to Figure 5.2 for details of figure. A)
Training accuracy for participants trained on either target-alone (white) or target+context
(grey) textures. Target-alone textures had lower contrast to match the difficulty in
identifying target+context textures. B) Training to identify low contrast target-alone
textures still produced specific learning only to the hTF -alone textures. Training to
identify target+context textures produced context generalizable learning: improvements
were greatest for both hTF + vC and hTF -alone textures. In both training groups, there
were no meaningful changes in response accuracy to hTN -alone, hTN + vC, vTN -alone,
and vTN + hC textures.

5.7.3 Discussion

Although the effects in Experiment 5 were not statistically significant, the pattern
was consistent with Experiments 3 and 4: the effect of training with target+context
textures generalizes to better identification accuracy of familiar targets presented alone,
but training with target-alone textures, even when they are approximately difficulty-
matched with target+context textures, does not produce learning that generalizes to
the same targets in the presence of a context. Given that the effects are relatively
small, we rely on the analyses on the data combined across experiments for these
conclusions. Furthermore, although there was no statistically significant evidence, the
trend of the means is consistent with the notion that the context-generalizable learning
from target+context training does not reflect a broader, orientation-specific learning,
as there is no indication that performance to novel targets in the trained orientation,
either with or without a context, improved after training. Also, an important factor
that likely accounts for the very small changes in response accuracy is that during
testing, for all training groups, the target-alone textures were presented with reduced
contrast. Therefore, target+context trained participants, who were seeing the target
(and the context) at relatively high contrasts during the training phase, were being
asked to identify those targets in isolation at much lower contrasts during the test
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phase. Nonetheless, the direction of the non-significant effects are all consistent with
findings from earlier experiments.

Despite the consistent patterns of results in Experiments 3, 4 and 5, the lack of
significant effects is not enough to make conclusions about the context generalizability
of the learning, or its lack of transfer to novel targets. It is necessary to know if,
given a more effective training paradigm, participants show similar patterns of context-
generalization and target specificity. Therefore, the following experiment examined
whether a more effective training paradigm affects the characteristics of learning.

5.8 Experiment 6: Improving the training
paradigm to promote learning

Experiments 3 to 5 have found a consistent but very small effect of context-generalization
following training with targets embedded in a context. One criticism of those exper-
iments is that response accuracy improved only slightly during training, even after
excluding participants who failed to exhibit any learning. Therefore, our next experi-
ment used a training paradigm that we expected would increase the reliability and
magnitude of learning in our task.

To better discriminate targets in the target+context condition, participants have to
first distinguish what the horizontal structure of the texture is. Therefore, the current
experiment manipulated the stimuli to help participants distinguish diagnostic and non-
diagnostic structure. Specifically, participants were trained on target+context textures
where the contrast of the non-diagnostic context was varied using a one-up-one-down
staircase while the contrast of the target was held constant. As participants responded
correctly, the contrast of the context was increased (making target identification harder);
as they responded incorrectly, the contrast was decreased (making target identification
easier). Hence, our method essentially measured how much non-informative context
an individual could tolerate while identifying the targets.

5.8.1 Methods

Twelve naïve participants (1 male, range = 17-23 years old, M = 18.75, SD = 1.60)
participated in this experiment. All twelve participants were included in the analysis
as they all exhibited some form of performance improvements during training, as
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described in the results. Throughout training, all 12 participants saw target+context
(hT + vC) textures with a fixed target RMS contrast of 0.035, and a context RMS
contrast that was varied across trials using a 1-up-1-down staircase. The staircase could
vary RMS contrast from 0.0035 to 0.35 in steps of 0.05 log units. The six items on the
response screen had target contrasts of 0.035 and context contrasts that were the same
as the context contrast that was presented on that trial. Two training sessions were
completed on consecutive days; each session contained two blocks, and in each block the
context contrast was varied with three interleaved staircases that terminated after 160
trials. Staircases always started from the lowest context contrast to ensure participants
adequately experienced the transformation of target-alone to target+context, since
at the lowest contrast, the context was barely visible relative to the target. The
RMS contrast that corresponded to 50% correct (Levitt, 1971) was estimated by
first averaging the last four reversals of each staircase, and then averaging the values
across the three staircases in each block, resulting in four estimates of threshold per
participant. Note that higher thresholds correspond to better performance in the
form of increased tolerance of contextual structure while identifying target+context
textures.

The staircase was used exclusively during training trials. In all testing condi-
tions, the target, and when present, the context, were each presented with a fixed,
suprathreshold contrast of 0.035. All other aspects of the stimuli, apparatus, and
experimental procedure were the same as in Experiment 5.

5.8.2 Results

5.8.2.1 Training Phase

Contrast thresholds obtained from the training phase are plotted in Figure 5.6A.
Contrast thresholds were submitted to a one-way repeated measures ANOVA with
block as a four-level factor. The ANOVA revealed that contrast thresholds varied
significantly across blocks (F(3,33) = 11.9, pHF < 0.0001, η2

G = 0.261). Follow-up
focussed contrasts tested for within-session learning (weights: [-1 1 -1 1] for blocks
1 to 4, respectively) and between session learning (weights: [-1 -1 1 1] for blocks 1
to 4, respectively). Scores for within-session learning were greater than zero for 8/12
participants, and scores for between-session learning were greater than zero for 11/12
participants. We included all participants in our analysis because everyone had at least
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one positive within-session or between-session learning score. The focussed contrasts
revealed that changes within-session (M = 0.0013, t11 = 0.475, p = 0.644) were
not significantly different from zero, but that changes between-sessions (M = 0.018,
t11 = 5.20, p = 0.0003) were significant. These results are consistent with the idea that
performance improved across days but not within sessions, perhaps reflecting the effects
of sleep consolidation (Censor et al., 2006). Additionally, the linear contrast scores for
between-session learning for 11 out of 12 observers were positive (range=0.009-0.042,
M=0.021, SD=0.010), with only one participant having a slightly negative score (-
0.005). We confirmed that thresholds did not significantly differ between blocks 1 and
2 (day 1: MD = −0.00008, t11 = −0.0576, p = 0.955) or between blocks 3 and 4 (day 2:
MD = 0.001, t11 = 0.558, p = 0.588), but they did significantly differ between blocks
2 and 3 (across days 1 and 2: MD = 0.0085, t11 = 3.98, p = 0.0022). The analysis
of the training data suggests that participants demonstrated a significant amount of
learning. On average, contrast thresholds increased from 0.018 to 0.028, indicating
that participants were able to correctly identify 50% of trials where the contrast of
the context was approximately 80% of the contrast of the target (0.035).

To better relate results from the staircase paradigm to our previous experiments,
we plotted the average proportion correct at each context contrast level, collapsed
across all staircases in a single day, in Figure 5.6B. The dotted vertical line in Figure
5.6B represents the point on the x-axis where the context contrast equalled the target
contrast, as in Experiments 2-5. The horizontal lines indicate the average accuracy to
textures with equal context and target contrast on day 1 (solid) and day 2 (dashed).
The data reveals that the average improvement in accuracy from day 1 (M = 0.305)
to day 2 (M = 0.425) was 0.12, which is consistent with the average improvements in
Experiments 3-5. Furthermore, improvements appear to be approximately equal across
all contrast levels and were not restricted to the lower contrast context conditions
which they were exposed to for more trials.

5.8.2.2 Pre- & Post-training Test Phases

The change in accuracy from pre- to post-training in the testing conditions is plotted
in Figure 5.6C. The 2 (testing context) × 3 (stimulus type) ANOVA revealed that, on
average, difference scores differed from zero (F(1,11) = 6.81, p = 0.0242, η2

G = 0.125).
The main effect of stimulus type (F(2,22) = 7.07, p = 0.0043, η2

G = 0.140) was significant,
but the main effect of testing context (F(1,11) = 1.23, p = 0.291, η2

G = 0.025) and the
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stimulus type × testing context interaction (F(2,22) = 1.10, p = 0.351, η2
G = 0.028) were

not. The analysis suggests that there was a difference between familiar horizontal, novel
horizontal, and novel vertical targets, but that effect was not modulated significantly by
the presence or absence of a vertical context. Follow-up t tests revealed that the main
effect of stimulus type was due to significantly greater increases in accuracy for familiar
horizontal targets than novel horizontal targets (MD = 0.083, t11 = 2.55, p = 0.0268)
and novel vertical targets (MD = 0.1000, t11 = 4.15, p = 0.0016). The changes in
accuracy for novel horizontal and novel vertical targets were not significantly different
(MD = 0.017, t11 = 0.593, p = 0.565). Finally, one-sample t tests revealed that
improvements were significantly different from zero for the familiar horizontal targets
(M = 0.102, t11 = 4.86, p = 0.0005), but not for the novel horizontal (M = 0.0187,
t11 = 0.674, p = 0.514) or novel vertical targets (M = 0.0021, t11 = 0.114, p = 0.911).

