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CHAPTER I

INTRODUCTION

1.1 Introduction

Composite members are members consisting of two or more elements
of the same or different materials connected by some means to form a
single structural unit., In general, analytical solutions of composite
beams have been developed for members having a reinforced concrete slab
connected to the flange of a steel I beam, by means of shear connectors.
This thesis involves the consideration of a reinforced concrete beam as
a composite member with incomplete interaction. In particular, it en-
tails a study of the influence of bond slip and loading condition on the
nature of cracking phenomena observed frequently in tests of simply
supported reinforced concrete beam., That is, a reinforced concrete beam
is considered to be a composite member with incomplete interaction, which
is a deviation from the conventional concept of the reinforced concrete
beam,

(1)

A preliminary analytical study by Robinson illustrated that

the inclusion of loss of interaction or slip accounted for a reduction in
the average steel stresses observed experimentally by Plowman(z). The
further possibility arose that such an analysis would account for the

variation in the crack profile cbserved in a region of constont bending

1



2.

moment for beams with a two point loading system, and that a rational
explanation of the nature of the so-called 'diagonal cracking' in the
shear span might be formulated., The need for further investigation of the
o o Aauit ssiaiing S SEbSE M T ACTAAIIE Sumittee ST
which has made intensive studies on the problem of shear and diagonal

tension in a reinforced concrete beam,

1,2 Historical review

As early as the beginning of the 19th century, diagonal tension
had been considered to be the basic cause of shear failures, and the

widely accepted equation,
PRI
bjd
for shear calculation was developed., This equation together with some

specified maximum shearing stresses which were based on the concrete
¢ylinder strength( {Z ), had been adopted by most design codes in North
America, In the year 1955, the nature of the well known failure at
Wilkings Air Force Depot in Shelby, Ohio, intensified the doubt as to the
validity of these design procedures and specifications for the calculation
of shearing stress, currently used at that time. Hundreds of tests have
been performed by investigators regarding this aspect., The ACI-ASCE
Committee 326(3)(u) has masterfully summarized the major contributions

on shear studies carried out for the last 10 to 15 years, and explained
the principles of shear, The inadequacy of the classical diagonal tension
design equation and the adopted specifications was indicated, During

the period of investigation, a new and an empirical design procedure was
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developed and proposed by the ACI-ASCE Committee 3&6(3)(“).

Many discussions regarding this particular problem appeared after
the report of Committee 326(3)(4), on shear and diagonal tension., Some
have attempted to relate their own test results to the new empirical
design procedures, or to evaluate the accuracy of different empirical
formulae, for shear stress calculations, Other investigators have attempt-
ed to explain the mechanism of shear failure and to differentiate between

the general modes of failure'”) (62(7)(8)(9)

caused by some secondary
causes brought about by the diagonal tension cracks, through their test
observations and experiences,

In his paper “The Mechsniss of so-called Sesr Failure", Kani' 0
used the 'teeth' concept and the 'comb-like' structure formed by the
cracking process to explain the mechanism of shear and diagonal failure,
Kani also suggested that, due to redistribution of stress caused by
cracking, a reinforced concrete beam was transformed into a beam without
bond or an arch with the reinforcement as a tie, The process of this
transformation, analysis of diagonal failure, ete., was further detailed
in Kani's recently presented paper "The Riddle of Shear Failure and its
Solution"(ll).

Generally speaking, experimental tests have been performed with
such variables as concrete quality, percentage of longitudinal tensile
reinforcement, shear span to effective depth ratio, shape of cross
section, size of aggregate etc, being considered, Little or no attent-
ion has been given to the influence of bond slip on the mechanism of shear

and diagonal failure of reinforced concrete beaus,



1.3

oot12)

indicated that the width of cracks, which depend on the
bond characteristics of the steel, the percentage of reinforcement, the
quality of the concrete etc. had detrimental effects on the failure
mechanism of'a reinforced concrete beam. His proposed equations, for
shearing force which is transmitted across the cracks, and for the nom-
inal shearing stress at the inclined crack, suggest that a theory could
be developed by taking into account such factors as the bond quality
of the reinforcing steel, the spacing between the flexural cracks, width
of crack, ete,

It has deng been senitluved by Burepeta Lavestigatere' ™ vhut
the width of cracks appearing on reinforced concrete structures at a
given working stress depends primarily on the degree of bond between the
steel and the concrete, That good bond between steel and concrete is
the essential requirement for the safely of reinforced concrete struct-
ures has already been recognized.

(1 Qak) in his investigation of a composite beam consist-

Robinson
ing of a steel I-beam with a ribbed concrete slab formed by cellular
steel decking, discovered that in spite of the fact that there was no
distinet interfacial plane between the concrete slab and the steel beam,the
strain distribution at any section had been observed to be essentially
linear in the elastic range. He further suggested that the total slip
between the concrete slab and the steel beam might be considered to
consist of an interfacial slip and a larger slip, particularly after
cracking, due to rotation of the concrete ribs formed by the cell, This

can be considered to be analagous to the total slip of a reinforced
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concrete beam, which would be expected to consist of the relative transl-
ational movement between the reinforcing steel and concrete, and the

(12) and Kani(lc)(ll). % whi

rotation of the 'teeth' referred to by Moe
considered that the reinforced concrete beam might well be considered

to be a composite structure with incomplete interaction.

L4

In spite of extensive tests made in the attempt to solve this
existing problem of shear and diagonal tension in reinforced concrete
structures, it is still conceded that a complete understanding and a
fully rational solution to the problem have not been attained., In
another word, practice is ahead of theory in the field of concrete engin-
eering, this is unsatisfactory both for the scientist and the designer,
This state of things ought really to be reversed, so that theory could
lead the progress of practical development, However, a satisfactory
design procedure and explanation of the inclined cracking may be developed

through continuing experimental and analytical studies.

The main interest of the writer is to study analytically, the
influence of bond slip and loading conditions on the formation of cracks
of a simply supported reinforced concrete beam which is considered to
be a composite structure with incomplete interaction, During the period
(15)

of preliminary investigation the Newmark solution for the convent-

ional composite beam was slightly modified, and was used to estimate
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the crack profiles of a reinforced concrete beam and an Araldite BRS
model beam which was developed and tested by Bignell, Smalley and

Roberts(ls)

in an attempt to simulate the behaviour of a reinforced
concrete beam under loads In order that the field of investigation
might be enlarged upon, the general analytical solutions were developed
on the basis of non-linear stress-strain relationship for the concrete.
The numerical solutions, unfortunately had to be obtained by a trial
and error method, as outlined in Appendix B. However, the complications
in the processes of evaluation were simplified by the aid of the IBM
7040 computer. The results have been found to be very significant and
encouraging, though this is still at a very primitive stage of investi-
gation., It is expected that further studies will provide a rational
explanation of the nature of diagonal cracking. At least it is hoped
that the importance of bond slip will be demonstrated through this

investigation.



Chapter II

RESUME

(15) solutiong for the conventional composite beam

The Newmark
were slightly modified and were used to determine the variations of
degree of interaction ( T/ ) along length of beam for various types
of loading systems. The characteristics of these variations were
studied, The ecrack profiles of a simply supported reinforced concrete
beam and the Araldite BRS beam were determined by treating them as
composite members, subjedted to different types of loadings. The
results obtained were found to be significant and encouraging. However,
it was found that thd analysis was limited $o the application of &
very small degree of break down of interaction between the composite
elements, and required a relatively large tensile cracking strain for
the concrete.

The analysis was extended to the consideration of an assumed
parabolib stress-strain relationship of concrete under compression,
Equations for this analysis were derived upon the requirements of sat-
isfying conditions of equilibrium and compatibility, The wvalidity and
applicability of these equations were verified by the comparisons of

results obtained with those for the linear analysis at low strain level,

7



Through investigations, it was found that as far as the consider-
ation of a larger degree of break down of interaction was concerned, the
curvilinear development did not overcome the difficulty encountered pre-
viously. Therefore, & new approach to the analysis of this problem was
adopted.

In this approach, a certain degree of break down of interaction
was assumed for the beam concernmed, For a given applied load, the force
parameters, such as the flexural moment of the concrete and horizontal
forces, which fulfilled the equilibrium condition, were assumed to be
those associated with a hypothetical total moment which the beam could
carry when there was no break down of interaction between the composite
elements,

The equilibrium relationship could be written as

F=AF
M= Mc,t pF2

The hypothetical moment at complete interaction was therefore,
M= M, t Fpe

In adopting this new approach, it was found that the problem
could be extended to the analysis of any degrees of break down of inter-
action between the composite elements and a large applied load, with a
more realistic tensile cracking strain of the concrete, With this
approach, the crack profiles of the simply supported reinforced concrete
beam were estimated with the interaction coefficient, 1/C, constant, and

withl/C varying along the beam, for the linear and curvilinear cases.



