SIMULATION OF THE EQUILIBRIUM OPERATION OF

A CANDU REACTOR AND STUDIES OF THE COLLAPSING PROCEDURE IN THE FUEL MANAGEMENT DESIGN PROGRAM

by
Charles Olive, B.A. Sc.
PART B: MCMASTER (OFF CAMPUS) PROJECT*

A report submitted to the School of Graduate Studies in partial fulfilment of the requirements for the degree of Master of Engineering

Department of Engineering Physics
McMaster University
Hamilton, Ontario, Canada

April, 1977

Department of Engineering Physics

TITLE: Simulation of the Equilibrium Operation of a CANDU Reactor and Studies of the Collapsing Procedure in the Fuel Management Design Program

AUTHOR: Charles Olive, B.A. Sc. (U of T)

SUPERVISOR: Dr. O.A. Trojan

NUMBER OF PAGES: 80, vii

ACKNOWLEDGEMENTS

I would like to express my appreciation to Atomic Energy of Canada Limited, Power Projects, (Sheridan Park and Meadowvale) for allowing me to perform this study and for the use of their facilities.

Special thanks to Professor O.A. Trojan and Dr. A.L. Wight for their encouragement and supervision. To a large extent, this report is a result of the latter's informative suggestions and detailed review of the early drafts.

I greatly appreciate the help of Dr. D.G. Parkinson with whom I had several fruitful discussions and 1 am indebted to N.J. Abush and R.S. Sibley for their technical assistance which was particularly valuable at the beginning of the project when the computing facilities were unfamiliar.

- Several of the passages in this report which describe the FMDP calculations are reproduced, with minor changes from the FMDP documentation.

Financial support from Atomic Energy of Canada Limited is gratefully acknowledged.

ABSTRACT

Estimates of fuel management data for the equilibrium operation of a specific CANDU reactor have been obtained by simulating a period of the reactor's history using the Fuel Management Design Program (FMDP).

The collapsing procedure in FMDP has been tested and improved. This procedure prepares a coarse mesh model of the reactor core from a detailed fine mesh calculation. The program calculates a set of coarse mesh parameters which, when used in the flux calculation, will regenerate exactly the same eigenvalue and flux distribution as the fine mesh model. These parameters can then be used with the coarse mesh, to calculate flux distributions for a series of perturbations from the reference calculation used in collapsing.

Several coarse mesh models were generated and studied. It was found that coarse mesh calculations with collapsed parameters result in large savings in computing costs compared to the same calculations with fine mesh, but with very little loss in accuracy.

TABLE OF CONTENTS

1. Introduction
1.1 Project Objectives
2. 2 Description of FMDP
1.3 Collapsing Procedure
1.4 Description of Reactor
1.5 Previous FMDP studies
3. Investigation of the Collapsing Procedure
2.1 CP Factor Improvement
2.2 Preliminary Testing
2.3 Accuracy of Coarse Mesh Simulations with Collapsed Parameters
2.4 Cost Analysis
2.5 Further Testing of the Collapsing Procedure
2.5.1 Instantaneous Collapsed Parameters 2.5.2 Compound Collapsed Parameters
4. Discussion of Normal Mesh Simulation
3.1 Fuelling Objectives
3.2 Fuelling Rules
3-3 Simulation Results
3.4 Discussion of Simulation Results
5. Summary and Conclusions
6. References
Appendix A - Description of Calculations
Appendix B - Reactor Models
Appendix C - Refuelling History for Simulation

Table 1 Summary of time-averaged results for the 8 bundle shift fuelling scheme

Table 2 Results of Instantaneous Calculations (NRAN-6389) with Fine Mesh

Table 3 Degree of perturbation of the instantaneous calculation (NRAN=6389) with fine mesh from the time averaged calculation

Table 4 Results of Instantaneous calculation (NRAN=6389) with various coarse mesh models

Table 5 Comparison of coarse mesh instantaneous results with the fine mesh answer as reference