The results indicate that training to identify horizontal targets embedded in a
vertical context, with the contrast of the context increasing using a staircase, lead to im-
proved performance during the training phase in all 12 participants. The learning trans-
fers to the same targets presented without any context (i.e., context-generalization),
but it does not transfer to novel horizontal targets or novel vertical targets, regardless
of context. These results are qualitatively similar to the results from Experiments
3-5, with the advantage that no participants were excluded, attesting to the effective-
ness of the training paradigm in promoting learning. To quantitatively investigate
differences across experiments, we evaluated linear comparisons between Experiment
6 and the target+context groups from Experiments 3-5. The effect of training (i.e.,
the difference between pre- and post-training accuracy) in Experiment 6 (weight
= 1) did not differ from the training effect in Experiments 3-5 (weights = -1/3
each) for familiar horizontal targets embedded within a vertical context (hTF + vC:
ψ = 0.010, t44 = 0.271, p = 0.788), familiar horizontal targets presented alone (hTF -
alone: ψ = 0.031, t44 = 0.940, p = 0.353), or for novel vertical targets presented alone
(vTN -alone: ψ = 0.013, t44 = 0.392, p = 0.697). However, the effect of training was
smaller in Experiment 6 than Experiments 3-5 for novel vertical targets that were
presented within a horizontal context (vTN +hC: ψ = −0.067, t44 = −2.52, p = 0.016).
Finally, the effect of training in Experiment 6 (weight = 1) did not differ from Experi-
ments 4-5 (weights = -1/2 each) for novel horizontal targets embedded within a vertical
context (hTN + vC: ψ = 0.008, t33 = 0.241, p = 0.811) or presented alone (hTF -alone:
ψ = −0.018, t33 = 0.462, p = 0.647). These results further suggest that the staircase
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Figure 5.6 – Results from Experiment 6. A) Contrast thresholds are plotted for day
1 (blocks 1 and 2) and day 2 (blocks 3 and 4) of training. Thresholds were calculated
using the average contrast of the final 4 reversals per staircase, and averaged across
the three interleaved staircases within each block. Coloured lines are individual subject
data. Horizontal dashed line represents when the context contrast equalled the target
contrast, as in Experiments 2-5 (i.e., signal-to-noise, or target-to-context ratio of one).
B) Proportion correct plotted per each context contrast level presented, separately
for days 1 and 2 (white and grey symbols, respectively). Proportion correct at each
contrast level for each day was calculated for each subject, and the average of all subjects
is plotted here; the size of the circles represents how many subjects completed trials
at a given contrast. Curves were fit using the locally weighted regression (LOESS)
model implemented in ggplot2. Vertical dashed line represents when the context contrast
equalled the target contrast (i.e., the same as the horizontal dashed line in A). The
horizontal lines represent the average accuracy for textures with a texture-to-context
contrast ratio of one, separately for days 1 and 2 (solid and dashed, respectively).
These reference points suggest that the magnitude of learning is similar in the current
experiment compared to Experiments 3-5. C) The change in response accuracy from pre-
to post-training for the 6 different conditions. Bars represents averages, and individual
symbols represent individual subjects. Error bars in A & C represent ±1 SEM, and
shaded regions in B represent 95% confidence intervals of the LOESS fitted line.
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manipulation that was used during training in Experiment 6 produced very similar
learning as when training with constant contrast and difficult target+context textures:
training with target+context textures produces context generalizable learning that is
specific to the trained targets. This result is important because the staircase paradigm
was more effective in promoting learning across all observers while using the same
number of trials.

5.8.3 Discussion

Experiment 6 was designed to test the efficacy of a novel training paradigm, where
participants learn to tolerate increasing amounts of non-informative context with
practice. The results confirm that this training paradigm was effective at producing
significant learning, and the learning showed the same characteristics as previous
experiments: learning to identify horizontal targets embedded in a vertical context
generalizes to the same targets presented alone, but not to novel horizontal or vertical
targets, regardless of context presence.

The results are consistent with a theory in which the decision variable relies on re-
weighted information from orientation-selective channels in the visual system. Learning
was observed for the trained horizontal targets, with no evidence of transfer to novel
horizontal targets, suggesting that the re-weighting of orientation-selective channels is
specific to the channels involved for the trained targets, and not a general re-weighting
of all channels tuned to horizontally oriented structures.

Comparison of the effects of training in Experiment 6 to the effects obtained
in Experiments 3-5 revealed only one significant difference: the change in response
accuracy from pre- to post-training for the novel vertical targets embedded within a
horizontal context was smaller in Experiment 6 than in the previous experiments. In
fact, comparison of the vTN + hC data in Figures 5.6C to Figures 5.4B & 5.5B reveals
that response accuracy slightly decreased after training in Experiment 6, compared to
the negligible or slight increases in previous experiments. If the decrease is reproducible,
it attests to the effectiveness of the staircase training paradigm in promoting better
extraction of horizontal structure: If observers are learning to increase the weight of
horizontally tuned channels, then relying on the same channels when the texture’s
horizontal structure is the non-diagnostic context, as is the case for vTN + hC stimuli,
then performance should decline after training. Experiment 6 is the first out of four
experiments where the data trend towards a performance decrement, but it is the
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experiment with the most effective training paradigm. We will continue to explore
this prediction of the re-weighting hypothesis in future studies.

Figure 5.7 – A) Boxplots summarizing the change from pre- to post-training in all
testing conditions, collapsed across Experiments 3-6. White boxes refer to target-alone
trained groups, and grey bars refer to target+context trained groups. The number of
participants in each testing condition is indicated under each box, and an asterisk reflects
p < 0.05 from a one-tailed t test on the pre-post difference. B) Stimulus-specificity
(x-axis) plotted for each experiment (y-axis) and training group, and also collapsed for
Experiments 3-6 (bottom), which were all of the experiments in which the context varied
from trial to trial. Error bars represent one-tailed 95% confidence intervals, as we were
only interested in whether the magnitude of stimulus-specificity was greater than zero.
Stimulus-specificity was statistically significant if the 95% confidence interval did not
include 0 (dashed line). C) Same as B but for context-generalization.

5.9 Summary of Experiments 3-6

Changes in pre- to post-training response accuracy for all testing conditions are
combined across Experiments 3-6 and presented in Figure 5.7A. The pooled data
highlight two key results. First, training to identify target-alone textures produced
improvements for those six targets presented alone, but learning did not generalize to
those six targets embedded within a context, or to novel horizontal targets regardless
of the presence of the context. Second, training to identify target+context textures
produced improvements to the trained targets embedded within a context and, critically,
to the trained targets presented alone. This generalization of learning to the familiar
targets presented in a new (i.e., absent) context occurred only in the target+context
group, suggesting that identifying targets embedded in a context included some selective
learning of the horizontal target structure independent of the context. We also plot
stimulus-specificity and context-generalization for all experiments in Figure 5.7B and
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5.7C, respectively. Stimulus-specificity was defined for the target-alone group as
the difference in the effect of training between hTF -alone and vTN -alone, and for
the target+context trained group as the difference in the effect of training between
hTF + vC and vTN + hC textures. Similarly, context-generalization was defined for
the target-alone group as the difference in the effect of training between hTF + vC

and vTN + hC, and for the target+context trained group as the difference in the effect
of training between hTF -alone and vTN -alone textures. The most critical finding here
is that when collapsed across the experiments in which the context was variable (i.e.,
Experiments 3-6), context-generalization was significant for the target+context trained
group but not for the target-alone trained group.

5.10 General Discussion

In a series of experiments, we trained participants to identify a set of horizontally-
filtered textures in one of two conditions: one in which the texture was presented by
itself (target-alone) and one in which it was presented in a non-informative, vertically-
filtered context (target+context). Before and after training, we assessed response
accuracy to familiar and novel targets presented alone or with a context. In Experiment
1, we found that it was more difficult to identify target+context stimuli than target-
alone stimuli, but that they both produced stimulus-specific learning that did not
generalize to the untrained context. In Experiment 2, we replicated Experiment 1
while ruling out possible effects of target contrast differences between the texture types.
In Experiment 3, we changed the non-informative context in target+context textures
across all items on every trial. We found that response accuracy dropped drastically,
but learning generalized to the trained targets in the absence of the context. That is
to say, individuals trained on target+context textures recognized the familiar targets
when presented alone (i.e., “context-generalization”). We replicated this finding in
Experiment 4, which also suggested that context-generalization did not apply to novel
targets with the same orientation as the trained targets. We confirmed the conclusions
of Experiment 4 in Experiment 5, and also ruled out the role of difficulty in promoting
context-generalization. That is, training on very difficult target-alone textures did
not produce the context-generalization that training with target+context textures
did, suggesting the role of the context in producing context-generalization was not
confounded with the difficulty of the task. Lastly, Experiment 6 confirmed the results
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of Experiment 3-5 using a training paradigm that produced learning in all subjects.
In summary, our results indicate that learning to identify horizontal targets embedded
within a varying, non-informative vertical context can lead to a strategy of discovering
familiar structures in novel contexts or when presented alone, but that the learning is
tied to the specific structures that were seen during training.

In some ways, the impact of a non-informative but highly visible context on task
performance was surprising. In Experiments 3-5, the target+context group exhibited
relatively small amounts of learning even though we excluded participants who failed
to show any improvement during training. However, given the consistent effects
across Experiments 3-6, and the use of a training paradigm that reliably promoted
learning in the participants of Experiment 6, we believe that the small effects of
stimulus-specificity and context-generalization are real effects. These results suggest
that we can push human perception to differentially rely on oriented structure in a
stimulus in which observers must discover which orientations do and do not convey
task-relevant information. Follow-up experiments should aim to study how extended
training will affect the pattern of results, and if there are more subtle cues we can
provide individuals to promote faster learning.

Why did the presence of a non-informative context affect the identification of an
orthogonally oriented target structure? One interpretation of the results is that the
participants perform the texture identification task using a decision variable that
receives input from all orientation channels. Initially, the decision variable equally
relies on all orientation channels. This is supported by the relative difficulty of the
three different texture types used during the training phase. The easiest textures were
target-alone textures which contained diagnostic horizontal structure and no visible
structure in the vertical orientations. Hence, vertical channels provided no input to
the decision variable, and therefore there was no vertical signal to affect the perceptual
decision. In the case of target+context textures with a variable texture (Experiments
3-6), on every trial, the non-diagnostic vertical structure was visible and novel, and
thus the decision variable would partly rely on a non-diagnostic input by placing equal
weight on horizontally tuned and vertically tuned channels. Consistent with this idea,
we see that response accuracy was much worse for target+context textures than target-
alone textures. In-between these two texture types is the target+context textures
with a constant context (Experiments 1-2). In these instances, equal weighting of all
orientations should not be detrimental to performance because, although the vertical
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structure is non-informative, it is constant for all textures. Since the non-informative
vertical structure is constant from the stimulus to all six alternatives on the response
screen, then the stimulus shares some structure with all possible alternatives; hence,
in a noisy system such as our visual system, it is conceivable that these textures may
lead to matches to the incorrect response alternatives given that all five incorrect
alternative textures share some signal with the stimulus texture. Furthermore, if the
decision variable relies on a signal in which all orientation channels are pooled, then
each target will produce a unique percept that remains constant across trials, and
thus distinct from all other combinations of the same context with different targets.
Therefore, the task can be done with relative ease by relying on a pooled signal.