The equilibrium relationships of the first approach could

be written as;

for complete interaction
My = MctF'E

Fep

for incomplete interaction

F=pF
M= M, + BF'2

It may be seen that, if an assumed degree of break-down of inter=
action was given to the beam, the flexural moment of the concrete would
have to be readjusted to restore the capacity of the beam to the required

moment, M., Owing to the decrease . of B(Fyf'), the flexural moment of

t'
the concrete (Mﬁ) increased rapidly which caused the cracking process to

continue., The analysis was thus limited,



CHAPTER III

METHOD OF ANALYSIS

241

The theoretical developments for the analysis of the nature of
the cracking patterns of the simply supported reinforced concrete
beams, subjected to various types of loading, are based on the solu-
tion for the analysis of a composite T-beam (conventional composite
beam), with incomplete interaction, by Newmark(ls). In this case, the
analysis is based on the assumption of linear stress-strain relations

for the materials.

3.2 HNotation

The subscripts used with the notation of this thesis have the

following meanings:

Ae - Effective cross-sectional area of the concrete.
Aa = Cross~sectional area of the steel.

b ~ width of the concrete beam,

cc'ca - Distances between the respective centroidal

axes of the concrete and steel and their contact

surfaces,
10
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Diameter of the reinforcing steel,

Effective depth of the reinforced concrete
beam,

Moduli of elasticity of the concrete and
steel, respectively.

Horizontal direct forces acting at the
centroids of the cross-sectional areas of

the concrete and steel,

Total depth of the concrete beam,

Depth of the concrete beam after cracking.
Second moments of area of the concrete and
steel, respectively.

modulus of the shear comnection (§54 ).
curvatures of the concrete beam and the steel,
respectively.

Span length of the beam,

External moment applied to the beam.

Flexural moment in concrete and steel, respect-
ively.

Concentrated load applied to the beam,

Load transmitted from reinforcing steel to the
concrete per unit length.

Spacing of discrete connection

Distance of the concentrated load P from the
left support.

Uniformily distributed load (1lb/in),

Unit shear stress
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x - Distance of a cross-section from the left support.

L L - Vertical distances from the centroidal axis of the
concrete and the steel, respectively.

z - Distance between the centroidal axes of the concrete

cross-section and the steel.

9g19, - Stress in concrete and steel, respectively.

€et'Cep ~ Strains at top and bottom fibre of concrete.

CatCep ~ Strains at top and bottom fibre of the steel.

1 « Ratio of strains at bottom and top fibres of the
concrete = £, /8 ..

B - Degree of interaction = F/F',

Y « Slip between the concrete and steel.

3,3 Basic Assumptions
" Consider a T-beam as shown in Figure(3.la) and Figure (3.1lb)

consisting of an I-beam and a slab tied together by a continuous shear
connection which tends to prevent slip between the two elements and in
so doing transfers horizontal force from one element to the other, Under
loading, the strain distribution for complete and incomplete inter-
action for this section are shown in Figure (3.lc¢).

Now we consider that a reinforced concrete beam, as shown in
Figure (3.,22) and Figure (3.2b) consists of a rectangular concrete
section and the reinforcing steel, acting together through the connection
of bond, between the two elements. The strain distribution in this

section can therefore be shown in a similar manner, as in Figure (3.2¢).


http:Figure(3.1a

SLAB Mcg Fe

g - = 5 i o s, . TR
N
{ CENTROIDAL] AX'S OF bEAM R S i“‘{__‘_ﬁg__f—: Me
FIG. 31a cross secTioN FIG. 31b FrForces FIG:3'1¢ sTRAIN DISTRIBUTION
oy
i
N
n
I' N
2 e i e = W
——————-f - — et Me
e . S e B
o—Hi W —— O

F1G: 32 @ CrROSS SECTION FIG.3:2b Forces FIG.3'2¢c STRAIN DISTRIBUTION



1k,

The principal assumptions made for this analysis are as follows:
1) The two components have equal curvatures at any section. That is,
upon loading, it is assumed that two materials deflect equally at
all points along their lengths.
2) The distribution of strains throughout the depth of the concrete
and the steel is linear.
3) The smount of slip permitted by the shear connection (bond slip)
is directly proportional to the load per unit length transmitted,
before cracking occurs.

2 ¥s
R

cmeee == (31

s is unit length in this case
4) Concrete resists a certain amount of tension.
5) The stress-strain relationship for concrete is assumed to have the
form of a parabolic curve, as shown in Figure (3.3), in the case

of non-linear deformation analysis.

3«4 Method of Analysis: General
In this section, the analysis of the cracked and uncracked

sections of the composite beam, for the elastic case is presented.

a) The equilibrium and compatibility conditions:
A free body diagram of an uncracked section is shown in Figure
(3.4
From statics, at any section of the beam, the following condition

must be satisfied,
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16.

ZM=0

The following equation is obtained,

M= Mcr Mgt Frz srssnewewee (D

where F=F.=Fg

In order that the compatibility condition of the composite

beam may be illustrated effectively, the deformation diagram

th

of a section containing the ith and 1 + 17 discrete shear

connectors of a composite beam is shown in Figure (3.5).

L - Strain at bottom fibre of concrete slab,

€y = Strain at top fibre of steel beam,

Si « Spacing between the ith and 1 + lth discrete
connections

Yi - The sglip at the ith connection,

Yi+1 = The slip at the i + lth connection,

The relation for the deformation at the horizontal section through

the shear connection can be written as:
Si*Lésdx. B O S£+L.ebd;c

() ()
Yo - ¥ = £ (€,- €,)dx

( slip) b’=f (€~ €D dx
5
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jz S0 o B R S - = = =(3.3)
or
dY 6 -y mmeemecessesessGOW)

i.e, the rate of change of slip along the length of the beam is
equal to the difference in strain in the two components at the
level at which slip occurs, In the case of a discrete connect~
ion with uniform spacings the horizontal force transmitted by

the connector is equal to the sum of the unit horizontal shear
over the intervals, i.e., § = q.8 where q is the load, per unit

of length, transmitted between the two components,

? =__.:£ —O-‘—‘----'-“’-(}!%)
Q - :i_s “----..—-—---‘-*""{30‘“3)

In the case of the reinforced concrete beam s ¢can be considered

to be uﬂit’t

3.5 Method of Analysis - elastic case

The entire beam is assumed to be elastic., From the strain

distribution diagram, as shown in Figure (3.6),0of the cracked and

18,



uncracked sections of a reinforced concrete beam, the compatibility

equation can be written as;

oE €~ €t & )

in which dx is measured along the length of the beam and (sr) is
defined as additional strain due to the formation of the “concrete
teeth"”, created by the cracking process, on what may be called the
"pseudo interface" of the concrete and the steel, viz, the bottom fibre
of the remaining uncracked concrete section,

By geometry

6 = L— €Sb+ ést)'<D -d/z -ZH.)
r
d

lHote: the negative sign is introduced to make the development anal-
agous to that of Newmar(lsi
From the assumption that the distribution of strain throughout the

depth of the beam is linear, it follows that:

i) & il M, Cs
s il < doeChL R g
AL DA~
s = E A €L el b as oo
gl M, C.
egR 0 Syl N Rt v
€ o =2Msls (D -di —2H') *osewess (564

d Es I, d
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The rate of change of slip can be written as

B cMs Y ~dh - 2H' o W
£l = €, - €, Eﬁi-f—(o o - 2zH') (3.7

from equation (3,1) and (3.4)

ar L IR

l |
dx k& dx & dx* il

substituting equation (3.6), (3.7) and (3,8) in equation (3.5)

BT & SINE l -[Mscs MCe , 2MsCs (D _dfp _ai)] (3.9)
k dx* F( EsAs+ Er,Ac) Es I ¥ Ecl¢+ EsL,d ( J

Since it is assumed that the concrete and steel deflect equally at

all points, that is, they have equal curvatures, the moments Ms and

Hc are related as follows:

MS = Mc
NI

Further, from equation (3.2)

Mc Ms Mt'F'l
- = - e e W e ( .10
£ 1. 1y SEI -
where

2EL - E;L, + EI,
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By definition

¢ = H!
C

Caad/Z

1 d¥F [ I M¢-F-2 2L, d ;
R axl‘F(E,As+ >— [C"“C‘*Ts'(l"“z“z“)]

Ec A ZEI
2 G d ' ; "
in which Cs+ (o + =%5(D- 5 -2H) can be reduced to D - H

and is equal to 4.

Therefoye,

BERY s HERA U £t ] . Mz
g dxt EsA; EA. ZEL 2EL
d*F EL Me-2
;o = e ) k - = (3,11)
' E Fk EAZEL ZEL

where the following expressions are introduced for convenience

E1 = SEL+ EA'Z®

{ | |
= -+

E- E,A, Ec AC

For the uncracked section

d F N
D- -j?"‘ZH =0

then

o

o
n
M\

gt égb.
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An identical result to equation (3.,11) will be obtained for this

casa(ls). Therefore equation (3,11) is applicable to both cracked

and uncracked sections.

