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Abstract 

Increased efficacy of light and laser applications in medicine is achieved by accurate 

light dosimetry. A minimally invasive technique for the determination of the optical 

coefficients of tissue involves interstitial measurements of the local fluence rate at two or 

more points in the tissue using isotropic, fibre optic detectors and application of a diffusion 

model of light propagation. The diffusion models assume simple, homogeneous tissue 

geometries, possibly oversimplifying the effect of tissue heterogeneities and boundaries. 

The primary goals of this study were to investigate the influence of realistic finite geometries 

on the fluence rate distribution and to quantify the systematic errors in the derived optical 

properties. 

A Monte Carlo model was developed to predict the fluence rate distribution in any 

plane of interest in a medium and was verified by comparison with diffusion theory solutions 

for simple geometries. Fluence rate measurements were made in optically infinite and semi­

infinite phantoms for a wide range of optical properties and it was determined that the optical 

coefficients were derived accurately for phantoms with !Jeff> 0.2 mm·1 and 2 < tJt'<10 mm· • 
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Measurements were also made in finite spherical volumes with absorbing (Rd = 0.35) 

and diffuse reflecting (Rd =0.85) boundaries for three optical phantoms and comparisons of 

the experimental fluence rates with the predictions of the finite volume Monte Carlo model 

are presented. Boundary effects were observed to be significant within 4 transport mean 

free paths (mfp') of the boundary. The optical coefficients were derived by applying a 

diffusion solution for an infinite medium and it was determined that within 2 mfp' of the 

boundary, the derived J.la was overestimated by 40% and underestimated by 20% for the 

absorbing and reflecting boundaries, respectively. 
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Chapter 1 


Introduction 


Developments in laser instrumentation and fibre optic technology have led to 

increased light and laser applications in medicine. Improved efficacy of diagnostic and 

therapeutic applications relies on, among other factors, accurate light dosimetry. 

Therapeutic procedures, such as photodynamic therapy, laser hyperthermia and laser 

biostimulation (Parrish &Wilson, 1991), are dependent on the absorption (and indirectly, the 

scattering) of light photons in the target tissue to produce the desired biological effects. 

Diagnostic techniques which include fluorescence and absorption spectroscopy rely instead 

on detecting fluorescence emission and changes in the intensities of the remitted photons, 

respectively (Parrish & Wilson , 1991). Light propagation in tissue is governed by the optical 

properties of tissue, which will be discussed in the next section. 
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Figure 1.1 Examples of the irradiation geometries used in photodynamic therapy. The 

stippled areas represent schematically the pattern of irradiance in highly scattering tissue. 

(a), (b) Surface irradiation from broad beam or lens-tipped fibre. (c)-( e) Interstitial irradiation 

with cut-end or cylindrical fibres. (f)-(h) Intracavitary and intralumenal irradiation. (i}, U) 

Intracavitary whole surface irradiation using an isotropically-tipped fibre or a light diffusing 

liquid (shaded). (Wilson & Patterson, 1986) 
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Figure 1.2 Interactions of light photons with tissue ( Svaasand, 1984; Doiron, 1984) 
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1.1 Tissue optical properties 

In diagnosis and therapy, light can be delivered to the target tissue by surface 

illumination or by interstitial, intralumenal or intracavitary irradiation via optical fibres, as 

shoWR in Figure 1.1 (Wilson & Patterson, 1986). For a particular irradiation geometry, the 

spatial distribution of the light energy fluence rate within optically turbid media, such as 

biological tissue, is dependent on the wavelength-dependent absorption and scattering 

characteristics of the medium. The primary interactions of light photons with tissue are 

absorption and elastic SE:attering but photons can also be specularly reflected at the surface 

or may be diffusely reflected or transmitted, as shown in Figure 1.2. 

Many applications exploit the s~l region, 600 -1300 nm, known as the noptical 

window'' beaiuse tissue absorption is lowest in this region thereby allowing maximum light 

Jlenetration to be achieved (Wilson, 1991a, Wilson & Jacques, 1990). In this. wavelength 

range (visible and near IR), absorption of photons is due to tissue chromophores such 

as haemoglobin, melanin and bilirubin while scattering arises from microscopic variations in 

the refradive index of the tissue (Wilson, 1991a; Star et al., 1991 ). On a-macroscopic level, 

however, tissue can be characterized by an average refradive index, n, which gives rise to 

specular reflection at tissue-air interfaces. Scattering in tissue is highly forward peaked, 

similar to that observed for isolated particles which are comparable in size to the wavelength 

of the incident light (Wilson, 1991a,b). The- angular distribution of scattering from each 

particle is uniquely specified by a phase function, 8(6), described in Chapter 2. Typically 

the average cosine of the phase function, called the anisotropy parameter, g, is used to 



5 

characterize the nature of the scattering where values of 0 and 1 represent isotropic and 

forward directed scattering, respectively. The scattering coefficient, J.16 , and anisotropy 

parameter are often combined into a single reduced scattering coefficient, J.ls' = J.l6 (1 - g), for 

computational ease. 

The fundamental optical parameters for light dosimetry are the absorption and 

scattering coefficients, J.la and J.16 , which represent the probabilities per unit path length for 

photon absorption and scattering, respectively. For most tissues in the visible and near IR, 

scattering dominates absorption and the range of values for the absorption and reduced 

scattering are 0.01 < J.la < 1.0 mm-1 and 10 < J.16 < 100 mm·1 (Wilson, 1991b, Wilson & 

Jacques, 1990), respectively. The highly forward-directed scattering in tissue is 

characterized by an anisotropy parameter typically between 0.7 and 0.95 (Wilson, 1991b) 

and the average tissue refractive index, n, ranges from 1.38 to 1.41 (Bolin et al., 1989). 

1.2 Light Dosimetry 

Optimization of light delivery in therapeutic procedures, such as photodynamic 

therapy (PDT) requires accurate light dosimetry or light treatment planning (Wilson et al., 

1987; Wilson & Patterson, 1986). As shown in the schematic of Figure 1.3, light dosimetry 

for PDT (Wilson et al., 1987) involves an inverse and a forward problem. The former is the 

more difficult problem of determination of the optical properties of the tissue while the latter 

is a forward calculation of the spatial distribution of the light fluence rate throughout the 

tissue volume of interest, based on the known optical properties, irradiation conditions and 



6 

a mathematical model of light propagation. 

The optical properties of tissue, J.la , J.ls and g or J.la and J.ls'• can be detennined either 

directly or indirectly. Direct detennination from measurements of the light transmitted 

through and reflected from tissue samples, has the advantage of being independent of a 

model of light propagation. However, these measurement techniques are necessarily 

invasive and require optically thin tissue samples (thickness ~ 100 J,Jm) so that only singly 

scattered photons are detected (Wilson et al., 1987). In addition to the difficulties involved 

in tissue preparation, the measurement of optical parameters such as J.1a , J.ls the total 

attenuation coefficient, f.1t (= J.la + JJJ, and the phase function, S(6), present a number of 

technical problems as discussed by Wilson et al. (1987). Some of these are reduction of 

background light, minimization of refraction at interfaces and in the case of detennination of 

the scattering coefficient, measurement of the forward scattered light only. 

Indirect techniques are preferred since measurements can be made in bulk tissue 

in vivo (Wilson et al., 1987). These involve measurements of macroscopic parameters such 

as the effective attenuation coefficient, penetration depth, reflectance, transmittance and 

fluence rate, on bulk tissue and subsequent derivation of the optical coefficients by applying 

a model of light propagation. Some of the techniques which are being investigated for 

quantitative in vivo IJght dosimetry are steady state (Kienle at al., 1994; Farrell et al., 1992) 

and time-resolved (Patterson et al., 1991 ; Patterson et al., 1989) diffuse reflectance and 

interstitial fluence rate measurements (lilge & Wilson, 1993; Driver et al., 1991; Amfield et 

al., 1990, 1989). 
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Diffuse reflectance techniques have the advantage of non-invasive determination of 

the optical properties of tissue in vivo. The fundamental assumptions of both steady-state 

and time-resolved techniques are that the tissue is homogeneous and optically semi-infinite, 

the source and detectors are small compared with the their separation (Patterson et al., 

1991) and scattering dominates absorption. The primary restrictions are the signal strength 

and the tissue size and geometry. For deep-seated targets located several centimetres 

below the tissue surface, the optical properties can be determined more efficiently using the 

interstitial measurement technique, which is introduced in the next section. 
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Figure 1.3 Elements of light treatment planning for PDT (Wilson et al., 1987). 
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1.3 Interstitial measurement technique 

Quantitative in vivo fluence rate dosimetry can be achieved using the interstitial 

measurement technique (Lilge & Wilson, 1993; Driver et al., 1991; Amfield et al., 1990, 

1989). This technique involves measurement of the absolute fluence rate at two or more 

points in the tissue using interstitial isotropic fibre optic detectors, as shown in Figure 1.4. 

The optical coefficients are subsequently derived as free parameters in a non-linear frt of the 

measured fluence rates at the known detector positions to the predictions of a model of light 

propagation. The forward calculation of the fluence rate distribution throughout the tissue 

volume is then achieved using the derived optical coefficients and a model of light 

propagation such as diffusion theory or Monte Carlo models, discussed in the next two 

chapters. 

AHhough diffusion theory models are typically used in solving the inverse problem of 

deriving the optical properties and for the forward calculation of the fluence rate distribution 

throughout the tissue volume, these models assume simple, homogeneous tissue 

geometries, possibly oversimplifying the clinical situation of tissue heterogeneities and 

boundaries. The validity of these models in confined volumes, where the effect of boundaries 

may be significant, needs to be evaluated by comparison with more accurate numerical 

methods such as Monte Carlo calculations. The accuracy of the derived optical properties 

is dependent not only on the validity of the diffusion model but also on uncertainties 

introduced by the experimental procedure. Sources of error include detector calibration and 

positioning and the influence of the detectors on the light field (Lilge & Wilson, 1993; Driver 
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et al., 1991; Arnfield et al., 1990, 1989). The utility of the interstitial measurement technique 

as a tool for quantitative in vivo dosimetry relies on quantification of and correction for these 

errors. A detailed description of this technique and previous studies which have influenced 

this work is presented in Chapter 4. 



-----
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Figure 1.4 Alignment of optical fibres interstitially to determine the optical properties from 

multiple point fluence rate measurements. Pis the delivered power and <I> ; is the fluence rate 

at known distances, P;. from the point source (Lilge & Wilson, 1993). 
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1.4 Project Proposal 

In preclinical in vivo studies, small animal models are used to simulate the biological 

situation in man to enable investigation of the efficiency of light and laser applications in 

medicine. In these studies, interstitial measurements in confined areas such as the cranial 

cavity of rodent models may be influenced by the presence of boundaries. Th.e goals of this 

study are to investigate the influence of realistic finite geometries and variable boundary 

conditions on the interstitial fluence rate measurements and to quantify the systematic errors 

in the derived optical properties. 

A Monte Carlo model is developed to predict the fluence rate distribution in the plane 

containing the source, and is verified by comparison with diffusion theory solutions in infinite 

and semi-infinite media. Two source-detector arrays, linear and spiral arrangements of the 

detector probes relative to the source fibre, are used in the measurements in infinite and 

semi-infinite media to determine their influence on the accuracy of the derived optical 

properties. 

Interstitial fluence rate measurements are made in finite spherical volumes with two 

boundary conditions, absorbing and diffuse reflecting boundaries. These fluence rate 

measurements are compared with Monte Carlo simulations to enable quantification of the 

systematic errors in the measurements and the magnitude of the boundary effect is 

determined by evaluating the accuracy of the derived optical coefficients. Additional 

measurements are done in a rodent skull to determine the effect of complex boundaries on 



13 

the accuracy of the derived optical properties. 

The mathematical models of light propagation which were utilized in this study, 

diffusion theory and Monte Carlo models, are discussed in Chapters 2 and 3, respectively. 

Experimental methods are described in Chapter 4, results and discussion are presented in 

Chapter 5 and the conclusions in Chapter 6. 



