$$
0 N \text { THE DECAY OF } \quad \mathrm{Br}^{82}
$$

ON THE DECAY OF Br^{82}
by
IAN BRUCE WEBSTER, B. ENG.

A Thesis
Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Master of Science

McMaster University April, 1964

```
MASTELI OF SCIENCE (1964) MCMASTER UNIVERSITY
(Physics)
SCOPE AND CONTENTS:
```

Single-crystal, pair, and two-dimensional spectrometry methods have been applied to a study of the decay radiations from $36-$ hour Br^{82}. Two new gamma rays have been discovered and a new energy level in $K r^{82}$ has been established. Double and triple gamma summing is discussed. Also regression analysis techniques for coincidence data analysis heve been studied. This has been applied to the case of Br^{82} to derive gamma ray intensities.

ACKNOWLBDGEMENTS

Abstract

I wish to express appreciation to my Research Director, Dr. T. J. Kennett, for his guidance and assistance throughout this work. I would also like to thank Dr. W. V. Prestwich for his part in the experimentation and in the development of the theory for the Regression Analysis and Dr. G. L. Keech for helping in the preparation of the computer program.

TABLE OF CONTENTS

Page
CHAPTER I INRRODUCTION 1
1.1 Purpose and Background 1
1.2 Sample Preparation 3
CHAPTER II EXPERIMENTAL TECHNIQUES 4
2.1 Single-Crystal Spectrometry 4
2.2 Summing Effects 7
(a) Coincidence and Random Sumning 7
(b) Bremsstrahlung 13
2.3 Pair Spectrometry 13
(a) The Spectrometer 13
(b) Efficiency and Resolution 16
2.4 Two-Dimensional Coincidence Spectrometry 20
CHAPTER III Br^{82} DECAY SCHEME 26
3.1 Single Spectrum 26
3.2 Pair Spectrum 28
3.3 Coincidence Spectrum 28
3.4 Revised Decay Scheme 33
(a) Energies 33
(b) Intensities 36
CHAPTER IV REGRESSION ANALYSIS 39
4.1 Reduction of Coincidence Surface 39
(a) Outline 39
(b) Analysis of Coupled Equations 40
(c) Analysis of Original Model Equation 41
(d) Error Estimate 42
(e) Physical Significance of the Varience 44
4.2 Intensities from Intensity Correlation Natrix 44
4.3 Br^{82} Gamma-Ray Intensities 47
(a) Data Collection 47
(b) Preparation of Line Shapes and 49
Surface Reduction
(c) Results 53
4.4 Conclusions 55
REFERENCES 57

LIST OF TABLES

Number Title Page
I New Gemua-Ray Energies for Br^{82} 33
II Some Gamme-Ray Intensities for Br^{82} 38
III Theoretical Intensity Correlation Matrix 48
IV Matrix Elements Values 54
V Br^{82} Intensities from Regression Analysis 55

LIST OF ILLUSTRATIONS

Figure Number Title Page

1. Previous Decay Scheme for Br^{82} 2
2. Single-Crystal Gamma Ray Response 8
3. Sum-Coincidence System 11
4. Double and Triple Cascades 10
5. Three-Crystal Pair Spectrometer System 14
6. Pair Spectrum of $\mathrm{Na}^{24} 2.76 \mathrm{MeV} \gamma$-Ray 17
7. Pair Cross Section Curve 19
8. One-Dimensional Coincidence System 21
9. $S c^{46}$ Decay Scheme 23
10. Ideal Two-Dimensional Coincidence Array for $\mathrm{Sc}{ }^{46}$ 23
11. Two-Dimensional Coincidence Spectrum for Sc^{46} 25
12. Single, Sum, and Lifference Spectrum for Br^{82} 27
13. Pair Spectrum for $B r^{82}$ 29
14. Coincidence Spectrum with $1648 \mathrm{keV} \gamma$-Ray 31
15. Reduction of 1648 keV Coincidence Array 32
16. Quadrupole Vibrational Spectrum for Even-Even Nuclei with Spherical Equilibrium Shape 34
17. Revised Decay Scheme for Br^{82} 37
Figure
Number Title Page
18. Reduction of Coincidence Surface by Regression Analysis 41
19. Error Curve 45
20. $\mathrm{Br}^{82} \mathrm{~S}(\mathrm{x}, 1)$ 50
21. Gaussian Peak Location 51

CHAPTER I

INTRODUCTION

1.1 Purpose and Background

The original purpose of this study was to investigate the application of Regression Anslysis to coincidence surfaces in order to obtain gama-ray intensities. Br^{82} was chosen as a test case because, first of all, it was easily obtained without the use of various complicated chemical procedures; secondly, because it had a long half life which avoided the necessity to work quickly and thereby making it possible to ignore lifetime corrections in the data; and thirdiy, because the decay scheme had apparently been well investigated.

Gamma-ray energies and level-energy values for Br^{82} as summarized by the Nuclear Data Group (1) are shown in Figure 1. A preliminary check on the decay scheme showed what would appear to be an unreported gama ray at about 1650 keV . It was decided to undertake a more thorough investigation regarding this and the study resulted in a revised decay scheme for Br^{82}. It was felt that the methods used and the results obtained in this investigation were of sufficient importance to warrant inclusion in the present work.

DIGUPD 1

PREVIOUS Br^{82} DECAY SCHEME
(ALL ENERGIES IN keV)

1.2 Sample Preparation

The Br^{82} was produced by neutron irradiation of natural bromine ($49 \% \mathrm{Br}^{79}$ and $51 \% \mathrm{Br}^{81}$) in the form of $\mathrm{NH}_{4} \mathrm{Br}$ in the McMaster Nuclear Reactor. Samples weighing about 75 milligrams were placed in small poly-bags (1/4 inch square) and were irradiated for times of the order of 30 minutes. These were then allowed to decay for three days to ensure the complete decay of the $4 \cdot 5$-hour isomer in Br^{80} before any observations were mede.

CHAPTER 11

EXPERIMENTAL TECHNIQUES

2.1 Single-Crystal Spectrometry

Sodium iodide, activated with thallium, is in general, the most useful inorganic scintillator because of its high flourescent efficiency, transparency to its own radiation, reasonably short luminescent decay time ($0.25 \mu \mathrm{sec}$) and high sensitivity to gamma rays. (High Z*53 for I increases probability of photoelectric process with respect to Compton scattering.) Such a crystal, optically coupled to a photomultiplier tube (multiplication value about 10^{6}) provides an electron current whose total charge is proportional to the initial light intensity. The current pulses give rise to voltage pulses across the anode load. These pass through a linear amplifier and the amplified pulses are then fed to a multichannel analyzer to complete the system. When the scintillation spectrometer is used to detect gamme rays, the energy of the gama radiation is transferred to the electrons in the crystal by a combination of photoelectric, Compton scattering, and pairproducing events, the probabilities of each being energy dependent.

Photoelectric conversion occurs when a gamma ray transfers all its energy to a bound electron. The kinetic energy of the electron is then the energy of the gama ray less the binding energy of the electron. Immediately an x-ray is produced as a less tightly bound electron drops into the vacancy. The x-ray then interacts with another bound electron, ejecting it, permitting another, lower energy $x-r a y$ to be produced and so on, the result being the production of a series of free electrons of decreasing energy whose energies sum to the incident energy.