If the external moment N, is expressed as a function of x

t
solutions of the differential equation (3.11) may be obtained for

different loading conditions.

3.6 Variation of degree of interaction for different loading conditions

The following solutions have been obtained for three loading
conditions: a concentrated load P, two concentrated loads, and a

uniformly distributed load (w), acting on a simply-supported beam,

1) A single concentrated load P,

When x < u, the moment is

P-X
L

h4f= (L,-‘*)

Equation (3,11) will have the form

d'F. _ El____p, Pil-w)e
e N EG T Y T ¥l A

When x >wu, the moment is

Py PLM (L-x)

and equation (3.11) will have the form

szl_ E_I -k P'u'i

dx e EASEL = L 2EL (L =) e« » (3.10)
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The differential equations (3,12) can be solved for known end

conditions,

For this case the end conditions are;

at x =0 F. =0
&
at x = L Fg = 0
at 3“ i:—d—&- =
. gx T HE . Fo=Fe

The solutions for the force F are

for x <%

: m u
- hl=(-<
F- SA% PL{(«— wyx f o7 -l 55’*‘(1%)} - (A

and for x>u

s'nh __n-_._g_
Fg= %AIZ PL(_:_A(I v :g—)-%c-— I (JZTTL ) S“nh[%(l_}:)]} - - (Bolzb)
sSinh —
JC
where
_ .t Tw EALEL - - (3,14)
C- R L* EL

is a dimensionless expresgion introduced for convenience.
If the modulus of the bond is infinitely large, the slip will be zero
and there will be complete interaction between the concrete and the

steel, The force (F') for complete interaction can be obtained by

setting C = O


http:1-.:<)--.JC
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F. EAz M, - m === (3,130)

The ratio of the horizontal force (F) for incomplete inter-

action to horizontal force (F') for complete interaction is:

for x < u
hl= (1 - l ;
F I . sinhl sinh (T X) (
—how |- Fi -« (3,15a)
F Wl (B - ik d
for x > u
Sk 3 TeE s upgUr ey

'Bond slip' is an inherent characteristic of the reinforced
concrete beam, Slip between the reinforcing steel and the concrete
may be considered to be the most cbvious manifestation of loss of
interaction; or alternatively loss of interaction occurs because of
'bond slip', The ratio (F/F') for any section depends on the coeff-
icient C and on the location of the section and load. Coefficient C
can be said to depend upon the 'bond modulus® of a reinforced concrete

LR
beam with given span length and cross sectional shape. This in

dF’ agd . L gMy . EA —zV = Zl which is equivalent to

dx g1 dx Zhurawski formula
**(17)

¥ DRGSR SRR TR TUES T 7
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turn influences the ratio (F/F'), equation (15). Thus the ratio (F/F')
furnishes a convenient measure of the degree of interaction at any

section,

F/F' is equal to unity for complete interaction, and to zero
for no interaction,

The horizontal shear per unit length of the beam may be obtained
from equation (3.4a) and (3.13)

for x ¢ u

! anh[% (1- -%—)]

EA u % X :
LT Giéd hf L & (2.16a)
?L El iP{(' L) A cos (Fc. L)
Je

for x > u

= Snh (L L)

= EA L2 5 c L 5‘,\[1 il Y

?a E1 ZP{ L 5,',,,1% bl b 4 ;_)]} (3.16b)

The horizontal unit shear for complete interaction is given by the

equation
o B
e

Equations (3,16) may then be written in the form of a ratio,

For x ¢ u
vhare, I ~ gecond moment of area of the composite section
B
8
n om ==
Eo

y = distance between the centroidal axis of the concrete section
and the neutral axis of the composite section.



snh | X (1- &)
%,,_ -5 \ [sﬁw%'_lc““(%%) (3170)

and for x >u

AT N < 8
_‘%= A % Sm";‘((c; :_) azsh[%ﬂ— .Z:_)] (3,17b)
Sin Te

2) Two symmetrical point loads on simply supported beam

when x < u

A4e= P- X

The expression for the differential equation may be written as,

46t ( 3 ) LR A
dx? R E‘AzElF‘ $EL

The boundary conditions are the same as in Case (1), similar solu-

tions for F/F' are obtained as follows

toshl L (4 - 4]
B gk [ra(z : “]Smh(%—é) (3.18a)
£ T 2 cosh(F7) &
4

whenu(x(EL

M+=?M

leK P k( E-:.I } = _P.Z_.u

dx? EASEL/ R 2EL



and
NN 16 . 1
%H—%% Sin (JZ L) cosr\[%r(_é-%)l (3.,18p)
N0 C
Cosh(ﬁz)

The ratio of the unit horizontal shears are

for x <u

LR o[ F (3 -] cosh(ll) (3.19a)
U e R

for w <x <31
?'.‘ b o lan) sink [T (—'-L)] (3.19b)
[ em(gy) e (T

%) Uniformly distributed load on a simply supported beam

The expression for the differential equation is

dF £l i z Wil W
d_xl_k(ml) e ZEI( R ) )

The boundary conditions are;

when x =0 F =20

L d_F_O

sl
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The expression for F/F' is therefore,

m l
AR (JEL)Z{l_C"S"fE't(?"‘)]} O
1 ~x Tr -
F x(L=x) cosh(%{la)
The expression for gq/q' is
nh[LL(%-x)
l - | = ZEL Sin ['E'E(Z x] g (3.21)

m(L-2x) Cosh(%—\%)

The manner in which F/F' varies along the length of the beam,
for the above three cases with various 1/C values is shown in
Figures (3.7), (3.8) and (3.9). From these curves, it is important
to note that the reduction in the interaction is a somewhat localized
effect, and is increased by decreasing the values of 1/C,

It can be seen that the major loss of interaction occurs at
the location under the load point but not necessarily at the location
where the bending moment is maximum, In particular for the case of
the beam with the uniformly distributed load, the degree of interaction
is a minimum towards the support or position of zero moment, A consist-
ent effect might be observed if the beam with uniformly distributed
load is inverted and the support reaction force is considered to be

an applied point load,
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3.7 Strains
Strains in the simply supported reinforced concrete beam may be
determined for any degree of interaction, for various type of
loading systems from equations;
€ % Mch

TR R o A

[

and

F M Y
- E:Lz - = e =(3,22b)

where €e and £g 8re concrete and steel strains and Yos ¥ are the
distances from the centroid of the concrete portion or of the rein-
forcement to the point at which the strain is desired. In both cases
y is positive when measured downward., The force F in these equations
may be computed from equation (3,12) or (3,13), and the moments M,

and M_ may be obtained from equation (3.10) as follows:

M el M, - FE)

TEL o o v = ={3,230)

.1
MS' = (Mt—Fl)

ZtlL - - = = =(3.,23b)

The equations for the strains may be obtained from equations (3.13a),
(3.15), (3.22) and (3.23),
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34,

c [ W £1 (Scz t EcAc,) Mt (3.24a)
e i S T E—.TAZ — "l_ - -
3 [ S F f (52 E.A, ]Mt (3.24b)
where
b 7
. - - e
¢ &EL e
I
o - -

Equations (3,24) show that strains depend on the moment, the
properties of the reinforced concrete beam section, and the degree
of interaction (F/F') at the particular section at which strains are
desired. (F/F') depends on the bond modulus (k), and on the
properties of the beam section, all these are contained in the co-

efficient C given by equation (3.14),

3.8 Crack height
From equation (2,19a) strains for the top and bottom fibres

of the concrete,(C ) & ( €y ), may be obtained for any section and



any type of loading condition by letting

S=¢ Ce

5" % (TERT - = (3,26)

in equation (3.25a) for given properties of concrete, shape of the
section and the degree of interaction,

From geometry, as shown in Figure (3,10), the extent of
cracking of the concrete at any section due to the application of a

given moment at that section can be written as:

oy A (ECb_ éP) ZH

- = (3.27)
Ec.b + éc.'l'

where C.,H, = height of crack

gp = the tensile cracking strain of concrete

The new section of the beam is therefore,

2H = 2H—C. H.

It may be noted from equation (3.,27) that a stable section of
the concrete will remain in an equilibrium condition only when the
strain at the bottom fibre of the concrete at that sedtion is equal to
or less than the tensile cracking strain of the concrete,

That is, if ep<: e a new uncracked section is formed, in

ch?
accordance with equation (3.27). The strain at bottom fibre of the

concrete, for the new section is again computed by equation (3,24),
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7.
This process is repeated until at a certain cracked level &, =¢,, .

A stable section is thus attained, otherwise the cracking process

will continue,



Chapter IV

Preliminary Investigations

b,

(14) in a preliminary study of this aspect speculated

Robinson
that consideration of the reinforced concrete beamas a composite
beam with incomplete interaction might lead to a rational explanation
of the nature of the inclined cracking which occurs in many reinforced
concrete beams,

Computations of strain-distribution along the reinforcing
red of a reinforced concrete beam, in which the effect of loss of
interaction was included, showed a reduction of the mid-height strain
of the rod, compared to that computed by the conventional straight-
line theory, and which was in general agreement with experimental obser-
vations made by Plovuan(z).