Chapter2 


Models of light propagation 


2.1 Introduction 

Electromagnetic wave theory, which accounts for the absorption and scattering 

properties of a material in terms of its dielectric properties, can be used as a rigorous, 

mathematical description of light propagation in random, turbid media (Wilson & Patterson, 

1986: lshimaru, 1989; Wilson & Jacques, 1990). However, inhomogeneities in the dielectric 

properties of the medium which lead to compiex mathematical equations (lshimaru, 1989) 

and an unavailability of data for the various tissue types, make this approach to modelling 

light transport in tissue impractical (Cheong et al., 1990). Alternatively, radiation transport 

theory, from which clinically useful approximate analytical and numeric models have been 

derived, is used . 

It is useful at this point to define the quantities which will be used throughout this 

thesis. The quantities of fundamental interest in light dosimetry are the radiance, qJ(r,O) and 

the radiant energy fluence rate, <l>(r). The radiance at a given point, as defined in equation 

2.1, is the radiant power dP passing through that point and propagating within the solid angle 

dO in a direction 0, per unit solid angle and per unit area oriented normal to the direction 

14 
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of propagation (Svaasand, 1984; Sutter, 1989). 

liJ (r ,Q) = dP (2.1)
dQ·dA 

In clinical applications of low intensity light such as photodynamic therapy, the 

biological end-point is a result of the absorption of light in tissue (Arnfield, 1988; Star et al., 

1987). Hence, the radiant energy fluence rate is the fundamental dosimetric quantity since 

its product with the absorption coefficient yields the energy absorbed per unit time per unit 

volume (Star& Marijnissen, 1987). The fluence rate, Cl>(r), defined as the flux of energy onto 

an infinitesimally small sphere divided by the cross-sectional area of that sphere, is found 

by integrating the radiance over the 4rr solid angle (equation 2.2). This is the physical 

quantity which is measured in the experimental part of this thesis. 

Cl>(r) = L liJ (r ,Q)dQ (2.2)
4n 

As discussed in Chapter 1 , the primary interactions of light photons in turbid media 

are absorption and scattering. Tissue is, therefore, characterized by absorption and 

scattering coefficients, J.Ja and JJ8 , which represent the probabilities per unit pathlength for 

absorption and scattering , respectively (Wilson et al., 1987). Other useful quantities for 

describing the propagation of photons are the total interaction coefficient, 1Jt (= J.Ja + JJ8 ), and 

its inverse, the mean free path (mfp =1/J.Jt), the average distance travelled by a photon 
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between interactions. The phase function, sen·, 0), describes the angular distribution of 

scattering for a single scattering event and when normalized, as shown in equation 2.3, it 

represents the probability density function for scattering from direction 0' into n (Cheong 

et al.,1990). 

(2.3)f4" S( n' ,n ) d n = 1 

Assuming that the probability of scattering is a function only of the angle between the two 

directions O'and n (Prahl, 1988; lshimaru, 1989), the phase function can be written: 

S(O',O) = S(O'·O) = S(cos6) (2.4) 

Jacques eta/ (1987) have demonstrated that the Henyey-Greenstein (HG) phase function, 

first proposed by Henyey & Greenstein( 1941 ), is a reasonable description of the phase 

function observed in a range of tissues. The HG probability density function for scattering 

is given by: 

1-g2 (2.5)S(6) = ----='---­
2( 1 + g - 2gcos6 )312 

where the anisotropy parameter, g, is given by: 

g = JS(6)cos6 d(co~) = (co~) (2.6) 
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2.2 Radiation transport theory 

The fundamental assumption of radiation transport theory is that wave effects, such 

as diffraction and polarization, may be ignored and light photons may be treated as neutral 

particles (Wilson & Patterson, 1986). Assuming steady state conditions and elastic 

scattering, the time-independent, single energy group radiative transfer equation for the 

radiance can be written as (Groenhuis, 1983; Profio, 1989) : 

V·lP(r, Q) = -1J1(r)lP(r ,0) + L "'· S(O' ,0) lP(r ,0' )dO' + Q(r ,0 ) 
4n (2.7) 

where 

liJ (r,O) = radiance at a point r in the direction n (Wm-2sr1) 

1Jt = total interaction coefficient (m-1
) 

= IJa + IJs 

IJa = absorption coefficient (m-1
) 

JJs = scattering coefficient (m-1
) 

sen·. 0) =phase function describing the angular distribution of light scattered 

from direction n· into direction n 

Q(r,O) = volume source density (Wsr1m-3) 

The transport equation is derived by balancing the losses and gains of photons from 

an arbitrary volume (Duderstadt & Hamilton, 1976; Profio & Doiron, 1981). The first term on 
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the right hand side of equation 2.7 represents the losses from the radiance at point r in the 

direction n due to photons being absorbed and scattered out of this direction. The integral 

describes the gain from scattering of photons into direction n from other directions and the 

term Q(r,O) is representative of any volume source present in the medium. 

Exact analytic solutions of the transport equation are possible only for simple 

geometries and source distributions. Typically, approximate analytic models, such as 

diffusion theory (Duderstadt & Hamilton, 1976) and Kubelka-Munk models (Kubelka, 1948) 

and numeric methods, such as Monte Carlo (Wilson &Adams, 1983) and discrete ordinates 

(Profio & Doiron, 1987), are used to describe the light distribution in turbid media. 

2.3 Diffusion theory 

The diffusion theory or P1 approximation to the radiative transfer equation 

(Duderstadt & Hamilton, 1976) is obtained by truncating the expansion of the radiance in 

Legendre polynomials after the first two terms i.e. I =0 and I =1 terms, representative of an 

isotropic and a forward directed term (Cheong et al., 1990). The general time-independent 

diffusion equation as derived by Duderstadt & Hamilton (1976) is written as : 

(2.8)-D V·<l>(r) + JJ
8 
<I>(r) = Q(r) 
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where <l>(r) is the fluence rate and Q(r) represents the source term if one is present. The 

diffusion coefficient, D, which incorporates a correction for anisotropic scattering, is given 

by: 

1
0=-----­ (2.9)

3[JJa +JJ8 (1-g)] 

The fundamental assumptions of this derivation are that the radiance is only linearly 

anisotropic, sources emit isotropically and conditions are steady state. Furthermore, it is 

assumed that the optical coefficients are independent of position in the medium. The first 

assumption necessarily implies that the diffusion approximation is not valid within several 

transport mean free paths {mfp' =1/J.Jt' =1/(IJ8 + IJ8')} of sources or boundaries and in media 

where absorption dominates scattering ( IJa ~ IJ8 (1-g)). 

Solution of the diffusion equation requires (a) characterization of the source terms 

and (b) specified boundary conditions (Wilson & Patterson, 1986; Farrell & Patterson, 1992). 

Exad solutions of the transport equation in the diffusion approximation for infinite and semi­

infinite geometries, which have been empirically determined to be accurate, are presented 

below. 
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2.3.1 Infinite geometry 

The diffusion equation for an isotropic emitting point source at the origin of an infinite 

medium, can be written for spherical geometry as (Duderstadt & Hamilton, 1976): 

(2.11)r > 0 

where 

(2.12) 

The general solution for equation (2.11) is: 

(2.13) 

r r 

and the constants A and 8 can be solved for by applying the boundary conditions, 

(i) 

where the current density, J(r) = -D v<l>(r) and 

(ii) limr-.., <I> ( r) < oo. 

The second condition implies that 8 =0 and the first implies that A =SJ4nD so that the 

solution to the diffusion equation for a point isotropic source in an infinite medium is 
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s ­ (2.14)4> (t) = _o_ e lletf 

4TTr0 

The above solution can be modified for anisotropic delivery by replacing an anisotropic 

source at a depth z in the medium with an isotropic source at a depth z + 1/J.fs', if it is 

assumed that the light distribution is approximately isotropic after one effective scattering 

pathlength (Patterson et al., 1991, Lilge & Wilson, 1993)). 

An alternative solution of the diffusion equation for an isotropic point source in an 

infinite medium is that derived by Grosjean (1956) which is given as (Lilge & Wilson, 1993): 

I 
... { ) _ P { 1 lls -llell'(g)r 1 -p{r) {2.15).., r--- e +-e 

4 n Dr 2 lla + p
8 

1 r2 

where 

(2.16}
lleft(g) = 

and JJ; = IJa + J-16'. This solution is derived in a manner similar to that of the diffusion equation 

(i.e. from an approximation to the radiation transport equation). Compared with the 

diffusion solution of equation 2.14, the source tenn of equation 2.15 is multiplied by the factor 

JJ6'/2J.Ja + J-16 ' and J.lett has the additional factor J.la + J.fs'/2J.Ja + J.ls'. While there is no difference 

between this solution and diffusion theory for high transport albedos (J-15'/J.Ia + J.ls' =1}, the 

http:J-15'/J.Ia
http:J.fs'/2J.Ja
http:JJ6'/2J.Ja
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fluence rate distribution is predicted accurately by equation 2.15 for media with comparable 

absorption and scattering, as will be discussed in Chapter 5. 

2.3.2 Semi-Infinite geometry 

The diffusion model presented in this section is a solution of the general diffusion 

equation for a point isotropic source in a semi-infinite medium with isotropic scattering 

(Farrell &Patterson, 1992). This model takes into account refractive index matched and mis­

matched boundaries between a turbid and a non-scattering medium and satisfies these 

boundary conditions using a negative image source approach (Eason et al, 1978). A 

refractive index matched boundary implies that there is no photon current back into the 

medium while a mis-match at the interface requires incorporation of the internal reflection at 

the boundary. 

Either boundary condition can be satisfied by forcing the fluence rate to zero at an 

extrapolated boundary at a height 21, above the surface via the introduction of a negative 

image source above the boundary (see Figure 2.1) where 

(2.17) 

The internal reflection parameter, A, can be derived from the Fresnel reflection coefficients. 

Alternatively, Groenhuis et al. (1983) have adopted an empirical approach in which A is 

calculated according to : 
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{2.18) 

where rd (equation 2.11) is derived from a curve fit for the internal reflection due to perfectly 

diffuse radiation (Egan & Hilgeman, 1979). 

(2.19) 

where the relative refractive index, n~e~ = nrrJnext (nmec~and nextare the refractive indices of the 

medium of interest and the external medium, respectively). Since there is no internal 

reflection at a matched boundary, this corresponds to A =1. The solution for the fluence rate 

at a point (r,z) due to a point isotropic source at (O,Zo) (i.e. at a depth Zo below the surface), 

as shown in Figure 2.1, is given as 

(2.20) 

where r1 and r 2 which represent the radial distances from the point (r,z) to the real and image 

sources, respectively, are given by: 

and 
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2.4 Monte Carlo 

As discussed in the previous section diffusion theory yields solutions for the fluence 

rate for simple, homogeneous media and is accurate only if scattering dominates absorption 

and in regions distant from sources and boundaries. These limitations make numerical 

techniques such as Monte Carlo preferable, as in addition to requiring no further 

assumptions to those of radiative transfer, light distributions in heterogeneous media, finite 

volumes and complex geometries can be modelled. Monte Carlo calculations adopt a 

statistical approach to solving the transport equation and as such are limited only by the 

statistical uncertainties arising from the tracing of a finite number of photon histories. 
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Figure 2.1 Negative image source (Farrell & Patterson, 1992) 



Chapter 3 


Monte Carlo Modelling 


3.1 Introduction 

The Monte Carlo model, first developed by Metropolis and Ulam, adopts a 

statistical approach to the modelling of physical and mathematical problems, for which 

analytic solutions may be cumbersome or non-existent (Metropolis & Ulam, 1949; 

Raeside, 1976). The primary advantage of this method for simulating light transport in 

optically turbid media is its versatility in modelling realistic source-detector geometries, 

tissue heterogeneities, finite geometries and media with comparable absorption and 

scattering. Utilization of fast computers and variance reduction techniques, as discussed 

below, enables tracing of large numbers of photon histories in acceptable computation 

times (Key et al., 1991). 

3.2 Monte Carlo code 

The Monte Carlo method, within its statistical nature, yields exact solutions of the 

radiation transport equation by tracing photon histories using randomly sampled 

variables. These variables such as the photon step size and scattering angle, are 

selected from the relevant probability distributions, described below. Figure 3.1 is a flow­
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chart of the ba~ic Monte Carlo code (Wang & Jacques, 1993; Prahl et al., 1989) used in 

this study. The random variables and the variance reduction and scoring techniques 

utilized are discussed in the rest of this chapter. 

