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Abstract 

Macrobenthos and macrophytes of the north shore littoral zone ofHamilton Harbour were 

extensively sampled in late August 1994. Benthic community structure is described, 

including the presence of several oligochaete and chironomid genera previously 

unreported in the harbour. Community structure is scale dependent and identifying which 

spatial scales contribute important structure is a useful step in determining which 

environmental factors have the greatest impact on the benthic community. This 

information can be used to plan efficient benthos monitoring programs, and to construct 

spatially explicit models of the harbour ecosystem. Most of the variation in the data set 

(approx. 88%) is due to small scale patchiness, probably related to patchiness of the 

macrophyte community and sediment grain size, as well as biotic processes such as 

predation and competition. Large scale structure is related to a water depth gradient, 

probably involving changes in dissolved oxygen concentrations, light attenuation, and 

sediment grain size. Macrophytes also respond to this gradient. There is little important 

structuring of the benthos community at intermediate spatial scales. Models ofbenthic 

communities in the harbour must deal with spatial pattern effects such as autocorrelation. 

Additionally, spatial patterns provide information useful for understanding causes of 

community structure. A method is developed for the spatial pattern analysis of the benthic 

community data, which allows the simultaneous evaluation of patterns at various scales, 

with minimal mixing ofinformation between scales. 
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1.0 INTRODUCTION 

1.1 General Introduction 

It is in the spatial and temporal patterns of species distribution and abundance that 

community ecologists seek to interpret the natural world. Hence, ecological theory is 

replete with model!: which imply spatial and temporal pattern; concepts of predation, 

competition, parasitism, population growth, dispersal, and migration are but a few 

examples (Legendre and Fortin 1989). It is therefore interesting that analytical methods 

which deal specific; illy with the problems of spatial pattern have been widely available to 

ecologists only recently (Legendre 1993, Borcard, Legendre and Drapeau 1992). Prior 

attempts to deal with spatially structured data sets have ignored the spatial structure and 

its effects on classieal statistical analyses. 

Classical statistical analyses assume that each observation in a sample is 

independent of all other observations. This is not the case with spatially structured data. 

Similar observatiors tend to aggregate so as to create patches ofvarious sizes, or, in many 

cases, gradients. Consequently, observations are not independent and it becomes possible 

to predict the value of an observation at a particular point in space if the values of 

observations located nearby are known. Since observations are no longer fully 

independent, it is incorrect to assign each a full degree of freedom when analyzing them 

statistically. Usually this error is made, however, and tests are liberalized as a result, 
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increasing the chan:es ofrejecting a true null hypothesis (type I error) (Hurlbert 1984). 

On the other hand, if information concerning the lack of independence between 

observations (their autocorrelation) is obtained, it may be possible to modify statistical 

procedures to redu:e the risk of making such an error. For example, single factor, non

nested Analysis of Variance (ANOVA) models that take autocorrelation into account have 

been developed and are available in the literature (e.g. Griffith 1978), although their 

implementation is rot wide-spread. 

Although spatial structure can be a nuisance in statistical analyses, it can also be of 

considerable intere:;t in its own right (Legendre 1993, Levin 1992). Often it is the spatial 

structure in a data :;et that will provide clues as to the causes of community structure, such 

as indicating a pollution point source, a major migration corridor, or perhaps patchy 

resource availabilit:r. In other words, spatial pattern is a functional aspect of ecological 

communities (Legendre 1993). 

Analyzing :;patial patterns in large, many-variable ecological data sets is 

complicated by the fact that often several processes are acting upon the community at 

different spatial scales. In these instances, if spatial scales of observation are changed, the 

patterns observed ir1 the data set will also change. Similarly, the patterns derived from an 

existing data set will often change when analytical procedures with different resolutions 

are used. These di:ferent patterns indicate that different processes become important in 

defining ecological structure at different spatial scales, leading to the conclusion that 

patterns at a variet:r of scales need to be studied in order to gain a good understanding of a 

particular ecological community. 
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This thesis presents research towards a multi scale, spatially explicit analysis of the 

macrobenthos alorcg the north shore ofHamilton Harbour, on the west end ofLake 

Ontario. Hamilton Harbour is considered an "area of concern" within the Great Lakes 

Basin due to high :.evels of conventional pollutants and heavy metals, toxic organics 

accumulations in f 1sh, contaminated sediments, eutrophication, and overall aesthetic 

degradation (Hamilton Harbour Remedial Action Plan Team 1992a). A Remedial Action 

Plan (RAP) for the Harbour has been developed to explain how a comprehensive 

rehabilitation of the Hamilton Harbour will be undertaken. The report highlights the need 

for "enhanced wildlife populations [in the Harbour area] through the preservation and 

rehabilitation of habitat" and "integrated management offish and wildlife populations 

throughout the Hmbour" (Hamilton Harbour Remedial Action Plan Team 1992b, p.lll). 

A study of littoral benthos community structure in the harbour is therefore 

appropriate considering that benthos are an important ecosystem component and provide 

information concerning long-term ecosystem response to a range of abatement measures 

(Hamilton Harbour Remedial Action Plan Team 1992b, p.300). Indeed, aquatic 

ecosystem studies must include benthic ecological processes as one of the various critical 

components in understanding overall aquatic ecosystem functioning. 

The thesis is divided into five sections. Following this introductory section, a detailed 

description of littoral zone benthos along the north shore ofHamilton Harbour is given, 

detailing community structure correlated with water depth gradient, sediment trace metal 

concentrations, rracrophyte community structure, and zebra mussel (Dreissena 

polymorpha) abu:1dance. The next section reports on a partitioning of benthic community 
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structure into contiibutions from five spatial scales ofobservation, and relates scale 

dependent structun~ to habitat descriptors. This section demonstrates that the benthos of 

the north shore littoral zone exhibits scale dependent structure, and discusses the 

implications of this structuring for further work on harbour benthos. The third section of 

this thesis develop~; a method for the analysis of scale dependent spatial patterns derived 

from a single multi variate data set, setting the stage for further work on benthos in the 

harbour. The method is illustrated using a simple simulated data set. The fifth and final 

section of this thesis provides concluding remarks. 
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1.2 Clarification or Contribution 

Sections tw), three, and four of this thesis represent papers prepared for 

publication by Mark Conrad and Jurek Kolasa. I developed the initial idea for the work 

reported in these P'·pers. I also am responsible for the sampling design and analysis plans 

for each paper. Field and laboratory work was carried out by myself, with the assistance 

of lab mates, two u rtdergraduate students, and several volunteers. Technical and scientific 

expertise and advice were provided by Jurek Kolasa, as were editorial contributions on the 

various drafts of th,~ three papers prepared for publication. 
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2.0 MACROBENTHOS OF HAMILTON HARBOUR'S NORTH SHORE 

LITTORAL ZONE 

by Mark Conrad and Jurek Kolasa 


Department ofBiology, McMaster University, Hamilton, Ontario 


2.1 Abstract 

The macrobenthos ofHamilton Harbour's north shore littoral zone, to a water 

depth of three met1!rs, was sampled intensively in late August 1994. The most abundant 

taxon in the benthic community is the zebra mussel, Dreissena polymorpha, which 

comprises appro xi nately 20% of the total benthos count and is most abundant at two 

meters water depth. Endochironomus and Limnodrilus ho.ffmeisteri are the next two most 

abundant species, ~espectively. There is no depth effect for total number of chironomids 

or oligochaetes, although many individual species are significantly more prevalent at 

certain depths. Habitat quality indices, including an application of the Shannon-Wiener 

diversity index and two biotic indices, suggest that the littoral zone of the north shore of 

Hamilton Harbour is "moderately" polluted. Total macrophyte biomass, sediment trace 

metal concentrations and zebra mussel density are all correlated with total numbers of 

benthos ( excludin,~ zebra mussels) present at a site, with zebra mussels having a strong 

positive relationship. 
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2.2 Introduction 

Hamilton Harbour is one of the most affected and modified portions of the Great 

Lakes ecosystem. ln 1985, the International Joint Commission outlined its reasons for 

considering the Hamilton Harbour an "area of concern" within the Great Lakes Basin. 

These reasons included high levels of conventional pollutants and heavy metals, toxic 

organics accumula1 ions in fish, contaminated sediments, eutrophication, and overall 

aesthetic degradatbn (Hamilton Harbour Remedial Action Plan Team 1992a). The 

Remedial Action Plan highlights the need for "enhanced wildlife through the preservation 

and rehabilitation of habitat" and "integrated management offish and wildlife populations 

throughout the Ha:·bour" (Hamilton Harbour Remedial Action Plan Team 1992b, p.111 ). 

Further, littoral zone habitat rehabilitation and management are indicated as desirable. 

Benthos is a key component of the littoral zone due to the role it plays in the food web, 

comprising a major food source for many fishes. 