Table 6 Excess reactivity history
Table 7 Maximum channel power history
Table 8 Maximum bundle power history
Table 9 Average irradiation of discharged fuel in selected burnup intervals

Table 10_ Comparison of simulation with the $1 \% 1 \% 1$ answer as reference
Table 11 Breakdown of system requirements for collapsing procedure and instantaneous calculation with half core geometries

Table 12 Breakdown of system requirements for collapsing procedure and simulation with full core

Table 13 Comparison of computing costs
Table 14 Maximum channel and bundle powers obtained during simulation
Table 15 Summary of equilibrium fuel management data obtained with normal mesh model

Table 16 Power tilt and fuelling history
Table 17 Comparison of core conditions about channels 0-7 and 0-19 in burnup interval 40 to 60 FPD

Table 18 Left to Right power tilt and fuelling history in burnup interval 30 to 60 FPD

Fig. la Fine mesh cell boundaries
Fig. Ib Normal mesh cell boundaries
Fig. 2 Half core fine mesh spacings
Fig. 3 Time-averaged channel power distribution
Fig. 4 Time-averaged bundle power distributions for 8 specific channels

Fig. 5a Reference thermal flux distribution along channel D-4
Fig. 5b Cell flux distribution along D-4 which results after volume weight averaging the fine mesh distribution over the lattice cell array

Fig. 5c Cell flux distribution which results after volume weight averaging the coarse mesh distribution over the lattice cell array

Fig. 5d CP FACTOR distribution for channel D-4
Fig. 6 Half core coarse mesh spacings
Fig. 7^{-}Comparison of the channel powers obtained from the fine mesh instantaneous calculation (NRAN=6389) with the time-averaged values

Fig. 8 Effect of the CP FACTORS on the accuracy of the $1 * 1 * 6$ instantaneous calculation with NRAN=6389

Fig. 9 Comparison of bundle powers generated by the instantaneous calculation (NRAN=6389) with fine mesh and normal mesh model without CP FACTORS

Fig. 10 Comparison of bundle powers generated by the instantaneous calculation (NRAN=6389) with fine mesh and various coarse mesh geometries

Fig. 11 Comparison of irradiation distributions with case $1 \% 1 \% 1$ as reference

Figs. 12, \quad Comparison of bundle powers along channels E-14, $\mathrm{N}-13$, $16,20,24,28$

Figs. 13,17, 21, 25, 29
$\mathrm{L}-1, \mathrm{~A}-14$, and $\mathrm{T}-23$ at 5 FPD
Comparison of bundle powers along channels E-14, $\mathrm{N}-13, \mathrm{~L}-1, \mathrm{~A}-14$ and $\mathrm{T}-23$ at 70 FPD

Figs. 14, 18, Comparison of E-14, N-13, L-1, A-14 and T-23 $22,26,30$ channel powers throughout simulation

Figs. 15, 19, Comparison of E-14, N-13, L-1, A-14 and T-23 23,27,30 channel average bundle irradiation simulation

Figs.23,33, Comparison of channels E-14, N-13, L-1, A-14 34,35,36 and T-23 bundle irradiations

Fig. 37 Excess reactivity vs. core burnup
Fig. 38 Cummulative channels fuelled vs. core burnup
Fig. 39 Reactor condtions at 30 FPD and refuelling in core burnup interval 30 to 40 FPD

Fig. 40 Reactor conditions about channels 0-7 and 0-19 at 60 FPD

Fig. A.l Time averaged model
Fig. A. 2 Simulation calculation
Fig. B.l Mesh and cell arrays
1.1 Project Objectives

This study had two objectives. The first was to simulate a period of operation of a specific CANDU reactor using the Fuel Management Design Program (FMDP) to obtain estimates of the following equilibrium data:
(i) the maximum channel and bundle powers,
(ii) the refuelling rate required to maintain criticality,
(iii) the average discharge bundle irradiation for the two regions (inner and outer core), and

- (iv) fuelling power changes

The method of selection of channels for refuelling will be discussed.

The second objective was to test and improve the collapsing procedure in FMDP. A description of this procedure and its uses is given in Section 1.3 following an outline of the types of calculations which can be done with FMDP.