In addition to differences in overall response accuracy, the different types of
textures lead to differences in target-specific and context-specific learning: target-
alone and target+(constant context) textures produced target- and context-specific
learning, whereas target+(variable context) textures produced target-specific but
context-generalizable learning. What produces such a pattern of results? Well, on every
trial, in conditions in which the context varies randomly, the horizontal target structure
is one of six possible alternatives, whereas the vertical context structure is novel on
every presentation. Our results suggest that, with training, the decision variable re-
weights its inputs from orientation channels to rely more heavily on information carried
by (the reliable and less variable) horizontally tuned channels than (the unreliable
and highly variable) non-informative vertically tuned channels. The low variability
of the target allowed for the observer to discover idiosyncrasies of the horizontally
oriented structures, whereas the high variability of the context prevented any learning
of specific idiosyncrasies of vertically oriented structures. Therefore, re-weighting of
channels carrying horizontal structure gives rise to context-generalization, wherein
the trained decision variable would be able to recognize familiar horizontally oriented
structures regardless of the status of the vertically oriented channels. Given that
the results from Experiments 4-6 indicate improvements are target-specific, then
re-weighting is unlikely to reflect a general increased weight of horizontal channels,
but rather, a subset of the channels that carry the signal of the learned targets (e.g., a
specific set of spatially-localized, horizontally-tuned channels). This suggests that our
results are similar to previous results in which observers learned to discriminate using
the most diagnostic spatial regions (Gold et al., 2004). Furthermore, a re-weighting
account of our results reflects increasing weights of horizontal channels only, and not
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decreased weight of vertical channels. If vertical channels were down-weighted, then
we would expect a reduction in identification accuracy to vertical target-alone textures.
Instead, in all experiments, we do not see any significant decreases in response accuracy
to vertical target-alone textures. This is also consistent with a perceptual learning
mechanism in which improvements are due to a more efficient signal extraction than a
reduction in internal noise (Gold et al., 1999).

If channel re-weighting only acts on the target-relevant channels, then why did
training on target-alone textures not produce context generalizable learning? The
reverse-hierarchy model of perceptual learning (Hochstein and Ahissar, 2002) posits
that perception automatically uses a high-order signal, and with need, recedes to using
lower level signals. In the current paradigm, the presence of a context instills the need
to use the visual signal at a lower level, where the input is represented across separate
orientation channels. Without the context, perceptual learning occurs on a higher
order signal where orientation information is not independent. Hence, although the
channels carrying the contextual signal do not undergo re-weighting, they are required
for the re-weighting of the target-carrying channels. Critically, for the context to
effectively push perception to a lower level signal, the context needs to be adequately
disruptive, supported by the fact that we did not see evidence for context-generalization
when the context did not vary on every presentation. The use of variability in the
context is an effective way to prevent the observer from learning specific structure of
the context – that is, a basic Hebbian learning machine would become more sensitive
to the target structure but not the context structure by mere repetition of the former
and no repetition of the latter. In some related work, Hussain et al. demonstrated that
when variability is incorporated into the entire texture (i.e., the entire texture is target
structure but is novel on every trial), observers are slow at learning to discriminate
this class of textures, but the learning is versatile: that is, the task is to identify novel
targets on every trial, and by default, when the task is successfully learned, then the
skill is transferred to novel textures that belong to the same class of stimuli (Hussain
et al., 2012a).

McGovern et al. (2012) provided an alternative to the reverse hierarchy model:
perception is indeed hierarchical, but learning will transfer to similar tasks in either
direction along the hierarchy. For instance, they demonstrate that training on one
of three tasks (global form, curvature, or local orientation discrimination) produces
transfer to the other two tasks, and the amount of transfer was predicted by the relative
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complexity of the transfer task to the training task. That is, training on the low
complexity (orientation) or high complex (global form) task both produced the largest
transfer to the medium complexity (curvature) task, and less-so to the high or low
complexity tasks, respectively. Interestingly, contrary to the authors’ prediction that
the medium complexity task would transfer to both the low and high complexity tasks,
their own data show that the medium complexity task transferred only to the low
complexity but not the high complexity task. Nonetheless, McGovern et al. suggest
that transfer between two tasks is determined by their proximity to each other along
the hierarchy, in either direction. Importantly, the tasks must be along the same
hierarchy: for instance, perceiving local orientation elements is part of perceiving a
curvature, and perceiving curvature is part perceiving the global form of a shape.
In our paradigm, perceiving target-alone and target+context textures should, then,
produce transfer to each other, assuming they are close enough along the hierarchy.
Regardless of their proximity, the fact that we get asymmetrical transfer suggests the
complexity model (McGovern et al., 2012) of perceptual learning is inadequate for our
results.

Our results are not consistent with a precision account of transfer (Jeter et al.,
2009), in which transfer is expected whenever the participant switches from a high
precision (HP) to a low precision (LP) task, but no transfer is expected when switching
from a LP to HP task. Texture identification of target-alone stimuli here is likely
a HP task, given that there is little uncertainty about the diagnostic structure of
the six target-alone stimuli. Identification of the target+context textures is likely a
LP task, since the appearance of the diagnostic target structure is made ambiguous
by the presence of the non-informative context. Thus, the precision account would
predict that training on the HP target-alone texture identification should generalize
to the LP target+context texture identification task, and that training on the LP
target+context texture identification should not generalize to the HP target-alone
texture identification task. We did not see either of these results, and our results were
in fact in the opposite direction. Nonetheless, the precision account (Jeter et al., 2009),
to our knowledge, has only been tested on simple orientation discrimination tasks, and
our predictions to complex identification tasks are only speculations.

Our results also are connected to the study of face perception, in which it has
been established that face identity information is significantly more prevalent in the
horizontal orientation than vertical orientation band (Dakin and Watt, 2009; Pachai
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et al., 2013), and critically, individuals vary significantly in how efficiently they extract
the relevant horizontal structure in a face identification task (Pachai et al., 2013).
Faces are a special class of stimuli in which humans have had a lifelong opportunity to
learn the characteristics of the stimulus class, and therefore, it makes sense that we
develop, with experience, a more efficient strategy to process the information from
the rich stimulus more effectively (Goffaux et al., 2015). Interestingly, even though
healthy adults have already developed a “horizontal bias” in face processing that
applies to novel faces (Goffaux et al., 2015; Dakin and Watt, 2009; Pachai et al.,
2013), they have an even stronger horizontal bias for personally-familiar faces (Pachai
et al., 2017), suggesting that through perceptual learning, the visual system is grows
more efficient at processing the diagnostic information of repeated stimuli. The study
of orientation biases using non-face stimuli such as textures can inform us on how
such perceptual biases develop with experience under fine psychophysical control. In
addition, situations where discovering initially ambiguous diagnostic structure in a
field of non-diagnostic structure is relevant to gaining expertise in diagnostic imaging.
For example, studies in dermatology (Norman et al., 1989) and mammography (Nodine
et al., 1999) indicate a significant role of perception in becoming an expert, and
therefore simulating such scenarios in the lab using textures may aid in developing
effective training paradigms.

Conclusion

Individuals were trained to discriminate textures that only contained horizontally
oriented target structure, or horizontally oriented target structure and vertically
oriented contextual structure. When the context remained constant, learning was
highly specific to the trained context. When the context was novel on every trial,
learning generalized to the trained targets without the context, suggesting observers
were learning, selectively, the horizontally oriented target embedded in a texture
that contained information in all orientations. We did not see convincing evidence
that the learning transferred to novel targets in the trained orientation, suggesting
that context-generalization does not reflect a break from stimulus specific perceptual
learning, but rather represents an instance where stimulus specific perceptual learning
becomes robust against changes in the context. We suggest that observers can learn
to make perceptual decisions by relying more on certain orientations of information.
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This implies that, unlike previous reports, information from independent orientation
channels can be represented at the decision level.
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Chapter 6

Extended training of orientation
filtered textures increases
generalization of learning

6.1 Abstract

Textures can be manipulated to contain diagnostic structure (target) in one orientation
band, and non-diagnostic structure (context) in a perpendicular orientation band.
Identifying targets is easier when targets are presented alone than when presented
within contexts, suggesting that the orthogonal but irrelevant information cannot be
ignored during perceptual decisions. In previous experiments, we found that learning
to identify targets did not transfer to the same targets presented within contexts, but
learning to identify targets within contexts did transfer to the same targets when
presented alone. However, although learning that occurred with targets embedded in
contexts generalized to a new context, the learning did not transfer to novel targets.
One limitation of our previous studies is that the magnitude of learning was very small,
and therefore we may not have had adequate power to measure transfer to novel stimuli.
Here, we addressed this issue by significantly increasing the amount of training. Twelve
participants received 4600 or 4800 practice trials in a 1-of-6 texture identification task.
The stimuli were horizontally-filtered textures embedded in a non-informative vertical
context. Before and after training, we assessed identification accuracy on trained and
novel targets with and without contexts. We also tested accuracy on textures where
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the target and context orientations were swapped, using both novel and trained targets.
The amount of improvement during training varied widely across observers. After
training, response accuracy improved significantly for familiar targets presented with
and without context, for familiar targets without context but rotated 90 deg, and for
novel horizontal targets presented alone or within contexts. The transfer of learning
was not related in any simple way to the learning rate during training. Our results
indicate that perceptual learning of orientation filtered textures varies significantly
across individuals, but that it can be generalized to novel and familiar targets in
novel contexts. We discuss these results in models of perceptual learning, as well as
their implications for perceptual learning in applied settings in which generalization of
learning is a critical component of training.