Understanding harbour ecosystem responses to remedial and management actions 

requires extensive biological knowledge of its various components, including littoral zone 

benthos. Knowledge ofbenthos in this region of the harbour, however, is inadequate, 

particularly in view of the most recent introduction of zebra mussels (Dreissena 

polymorpha). No intensive sampling of the littoral zone benthos in Hamilton Harbour has 

previously been ur dertaken. Earlier studies employed designs with widely dispersed 

sampling sites, useful for harbour-wide benthos mapping (e.g. Johnson and Matheson 

1968), or single transect sampling designs aimed at providing depth profiles ofbenthic 
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community structure (e.g. Hanna 1994). Both ofthese sampling designs provide useful 

information for a variety ofmanagement issues, but neither provide comprehensive data 

from the littoral zone 

This study attempts to provide a description of harbour littoral zone benthos 

detailed enough for detection and quantification of future changes resulting from 

remediation and hc:1bitat management decisions. Specifically, we aimed to assess benthos 

composition, numbers, and spatial trends, particularly in the context of naturally occurring 

and anthropogenic environmental gradients. The approach we took was an extensive 

sampling at regular intervals in the littoral zone down to 3m water depth. 
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2.3 Materials and Methods 

Over a two week period in late August 1994, the littoral zone of the north shore of 

Hamilton Harbour, from Carolls Point to Indian Creek, was sampled using a systematic 

transect design (Fig. 1 ). Sample sites were located along twenty-eight transects, each 

running from shore out into the harbour on a bearing of 150° from true north, with 

compensation for magnetic declination. Distance between transects alternated between 

200m and 300m. Along each transect, three samples were taken at one, two, and three 

meters water depth, for a total of nine samples per transect. 

For each sanple, a 23x23 em (9"x9") Ekman grab was used to capture an 

approximately constant amount ofharbour sediment, along with any macrophytes and 

algae present within the sampling volume of the grab. A three meter long steel rod, 

graduated in meters. was attached to the release mechanism of the Ekman. This 

modification enabled fieldworkers to carefully work the Ekman grab into the sediment at 

the appropriate wat(~r depth before quickly pushing down on the rod, thereby releasing the 

Ekman grab's jaws. The sediment was washed in a 500 Jlm nitex mesh net and transferred 

to plastic specimen cups for storage, while macrophytes and algae were stored in plastic 

bags. While this method ofcollecting macrophyte and algal samples is not used in 

vegetation studies, we considered it adequate for sampling vegetation and benthos from 

exactly the same location. 

In the lab samples were drained and stored in 70% ethanol until being sorted in 

white trays. Oligochaetes and chironomids were mounted on slides for identification to 
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the genus or specieB level, whereas most other benthic organisms were identified at lower 

resolution (Appendtx). Unidentified immature oligochaetes were allotted to the identified 

species at any one site in proportion to their abundance at that site. Unidentified 

chironomids were also proportionally allotted to chironomid species found at a site. Algae 

and macrophyte samples were dried for a minimum of 7 days, identified to the lowest level 

of classification pmsible given the quality of samples, and weighed to the nearest O.OOlg. 

To examine the effects of sediment trace metals on benthos distribution, previously 

collected data (Poulton, Morris and Coakley submitted) were incorporated into the habitat 

descriptors data set. We used a linear distance weighted interpolation method, with the 

interpolated values for the point lying closest to each transect being used as values for 

each site along that transect, since none of the benthos sample sites were located within 

the lattice of trace metal sample sites. Since the depositional process for trace metals in 

the harbour does not lead to patchy spatial distributions of sediment trace metal 

concentrations (rather, gradients are formed), this extrapolation procedure is considered to 

provide reasonable results (Morris pers. comm.). We use so transformed data for ten 

sediment trace metals (Table 1). 
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2.4 Results 

2. 4.1 Richness and composition 

The 34543 benthic invertebrates collected from the littoral zone of the harbour 

represent forty-five separate taxonomic groups (Appendix). This is a conservative number 

since water mites, limpets, bivalves other than zebra mussels, and gastropods other than 

limpets are identified at taxonomic levels higher than genus. By comparison, only 31 taxa 

were identified in another recent study (Hanna 1994; data for 1989). This difference may 

be due to lake zone!; sampled. Hanna sampled along a transect running from the north 

shore out into the hubour, with only four sites at water depths ofless than eight meters 

(Hanna 1994). In deeper water, benthic communities in the harbour are dominated by a 

few oligochaete species, including Limnodrilus hoffmeisteri, Tubifex tubifex, and 

Quistodrilus multisetosus (Hanna 1994, Johnson and Matheson 1968). Thus, the 1989 

transect study provided fewer opportunities to sample sites with higher benthic species 

richness, and emphasizes the importance of oligochaetes in the benthic community 

structure of the harbour. 

The Chironomidae is the most diverse group ofbenthic organisms in the littoral 

zone along the north shore, with a total of twenty-one genera identified, eleven not 

previously reported as present in the harbour (Table 2). 

Oligochaetes are represented by 14 genera, including abundant taxa such as 

Limnodrilus hoffmeisteri, Limnodrilus cervix, Nais sp., Sty/aria sp., and Ophidonais 

serpentina. Several other oligochaete taxa have not previously been found in the harbour 
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(Table 2). The remaining ten taxa include zebra mussel (Dreissena polymorpha), the 

arnphipod Gammarus sp., water mites ofvarious families, flatworm (Dugesia tigrina), 

isopoda (Asellidae), leeches, bivalves, limpets (Ancylidae), gastropods other than limpets, 

and dragonflies (in one sample only). 

2.4.2 Depth di:~tribution ofdominant taxa 

Chironomid~; and oligochaetes are the most abundant group ofbenthic 

invertebrates in the littoral zone of the harbour, respectively. As oxygen becomes a 

limiting factor, oligochaetes tend to dominate in deeper waters of the harbour (Hanna 

1994, Johnson and Matheson 1968, Krantzberg and Boyd 1992). Neither group shows a 

clear depth related trend in the one to three meter water depth range. Based on 1989 data 

(Hanna 1994), this :;hift towards dominance ofbenthos abundance by oligochaetes 

probably occurs at depths between five and ten meters and therefore does not show up in 

this study. 

The single most abundant benthic invertebrate in Hamilton Harbour in late August 

1994 was the zebra mussel, Dreissena polymorpha (20% of the total number). No zebra 

mussels were observed in 1989 (Mongeau 1990, Hanna 1994) and the first observations of 

juvenile mussels were made in 1991 (Kolasa,pers. observ.). The zebra mussel are 

distributed across the entire north shore from Carrols Point to Indian Creek and are most 

abundant in the eas·:ern half of the littoral zone. The zebra mussel are highly selective with 

respect to depth (ANOV A, p=0.017). They are most abundant at a depth of two meters 
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(62.2% of all zebra mussel), possibly being limited by wave action at shallower depths and 

by more silty substwte at greater depths (with only 8. 7% occurring at three meters. 

Among othe ~ important species, most show depth preferences. Endochironomus 

( 17.5% of all invert(:brates) is highly concentrated (92%) at two meters water depth. In 

addition, Endochiro'1omus are also associated with aquatic vegetation. Absence of 

vegetation at a 3m depth may explain low densities of(2.5%) at this depth, or may 

represent a similar r1~sponse to decreasing dissolved oxygen concentration and light 

attenuation with increasing depth. However, if all sites are classified, using a k-means 

clustering algorithm, into two groups, one containing sites with little vegetation, the other 

containing sites with much vegetation, and this classification is used as a factor in an 

ANOVA ofEndochironomus abundance, one does find a significant difference 

(p<O.OOOOOO) betw€~en the two groups, even when depth is specified as a covariant. Wave 

action and relatively coarse substrate may inhibit Endochironomus populations from 

attaining high densities at one meter depth in spite ofthis genus' preference for shallow, 

and therefore well oxygenated, water (Oliver and Roussel 1983). Another factor which 

may decrease the mmber ofEndochironomus, and other benthic invertebrates, including 

Dreissena polymorpha, is ice "scouring" along exposed portions of the shoreline during 

winter. 

Other abundant chironomids in the harbour's littoral zone include Paratanytarsus, 

Polypedilum, Dicrotendipes, Cryptochironomus, and Paratanytarsus. Polypedilum 

abundances are significantly greater at two and three meter depths than at one meter 

(Tukey's HSD test, p<0.02) even though it has been suggested that this genus prefers 
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shallow, well oxygenated sites (Hanna 1994). Even less is known about requirements of 

Paratanytarsus or any ofthe Tanytarsini tribe species except that they inhabit large, still 

and flowing bodies ofwater (Oliver and Roussel1983) making the interpretation of their 

presence and abundance difficult. Unlike the previously mentioned chironomids, 

Dicrotendipes is equally abundant at one and two meter depths but shows a significant 

decrease in numben• at three meters (6.6% of abundance; Tukey's HSD, p<0.000023). 