It became evident from the computations that the locus of the
upper extremity of the potential crack in the concrete at any section
also differed from that for the straight-line case. (The potential
cracked height is equivalent to saying that the concrete below the
neutral axis or below the level of a given tensile strain in the con-
crete is ineffective: one of the assumptions made in the conventional

theory e

Turther it was evident that the extent of c¢racking was greatest

8.
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under the load point in a beam subjected to say a two-point loading
system, causing the locus of the extremities of the flexural cracks or
the crack profile to be displaced upwards and towards the load, this
effect being most pronounced locally in the region of the point load.

Such an effect can be inferred by looking at the visible
flexural cracks observed on the surface of test beams, see Figure (4.1),

It could be further reasoned that such a displacement of the
crack profile due to loss of interaction is the cause of the extrem-
ity of the diagonal crack being so close to the load point after it
appears and as is frequently observed experimentally.

A reinforced concrete beam and an Araldite BRS beam were

investigated on the basis of this analysis.

h,2 A simply supported reinforced concrete beam subjected to one

and two point loading systems.
(15)

According to the Newmark solution for a composite beam,
the value of 1/C less than infinity (i.e. F/F' < 1.0), indicates that
there is a loss of interaction between the two elements of a composite
beam, Without the support of experimental data, it is impossible to
predict a reasonable value of 1/C for a particular reinforced concrete
beam (or for the beam made from Araldite BRS), Thus, an assumption
must be made as to the value of 1/C for the purpose of this invest-
igation,

A simply supported reinforced concrete beam, with the same
(2)

cross-sectional properties as Plowman's beams, was treated as a
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composite beam with incomplete interaction, This beam was analysed

in accordance with the Newmark(lj)

solution for a composite beam as
presented in Chapter III, Fig. (4.2) shows a family of curves of the
uncracked section of the beam, with different values of 1/C, for a
section subjected to the maximum design moment and at the load point.
From this curve, a value of 1/C and the tensile cracking strain of
the concrete, equal to 100 and 171.0 micro in/in, respectively, were
chosen for the purpose of estimating the crack profile along the
reinforced concrete beam, From the curves in Figure (4,2) it may be
seen that the tensile cragcking strain of the concrete must be less
than 189 micro in/in, in order that a crack can begin to propagate
at the design moment chosen for thé oxﬁmpla. If there is complete
interaction, then for ap<< 189 micro in/in the crack will propagate
until the strain at the bottom fibre of the uncracked section reaches
whatever value selected for this particular computation, viz,
6, » 100 m,in/in, see Figure (4,2)., Note that, if @P = O the curve
for complete interaction would continue until it intersected the
ordinate axis and the uncracked dapih would be the same as the depth
of the neutral axis, according to the straight-line theory.

If, however, there is a loss of interaction, represented by
1/C = 100, say, it may be seen that for the purpose of this computation
€ must not be less than 171 micro in/in, otherwise, the cracking will
continue to the top of the beam. Thus, for the purpose of computation,
the allowable limits of €y must be 171 < 552189 micro in/in,

It may be further seen, however, that if 1/C = 50, no sensible

solution can be obtained, because as the curve shows, either the beam
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b3,
will not crack (5p3> 189), or that if cracking begins at the design
moment, it will continue to the top of the beam,

A sample calculation is shown in Appendix A,

Crack profiles of the simply supported reinforced concrete
beam with complete and incomplete interactions, for an unsymmetrical
single point load and symmetrically situated two point loads, were
estimated by equations outlined in Chapter III, and are shown in
Figure (4,3) and Figure (4,4), A comparison between the crack pro-
files with complete interaction and that of the incomplete interaction,
shows that there are up-shooting portions of the crack profiles close
to the locations of the point loads, in the case of incomplete inter-
action,

This phenomenon, could in fact be predicted by the strain
distribution of concrete at the bottom fibres, due to the effect of
incomplete interaction.

This inclined part of the crack profile may be considered as
the incipient path of the inclined crack observed by many investigators,
in tests on simply supported reinforced concrete beams, It is the
boundary between the uncracked and potentially micro-cracked zones or
regions of the concrete. The forms or curvatures of this incipient
path of the inclined crack depend upon the degree of interaction between
the composite elements, and the nature of the external loading system,
which in their turn govern, the distribution and magnitudes of (F/F')
along the beam as shown previously,

One must also bear in mind that these estimated cracks are

micro-cracks, They may not be cbserved by the naked eye before mature
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cracks are formed at a later stage.

4,3 An Araldite BRS beam, reinforced with an extruded magnesium rod

subjected to 2 two point load system.

An Araldite BRS model beam which has been reported to possess
brittle properties, was developed and tested by Bignell, Smalley &

(16)

Roberts in an attempt to simulate the behaviour of a reinforced

concrete beam under load, 4 section of the Araldite BRS beam located
under maximum moment was analysed in accordance with the Newmark(ls)
solution presented in Chapter III., From the family of curves for the
Araldite beam strains at the bottom fibre of the uncracked section
versus the depth of the beam, as shown in Figure (4,5), the value of
1/C and tensile cracking strain for the Araldite beam equal to 100 and
600 micro in/in, respectively, were chosen for the purpose of estim-
ating the crack profiles,

The crack profiles of the simply supported Araldite beam
with complete and incomplete interactions, for an unsymmetrical
concentrated load, symmetrical two point load and uniformly distributed
load, were estimated by procedures outlined in Chapter II1I, and are
shown in Figure (4,6), (4,7) and (4,8), The effects of break down of
interaction on inclined cracking could be seen distinctly by comparing
these crack profiles for complete and incomplete interactions, The
comparison between the estimated crack profile for incomplete intere
action, in the case of two point loading with 1/C equal to 100, and

that of the test Araldite BRS beam, as shown in Figure (4,9) of identical
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A new photoelastic material for use in problems concerning reinforced concrete

Cracked Araldite BRS beam, 15 < 1-7 < 0-46 in., reinforced with } in. diameter ** plain bar > magnesium alloy ZW3.
The load points are marked.
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dimensions and properties, were noted to have close similarities, It
was also observed that these estimated crack profiles have a form some-
what similar to the cracking phenomena observed in many tests of rein-
forced concrete beam as shown in Figure (4,1), It might be noted, in
particular, that the Araldite BRS beam shows the inclined crack in the
region of the point load to have a reverse curvature which issimilar

in nature to that predicted by this analysis,

It might be said, at this stage, that the effects of break
down of interaction on a beam are more vividly shown in the investig-
ation of the Araldite BRS beam than in the case of the reinforced
concrete beam, It could be reasoned that the Araldite BRS is a homo-~
genecus material which might eliminate factors, such as inter-locking
of aggregate, bond conditions, etc., which affect the mechanism of
inclined eracking in reinforced concrete, Thus, the purpose of
using the Araldite BES beam to simulate the behaviour of a reinforced

concrete beam under load, may be considered to be rather impressive,

I b

() reinforced concrete beam,

In the analysis of the Plowman
the use of 171,0 micro in/in, though arbitrary is not entirely unreason-
able, Many reports pertaining to tensile strength of concrete have
euggesﬁod that the tensile strain of conerete varies in a wide range,
depending on the volume of coarse aggregate, etc, A more likely value
for the tensile cracking strair is, however, in the range 85 - 160

micro in/in(IV).



The value of 1/C = 100 has been recognized as an indication
of a very small degree of break down of interaction, through the
investigation of the conventional composite boan(lsxla).