1.2 Description of FMDP

FMDP is a two group, three dimensional, neutron diffusion computer program designed to do a wide range of fuel management calculations for CANDU reactors. Reactor operation is simulated by computing flux distributions at a series of time steps. Irradiation
values for each fuel bundle in the core are increased at each time step using the current thermal flux. Cross sections for the flux calculation are obtained by interpolation in a table of cross sections as a function of irradiation. The tabulated cross sections are obtained from the lattice cell code POWDERPUFS- $V^{(1)}$.

The program is also capable of calculating flux distributions for a random distribution of fuel bundle burnups. This simulates a snapshot of a possible distribution of irradiation in the core at some possible instant during core life and will be referred to in this report as the instantaneous calculation. These calculations do not require a simulation of the previous history of the reactor.

In addition, the program does a time-averaged calculation. The code computes a flux distribution which is an average over a long period of equilibrium operation. This calculation also, does not require simulation of reactor history.

Details of these calculations are contained in Appendix A and in the FMDP documeritation $(2,3)$.

The method used by the code to simulate the reactor is described in Appendix B. Note that for the purpose of the flux calculation, the reactor can be modelled with fine mesh, normal mesh or coarse mesh as follows:
(i) In the fine mesh model each controller is represented by small mesh volumes of the order of the physical size of the device. This model contains a large number of mesh cells and the flux calculation is detailed, but expensive.
(ii)

In the normal mesh model, the mesh planes coincide with the lattice cell planes, so that there is one mesh point per fuel bundle. The mesh cell size is one lattice pitch by 1 lattice pitch by 1 bundle length ($1 * 1 * 1$).
(iii) In the coarse mesh model, there are fewer than 1 mesh point per fuel bundle.

For the normal and coarse mesh models, incremental cross sections for the controllers can be smeared across the mesh cells by volume weight averaging, or can be generated using the collapsing procedure. This is described in the following section.

FMDP is still under active development. Each modification is identified by a version number indicating the date and status of the version. TST indicates a test version. ALW indicates that the version has been approved by A.L. Wight. The later versions should give better answers to the calculations.

Calculations in this study were done on the CDC 6600 computer located at the Chalk River Nuclear Laboratories. The operating system was SCOPE 3.4. Towards the end of the project some calculations were done on the newly installed CYBER 175 computer with the NOS/BE operating system. Jobs were submitted through terminals located at AECL Power Projects, Sheridan Park and Meadowvale.

1.3 Collapsing Procedure

The collapse module in FMDP prepares a normal or coarse mesh model of the reactor core from a detailed fine mesh reference calculation. The program calculates a set of normal or coarse mesh parameters which, when used in the flux calculation, will regenerate exactly the same eigenvalue and flux distribution as the fine mesh model. These parameters can then be used with normal or coarse mesh to calculate flux distributions for a series of perturbations from the reference case. The decreased number of mesh points with respect to fine mesh, results in lower computing costs. A penalty in terms of some loss in accuracy is incurred.

The proposed use of the collapsing procedure is illustrated by considering the study to optimize the fuel load of a CANDU reactor at startup with fresh and depleted fuel. The study requires the simulation of the reactor operation from startup with various initial fuel Toads to onset of fuelling in 5 or 10 Full Power Day (FPD) steps. This period is of a transient nature and lasts for about 100 FPD. The initial fuel load is the configuration of natural and depleted fuel at startup. The objective of the study is to determine the UO_{2} content of the depleted bundles and their location which give the most satisfactory reactor operation over the initial transient. A detailed discussion of this study is contained in Ref. 4.

The study can be done with FMDP using the following procedure:
(i) Generate a fine mesh reactor model.
(ii) Convert to a coarse mesh model using the collapsing procedure. Run the simulation with coarse mesh for various initial core configurations. Select the optimum configuration.
(iv) Repeat the simulation with the optimum core configuration but with the fine mesh model.

Step (iv) gives the 'correct' answer for operation with the optimum core configuration.