In Compton scattering, the gama ray is deflected by a free electron and the energy lost is transferred to the electron, the amount depending on the angle of scattering and being equal to

$$
\begin{equation*}
E_{e}=E_{\gamma}\left[1-\frac{1}{1+\alpha(1-\cos \theta)}\right] \tag{2.1}
\end{equation*}
$$

where $\alpha=E_{\gamma} / m_{0} c^{2}$ and θ angle of scattering. If the deflected genma ray undergoes secondary interactions within the crystal, then the crystal electron energies can total Ey. But if the gama ray escapes without further interaction, then the energy deposited to the free electrons in the crystal will lie within the range 0 for $\theta=0^{\circ}$ to a maximum of $2 \alpha \mathbb{E} /(1+2 \alpha)$ for $\theta=180^{\circ}$ where the maximum energy is usually the most probable case. Any scattered gama rays that enter the counter after reflection from surrounding surfaces will, for the most part, have been deflected through an angle greater than 90° hence the
scattered gamma rays will have energies all clustered about $0.2-0.5 \mathrm{keV}$ for gamna rays of the order of $1-2 \mathrm{MeV}$. If these scattered gamma rays are then completely detected, they will produce electrons in this energy range.

When the gamma-ray energy exceeds $2 m_{0} c^{2}$, the gamma ray can, in the field of a nucleus, spontaneously convert to an electron-positron pair with total kinetic energy equal to the excess of gama energy over $2 m_{0} c^{2}$. The positron is slowed down by inelastic collisions with electrons and comes to rest where it combines with an electron, giving rise to two 5ll-keV annihilation gama rays travelling in opposite directions. These in turn may or may not interact within the crystal. Free electron energies possible within the NaI crystal as a result can be E_{γ} for total interaction, $\mathrm{E}_{\gamma}-\mathrm{m}_{0} \mathrm{c}^{2}$ or $\mathrm{E}_{\gamma}-2 \mathrm{~m}_{0} \mathrm{c}^{2}$ for interaction with one or neither of the annihilation gamma rays, or with much smaller probability, any intermediate value.

As a result of these three types of reactions, for each gama ray entering the NaI crystal, there are a large number of energized free electrons produced. The total energy of these will lie within the total energy range 0 to $\mathbb{E} \gamma$ but with the energies mentioned above being more probable. The kinetic energy of these charged particles elevates loosely bound valence electrons to the conduction band. Some of these return to the ground state immediately by visible photon emission and others de-excite by radiationless transitions or conversion to heat.

About 10% of the light produced for each gama ray
effectively produces photoelectrons at the photocathode of the photomultiplier tube. The number of photoelectrons forms a Poisson distribution whose mean value is proportional to the energy of the incident gama ray deposited within the crystal. Thus the pulse heights recorded by the multichannel analyzer for the favoured energies will not be unique but will exhibit a spread or distribution. For example, the photopeak response of the crystal to a monoenergetic gamma ray will be blurred out into a Gaussian shape rather than a delta function. Pigure 2 shows the spectrometer response to several monoenergetic gamma rays for a 3×3-inch $\mathrm{NaI}(\mathrm{TI})$ crystal. The appropriate spectra show clearly the photopeak at \mathbb{E}_{γ}, pair-spectrum peaks at $\mathbb{E}_{\gamma}-\mathrm{m}_{0} c^{2}$ and $E_{\gamma}-2 m_{0} c^{2}$, the compton edge and continuum as well as the backscatter peak.

2.2 Sumang Effects

(a) Coincidence and Random Surming

Another contribution to the scintillator response is coincidence and random sumning. When the time interval between two or more gamma rays entering the scintillation crystal is less than the effective resolving time of the system, the unresolved events appear as a single event. The pulse height associated with this sum event is a function of the pulse heights associated with each member of the sum and the time interval between them (2).

It is convenient to distinguish between coincidence and random suming which occurs for correlated and uncorrelated events respectively. In coincidence summing, the average
time interval between the correlated gama rays is usually much less than the resolving time of the system. In this case the pulse height of a coincidence sum event is always simply the sum of the pulse heights associated with the members of the correlated event. In random summing the pulse height of the sum event depends on the time interval between the gama rays and can take on all values between the pulse height for the first gamma event right up to the sum of all pulse heights for all the events involved.

If the single spectrum consists of the set of gamma rays $\left(\gamma_{1}\right)$, and if we let $N_{0}=$ source strength e = detection efficiency $\Omega=$ subtended solid angle
$f=$ fraction of decays
W = angular correlation function, $\tau=$ electronic resolving time
then the single crystal counting rate is given by

$$
\begin{equation*}
N_{s}=N_{0} \sum_{i} e_{i} \Omega_{i} \rho_{i} \tag{2.2}
\end{equation*}
$$

the coincidence-suming rate is given by

$$
\begin{equation*}
N_{c s}=\mathbb{N}_{o} \sum_{i j} \epsilon_{i} \Omega_{i} f_{i} e_{j} \Omega_{j} f_{j} W_{i j}, \tag{2.3}
\end{equation*}
$$

and the random-sumuing rate is given by

$$
\begin{aligned}
N_{r s} & =2 \tau N_{O}^{2} \sum_{i j} e_{i} \Omega_{i} f_{i} e_{j} \Omega_{j} f_{j} \\
& =2 \tau_{\mathbb{N}}^{2} .
\end{aligned}
$$

Thus since $\Omega_{i}=\Omega_{j}$ when the two crystals have the same geometry, the contribution from coincidence and random summing may be reduced relative to the single-crystal rate by reducing the solid angle and source strength respectively. However, this is not always practical if statistically significant results
are desired.
Instead, an experimental measurement of the sum contribution is readily obtainable. The system employed in this work is shown in Figure 3. (DD2 is a double delay line linear amplifier; S. C. is a slow coincidence circuit; and MCA is an multichannel pulse-height analyzer.) If the resolving time of the slow coincidence circuit is made equal to or greater than the clipping time of the amplifier, then the routed spectrum consists of both the coincidence-sum and random-sum contributions.

Consider the gamma rays X, Y, and Z. If they are correlated as in Figure 4, then coincidence summing is possible for each decaying nucleus and random summing is possible between decaying nuclei. If they are not correlated, only random summing is possible. The discussion to follow includes all cases.

Two-Step Cascade Three-Step Cascade

Figure 4

First, with two gamma rays only, X and Y, the system works as follows: If X goes in one crystal and \bar{X} goes into

* The clipping time is the time constant of the amplifier output pulses.