It was thought that the necessity of using a relatively
large value for the temsile cracking strain of the concrete and a
small degree of break down of interaction, (represented by 1/C = 100),
in this analysis, was due to the effect of the assumed linear stress-
strain relationship for the concrete, which prevented the attainment
of an oquilibriﬁn condition after first cracking, particularly as
the degree of interaction diminished., This led to the consideration
of a curvilinear stress-strain relationship for the concrete, which

is outlined in the next Chapter. However, it was found that the

hypothetical statement of the problem required modification,

53



Chapter V

Method of Analysis - inelastic case

Sel

The applicability of the equations of Chapter III requires that
materials be linearly elastic. This limitation greatly restricts the
use of the equations for investigation of behaviour of compesite beams
where the materials may have non-linear stress-strain characteristics,
In this Chapter, the analysis has been extended to include & non-linear
stress~-strain characteristic of the concrete. This consideration was
originally based on the hope that the increase of lever arm together
with the development of a curvilinear stress distribution would give
an equilibrium condition of the concrete beam with a more realistic
tensile cracking strain of the concrete and a larger degree of break
down of interaction. In such a way, it was hoped that a smaller degree
of interaction could be considered with a state of equilibrium at a
certain cracked level being attained. Hence the scope of the investi-
gation could be enlarged. In addition, analytical solutions presented
in this Chapter may serve as the general solutions, for this sort of
problem where the composite members consist of materials having non=-
linear stress-strain characteristics.,

In this case, the quantities, strain of concrete and steel
(zc) and (‘a)’ can no longer be expressed uniquely, in terms of F/F!
and moment for the beam, as in section (3.7). Different expressions

She
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are required to satisfy the conditions of equilibrium and compatibility
for the strain distribution in a composite section., A general
solution was not obtained but a trial and error method has been used

to solve the equations in this investigation,

5.2 Method of analysis.

For the sake of simplicity, the ultimate strength behaviour of

(19)

concrete based on the Madrid equation (5.1), as shown in Figure

(3.2)

- 0;[2% - (2,)2] (5.1)

is used in the analysis,
wWhere, - maximum stress which defines the quality and strength of

concrete,
., - the corresponding strain at %

Note: A solution was obtained, see Appendix C, using the

Strese-atredn relationship due %o Desayl and Eyishass ™o
E
0,- -~ ceé 2
l+(?°)

but some complications in numerical solution were
encountered at low strain level.
An enlarged view of an element of length dx on the centroidal

axis of 2 beam is shown in Figure (5.1). From similar triangles it is
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seen that

déx Y
—dz = ? (503)

where p = radius of curvature is equal to %

K = curvature

y = distance below the neutral surface,

by definition

45
dx

- gtrain

Equation (5.2) may be written as
€
K TR A (5-3)
Y

Therefore, the curvature of the concrete section is

K éc.’t‘ + écb
g B A (5.ka)

]

and the curvature of the steel is

K e éSb" ést

S d (50&'b)

If the ratio of the strain at the bottom fibre of the concrete

to the strain at the top fibre of the concrete is a, i.e.

€
o (5.5)




Equation (5.4a) becomes

b d i (°‘") (5.4e)

According to the assumption(l) made in section (3.3) that

the concrete and the steel have equal curvatures at any section

Ko 10, (5.6)

€

5.3
In the equilibrium condition, it is desirable to express

each component in terms of strains at the bottom fibre of the con-

crete (€ ), and the ratio (@),

o) jepressieafr the Dawyral mpusnt in the eengrete - X,
Figure (5,2) shows an idealized cross section, a strain
distribtuion, and the corresponding stress distribution.
If K is the curvature, pf is the radius of curvature,

y is the distance from the neutral axis of the fibre

with the strain £, and

a={(e)

is the stress-strain formula, then
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£ =9K

= f(yk) (5.7)

From equation (5,3) and (5.7), the force acting on the

area b dy will be

fyk)bdy (5.8)

The statical moment of this force with respect to the
neutral axis is
i

£(yKke)ybdy (5.9)
3=o

Because of the symmetry, the statical moment of the
stresses acting on the upper and lower half of the cross

section will be the same, therefore the flexural stress

resultant in the concrete section can be expressed as(al)
Y=H

MC=2f¥(3Kc)b9d9 (5,10)
o

From equation (5,1) and (5.3)

g g
Mc=zt>croj (2‘2‘9- K‘é? ) ydy (5.11)
5:0 ° ()

Z»KCHB_ KCZH4 )

= bo
# F( 3E, 4¢’
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Substituting equation (5.4c) to equation (5.,11)

4 Zb%[ € K oL-I)_ i (d—{{] ks

% 3%y A l6gz L X J

The flexural moment of concrete is expressed in terms of
strain at the bottom fibre of concrete (Eeb)‘ and the

ratio (a).

b) Expresgiong for the direct forges acting at the centroids

of the gogcgeﬁe_agd_tﬁe_szcgl

From Figure (5.3), showing the strain distribution of the
concrete for incomplete interaction at the equilibrium
condition, the following relationships can be obtained,
~€q - €G- €,
&b= 6;"62
-ééii-éib =-_Zé:;

M M
Since, E?t = ecb

and F F

The strain caused by the direct force (F) alone on the

concrete will be

L
éacctcb



c)

From equation (5.,1) and (5.5), stress due to direct force

alone (oF) can be obtained

4
e i €
0% al (RN e e ] (5,20

The direct force (Fc) acting at the centroid of the cross

section area of the concrete, may therefore be written as

e o B oy S
Al b g e Wl (- (35)

oM

Similarly, the horizontal direct force acting at the

centroid of the cross section area of the steel will be

s €
=B A 00 (5.16)

Expression for the flexural moment in the steel - Ms

OGRS ER W e MR ER GR W R G R SR R AR R R W SR AR G e W W e e

MS= Esls Ks

From equation (5.4) and (5.6)

Ms = EgLs % (e (5.17)

62.



However, it is assumed that the magnitude of the flexural

moment in the steel is negligible when compared with Mc and
Feg

Therefore, the condition of equilibrium as seen in equation

(3.2) becomes

EpH -1y €

sdii & €,
[«-(%‘)ﬁ:]m =&Y

4,4 The condition of compatibility.

From the strain distribution diagram for a cracked and uncracked
section of the reinforced concrete beam as shown in Figure (5.4), and

from geometry, the following relationsliips are obtained

-€-2 (¢ ¢,) (5.19)

in which B and €, are the geometric features as indicated in
Figurc (5.4) .

B= 2H-24'-D;+ &

63.
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From equation (5,4a), (5.4b) and (5.6)

d
oG am (v %)

therefore, egnation (5.19) can be written as

QN EEERE M (3G E ) (5.20)

From equations (5.4a) and (5.4b)
d
65[,_ és{ " PR (ed-"'écb)

and from equations (5.6) and (5.16)

A=\ d
Ao te T .

From Figure (5.4), according to the compatibility condition,

and equation (5.21), the equation of compatibility may be written as
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d
—Ji ! €c.b g €‘- ey
F e d
T L¢3 -8) =€,
F i -y d B
=§,rs’§,,(_oc )[(&‘-T)‘TH‘“ o)

Substituting equation (5,22) in equation (3,1) and (3.4)

d'F F ol~! & d B
4 E—s';s‘%( X [(Ok-l)- 2 7T ana

For complete interaction, the rate of change of slip at this
section is equal to zero, i.e.
i‘:=o
dx
The direet horizontal force I' becomes F', and from equation

(5.23) the expression for the direct horizontal force for complete

interaction is obtained,

HrBASUERlicE 4 & i



4,5 Force per unit length transmitted by reinforeing steel to the

concrete, (g).

from the chain-rule

dF _ dF  dé& ‘
- Cagle v (5425)

Taking the derivative of F in equation (5,15) with respect to

) and writing the applied moment as a function of x along the

beam in equation (5,18), the expression for d € ana dF
dx d€,

(ﬁ@b

may be obtained, in a straight-forward manner,

Simply supported beam with an unsymmetrical point load

For a section to the left of the load P, that is,

where X < u, the moment is

i L O

£ XAy welfe(F)- 3 (2l o

AR IEES (-I—o() Qb] EZI: (oézl)}

From equation (5.,15)

F I T N T . R T
de, 'C(OK)[' %) Zéa] Wyt
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From equations (5,25), (5.,26) and (5.27)

(a2 & [- () & rem)

{Zbo;l' H? (o(ozl)_ €pH® M"')z}-l'%/\cz (—4_020_()%

G, T3 Lk
N & E 2
[- () 2] B 8)

for the single point loading system and 9, 9% for

the other loading systems may be obtained in a similar fashion,

L,6 Strains and height of crack,

Since it is difficult to express strains in terms of para-
meters of force uniquely, numerical solutions for strains will have
to be solved by the approach of trial and error,

In order that both the requirements of equilibrium and compat-
ibility be satisfied, equations (5.15), (5.18) and (5.24) should be
used simultaneously in solving for the unknowns (Eeb) and (a).

The height of crack is cobtained in the same manner as seen in

section 3.8.



Chapter VI

Investigations for the Curvilinear deformation Analysis

6.1

In order to demonstrate the validity and application of the
equations developed for the curvilinear deformation analysis, it is
desirable that the analytical procedures for some examples be pre-
sented, As stated previously, the developed equations in Chapter V
have to be solved simultaneously by the approach of trial and error.

The Newton-Haphson'22)

method of solving simultaneous equations is
used in this investigation as outlined in Appendix B, This method
requires that only one point be known in the neighbourhoecd of the
desired solution,

The remainder of this Chapter is devoted to the application
of the equations developed for investigation of complete and incomplete

interaction in a reinforced concrete beam,

6.2 For the case of complete interaction

Since it is important to satisfy the requirements of equilib-
rium and compatibility, equations (5.,15), (5.18) and (5.24) must be
solved simultaneously for the unknowns concrete strain (scb) and

strain ratio (a). From the relationships
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7C.