6.2 Introduction

Performance in most perceptual tasks improves with practice, but performance im-
provements often are restricted to the trained stimuli (Sagi, 2011). Stimulus-specificity
is seen as a hallmark of perceptual learning, and is found in diverse tasks including
vernier acuity (Fahle and Edelman, 1993), the discrimination of grating orientation
and spatial frequency (Fiorentini and Berardi, 1981), the discrimination of motion
direction (Ball and Sekuler, 1987), and the identification of textures (Hussain et al.,
2009) and faces (Hussain et al., 2012).

Recently, we studied perceptual learning in a texture identification task that used
stimuli that contained diagnostic structure in a relatively narrow range of orientations
(Chapter 5). Specifically, the textures contained horizontal diagnostic structure that
was presented alone or embedded in non-informative, vertical structure (i.e., context).
These stimuli (see Figure 6.1) allowed us to ask if observers could learn to extract
diagnostic, oriented structure for accurate identification, and, if so, to determine the
specificity of the resulting learning. Our working hypothesis was that forcing subjects
to discover informative structure would result in learning that generalized more to
novel stimuli. Participants practiced in a 1-of-6 identification task with targets either
presented alone or within a context. The task was significantly more difficult when
targets were presented with a context than when presented alone. Importantly, if
observers practiced with targets within a context, they showed complete transfer
of learning to the same targets when presented alone (i.e., context generalization).
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The opposite was not true: practice with targets presented alone did not produce
improvements to the same targets presented within a context. The asymmetric transfer
of learning points to a possibly important distinction in learning processes between
training with targets presented alone or targets presented within a context. Still,
although target+context training led to context-generalization, the generalization did
not apply to novel horizontal targets. Failure to transfer learning to novel horizontal
targets was against our working hypothesis, so we explore this failure of transfer in
this study.

Results from Chapter 5 are limited by the fact that identification performance
was still rather low after 960 trials of training. There are two problems with minimal
learning in an already difficult task: (1) partial transfer to novel targets could have
occurred but fallen below detectable levels, and (2) participants did not have adequate
opportunity to actually ‘discover’ how to best identify these structure. In the current
study, we aimed to address these two issues by providing participants with significantly
more practice.

We asked participants to practice identifying horizontal targets within a vertical
context for up to 4800 trials. Before and after training, we tested identification
accuracy in several conditions that allowed us to assess generalization of learning to
novel contexts, targets, and orientations. To anticipate our results, we found that
participants varied widely in how much they learned, but all showed the same pattern
of context generalization that was found in our previous experiments. However, unlike
previous results, extended training produced learning that transferred to novel targets.
Finally, we found that learning rate was not associated with context generalization, or
with generalization to novel targets.

6.3 Methods

6.3.1 Subjects

Twelve adults (4 male; range = 17-27 years old, M = 20.6, SD = 2.97) from McMaster
University participated in the experiment. All participants had normal or corrected-to-
normal Snellen acuity, and an average Pelli-Robson contrast sensitivity of 1.91 (range
= 1.80-1.95, SD = 0.068). All participants were naïve with regard to the experimental
hypotheses and had not participated in any of our previous experiments.
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6.3.2 Apparatus & Stimuli

The apparatus was the same as the one described in Chapter 5. Stimulus generation
was the same as well, but is described below to include some additional conditions.

Textures were generated by first applying an isotropic, bandpass (2-4 cycles per
image) ideal spatial frequency filter to 18 256×256 pixel (4.6×4.6 deg of visual angle)
patches of Gaussian white noise. Next, 60 deg bandwidth ideal orientation filters
centered on either 0 deg (horizontal) or 90 deg (vertical) were used to generate target
textures for different conditions. Twelve textures were filtered to preserve horizontally-
oriented structure (hT -alone). Six of these textures were were shown during the
training and test phases of the experiment and therefore were designated as familiar
stimuli (hTF -alone), and the remaining six textures were used only in the test phase of
the experiment to test for transfer to novel targets of the same orientation (hTN -alone).
The six familiar targets were also rotated 90 deg to test for orientation specificity of
learning for familiar targets (vTF -alone). The remaining original six textures were
filtered to preserve vertical structure, and they were used as control stimuli: novel
targets in the untrained orientation (vTN -alone). The four sets of target-alone textures
were then used to create target+context stimuli. The hTF/N -alone textures were
combined with vertically filtered (60 deg bandwidth) structure from a random noise
patch that was first filtered with an isotropic spatial frequency filter described above.
This structure is referred to as the context. The combination of hT -alone and a
vertical context formed the hTF + vC and hTN + vC stimuli. Similarly, vTF/N -alone
textures were combined with a horizontally oriented context, forming the vTF + hC

and vTN + hC textures. Critically, on every trial, and for every response screen
alternative, the context was randomly generated and thus contained no task-relevant
information. In summary, target-alone textures contained structure either in a 60 deg
horizontally- or vertically-orientated band of orientations, contained no structure at all
other orientations, and all visible structure was diagnostic for the identification task.
In contrast, target+context textures contained horizontal and vertical structure, but
only one band of orientations contained diagnostic structure belonging to the target
(i.e., horizontal in hTF/N + vC stimuli and vertical in vTF/N + hC stimuli) whereas
the other band of orientations contained non-diagnostic structure referred to as the
context.
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Figure 6.1 – A) Orientation filtered textures used in the experiment. Target-alone
textures (left) were used as they appear here. Target+context textures (right) are
presented only as a demonstration: since there is a virtually infinite number of possible
target and context combinations, we demonstrate what a single target appeared like when
combined with three of the infinitely possible contexts. Despite the three target+context
stimuli all containing identical target structures, the final textures look remarkably
different; the difference in appearance is due only to the different contexts. In the actual
experiment, a new context was generated on every trial, which was itself unique from
the six novel contexts generated on every trial for the response screen. In other words,
the stimulus and the correct response matched only in the target and differed in context.
B) The trial schematic used during both testing and training trials. During training
trials, the stimuli were only from the hTF + vC set.
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6.3.3 Procedure & Design

Participants completed a 1-of-6 texture identification task. Every trial followed the
same sequence described in detail in Chapter 5 and illustrated in Figure 6.1. During
training trials, the stimulus was always selected randomly from the hTF + vC texture
set. The spatial arrangement of the six targets on the response screen remained
constant across all training trials. The test phase consisted of two blocks of trials: In
one block, the type of stimulus on each trial was selected randomly from four types
of target-alone textures (hTF -alone, hTN -alone, vTF -alone, and vTN -alone), and in
the other block the stimulus was selected randomly from four types of target+context
textures (hTF + vC, hTN + vC, vTF + hC, and vTN + hC). Within each stimulus set,
the spatial arrangement of stimuli on the response screen remained constant across
trials belonging to each texture set. Because different texture sets were intermixed
within a block of test trials, the items on the response screen changed across test trials.

Each training session consisted of 600 trials with hTF + vC textures. Each of
the six unique targets was repeated 100 times, with every repetition using a new,
randomly-generated context. Based on their availability, participants completed 7 or 8
training sessions, for a total of 4200 (n=6) or 4800 (n=6) trials. Testing sessions were
completed before and after training. Each testing session consisted of 360 trials (6
texture sets × 6 targets per texture set × 10 repetitions per target) Hence, pre- and
post-training response accuracy was calculated on 60 trials per condition per testing
session (Figure 6.2). Two participants (LUC and SAR) did not complete the vTF-alone
and vTF+hC test conditions because these conditions were added to the experiment
after LUC and SAR had begun training.

After each training session, the experimenter addressed two questions to each
participant. The questions were: “How did you find the task today?” and “What
were you looking for when identifying textures?”. The interviews were informal and
were aimed to get a sense of how participants perceived the textures, and if they were
able to accurately describe the horizontal structures that were consistent across trials.
We took note of when a participant described their strategy as looking for horizontal
and diagonal structure. Often times, participants described the horizontal/diagonal
structure by gesturing the shape of the targets. We were careful to not ask leading
questions, mention horizontal/vertical/diagonal, indicate what they should look for, or
acknowledge if their strategy was correct or incorrect. At some point during training,
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all but two participants (SOT and KAT) described the stimuli in terms of oriented –
i.e, horizontal – structure.

6.4 Results

Statistical analyses were performed with R (R Core Team, 2018), and figures were
plotted using the ggplot2 package (Wickham, 2009).

Response accuracy from individual participants is plotted against training trials in
Figure 6.2A. Response accuracy improved for all participants, but the magnitude of
learning varied drastically between participants. For each participant, linear regression
was used to estimate the best-fitting line to the training data, and the learning rate
(i.e., slope) and intercept were recorded. Learning rates (M = 0.009, t11 = 5.45,
p < 0.001, d = 2.23) and intercepts (M = 0.287, t11 = 14.8, p < 0.001, d = 6.05) were
significantly different from zero. Higher intercepts were associated with lower learning
rates, but the correlation was not significant (r = −0.314, t10 = −1.04, p = 0.320).