SUM-COINCIDENCE SYSTEM
the other and are within coincidence timing resolution, then the sum pulse $X Y$ is routed into the MCA. If X and Y both enter the same crystal then the sum pulse $X X$ is not routed but enters the normal MCA channels. As well, detectors A and B act as single crystals and their single spectra enter the MCA in the reguiar channel group. Thus, in the regular enalyzer channels will be the sum spectrum plus the sum of two single spectra, viz:

$$
(X Y)_{A}+(X Y)_{B}+X_{A}+X_{B}+Y_{A^{+}}+Y_{B}=2(X Y)+2 X+2 Y \quad \ldots(2.5)
$$

since there is no way to distinguish between detector \mathbb{A} and detector B because they have the same gain and resolution. The routed spectrum will occur only when X and Y go in opposite directions. Thus it can consist only of:

$$
\begin{equation*}
X_{A} Y_{B}+X_{B} Y_{A}=2(X Y) \tag{2.6}
\end{equation*}
$$

By subtracting the routed spectrum from the regular spectrum, (chemnel by channel subtraction is permitted since no gain shift between the two spectra is possible) the resultant is just the sum of two single spectra, viz:

$$
\begin{equation*}
2 X Y+2 X+2 Y-[2(X Y)]=2 X+2 Y=2(X+Y) \tag{2.7}
\end{equation*}
$$

Secondly, with three gama rays, X, Y, and Z, the two-crystal system produces the following results:

The normal MCA channels will contain

$$
\begin{align*}
(X Y Z)_{A}+(X Y Z)_{B} & +(X Y)_{A^{\prime}}+(X Z)_{A^{+}}+(X Z)_{A^{+}}+(X X)_{B^{+}}+(X Z)_{B}+(Y Z)_{B} \\
& +X_{A_{A}}+Y_{A}+Z_{A}+X_{B}+Y_{B}+Z_{B}= \\
2(X Y Z)+2(X Y) & +2(X Z)+2(X Z)+2 X+2 Y+2 Z \tag{2.8}
\end{align*}
$$

The routed MCA channels will contain

$$
X_{A} Y_{B}+X_{B} Y_{A}+X_{A} Z_{B}+X_{B} Z_{A}+Y_{A} Z_{B}+Y_{B} Z_{A}+X_{A}(Y Z)_{B}+X_{B}(Y Z)_{A}
$$

$$
\begin{aligned}
& +Y_{A}(X Z)_{B}+Y_{B}(X Z)_{A}+Z_{\mathbb{A}}(X Y)_{B}+Z_{B}(X Y)_{\mathbb{A}}= \\
& 2(X Y)+2(X Z)+2(Y Z)+6(X Y Z) \quad \ldots(2.9)
\end{aligned}
$$

The resultant spectrum on subtraction of the sumaing effect will then be

$$
2 X+2 Y+2 Z-4(X Y Z)=2(X+Y+Z)-4(X Y Z)
$$

which is just the sum of two single spectra again but now over-corrected for the triple-sum pulse. Since the probability of the triple sum is small compared to the double sum, it is felt that the over-correction by the subtraction of the routed spectrum from the combined spectrum to yield the single spectrum is negligible.
(b) Bremsstrahlung
A. final contribution to the single spectrum is the detection of beta particles -- either directly or as Bremsstrahlung radiation. The electrons themselves are readily scopped by using an absorber in front of the NaI crystal. But in the process, the de-accelerating electrons emit Bremsstrahlung radiation. To keep this at a minimum, a one centimeter thick polyethylene disc was used as the absorber. The effective Z of polyethylene is low and this improves the ratio of radistionless energy dissipation to Bremsstrahlung radiation.

2.3 Pair Spectrometry

(a) The Spectrometer

The three-crystal pair spectrometer system used is shown in Figure 5. (F.C. is a fast coincidence circuit with a resolving time of $2 \tau=60 \mathrm{nsec}$.) Only the central

THREE-CRYSTAL PAIR SPECTROMETER SYSTEM
crystal C ($1^{\text {m }} \times 1-1 / 2^{\text {H }}$) is exposed to gaman rays from the source. If the energy of the incident gama ray exceeds that required to produce an electron-positron pair (1.022 MeV) then the remainder is carried off as kinetic energy of the two particles. The scintillator and photomultiplier convert this energy to a signal which can be amplified and recorded in the multichanel analyzer.

When the positron comes to rest, it combines with an electron and the resulting annihilation process produces two 5ll-keV gama rays moving in opposite directions. The small dimensions of the central crystal enhance the possibility that neither of these annihilation gama rays will interact with the crystal but will escape and be detected by the 3×3-inch side crystals \mathbb{A} and B. By requiring that a triple coincidence among the three crystals is necessary before the centre crystal pulse is analyzed, most spurious and other undesirable pulses in the centre crystal can be eliminated. The energy of the gama ray is then just 1.022 MeV plus that entering the multichannel analyzer.

A further refinement is the use of pulse-height selectors ensuring that the energy of the accepted gamma rays in the side crystals is indeed 511 keV . Without this improvement there is another interaction which will trigger all three detectors giving erroneous results. This is when one or both 511-keV annihilation gamma rays undergo Compton scattering within the central crystal and are detected by the side crystals as well, triggering the coincidence
circuitry. The signal sent by the centre crystal will then be increased by the amount of energy transmitted to the electrons by the scattering. By setting the side crystal pulse-height selectors so that they will accept only energies of about 511 keV , the forward scattered gama rays, of lower energy, will necessarily be refected.

Figure 6 shows this. In Figure 6 (a), the 2.76 MeV pair spectrum for Na^{24} using no pulse height selector on the side crystals has its higheenergy edge distorted due to the energy added by the compton scattered electrons to the original energy supplied by the electron-positron pair. In Figure 6(b), when narrow windows about 511 keV are used to screen out the forward scattered gama rays, the analyzer was not allowed to see the incorrect higher energy pulses, thus removing the distortion in the spectrum.
(b) Efficiency and Resolution

The relative efficiency of the pair spectrometer as a function of energy is assumed to follow the pair crosssection curve (3). For NaI, the pair-production linear attenuation coefficient $K_{c^{-1}}$ can be found knowing the same coefficient for lead $K_{\mathrm{Pb}}(4)$.

$$
\begin{align*}
K_{N a} & =K_{\mathrm{Pb}}\left(\frac{\rho_{\mathrm{Na}}}{11.35} \cdot \frac{207.2}{\Lambda_{N a}}\right)\left(\frac{z_{N a}}{82}\right)^{2} \\
K_{I} & =K_{\mathrm{Pb}}\left(\frac{\rho_{I}}{11.35} \frac{207.2}{\Lambda_{I}}\right)\left(\frac{z_{I}}{82}\right)^{2} \tag{2.12}\\
\text { and } \quad K & =K_{I}\left[1+\frac{N_{N a}}{N_{I}}\left(\frac{z_{N a}}{Z_{I}}\right)^{2}\right]
\end{align*}
$$

FIGURT 6

where ρ is the density ($11.35 \mathrm{~g} / \mathrm{cm}^{3}$ for Pb), A is the atomic weight (207.2 for Pb), Z is the atomic number (82 for Pb), and N is the number of atoms/cm ${ }^{3}$ of an element in the absorber. The pair cross-section is then given by

$$
\begin{equation*}
\sigma_{p p}(N a I)=\frac{K}{\rho N a I}=0.084 K_{P b} \quad \mathrm{~cm}^{2} / \mathrm{g} . \tag{2.13}
\end{equation*}
$$

Figure 7 is a plot of the pair-production linear attenuation coefficient $K_{P b}$ as a function of energy (5).

In the pair spectrometer, the energy analyzed in the crystal is reduced by 1.022 MeV hence the resolution of the spectrometer will be characterized by that for ai gama ray of energy Ey -1.022 MeV rather than of energy $\mathbb{E} \gamma$. The absolute width of a spectral line obtained from a scintillation crystal increases as the energy deposited in the crystal increases. As a result, for the same crystal, the uncertainty in the value of energy $\mathbb{E} \gamma-1.022$ will be less than that for energy $\mathbb{E} \gamma$. Then the actual energy value obtained from the pair spectrometer by adding 1.022 MeV will be more reliable than if it had been obtained directly.