The code was adapted from a code written in BASIC by Farrell & Patterson (1992) 

and was translated into FORTRAN n and simulations were run on a Sun SPARCstation 

10. The modifications to the code included scoring of the photon fluence rate in arbitrary 

planes in the medium rather than the diffuse reflectance at the surface. Realistic isotropic 

and anisotropic delivery were also incorporated into the code. Typically 10S photon 

histories were traced for the infinite, semi-infinite and finite media investigated. Run times 

ranged from less than 15 minutes to 50 hours for absorption dominated (J.l.llls'- 10) and 

highly scattering media (J.IJils' - 104 
), respectively. Typical run times for media with 

optical properties simulating soft tissue (J.IJils'- 10-1 -10-~ ranged from 30 minutes to 1 

hour. 

3.2.1 Random Sampling 

The fundamental requirement for all Monte Carlo calculations is a reliable supply 

of random numbers (Raeside, 1976). Instead of using true random numbers which do 

not facilitate reproducible results, computer-generated sequences of pseudo-random 

numbers, uniformly distributed on the unit interval, are used (Knuth, 1981). The random 

number generator utilized in this study was the Fortran77 random number generator 

which was initialized by input of a seed at the beginning of each simulation. 
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Figure 3.1 Rowchart of Monte Carlo code. The dotted line represents the case of a 

refractive-index-matched boundary (Wang & Jacques, 1993; Prahl et al., 1989). 
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3.2.1.1 Random Number Generator Tests 

A number of random number generator (mg) tests were performed to assess the 

suitability of the Fortrann mg for the Monte Carlo simulations. These included tests for 

correlation, uniformity on the unit interval and serial association. The correlation test 

checks for independence in a sequence of random numbers. Table 3.1 illustrates that 

the values expected for an uncorrelated sequence of numbers are not statistically different 

from the observed values for sequences of 105 and 106 random numbers, respectively. 

These results imply that the choice of any random number is independent of the other 

numbers in the sequence. 

Table 3.1 Results of serial correlation test (R., ~ and Rk are successive random numbers 

in the sequence) 

Quantity Expected values Observed values 

(uncorrelated sequence) 105 106 

<A.> 0.500 0.499714 0.500242 

<A.A.> 0.333 0.332659 0.333431 

<RIR.RI> 0.250 0.249163 0.250037 

<RiRj> 0.250 0.249172 0.250110 

<R.~Rk> 0.125 0.124646 0.125172 
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Uniformity on the unit interval, a primary requirement of random number 

generators for Monte Carlo applications, is assessed by applying the equidistribution or 

frequency test (Knuth, 1981). For this test 105 random numbers are binned into 100 

subintervals on the (0,1) interval. Figure 3.2 illustrates that there is a random fluctuation 

of the frequency in each cell about the expected frequency of 1000, which is what one 

expects for a uniform distribution of random numbers. The statistical significance of the 

results of this test are determined by calculating a chi-square test statistic with 99 degrees 

of freedom according to : 

2 k ~k ( w:,.- N.k>2Xtreq = N • ~i=1 
(3.1) 

where the number of subintervals, k = 1 00; the sample size, N = 105 and W, is the 

frequency in each cell. The empirically derived reduced chi-square, Xv2
, is determined to 

be 1.0017 which corresponds to a probability of approximately 0.5. This is consistent 

with a random sample in which the observed values are expected to be larger than the 

norm 50% of the time (Bevington, 1969). 

Serial association between the digits of successive pairs of numbers in a sequence 

of 105 random numbers is checked by performing the serial test. This is essentially a two 

dimensional frequency test in which the digits are selected by normalizing to the (O,k) 

interval. The experimental chi-square value with ~- 1 degrees of freedom was calculated 

according to: 
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(3.2) 

where w~. is the frequency in each cell, N is the sample size of 50 000 pairs and k = 10.1 

The experimental reduced chi-square value was is calculated to be 1.00608. As in the 

uniformity test described above, this implied a probability of approximately 0.5 so that the 

sequence is demonstrated to be random. On the basis of the results of these tests, the 

Sun Fortran77 random number generator appeared to satisfy the fundamental 

requirements of an mg to be used in Monte Carlo calculations (Knuth, 1981, Turner et al., 

1985). 
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Figure 3.2 Results of 1) equidistribution test and 2) serial test on a sequence of 1 05 

random numbers. 
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3.2.2 Photon Initialization 

The location of a photon within a turbid medium is described by three Cartesian 

coordinates (x, y, z) for its spat~al position and three cosines (JJxr Jlyo JlJ for its direction 

of travel. The direction of travel can be specified with spherical coordinates, a deflection 

angle 8 and an azimuthal angle f/J. However, it is advantageous to use Cartesian 

coordinates since in this coordinate system the direction cosines do not change along 

the flight path of the photon between scattering events (Carter & Cashwell, 1975; Prahl 

et al., 1989). Figure 3.3 illustrates the coordinate systems used to trace the photon within 

the medium. 

The photon history begins at (0,0,0) with direction cosines (0,0,-1) such that the 

initial photon direction is downward into the medium. Simulation of realistic, imbedded 

isotropic and anisotropic source distributions require selection of a new set of direction 

cosines. The isotropic source simulated is an 800 11m spherical scattering tip attached 

to a 400 11m cut-end fibre, so that photons are not launched from within the solid angle, -
0, shown in Figure 3.4.1. For anisotropic delivery (see Figure 3.4.2), a 320 11m core cut-

end fibre is used so that the launch angles are restricted by the numerical aperture (NA 

=0.22) of the fibre. 
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Figure 3.3 Coordinate systems (1) Cartesian coordinates- position and direction cosines. 

(2) Scattering angles (9, ¢) (Prahl, 1988) 
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(1) Isotropic scattering source 

400 J1Dl 

(2) Anisotropic scattering source 

320 J1Dl 

NA=0.22 

where NA =n sin f3 

(n = refractive index of medium) 

Figure 3.4 Geometry of source distributions: (1) isotropic and (2) anisotropic delivery 
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3.2.3 Scattering of photons 

At each interaction point the photon weight is updated, as discussed in the next 

section, and the photon undergoes a scattering event The scattering angles, specifically 

the deflection angle, 8 where osesn and the azimuthal angle, </J where oscps21r, are 

determined by random sampling. For isotropic scattering, the anisotropy parameter, g 

= (cos 9) =0, and the deflection angle is calculated as : 

cos(B) = 2~ -1 
{3.3) 

where ~ is a uniformly distributed pseudo-random number on the unit interval. The 

Henyey-Greenstein phase function (Henyey & Greenstein, 1941), discussed in the 

previous chapter, is used to describe non-isotropic scattering. In this case, given the 

anisotropy parameter, g, the deflection angle is calculated as (Wang & Jacques, 1993; 

Prahl et al., 1989): 

1	 1 )2cos 8 = 	 - - { 1 +g2 - ( - g2 } 
2g 1-g+2g~ (3.4) 

(see equation 2.5) and the azimuthal angle is given by : 

cp = 27l~ 
(3.5) 
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Using the pair of randomly selected variables (8, C/)), the direction cosines can be updated 

according to : 

(3.6a) 

(3.6b) 

(3.6c) 

Alternatively, if the photon direction is too close to the normal, i.e. IJlz I > 0.9999, for 

these formulae to be numerically accurate, equations (3.6.a) - (3.6.c) can be simplified so 

that the direction cosines are computed as: 

11.: = sin ecos e~> 
(3.7a) 

11; = sine sin C/) 
(3.7b) 

(3.7c) 
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3.2.4 Photon Propagation 

The photon step-size, the distance travelled by a photon before undergoing an 

interaction, is calculated using random sampling from a probability distribution for the 

step size (Prahl et at., 1989). Since this distribution follows Beer's law, the step-size is 

calculated according to : 

-In~
S=-­

llr (3.8) 

where /J, is the total interaction probability and ~ is a pseudo-random number uniformly 

distributed on the unit interval (0,1 ). Once the step size has been determined, the photon 

position is updated according to (Figure 3.3.1) : 

(3.9a) 

(3.9b) 

(3.9c) 

3.2.5 Photon absorption 

At each interaction point, the photon has a probability of undergoing an absorption 

or scattering event. A technique commonly used for reducing variance, called implicit 

capture (Prahl, 1988; Hendricks & Booth, 1983), propagates a photon packet of weight 

.• 
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W, initially set to 1. At the ih interaction point. a fraction of the photon weight, 

fl. W = lls W 
llt I (3.10) 

is absorbed and the photon packet continues propagation with an updated weight 

(Wilson & Adam, 1983), 

W,l.+1 = (1-lls) w 
Jlt I (3.11) 

or 

lA// = lls w;rr•• 1 I 

llt (3.12) 

This technique provides better statistics with the propagation of fewer input photons since 

tracing does not end at an absorption event. but continues with a photon packet with 

reduced weight. 

3.2.6 Internal Reflection 

In finite and semi-infinite media, the effect of boundaries on incident photon 

packets must be taken into consideration. A photon packet crossing a refractive index 

matched boundary to a non-scattering medium is terminated since the photon packet will 

not be able to re-enter the medium of interest. For a photon packet incident on a boun­
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dary at which there is a refractive index mis-match to a non-scattering medium, the packet 

is split with a fraction of the weight being transmitted and the remainder internally 

reflected. This approach, called implicit photon capture, is another technique used to 

improve the variance of the scored reflectance and transmittance. The weight and the 

direction of the photon packet must be updated before propagation can continue. The 

probability of the packet being internally reflected is calculated according to Fresnel's law 

(see equation 3.16), and the weight of the packet is updated by that probability. 

3.2.6.1 Boundary conditions In semi-Infinite media 

The semi-infinite geometry used is a medium infinite in the x and y directions and 

finite in the positive z direction, as shown in Figure 3.5. The origin of the cartesian 

coordinate system is at a distance, T, below the surface of the medium. The weight and 

direction cosines of a packet crossing the boundary of the medium, i.e. a packet for 

which z > T, has to be updated as described above. For this planar geometry, the angle 

of incidence is related to Jlz by : 

(3.13) 

and the angle of transmission, et, is given by : 

{3.14) 
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Figure 3.5 Internal reflection of photon packet in semi-infinite geometry (Prahl, 1988) 
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where n1 and f\ are the indices of refraction of the scattering and non-scattering media, 

respectively. Assuming unpolarized light, for angles of incidence greater than the critical 

angle, sin'1 (nJn~. the Fresnel reflection coefficient is given by: 

R( 8;} = 1 
(3.15) 

while for smaller angles, the probability of internal reflection is calculated according to the 

Fresnel equation : 

(3.16) 

The photon weight, W, is then updated by : 

W= W· R( 8;} 
(3.17) 

and the spatial coordinates of the internally reflected packet (x", y", z") are given by 

(x", y 11
, z") = ( x', y 1, 2-r-z') 

(3.18) 

where (x', y', z') are the coordinates of the transmitted photon packet. The direction 

cosines are updated by leaving llx and llv unchanged and reversing the z component so 

that the new direction of the photon packet is (Jlx, Jly, -Jl2). 
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3.2.6.2 Boundary conditions in finite spherical volume 

The Monte Carlo code used in the finite volume modelling is essentially the same 

as that used in the simulations of light propagation in the semi-infinite geometry described 

previously. In this instance, however, the boundaries are considered to be diffusely . 
~ 

1~. 

reflecting since thi~ realistic approximation of realistic tissue boundaries. A photon 

packet crossing the spherical boundary is moved back to the boundary by retracing its 

photon path until it has reached the boundary, after which a new set of direction cosines 

are obtained by random sampling of a new pair of scattering angles (6, (/>), such that the 

packet is re-directed back into the medium. The weight of the photon packet is updated 

by: 

(3.19) 

where Rd is the total diffuse reflectance of the boundary. Two boundary conditions with 

diffuse reflectance values of 0.033 and 0.78 are modelled since these correspond to the 

measured total diffuse reflectance from the absorbing (black) and diffusely reflecting 

(white) spherical volumes, respectively, used in the experiments (as described in the next 

chapter). 
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3.2.7 Photon termination 

A photon packet can undergo multiple scattering events and if propagation is 

allowed to continue, the weight ofthe photon packet approaches zero. Continued tracing 

of a packet with a low weight contributes very little to the scored physical quantity so, in 

order to minimize computation time, it is necessary to terminate tracing if the weight falls 

below some threshold value. A variance reduction technique called Russian roulette 

(Carter & Cashwell, 1975; Prahl et al., 1989), is used to terminate the photon without 

biasing absorption or violating energy conservation. Russian roulette gives the photon 

packet a probability, 1/m, of survival. If the random number selected, ~ s 1/m, the 

photon packet survives and its weight is updated to mW else photon tracing is termin­

ated. Russian roulette is performed after the photons have experienced a specified 

number of scattering events, by which time more than 99.9% of the photon weight has 

been deposited in the medium. 
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3.2.8 Scoring of photon fluence 

The physical quantity scored in these simulations is the absorbed photon weight. 