Response accuracy during testing trials is plotted in Figure 6.2B. Single subject
performance is plotted in colour (top three rows), and group means are plotted in
black (bottom row). Within each plot, a positive slope from pre- to post-training
reflects an improvement in response accuracy. Learning rates during training differed
dramatically across participants (Figure 6.2A), but inspection of Figure 6.2B suggests
that individual differences were less pronounced in the test sessions. The effect of
training on performance in the test conditions was examined by comparing pre- to
post-training response accuracy in each condition using paired sample t tests. The
p values were adjusted to maintain a false discovery rate less-than-or-equal to 5%
(Benjamini and Hochberg, 1995). Response accuracy improved significantly for familiar
horizontal targets presented with vertical contexts (hTF + vC: M = 0.264, t11 = 8.86,
padj < 0.001, d = 2.56) and with the context removed (hTF -alone: M = 0.160,
t11 = 5.47, padj < 0.001, d = 1.58). That is, participants who were trained to identify
hTF + vC textures performed better with those same patterns, but showed context
generalization by also performing better with hTF -alone textures. Response accuracy
also improved significantly for horizontally-oriented novel targets presented alone
(hTN -alone: M = 0.146, t11 = 3.84, padj = 0.007, d = 1.11) and with vertical contexts
(hTN + vC: M = 0.100, t11 = 2.85, padj = 0.025, d = 0.82), reflecting transfer to
targets that they had not previously been trained on. This result, which was not
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Figure 6.2 – A) Training re-
sults: single subject response
accuracy across training trials,
calculated in bins of 120 trials
each. Every 5 consecutive bins
compose a single session. Re-
sponse accuracy is plotted sepa-
rately and arranged in order from
the highest to the lowest learn-
ing rate. A triangle in each plot
(except SOT and KAT) indicates
after which bin a participant was
able to approximately describe
the horizontal targets in post-
session interviews. B) Testing re-
sults: single subject response ac-
curacy at pre- and post-training
for each testing condition indi-
cated at the bottom. Four single
subjects are grouped into each
plot, according to their learn-
ing rate (highest learning rate in
top row). The fourth row con-
tains the mean across all sub-
jects (±1SEM). The top three
rows suggest that there were no
clear differences between general-
ization of learning across differ-
ent learning rates. On a group
level (bottom row), asterisks cor-
respond to a significant improve-
ments in response accuracy from
pre- to post-training.
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obtained in Chapter 5, is the first time that we have seen learning generalize to new,
horizontally-oriented targets. Response accuracy also improved significantly for familiar
targets rotated by 90 deg when they were presented alone (vTF -alone: M = 0.137,
t9 = 3.68, padj = 0.010, d = 1.16) but not when they were presented within horizontal
contexts (vTF + hC: M = 0.038, t9 = 0.876, padj = 0.404, d = 0.28), suggesting that
learning generalized to a novel orientation, but only when the orientation of the target
structure (as opposed to the contextual structure) was unambiguous. Lastly, response
accuracy did not improve significantly for vertically-oriented novel targets presented
alone (vTN -alone: M = 0.074, t11 = 1.83, padj = 0.125, d = 0.53) or within horizontal
contexts (vTN + hC: M = 0.049, t11 = 1.66, padj = 0.143, d = 0.48). These last
two comparisons indicate that the improvements found in other conditions reflect the
effects of learning that are tied to characteristics of the stimuli, and are not due to
general improvements in performing the task.

To examine the relation between performance during training and testing, we
correlated the learning rate and intercept from the learning curves during training with
the change in response accuracy in each test condition (Figure 6.3). Learning rates
were associated with larger improvements in response accuracy for familiar horizontal
targets presented alone (hTF -alone: r = 0.650, t10 = 2.71, padj = 0.165) and within
vertical contexts (hTF + vC: r = 0.595, t10 = 2.34, padj = 0.165), although the
correlations were not significant. Learning rate was not significantly correlated with
any other testing condition (−0.27 ≤ r ≤ 0.16, −0.97 ≤ t ≤ 0.51, 0.80 ≤ padj ≤ 0.94).
The correlation between the the intercept, which represents accuracy at the beginning
of training, and improvements at test was largest for novel horizontal targets presented
alone (hTN -alone, r = −0.554, t10 = −2.10, padj = 0.493), although the relationship
was not statistically significant. The intercept was not significantly correlated with any
other testing condition (−0.21 ≤ r ≤ 0.33, −0.67 ≤ t ≤ 0.98, padj = 0.68). Overall,
our measures of performance during the training phase were not strongly associated
with improvements in the test conditions.
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Figure 6.3 – The amount of improvement from pre- to post-training (y-axes) in the
various testing conditions is plotted against the (A) slope or (B) intercept of the learning
curve during training. Colours correspond to individual subjects from Figure 6.2A. Best
fitting lines were estimated using Pearson’s least squares, and shaded regions represent
the 95% confidence intervals of the correlation. The learning rate (i.e., slope) during
training was significantly correlated with improvements in identifying familiar horizontal
targets presented alone (hTF-alone) or with a vertical context (hTF+vC). The intercept
was not correlated with improvement in any testing conditions.

6.5 Discussion

Participants were trained to identify six horizontally-oriented targets embedded within
vertically-oriented contexts for 4600 or 4800 trials. Changes in response accuracy
during training varied widely across participants, but the variation was not associated
with the difference between pre- and post-training accuracy in the test conditions.
In fact, after training, all participants showed evidence of context generalization –
improved performance for targets presented without context – and most participants
showed stimulus generalization – improved performance for novel targets in the trained
orientation and familiar targets in a novel orientation. Our results indicate that
learning to identify textures can be transferrable to variations of the trained targets,
and to novel targets sharing some key characteristics with the trained target. We will
discuss these key characteristics below.

The finding of context generalization is consistent with previous findings from
experiments that used many fewer training trials (Chapter 5). One interpretation
is that perceptual learning of textures is due to a decision variable re-weighing its
incoming connections (Petrov et al., 2005) from different orientation channels (De
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Valois et al., 1982) to improve the signal-to-noise ratio (Gold et al., 1999). Such a
mechanism explains why training to identify a set of horizontal targets embedded
in vertical contexts produces learning that transfers to horizontal targets presented
alone. Throughout training, channels tuned to horizontally-oriented inputs transmit
signals belonging to a set limited to six targets, whereas channels tuned to vertically
oriented inputs transmit signals belonging to an infinite set of contexts, and thus
never repeated. A basic Hebbian learning rule would predict that the decision variable
would strengthen its connections from the horizontally-tuned but not vertically-tuned
inputs. Interestingly, as the experiments in Chapter 5 demonstrate, training to identify
horizontal targets in the absence of vertical contexts does not transfer to the same
targets embedded in vertical contexts. Therefore, additional constraints, such as those
in the reverse hierarchy model of learning (Hochstein and Ahissar, 2002) are needed
to understand the pattern of transfer thus far. Better identification of target+context
textures requires the decision variable to rely differently on horizontally- and vertically-
oriented signals, whereas better identification of target-alone textures does not require
the decision variable to distinguish the signal according to orientation, since non-target
orientations contain no structure and thus are not disruptive to the integrity of the
target’s representation.

Extensive training with horizontal targets embedded in vertical contexts produced
learning that transferred to novel horizontal targets presented alone or within vertical
contexts. This is the first time that we have been able to show significant transfer to
novel targets. The re-weighting hypothesis used to account for context generalization
may also apply here. Target-specific context generalization, as that seen in Chapter
5, may be due to the re-weighting of orientation channels that are spatially-selective,
therefore learning will not generalize to similarly oriented structures that fall on
different spatial receptive fields. Non-specific context-generalization, i.e., transfer to
novel but horizontally oriented targets, may reflect the re-weighting of inputs from a
level of orientation-selective channels that are not spatially selective (i.e., the signal
is pooled across space but not orientation). Alternatively, instead of generalization
explained by the pooling of spatial information, it is possible that extended training
led to the re-weighting of many more channels, thus covering a larger spatial receptive
field. We cannot distinguish these two possibilities using our results.

Evidence of transfer following extensive training but not following shorter training
regimens as in Chapter 5 can reflect one of, or a combination of, two possibilities. First,
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transfer effects may grow slowly but steadily with increasing training, and therefore
they simply may have been too small to measure reliably in previous experiments
that used fewer training trials. Alternatively, transfer effects may emerge rapidly and
suddenly, following a criterion number of training trials. In this view, we failed to
observe transfer in previous experiments because we did not provide participants with
an adequate opportunity to discover techniques/strategies that transfer to novel stimuli.
In the current study, the experimenter did an informal follow-up after each training
session to learn how participants described the manner in which they performed the
task. Indeed, 10 of the 12 participants described an “aha! moment”, which was when
they first said that they were looking for “horizontal lines” or something similar. The
first session following a participant’s report of horizontal structure is indicated by a
triangle in Figure 6.2A. Response accuracy in these sessions ranged between 32%
and 56% (M = 44.9%, SD = 7.6%), possibly indicating that a minimum accuracy
was required for participants to discover the underlying target structure. However,
inspection of Figure 6.2 suggests that the timing of the realization that the targets
consisted of horizontal structure did not coincide with any meaningful changes in
learning rate. Also, the two participants (SOT & KAT) who never said that they
were searching for horizontal structure nevertheless exhibited context and stimulus
generalization during the test phase that was similar to that found in the other subjects.
Although obtaining and analyzing “aha! moments” was informal and not conclusive, it
does suggest that becoming aware of, and being able to verbalize, the orientation of the
diagnostic structure in our stimuli was not related in any obvious way to the process(es)
underlying improvements in this task. A more formal and detailed investigation into
how participants describe the targets and how well they perform is needed to better
understand the relationship between psychological experiences and perceptual abilities.

In addition to context- and target-generalization, participants showed transfer of
learning to familiar targets that were rotated by 90 degrees. That is, participants
recognized vertical targets presented alone (vTF -alone) as being the rotated version
of the same horizontal targets they were trained on while they were presented in
vertical contexts (hTF + vC). There was no significant transfer to the rotated familiar
targets if they were presented within horizontal contexts (vTF + hC), indicating that
participants were not able to recognize familiar structures in untrained orientation
bands if the orientation of the targets are not explicitly visible in the stimulus. In
other words, participants learned that when a texture contains information in both
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horizontal and vertical orientation bands, they should put emphasis on the processing
of horizontal structure. This is not a good strategy when the otherwise familiar
target is now vertically oriented unbeknownst to the participant. Transfer to familiar
but rotated targets may be an extension of work suggesting that the bandwidth of
orientation channels are adjustable (Taylor et al., 2014); perhaps, in addition to the
adjustment of the bandwidth, the orientation itself can be adjusted following adequate
perceptual learning. Learning may reflect orientation-specific re-weighting of inputs
to the decision variable, but the decision variable appropriately relies on previously
untrained orientations if and when the target structure’s orientation is visible and
unambiguous to the observer. Nonetheless, learning appears to be orientation-selective
relative to the stimulus, not relative to the observer.