Specifically, photopeak resolution (width at onehalf maximum) for a single crystal spectrum is $\Delta \mathrm{E}_{\mathrm{g}} / \mathbb{E}_{\gamma}$. Using the three-crystal pair spectrometer system the effective resolution becomes $\Delta \mathrm{E}_{\mathrm{p}} /(\mathrm{E} \gamma-1.022)$. Above about two $\mathrm{MeV} \Delta \mathrm{E}_{\mathrm{p}} \approx \Delta \mathrm{E}_{\mathrm{s}}$ and hence the pair spectrometer has improved the resolution by a factor of approximately

$$
\begin{equation*}
\frac{\Delta E_{p}}{E_{\gamma}-1.022} / \frac{\Delta E_{s}}{E_{\gamma}} \quad \frac{E_{\gamma}}{E_{\gamma}-1.022} \tag{2.14}
\end{equation*}
$$

For a two MeV gama ray this represents a doubling of the resolution.

FIGURE 7

2.4 Two-Dimensional Coincidence Spectrometry

One-dimensional pulse-height analyzers for use in time correlation studies have been of great assistance in constructing decay schemes of radioisotopes. Such an instrument is show in Figure 8. Ideally, only the gama rays in coincidence with the gama ray of the energy selected by the pulse-height selector will be recorded in the multichannel analyzer. By altering the window of the pulseheight selector to only include each of the gamm rays observed in the single spectrum one at a time, a series of coincident gama spectra are obtained which when analyzed generally yield a unique decay scheme.

But the window energy selected not only contains the photopeak of the gamma ray desired but also the Compton tails of higher energy gamna rays. These higher energy gama rays have a coincidence spectrum of their own and these will contaminate the spectrum desired. The onedimensional system gives no information on this Compton interference. Also the one-dimensional method is cumbersome when an isotope with a complicated decay scheme is under observation. In this case a large number of independent coincidence runs would have to be made and this would be extremely time consuming since the coincidence counting rate would be very much lower than singles. For shorterlived isotopes this could involve preparation of numerous samples and normalization of the resulting data.

Using a two-dimensional instrument, all coincidences

ONE-DIMENSIONAL COINCIDENCE SYSTEM
with all window energies can be recorded simultaneously. Not only does this produce all the coincidence spectra for all the ganma rays involved but also it traces out the Compton interference in each by recording the Compton coincidence spectra in an energy region where only the Compton tail is present.

The instrument is simply an extension of the onedimensional system. In principle, a series of pulseheight selectors covering the desired energy range each gate a different portion of the MCA. Consider the decay of S^{46} for example (see Figure 9). Assume at first that the single crystal response is ideal - that is, that the single spectrum is composed of two delta functions. In Figure 10 the block of 36 squares represents the MCA memory readout where $n_{i j}$ is the number of counts in row i, column j. And each row (column) is the part of the memory readout which has responded to the windows $w_{1}, w_{2}, \ldots w_{6}\left(v_{1}, v_{2}, \ldots v_{6}\right)$. Thus each row (column) represents a single coincidence spectrum as would be produced by the one-dimensional instrument. The energies covered by the sets of windows w_{i} and v_{j} are indicated by the single spectrum of Sc^{46} shown on the sides. For example, since w_{3} includes a part of the spectrum where there is no gama radiation, then it should have no coincidence spectrum and $n_{3 j}=0$ for all J . But w_{4} includes the $887-\mathrm{keV}$ gama ray and its coincidence spectrum should contain the lll9-keV gamma ray. Window v_{6} covers this energy range so $\mathrm{n}_{4 \mathrm{j}}=0$ for all j except $\mathrm{j}=6$. Similarly n_{55} will

FIGUPD 9

Sc ${ }^{46}$ DECAY SCHEME

FIGURE 10

IDEAL TWO-DIMENSIONAL COINCIDENCE ARRAY FOR Sc^{46}
be non-zero. Looking at the complete array in this fashion, the ideal case for Sc^{46} would in fact have only counts n_{55} and n_{46} showing. This is true provided we ignore the possibility of chance events, when gama rays from different nuclei gate the coincidence circuit. This leads to a few counts n_{45} and n_{56} : Also n_{55} and n_{46} would partly be made up from chance. So once the energy scales have been established a quick look at the array for the high count regions readily establishes the coincident gamma rays. If the energy scales are the same, the readout will be symmetrical.

A 1024-channel two-dimensional analyzer was used in this study. The arrays available with this instrument were $8 \times 128,16 \times 64$, and 32×32 channels in each dimension. Using the 32×32 array form, the two-dimensional coincidence spectrum of Sc^{46} was measured and the results have been plotted in the isometric drawing Figure 11. Here it is readily noted thet the majority of $n_{i j} \neq 0$ and the coincident photopeaks are not delta functions. This is, of course, because the crystal response is not ideal as at first assumed. However the coincident photopeaks are readily discernible as they lie a factor of ten or more above the Compton peak, chance peak, and other coincident points.

TWO-DIMENSIONAL COINCIDENCE SPECTRUM OF Sc ${ }^{46}$

CHAPTER III

Br^{82} DECAY SCHENE

3.1 Single spectrum

The single-crystal gamma-ray spectrum was observed with an unshielded 3×3-inch NaI(T1) crystal integrally mounted on a DuMont 6363 photomultiplier. A polyethylene beta-ray absorber was attached to the crystal face. The spectrum was recorded in a 1024-channel Nuclear Data pulseheight analyzer after amplification in a DD2 linear amplifier.

The spectrum obtained with the source at 10 cm. and corrected for room background is shown in Figure 12. To correct for the contribution from coincidence and random sumaing, the analyzer was operated in the split memory mode using two groups of 512 chanmels each as outlined in Ghapter II, Section 2(a). The associated sum-coincidence contribution and the corrected single spectrum are also indicated in Figure 12.

The sum coincidence completely accounts for the highest energy peak in the observed singles and also for the second highest energy peak (about 1900 keV) within statistics. A third peak at energy about 1648 keV can not

RIGUR 12

be accounted for in terms of coincidence or random summing. As the resultant single spectrum indicates, the $1648-\mathrm{keV}$ energy peak appears to correspond to an actual gamma ray. For energies below this to 500 keV the single spectrum is identical to that found by earlier experimenters (1).

3.2 Pair Spectrum

Figure 13 is a typical pair spectrum for $B r^{82}$ using narrow windows at the $511-\mathrm{keV}$ gate as suggested in ChapterII, Section 3(a). The 1317 - and $1475-\mathrm{keV}$ lines are very prominent and the existence of an even higher energy line is obvious. Its energy is about 1648 keV . Above this is a continum consisting of a few counts per channel. Coincidence summing can not account for this but radom summing probably does. However, if a gama ray of energy 1900 keV does exist, on the basis of the number of counts in that region of the pair spectrum, its intensity must be less than 5% of the $1648-\mathrm{keV}$ gamma ray.

3.3 Coincidence Spectrum

The coincidence spectra were taken with the crystals at 180° mounted on arms $7^{\prime \prime}$ above a $3 / 4^{\prime \prime}$ channel aluminum track. This was placed in the middle of the room to minimize any backscattering. The Br^{82} sample was sandwiched between celluloid tape and mounted on an anti-Compton shield. Arrays of 16×64 and 32×32 were used to produce the best results. With an energy range of 1550 to 1750 keV for the

[^0]

16 dimension and 0 to 800 keV for the 64 dimension, the gamma spectrum in coincidence with the $1648-\mathrm{keV}$ line was formed. This is shown in Figure 14 which indicates that gamma rays of energy 777 and about 220 keV are coincident with it. It also appears as if the $554-\mathrm{keV}$ line is coincident butthis would seem impossible on looking at the decay scheme if the $1648-777$ coincidence is true. The 554 line appears because of interference from the 1475-554 and $1475-619 \mathrm{keV}$ correlations. To verify this, Figure 15 shows slices in the 16 channel dimension at 220,554 , and 777 keV . The 220- and 777-keV coincidence spectra clearly show the $1648-\mathrm{keV}$ line while the $554-\mathrm{keV}$ spectrum shows no indication of a peak in this region. The exponential drop-off observed in this spectrum is attributable to random and coincidence summing. the resolution of the $1648-\mathrm{keV}$ coincidence spectrum from the above mentioned interference can be achieved if one resolves each row of 16 channels into a $1648-\mathrm{keV}$ peak, a $1475-\mathrm{keV}$ peak, and an exponential term.