The degree of coarseness which can be tolerated in step (iii) depends upon the difference in the fuel management data which are obtained for each initial core loading. This difference must be significantly greater than the error which results from using the coarse mesh model. The error must be known from previous testing of the collapsing procedure (step (iv) serves as a check on the error). For example, suppose the maximum bundle power over the initial transient with \bar{a} particular initial loading is $A \mathrm{~kW}$. A second initial loading gives a maximum bundle power of B kW . The predicted percentage error in these values is $C \%$. The coarse mesh model used to obtain X and Y is acceptable if $\frac{A-B}{(A+B) / 2} \times 100$ is significantly greater than C.

The advantage of simulating operation with coarse mesh in step (iii) is in terms of reduced computing costs - the coarser the mesh used, the cheaper the study. Note that in the design of the larger CANDU reactors, fine mesh simulations become prohibitively expensive.

The collapsing procedure is as follows: The reference fine mesh distribution is volume weight averaged over the coarse mesh cells. $A \Sigma_{a}$ and $\nu \Sigma_{f}$ is then calculated for each coarse mesh volume from

$$
\begin{align*}
& \nu \Sigma_{f}^{*} v \emptyset^{2}=k\left(\Sigma_{r}^{1} v \emptyset^{1}-\mathscr{L}^{1}\right) \tag{1.3-1}\\
& \Sigma_{a}^{*} v \emptyset^{2}=\left(\Sigma_{1 \rightarrow 2} v^{1}+\mathscr{L}^{2}\right) \tag{1.3-2}
\end{align*}
$$

where

$$
\mathscr{L}^{n}=\sum_{i=1}^{6} b_{i}{ }^{n} \emptyset_{i}^{n} \text { is the sum of the coupling coefficients times the }
$$

\emptyset^{n} is the cell volume averaged flux in group $n(n=1,2)$,
$\nu \Sigma_{\mathrm{f}}^{*}, \Sigma_{\mathrm{a}}^{*}$ are the fission source and thermal absorption cross-sections which will reproduce the given flux distribution,
Σr^{\prime} is the group removal cross section,
$\left(\Sigma_{r}^{l}=\Sigma_{a}^{l}+\Sigma_{l \rightarrow 2}\right), \Sigma_{l \rightarrow 2}$ is the group 1 to 2 transfer crosssection, and
k is the fine mesh eigenvalue.
-
Note that these are simply the seven point finite difference two group diffusion equations rearranged to solve for the unknown cross-sections with a given flux distribution.

The program then generates and stores the set of cross-section increments for further use. Thus

$$
\begin{align*}
& \Delta v \Sigma_{f}=v \Sigma_{f}^{*}-\nu \Sigma_{f} \tag{1.3-3}\\
& \Delta \Sigma_{a}=\Sigma_{a}^{*}-\Sigma_{a} \tag{1.3-4}
\end{align*}
$$

The $\nu \Sigma_{f}$ and Σ_{a} are the normal cell cross-sections unperturbed by an absorber.

The fine mesh reference flux distribution can be generated with a time-averaged calculation to produce time-averaged collapsed parameters, or by the instantaneous calculation to produce instantaneous collapsed parameters.

By way of example, consider the simplified section of a core shown modelled in fine mesh in Fig. la. It consists of one lattice cell, perturbed by a thermal absorber. One mesh point is at the centre of each of three fine mesh cells. Suppose we want to generate the normal mesh model. The normal mesh boundaries are shown in Fig. lb and coincide with the lattice cell boundaries. In preparation for collapsing, a set of normal mesh cross-sections are calculated for the normal mesh cell; the thermal cross-sections are $\bar{\Sigma}_{a}=\Sigma_{a}^{\text {MODERATOR }}+\Sigma_{a}$ FUEL and $\nu \Sigma_{f}=\nu \Sigma_{f}$ FUEL where the fuel cross-sections are previously calculated by the lattice cell code by flux volume weight averaging. Note that the effect of the absorber is not included in these smeared cross-sections.