A one-dimensional grid, consisting of annular rings of width, llr and thickness, t, is set up 

to score the absorbed photon weight in arbitrary planes in the medium (see Figure 3.6). 

The absorbed photon density can be calculated from the absorbed photon weight as : 

W = absorbed photon density (photons em -a)
2rrrll.rt (3.20) 

where t is the thickness of the bin, llr is the bin with and r is the radial distance from the 

source so that 27rrll.rt represents the volume of the scoring bin. The bin thickness and 

width are chosen to be 0.1 mm in all simulations, since this resolution is compatible with 

the experimental measurements of the fluence rate which are made with isotropic fibre 

optic detectors with an outer radius 1 OOJ.Lm. Since the product of the fluence rate and the 

absorption coefficient yields the energy absorbed per unit volume in the tissue (Star & 

Marijnissen, 1987), the fluence rate can be calculated according to: 

w· ·a 
2 ---- = photon f/uence rate (photons em - ) 

2rr rll.rtJ.L8 (3.21) 

The fluence rates are normalized to one input photon to enable comparison of simulation 

results with the predictions of the diffusion models discussed in the previous chapter and 

with the experimentally determined fluence rates (see Chapter 4). 

http:rll.rtJ.L8
http:27rrll.rt
http:2rrrll.rt
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Figure 3.6 Scoring arrangement for absorbed photon weight 
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3.2.8.1 Infinite and semi-finite volumes 

The Monte Carlo code is verified by comparison with solutions of the diffusion 

equation for ~nfinite and semi-infinite media, equations (2.11) and (2.16), respectively. 

Simulation of photon propagation in an infinite medium, given the optical properties, 

entails propagation of photon packets in a medium without boundaries. The source 

distribution, which could be isotropic or anisotropic is located at the origin of the 

cartesian coordinate system and the scoring plane is the z = o plane, i.e. the plane 

containing the source distribution. As discussed above, the absorbed weight of the 

packet is scored into a finite grid but photons are allowed to propagate beyond the grid 

until the weight is less than 0.0001, after which Russian roulette is performed. 

In the semi-infinite medium, the source, again isotropic or anisotropic, is located 

at the origin which is some distance, T, below the boundary of the medium (Figure 3.5). 

Both refractive index matched and mis-matched boundaries can be simulated and the 

scoring arrangement is as described above. In all. simulations, absorbed photon weight 

could have been scored in arbitrary planes in the medium or in a three-dimensional grid. 

However, for compatibility with the experimental results, only the absorbed weight in the 

plane containing the source was scored. 
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3.2.8.2 Rnite volume 

As shown in Figure 3.7, the origin of the coordinate system coincides with the 

centre of the sphere. Simulations are run with the source, and consequently the scoring 

planes, located at three positions within the sphere. Wrth the source located at the centre 

of the sphere (plane 1), the absorbed weight in the z = 0 plane is scored, while at 2 and 

3 , the scoring planes are located at z = -15, -17 mm and z = -14.75, -16.75 mm for the 

black and white spheres, respectively. Planes 2 and 3 were chosen since they 

corresponded to distances (measured along the z axis) of 4 and 2 mm, respectively, 

between the source and the boundary of the sphere. 

The size of the scoring grid for the semi-infinite and infinite media is typically 500 

bins which corresponds to a width of 50 mm with a resolution of 10 bins/mm. The grid 

size for the finite spherical volume is 200 bins since the maximum radius of the scoring 

plane is 19 mm. Simulations are run for the three sets of optical properties (discussed 

in Chapter 4) in each of the two spheres, absorbing (Rd = 0.033) and diffuse reflecting 

(Rd = o.78). for the three source locations described above. Results are presented in 

Chapter 5. 
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• location of source distribution 

Figure 3. 7 (1) Scoring planes in finite spherical volumes. Planes 1, 2 and 3 are located 

at z = 0, -15 and -17 mm for the black sphere and at o, -14.75 and -16.75 mm for the 

white sphere. 
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Interstitial measurements: materials and methods 


4.1 Introduction 

Direct measurement of the fluence rate using interstitial fibre optic detectors allows 

the energy deposited in the medium to be calculated, if the absorption coefficient is known. 

In early light dosimetry studies, the optical attenuation of light in tissue was investigated 

using anisotropic fibre optic detectors (Wilson & Adam, 1983; Wilson et al., 1985). Using 

cut-end fibre optic detectors with restricted numerical aperture, and hence anisotropic 

response, determination of the local fluence rate at any point in the tissue required 

measurement at different angular orientations about that point to compensate for the 

anisotropy of the radiance field. The major limitations of these studies were the restricted 

number of fluence rate measurements and the underestimation in the measured fluence 

rates as a result of limited detection of the scattered flux (Wilson et al., 1985). 

The development of fibre optic detectors with isotropic response (Lilge et al., 1993, 

1990; Marijnissen et al., 1985) facilitated improved light dosimetry since single 

measurements of the absolute fluence rate in tissue were made possible. The interstitial 

technique for light dosimetry is feasible for direct monitoring of the absolute fluence rate at 

50 




51 

points of interest in the tissue, as well as derivation of the tissue optical properties and 

subsequent calculation of the fluence rate field throughout the tissue volume of interest (Lilge 

& Wilson, 1993; Driver et al., 1991; Arnfield et al., 1990, 1989). 

Amfield et al. (1990, 1989) and Driver et al. (1991) have investigated this technique 

in biological tissue and optical phantoms and identified a number of limitations. These 

include the number of detectors and accuracy in positioning them. The latter was observed 

to cause changes of up to 30% in the measured fluence rate (Amfield et al., 1990) while 

reduced optical attenuation resulted from disruption of tissue microstructures by the surgical 

needles through which the optical fibres were placed in the tissue. Further, the detector 

probes are believed to distort the fluence field (Arnfield et al., 1990, Lilge & Wilson, 1993). 

While the results of these studies indicated reasonable agreement between experiment 

results and the theoretical models, other important sources of errors identified were 

approximations in the theoretical models of light propagation such as neglecting the effect 

of inhomogeneities of the tissue optical properties and boundaries. 

Lilge & Wilson (1993) assessed the accuracy of the interstitial measurements by 

investigating the effect of different source and detector fibres and models of light propagation 

on the derived optical properties. The experiments involved measurement of the absolute 

fluence rate in optically infinite and semi-infinite tissue-simulating phantoms for a wide range 

of optical properties using four isotropic, interstitial detectors calibrated for absolute 

response and delivery fibres with anisotropic and isotropic emission. The optical properties 

were derived using three mathematical models of light propagation to investigate the effect 
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of the model on the derived absorption and reduced scattering coefficients, f.la and f.ls', 

respectively. 

While there appeared to be no difference between the derived optical properties for 

the different mathematical models, which was attributed to a lack of sensitivity of the fitting 

routine, the least-squares algorithm failed to converge for certain phantoms. These 

phantoms were those for which the assumption that the phantom was semi-infinite was 

invalid, suggesting the importance of taking boundaries into consideration. Other limitations 

to the technique which were suggested, some of which were consistent with the findings of 

other investigators, were the uncertainties in detector calibration, positional accuracy, 

optimum number of detectors and the effect of the detector probe itself on the fluence 

distribution. 

This study, as outlined in the project proposal (Chapter 1) was aimed at improving 

quantitative in vivo dosimetry by investigating the influence of finite volume effects on the 

interstitial fluence rate measurements and quantifying the systematic errors in the technique. 

This required evaluation of the experimental procedure, as well as the diffusion models used 

to derive the optical properties. The experimental procedure presented in this chapter is 

divided into two parts. The first describes the interstitial measurements made in infinite and 

semi-infinite tissue-simulating phantoms to reproduce the study by Lilge & Wilson (1993), 

and expanded to investigate two detector arrangements with respect to the delivery fibre. 

The second part, the core of this thesis, is a description of the measurements in the finite 

volume phantoms which are compared directly with Monte Carlo predictions in Chapter 5. 
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4.2 Tissue-simulating phantoms 

Tissue-simulating phantoms, as the name suggests, mimic the absorption and 

scattering characteristics of tissue thereby allowing investigation of the numerous factors 

affecting light propagation. The requirements of optical phantoms include optical stability 

and reproducibility of optical properties, the ability to simulate a wide range of optical 

properties and flexibility in modelling various geometries and boundary conditions (Wilson 

& Patterson, 1986). In addition, these phantoms must be homogeneous to satisfy the 

assumption of homogeneity of optical properties in some mathematical models of light 

propagation and the material should be non-fluorescent to avoid interference with the 

fluorescence signal of the fluence rate detectors. The phantom materials used in this study 

were lntralipid-20% as a scatterer and Crystal Violet and Congo Red as molecular 

absorbers. 

4.2.1 Scatterer : lntralipid-20% 

lntralipid (lntralipid-20%) is a phospholipid emulsion, comprising soybean oil, glycerin, 

lecithin and water, used clinically as an intravenous nutrient. lntralipid-1 0% has been 

commonly used as a scatterer in light dosimetry studies because it is relatively inexpensive 

and its optical properties, J..la, J..ls and g, are reproducible and well characterized (Flock et al., 

1992; van Stavaren et al., 1991). The absorption coefficient of stock lntralipid-10% is 

negligible compared to the scattering coefficient, with J..la ranging from 0.0015-0.0007 mm-1 

between 460 and 690 nm (Flock et al., 1992). For these experiments, performed at 514 nm, 
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the contribution of lntralipid to the absorption coefficient of the phantom was neglected. The 

scattering particles in lntralipid are lipid micelles and vesicles formed, respectively, by the 

encapsulation of soybean oil in lecithin and by lecithin bilayers (van Stavaren et al., 1991 ). 

The scattering parameters have been calculated from Mie theory, based on the size 

distribution of the micelles and vesicles. Van Stavaren et al., (1991) have suggested the 

following expression to approximate the wavelength dependence of J.18 and g for lntralipid­

10%: 

IJ. (A) = 0.016 A-2•4 (±6%) (4.1) 

and 

g (A) = 1.1 - 0.58 A (±5%) (4.2) 

where}.. is in micrometres (van Stavaren et al., 1991) and J.18 is in units of ml.1 l mm-1 (recall 

that the true units of J.ls are mm-1} for a certain concentration of lntralipid in water (ml per l). 

From equations (4.1) and (4.2), the scattering coefficient and anisotropy parameter of stock 

lntralipid-10% were determined to be 0.0790 ml-1l mm-1 and 0.802, respectively at 514 nm. 

A reduced scattering coefficient of 0.0156 ml-1 l mm-1 was calculated using the relation (IJs' 

= IJs [1 - g)). The volume of lntralipid-20% required for a particular phantom was determined 

as: 
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I 
1 l-Is ph 

Vlntra = - ( -- ·Vph ) (4.3)2 I 
l-Is Intra 

where V~n~ra and Vph are the volume of lntralipid-20% and the total volume of the phantom, 

respectively; J.18' ph and J.l~ lniJa are the reduced scattering coefficients of the phantom and stock 

lntralipid-20% solution, respectively and the factor of% was to used to convert the values 

for lntralipid-10% to lntralipid-20%. The range of reduced scattering coefficients used in the 

interstitial measurements in infinite and semi-infinite, and finite volume phantoms are shown 

in Tables 4.1 and 4.2, respectively. 
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Table 4.1 Range of reduced scattering (JJ8') and absorption (JJa) coefficients, respectively, 

of the phantoms used in the infinite and semi-infinite experiment (Crystal violet as absorber­

JJa stock= 102.9 mm·1). The values quoted for JJa are the calculated values multiplied by the 

correction factor discussed in the text. 