Using the method of least squares, the 1024 channels of data were analyzed 16 channels at a time and resolved into three components: $a_{i}(1648), b_{i}(1475)$, and $c_{i}(\exp)$. The resulting 64 values for a_{i} give the coincidence spectrum for the $1648-\mathrm{keV}$ line component. This has been plotted as well in Figure 14 , indicating that the $1648-\mathrm{keV}$ transition is in coincidence with the 220 - and $777-\mathrm{keV}$ transitions. Two 32×32 array arrangements were run covering the

FIGURT 15

energy range from 0 to 900 keV coincident with 0 to 1800 keV. The results verified the decay scheme presented in the Nuclear Data Cards (1) except for the $250-350-\mathrm{keV}$ cascade.
3.4 Revised Decay Scheme
(a) Energies

The gamma-ray energies between 500 and 1500 keV as recorded on the decay scheme in the Nuclear Data Cards (1) were used to obtain the energies of the 220-and 1648keV lines by extrapolation from the various spectra, correcting for the non-linearity of the NaI crystal. The results are tabulated below in Table I.

The transitions previously reported at 250 and 350 keV were not found.

TABLE I
New Gamma-Ray Energies for $\mathrm{Br} r^{82}$

γ-Ray	Type of Spectrum	Energy Obtained	Average with Standard Deviation
220	16×64 16×64 32×32	219 214 1648	Single Pair Pair

The total energy recorded in Table I agrees with the 1871 keV required to fit between the 2648 - and $777-\mathrm{keV}$ levels in Kr^{82}. The cascade can then follow the decay pattern 220-1648-777 or 1648-220-777. This sets up a new energy level in Kr^{82} at 2426 or 997 keV respectively. Examination of the neutron and proton pairing energies compiled by Dewdney (6) indicate that the first particle state would be at approximately 2400 keV for this mass. Therefore the states below this energy are collective in nature.

The $36 \mathrm{Kr}_{4}^{82}$ nuclide is even-even with a neutron number near the 50 shell. This suggests that $K r^{82}$ will be nearly spherical in shape and indicates it will exhibit vibrational rather than rotational properties. Assuming the vibrational oscillations are small, they can be approximated by simple harmonic motion. A solution of the Schrodinger wave equation using the hermonic oscillator potential well yields a series of possible energy levels separated in energy of an amount $\hbar \omega$ where $\omega=$ classical vibration frequency as indicated in Figure 16. The lowest mode of $3 \hbar \omega \ldots 0,2,3,4,6^{+}$ $2 \hbar \omega$ $\hbar \omega$ \qquad 2^{+}

Quadrupole Vibrational Spectrum for Even-Even Nuclei with Spherical Equilibriua Shape
deformation of this system is of quadrupole type. Hence the first excited state has a total angular momentum of two units and positive parity. The second states contain two quanta of excitation and the total angular momentum values may be obtained by coupling the two quanta, each having an angular momentum of two units. However, the model permits only the symmetric combinations $J=0,2,4$ with positive parity. The degeneracy of the level is a result of the use of the ideal simple harmonic potential. In actual fact the levels are separated in energy (7). Examining the $K r^{82}$ energy-level scheme as shown in Figure 1 using the above background, it can be seen that the 777- and 1475-keV levels probably correspond to the first two excited harmonic oscillator levels with spins 2^{+}. The proposed $997-\mathrm{keV}$ level then could be either the $J=0^{+}$or 4^{+}level. The $J=0^{+}$level can be excluded because this would mean the transition from 2648 keV to the proposed level would be an M4 transition which has a very small transition probability and unlikely to competea with the other gamma rays leaving the level.

Assume that the proposed $997-\mathrm{keV}$ level is the 4^{+}. There is a possibility that beta decay could occur to the level from $\mathrm{Br}{ }^{82}$. This would be a first-forbidden decay. A $\log 10^{f t}$ of 9 is a typical maximum for first-forbidden decay in this mass region (8) and using the $\log 10^{f}$ values from Evans (9) it follows that :
and

$$
\begin{aligned}
& \text { beta end point energy } E_{m a x}=2.1 \mathrm{MeV} \\
& \log 10^{f}[Z=36, \mathrm{E}=2.1]=2.5 \\
& \log _{10^{t}}=\log 10^{f t}-\log 10 f=9-2.5=6.5 ;
\end{aligned}
$$

therefore $t_{1}=3.2 \times 10^{6}$ seconds and since total half life $t=36 \mathrm{hr} .=1.3 \times 10^{5} \mathrm{sec}$. , the branching ratio would be:

$$
\frac{1 / 3.2 \times 10^{6}}{1 / 1.3 \times 10^{5}}=\frac{1.3}{32}=4 \%
$$

However, an upper limit for higher energy beta-ray groups has been reported to be less then 0.6% (10). Thus an energy level at 997 keV is inconsistent with beta-ray measurments. Furthermore, other even-even nuclides in this mass region do not heve low-lying second energy levels.

It is more realistic then to have an energy level at 2426 keV . The order of the gama cascade is then 220-1648-777. This would lead to the low intensity observed for this branch since the $220-\mathrm{keV}$ transition would be in competition with the 554 - and $827-\mathrm{keV}$ transitions. The insertion of this level and the removel of the 250- and 350keV gamma rays leads to the revised decay scheme show in Figure 17.

(b) Intensities

The relative intensities of the 1044-, 1317-, 1475-, 1648-, and 1900 (if it exists)-keV gamme rays were calculated from the single and pair spectra. The results are indicated in Table II below.

The intensities of all the gama rays as obtained from a reduction of the coincidence data is tabulated in a

REVISED Br^{82} DECAY SCHEME
(ALL ENERGIES IN keV)

later section.

TABLE II

Some Gama-Ray Intensities for $B r^{82}$

γ-Ray	Relative Intensity Singles	Relative Intensity Pair	Average Value	Intensity Based on $1475=20$ or $777=100$
1044	8.5	6.5	6.5	$28 \pm 10 \%$
1317	6.5	4.3	4.5	20
1475	4.8	0.2	0.2	~ 1
1648	0.2	<0.01	<0.01	<0.05
1900	<0.05			

* Normalized to the Singles value

REGRESSION ANALYSIS

4.1 Reduction of Coincidence Surface
(a) Outline

The coincidence surface is obtained in the form $S(x, y)$ where x and y are the digitized coordinates and $S(x, y)$ is the number of events at (x, y). The surface corresponding to a coincident pair of gama rays γ_{i} and γ_{j} is given by $X_{i}(x) Y_{j}(y)$ where X_{i} and X_{j} are the response functions.