In a separate but related line of research, studies of face perception have highlighted
the uneven distribution of information across different orientation bands, with the
majority of identity information conveyed by horizontally oriented structures (Pachai
et al., 2013). Indeed, humans develop and/or learn to preferentially process horizontal
relative to vertical structures (Goffaux et al., 2015; Balas et al., 2015, 2017), and the
strength of this preference is predictive of overall face identification abilities (Pachai
et al., 2013; Chapter 2). One reason the study of orientation selectivity in faces
is informative here is the methodological difference in how orientation selectivity is
measured. For example, horizontal facial structure can be presented alone (Dakin and
Watt, 2009; Chapter 2) like our target-alone conditions, or within an uninformative
facial context (Pachai et al., 2018; Chapter 4) as in our target+context conditions.
Other methods include using orientation filtered noise masks (Pachai et al., 2013), or
orientation-specific phase scrambling (Jacques et al., 2014). Indeed, these methods
have all provided converging evidence that face perception relies heavily on horizontally
oriented structures; however, the manipulation in which filtered faces are presented
within the context of a non-diagnostic face may be the most valid form of testing
the mechanisms underlying face perception, since there are no added cues as to what
orientations contain the diagnostic structures. For example, Goffaux and Greenwood
(2016) used filtered face alone stimuli to conclude that human face perception relies
on a 25 degree bandwidth of horizontally oriented information, whereas Pachai et al.
(2018) used filtered faces in an uninformative but facial context to conclude that the
bandwidth humans use is much larger at 75 degrees, suggesting that perhaps the
unambiguity of what orientation bands contain information in the filtered face alone
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conditions may be a cue for information processing; this cue does not typically exist
in a face, nor does it exist in filtered faces presented in an uninformative context.
Similarly, we found different results for target-alone and target+context textures
for familiar targets that were rotated at test. Specifically, we observed transfer to
rotated targets when presented alone, but not when presented within a context. This
distinction suggests that target+context textures are a valid measure of the observers
learned mechanism/strategy for that class of stimuli, whereas target-alone textures
are a measure of how sensitive the perceptual system is to stimulus features.

One criticism of our results is that for a supposed learning experiment, improvements
in the training task are rather slow. However, in a practical application, medical
practitioners such as radiologists and dermatologists have to regularly make perceptual
judgements on visual stimuli that may share some characteristics with our task and
results. In one study on the development of expertise in dermatologists, Norman
et al. (1989) demonstrate that it takes years of experience for medical students, and
subsequently practitioners, to increase their diagnosis rate from 21% to 87% accurate
(see Nodine et al., 1999, for similar results in mammography). The rate of learning in
medical practitioners is significantly improved with feedback (Sowden et al., 1996),
indicating that mere visual exposure to images is inadequate for optimal learning.
Indeed, this is consistent with the idea that medical practitioners have to discover the
relevant characteristics of the stimuli for accurate diagnoses. One interpretation of
the difference between our current results and those in Chapter 5 is that the extended
training allowed for the possibility that observers could discover the characteristics of
the diagnostic structure embedded in the noise. Furthermore, as we suggest that our
work is consistent with the reverse-hierarchy model of perceptual learning (Hochstein
and Ahissar, 2002), medical expertise acquisition has also been framed in the reverse
hierarchy model (Taylor, 2007). That is, with enough practice with difficult stimuli,
perception of to-be medical imaging experts begins to rely on low-level rather than
high-level representations of the stimulus, allowing for increased sensitivity to subtle
but diagnostic features that are not well represented in high-level representations.
Linking our controlled, in lab results with that of medical imaging experts not only
increases the importance of our research, but also indicates that we may be able to
use these constructed images to mimic, and possibly enhance, the training regimen of
medical imaging students.

In summary, our results indicate that extensive practice in identifying orientation-
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manipulated textures produces transferrable learning. The learning transfers to
textures that are similar to the trained targets in at least one of two ways: novel
targets that share the same orientations as trained targets, or novel orientations that
have the same but rotated structure as the trained targets. By studying perceptual
learning using complex textures with the diagnostic value of orientation structure
manipulated, we can better understand the dynamics of perceptual learning in every
day life that goes beyond simple stimuli such as gabors, verniers, or random dot
kinematograms. If similar perceptual learning underlies expert human face perception,
then understanding its dynamics can be informative to promoting efficient and expert
perception in general.
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Chapter 7

General Discussion

Perceptual learning occurs because observers become more sensitive to informative
aspects of the stimuli (Sagi, 2011). For example, response accuracy in a texture
identification task improves because observers learn to base their decisions on diagnostic
regions (Gold et al., 2004). Lifelong experience with faces also is associated with
observers basing their decisions on diagnostic regions (Sekuler et al., 2004). In texture
identification, the diagnostic regions differ between textures, and therefore different
observers rely on different regions. On the other hand, faces are relatively uniform
in their spatial arrangement, so most observers rely on the eye and brow regions for
face identification. Despite these differences, the informative aspects of the identity of
textures and faces are accessible and apparent to observers.

In other situations the informative aspects of an image may not be apparent.
For instance, medical imaging experts often search for subtle cues in an otherwise
ambiguous and uninformative stimulus (e.g., Norman et al., 1989; Nodine et al., 1999).
Perceptual learning certainly has a role in the development of expertise, but expertise
is not simply explained by improvements in sensitivity to the low contrast features of
an image (Sowden et al., 2000). One possibility is that experts have discovered what
diagnostic information looks like, and the process of discovery has allowed them to
better identify the diagnostic aspects of new images of the same type.

The work presented in this dissertation shows that learning to identify textures
for which the informative aspects must first be discovered may be difficult, but the
resulting learning can be generalized to new textures. In the current experiments,
the informative and uninformative stimulus structure occurred in different bands of
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orientations. The idea of separating informative/non-informative structure in different
orientation bands was inspired by research in face perception, wherein observers have a
bias to rely on horizontal structure more than vertical structure. Therefore, our initial
experiments established that orientation-selective face processing has behavioural and
neural markers, and that these markers are associated with identification accuracy.
We also showed that age-related deficits in face identification can be reduced with
perpetual learning, and the change is associated with the enhancement of horizontal
bias.

7.1 Summary of Results

The results in Chapter 2 establish that a behavioural bias for the horizontal structure
of a face is associated with a similar bias in the ERP response to faces. Specifically,
we demonstrate that several measures of face processing – including identification
accuracy, N170 amplitude, and N250 amplitude – were similarly affected by the
removal of horizontal, but not vertical, structure. Relative to full faces, faces with no
horizontal structure were associated with decreased response accuracy, a decreased
N170 amplitude, and a decreased N250 amplitude. Full face identification accuracy was
correlated with behavioural and N250 horizontal bias, but not N170 horizontal bias,
suggesting that processes underlying the N250 may be critical for face identification.

The results in Chapter 3 replicate the findings of Chapter 2, but with older adults.
Similar to what was seen in younger adults, older adults exhibited behavioural, N170,
and N250 sensitivity to differently oriented structure in faces. Critically, horizontal
biases were decreased in older relative to younger adults, but were still significantly
correlated with face identification accuracy. Unlike what was found with younger
adults, face identification accuracy in older adults was significantly correlated with
the N170 horizontal bias. This result was interpreted as evidence that early visual
processes limit face identification more in older adults relative to younger adults.

The results in Chapter 4 show that age-related changes in face identification can
be reduced with perceptual learning. Perceptual learning of faces was associated with
a significant increase in horizontal bias. Post-training, but not pre-training, horizontal
bias was correlated with face identification accuracy, suggesting that older adults face
identification is associated with horizontally biased processing of facial structure. The
results suggest that perceptual learning can be used to enhance orientation-selective
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processing of stimuli for which orientation-selective processing is advantageous.
In Chapter 5, the idea of discovering orientation-selective processing for a novel

stimulus class was explored. Stimuli in a texture identification task were modified to
contain informative structure in a horizontal orientation band, and non-informative
structure in a vertical orientation band. In these textures, the informative structure
was not easily apparent to the observer, since the non-informative structure, and
therefore the appearance of the entire texture, changed on every trial. The results show
that learning to identify these types of textures is incredibly slow, but that learning
generalizes to textures that did not contain non-informative structure. Observers
were able to recognize familiar informative structure when presented without the
uninformative structure. The opposite was not true: training to identify informative
structure presented alone did not generalize to the same informative structure embedded
in uninformative structure. Hence, practice with textures that promoted the discovery
of information in certain orientation bands was effective in producing generalization,
although the learning did not transfer to novel structures.

Lastly, the results in Chapter 6 extend the findings of Chapter 5 by showing that a
considerable increase in the amount of practice improved the generalizability of learning.
Indeed, these experiments found, for the first time, that perceptual learning in this task
generalized to novel textures. The rate of learning during training varied significantly
between observers, but the rate of learning was not related to generalization in any
obvious way. The results are consistent with the idea that prolonged training provided
observers with more opportunities to discover the relevant structure, and that the
discovery of the relevant structure enables transfer to novel textures where the relevant
structure can be discovered in a similar way.