The next step is to generate a fine mesh reference flux distribution and eigenvalue. For the section of the core considered, $\left.\begin{array}{l}\text { there will be three vaiues for the fast flux }\left(\emptyset_{\text {CELL }}^{1} 1, \emptyset_{\text {CELL }}^{1}, \emptyset_{\text {CELL }}^{1} 3\right.\end{array}\right)$.

The fine mesh flux distributions are collapsed to normal mesh by volume weight averaging
i.e. $\quad \emptyset_{N M}^{\prime}=\frac{v_{1} \emptyset_{C E L L}^{1}+v_{2} \emptyset_{\text {CELL } 2}+v_{3} \emptyset_{\text {CELL }} 3}{v}$
and $\quad \emptyset_{N M}^{2}=\frac{v_{1} \emptyset_{C E L L}^{2} 1^{+} v_{2} \emptyset_{C E L L}^{2}{ }^{2}+v_{3} \emptyset_{C E L L ~}^{2} 3}{v}$
$\emptyset_{N M}^{1}$ and $\emptyset^{2}{ }_{N M}$ are the fluxes, perturbed by the absorber, at the centre of the normal mesh cell. V_{1}, V_{2} and V_{3} are the volumes of the fine mesh cells, and V is the normal mesh volume.

The next step is to adjust two of the normal mesh cross-sections so that, when the diffusion equations are solved for our normal mesh cell, $\emptyset_{N M}^{1}$ and $\emptyset_{N M}^{2}$ will result. Most of the devices which are added to the core are strong thermal absorbers which strongly perturb the thermal flux distribution. For this reason the two thermal cross-sections $\left(\nu \Sigma_{f}\right.$ and Σ_{a}) are most affected and were selected as the adjusted crosssections.

Thus for the cell in Fig. lb,

$$
v \Sigma_{f}^{*} v \emptyset_{N M}^{2}=k\left(\Sigma_{r}^{1} v \emptyset_{N M}^{1}-\mathcal{d}^{1}\right)
$$

and

$$
\Sigma_{a}^{*} V \emptyset_{N M}^{2}=\left(\Sigma_{1 \rightarrow 2} V \emptyset_{N M}^{1}+\mathcal{L}^{\prime}\right)
$$

The cross sectional increments are then generated (Eq. 1.3-3 and 1.3-4) and stored for use in perturbation calculations.

A normal mesh model can also be generated by simple smearing of the absorber cross-section across the normal mesh cell. (The fine mesh model is not required for this.)
i.e. $\quad \Delta \Sigma_{a N M}^{A B S O R B E R}=\frac{V_{2} \Sigma_{a}^{A B S O R B E R}}{V}$
where
$\Sigma_{a}^{A B S O R B E R}$ is the cross-section of the pure absorber, and
$\triangle \Sigma_{a N M}^{A B S O R B E R}$ is the smeared cross section for the cell.

However, when used in the unperturbed flux calculation the correct, collapsed reference values will not be regenerated. Perturbation calculations with a model generated by this procedure were not done in this study. The calculations will presumably be less accurate than when the same coarse mesh is used but with parameters generated by the collapsing procedure.

1.4 Description of Reactor

The reactor modelled in this study, is a right circular cylinder lying on its side and containing 480 horizontal fuel channels of which 208 are in the inner (high burnup) region and 272 are in the outer region. There are 13 bundles per channel of which 12 are in the active core. One half of a bundle at each end of the channel is outside the core. Refuelling occurs on power and is bidirectional. The reference refuelling scheme is eight bundle shift. The reactor is moderated and cooled with heavy water. Full core power is 2695 MW thermal to coolant. Spatial control is by vertical, light water zone controllers.

1.5 Previous FMDP Studies

The fine mesh model of D.G. Parkinson ${ }^{(5)}$ was used in this study. The mesh spacings for half core symmetry are shown in Fig. 2. Average discharge irradiations of $1.78 \mathrm{n} / \mathrm{kb}$ for the inner region and $1.50 \mathrm{n} / \mathrm{kb}$ for the outer region were obtained from an eight bundle shift timeaveraged calculation. This calculation was used as a reference throughout this project. The channel power distribution is shown in Fig. 3 and the bundle powers for eight specific channels are shown in Fig. 4.