Amongst the oligochaetes, abundant taxa can be separated into two groups. One 

comprises two pollution tolerant species: Limnodrilus hoffmeisteri (dominant) and 

Limnodrilus cervix. The other comprises three naidid taxa: Nais, Sty/aria, and 

Ophidonais serpent ina, all ofwhich indicate mesotrophic conditions and are generally 

associated with macrophytes. Except for Ophidonais serpentina, which is significantly 

more abundant at two meters than the other two depths (Tukey' s HSD maximum 

p<0.000023), no other oligochaete showed any significant differences in abundance with 

increasing depth. Abundance ofcombined Limnodrilus species is about twice that of the 

naidids, suggesting that the littoral zone, while able to support pollution intolerant species, 

is still fairly eutrophic. 

Gammarus concentrates in shallow water with only 4.1% of its numbers present at 

three meters water depth. In addition, Gammarus is strongly affected by the presence of 

vegetation (ANCOVA with a two level vegetation biomass factor as the main effect and 

water depth is the <:ovariant, p<0.0001), with more amphipods present at sites with a lot 

ofmacrophytic growth. The effect ofwater depth as covariant was not a surprise because 

Gammarus are restricted to well oxygenated waters (Covich and Thorp 1991). Direct 
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field observations suggest that Gammarus are associated with algal biomass (r= 0.38, 

p<0.05), which could provide protection from predation. 

Not all taxa decline in numbers with depth. The water mites occur at greater 

densities at two and three meters, with only 7.3% of the total at the one meter depth. 

They can have significant impact on benthic communities through predation and parasitism 

on other invertebrates (Smith and Cook 1991). 

2. 4. 3 Indices ofhabitat quality 

The highest values of Shannon-Wiener species diversity index are observed at a 

depth of two meters, with a significant increase in diversity values from one to two meters 

(Tukey's HSD, p=0.03). Additionally, there is a slight increasing diversity trend from the 

eastern to western portion of the north shore, and this trend is most pronounced at a depth 

of one meter (Fig. 2). Surprisingly, there is no significant relationship between benthic 

species diversity and macrophyte density or richness, or sediment trace metal 

concentrations, ev1!n when depth is used as a covariant. 

If compared to an earlier study (Wilhm and Doris 1968), the currently observed 

diversity values would suggest that most sites (94%) are still moderately polluted (i.e. 

eutrophic), having diversity values between 1.0 and 3.0. This interpretation may be 

incorrect, however, as low diversity values may be produced by a variety ofcauses, 

including major expansions of populations of invading species such as the zebra mussel. 

Specific indicator species may also be used to monitor water or habitat quality. 

Limnodrilus hoffr.'leisteri and Limnodrilus cervix abundances are indicative of high levels 
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of organic enrichment and low dissolved oxygen concentrations, since they are tolerant of 

eutrophic condition:; but are poor competitors for resources in less polluted waters 

(Jaagumagi 1988). Their relative frequency of occurrence was 82% (L. hoffmeisteri), 

58% (L. cervix), and 87% (when both considered jointly). On the other hand, Nais, 

Ophidonais serpemina, and Sty/aria, are indicative ofmesotrophic conditions (Hanna 

1994) and are often associated with macrophytes (Brinkhurst 1986). While less abundant 

than Limnodrilus species, the naidids frequency is 60%. The fact that Limnodrilus 

ho.ffmeisteri and Limnodrilus cervix are more common and twice as abundant as naidids, 

tends to support tht~ classification of the north shore littoral zone as moderately eutrophic. 

Finally, total oligochaete densities can be used as an index ofwater quality (Wright 

and Tidd 1933). Using this method, sites with less than 1000 oligochaetes per square 

meter are considen:d negligibly polluted, sites with mean oligochaete densities of between 

1000 and 5000/m2 are considered mildly polluted, and sites with means over 5000/m2 are 

considered severel~r polluted. Accordingly, 86.7% of all sites are considered negligibly 

polluted, with only eleven of 83 sites having oligochaete densities ofgreater than 1 OOO/m2
, 

none above 5000/n2
. 

2.4.4 Habitat characteristics: macrophytes, trace metal, zebra mussels 

The macrophyte community was dominated by Vallisneria americana, although 

Elodea canadensi:>, Cabomba sp. and Potamogeton sp. were also present, along with five 

other species, unicentified due to damaged or small size of specimens. Surprisingly, only 
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few significant yet weak correlations (lri<0.4) exist between vegetation diversity 

(Shannon-Wiener index) and any of the indicator species discussed above. Benthos 

abundance was sign[ficantly correlated with macrophyte diversity, with r = 0.25, p<O.S but 

correlations between macrophyte diversity and benthos diversity were not. Furthermore, 

ANOVA detected no macrophyte effects when sites were classified according to total 

macrophyte biomas:; using a k-means clustering algorithm (with k=2). 

Correlatiom are also quite weak between zebra mussel and other benthic species 

abundances or against total benthos abundance. However, sites with one zebra mussel 

individual have sigr ificantly fewer chironomids and oligochaetes than sites with more 

zebra mussels (two-way ANOV A, p<0.0001). This result seems to support the hypothesis 

that increasing zebra mussel densities positively affect benthic populations. The primary 

cause for this increase is the deposition of feces and pseudofeces by the zebra mussel 

which may be a resource for other invertebrates (Macisaac et al. 1992, Herbert et al. 

1991). This increa;e is often be complemented by improved water clarity and thus higher 

local productivity (Herbert et al. 1991). 

Frequency distributions of all ten trace metal concentrations in the sediment of the 

littoral zone are bimodal, suggesting a good separation of sites into two distinct classes (a 

k-means clustering of sites with respect to all ten trace metals with k = 2; Fig.3). Trace 

metal combined with the macrophyte and zebra mussel data in multi-way ANOVAs 

provides additional exploratory insights. For instance, when water depth, macrophyte 

class, and trace m(:tal class are factors in a three way ANOVA of total benthic abundance, 

all three main effects are significant (p<O.Ol2 for all three effects). In other words, the 
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two-way ANOVA with macrophyte class and water depth as factors was confounded by 

trace metal concentrations in the sediment whose high concentrations are apparently 

limiting benthic species. Thus, contrary to the initial conclusions both trace metal 

contamination and macrophyte biomass affect benthic invertebrate abundance even 

though, taken individually, no effect has been found. Zebra mussel effects on benthos 

abundances appeam to be more important compared to other habitat characteristics. In a 

three-way ANOVA (macrophyte biomass class, trace metal concentration class, and zebra 

mussel presence/absence) only the zebra mussel factor is significant (p=O.000001). 
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2.5 Conclusion 

Benthic community structure in the littoral zone ofHamilton Harbour's north 

shore is clearly diss milar to the benthos of the rest ofthe harbour. It is more diverse, 

appears to respond to heterogeneity in macrophyte community structure, trace metal 

concentrations, and the presence of zebra mussels. Future changes to these habitat 

characteristics resulting from fish and wildlife habitat management activities and further 

expansion of the zebra mussel population, will likely impact the benthic community 

thereby leading to modifications in the harbour food web, ofwhich benthos, especially in 

the littoral zone, ar~~ an important part. This study provides good baseline information for 

future monitoring and habitat management assessment activities. 
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Figure 1: Map of~:ample Sites Along North Shore of Hamilton Harbour 
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Table 1: Trace Mftals Included in Habitat Descriptor Matrix 

List of Sediment Trace Metals 

Included in Habitat Matrix 

Aluminum 

Cadmium 

Cobalt 

Copper 

Iron 

Lead 

Nickel 

Zinc 

Barium 

Vanadium 
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Table 2: Chironomid and Oligochaete Taxa Not Previously Reported in Hamilton 

Harbour 

Taxa Not Previously Reported in 

Hamilton Harbour 


Chir() nom ids 

Oligochaetes 

Cladotanytarsus 

Cryptotendipes 


Pagastiella 

Microchironomus 


Stempellina 

Phaenopsectra 

Micropsectra 


Einfeldia 

Pseudochironomus 


Cricotopus 


Limnodrilus maumeensis 

Limnodrilus silvani 


Limnodrilus rubripenis 

Rhyacodrilus falciformis 


Varichaeta pacifica 

Nais sp. 
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Figure 2: Diversity Index Values for Sampling Transects (East to West Along North 

Shore of Hamilton Harbour) 

DiversitJr Index Values for Sampling Transects (East to West Along 
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Figure 3: Mean Trace Metal Values for a Two level Classification of Sites by 

Sediment Trace 1\l[etal Concentrations 

Plot of Means for Each Group in a two Level Classification 

of Sites by Sediment Trace Metal Concentrations 
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2.7 Appendix: Total Number of Benthic Invertebrates Collected At Each Water 
Depth 

Benthos Taxa Water Depth (m) 