Fel for complete interaction

and Mt= MC+F'Z+MS

the following equations are obtained:

d - A~ d
OIAC(-',,:*) éb[ Io()4bl E,A, l)[(:_‘)+ sz _m] (6.1)
and
£ R
M= 2ba| ;";j () 22} ("‘d()]mmcz( 2’

The Newton-Raphaon(ZZ)

method of trial and error is used,
with the aid of the IBM 7040 computer, to solve for the unknowns (g )
and (a) which satisfy both equations (6,1) and (6.,2), for a specified
applied moment, A sample calculation is shown in Appendix B,

For a section having identical properties as those described
previously located under the load point, subjected to design moment,
strain at bottom fibre of concrete (g ) and (a) are obtained from
equations (6.1) and (6.,2), The section is then allowed to crack with
a tensile cracking strain equal to 100 micro in/in, A new section is
formed in accordance with the method shown in section (3.8), This

process is repeated until an equilibrium state is reached at a certain
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cracked level, For the section located under the point load and
subjected to design moment the concrete strain (scb) and ratio (a)
are plotted against the depth of the beam, as shown in Figure (6.,1a)
and (6.1b), respectively.

According to definition, the ratio (o) is equal to unity, if
there is no interaction between the concrete and the steel. From
Figure (6.,1b), it is obvious that the paths of the curve for any degree
of break down of interaction will lie in the region between these two
curves of complete and no interaction, for specified section properties.

Compare Figure (6,la) with Figure (4.,2),which is obtained from
the elastic analysis, it may be noted that both of the two analyses
give similar results, Table (6,1) shows the results of the two analy-
ses, for design moment, at the section under the load point, for complete

interaction and identical conditions.

Case x M F/F* 2H! g

t cb et  Fsp  Cst
in 1b-in in m " /n m " /n m " /ﬂ m" /N

linear
(Newmark) 29.25 36200 1.0 3.268  100,0  ~349,32 656.2 570,24

non-
linear 29,25 36200 1.0 2,288 100,0 -357.12 659,4 572,52

Table (6.1)

The crack profiles for a reinforced concrete beam subjected to

a two point loading system with complete interaction cbtained for both the
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linear and curvilinear cases are shown in Figure (6.2).

The close agreement between the results of these two analyses
is due to the fact that the concrete strain at design moment is still
very low, and at a magnitude at vhich the linear and curvilinear stress-
strain curves are practically coincident,

The convergence of the two curves of Figure (6.la) and (4,2)
at the equilibrium configuration provides a check on the correctness

of the solutions of the equations for the curvilinear case,

6.3 For the case of incomplete interaction

Value of horizontal direet force with complete interaction
(F') for a particular section, was found by the same procedures as out-
lined in section 6.2,

wWhen there is incomplete interaction

F(éc,bIO()"'/SF'

For the purpose of determining the effect of loss of interaction, in
this case, a value of p = F/F' was taken as that under a single load
point for a value of 1/C equal to 100, as derived by Kowmark(ls)
solution.

The equilibrium condition may be written as

Mg = Mc++(€cb;°()+ F(Edv"’()lz~

The values of concrete strain at the bottom fibre (g ), and

the ratio (a) were obtained by the trail and error method. New sections
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were obtained. As the cracking procedure continued, it wes found that
no more solutions for (scb) and (a) could be obtained for incomplete
interaction after the height of crack for this case extended to, or
above, the crack height at which the curve hits the ordinate in the
case of complete interaction (C,H, & 6" in this case), This could be
reasoned to mean that there are no more solutions for (z ) and (a)
above this crack height, which would satisfy both compatibility and
equilibrium conditions, However, regarding the path of the curve for
incomplete interaction, (1/C = 100), shown in Figure (6.la), it can
be seen that a convergent point at a tensile cracking strain (Ep = 100
micro in/in) still cannot be attained., This is because no values of I
exist for crack heights in excess of that for the complete interaction
case,

It is therefore concluded that, in order to further the analysis,

a new approach to this problem must be adopted.



Chapter VII

Estimated Crack Profiles of a Rginforced Concrete Beam

7.1

Having discovered that the application of the non-linear
strain-stress relationship for the concrete did not lead to an improve-
ment in the solution of the problem, and analysis was then carried
out by assuming that the actual beam is in a degenerate form as out-
lined in Chapter II. That is to say that the beam under load suffers
a loss of interaction and has degenerated from a hypothetical state
of complete interaction. In this hypothétical state the beam would be
capable of supporting some higher load.

A section of the reinforced concrete beam subjected to the
design moment and at the load point, was analysed by this approach
for the linear and non-linear cases. Figure (7.1) shows the family
of curves of the concrete strain at the bottom fibres of the uncracked
section versus the dpth of the beam for different values of 1/C
(o2, 100, 25, 6.25, 3.125)., It may be noted that all these curves
intersect. an ordinate passing through the specified tensile cracking
strain (ap = 100 micro in/in.) of the concrete, at equilibrium condition,
A similar effect could be attained, for the section subjected to

moments other than the design moment, as shown in Figure (7.1).
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Thus it can be seen that a comprehensive analysis is attain-
eble and the computation of crack profiles was then carried out for

both linear and non-linear cases.

7.2

In this analysis, the variation of F/F' along the length of
beam, due to Hewuark(l5) was used in both cases. The justification
for using the Newmark solution in the case of non-linear deformation
analysis was reasoned by assuming that the compressive strains of the
concrete for the cracked ﬁeaa at design moment are spall enough to be
close to those obtained for the straight line analysis. This assumpt~
ion is also necessary to simplify the solution of the non-linear
equations,

Figure (7.2) and (7.3) show the crack profiles of the reinforced
concrete beam with incomplete interaction (1/C = 3,125), subjected to
one and two point loading systems, for both the linear and non-linear
cases, The results obtained by these two cases though not identical,
illustrate that the difference is not big enough to be shown on the

scale used in plotting the crack profiles.,

7.3
From Figure (7.,2) and Figure (7.3), it is seen that the up-
shooting part of the crack profiles near the load point are not very

pronounced with respect to the crack profiles for the complete interaction
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case and the influence of other parameters must certainly be considered.
However, particularly after cracking it may well be realized that
further complications arise, The cracked beam is no longer a prismatic
beam, since the cracking process causes a change of geometry of the
cross~section along the beam, Thus it may be expected that the values
of 1/C will vary along the length of the beam, and therefore the
distribution of F/F' along the beam will be different from that of the
uncracked beam, These variations may depend on the loading condition,
geometry of the beam, percentage of steel, etec., but most importantly
the bond slip conditions will be expected to have radically changed.

Rnbinaen(lk)

pointed out in the light of cbservations of
composite beams, that "even if bond strength was high, and there was
no perceptible slip between the steel and the concreté at the ends of
the beam (hooks), slip and associated loss of interaction could occur
locally in the region of the load points".

(12) suggested that the amount of vertical shear transmission

Moe
across the bending cracks by friction decreases gradually as the width
of the crack (slip) increases.

These speculations were, in fact, verified by slip (or crack
width) measurements at the level of reinforcement, see Figure (7.4) and
Figure (7.5), performed by Evans and Robinson(23) and Manning(Z“). It
was shown that the magnitude of slip was largest where the crack occumed
and diminished with distance away from the crack.

Based on these speculations and observations, a variation of

the value of 1/C along the beam was assumed. 1/C is a measure of degree

of intergction assumed to be constant in a prismatic or uncracked
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composite beam, However, in a cracked beam with varying section, it is
reasonable to assume that 1/C will vary markedly along the beam, In
particular at a probable crack, value of 1/C could be greatly diminished '
or even zero. For the sake of simplicity, it was assumed that the value
of 1/C varied linearly in accordance with the assumption that a relative-
ly large crack was formed under the load points, and that there was
virtually no slip at the supports. In order to obtain a numerical
solution, 1/C was assumed to vary from 200 at the supports to O.4 at

the load points where a crack is most likely to occur, For the sake

of simplicity it was further assumed that 1/C would vary symmetrically
with distance on either side of a probable crack, see Figure (7.6), The
resulting crack profile of the reinforced concrete beam, subjected to
symmetrical two point loading system, at design moment was then estim-

ated and is shown in Figure (7.7).