The equation for the model is of the form

$$
\begin{equation*}
s(x, y)=\sum_{i, j=1}^{n} a_{i j} X_{i}(x) Y_{j}(y) \tag{4.1}
\end{equation*}
$$

where $a_{i j}$ are the intensity correlation coefficients. The model equation can be reduced to a set of coupled equations

$$
\begin{array}{ll}
S(x, y)=\sum_{i=1}^{n} a_{i}(y) X_{i}(x) & \ldots(4 \cdot 2 a) \\
a_{i}(y)=\sum_{j=I}^{n} a_{i j} Y_{j}(y) & \ldots(4 \cdot 2 b)
\end{array}
$$

Now consider whether a regression analysis of the coupled equations 4.2 can be carried out in such a way as to lead
to the same results as an analysis of 4.1 .
(b) Analysis of Coupled Equations

From the least squares condition and weighting with the variance $S(x, y)$, in $4.2 a$,

$$
\sum_{x=1}^{N} \frac{1}{S(x, y)}\left[S(x, y)-\sum_{i=1}^{n} a_{i}(y) X_{i}(x)\right]^{2} \quad \text { must be a minimum. }
$$

For a minimum, the partial derivative with respect to $a_{i}(y)$ equals zero. Therefore we get

$$
\begin{equation*}
\sum_{x=1}^{N}\left[S(x, y)-\sum_{i=1}^{n} a_{i}(y) x_{i}(x)\right] \frac{x_{k}(x)}{S(x, y)}=0 \tag{4.3}
\end{equation*}
$$

where $\left.\begin{array}{rl}i & =1,2, \ldots n \\ k & =1,2, \ldots n\end{array}\right\}$ number of lines in X direction $x=1,2, \ldots N$ number of channels in X direction. These equations 4.3 are solved for each $y=1,2, \ldots N$ to give the $n \times N$ set $a_{i}(y)$.

Similarly, performing the least squares condition on 4.2 b yields

$$
\sum_{y=1}^{N} w_{y}\left[a_{i}(y)-\sum_{j=1}^{n} a_{i j} Y_{j}(y)\right] Y_{1}(y)=0 \quad \ldots(4 \cdot 4)
$$

$$
\text { where } \begin{aligned}
j & =1,2, \ldots n \\
1 & =1,2, \ldots n \\
y & =1,2, \ldots N \text { number of channels in } Y \text { direction } \\
w_{y} & =\text { weight function. }
\end{aligned}
$$

From 4.4,

$$
\sum_{y=1}^{N} w_{y} Y_{1}(y) a_{i}(y)=\sum_{y=1}^{N} w_{y} Y_{1}(y) \sum_{j=1}^{n} a_{i j} Y_{j}(y) . \quad \ldots(4.5)
$$

Multiply each side of 4.3 by $W_{y} Y_{1}(y)$ and sum over y to give

$$
\sum_{y=1}^{N} w_{y} Y_{1}(y)\left[\sum_{x=1}^{N}\left[S(x, y)-\sum_{i=1}^{n} a_{i}(y) x_{i}(x)\right] \frac{X_{i}(x)}{S(x, y)}\right]=0
$$

Simplifying,

$$
\sum_{y=1}^{N} w_{y} Y_{1}(y)\left[\sum_{x=1}^{N} S(x, y)^{\frac{X_{k}(x)}{S(x, y)}}\right]-\sum_{x=1}^{N} \sum_{i=1}^{n}\left[\sum_{y=1}^{N} w_{y} Y_{1}(y) a_{i}(y)\right] \frac{x_{i}(x) X_{k}(x)}{S(x, y)}
$$

Substituting from 4.5 and simplifying yields

$$
\left.\sum_{y=1}^{N} \sum_{x=1}^{N} \mid w_{y / S}(x, y)\right]\left[S(x, y)-\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} y_{j}(y) x_{i}(x)\right] Y_{1}(y) x_{k}(x)=0 \ldots(4
$$

This two step regression analysis is shown schematically in Figure 18.

Reduction of Coincidence Surface by Regression Analysis Figure 18
(c) Analysis of Original Model Equation

From the least squares condition on 4.1 we get
$\sum_{x=1}^{N} \sum_{y=1}^{N} \frac{1}{s(x, y)}\left[s(x, y)-\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} X_{i}(x) y_{j}(y)\right] x_{k}(x) y_{1}(y)=0 \ldots(L$
A comparison of 4.7 with 4.6 shows that the equations for the coupled system yield the same least-squares estimate of $a_{i j}$ as the equation for the original model if $w_{y}=1$ for all y. This implies that the fits in the second stage based on 4.2 b should be unweighted.
(d) Error Estimate

$$
\begin{equation*}
\text { Let } \sum_{x=1}^{N} \sum_{y=1}^{N} X_{k}(x) Y_{1}(y)=V_{k l} \tag{4.8}
\end{equation*}
$$

$$
\sum_{x=1}^{N} \sum_{y=1}^{N} \frac{x_{i}(x) Y_{j}(y) X_{k}(x) Y_{1}(y)}{S(x, y)}=c_{i j k l}
$$

then from 4.7 $\left[v_{k 1}\right]=\left[c_{i j k l}\right]\left[a_{i j}\right]$
therefore $a_{i j}=\sum_{k l} c_{i j k l}^{-1} v_{k l}$
and $\quad \sigma_{i j}^{2}=\operatorname{var}\left(a_{i j}\right)=\frac{\chi^{2}}{f} c_{i j i j}^{-1}$
where $\mathrm{f}=\mathrm{N}^{2}-\mathrm{n}^{2}$

$$
X^{2}=\sum_{x=1}^{N} \sum_{y=1}^{N}(1 / S(x, y))\left[s(x, y)-\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} X_{i}(x) x_{j}(y)\right]^{2} .
$$

But C is a 4 th order n-dimensional matrix which can be recast into a n^{2}-dimensional matrix so for even a reasonable number of gama rays the inversion to C^{-1} is next to impossible. Thus the error in the intensity coefficients cannot be practically determined.

Returning to the coupled equations, in the first
stage, if we let

$$
\begin{equation*}
v_{k}=\sum_{x} x_{k}(x) \tag{4.11}
\end{equation*}
$$

and $\quad T_{i k}=\sum_{x=1}^{N} X_{i}(x) X_{k}(x) / S(x, y)$
then from $4.3 \quad a_{i}(y)=\sum_{k} T_{i k}^{-1} v_{k}$.
Similarly, in the second stage, let

$$
\begin{equation*}
u_{i l}=\sum_{y} Y_{1}(y) a_{i}(y) \tag{4.13}
\end{equation*}
$$

and $\quad U_{j 1}=\sum_{y=1}^{N} Y_{j}(y) Y_{1}(y)$
then from 4.4

$$
\begin{equation*}
a_{i j}=\sum_{1} u_{j l}^{-1} u_{i 1} \tag{4.14}
\end{equation*}
$$

On substituting into 4.14 from 4.11 to 4.13 we get

$$
\begin{align*}
a_{i j} & =\sum_{1} U_{j l}^{-1}\left[\sum_{y} Y(y)\left[\sum_{k} T_{i k}^{-1} \cdot \sum_{x} X_{k}(x)\right]\right] \\
& =\sum_{k} \sum_{1} U_{j 1}^{-1}\left[\sum_{x} \sum_{y} T_{i k}^{-1} Y_{1}(y) X_{k}(x)\right] . \tag{4.15}
\end{align*}
$$

If $T_{i k}^{-1}$ is replaced by the average value $\bar{T}_{i k}^{-1}$ then we can substitute 4.8 in 4.15 to give

$$
\begin{array}{rlr}
a_{i j} & \doteq\left[\sum_{k} \sum_{1} U_{j l}^{-1} \bar{T}_{i k}^{-1}\right] v_{k l} & \ldots(4.16) \\
\text { and } \quad \sigma_{i j}^{2} & \doteq \frac{\chi^{2}}{\mathrm{f}} U_{j j}^{-1} \bar{T}_{i j}^{-1} & \ldots(4.17)
\end{array}
$$

Since $T_{i k}$ and $U_{j l}$ are $n \times n$ matrices where normally $n \leqslant 10$, the inverses are readily established and an estimate of the error in the intensity coefficients is now possible.