JJs' JJa 

(mm-1) (mm-1) 

0.1 0.0059 

0.5 0.0119 

1.0 0.0296 

2.0 0.0593 

5.0 0.1186 

10.0 0.2965 

20.0 0.5930 

Table 4.2 Optical properties of the finite volume phantoms (Congo Red as absorber- JJa 

stock = 89.8 mm-1
) 

Phantom JJs' 

(mm-1) 

JJa 

(mm-1) 

1 0.5 0.015 

2 1.0 0.030 

3 3.0 0.090 
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4.2.2 Molecular absorbers : Crystal Violet and Congo Red 

Although the particulate absorber, India ink, comprised of minute carbon particles, 

has been used in many studies for modelling light distribution in optical phantoms, Madsen 

et al. (1992) have determined that the ink particles also scatter light which makes it difficult 

to measure the absorption coefficient of the ink accurately. As a result, molecular dyes are 

preferable as absorbers in tissue-simulating phantoms. The criteria are water solubility since 

they are to be used in conjunction with lntralipid, significant absorption at 514 nm, the 

excitation wavelength used in these experiments, and negligible fluorescence over the 

wavelength range of interest, 600 - BOO nm. In addition, the dye must be photostable and 

chemically inert so that it does not react with the lntralipid. 

4.2.2.1 Crystal VIolet 

A saturated solution of Crystal Violet (Fisher Scientific, Nepean, Ontario) was made 

up in double-distilled (Millipore) water and left in an ultrasonic bath for 15 minutes, after 

which the undissolved dye was removed using 0.45 1-1m (Sterile Acrodisc) filters. A dilution 

series of Crystal Violet was prepared by successive dilution (1 :9) in double-distilled water 

and the third and fourth dilutions were measured on a standard UVNIS spectrophotometer 

(SPS-400, Pye Unicam) to obtain the optical density (00), 

OD = - log .!.._ 
10 I (4.4) 

0 
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where I and 10 are the intensities of the incident and transmitted light, respectively. Using 

Beer's law, 

(4.5) 

and equation (4.4) and assuming that the dye is a pure absorber (l-lext = IJa), the absorption 

coefficient is calculated as : 

2.3·0Dk 
IJ. = d (4.6) 

where k is the dilution factor and d (= 1 em) is the path length through the cuvette containing 

the sample. The OD measured for the third and fourth dilutions were 0.455 and 0.044, 

respectively, from which an absorption coefficient of 102.9 mm-1 (:1:2.4 mm-1
) was calculated. 

The volumes of Crystal Violet stock solution required for the optical phantoms used in the 

experiment in infinite and semi-infinite volumes were calculated according to : 

IJ. h= __P_.vVdye ph (4.7) 
lle stock 

The optical properties of the Crystal Violet and lntralipid-20% phantoms (Table 4.1), 

used in the measurements in the infinite and semi-infinite volumes, were checked using a 

spatially resolved diffuse reflectance technique (Farrell et al, 1992). This technique is 
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based on measurements of the light diffusely reflected from the phantom and subsequent 

derivation of the optical properties using a neural network (Farrell & Patterson, 1992). The 

measured ..... values from a number of the phantoms in the series were observed to be a 

factor of 0.593 lower than the calaJiated values, while the p; values were identical within the 

limits of the experimental errors. The inability to fit the interstitial fluence rate measurements 

with theoretical predictions of the fluence rate for the calculated optical properties of the 

phantoms supported the IJa values derived from the diffuse reflectance measurements. The 

calculated values were corrected by the factor 0.593. This discrepancy could have been 

due to an interaction between the Crystal violet and lntralipid, such as incorporation of the 

dye into the micelles and vesicles of the lntralipid. 

4.2.2.2 Congo Red 

As a result of the above-mentioned problem with Crystal Violet, another molecular 

absorber, Congo Red (Aldrich Chemical Company, Milwaukee, USA), was selected as the 

absorber for the finite volume measurements. Congo Red was well..;suited for these 

experiments since it was water soluble, had an absorption maximum around 500 nm, did not 

fluoresce over the spectral range of interest and demonstrated no interaction with lntralipid 

in the optical phantom. Following the same procedure as described above, a stock solution 

with an absorption coefficient of 89.8 mm-1, (±1.6 mm ·) was prepared and used for the three 

phantoms, shown in Table 4.2. 
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4.2.3 Optical phantoms 

4.2.3.1 Infinite and semi-infinite volume phantoms 

The phantom used in the infinite and semi-infinite volume experiment was a 1 litre 

cube {10 em*10 cm*10 em) with blackened ·walls. Wilson & Jacques (1990) have 

determined that light losses occur at the boundary if the phantom half-width is less than 12~ 

(~ =1/IJar). Wlth the source-detector array at a depth of 5 em below the surface an optically 

infinite medium was simulated for phantoms with f.letr > 0.24 mm·1, while placing the array at 

a depth of 2 mm enabled simulation of a semi-infinite medium with a refractive index mis­

match at the surface (Ftret =1.33). For each of the seven scattering coefficients shown in 

Table 4.1, ink was added to the phantom to give absorption coefficients in the range 0.01 s 

~-&a s 1 mm·1 for a total of 49 phantoms. This wide range of optical properties was chosen 

since it encompassed the range of values for the optical coefficients quoted in the literature 

(Cheong et al:, 1990). 

4.2.3.2 Finite volume phantoms 

Two spheres were built for the finite volume experiments, each comprising two 

hemispheres made from 1 inch (25.4 mm) thick, transparent plastic (see schematic in Figure 

4.1). The inner walls of the spheres were coated with several layers of white and black 

enamel to simulate a diffuse reflecting and absorbing boundary, respectively. The final inner 
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diameters were 38 mm for the black sphere and 37.5 mm for the white. The diffuse 

reflectance of the black and white spheres was measured using an integrating sphere 

technique described by Jaywant et al. (1993). A collimated beam was imaged onto the 

sample (black and white hemispheres, respectively) and the diffusely reflected light was 

measured by the integrating sphere. The reflectances measured at 514 nm were 0. 78 and 

0.033 for the white and black spheres, respectively, values used in the Monte Carlo 

simulations. There were a number of possible errors in these measurements which included 

the poor alignment of the sample with the integrating sphere which may have resulted in 

light loss at the port and the use of collimated rather than diffuse inddence. These errors 

in addition to the fact that the sample presented a hemispherical surface while the 

reflectance standards used were planar, could have contributed to an underestimation of the 

reflectance. 

As shown in Figure 4.1, a slit at the top of the upper hemisphere facilitated insertion 

of the source-detector array for the finite volume measurements. The fibre array was 

introduced into the phantom via surgical needles mounted in a micrometer-controlled frame. 

The light scattering media were poured into the spheres which were water-tight when sealed. 

The transport albedo (a' = 0.97) of the phantoms used in these measurements was 

chosen on the basis of values quoted in the literature for brain tissue (Cheong et al., 1990). 

The optical properties (see Table 4.2) were then scaled to enable investigation of the effect 

of different sphere sizes (in tenns of transport mean free paths) on the interstitial fluence rate 

measurements. Different sphere sizes (increasing from phantoms 1 through 3) correspond 

to different skull sizes in animal models. 
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Figure 4.1 Schematic of finite spherical phantom showing (a) upper hemisphere, (b) lower 

hemisphere and (c) slit for insertion of source-detector array. All dimensions are in 

millimetres. 
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4.3 Interstitial experiments 

Apart from the tissue-simulating phantoms used, the major components of the 

experimental arrangement were essentially the same for the two experiments (Figure 4.2), 

and are discussed below. 

4.3.1 Charge-coupled device (CCD) detection system 

The distal end of the detector fibres was imaged onto the entrance slit of a 

spectrograph and the spectrally resolved data collected by a cryogenically cooled 

charge-coupled device, CCO (EG&G Instruments), which replaced the exit slit of the 

spectrograph (see Figure 4.2). The processing of the data included background subtraction 

for the electronic noise of the ceo and room light leaking into the system, performed 

automatically as the spectra were acquired, and subsequent integration of the fluorescent 

peak area. Figure 4.3 illustrates a typical spectrum acquired. 

4.3.2. Isotropic detectors 

The fibre optic detectors developed by Lilge et al. (1993, 1990) have an isotropic 

response. These probes, shown in Figure 4.4, comprise a dye-filled silica capillary tubing 

attached to the end of a 100 !Jm core optical fibre (outer diameter = 170 IJm). The 

fluorescent dye is Rhodamine 610 excited with 514 nm light and emits in the spectral 
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Spectrograph 

Delivery Fibre / Detector Fibres 

Phantom (10cm*10cm*10cm) 

Figure 4.2 Experimental arrangement for interstitial measurements 
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Figure 4.3 Typical spectra acquired for the four fluorescent detector probes 
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Figure 4.4 Fluorescent-tipped interstitial probes (Lilge et al., 1993). All c;limensions are in 

millimetres. 
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range 600 - BOO nm. The fluorescent light detected by the charge-coupled device (CCD), 

discussed previously, is proportional to the local fluence rate at the fibre tip. 

4.3.3.1 Absolute response calibration of detector probes 

The probes were individually calibrated for absolute response (Uige &Wilson, 1993) 

by fitting the measured fluence rates at the known detector positions to the fluence rate 

profile calculated using one-dimensional diffusion theory for a phantom with IJs' =2.0 

1mm·1 and IJa = 0.01 mm· • Unifor'!!!Jrradiation of the phantom surface was achieved using 
...__--------- - . . ·-·----... --···---- ... --··- . 

a mic~olen~ed optical fibre. The surface irradiance was determined by measurement 

of the total power output of the df!livery fibre determined with a hand-held power meter 

(Newport Corporation) and measurement of the beam spot size on the phantom surface. 

The depth profile of the fluence rate (obtained by advancing the source-detector array 

into the phantom in millimetre steps) was fitted to the fluence rate profile calculated using 

one-dimensional diffusion theory, taking into account the irradiance (Wcm-2) and the 

optical properties of the phantom (Lilge & Wilson, 1993). Calibration factors were derived 

for individual detector probes with calibration errors (determined from the correlation 

coefficient of the frtting routine} in the 5 - 15% range. Figure 4.5 illustrates the calculated 

one-dimensional fluence rate profile and the measured fluence rates for four detector 

probes. Calibrations were performed prior to the actual measurements and repeated if 

any of the detector probes were replaced or if the coupling to the spectrograph/CCD 

detector was altered. Photobleaching of the fluorescent dye in the detector probes, and 
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consequent changes in the responsivity (calibration factor) of the probe (Uige et al., 1993, 

Lilge & Wilson, 1993) were neglected since the exposure times were kept as short as 

possible and the detector probes were replaced after receiving about 120 Jan-2 (Lilge & 

Wilson, 1993). 

4.3.3.2 Power calibration of delivery fibres 

A 320 1-1m core diameter cut-end fibre and an 800 1-1m spherical scattering tip 

attached to a cut-end fibre with 400 1-1m core diameter were employed in these experiments 

as anisotropic and isotropic emitting delivery fibres, respectively. Power at the distal end 

of the anisotropic delivery fibre was measured using the hand-held power meter and the 

built-in photodetector of the integrating sphere (Labsphere Inc., Manchester, New 

Hampshire) was calibrated with this cut-end fibre. Subsequently, the output power of the 

isotropic emitting fibre was calibrated by measurement in the integrating sphere. These 

fibres were calibrated prior and subsequent to the experiments to check for stability of the 

light power. 

4.3.4 Fluence rate measurements 

An air cooled argon ion laser (lon Laser Technology, Salt Lake City, Utah} with a 

maximum power output of 50 mW at 514 nm was coupled into the delivery fibre. Figure 4.6 

illustrates the linear and spiral arrays of the detector probes relative to the delivery fibre 

which were used in the interstitial experiments. In the linear array, the fibres were spaced 
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2 mm apart (2, 4, 6, 8 mm) while in the spiral array the detector fibres were at radial 

distances of 2.0, 4.7, 7.0 and 8.0 mm respectively, from the source fibre. 

4.3.4.1 Measurements In Infinite and semi-Infinite volumes 

Measurements were made in 49 tissue-simulating phantoms (1 litre cubic phantom) 

for the range of optical properties shown in Table 4.1, using anisotropic and isotropic 

delivery and linear and spiral source-detector arrays. The local fluence rate at the positions 

of the detectors was calculated based on the measured fluorescence signal and the 

calibration factor, described previously. The optical properties of the phantoms were 

subsequently derived as free parameters by fitting the measured fluence rate to the 

predictions of the diffusion model, equations (2.14) and (2.20) for the infinite and semi-infinite 

measurements, respectively, using a grid-search least-squares fitting routine (Bevington, 

1969). The accuracy of the derived optical properties for the 49 phantoms was assessed 

for the two source-detector arrays by comparison with the known optical properties given in 

Table 4.1, as will be discussed in the next chapter. 