74

Figure (7.8) shows the variation of upper, mid-height and lower
strain along the reinforcement of a cracked and uncracked reinforced
concrete beam with the ahove conditions of break down of interaction., It
may be observed that in general the form of the variation of strain
could provide an envelope for variations of strain along the reinforce-~

ment similar to those observed experimentally by Plownan(Z)

(2)

s See Figure
(7.9). BSince stresses observed by Plowman are intended to be those
at the mid-height of the rod, it may now be seen that they might be

expected to be lower in magnitude, while the lower steel fibre stresses
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in the steel might be as large or even larger in magnitude than that

(D) soncinted that Mo

predicted by the straight-line theory., FPlowman
straight-line theory was perhaps conservative from the point of view
of design, because his measured strains were lower than that predicted
by the straight-line theory, However, as can be seen it is also
possible that the strain in the steel, namely the lower fibre strain
could be as large or larger than that due to the straight-line theory,
particularly in the region of the point loads. Further, it may be
seen that a slight shift of location of the stud (a device used in his
strain measurements) in an upward direction, might give much lower
strain readings. It may be further reasoned that the formation of the
zigzag pattern of stress variation along the beam, as observed by
Plouunn(a), was caused by the cracking process of the beam,

The estimated slip along the reinforcing steel for incomplete
interaction, in Figure (7.6¢), shows a similar form compared to those

(23) (2&)'

measured by Evans and Robinson and Manning

7.5

Phenomenologically, it has been recognized that the diagonal
tension crack is initiated from the vertical flexural cracks which
form on the tensile surface of the beam, It becomes inclined and
curves upwards and towards the nearer concentrated load, With an in-
crease in the applied load the inclined portion of the crack also propag-

ates downward., At a later stage, it has been observed that splitting



%,

of the concrete along the reinforcement in the shear span occurs, In
some beams, the failure is caused by initial yielding of the reinforce-
ment which leads to the relative rotation of beam segments adjacent to
the inclined craek“).

It has been pointed out, previously, that the up-shooting
portion, shown in the computed crack profiles, may be considered as
the incipient path of the inclined crack, Therefore, once the applied
load exceeds a certain limit at which cracking begins, the incipient
path of the ineclined crack begins to form. It may be speculated that
increased deformation due to local yielding of the steel reinforcement,
caused by break down of interaction, see Figure (7.8), would trigger
off the fully matured inclined crack which leads to the so-called
diagonal failure, It therefore could be reasoned that the form of the
incipient path may determine the pattern and failure mechanism of a
reinforced Goncrete beam,



Chapter VIII

Summary and Suggestions for Further Studies

The problem of the ineclined crack in a simply supported rein-
forced concrete beam which is treated as a composite member, has been
investigated analytically, The analysis is made on the basis of
complete and incomplete interaction between the composite elements,
the concrete and the steel.

On the consideration that the concrete has non-linear stresse
strain characteristics, the basic equations which satisfy the conditions
of equilibrium and compatibility, for the problem, were derived,
Numerical solutions for the estimating of crack profiles were obtained
by the trial and error method and were facilitated by the IBM 7040
computer,

Through investigations, it has been found that the development
of the non-linear deformation analysis alone could not provide a
solution for this problem,

With modification to Newmark'*>) solution, the analysis has
been able to furnish crack profiles for study of thie aspect, It has
not been the intention of this analysis to provide the actual erack
profiles observed in a reinforced concrete beam, However, from results
obtained, it is observed that this analysis does provide,analytically,

vivid descriptions of cracking phenomena which occur in test beams,

91.
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Therefore, it may be concluded that the main object of this thesis,

which is to provide a basis for a more general investigation of the

influence of loss of bond and loading condition on the failure mechanism

of a reinforced concrete beam, has been fulfilled.

At this stage, many assumptions have been made in the course

of study.

In order that further study in this problem may be carried

on, these assumptions should be verified by experimental data. The

writer wishes to make the following suggestions:

le

2e

3e

b,

The theory of composite action should be studied more
vigorously on a fundamental base-model studies.

To the problem of reinforced concrete beam, data for the
slip distribution along the beam, and the bond modulus
should be obtained cxporincntuly(aﬁ).

A study of influence of loss of interaction on the principal
stress trajectories of a reinforced concrete beam may lead
to a further insight into this problem.

An attempt to formulate a solution which includes the
elasto-plastic effect of the steel, for this problem,

may lead to a better explanation of the phenomena observed

in beam tests.
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2)

3)
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6)

7)

Chapter IX

Conclusions

The conclusions of this study are as follows:
The reinforced concrete beam may be considered as a composite
beam with incomplete interaction,
In spite of the fact that a cracked reinforced concrete beam
does not have a distinet interface the conventional theory
can still be applied provided a pseudo~interface is assumed,
Consideration of a reinforced concrete beam as a composite beam
with incomplete interaction emphasizes the significance of bond
slip and its variation along the beam,
The analysis shows that the cracking pattern is markedly depend-
ent upon the external loading -yitc- on the beanm,
Loss of interaction on bond slip causes a reduction in the aver-
age steel strain distribution,
Knowing the bond slip characteristics of a beam, or of a partic-
ular rod, an envelope for the slip distribution of the beam
could be estimated.
Further analytical studies may lead to a better understanding of
the problem of so-called 'shear failure' of a reinforced concrete
beam.

935.
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APPENDIX A

Sample calculations of strain for a reinforced concrete beam with

incomplete interaction

P
u=36" {
{ L= 90" L

For a section at the location under the design moment.

For an uncracked section of the reinforced concrete beam,

B dy o

i -1 E,= 30x10°psi
' E.= 3.5x10%psi
i A= 03] in’
: >, A = 34.0in°
U..a
i = 6é5 - l.5
il e = 275
~L €, 71710 m "/

| I |
EA E$ As, E¢ Ac

! I
30210° x 03| 35x10%x 34.0

=0 1l6s107°

EA = 862«10°
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SEl= E.I, + E,I, =EI,

3
3-5:!0"1 _4_’728_5—- - 7;6“06
El = £EI + EA-2°

= e+ 10°+ 862+ 1% 2.75% 781-2 «10°

gt
R EEr

for bottom fibre of concrete
Y= C. = 425

- 28 | 5.00594x10¢

< Tier0°

From equation (3:15), the measure of degree of interaction F/F' for
1/C = 100, at the section located under the point load is equal to
0.93%69. Thus, the strain at bottom of concrete fibre is computed

from equation (324), for design moment (M, = 36200 lb.in).

4 F__EA |
LR

&
=10.00594 x 10‘6_0.93 69 - 8-6tx10 .
[ el T8I1-2x10° 213

(0-00594 « |O-6-q- 0.0084 10”8 )Iﬂ 36200

=189.38 10 ° in/i,



Similarly, €. , €& ond &, can be calculated, from
equations (3249) and (324b).

Cracking procedures:
-6
€= - 206:62x10 i /mobtained from equation (3240),
C
From equation (3:27), the height of crack is

2H (écb-.ép)
(éct-* €(—b)

CH =

for E,= \TI.o mn/a

P
CHa 85 ( t89'58u0"’-l'u~oné‘)
' (189-38 +206-62) 10°°
= 0.39“
ok = ZH = CH.
=5'5" -39"
= &1

This process is repeated until &, £ 171.0 micro in/in,
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APPENDIX B

Newton-Raphson trial and error method for this problem:

For purposes of illustration this method is presented for
this problem, in the case of complete interaction.

From equations (6.1) and (6.2) letting,

| i IR
{(ecb"’") = EsAs&, (H) [ T ZBH N :H] "“-°Ac("“ae(‘) —75%

-y 2

it o T €
9(€p,k) = Zbcg[.?‘%:.(i_') i (Z:‘ (&t J*‘ & id)
£ -1-d \ €
L )4‘2‘,]""":

Upon expanding the funct:.onsf( €cp s %) and g (€ b %)

in a Taylor series in terms of an arbitrary estimate of the desired

- o~

solutions of 6cb and &  there results
° 0, e ( °)
f( ‘b,O() 0= )((ééb)’ () ( €Cb o) ){( 6‘(':).9 0( )

+(;L co))f( d(,o)l <°) T
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9(6—4,,0-()-0 & 9( éc(:) ,o((o))- ( g(b_ (:))9 (é‘::)’ o((o))
& (0) () r-)
r (Z-ol”) G (&L, ) o

o)
€., and o’ are the initial estimates and jr ’ j[
A 7’

ecb

and are partial derivaties.
Wl g

In this case

-:d)

il
["' ( ocd)

~

[ ]
v/
,\I"\ I"‘"\
o

ﬂ'l

'.b

w
f—\
s./

-] %A

-
A=~

€
=

2

i;.ﬁ_ E A, —52 (ZH 4‘:‘)_030 écb[ (-IoL

- 29 . 2pg[H (esly_ L EaH g:_'.*}
9€¢' bé‘b 02[369 i ) 6 é: ( b

{2 -2 ]) e

3&,0Lt oL?

NETE JINETSE SR

9 _3_- Zbcr[ zé;b__, 662(&!)_‘_}



Calling

This gives

f(€2, o)r v

(€)] (o) 0, o
(& D)eenf e, d")m0

o)

© G 0) ) () (0 ¢ (@ ol —
9(€cb’d)+KR %(écb'd )+BB 9‘,‘(6‘5' ) @
<b
These two simultaneous equations can be solved for the RR(O) and

) (o) °
BB(O) corresponding to €., and o '? . Thus the iteration
pattern can set up.