7.2 Implications

7.2.1 Face perception

The results presented in this dissertation have implications in several areas of vision
science. One major implication is in our understanding of face perception. Previous
research established that horizontal structure is necessary for accurate face identification
(Dakin and Watt, 2009), and that individual differences in horizontal bias are associated
with face identification accuracy (Pachai et al., 2013), and even that horizontal structure
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is needed for the behavioural (Goffaux and Dakin, 2010) and N170 (Jacques et al.,
2014) face inversion effects. In Chapter 2, we demonstrate that horizontal structure is
necessary for a complete, face-like neural response: whereas the neural response was
largely unaffected with the removal of vertical structure, the N170 and the N250 were
both significantly affected by the removal of horizontal structure. The N170 has been
suggested to be associated with eye detection (Rousselet et al., 2014), consistent with
our results showing the N170 amplitude decreasing significantly when information
about the eyes, which is conveyed by horizontal structure, is removed. According to
the Lateral Inhibition, Face Template, and Eye Detector (LIFTED) model of face
processing (Nemrodov et al., 2014), the N170 is the response of an eye-detector which
is inhibited by the presence of non-eye features in the parafoveal region. That is, the
N170 is larger to isolated eyes than to eyes within a face because isolated eyes are
not inhibited by surrounding features. Our results do not directly address this theory,
because our filtering manipulation is agnostic to any specific feature, and therefore
all filtered faces contain at least some information about all facial features. However,
the fact that filtering is agnostic to features is one advantage of studying faces using
orientation filtering rather than manipulating subjectively defined features of a face
(e.g., Piepers and Robbins, 2012). Studying faces using the orientation structure is
advantageous because orientation filtering is consistent with the representation of the
signal at early visual processing stages (Hubel and Wiesel, 1968; Pantle and Sekuler,
1968; Blakemore and Campbell, 1969; De Valois et al., 1982a,b). More recently, activity
in the fusiform face area has also been shown to be driven by horizontally oriented
facial structure (Goffaux et al., 2016).

The results also help understand the characteristics of age-related changes in face
identification (Grady et al., 1994). In Chapter 3, we show that a significant amount of
age-related changes in face identification are accounted for by changes in the horizontal
biases of earlier and later visual processes reflected in the N170 and N250, respectively,
as well as changes in the behavioural horizontal bias not accounted for by the two neural
markers. However, we show that after accounting for all three measures of horizontal
bias, there was still a significant effect of age on face identification accuracy. This
result suggests that changes in horizontal bias do not entirely account for age-related
changes in face identification accuracy, so other factors need to be considered.

Finally, older adults are only one of many populations who show deficits in face
perception. In Chapter 4, we show that practice with upright faces increases the
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magnitude of horizontal bias in older adults. Other populations with deficits in
face perception include individuals with prosopagnosia (Bodamer, 1947; Hecaen and
Angelergues, 1962; Barton, 2003) and autism (Langdell, 1981; Davies et al., 1994;
Rutherford et al., 2007). Horizontal bias is shown to be attenuated in individuals with
prosopagnosia (Pachai et al., 2015), but horizontal bias of individuals with autism has
not yet been measured. It is unclear if a similar training paradigm as that used with
older adults will aide face perception in individuals with prosopagnosia or autism, but
training regimens focused on affected horizontal bias may prove to be effective. It is
unclear if practice-induced changes in horizontal bias measured with one set of faces
will transfer to another set of faces. Training regimens can consider the results from
Chapters 5 and 6 and incorporate appropriate variability in non-informative stimulus
aspects to help promote generalizable learning.

7.2.2 Perceptual learning

The results presented in this dissertation contribute to our understanding of the mech-
anisms of perceptual learning. The results in Chapter 5 provide support for the reverse
hierarchy model of perception (Ahissar and Hochstein, 2004), in which perception relies
on the discriminable signal at the highest processing level along the visual pathway. In
summary, training to identify targets embedded in an uninformative context generalized
to identifying familiar targets presented without a context, whereas training to identify
targets presented without a context did not generalize to identifying familiar targets
embedded in an uninformative context. Critically, for the asymmetric generalization
to occur, the uninformative context needed to be different in every exemplar. This
finding suggests that for perception to rely on a signal lower in the processing hierarchy,
observers must not be given an opportunity to learn idiosyncrasies of the uninformative
context. Alternatively, the observers discover that the context is uninformative based
on its variability, thereby allowing them to ignore the context. In any case, learning
to base decisions on information from certain orientation bands indicates that past
failures to to get observers to base decisions on individual orientations (e.g., Olzak
and Thomas, 1991; Olzak and Wickens, 1997) may be overcome with an appropriate
perceptual learning paradigm.

An important implication of our results concerns the role of discovery in the
generalization of perceptual learning. Instead of perceptual learning occurring by
improving sensitivity to informative aspects that are specific to the set of trained
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stimuli, our results suggest that perceptual learning may (also) be a consequence
of learning to discover task-relevant structure. Learning to discover structure based
on some general properties (e.g., horizontal instead of vertical structure) may be a
powerful way to use limited sets of stimuli in a perceptual task during training and have
learning generalize to untrained stimuli. Interestingly, whereas stimulus-specificity of
perceptual learning has been shown to increase with increased training durations (Jeter
et al., 2010; Hashemi et al., 2013), the results in Chapter 6 suggest that substantially
longer training durations allow for more opportunities to discover the relevant structure.
Hence, the characteristics of perceptual learning may differ when the the task requires
observers to learn how to discover informative structure rather than the specifics of
a a small stimulus set. This proposal is consistent with the idea that the stimulus-
specificity of learning is not defined by where along the visual pathway the locus of
learning is, but rather what is learned (Mollon and Danilova, 1996). Our results from
Chapters 5 and 6 suggest that the what that is learned is which channels in the visual
system are most likely to convey the task-relevant structure.

Better identification of stimuli with task-relevant structure hidden within task-
irrelevant structure is akin to the development of expertise in the interpretation of
medical images. Although Chapter 6 showed that you need thousands of trials to reach
relatively high accuracy levels, under 5000 trials in two weeks of training is relatively
little compared to the years of experience required by doctors to become diagnostic
imaging experts (Norman et al., 1989; Nodine et al., 1999). Using stimuli similar to
the textures used in this dissertation, or creating novel stimuli using image statistics of
different types of medical images, may be a good first step in developing relatively brief
training paradigms for medical students. Furthermore, the individual differences in
learning during the texture identification training task, if coupled with a link between
performance in a texture identification task and the ability to identify anomalies in
medical images, may aide in distinguishing prospective medical imaging experts based
on their performance on a standardized test administered early in their career.

7.3 Future research

The experiments presented in this dissertation provide results motivating several lines
of future research. Chapter 1 shows that face-related neural responses, namely the N170
and N250, are sensitive to horizontal facial structure, but that only the N250 horizontal

184



McMaster U. — Psychology, Neuroscience & Behaviour PhD — A. Hashemi

bias correlates with human face identification accuracy. Follow-up experiments should
assess if the N250 horizontal bias is modulated by task-relevancy; given that the N250
is sensitive to face identity, does it show a horizontal bias even when face identity is
irrelevant to the task? Does the N250 horizontal bias correlate with performance on
other tasks, such as emotion, gender, or viewpoint discrimination? Duncan et al. (2017)
recently showed that horizontal structure is informative in an emotion discrimination
task for most emotions, and also that horizontal bias was associated with emotion
discrimination. How horizontal bias is reflected in the ERP to non-identification tasks
is still unclear.

The results in Chapters 2 and 3 may underestimate the effect of stimulus information
on the behavioural and neural measures of horizontal bias. Future studies should
instead filter stimuli like Chapter 4 so that observers are unaware of what orientation
bands convey task-relevant information, and therefore will employ a processing strategy
that is not influenced by the filtering condition. The prediction is that such stimuli
should reduce, or abolish, the horizontal bias at the N170, and therefore allow us
to examine the horizontal bias of the N250 without residual effects from the N170.
This prediction is justified by results showing that the N170 is sensitive to face, or
specifically eye, information (e.g., Rousselet et al., 2014), but not to face identity
(Amihai et al., 2011). The stimuli in Chapter 4 always resemble a full face with intact
eyes, and therefore the informativeness of the eye in the different filter conditions is
no longer confounded with the presence of eye structure.

Chapter 4 provides positive results for practice-based increases in face identification
accuracy and horizontal bias in older adults. For these results to be applicable as a
clinical tool, practice-based improvements must generalize to novel faces, and therefore
follow-up studies should evaluate the stimulus-specificity of the results presented in
Chapter 4. Furthermore, future studies should aim to use stimuli that are more
inclusive and reflective of the sample’s population. For instance, our experiment
requires older adults to identify younger adult faces, which may not be reflective of the
faces they see in their every day life. Indeed, face recognition is better for own-age than
other-age faces (Wiese et al., 2013), and for own-race than other-race faces (Malpass
and Kravitz, 1969). Together with the fact that recognition and horizontal bias are
better for familiar than unfamiliar faces (Pachai et al., 2017), age-related deficits in
horizontal bias need to be evaluated using faces belonging to older adults.

The results in Chapters 5 and 6 are the first demonstrations that the perceptual
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learning of textures may be accomplished by learning how to discover task-relevant
information. Similar to Experiment 6 in Chapter 5, future studies should focus on
identifying training paradigms that reliably produce learning. For instance, one way
to potentially make the task easier is by reducing the variability in the contextual
structure. Whereas Experiments 1 and 2 in Chapter 5 used the same context on
the stimulus and response screen, as well as between trials, and Experiments 3 to
6 used a unique context from stimulus to response screen, as well as between trials,
future studies should test the effect of using unique contexts between trials, but the
same context within each trial (stimulus and response screen). In such cases, the task
should become easier since the correct response will better resemble the stimulus, but
observers will not be given the opportunity to repeatedly see the context, and therefore
learning will not be tied to context structure (as was seen in Experiments 1 and 2).