4.3.4.2 Measurements in finite spherical volume 

As a result of difficulties in producing 4 detector probes with similar responses, the 

array of 4 detector probes was not used in these measurements. Instead, a single detector 

probe was used and was translated to the four radial positions (2.0, 4.7, 7.0 and 8.0 mm) 

via the micrometer-controlled frame. After aligning the delivery fibre and the detector probe 
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at the top of the slit, the fibres were advanced 25.4 mm to the centre of the sphere where 

the measurements at the four radial positions were taken. Measurements were also 

taken in planes 2 and 3 (with the source at 4 and 2 mm, respectively, from the lower 

boundary) as shown in Figure 3.7, for both black and white spheres and for the three sets 

of optical properties presented in Table 4.2. The effect of the boundaries on the interstitial 

fluence rate measurements was investigated by direct comparison of the measured fluence 

rates at the known detector positions, with the predictions of Monte Carlo simulations, as 

well as derivation of the optical properties using the diffusion theory solution for infinite media 

(equation 2.14). 

4.3.4.3 Rodent skulls 

In order to investigate the effect of a complex, finite geometry on the interstitial 

technique, fluence rate measurements were made in a rabbit skull submerged in each of 

phantoms 1 and 2 (see Table 4.2) using anisotropic delivery. A slit, 2 mm in width and 

9 mm long was made in the left hemisphere at the top of the skull to allow insertion 

of the source-detector array. The delivery fibre was located 5 mm lateral of the midline, 

posterior to the skull with the detector anterior to the delivery fibre. The fibres were aligned 

at the top of the slit and measurements were taken (at the four radial positions) at 1, 2 and 

5 mm from the base of the skull. The fibres were approximately at the centre of the cranial 

cavity at the 5 mm position. Subsequently, the optical properties were derived from these 

measurements as described before in order to estimate the magnitude of the boundary 

effect. 
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Figure 4.5 Detector probe calibration: line represents one-dimensional diffusion theory and 

symbols correspond to the measured fluence rates (x calibration factors) for 4 detector 

probes (for a phantom with J.la = 0.01 mm-1 & J.ls' = 2.0 mm-1
). 
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Figure 4.6 (a) Linear and (b) spiral arrangements of the detector probes relative to the 

delivery fibre. In the spiral array, detectors 1,2 3 and 4 are at radial distances of 2.0, 4.7, 

7.0 and 8.0 mm, respectively, from the delivery fibre . All dimensions are in millimetres. 



Chapter 5 


Results and Discussion 


The Monte Carlo code, adapted to simulate isotropic and anisotropic light delivery, 

is verified by comparison with the diffusion theory models for the fluence rate in infinite and 

semi-infinite media, equations 2.14 and 2.20, respectively. The interstitial measurements 

in infinite and semi-infinite media are evaluated by consideration of the accuracy of the 

derived optical properties. Further, an examination of the boundary effect is made by 

comparing the experimental fluence rates in finite volumes with predictions of the Monte 

Carlo model. The optical properties are also determined as independent parameters in a 

non-linear fit of the experimental fluence rates to the predictions of the infinite diffusion 

model. 

5.1 Verification of Monte Carlo code 

5.1.1 Infinite medium 

The simulation results presented in this thesis are the mean of 5 runs of 1 05 photons 

each, enabling estimates of the variance to be made . Absolute fluence rates are normalized 

to 1 input photon. In Figure 5.1.a the fluence rate distribution calculated from diffusion 

73 
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theory (equation 2.14) is compared with simulation results for an infinite medium with optical 

CD.Jf 
properties, 1-'a =-~ mm·1 and 1-'s' =2.0 mm·1• The accuracy of the code is assessed by 

considering the residuals between diffusion theory and Monte Carlo models (Farrell & 

Patterson, 1992). These residuals are calculated as the ratio of the differences between the 

diffusion theory and Monte Carlo fluence rates to the standard deviation of the Monte Carlo 

values, at each point. As indicated in Figure 5.1 b, beyond 2 transport mean free paths (mfp') 

from the source, the Monte Carlo data agree well with the diffusion theory within 2 standard 

deviations. 

Simulation results for anisotropic delivery in an infinite medium with optical properties, 

1-'a =0.030 mm·1 
, 1-'s' =1.0 mm·1 and g =0, are plotted in Figure 5.2. In this case the Monte 

Carlo predictions are compared with two diffusion theory models, equations 2.14 and 2.15. 

As was observed previously there is good agreement between the diffusion and Monte Carlo 

models at distances greater than 2 mfp' from the source. There appears to be no significant 

difference between the two diffusion models which is understandable since for the optical 

properties of the medium (IJ8' » IJJ, the equation derived by Grosjean (equation 2.15) should 

approximate equation 2.14. For darity, only the residuals between the Monte Carlo model 

and equation 2.14 are presented in Figure 5.2.a. 
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Standardized residuals / 
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5.1.2 Semi-infinite medium 

The Monte Carlo model for a point source in a semi-infinite medium is evaluated for 

both refractive-index-matched and refractive-index-mismatched boundary condHions by 

comparison with the diffusion model of equation 2.20. As discussed in Chapters 2 and 3, 

no photons are allowed to re-enter the medium for the matched boundary, while for mis­

matched boundaries, photons are totally internally reflected, provided that the angle of 

incidence exceeds the critical angle. The results for matched and mismatched boundaries, 

are presented in Figures 5.3 and 5.4, respectively. As was the case for the infinite medium, 

at distances greater than 2 mfp' from the source the Monte Carlo data agree with the 

diffusion model within 2 standard deviations. 

Having established the accuracy of the Monte Carlo code for isotropic and 

anisotropic delivery in simple geometries, the effect of albedo on the diffusion model is 

evaluated by comparing the diffusion model (equation 2.14) with Monte Carlo simulations, 

in an infinite medium, for the 3 albedos shown in Table 5.1. These optical properties were 

measured at 633 nm by Splinteret al. (1989) and Andreola (1988),and compiled by Cheong 

et at. (1990). As is seen in Figure 5.5, both diffusion models are in good agreement with 

the Monte Carlo calculations for transport albedos of 0.73 and 0.87. At larger distances, 

equations 2.14 and 2.15 slightly underestimate and overestimate the fluence rate, 

respectively. As expected, equation 2.15 which is supposed to be accurate for comparable 

absorption and scattering is in good agreement with the Monte Carlo model while equation 

2.14 significantly overestimates the fluence rate at small distances. 
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Table 5.1 Optical properties for Figure 5.5 

Tissue type l-la (mm·1) l-Is' (mm·1) a• (= l-ls'/~-~t') 

human white matter 1 0.158 0.204 0.56 

human grey matter 1 0.263 0.722 0.73 

human liver 2 
' 

0.320 2.070 0.87 

References : 

1. Splinter et al., 1989 

2. Andreola, 1988 
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Figure 5.3 Refractive-index-matched boundary. a) Comparison between diffusion theory 
and Monte Carlo simulations (noisy line) for a semi-infinite medium with IJa = 0.1 mm·1, IJs' 
=2.0 mm·1 and g =0.8. b) Standardized residuals. 
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Figure 5.4 Refractive-index-mismatched boundary. a) Comparison between diffusion theory 
and Monte Carlo simulations (noisy line) for a semi-infinite medium with l-fa = 0.1 mm·1
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Figure 5.5 Effect of albedo on the accuracy of diffusion theory models (equation 2.14­
dashed lines & equation 2.15 - dotted lines) compared with Monte Carlo simulations 
(solid lines) for isotropic delivery in an infinite medium. 
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5.2 Evaluation of the derived optical properties In Infinite and semi-Infinite medium 

As discussed in the previous chapter, interstitial fluence rate measurements were 

made in optically infinite and semi-infinite (refractive index mismatch - n..e. = 1.33) tissue-

arrays were used. In the previous study of the accuracy of the derived optical properties by 

1(jjQ; & Wilson (1993), It was suggested that in the event that the detectors were acting as 

photon sinks, absorption of photons and the resulting inaccuracy in the derived optical j 
, properties could be minimized by avoiding dense packing of tf1_e detectors. Arrangement of 

the detectors in the spiral array was then suggested as an alternative. 

These measurements were aimed at investigating whether the use of the spiral array 

of detectors improved the accuracy of the derived optical properties, through comparison 

of the derived values with the true values. The optical properties, JJa and JJ6', were the 

independent parameters in a grid-search least squares fit (Bevington, 1969) of the measured 

fluence rates to the fluence rates predicted by the diffusion models (equations 2.14 & 2.20). 

Figures 5.6 - 5.8 are "pin" plots of the 49 pairs of optical properties in which the head and 

tail of the pins are the true and derived optical properties, respectively, so that the lengths 

of the pins represent the magnitude of the error in the derived optical properties. 

Figures 5.6.a and b are pin plots of pairs of J.la and J.ls' for linear and spiral arrays, 

respectively, and isotropic delivery while Figures 5.6.c and dare corresponding plots for 

anisotropic delivery in an optically infinite medium. In all cases the error in the derived J.la 
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value is greater than that for IJs' supporting the possibility of a photon sink effect (Figure 

5.6 a and c). The larger errors in IJa can be understood if one considers the diffusion models 

(equations 2.14 & 2.20) in which the diffusion coefficient, D (= 1/ (3[ 1Ja + IJs' ]) appears 

in the denominator and IJett (= v'[31Ja2 + 31Ja1J8 ']) appears in the exponent. It is to be 

expected that the error in IJa would be more significant than that in IJs', since the primary 

source of error in the fitting routine is error in the slope which is determined by IJett for which 

there is a quadratic dependence on J.Ja. Large individual errors are attributed to errors in 

positioning the detectors and low signal in phantoms with a high effective attenuation. For 

both isotropic and anisotropic delivery the accuracy of the derived optical properties is 

significantly improved with the spiral array, which can be seen in the pin plots of IJt' and IJett, 

depicted in Figures 5.7.a- d. 

The corresponding pin plots for the semi-infinite medium are illustrated in Figure 5.8. 

Comparing the linear and spiral arrays for isotropic and anisotropic delivery, it is observed 

that the use of the spiral array significantly improves the accuracy of the derived coefficients 

in the semi-infinite case. However, the improvement is not as great as in the infinite case. 

Due to the difficulties involved in positioning the source and the detector probes in the same 

horizontal plane, and knowing that the spiral array was inserted at only 2 mm below the 

surface, the increased inaccuracy can be attributed to a surface effect. Nevertheless, the 

spiral array yields more accurate values for the derived optical properties in both infinite and 

semi-infinite measurement geometries. From Figures 5.7.b and d and the corresponding 

plots shown in Figure 5.8, the optical properties are determined to be accurate to within 

10% of the true values when IJett> 0.2 mm-1 and 2 < IJt' < 10 mm-1
• The limit obtained for !lett 



84 

is justifiable because the 1 litre cubic phantom cannot be considered as an optically infinite 
~-----------------~- ~- ~~--~-----

medium for !Jeff < 0.2 mm·1 and therefore, there is a possibility of boundary effects (Wilson 

& Jacques, 1990). For phantoms with J.lt' < 2 mm·1, the detectors sample the fluence rate 

over a narrow range of transport mean free paths, specifically 4 < mfp' <16, which is too 

close to the source. At the other end of the range, the detectors are spaced much further 

apart, 20 < mfp' < 80, which may also be a problem since inaccuracies are introduced in the 

experimental data as a result of low signal.
....____-­

The actual values of the optical properties greatly influence the derivation of these 

coefficients from the diffusion models, as is clearly illustrated in Figures 5.9 and 5.1 0, where 

the experimental fluence rates at the four detector positions are compared with those 

predicted by the diffusion model (for isotropic delivery in an infinite medium). As is 

demonstrated in Figure 5.9, the experimental results are in good agreement with the 

predictions of the diffusion model. This is because these phantoms all lie within the 

limits for J.lt' and !Jeff discussed previously. On the other hand, Figure 5.10 illustrates a poor 

agreement between the experiment and the model, which is typical of phantoms with optical 

properties lying outside of these ranges. Specifically, curve 1 of Figure 5.10 has a !Jeff which 

is less than 0.2 mm·1 while curves 2 and 3 are phantoms with llt > 10 mm·1 and J.lt < 2 mm·1, 

respectively. 
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Figure 5.6 Pin plots of f.la against f.ls' for isotropic and anisotropic delivery using linear and 
spiral arrays in an infinite medium. 
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(a) Isotropic - linear (b) Isotropic -spiral 
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Figure 5.7 Pin plots of ~;versus ~etrfor isotropic and anisotropic delivery using linear spiral 
arrays in an infinite medium. 
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Figure 5.8 Pin plots of J.lt' versus J.lett for isotropic and anisotropic delivery using linear and 
spiral arrays in a semi-infinite medium with a refractive-index- mismatch at the boundary (nrer 
= 1.33). 
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Figure 5.9 Comparison of experimental fluence rates (symbols} with the fluence rate 
distribution predicted by diffusion theory (solid lines) for an isotropic source in an infinite 
medium. 