By Cramer's rule

o F €L o™ (€ ™) = 9(e, o) £ (e, &)

I ¢ 0 () o o A o ¥
G067 %) £ (& 4)= f (€0, a) 9(5. &)
b

B8

() (o) ) o 0
@, 3(65;)/ o((oj)..é‘b(ecb s 9éh(€“:°)'°((°))'7((641)"’(“

L@ O, .0 o BT ;
drel o) £ el al?) fe‘,,(é"’ %) 9 (€5a")

Let

Uy ) ()

)

ol = o“% 88“
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Writing in general form

(r+1) (r) (r)
é(.b = €Cb b RR

S DT

The iteration process is repeated until values of €cp and o satisfy

the simultaneous equations

}:(é;b,¢1,) = 0 ;. o
<( 6(6“) ’ §d)\
9 (é;b,5i) =0 or

€y )
e(eéb) and e(a) are very small pre-estimated values,

— -

After obtaining & and & for a particular section, €ctr Eg

cb t?

and €, can be found by equations in Chapter V. A new section is

therefore found. This process is again repeated.



APPENDIX C

General solutions for the non-linear stress-strain character-

istics of the concrete, using the Desayi and Krishnan relationship

Ecé:A J ( —I'—d) 64

The equilibrium equation is,

2 oL‘ - -
M, = 2Eb€, [2; (o{_) 4CoH l+an~'{_é_‘2__5r_2}

2

E¢ €s A (-—':-a() € . 2

L anEE

4

Difficulties were encountered in obtaining a solution when strain

levels were small,
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APPENDIX D

Table of Results

(1) Two point loading system - 1/C = 3,125 , linear case

" He -~ €ib €ot €  Sst

(in) lb-in in m in/in m in/in m in/in m in/in

0 0 8.5 . 0 0 )
2,25 2784,6 8.5 14,8 “15.9 8.7 6.5
4.5 5569.2 8.5 29.6 -31.9 17,4 12,9
6.75 8353.8 8.5 W3 47,9 26,0 19.3
9.0 11138 8.5 59.2 =639 346  25.5
11,25 13923 8.5 740 ~79.8 43,0 3.7
13.5 16708 8.5 88.9 -95.8 513 377
15.7% 19492 3.6 160.@ -211,7 331.8 278.1‘
18.0 22277 3.4 100,0 -241,1 - 390.6 327.5
20,25 25062 3.2 100,0 ~270,7 W7,1 3747
22,5 27846 3.1 100,0 ’ =300,8 502.4 4204
24,75 30631 2.9 00,0 =337  55%.1 465.0
27.0. | 33415 2.8 100,0 =363.5 611,35 508.7
29.25 36200 2.7 00,0 =396 665.3 5515
31.5 36200 2.8 100,0 -390,7 664.,1 ’ 553.9
33.75 36200 2.8 100.0 -386.3 663.2 555.8
36.0 36200 2.9 200,0 -382,9 662.5 557.1
38,25 36200 2.9 00,0  -380,5  662.0 558.1
40,5 36200 2.9 200.0  -378.8  661.7 558.9
42,75 36200 2.9 100,0 ~377.8 661.5 559.2
45.0 36200 2.9 100,0 «377.5 661.5 559.4
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(2) Two point loading system - 1/C varying along the beam, non=
linear case.

" e d o LI T ™ €t € Sat
(in) (1b=in) (4in) min/in m in/in m in/in m in/in

0 200 o &5 0 0 0 0
2,25 18,9 a8A6 B85 NS 159 0.2 8.0
4.5 169.3 5569.2 8,5 29,0  31.8 20,5 16,0
6.75 153.9 8353.8 8,5 k3.6 47,9  30.6 241
9.0 138,6 11138 8.5 58,3 «6h3 M2 3.2
11.25 1252 13923 85 731 =803 517 4o,
12,5 07,9 16708 8.5 87.9 -96.6 62,2 k8.6
15,75 92,5 19492 4,2 100,0 «195.7 320,0 276.2
18,0 77.2 22277 3.9 100,06 -223.2 381.8 330.0
20,25 61,8 25062 3,7 100,0 -250.4  440,0 3807
22,5 46,5 27846 3.5 100.0 -278.2  396.5 429.5
24,75 3,0 30631 3.4 00,0  «307.8 552.2 76,7
27.0 15.8 33418 3.2 100,0 -342,1 607.8 521.4
29.25 Oh %200 1.7  100.0 -597.5 723.2 65,7
3.5 15.8 36200 3.1 100,0 -369.2 661l.4 567.9
33,75 3, 36200 3.2 100,0 -3%1.8 6601 570.8
36.0 46,5 36200 3.3 100,0 «357.8 659.7 57..8
38.25 61.8 36200 3.3 100,0 3573 659.5 972.2
40,5 77.2 36200 3.3 100,0 =357,3 659.4 572.4
42,75 92,5 36200 3,3 100,0 -357.2 659.4 572.5

45.0 107.9 36200 3.3 100,0  =357.2  659.% 572.5
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(3) Two point load system, 1/C varying along the beam - linear case)

x e w, €ep €ot € € o Bgy Y Eg.02H)
‘(in) 0% 0% 10% 10 10100 2070
0 200 0 &35 o 0 0 0 T U
2,25  184,7 2784,6 8,5 14,4 15,9 10,2 9.1 8.0 0,02 9,1
b5 169.3 5569.2 8.5 29,9  ~3L.7 20,4 18,2 15.9 0.02 18,2
6.75 153.9 8353.8 8.5 43,3 47,5 306 27.3 23,9 0,03 27.3
9.0 138.6 11138 8.5 57.7 =634 ko,8 3643 31.9 0,03 36.3
1.25 123,21323 8,5 72,10 -19.2 51.0 45.%k 39,9 .03 45.4
13,5  107.9 16708 8,5 86.6 =95.1  61.2 545 47.8 Ok 54,5
15,79 92,5 19492 4,2 100,0 ~193.4 317.1 215,2 273.4 .62 63.6
18,0 77.2 22277 3.9 100 =220,3 378,9 353.3 327.6 .94 72,5
20,25 61,8 25062 3.7 100 -246,8  437.2 407.8 378.5 1.4 81,3
22,5 46,5 27846 3.5 100 -273.8 493.7 U460,5 427.4 2,0 89.5
24,75 31,1 30631 3.4 100 «302,3 S549.3 512,0 4746 3.1 96.3
27.0 15.8 33415 3.2 100 «335.2 605.0 562,2 519.3 5.9 99.8
29.25 0.4 36200 1.7 100 «575.8  720.6 593.0 465.4 473 34.5
.5 15.8 36200 3.1 100 «361,0 658,3 612,1 565.9 3.6 108.7
33.75 31,1 36200 3.2 100 -353.8 657.0 612,8 568.6 .94 114.,5
36.0 46.5 36200 3,2 100 -351.1  656.5 613.1 569.6 .29 116,7
38.25 61.8 36200 3.3 100 -350,0 656.,3 613.2 570,0 ,09 117.6
40,5 77.2 36200 3.3 100 ~349.5 656.2 613.2 570.2 .03 117.9
k2,75 92,5 36200 3.3 100 =349, 4 656,2 613.2 570.2 .01 118,1
45,0 107.9 36200 3.3 100 ~349,4  656,2 613.2 570.2 0 1811




	title page801
	pg i802
	pg ii803
	pg iii804
	pg iv805
	pg v806
	pg vi807
	pg vii808
	pg 1809
	pg 2810
	pg 3811
	pg 4812
	pg 5813
	pg 6814
	pg 7815
	pg 8816
	pg 9817
	pg 10818
	pg 11819
	pg 12820
	pg 13821
	pg 14822
	pg 15823
	pg 16824
	pg 17825
	pg 18826
	pg 19827
	pg 20828
	pg 21829
	pg 22830
	pg 23831
	pg 24832
	pg 25833
	pg 26834
	pg 27835
	pg 28836
	pg 29837
	pg 30838
	pg 31839
	pg 32840
	pg 33841
	pg 34842
	pg 35843
	pg 36844
	pg 37845
	pg 38846
	pg 39847
	pg 40848
	pg 41849
	pg 42850
	pg 43851
	pg 44852
	pg 45853
	pg 46854
	pg 47855
	pg 48856
	pg 49857
	pg 50858
	pg 51859
	pg 52860
	pg 53861
	pg 54862
	pg 55863
	pg 56864
	pg 57865
	pg 58866
	pg 59867
	pg 60868
	pg 61869
	pg 62870
	pg 63871
	pg 64872
	pg 65873
	pg 66874
	pg 67875
	pg 68876
	pg 69877
	pg 70878
	pg 71879
	pg 72880
	pg 73881
	pg 74882
	pg 75883
	pg 76884
	pg 77885
	pg 78886
	pg 79887
	pg 80888
	pg 81889
	pg 82890
	pg 83891
	pg 84892
	pg 85893
	pg 86894
	pg 87895
	pg 88896
	pg 89897
	pg 90898
	pg 91899
	pg 92900
	pg 93901
	pg 94902
	pg 95903
	pg 96904
	pg 97905
	pg 98906
	pg 99907
	pg 100908
	pg 101909
	pg 102910
	pg 103911
	pg 104912
	pg 105913
	pg 106914
	pg 107915