It remains now to determine the relationship between the approximate and the exact veriance. This is at present under study.
(e) The Physical Significance of the Variance

The variance of $a_{i j}$ is $\sigma_{i j}^{2}$ where σ is called the standard deviation. The standard deviation represents a measure of the width of the distribution curve for $a_{i j}$. If we assume the probability curve is a Gaussian centered with mean value at the origin then $P\left(a_{i j}\right)=P(z)$ is given by

$$
P(z)=\frac{e^{-z^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi} \sigma}
$$

As Figure 19 illustrates, 68% of a particular $a_{i j}$ value lies between $\pm \sigma$. Hence the smaller the σ or the σ^{2} (variance) then the more peaked is the probability distribution and the more reliable the value obtained for $a_{i j}$.

4.2 Intensities from Intensity Correlation Matrix

Before the single gamma-ray intensities can be determined, the correlation intensities must first be found. To do this the first row and column of the coincidence surface $S(x, y)$ is replaced with a corresponding single run at the same gain but not necessarily normalized in time. Using a computer, the singles intensity coefficients b_{i} and c_{j} (the number of times the line shapes $X_{i}(x)$ and $Y_{j}(y)$ fit into the single spectra $S(x, 1)$ and $S(1, y)$ respectively) are found. From the rest of the response surface, the intensity correlation coefficients $a_{i j}$ (the number of times the response surface $X_{i}(x) Y_{j}(y)$ fits into the coincidence surface $S(x, y)$ for the $i-j$ coincidence)

ERROR CURVE
are obtained.
If we let N_{S} and N_{c} be the sample source strength for the time run for the singles and coincidences respectively, P the probability of gama decay, e the detector efficiency, and k the normalization constant for the line shape, then it follows for coincident gamma rays γ_{i} and γ_{j}
and

$$
\begin{align*}
& a_{i j}=N_{c} P\left(\gamma_{i} \gamma_{j}\right) e\left(\gamma_{i}\right) e\left(\gamma_{j}\right) k\left(\gamma_{i}\right) k\left(\gamma_{j}\right) \\
& b_{i}=N_{s} P\left(\gamma_{i}\right) e\left(\gamma_{i}\right) k\left(\gamma_{i}\right) \tag{4.18}\\
& c_{j}=N_{s} P\left(\gamma_{j}\right) e\left(\gamma_{j}\right) k\left(\gamma_{j}\right)
\end{align*}
$$

It is now obvious that the ratio of the product of the singles intensity coefficients to the intensity correlation coefficients will be independant of detector efficiencies and line shape normalization, viz:

$$
\begin{equation*}
\frac{b_{i} c_{j}}{a_{i j}}=K \frac{P\left(\gamma_{i}\right) P\left(\gamma_{j}\right)}{P\left(\gamma_{i} \gamma_{j}\right)} \tag{4.19}
\end{equation*}
$$

where K is a constant.
The computer can be programed to find the intensity correlation matrix $b_{i} c_{j} / a_{i j}$. Then by examining the decay scheme of the element under study, the value of the various probabilities P can be determined from the theoretical intensities of the gama rays. These theoretical intensities are in terms of several parameters, the number required being one less than the maximum number of gamma rays needed to form a cascade from the highest to the lowest energy level. Hence a theoretical intensity correlation
matrix can be set up. Blements $a_{i j}$ where i-j is not a coincident gamma pair will be zero.

Now the theoretical and experimental matrix elements can be equated and from the resulting equations the intensity paraneters can be found. Practically, since the theoretical matrix is symmetrical and because several of the elements are identical, then the corresponding computed elements can be averaged, reducing the number of equations required to solve. Once the parameters heve been found, the individual gama-ray intensities can be worked out and also their probable errors.

$4.3 \mathrm{Br}^{82}$ Gamana-Ray Intensities

(a) Data Collection

In the case of Er^{82}, let the probabilities of the 554-, 619-, and 698-keV gama rays decaying be x, y, and z respectively. Thus x, y, and z are the theoretical intensity parameters mentioned in the previous section. If we assume that the 220 - and $1648-\mathrm{keV}$ gaman rays have negligible intensity, then the theoretical intensity correlation matrix will be in terms of x, y, and z as indicated in Table III on page 48.

TABLE III
Theoretical Intensity Correletion Matrix (Each eiement shown has been divided by the constant K)

	554	619	698	777	827	1044	1317	1475
554	0	x	x	$\frac{x q}{q+1}$	0	0	x	x
619	x	0	y	$\frac{y q}{z}$	0	0	0	y
698	x	y	0	q	0	0	0	0
777	$\frac{x q}{q+x-1}$	$\frac{y q}{z}$	q	0	q	9	9	0
827	0	0	0	q	0	$1-x$	0	0
1044	0	0	0	q	$1-x$	0	0	0
1317	x	0	0	q	0	0	0	0
1475	x	y	0	0	0	0	0	0

The coincidence suxface $S(x, y)$ was a 32×32 array with 500- to $1600-k e V$ range along aach dimension. The crystels were at 180° and placed about 5 cm . from the source. Coincidence and random adding at this distance was not negligible but these and other spurious events were accounted for in the reduction analysis by including the 1648-keV gamma ray line shape. The sample was counted for an hour. This period of time was short enough to be able to ignore any possible gain shifts in the two
dimensions. The single spectra were run simultaneously for four minutes on the 32×32 array set-up while the analyzer was in a "reee" mode. Background spectra were also run for the same time and subtracted to yield $s(x, 1)$ and $S(1, y), S(x, 1)$ is plotted in Pigure 20. $S(1, y)$ is almost identical. Also $\mathrm{Na}^{22}, \mathrm{Cs}^{137}, \mathrm{Mn}^{54}, \mathrm{Zn}^{65}$, and $\mathrm{Co}{ }^{60}$ were analyzed separately at the seme gain to produce standard lines from which the line shepes for stripping could be interpolated.
(b) Preparation of Line Shapes and Surface Reduction The energy scale for the Br^{82} coincidence data is so condensed that each gamma photopeak has a width of just over three channels. These three peak chamels and their number of counts \mathbb{N} for the photopeaks of the 554 m , $777-$, $1044-$, 1317-, and $1475-\mathrm{keV}$ gamua rays were found in the X and Y directions from the coincidence array. The other gama rays were not resolved.