89 

-
:J 
«i-
c-
e 
... 
..... 

1e+1 

1e+O 

1e-1 

1e-2 

1e-3 

1e-4 

1e-5 

1e-6 

1e-7 
0 1 2 3 4 5 6 7 8 9 

radial distance (mm) 

Symbol Plot p.
8
(mm-1) p.

5
'(mm-1) P.eJmm-1) 

• 1 0.0118 0.5 0.0181 

... 2 0.5930 20.0 6.0527 

• 3 0.5930 0.5 1.3944 

Figure 5.10 Comparison of experimental fluence rates (symbols) with the fluence rate 
distribution predicted by diffusion theory (solid lines) for an isotropic source in an infinite 
medium. 
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5.3 Investigation of finite volume effects 

The experimental technique was modified for the interstitial measurements in the 

finite volumes, the black and white spheres and the rabbit skull, as described in the previous 

chapter. As discussed in Section 5.2, use of the spiral array improved the accuracy of the---.:....._________ 

derived optical properties since it minimized the effect of the detector probes on the fluence 
f'..;--------._ ~· 

field. However, as described in the previous chapter, a single fibre was translated to the four 

radial positions for the finite volume measurements. Although this arrangement is impractical 

for in vivo use, in this case it had the two-fold advantage of removing the effect of variability 

of the detectors, as well as minimizing light absorption by the detectors. The three optical 

phantoms used all had an albedo of 0.97 and as described previously the optical coefficients 

were scaled to achieve different sphere sizes (in terms of mfp'). As shown in Table 5.2, 

phantom 1 has the lowest effective attenuation coefficient, J.lett, and is thus the smallest 

sphere in terms of transport mean free paths (mfp'). 

Table 5.2 Optical phantoms used in finite volumes. 

Phantom J.la 

(mm-1) 

J.ls' 

(mm-1) 

J.lett 

(mm-1) 

~ (=1/J,Jeff) 

(mm) 

Sphere diameter 

(mfp') 

1 0.015 0.5 0.152 6.57 20 

2 0.030 1.0 0.304 3.28 39 

3 0.090 3.0 0.913 1.09 119 
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In the remainder of this chapter an assessment of the finite volume effeds is made 

through a dired comparison of the interstitial measurements of the absolute fluence rate 

with Monte Carlo calculations for the finite spheres, as well as an evaluation of the accuracy 

of the derived optical coefficients. For the interstitial measurements in the rabbit skull, a 

qualitative assessment of the boundary effeds is made by consideration of the derived 

optical properties. 

5.3.1 Comparison of experimental fluence rates with Monte Carlo calculations 

As shown in Figure 5.11, the diffusion theory solutions for (a) isotropic and (b) 

anisotropic delivery in an infinite medium (equation 2.14) agree well with infinite Monte Carlo 

calculations for the optical properties of the phantoms under investigation here. These 

diffusion models are used to derive the optical properties of the phantoms, as will be 

discussed later in Sedion 5.3.2. Since the radius of the white and black spheres are 18.75 

and 19 mm, respectively, it is to be expeded that finite volume Monte Carlo simulations with 

the source in the central plane, plane 1, would produce fluence rate distributions comparable 

with infinite Monte Carlo calculations within the range of observation (2- 8 mm). Figure 5.12 

verifies that this is the case for both types of delivery and boundary conditions (Rd = 0. 78 & 

0.033 for white and black spheres, respectively) in which boundary effeds occur at distances 

of 7 mm and 4 mm from the boundary for phantoms 1 and 2, respedively. This suggests 

that the fluence rate distribution is affeded at a distance of approximately 4 t~an 
~----~-~- .... · ...... -..... (' ~ 

free paths (mfp') from the boundary. As expeded, phantom 3 with a transport mean tree 

path of 0.32 mm is relatively unaffeded. 
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Figure 5.11 Comparison of diffusion theory (solid lines) with Monte Carlo simulations for 
isotropic and anisotropic delivery in an infinite medium for the three optical phantoms. 
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Figure 5.12 Comparison of infinite medium Monte Carlo calculations for (a) isotropic and 
(b) anisotropic delivery, with finite volume Monte Carlo having delivery in the central plane, 
for the three optical phantoms. 
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The detector probe used in this set of measurements was calibrated by determining 

the ratio of the finite volume Monte Carlo fluence rates to.the measured signal. Since the 

fluence rate distributions for the finite volume Monte Carlo in the central plane were identical 

to those obtained from Monte carlo simulations and diffusion theory in infinite media over the 

range of detector positions (2- 8 mm), the measured fluence rates in the central planes 

(phantoms 1 and 2) were employed to calculate the calibration factor. The factor thus 

obtained was dependent on the responsivity of the probe, the optical coupling and the 

delivered power. As a result of the calibration factor being determined from a number of 

measurements as described above, the error in the this factor was determined as the 

standard deviation of the ratios and was approximately 8%. 

The graphs plotted in Figures 5.14.1 -5.14.6 present a direct comparison of the 

normalized absolute fluence rates for the interstitial measurements at the detector positions 

(2, 4.7, 7 and 8 mm), with the fluence rate distributions predicted by the finite volume Monte 

Carlo model. Each figure presents results for isotropic and anisotropic delivery for each 

boundary (black: Rd =0.033 and white:~= 0.78), and plane. Included in these plots are 

the fluence rate distributions calculated from finite volume Monte Carlo for phantoms 1 and 

2, with reflectances of 0.85 and 0.35 for the white and black spheres, respectively. When 

the experimental fluence rates were compared with the Monte Carlo calculations it became 

apparent that the latter underestimated the fluence rates for both boundary conditions. 

The work of Flock et al. (1989) suggests that a semi-infinite medium with refractive 

index matched boundary conditions, a transport albedo of 0.97 and a reflectance greater 
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than 0.62 would behave like a reflecting boundary causing an increase in the fluence rate 

compared with infinite diffusion theory. This observation is supported by Figure 5.13, which 

presents simulation results for a range of reflectances (0.6 - 0.9) using isotropic delivery in 

plane 3, verifying the accuracy of the finite volume Monte Carlo code. It is apparent that the 

actual reflectances of the spheres are higher than the values measured and used in the 

simulations. It was determined that reflectances of 0.85 and 0.35 for the white and black 

boundaries, respectively, produced fluence rate distributions which matched the experimental 

data. The problems in the measurement of the diffuse reflectance of the spheres, discussed 

in the previous chapter, likely gave rise to this discrepancy. 

In the central plane (plane 1), there is good agreement between simulation and 

experimental results for.phantoms 1 and 2 for both boundary conditions and delivery fibres, 

an observation supported by the crossover in the fluence rates for phantoms 1 and 2 at 

approximately 4. 7 mm. The fluence rate at 2 mm is generally underestimated supporting the 

idea of the detector probes acting as photon sinks (Lilge & Wilson, 1993). This effect is 

most significant within a few mfp' of the source. Another factor contributing to the inaccuracy 

of the fluence rate at the 2 mm position is error in positioning the detector. As a result of the 

short active length of the fluorescent probe, 0.5 mm, alignment of the source and the 

detector probe in the same plane is critical and problematic particularly in the case of the 

isotropic spherical diffusing-tip fibre with a diameter of 0.8 mm. 
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In all cases the experimental fluence rates for phantom 3 show a systematic deviation 

from the fluence rate distribution predicted by Monte Carlo simulations. At 2 mm from the 

source the experimental values are significantly underestimated, with the exception of plane 

1 for the white sphere and isotropic delivery (see Figure 5.14.1 ). On average, at 7 and 8 mm 

the experimental values are 3 and 5 times the Monte Carlo predictions of the fluence rate, 

respectively. Since phantom 3 is 9 times more attenuating than phantom 1 and the fluence 

rate distribution falls by approximately 4 orders of magnitude over the range of the detectors, 

the systematic errors at 7 and 8 mm are most likely due to a contribution to the fluorescent 

signal from the fluorescence of lntralipid itself. 

Since plane 2, which is 4 mm from the base of the sphere, is 2, 4 and 12.5 mfp' from 

the boundary for phantoms 1, 2 and 3, respectively, one would expect a significant boundary 

effect for phantom 1 , a relatively small effect for phantom 2 and no effect for phantom 3. For 

isotropic and anisotropic delivery in the white sphere, the Monte Carlo fluence calculations 

for a reflectance of 0. 78 are slightly lower than the experimental values but as indicated by 

the dotted lines of Figure 5.14.2, there is good agreement between the experiment and the 

model predictions for a reflectance of 0.85. The discrepancies between the experimentally 

obtained fluence rates and those of the Monte Carlo calculations for the black and white 

spheres can be attributed to the positional errors mentioned previously. In plane 2 of the 

black sphere (Figure 5.14.5) the experimental measurements agree very well with the Monte 

Carlo fluence rate distributions for a reflectance of 0.35, which is surprisingly high for a black 

surface. 
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With the source and the detector in plane 3, significant boundary effects are 

expected for phantoms 1 and 2 since the boundary is within 2 mfp' in both cases. The 

experimental results for these phantoms of the white sphere (Figure 5.14.3) show excellent 

agreement with the simulations, for a reflectance of 0.85. Similarly, the fluence rates for 

isotropic delivery in plane 3 of the black sphere agree closely with Monte Carlo calculations 

for a reflectance of 0.35. However, for anisotropic delivery in the black sphere the 

experimental values for phantom 2 are less than the fluence rates determined from the Monte 

Carlo simulations by a factor of 2. Since it is unlikely that an error in detector position could 

have such a large effect, this discrepancy may have arisen as a result of photobleaching 

of the detector which would have invalidated the previously determined calibration factor. 

A further quantitative assessment of the boundary effects is made by considering the 

accuracy of the optical properties derived from the experimental fluence rate measurements, 

which will be discussed in the next section. 
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Figure 5.13 Comparison of the fluence rate distribution for infinite diffusion theory (point 
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5.3.2 Derivation of the optical coefficients from the finite volume measurements 

The optical properties, JJa and JJs', are determined as free parameters in a non-linear 

least squares fit of the normalized experimental fluence rates to the predictions of the infinite 

medium diffusion theory model (equation 2.14). Comparison of the optical properties using 

the two diffusion models for an infinite medium (equations 2.14 & 2.15) indicated differences 

of at most 5% for the optical properties used here, so that either equation was applicable. 

The derived optical coefficients and the ratios of the derived to the true values of the 

coefficients are presented in Tables 5.3.1 - 5.3.3 and 5.4. The finite volume effects are 

quantified by examination of the magnitude of these ratios. 

Since the fluence rate measured in the central plane of the finite spherical volumes 

is unaffected by the boundaries over the range of the detectors (also see Figure 5.12). It is 

reasonable to expect that in these cases the optical properties could be derived accurately 

since the infinite medium diffusion model has proved to be valid. On average, the derived 

absorption coefficient, IJa, is accurate to within 13% of the true value for phantoms 1 and 2. 