Orientation-selective processing of textures, as demonstrated in Chapters 5 and
6, share basic similarities with the horizontal bias seen in face perception. However,
several differences exist, and future studies can address these differences. One major
difference is that the information in natural images of faces is not exclusive to specific
orientation bands, despite being more informative in horizontal relative to vertical
orientation bands. One way to address this is to create textures using jittered filter
bandwidths such that on any given trial, informative structure is conveyed by a
horizontally-centred orientation band with a ±10deg to ±90deg bandwidth. The
orthogonal bandwidth would then contain uninformative structure, so that observers
are unaware of the filtering condition and therefore need to discover the task-relevant
structure with practice. With these stimuli, the optimal strategy would be to rely
most on structure conveyed by a ±10deg orientation band, since the structure will
always be informative, and less and less on structure conveyed by orientations beyond
this bandwidth. This type of graded horizontal bias is akin to the horizontal bias seen
in face perception (e.g., Chapters 2-4).

Identifying similarities in orientation-selective processing between faces and textures
will also enable us to better understand the neural correlates of face perception and
orientation-selective processing. The neural response to faces has been well-studied,
including evidence that face-like neural responses to non-face objects can be achieved
through training (Rossion et al., 2002). Therefore, achieving expertise with the textures
used in this dissertation may then allow us to test the orientation-selectivity of specific
neural responses of interest (N170 and N250) to non-face images of expertise. Such
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studies could begin to distinguish if horizontal bias in face processing is, at a neural
level, similar to a learned horizontal bias to non-face stimuli. Recent results have
suggested that horizontal bias to faces originates in the fusiform face area (Goffaux
et al., 2016), so unless lab-based expertise with textures recruits the fusiform face area,
it is possible that the two are not governed by the same neural mechanism.

7.4 Conclusion

This dissertation provides evidence of orientation-selective processing in the human
visual system. The results build on previous research on face perception by establishing
a neural sensitivity to information conveyed by different orientation bands, and also that
orientation-selective processing of faces is affected by perceptual learning. Additionally,
a novel stimulus set is created and used to demonstrate that orientation-selective
processing can be learned, and that successful learning may hinge on an observer’s
ability to learn how to discover task-relevant information when such information is not
easily distinguishable. Learning to discover task-relevant information is an effective
way to promote a generalizable form of perceptual learning, which is a welcome change
from decades of research pointing to an often stimulus-specific form of perceptual
learning. In summary, this dissertation demonstrates that under certain circumstances,
information conveyed by different orientation bands can be used differentially by the
human observer.
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Appendix

F Tables for Chapter 5

Analysis of variance tables, as described in Chapter 5, are presented here in full for
the reader’s benefit. Results are presented for ANOVAs conducted on the testing data.
Analyses of training data, and any t tests or other focussed contrasts are not included
in this appendix, as they are well described in the text.
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Experiment 1

dfN dfD F p η2
G

Intercept 1 20 53.3 0.000 0.445
trainGroup 1 20 3.80 0.065 0.054
stimNovelty 1 20 1.39 0.252 0.021
testContext 1 20 0.00 0.991 0.000

trainGroup:stimNovelty 1 20 0.66 0.425 0.010
trainGroup:testContext 1 20 17.7 0.001 0.197
stimNovelty:testContext 1 20 1.56 0.226 0.009

trainGroup:stimNovelty:testContext 1 20 44.3 0.000 0.212

Table A1 – Chapter 5 Experiment 1. Data from all participants submitted to a 2
(training group) × 2 (testing context) × 2 (stimulus novelty) ANOVA

dfN dfD F p η2
G

Intercept 1 11 44.5 0.000 0.534
stimNovelty 1 11 2.14 0.171 0.051
testContext 1 11 8.17 0.016 0.179

stimNovelty:testContext 1 11 11.6 0.006 0.136

Table A2 – Chapter 5 Experiment 1. Data from the target-alone training group
submitted to a 2 (testing context) × 2 (stimulus novelty) ANOVA

dfN dfD F p η2
G

Intercept 1 9 14.1 0.005 0.341
stimNovelty 1 9 0.06 0.808 0.002
testContext 1 9 10.7 0.010 0.227

stimNovelty:testContext 1 9 55.0 0.000 0.313

Table A3 – Chapter 5 Experiment 1. Data from the target+context training group
submitted to a 2 (testing context) × 2 (stimulus novelty) ANOVA
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Experiment 2

dfN dfD F p η2
G

Intercept 1 21 53.9 0.000 0.530
trainGroup 1 21 3.98 0.006 0.077
stimNovelty 1 21 20.3 0.000 0.159
testContext 1 21 4.14 0.055 0.034

trainGroup:stimNovelty 1 21 0.09 0.768 0.001
trainGroup:testContext 1 21 26.6 0.000 0.186
stimNovelty:testContext 1 21 0.08 0.787 0.001

trainGroup:stimNovelty:testContext 1 21 21.2 0.000 0.157

Table A4 – Chapter 5 Experiment 2. Data from all participants submitted to a 2
(training group) × 2 (testing context) × 2 (stimulus novelty) ANOVA

dfN dfD F p η2
G

Intercept 1 10 34.4 0.000 0.640
stimNovelty 1 10 8.70 0.015 0.139
testContext 1 10 3.92 0.076 0.075

stimNovelty:testContext 1 10 17.5 0.002 0.139

Table A5 – Chapter 5 Experiment 2. Data from the target-alone training group
submitted to a 2 (testing context) × 2 (stimulus novelty) ANOVA

dfN dfD F p η2
G

Intercept 1 11 18.6 0.001 0.381
stimNovelty 1 11 11.8 0.806 0.182
testContext 1 11 32.7 0.000 0.314

stimNovelty:testContext 1 11 8.65 0.013 0.178

Table A6 – Chapter 5 Experiment 2. Data from the target+context training group
submitted to a 2 (testing context) × 2 (stimulus novelty) ANOVA
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Experiment 3

dfN dfD F p η2
G

Intercept 1 22 60.8 0.000 0.438
trainGroup 1 22 1.61 0.218 0.020
stimNovelty 1 22 22.5 0.000 0.241
testContext 1 22 10.4 0.004 0.102

trainGroup:stimNovelty 1 22 1.08 0.311 0.015
trainGroup:testContext 1 22 16.3 0.001 0.151
stimNovelty:testContext 1 22 28.2 0.000 0.176

trainGroup:stimNovelty:testContext 1 22 10.4 0.004 0.073

Table A7 – Chapter 5 Experiment 3. Data from all participants submitted to a 2
(training group) × 2 (testing context) × 2 (stimulus novelty) ANOVA

dfN dfD F p η2
G

Intercept 1 11 26.9 0.000 0.469
stimNovelty 1 11 20.0 0.001 0.283
testContext 1 11 17.0 0.002 0.326

stimNovelty:testContext 1 11 46.4 0.000 0.317

Table A8 – Chapter 5 Experiment 3. Data from the target-alone training group
submitted to a 2 (testing context) × 2 (stimulus novelty) ANOVA

dfN dfD F p η2
G

Intercept 1 11 45.1 0.000 0.404
stimNovelty 1 11 5.90 0.033 0.194
testContext 1 11 0.72 0.413 0.009

stimNovelty:testContext 1 11 1.79 0.208 0.039

Table A9 – Chapter 5 Experiment 3. Data from the target+context training group
submitted to a 2 (testing context) × 2 (stimulus novelty) ANOVA
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Experiment 4

dfN dfD F p η2
G

Intercept 1 22 15.9 0.001 0.201
trainGroup 1 22 2.06 0.165 0.032
stimNovelty 1 22 0.71 0.409 0.005
testContext 1 22 2.99 0.098 0.030

trainGroup:stimNovelty 1 22 1.21 0.284 0.009
trainGroup:testContext 1 22 0.12 0.737 0.001
stimNovelty:testContext 1 22 0.21 0.654 0.002

trainGroup:stimNovelty:testContext 1 22 0.77 0.388 0.009

Table A10 – Chapter 5 Experiment 4. Data from all participants submitted to a 2
(training group) × 2 (testing context) × 2 (stimulus novelty) ANOVA
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Experiment 5

dfN dfD F p or pHF η2
G

Intercept 1 22 4.98 0.036 0.061
trainGroup 1 22 0.00 0.982 0.000
stimType 2 44 1.20 0.310 0.014

testContext 1 22 0.91 0.351 0.007
trainGroup:stimType 2 44 1.09 0.346 0.013

trainGroup:testContext 1 22 4.22 0.052 0.032
stimType:testContext 2 44 1.66 0.203 0.020

trainGroup:stimType:testContext 2 44 0.17 0.847 0.002

Table A11 – Chapter 5 Experiment 5. Data from all participants submitted to a 2
(training group) × 2 (testing context) × 3 (stimulus type) ANOVA

dfN dfD F p or pHF η2
G

Intercept 1 11 1.85 0.201 0.051
stimType 2 22 0.07 0.926 0.002

testContext 1 11 3.49 0.089 0.057
stimType:testContext 2 22 1.50 0.244 0.030

Table A12 – Chapter 5 Experiment 5. Data from the target-alone training group
submitted to a 2 (testing context) × 3 (stimulus type) ANOVA

dfN dfD F p or pHF η2
G

Intercept 1 11 3.72 0.080 0.075
stimType 2 22 2.72 0.088 0.060

testContext 1 11 0.86 0.374 0.012
stimType:testContext 2 22 0.37 0.676 0.012

Table A13 – Chapter 5 Experiment 5. Data from the target+context training group
submitted to a 2 (testing context) × 3 (stimulus type) ANOVA
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Experiment 6

dfN dfD F p or pHF η2
G

Intercept 1 11 6.81 0.024 0.125
stimType 2 22 7.07 0.004 0.140

testContext 1 11 1.23 0.291 0.025
stimType:testContext 2 22 1.10 0.351 0.028

Table A14 – Chapter 5 Experiment 6. Data from all participants submitted to a 2
(testing context) × 3 (stimulus type) ANOVA
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