1 2 3 
Dreissena po/ymorpha 2029 4347 611 
Gammarus sp. 1890 2154 175 
Water Mites 178 1003 1241 
Dugesia tigrina 1416 352 78 
Asellidae 48 2 2 
Leeches 94 55 5 
Snails 693 718 260 
Bivalves other than D. Poly. 16 10 41 
Ancylidae 23 4 0 
Odonata 0 14 0 
Unidentified Insects 53 94 92 
Chironomids 
Chironomid Pupae 55 256 89 
Cladotanytarsus sp. 52 56 88 
Chironomus sp. 44 61 49 
Po/ypedilum sp. 75 213 267 
Procladius s_p. 9 25 63 
Cryptochironomus sp. 28 218 294 
Dicrotendipes sp. 349 278 44 
Cryptotendipes sp. 0 2 0 
Parachironomus sp. 55 92 19 
Paratanytarsus sp. 800 354 26 
Cladotanytarsus sp. 149 164 56 
Endochironomus sp. 357 5573 168 
Glypotendipes sp. 33 15 13 
Pagastiella sp. 12 1 34 
Microchironomus sp. 51 29 43 
Stempellina sp. 2 0 0 
Phaenopsectra sp. 0 2 0 
Micropsectra sp. 1 0 0 
Tanypussp. 0 3 3 
Einfeldia sp. 3 1 0 
Pseudochironomus sp. 3 0 0 
Cricotopus sp. 5 4 0 
Total Chironomids 2035 7090 1164 
Oligochaetes 
Unidentified Immature Oligochaetes 134 119 239 
Umnodri/us hoffmeisteri 981 1140 611 
Umnodrilus clap_aredianus 43 39 12 
Umnodrilus cervix 310 286 307 
'f.Jmnodrilus maumeensis 12 26 9 
'Jmnodrilus profundicola 1 2 0 
'f.Jmnodrilus silvani 2 27 10 
'Jmnodri/us udekemianus 0 2 0 
~mnodrilus rubripenis 0 29 8 
'Quistadrilus multisetosus 0 6 0 
'Rhyacodrilus falciformis 1 0 0 
Varichaeta pacifica 3 0 0 
r-.Jais sp. 93 168 137 
Ophidonais serpentina 245 628 11 
$tylaria sp. 82 297 139 

otal Oligochaetes 1901 2757 1479 
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3.0 SPATL\L SCALE EXPLICIT ANALYSIS OF LITTORAL ZONE 


~.IACROBENTHOS IN HAMILTON HARBOUR 


by Mark Conrad and Jurek Kolasa 


Department ofBiology, McMaster University, Hamilton, Ontario. 


3.1 Abstract 

Variance/covariance structure oflittoral zone macrobenthos and littoral habitat 

descriptors along the north shore ofHamilton Harbour was partitioned into five spatial 

scales of observation using nested Analysis ofVariance and Covariance. Principal 

Components Analysis was used to describe community structure at each scale. Benthic 

community structure in the study area is dominated by small scale patchiness, which makes 

up about 88 per cent of the total variation in the data set. This is true for dominant 

species such as Endochironomus and Limnodrilus hoffmeisteri, as well as for rare species, 

for whom small scde patchiness is a function of very low abundance. Intermediate spatial 

scales, ranging from 200m to 2000m along the north shore, contributed little variation to 

the community, bur the largest spatial scale contributed to the overall community structure 

in the form of a depth gradient, with water mites and Cryptochironomus more prevalent at 

three meters depth, Dreissena polymorpha at two meters, and Gammarus and 

Parachironomus a': one meter. Sediment trace metal concentrations do not have a 

significant effect on individual benthic invertebrate species, although concentrations do 
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affect total benthos abundance. Patchy macrophyte community structure and sediment 

grain size distributions probably influence benthic community structure at scales ranging 

from one to several hundred meters. 
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3.2 Introduction 

The littoral .z:one macrobenthos along the north shore ofHamilton Harbour, on the 

western tip ofLake Ontario, is highly heterogenous and patchy (preliminary observations). 

Large scale gradients in species composition and abundance might be expected due to 

strong gradient in harbour morphometry, water currents, and turbidity levels. For 

example, previous studies established the existence of a water depth dependent gradient in 

this community (Conrad and Kolasa in prep., Hanna 1994, Johnson and Matheson 1968). 

Small scale patterns on the order of approximately 1 to 1Om2
, have not been quantified or 

described at all. Urderstanding the characteristics ofthe littoral benthic community is 

important because the benthos of this region of the harbour are a major source of food for 

many fish species, and are a component of the harbour ecosystem which will be subject to 

monitoring and fish and wildlife management activities (Hamilton Harbour Remedial 

Action Plan Team 1992). 

To formally investigate the spatial structuring of littoral zone benthos in Hamilton 

Harbour, it is neces:;ary to employ data analysis techniques which will not confound large 

amounts of small scale variation in estimations of larger scale structure. In other words, a 

spatial scale explicit technique providing independent descriptions ofcommunity structure 

at each scale is required. The need for scale explicit techniques is widely recognized 

(Allen and Starr 19B2, Bailey 1992, Levin 1992, Wiens 1989). This need arises because 

ecological processe:; acting upon communities occur at different spatial and temporal 

scales, and because responses of taxa to an ecological processes can take place over 

differing spatial and temporal scales (Allen and Starr 1982). A variety ofmethods to 
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undertake a scale e "Plicit analysis exist, but few of these provide independent partitionings 

of community structure, and some, such as Noy-Meir and Anderson's (1971) multiscale 

ordination (modified by VerHoef and Glenn-Lewin in 1989), are rather restrictive in 

terms of the spatial arrangement of sample sites (Bailey 1992). The method used in the 

analysis reported in this paper does partition community structure according to spatial 

scale ofobservation, and does not pool structure from smaller scales in descriptions of 

larger scale structu·e. The method was presented by Bailey (1992) in his hierarchical 

analysis of the freshwater mussel community oflnner long Point Bay, Lake Erie. 
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3.3 Materials and :\fethods 

Over a two week period in late August 1994, the littoral zone ofthe north shore of 

Hamilton Harbour, from Carolls Point to Indian Creek, was sampled using a systematic 

transect design (Fig 1). Sample sites were located along twenty-eight transects, each 

running from shore :>ut into the harbour on a bearing of 150° from true north, with 

compensation for magnetic declination. Distance between transects alternated between 

200m and 300m. Along each transect, three samples were taken at one, two, and three 

meters water depth, for a total of nine samples per transect. 

For each sample, a 23x23 em (9"x9") Ekman grab was used to capture an 

approximately constant amount of harbour sediment, along with any macrophytes and 

algae present within the sampling volume of the grab. The sediment was washed in a 500 

J.lm nitex mesh net and transferred to plastic specimen cups for storage, while macrophytes 

and algae were ston:d in plastic bags. While this method of collecting macrophyte and 

algal samples is not Jsed in vegetation studies, we considered it adequate for sampling 

vegetation and benthos from exactly the same location. 

In the lab, samples were drained and stored in 70 per cent ethanol until being 

sorted in white trays. Oligochaetes and chironomids were mounted on slides for 

identification to the .~enus or species level, whereas most other benthic organisms were 

identified at lower n:solution. Unidentified immature oligochaetes were allotted to the 

identified species at any one site in proportion to their abundance at that site. Unidentified 

chironomids were al ;o proportionally allotted to chironomid species found at a site. Algae 
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and macrophyte samples were dried for a minimum of 7 days, identified to the lowest level 

of classification possible given the quality of samples, and weighed to the nearest 0.001 g. 

To examine the effects of sediment trace metals on benthos distribution, previously 

collected data (Pou Iton, Morris and Coakley submitted) were incorporated into the habitat 

descriptors data set. We used a linear distance weighted interpolation method, with the 

interpolated values for the point lying closest to each transect being used as values for 

each site along that transect, since none ofthe benthos sample sites were located within 

the lattice of trace metal sample sites. Since the depositional process for trace metals in 

the harbour does not lead to patchy spatial distributions of sediment trace metal 

concentrations (rather, gradients are formed), this extrapolation procedure is considered to 

provide reasonable results (Morris pers. comm.). We use so transformed data for ten 

sediment trace metals (Table 1 ). Benthos, algae and macrophyte data were In-transformed 

and standardized to zero mean and unit standard deviation. Trace metal values were 

standardized. 

A nested ANOV AIANCOV A was employed to partition variability and 

covariability of all Yariables, with each level of the nested design corresponding to a 

smaller aggregation of sample sites. Five spatial scales of observation were created by 

making the following nested aggregations of samples: 1) all sites at the same water depth 

are grouped togethr~r, 2) sites within each depth are divided into three groups ofnine sites, 

3) for each depth, each of the three groups is divided into three groups ofthree sites, for a 

total of nine group~ per depth, 4) sites are not grouped and are compared against each 

other, and 5) samples within sites are compared (Fig. 2). The ANCOVA procedure used 
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actually partitions covariation ofvariable pairs, as opposed to the typical procedure of 

removing covariation via regression and then partitioning residuals. The procedure was 

performed using SAS PROC NESTED (SAS Institute Inc. 1985). The 

ANOVN ANCOV A partitioned variances and co variances (actually correlations, since 

they were computed for standardized data) are additive which means that they represent 

fully independent p~•rtitionings. Thus, these correlations can be arranged into matrices for 

each level of the ne~;ted design, and each matrix describes community structure occurring 

at that scale only; community structure occurring at smaller scales is not pooled with 

structure at larger s~:ales. This method for hierarchical partitioning ofcommunity 

structure according to spatial scale of observation was first applied to benthos by Bailey 

(1992). 