If we assume thet the three peak points lie on a Gaussian, then the highest point on the Gaussian, which will be the true channel location for the gama-ray energy, is found in the following way, with reference to Figure 21. The natural logarithm of a Geussian is a parabola. Let $\mathrm{z}=\mathrm{lnN}$. Then the function z is a parabola of the form

$$
\begin{equation*}
z=a x^{2}+b x-c \tag{4.20}
\end{equation*}
$$

RIGURP 21

GAUSSIAN PEAK LOCATION

Therefore we can say
and

$$
\left.\begin{array}{l}
z(x=-1)=z_{-1}=a-b+c \\
z(x=0)=z_{0}=c \\
z(x=1)=z_{1}=a+b+c
\end{array}\right\}
$$

$$
\ldots(4.21)
$$

and

$$
\begin{align*}
& \text { e find that } \tag{4.22}\\
& a=(1 / 2)\left(z_{-1}+z_{1}-2 z_{0}\right)=(1 / 2)\left(\frac{N_{1} N_{-1}}{N_{0}^{2}}\right) . \\
& b=(1 / 2)\left(z_{1}-z_{-1}\right) \quad=(1 / 2)_{n}\left(\frac{N_{1}}{N_{-1}}\right) .
\end{align*}
$$

For a maximum, $\frac{d z}{d x}=2 a x+b=0$.
Therefore the peak is at

$$
\begin{equation*}
x=-\frac{b}{a}=-1 / 2 \frac{\ln \left(N_{1} / N_{-1}\right)}{\ln \left(N_{1} N_{-1} / N_{0}^{2}\right)} \tag{4.24}
\end{equation*}
$$

Using equetions 4.22 to 4.24 the values x, a, and b were calculeted for the resolved gamarays. After converting the gaman energies to NaI pulse heights using Heath's curve for the non-linearity of NaI (11), a plot of pulse height versus X and $1 / a$ was constructed for both X and Y dimensions. Using the least squares condition, the equations of the best straight lines through the points were found and interpolations at the pulse heights of the unresolved gama rays (619, 698,827 , and 1648 keV) were made to find their x and $1 / a$ values. from this b was readily calculated. Choosing an axbitrary c value, from equations 4.21 the z values were determined. Then using the relation $N=e^{z}$, the three peak counts for the unresolved gama reys were obtained. Finally, the rest of the line shape for all the gama rays was interpolated from the standard lines.

The reduction of the coincidence surface was then carried out using the MoMaster IBM 7040 Computer. The operation was programmed so that $a_{i}(y), a_{i j}$, with their respective residuals and χ^{2} as well as $b_{i} c_{i} / a_{i j}$ were printed out. By plotting $a_{i}(y)$ for all y, true coincidence spectra for each gamme ray were obtained. Comperisons between the locations of the gamm rays in these spectra to the locations in the line shapes pointed out small errors in positioning of the line shapes in the Y dimension. These were shifted accordingly. By transposing the $s(x, y)$ data to $S(y, x)$ and interchanging the X-and X-line shapes, a rerun of the program produced $a_{j}(x)$ and as with the Y-line shapes, the X-line shapes were shifted to more exact positions.

With the corrected line shapes, the program was run again keeping a careful check on the residuals. Small alterations were repeatedly made in the line shapes until the residuals were as small as possible. In the final run the average value of X^{2} / f for the $a_{1}(y)$ was 11 .

(c) Results

Table IV list: the average value for the different matrix elements. The error quoted is the probable error in the mean.

TABLE IV
Matrix Element Values

Parameter	No. Times in ajj $^{\prime}$	Average Value	Error
Kx	8	3.07	$\pm 10 \%$
$\mathrm{~K}(1-\mathrm{x})$	2	1.15	$\pm 1 \%$
Ky	4	1.53	$\pm 16 \%$
$\mathrm{Kq}\left(\frac{\mathrm{Xq}}{\mathrm{q}+\mathrm{X}-1}\right)$	8	3.16	$\pm 13 \%$
$\mathrm{~K}\left(\frac{\mathrm{Yq}}{\mathrm{Z}}\right)$	2	6.33	$\pm 2 \%$

Solving for x, y, and z yields:

$$
\begin{aligned}
& x=0.73 \pm 13 \% \\
& y=0.43 \pm 12 \% \\
& z=0.14 \pm 31 \%
\end{aligned}
$$

The resulting gama-ray intensities are as follows in Table V.

TABLE V
$B x^{82}$ Intensities from Regression Analysis

Gamma Energy keV	$\begin{aligned} & \text { Theoretical } \\ & \text { Intensity } \end{aligned}$	Calculated Intensity	$\begin{aligned} & \text { Intensity } \\ & \text { Based On } \\ & 777=100 \end{aligned}$	Intensity from Data Gards (1)
554	x	$0.73 \pm 13 \%$	103 ± 14	78-105
619	y	$0.43 \pm 12 \%$	61^{+8}	50
698	z	0.14さ 31%	20 ± 6	33-37
777	1-y+z	$0.71 \pm 16 \%$	100 ± 16	100
827	1-x	0.27 ${ }^{+38 \%}$	38-15	28-30
1044	1-x	0.27-38\%	38*15	28-36
1317	x-y	0.30士 37%	42-16	24-36
1475	y-z	0.29 24%	41-10	11-21

Conclusions

A comparison of the Nuclear Deta Card (1) intensity values and the intensity values found earlier in this report by other methods (see Table II) with those determaned from the surface stripping reveals that the majority of the values agree to within the probable error. If the intensity value of z could be increased, then this would tend to increase the intensity of the 698- and 777-keV Iines and decrease the intensity of the $1475-\mathrm{keV}$ line. This is exactly what is required to bring these new results closer to the Data Card values. An inspection of the $B r^{82}$ single spectrum $S(x, 1)$, Figure 20 , shows that the $698-k e V$ line is not resolved so that the stripping of the single
and coincicence spectra will definitely tend to be unreliable at best for this gamma ray. This holds true for the $619-\mathrm{keV}$ gamua ray as well. The intensity of the $1475-k e V$ line depends, in the regression analysis method, on the intensities of the 619- and 698-keV lines, y and z respectively. Since these three gama rays have the largest discrepancy in intensity values, it is apparent thet this method for the extraction of intensities works best when the gamaa rays are resolved. However, considering the large number of geman rays analyzed and the large energy range covered by the 32 channels, the success of the regression analysis for $8 r^{82}$ testifies to the usefulness of this straightforward method of obtaining reliable intensity values. If a similar analysis were to be made using, say, a 100×100 coincidence array where all intense photopeaks were resolved, intensity velues to within a few per cent could be obtained readily.

1. Nuclear Data Sheets, compiled by k. Way et al. (National Academy of Sciences - Nationel Research Council, Washington 25, D. C.)
2. T. J. Kennett, W. V. Prestwich and G. L. Keech, submitted to Nucl. Instr. and Methods (1964)
3. H. I. West, Jx., Phys. Rev. 101, 915 (1956)
4. R. D. Evans, The Atomic Mucleus, McGraw-Hill (1955) p. 706
5. R. D. Evans and R. O. Evans, Rev. Mod. Phys. 20, 305 (1948)
6. J. W. Dewdney, Nucl. Phys. 43, 303 (1963)
7. Fay Ajzenberg-Selove, Nuclear Spectroscopy - Part E, Academic Press (1960) p. 1013
8. C. S. Han and N. B. Gove, Nuclear Data Sheets, Nov. 1963
9. R. D. Evans, The Atomic Nucleus, McGraw-Hill
10. N. Benczer-Koller, Bull. Am. Phys. Soc. 1, 41 (1956)
11. R. L. Heath, Data Analysis Techniques for GammaRay Scintillation Spectroscopy AEC Report IDO - 16784 (1962)

[^0]: 4 An anti-Compton shield prevents one detector from seeing the Compton scattered radiation from the other.