Taking into consideration the normalization error of 8% and the underestimation of the 

fluence rate at the 2 mm position as a result of the photon sink effect, this is a reasonable 

degree of accuracy for the derived IJa· Individual cases of larger errors as in the case of 

plane 1 of Tables 5.3.1 a and 5.3.2b could be attributed to positional errors (Figure 5.14.1 ). 
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Table 5.3.1 Derived optical coefficients for phantom 1 ({IJa = 0.015 mm-1 & IJ8

1 = 0.5 mm-1
). 

a) Isotropic delivery in the white sphere 

Plane IJaderlved 

(mm-1) 

IJa~IJatrua IJs
1 

derived 

(mm-1) 

I~ IIJs · IJs trua 

1 0.011 0.733 0.445 0.890 

2 0.005 0.333 0.434 0.868 

3 0.003 0.200 0.487 0.974 

b) Anisotropic delivery in the white sphere 

Plane IJa derived 

(mm-1
) 

IJa ~ IJa trua 1Js
1 

derived 

(mm-1) 

I tJerWeti IIJs IJstrue 

1 0.016 1.067 0.500 1.000 

2 0.008 0.533 0.495 0.990 

3 0.006 0.400 0.558 1.116 

c) Isotropic delivery in the black sphere 

Plane IJa derived 

(mm-1) 

IJa ~ IJa true 1Js
1 

derived 

(mm-1) 

I~ IIJs IJstrue 

1 0.013 0.873 0.430 0.860 

2 0.020 1.340 0.439 0.878 

3 0.021 1.433 0.445 0.890 

d) Anisotropic delivery in the black sphere 

Plane IJa derived 

(mm-1) 

IJa deriveJ IJa true IJs
1 

derived 

(mm-1} 

I~ IIJs IJs rue 

1 0.017 1.107 0.486 0.972 

2 0.022 1.473 0.507 1.014 

3 0.023 1.520 0.485 0.970 
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Table 5.3.2 Derived optical coefficients for phantom 2 (IJa = 0.030 mm-1& IJs' = 1.0 mm-1). 

a) Isotropic delivery in the white sphere 

Plane 1-'a derived 

(mm-1) 

IJa ~ IJa true IJs' derived 

(mm-1) 

IJs·~·IJs true 

1 0.031 1.050 0.858 0.858 

2 0.029 0.983 0.913 0.913 

3 0.026 0.853 0.933 0.933 

b) Anisotropic delivery in the white sphere 

Plane IJa derived 

(mm-1) 

IJa ~ IJa true IJs' derived 

(mm-1) 

IJs'derived /IJs'true 

1 0.036 1.200 0.932 0.932 

2 0.032 1.067 0.929 0.929 

3 0.026 0.867 0.894 0.894 

c) Isotropic delivery in the black sphere 

Plane 1-'aderlved 

(mm-1) 

IJa d~ IJa true l-Is' derived 

(mm-1) 

l-Is·~·d IJs true 

1 0.033 1.090 0.778 0.778 

2 0.039 1.303 0.726 0.726 

3 0.040 1.340 0.762 0.762 

d) Anisotropic delivery in the black sphere 

Plane 1-'a derived 

(mm-1) 

1-'a ~ IJa true IJs' derived 

(mm-1) 

IJs·~·d · l-Is true 

1 0.031 1.050 0.940 0.940 

2 0.039 1.313 0.910 0.910 

3 0.067 2.233 0.937 0.937 
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Table 5.3.3 Derived optical properties for phantom 3 (1Ja=0.090 mm·1 & IJs' = 3.0 mm-1
). 


Monte Carlo fluence rates are used. 


a) Isotropic delivery in the white sphere 


Plane IJa cleri'led 

(mm-1) 

IJa~ l-latrue l-Is' delived 

(mm-1
) 

l-Is
1 

delived / l-Is' true 

1 0.089 0.993 3.039 1.013 

2 0.088 0.983 2.980 0.993 

3 0.090 0.998 2.940 0.980 

b) Anisotropic delivery in the white sphere 

Plane IJa derived 

(mm-1) 

IJa d~ IJa true IJs' delived 

(mm-1
) 

IJs' derived /IJs' true 

1 0.093 1.035 2.734 0.911 

2 0.091 1.014 2.903 0.968 

3 0.092 1.024 2.907 0.969 

c) Isotropic delivery in the black sphere 

Plane IJa derived 

(mm-1) 

IJa ~ IJa true IJs' cleri'led 

(mm-1) 

l-Is' derived /IJs' true 

1 0.086 0.960 3.215 1.072 

2 0.087 0.962 3.142 1.047 

3 0.090 0.995 3.252 1.084 

d) Anisotropic delivery in the black sphere 

Plane IJa derived 

(mm-1) 

I-Iadertvet/lla true l-Is' derived 

(mm-1) 

l-Is' delived /IJs' true 

1 0.093 1.038 2.870 0.957 

2 0.093 1.034 2.879 0.960 

3 0.096 1.064 3.108 1.036 
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The magnitude of the boundary effect and the resulting inaccuracy in the 

derived optical coefficients is dependent on the actual reflectance and on the proximity of the 

detectors to the boundary in terms of transport mean free paths. Assuming that the source 

is incorporated correctly into the diffusion models used for the frtting procedures and given 

that the boundary effect should be independent of the source distribution, the boundary 

effect can be determined by comparing the derived coefficients for isotropic and anisotropic 

delivery for the two boundary conditions. As was discussed previously, one would anticipate 

an effect for phantom 1 in planes 2 and 3, but only in plane 3 for phantom 2. Furthermore, 

the inaccuracy in the derived coefficients should be of similar magnitude in plane 2 for 

phantom 1 and plane 3 for phantom 2 since in both cases the boundary is at a distance of 

approximately 2 mfp'. 

1) Phantom 1 (IJ8 =0.015 mm·1 & IJs' = 0.5 mm-1) 

From the results presented in Table 5.3.1(phantom 1), the derived IJs' is found to be 

independent of the reflectance (0.35 or 0.85) or the plane of measurement. In all cases IJs' 

is determined to within 13% of the true value of 0.5 mm·1• On the other hand, the derived J.la 

values shows a definite boundary effect. It was observed previously that compared with the 

infinite medium diffusion model, there were increases and decreases in the experimental 

fluence rate in the white and black spheres, respectively, for phantoms 1 and 2. Therefore, 

it is to be expected that the derived absorption coefficient would be underestimated for the 

white sphere and overestimated for the black, as is the case here. Derivation of the optical 

coefficients from the fluence rates predicted by Monte Carlo calculations resulted in errors 

of approximately 25% and 50% in planes 2 and 3, respectively for both types of delivery in 



110 

the white sphere. In the black sphere for isotropic and anisotropic delivery, lla is 

overestimated by 40% and 60% in planes 2 and 3, respectively. In addition to predicting 

similar errors for both types of delivery, the optical coefficients derived from the Monte Carlo 

predictions of the fluence rate indicate that the black boundary resulted in larger errors in the 

derived optical properties. 

2) Phantom 2 (IJ8 =0.030 mm-1 & IJa' = 1.0 mm-1) 

As is observed for phantom 1, the derived reduced scattering coefficient, IJs', is 

accurate to within 10% of the true value in all cases. From the results for the white sphere 

(Table 5.3.2.a & b), it can be observed that there is no boundary effect in plane 2. In plane 

3 of the white sphere IJa (determined experimentally) is approximately 15% lower than the 

true values for both types of delivery. This is more or less in agreement with the 20% error 

obtained using the Monte Carlo fluence rates. It is unexpected that the results for isotropic 

delivery in the black sphere suggest the same effect in planes 2 and 3. For anisotropic 

delivery, the errors in the derived coefficient are also too large (31% and 123% for planes 

2 and 3, respectively) to be attributed to boundary effects, when compared with Monte Carlo 

calculations. These errors were unusually large since these optical properties were 

derived from the experimental data which were likely affected as a result of photobleaching 

of the detector, as discussed previously. Using the fluence rates predicted by the Monte 

Carlo calculations, smaller errors are obtained (12% & 35% for planes 2 and 3, respectively). 

Since a 40% error is determined in plane 2 for phantom 1, the 35% error in J.la can be 

justified. The discrepancies mentioned above which are attributed to the normalization 

errors, light absorption by the detectors and errors in positioning the detectors, contribute 
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to the error in the derived values thus making quantification of the boundary effect 

difficult. 

3) Phantom 3 (IJ8=0.090 mm·1 & IJs' = 3.0 mm-1
) 

Due to the systematic errors encountered in the experimental measurements (see 

Section 5.3.1 ), the optical properties were derived from the Monte Carlo calculations (see 

Table 5.3.3). Since the measurement planes are always farther than 4 mfp' from the 

boundary, there are not expected to be any boundary effects and in fact, the optical 

coefficients can be accurately derived to within 8% of the true values, as shown in Table 

5.3.3. 

4) Rabbit skull 

The results presented in Table 5.4 show that for both phantoms 1 and 2, while fJ8 ' 

appears to be unaffected by the boundary, IJa is always overestimated suggesting that the 

skull is behaving like a lossy boundary. One would expect bone to be diffuse reflecting but 

the results seem to suggest instead that most photons are transmitted rather than diffusely 

reflected at the boundary. The staining of the skull by the Congo Red dye used as the 

absorber, could have resulted in a reduction in the reflectance. For both phantoms, the 

overestimate in fJa increases in moving from the base of the skull to the centre suggesting 

that complex structures within the skull have an even greater effect than those at the 

surface. As expected, the effect for phantom 2 is less than that for phantom 1 but it is still 

significant, with fJa being overestimated by greater than 45%, a larger effect than predicted 

for the black sphere. 
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Table 5.4 Optical coefficients derived from measurements in the rabbit skull). Positions 1 , 

2 and 5 mm refer to the distance of the source-detector array from the base of the skull 

(described in Chapter 4). 

a) Phantom 1 (J..Ia =0.015 mm·1 & J..ls' =0.5 mm-1
) 

Position 

(mrry) 

J..la derived 

(mm-1) 

J..la~ J..latrue J..ls' derived 

(mm-1) 

IJs' derived /J..Is' true 

1 0.025 1.694 0.434 0.868 

2 0.026 1.733 0.434 0.868 

5 0.028 1.871 0.453 0.906 

b) Phantom 2 (J..Ia = 0.030 mm·1 & J..ls' = 1.0 mm-1
) 

Position 

(mm) 

J..la derived 

(mm-1) 

J..la den-/ J..la true J..ls' derived 

(mm-1) 

J..ls' derived I J..ls'true 

1 0.044 1.465 0.821 0.821 

2 0.046 1.519 0.819 0.819 

5 0.049 1.622 0.876 0.876 
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Conclusions 


In this study, we have investigated further the systematic errors in the interstitial 

measurement technique and evaluated the effects of boundaries on the absolute fluence rate 

measurements and on the accuracy of the derived optical properties. It has been shown that 

the optical coefficients can be derived accurately in optically infinite and semi-infinite media 

if the measurement technique is tailored to fit the optical properties of the medium. 

Specifically if a good guess of the optical coefficients can be made, the optimum separation 

and number of detectors/measurement positions can be chosen over a reasonable range of 

the fluence rate distribution. Systematic errors such as light absorption by the detector 

probes, detector positional errors, calibration errors and low signal were found to significantly 

decrease the accuracy of the derived optical coefficients. Increasing the size of the 

detectors would improve positional accuracy, responsivity and rigidity. Although this would 

increase light absorption by the probes, this effect could be potentially quantified and 

corrected for. 

Measurements in the finite spherical volumes show definitively that fluence rate 

measurements made within 4 mfp' of the boundary are affected resulting in signiflcant errors 

in the derived absorption coefficient, 1-'a· For the reflecting (Rd = 0.85 ) and absorbing (Rd = 

0.35) boundaries evaluated, the errors in the derived 1-'a are approximately 20% and 40%, 
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respectively, within 2 mfp' of the boundary. Clearly if the optical properties are to be derived 

accurately, fluence rate measurements have to be made at distances greater than 4 mfp' 

from the boundary. On the other hand, measurements made close to the boundary may 

allow determination of the reflectance of the boundary. A combination of these approaches 

would enable accurate fluence rate dosimetry in clinical situations where boundaries will 

have a significant effect. 

In the complex geometry of the rabbit skull, IJa was significantly overestimated 

suggesting that there was substantial transmittance and the bone was behaving as a lossy 

boundary. These results indicate that any measurements made in the cranial cavity of the 

rabbit are subject to boundary effects causing IJa to be potentially overestimated by at least 

50%. More extensive studies need to be carried out to determine empirical correction factors 

which could be applied to fluence rate measurements in rodent brain models and other finite 

measurement geometries. 
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