The scale explicit partitioning method described above not only filters the original 

data set for spatial scale, but also filters out nonlinear structure in the data, since 

ANOVN ANCOV A detects and partitions only linear patterns. As a result, it makes little 

sense to employ ordination methods, such as correspondence analysis, which are designed 

to handle non-linear patterns. Principal components analysis (PCA), a common 

multivariate ordination technique for linearly structured data, is therefore used to ordinate 

benthos and habitat descriptors at each spatial scale of observation. Scree plots were used 

to evaluate which PCA factors in each ordination should be interpreted; factors 

comprising the "flat zone" ofeach scree plot were considered to represent random 

variation and were t:xcluded. Remaining factors were rotated using a varimax rotation 

algorithm to improve their interpretability (Wherry 1984). 
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3.4 Results 

3.4.1 Macrobcnthic Community 

The 34543 benthic invertebrates collected from the littoral zone ofthe harbour 

represent forty-sevw separate taxonomic groups. This is a conservative number since 

water mites, limpet!:, bivalves other than zebra mussels, and gastropods other than limpets 

are identified at taxonomic levels higher than genus. By comparison, only 31 taxa were 

identified in another recent study (Hanna 1994; data for 1989). This difference may be 

due to lake zones sampled; Hanna sampled along a transect running from the north shore 

out into the harbour, with only four sites at water depths of less than eight meters (Hanna 

1994). Deep water sites in the harbour contain few benthic invertebrate taxa, usually 

dominated by Limnodrilus ho.ffmeisteri and Tubifex tubifex, whereas littoral zone sites 

support many more taxa, most notably the chironomids, which were the most abundant 

group of organisms. The single most abundant species was Dreissena polymorpha, the 

zebra mussel, which makes up 20 per cent ofbenthic invertebrates collected. 

Endochironomus ani Limnodrilus ho.ffmeisteri were also dominant species. Conrad and 

Kolasa (in prep.) provide a detailed account of taxa found in the littoral zone ofHamilton 

Harbour, and readers are referred to this publication for further discussion. 

3.4.1.1 Largc~st Spatial Scale (Water Depth Zones) 

At the larges·: spatial scale of observation, sites of the same water depth are 

grouped together. \Vhen the correlation matrix for this scale is subjected to PCA, the 

screeplot of eigenvalues indicates only two factors are interpretable. These two factors 
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describe only 17.66 per cent of the variation in the data at this scale, but do provide good 

separations of the s~atiallocation of depth dependent variation. The first factor gives high 

positive loadings to taxa most prevalent at three meters depth, including water mites 
' 

loading= 0.642 and Cryptochironomus (loading= 0.630). Large negative loadings 

indicate taxa most abundant at one meter water depth, including flatworms, leeches, and 

the chironomid Pamtanytarsus (loadings= -0.644, -0.417, and -0.417, respectively). In 

other words, the first axis describes a gradient in benthos phase space which corresponds 

to a gradient in gec,graphic space. The second factor, as with all PCA factors, also 

describes a correla1 ional phase space gradient, but this time there is no linear geographic 

gradient associated with it. All taxa with relatively high loadings on the second factor are 

more abundant at two meters water depth. These taxa include Endochironomus sp., 

Ophidonais serpeli'tina and Dreissena polymorpha (loadings= 0.736, 0.592 and 

0.575618). 

3.4.1. 2 Intermediate Spatial Scales (Groupings of Sites) 

At the spatial scale of observation corresponding to the second level in the nested 

ANOVA design, with three groups of nine sites per depth, only one factor is potentially 

interpretable, the rest having eigenvalues lower than 0.5. This first factor, however, 

describes a very small 3.8 per cent of variation in the data present at this scale, and does 

not contain large loadings on any of the taxa. The next smallest scale of observation (nine 

groups of three sites per depth), allows the computation of three interpretable factors, 

using the change in screeplot slope as the selection criterion. Each of these factors, 
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however, describes approximately equal portions of the community structure at that scale 

(for a total of 15.30 per cent of the total structure), which would suggest that none of the 

factors could be interpreted. 

3.4.1.3 Smallest Spatial Scales (Among and Within Individual Sites) 

Non-rando:n structure increases at the second smallest scale ("amongst site" 

scale), as is indicat€:d by the three interpretable PCA factors. Combined, these three 

factors describe 19. 31 per cent of the structure in the correlation matrix. Almost all 

loadings remain low on all three factors, only Endochironomus has a notably high loading, 

this of0.607 on the second factor. Three interpretable factors at the smallest spatial scale 

of observation, the ''within site" scale, describe a total of20.03 per cent of the variation in 

the correlation matrix. Benthos taxa have higher loadings on these factors than on factors 

at the amongst sites spatial scale. On the first axis Limnodrilus hoffmeisteri, unidentified 

immature oligochaetes, Nais, Sty/aria, and Cladotanytarsus all have relatively high 

loadings (0. 762, O.:i09, 0.51 0, 0. 717, 0.689, respectively). Glypotendipes loads highly on 

the second factor (0.480), whereas unidentified immature oligochaetes, Limnodrilus 

cervix, and Chironomus load highly on the third factor (0.503, 0.408, and 0.401). 

3.4.2 Habitat Descriptors 

The PCA's on the partitioned correlation matrices for the habitat descriptors 

successfully described from 44 per cent to 50 per cent ofvariation at all scales except at 

the "within site" scale, where only 23.1 per cent ofvariation was described. Due to high 
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linear correlations between most of the trace metal variables, only aluminum, iron, barium 

and copper values were used in the analysis. 

Differences in habitat descriptors' variation/covariation amongst the three water 

depths are dominated by algal biomass which has a loading of0.703 on the first PCA 

factor. A total of44.49 per cent of the variation at this largest spatial scale ofobservation 

is described by the PCA analysis. Variation and co variation amongst three groups ofnine 

sites is described in the correlation matrix at the next smaller spatial scale. Three factors 

describe 49.84 per cent ofvariation at this scale and describe a gradient between algae 

biomass and Vallisr.eria, an association between aluminum and iron, which can be 

extended to all tract~ metals due to their high correlation, and variation in Potamogeton 

When sites are diviCed into nine groups ofthree sites, a similar amount ofvariation is 

described by the first three factors extracted from the correlation matrix (46.9 per cent). 

At this scale, gradier1ts between Elodea and aluminum, and between Vallisneria and 

barium are described by the first two factors, while the third factor describes variation in 

Cabomba. 

Habitat descriptors correlational structure between individual sites and within sites 

is dominated by macrophyte species, which is a reflection oftheir small scale patchiness as 

compared to the greater homogeneity of the trace metal data. Between individual sites, 

47.93 per cent of variation is described by three factors. These factors can be interpreted 

as associations between Elodea and Potamogeton, and between aluminum and copper 

concentrations, as well as Vallisneria biomass fluctuations between sites. At the smallest 
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observational scale, within sites, 37.56 per cent ofvariation is described by the first two 

factors, and can be attributed to variation in Potamogeton and Cabomba variation, 

respectively. 
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3.5 Discussion 

Many taxa exhibit most of their variance at the two smallest scales ofobservation; 

the average percent=tge of variation occurring at these two scales combined as up to 87.9 

per cent. This indicc:,tes that small scale patchiness is the main spatial pattern present in the 

benthos data set. Of the taxa that exhibit small scale patchiness, very few have high 

loadings at both "among site" and "within site" spatial scales, with the exception of 

Cladotanytarsus, w 1ich has a moderately high loading on the first PCA factor at the 

"among site" scale (loading= 0.462708) and a high loading at the within site scale 

(loading= 0.68858~). At the "among site" scale, Endochironomus, the most abundant 

chironomid in the littoral zone (Conrad and Kolasa in prep.), exhibits strong patchiness 

with a loading of0.607 on the second PCA factor. This contrasts with the most abundant 

oligochaete, Limnodrilus hoffmeisteri, which exhibits most of its patchiness at the "within 

site" spatial scale, having a loading of 0. 762 on the first PCA factor. These observation 

suggest that some species are patchily distributed at a scale ofcentimeters to a few meters 

(random replicates f~om a boat) and others at the scale ofas much as several hundred 

meters. Rarer speci·~s in the data set exhibit patchiness for obvious reasons; they can not 

be present at many sites if their total abundances are low, especially when lower than the 

number of sites sampled. Yet, the fact that the most abundant oligochaete and the most 

abundant chironomid also exhibit fine scale patchiness is a good indication that the 

presence of rare species is not creating a false impression of small scale patchiness. 



44 

The small scale patchiness ofbenthos is thought to be a consequence of biotic 

processes such as competition, predation, and dispersal, as well as fine scale habitat 

heterogeneity. The;e fine scale habitat factors include sediment grain size changes and 

macrophyte densiti(:s (Barton 1988, Becket, Aartila and Miller 1992). Potamogeton, 

Vallisneria, Elodea, and Cabomba all exhibited small scale patchiness in our data set 

(relatively high loadings on interpretable PCA factors at the "within site" and "among 

sites" spatial scales). Additionally, at the "among sites" scale, PCA factors describe two 

gradients between macrophytes and trace metal concentrations, which may point to an 

indirect small scale dfect of metal concentrations on benthos: metals affect vegetation 

biomass, which in turn affect benthos abundances. 

Although there was structure present in both trace metal concentration and 

macrophyte biomas~; data at intermediate spatial scales, indeed this is where most variation 

in the trace metal variables occurred, there was no appreciable structure present in the 

benthic community at intermediate scales. This result seems to contradict earlier reports 

of a significant effect between trace metal concentrations and benthos abundance at a 

similar spatial scale <Conrad and Kolasa, in prep.), but, in fact, it does not. The previous 

analysis involved lower taxonomic resolution, since it partitioned total benthos abundance 

amongst groups of c. two level trace metal concentration factor (developed using a k

means clustering algorithm, with k=2). The current analysis makes use of separate 

correlations between all benthos taxa and trace metals. When, as in the previous analysis, 

variations of individual taxa where partitioned between the two levels of the trace metal 

factor, no significan1 relationships were found. Thus, it is still possible to postulate a 
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relatively weak relationship between trace metal concentrations in the littoral zone of 

Hamilton Harbour's north shore and benthos community structure. The different results 

achieved in the two analyses of the same benthos data set draws attention to the point that 

scale of taxonomic resolution, like spatial (or temporal) scale ofobservation, also has a 

definable impact on bow community structure is interpreted. 

Depth effect:; on benthic community structure in Hamilton Harbour have been 

reported in the literature (e.g. Hanna 1994). The most notable changes in community 

structure begin at ar proximately eight meters depth, whereas this study did not sample 

beyond three meters water depth. As a result, depth effects are less pronounced and 

involve taxa other than those involved at greater depths. For instance, in the most 

recently reported work on Hamilton Harbour benthos sampled in late August (Hanna 

1994), Linmodrilus hoffmeisteri and Tubifex tubifex become dominant after eight meters 

depth, whereas in this study, L. hoffmeisteri showed no significant response to depth, and 

T. tubifex was not even detected. The taxa most affected by the depth gradient between 

one and three meter:; include water mites and Cryptochironomus, which are more 

abundant at three m!ters water depth, and the amphipod Gammarus and the chironomid 

Paratanytarsus, which are most prevalent at shallower depths (Conrad and Kolasa in 

prep.). Gammarus are known to be restricted to well oxygenated sites (Covich and Thorp 

1991), and many chironomids generally avoid eutrophic conditions, so it is not surprising 

to find an inverse rei ationship between their abundances and water depth in a eutrophic 

body of water such as Hamilton Harbour. 
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On the other hand, water mite ecology is very complex (Smith and Cook 1991), 

precluding simple explanations of their response to depth in the harbour without additional 

research effort. Cryptochironomus are known to prefer coarser substrates than do other 

chironomids (Oliver and Roussel 1983). Since these coarser substrates are more likely to 

occur at shallower depths, it is surprising to find this genus more abundant at two and 

three meters water depth than at one meter, as reflected by the relatively large positive 

loading on the first factor. Dreissena polymorpha are most abundant at the two meter 

depth, possibly limited at shallower depths by wave action and at deeper depths by more 

silty substrate which impedes colonization by the mussel (Conrad and Kolasa in prep). 

For habitat descriptors, variation between sites at different depths is dominated by 

changes in algal abundance (loading of 0. 703 on the first PCA factor), but it is unlikely 

that there is a functional relationship between algae biomass and differences in benthos 

variation amongst depths, with the exception of Gammarus abundance, which is 

moderately correlated with algal biomass (r=0.38, p<0.5). It is more probable that 

unmeasured habitat variables correlated with depth are structuring the benthos community 

at this scale. These factors may include dissolved oxygen concentrations, intensity of 

wave action, substr,.te particle size, and water temperat1,1re. With the exception of 

substrate particle si2e, repeated measurements of these variables would be required for 

sound ecological interpretation 

This hierarchical analysis of littoral zone benthos ofHamilton Harbour reveals that 

the community is dominated by small scale patchiness and various large scale gradients 

related to changes in water depth. The second and third levels in the nested 

http:substr,.te
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ANOVAIANCOVA, which correspond to groups of sites covering a spatial range of from 

500m to 2000m along the shoreline, contribute little to the non-random structure of the 

community as a whole, since only 3.8 per cent ofthe second level and 15.3 per cent ofthe 

third level's structu:·e was meaningfully extracted by the analysis. Taxa loadings on the 

PCA factors at these scales were also quite low, further supporting the claim that benthos 

taxa in the harbour's littoral zone show little non-random variation at these observational 

scales. Using PCA to describe structure at particular scales augments simple partitioning 

of variance/covariance structure, since the community can have a lot of 

variation/covariation at a particular spatial scale, but this may be dominated by "noise" 

rather than non-random structure. Selecting interpretable PCA factors essentially 

partitions structure at each scale into noise and structure components, since all 

uninterpreted PCA factors are assumed to contain random, or unstructured, variation. 

Since the correlatic n matrices at each scale are additive, one possibility is to identify which 

scales have very large noise components, and then remove this noise from the data set by 

summing all but the "noisy" correlation matrices and performing PCA on the resulting 

matrix. In essence, the original data set will have been cleaned or filtered of the effects of 

community variation/covariation from particularly noisy spatial scales, by eliminating the 

largely unstructure j variation of that scale from the data set. Interpretable factors should 

therefore describe ;i greater proportion of the structure in the resulting correlation matrix 

then would be the ,:;ase for the initial, unpartitioned matrix. The magnitude of this 

increased interpretve power depends upon the proportion of total variation occurring at 

the noisy scale. In this analysis, no notable improvements were achieved using this 
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approach, since the spatial scale eliminated from the analysis did not contain a large 

percentage of the tc·tal variation in the data set (proportion of total variation for individual 

species averaged 2.9 per cent). 

Detection of important patterns at small and large spatial scales, together with the 

absence of non-random structure at intermediate scales, also has implications for future 

sampling ofbenthm. in the littoral zone of the harbour. Efficiency of sampling design can 

be improved by taking samples at more than three depths, perhaps at five sites between 

one to eight meters water depth, and by collecting more samples at each site. Effort 

required for these e:oetra samples can be offset by reducing the number of sampling 

transects along the length of the north shore. 
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Table 1: Trace Metals Included in Habitat Descriptor Matrix (Highlighted Species 

used in PCA) 

List of :;ediment Trace Metals 

Include( in Habitat Matrix 

Aluminllm 

Cadmimn 

Cobalt 

Copper 

Iron 

Lead 

Nickel 

Zinc 

Barium 

Vanadium 
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Figure 2: Schematic Diagram of Nested Aggregations of Sample Sites Along the 

North Shore of Hamilton Harbour 
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4.0 MULTISCALE PATTERN PARTITIONING: A SPATIALLY EXPLICIT 

APPROACH TO COMMUNITY ANALYSIS 

by Mark Conrad and Jurek Kolasa 


Department ofBiology, McMaster University, Hamilton, Ontario. 


4.1 Abstract 

Spatial struc·:ure or pattern is an important characteristic of many community level 

ecological data sets. Spatial patterns can affect standard statistical analyses and can be of 

ecological significance in their own right. Since spatial patterns are scale dependent 

phenomena, analytical methods which take into account pattern at a variety of scales 

simultaneously shou td be ofvalue. A new method, multiscale pattern partitioning, is 

introduced for constructing simple, scale specific constituent patterns from large, complex, 

spatially structured data sets. Nested Analyses of Variance and Covariance are used to 

partition community structure into separate patterns for user-specified spatial scales of 

observation. PrinciJ:al Components Analysis (PCA) is employed to reduce structure at 

each scale to a few variables describing most of the non-random variation present. PCA 

factor coefficients fer each scale are multiplied by raw data matrices which have been 

modified to reduce t 1e presence of structure from other scales, thereby providing scale 

specific spatial patte 11s of reduced dimensionallity. A simulated data set is used to 

illustrate the method. This method is an alternative to multiscale ordination, which does 
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not allow for the construction ofconstituent patterns, requires spatially contiguous sample 

sites, and does not provide fully independent partitionings ofcommunity structure. 

Additionally, our method is more appropriate for many community ecology data sets than 

is spectral analysis, a well known technique for constructing component patterns. 
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4.2 Introduction 

Spatial patterns in nature are obvious; stands of pine trees, herds of ungulates, and 

schools offish being three readily visualized examples. These, and most other living 

entities, are neither Jniformly nor randomly distributed in space, but rather exhibit spatial 

structure such as patches or gradients (Legendre and Fortin 1989). Ecologists have 

developed many theories incorporating the significance of spatial pattern, including 

theories of succession, competition and adaptation, to name only a few. Yet, while 

acknowledging the mportance of structure in the spatial domain, ecological models have 

tended not to give adequate treatment to the ecological role and effects of this structure. 

In most cases, geographical or relative location of sampling sites is recorded as a matter of 

good data "housekeeping", but is not factored into ecological analyses of empirical data. 

Recent advances in the field oflandscape ecology have provided insights into the 

disadvantages of su :::h a situation; many ecological processes seem to be modified or even 

initiated or terminated, precisely due to the geographical or relative location of the 

participants (Forman and Godron 1986, Hansen and di Castri 1992). In other cases, the 

biological processe!: themselves create spatial patterns (Legendre and Fortin 1989). 

Given the typical ht:terogeneous environment, both these factors usually interplay to 

produce ecological phenomena with complex spatial realizations. Spatial heterogeneity is 

therefore functional in nature and should be studied for its own sake, not just dealt with as 

a "nuisance" phenomenon (Legendre 1993). 
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There is another important reason for incorporating spatial pattern into analysis 

plans: Legendre and Fortin (1989) clearly outline the detrimental effects of unrecognized 

spatial patterns in data being analyzed with classical statistical methods. In many cases, 

spatial autocorrelation can exist between observations, even when random or systematic 

sampling has been conducted. This autocorrelation reduces the effective degrees of 

freedom associated with a particular statistical test, thereby leading to a liberalization of 

the test and dubiow, conclusions regarding significant differences amongst groups of data 

(Legendre and Fortn 1989). Employing methods that account for, or even attempt to 

describe and explain, spatial patterns can both reduce the chances of questionable 

conclusions and enrich one's understanding of ecological processes. 

The problem of spatial pattern in ecology is exacerbated by the fact that ecological 

process and structu:~e are scale dependent phenomena (Allen and Starr 1982). The 

patterns observed in nature are often different if observational scales (either spatial and 

temporal) are chan~;ed. By extension, the pattern derived from an existing data set will 

often change when analytical procedures with different resolutions are employed. These 

different patterns em indicate that different actors and interactions become important in 

defining ecological structure at different scales, leading to the conclusion that patterns at a 

variety of scales need to be studied in order to gain a good understanding of a particular 

ecological community. Therefore it is necessary to consider analytical methods which take 

into account both sGale and pattern effects during an analysis of community level 

ecological data sets. This is especially true for large multivariate data sets in which pattern 

and scale effects may be very difficult to identify using simple graphical procedures. 
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For these reasons, Noy-Meir and Anderson introduced multiscale ordination as a 

method to "combine;: information from all [vegetation] species at all scales to produce an 

integrated represent:ttion of total pattern"- what they called a "vegetation hologram" 

(Noy-Meir and And~rson 1971). Data from contiguous quadrats are blocked into 

successively larger sizes, with species covariance matrices constructed for each block size. 

All matrices are summed to form a covariance matrix representing "total pattern", and this 

matrix is used to construct factor components using principal components analysis 

(although a variety of factoring methods could be used). The variation described by each 

factor can be partitioned amongst all the contributing block sizes, and the factor scores 

can be plotted and analyzed for spatial pattern effects. Several modifications to this 

method are discussed by Ver Hoefand Glenn-Lewin (1989), including the use of a local 

two-term covariance: statistic and moving-average filtering of the component score 

patterns. This meth)d successfully deals with the problem of sampling transect starting 

position effects, and allows any size of blocking to be used. It does not, however, provide 

fully independent partitionings of community data structure according to observational 

scale (i.e. pattern described in the covariance matrices of small blockings is pooled in the 

matrices oflarger bbckings). This is viewed as a major shortcoming since community 

variation "explained·' at one scale may be given a second, different explanation at another 

scale, with neither explanation taking into account its counterpart at the other scale. A 

fully independent partitioning of community structure would ensure that variation 

attributed to smaller scales is not pooled within larger scales, eliminating the chance that a 

particular portion of community structure is explained more times than reason would 
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dictate. It is also dilicult to employ this blocking method when sampling sites can not be 

viewed as being cor.tiguous or are irregularly spaced (Bailey 1992). Finally, the method 

provides derived component patterns (factor score plots) which combine variation from all 

scales, rather than providing separate patterns for each observational scale. It is not 

possible, in this case, to analyze each scale partitioned pattern separately, as one might 

wish to do. 

At this point, the reader may note the similarity between a partitioning of the 

spatial patterns ofcommunity data into several component patterns, and the 

decomposition of time series data into several component data sets. Indeed, if one views 

a community level, multivariate data set as being a complex "signal", then the time/spatial 

series technique of spectral analysis will come to mind as an excellent way to partition the 

overall pattern into component patterns relating to various spatial scales of observation. 

Since systems involving interactions taking place at several spatial or temporal scales will 

often exhibit periodic or nearly periodic behaviour (Platt and Denman 1975), decomposing 

complex signals into simple cyclical patterns ofvarious frequencies (or scales) should 

provide interesting results. This has been the case in a variety ofmarine and aquatic 

studies. Unfortunately for benthic and terrestrial ecologists, an implied assumption of 

spectral analysis is that the system being studied does not change from one observation 

point to another. That is, the presence and character of the important interactions 

between actors in the system must remain the same from one observation point to another, 

elsewise simple peliodic behaviour (cyclic patterns) will not be exhibited throughout the 

entire data set, and a spectral decomposition becomes difficult to achieve or spurious. 
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Since many community level data sets are sampled over spatially heterogeneous 

environments, this a;sumption often does not hold. Spectral analysis is therefore of more 

use at a systems level treatment of ecological problems in which the variables describe 

system-wide characteristics, integrated over the entirety of a heterogeneous environment 

(e.g. The C02 flux rate ofa wood). 

Since neither multi scale ordination nor spectral analysis provide an effective means 

of partitioning spatial patterns of community level data sets into component patterns, a 

new method is offered in this paper. The method, which we will call "multiscale pattern 

partitioning" is more appropriate for many community level data sets than is spectral 

analysis, and avoid!> some of the perceived shortcomings of multiscale ordination. 
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4.3 Multiscale Pattern Partitioning 

Multiscale pattern partitioning is a simple extension of the work reported by Bailey 

( 1992) in his hierarchical, multi scale analysis of freshwater mussel community structure in 

Inner Long Bay, L~ke Erie. In that study, sample sites are grouped in a nested hierarchy 

according to spatial location - smaller spatial scale groups nested within larger spatial scale 

groups. As indicat1!d by Bailey, it is possible, using a nested ANOV A model, to partition 

the variation for ea,;h species in the data set amongst these spatial scales. The largest scale 

is the area encompassing all sample sites, and the smallest scale is each individual sample 

site, assuming, of course, that replicate samples were taken at each site. Intermediate 

spatial scales are created by assigning adjacent sample sites to the same group and then 

assigning these groups to larger groups, and so on until one all-encompassing group (the 

largest scale) is formed. The number of spatial scales created is limited by the total 

number of sample ;ites in the data set and by grouping decisions based on prior knowledge 

of the community being studied. 

One critici~m might be that grouping decisions based on prior knowledge are not 

very rigorous or o·Jjective, yet this can not be helped, nor is the situation improved 

through the use of formalized grouping algorithms (although these may be employed if 

desired). Before my sampling takes place, there is, at least in theory, an infinite number of 

spatial scales of observation available to the researcher. As soon as an experimental 

design has been e~tablished, however, the number of observational scales is effectively 

limited by the number of sites and their spatial arrangement. There is no way around this 
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situation, for it is impossible to take measurements at an infinite number of locations in 

time and space, even if it were financially reasonable. If one assumes that researchers 

usually exercise good judgment in deciding what range of scales are relevant, then a good 

experimental design may be trusted to deliver enough resolution to allow information from 

the relevant scales to be analyzed. Since it is at this point in the research program that 

formalized groupinE, algorithms might be used, it is misleading to claim that using such 

algorithms eliminatf researcher bias. And since researcher bias is precisely the prior 

knowledge or good judgment referred to above, the researcher may proceed with the task 

of assigning sample sites to a series of nested groupings, unfettered by attendant guilt. 

At this poin1, the structure (variation) ofeach species in the data set has been 

partitioned according to spatial scale using a standard nested ANOVA model. In a 

directly analogous fashion, covariance between species pairs can be partitioned amongst 

nested spatial scale:;; this is accomplished by calculating, at each spatial scale, sums of 

products for specie, pairs, rather than calculating sums of squares for single species 

(Bailey 1992). The reader should be advised that this procedure does not constitute what 

is commonly referred to as an analysis of covariance or ANCOV A (Bailey pers. com.). In 

the later case, covariance is seen as a nuisance to be removed before partitioning variation 

of the variable under examination, while here we are actually interested in the covariance 

itself. The comput,~r program SAS PROC NESTED will provide the required partitioning 

of covariance for species pairs (SAS Institute Inc. 1985). Partitioned variance and 

covariance values for each species and species pair in the community data set can then be 

re-organized into scale specific covariance matrices. Each matrix describes the community 
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structure at the spat [al scale of the nested ANOV A level to which it corresponds. Since 

the partitionings are based on sums of squares and sums of products, which are additive, 

the matrices are fully independent of each other~ structure described in one matrix is not 

described in any other matrix. 

At this point, a fully independent partitioning ofcommunity structure according to 

spatial scale of observation has been achieved. Unfortunately, alllocational information 

has been lost in the process, because the raw species by sites data matrix has been replaced 

by a set of species by species covariance matrices. No spatial pattern can be inferred from 

these covariance matrices. To reintroduce locational information, common multivariate 

data analysis technktues are employed. In this paper, we will use principal components 

analysis (PCA). Bailey (1992) used PCA to reduce the community data set to a few 

principal componerts and describe community structure at each spatial scale. Likewise, in 

multiscale pattern r,artitioning, PCA reduces the data set and describes it, but the analysis 

does not end at thi5 point. In order to undertake spatial pattern analyses, component 

spatial patterns of the structure described by PCA are constructed. To accomplish this, 

the factor coefficients (eigenvectors) for all relevant principal components (at a particular 

scale) are multiplied by modified raw data matrices. The modification of the original data 

matrix involves pa5.sing two moving-window "filters" over the data set. The size of the 

first filter window is the spatial scale of observation of the next highest level to the one for 

which a pattern is desired. The filter operation is simply the subtraction of the mean value 

within the window at any one sample site, essentially a centering operation. For example, 

if structure in a da1 a set has been partitioned amongst three spatial scales of observation, 
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then, when the smallest scale patterns are being constructed, raw data values are centered 

using a moving window whose size corresponds of the intermediate spatial scale. This 

operation removes larger scale structure from the data set. 

The second modification mitigates the effects of structure at scales smaller than the 

one for which spatial patterns of principal components are being constructed. In this 

second instance, the moving-window filter employs an averaging operation, with a 

window size no larger than the observational scale for which a pattern is being sought. 

Again, supposing a data set had been partitioned amongst three observational scales, 

patterns corresponding to the intermediate scale of observation are constructed by passing 

a centering filter oyer the raw data with a moving window corresponding to the size of the 

largest observational scale. Then, an averaging filter with a window size corresponding to 

the intermediate scale is passed over the data (that is, over the output of the centering 

filter operation). The resulting modified raw data matrix is then multiplied by the PCA 

factor coefficients for the intermediate spatial scale, resulting in a spatial representation of 

the principal comp ::ments for the intermediate scale. 

One drawback associated with using moving filters is that they require data beyond 

the edge of the study area. This is not a problem when using simulated data, as will be 

used in this paper, but the logistics can prove difficult when planning a sampling program. 

Other centering and averaging filters may be considered, such as using stationary instead 

of moving windows, or successively decreasing the size of the filter window as the edge of 

the study area is aJproached, but these methods may provide less realistic spatial patterns. 
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Trade-offs between required sampling effort and pattern realism remain the researcher's 

prerogative. 

Figure 1 shows the flow of a data set through the various steps of a multiscale 

pattern partitioning. Upon examination of this flow-diagram, one may ask why we do not 

simply use the modi tied raw data matrices themselves as scale specific patterns. The 

reason is two-fold. First, community level data sets are often very large and cumbersome, 

with an abundance )[variables, and often contain many zero values. Employing PCA as 

part of the partitioning process avails one of the data reduction and description 

functionalities which are the raison d'etre of multivariate data analysis methods. Indeed, 

even if the modified raw data matrices were used in a pattern analysis, it is likely that a 

researcher would want to first describe the patterns using multivariate techniques. 

Second, the importance of each variable at the various scales is assessed via a fully 

independent partiti:)ning of the unmodified raw data matrix. We are of the opinion that 

this method provides a more accurate assessment than would be obtained by applying 

multivariate techni=tues to the modified data matrices. 
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4.4 An Example U~ing Simulated Data 

We now illm;trate the use of multiscale pattern partitioning using a simulated data 

set. This simple data set simulates values for three variables measured at 36 sites along a 

transect. Although the transect is spatially unidimensional and describes few variables, 

two- and three-dimmsional data sets with large numbers ofvariables could have been 

handled with no modification to the methods (save those ofgraphical illustration). Figure 

2 illustrates the simulated data in unmodified form. Following the procedures described 

above, the structure of the data matrix is partitioned amongst three spatial scales of 

observation, and PCA factor coefficients are computed for each covariance matrix. In this 

example, modified raw data matrices are constructed using stationary-window centering 

and averaging, which produces more obvious, albeit less realistic, breaks between groups 

of samples at any O'le scale. and, finally, spatial patterns for the PCA factors are produced 

at each scale. These patterns are illustrated in Figure 3, along with PCA factors for the 

raw data set, before it was partitioned. 

These figures illustrate the greater amount of information that can be obtained 

from a spatially stmctured data set when scale effects are taken into account. The 

variation in the ra~ data set is correctly partitioned amongst the four spatial scales, and 

the principal component patterns do a good job reflecting this partitioning. The PCA 

factors for the unpartitioned data matrix also does a good job describing the data set, but 

pools information from all scales. With very large data sets, such a pooling can obscure 

important information. 
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4.5 Conclusion 

A method fer partitioning a complex spatial pattern into simpler, scale specific 

component patterns has been described in this paper. Of course, this is not an end in itself, 

but rather an intermediate step towards a scale specific spatial pattern analysis of a 

community level data set. Thus, once the patterns for each scale have been constructed, 

they can be subjectt:d to a comprehensive pattern analysis, which might involve an 

assessment of degn:e of autocorrelation, and an identification of type of spatial structure 

(e.g. patches, gradi•mts). Additionally, partial canonical ordinations may be used to 

"partial out" estimates of pure environmental, combined environmental and spatial, pure 

spatial, and unexpldned source contributions to the overall variance structure at each scale 

(Borcard, Legendn: and Drapeau 1992, Legendre 1993). These source contributions are 

of interest because they indicate how important different types ofecological processes are 

in determining community structure at a particular scale. If the pure spatial source 

contribution is found to be great enough to warrant further consideration, then tests for 

specific significant ecological relationships can be undertaken, controlling for spatial 

pattern effects. This is accomplished via partial Mantel tests, as described by Legendre 

(1993) and Legendre and Trousellier (1988). The authors are applying this type of pattern 

analysis to a study of the benthos along the north shore ofHamilton Harbour, on Lake 

Ontario, Canada. 

To summarize, many ecological theories imply spatial pattern effects. In addition, 

spatial pattern effe :ts can "liberalize" many standard statistical tests. Taking pattern 

effects into account is therefore an important consideration in many community ecology 
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studies. Additionall:r, spatial patterns are scale dependent phenomena, therefore, an 

analysis approach that deals with scale and pattern effects is needed. An alternative 

approach is to construct scale specific principal component factor patterns by multiplying 

factor coefficients that are scale specific with raw data matrices that have been modified to 

remove or mitigate ·:he effects of structure from other scales. The gap is thus bridged 

between spatial pattern and spatial scale analyses. The proposed approach allows fully 

independent partiticnings of community structure into separate covariance matrices for 

each scale, and gives a set of component factor patterns for each scale, rather than one set 

of factor patterns spanning all scales. In addition, sites do not have to be viewed as being 

contiguous, nor must they be regularly spaced. This flexible approach is therefore seen as 

an improvement over multiscale ordination. 
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Figure 1: Flow of nata Set in Multiscale Pattern Partitioning 
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Figure 2: Raw Simulated Data 
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Figure 3: PCA Factor Scores for Unpartitioned and Partitioned Covariance 

Matrices 
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Figure 3 (cont'd): PCA Factor Scores for Unpartitioned and Partitioned Covariance 

Matrices 
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5.0 CONCLUSION 

The data set reported in this thesis provides detailed information, previously 

unavailable, on the benthos of the littoral zone along the north shore ofHamilton Harbour. 

This fills a knowledge gap which would otherwise impede quantification and prediction of 

future changes to habitat quality. These changes will result from ongoing human 

intervention such a!: habitat management decisions, and from biological influences, 

including the contirued expansion of the Dreissena polymorpha population in the harbour. 

The benthos comm1nity exhibits spatial scale-specific structure, the greatest amount of 

which is present at small scales, manifesting itself as patchiness. Further quantification of 

scale-specific spatial patterns will be undertaken with the application of the "multiscale 

pattern partitioning" method to the benthos data. These efforts will provide insights into 

the functioning ofthe harbour's benthic community, and are important for the 

development of spatially explicit models oflittoral zone habitat quality in the harbour. 
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