A representative set of instantaneous power distributions have been obtained by D.G. Parkinson ${ }^{(5)}$. One of these was used in the preliminary testing of the collapsing procedure.

2. INVESTIGATION OF THE COLLAPSING PROCEDURE

2.1 CP Factor Improvement

The first two collapsed parameters ($\Delta \Sigma_{a}$ and $\Delta \nu \Sigma_{f}$) when used for the reference flux calculation with coarse mesh, exactly regenerate the same eigenvalue and flux distribution as the fine mesh model. However, the bundle power distribution is of more interest in fuel management studies. To regenerate the correct reference power distribution, a third collapsed parameter is required. Before this can be defined, the procedure used to calculate the bundle powers must be described.

This procedure is as follows. The thermal flux distribution obtained by the iterative solution of the diffusion equations, is volume weight averaged over the lattice cell array generating the unnormalized cell flux array, CELLFLUX. The unnormalized power is then computed for each bundle using the following equation:

$$
\begin{equation*}
\text { POWER }=\text { CELLFLUX } * H \text { FACTOR } \tag{2.1-1}
\end{equation*}
$$

where the conversion factor, H Factor, is a tabulated function of the bundle irradiation obtained from POWDERPUFS-V. Powers and fluxes are then normalized using the core design thermal power to coolant.

The cell fluxes, and hence the bundle powers, which result from volume weight averaging the reference coarse mesh flux distribution are not the same as result from volume weight averaging the reference fine mesh distribution. This can be seen from the series of figures on Page 49.

Fig. 5a shows the reference (time-averaged) thermal flux distribution along channel D-4. Each point is the flux at the centre of a fine mesh cell. The open circles mark the coarse mesh values obtained after collapsing the fine mesh distribution to $1 \% 1 \% 4$ cell size (see Fig. 6). Note that for this particular channel, the fine mesh, coarse mesh, and lattice cell boundaries coincide in the radial (x and y) direction and differ only in the axial (z) direction. This is not generally the case with other channels, and D-4 was chosen as an example to simplify the discussion. Volume weight averaging is required only in the axial direction.

Fig. 5b shows the cell flux distribution along $D-4$ which results after volume weight averaging the coarse mesh distribution over the lattice cells. These fluxes, when used in Eq. 2.1-1 do not generate the correct bundle powers for channel $\mathrm{D}-4$.

The third collapsed parameter can now be defined:
CP FACTOR $=\frac{\text { CELL FLUX }}{}$ FM \quad at each lattice cell
CELL FLUX ${ }^{F M}$ is the cell flux generated by the fine mesh reference flux distribution (Fig. 5b), and

CELL FLUX ${ }^{\text {CM }}$ is the cell flux generated by the coarse mesh flux distribution (Fig. 5c).

The CP FACTORS for channel D-4 which would be obtained from this particular reference fine mesh flux distribution and coarse mesh cell size, are shown in Fig. 5d. These would be used in subsequent perturbation calculations with coarse mesh $1 * 1 * 4$ to give a better estimate of the bundle power distribution. This occurs after the perturbed cell fluxes are adjusted using the following equation:

Adjusted CELL FLUX $=$ CELL FLUX*CP FACTOR at each lattice cell.

The increase in computing costs to generate, store and use the CP FACTOR array is negligible.

2.2 Preliminary Testing

Preliminary testing of the collapsing procedure was carried out as follows:
(i) A half core instantaneous calculation with NRAN $=6389$ (see Appendix A) was done with fine mesh
(ii) Time-averaged collapsed parameters (the $\Delta \Sigma_{a}$ and $\Delta V \Sigma_{f}$ of Eqs. 1.3-3 and 1.3-4 and the CP FACTORS of Eq. 2.2-2) were obtained by collapsing the time-averaged fine mesh calculation to coarse mesh.
(iii) The instantaneous calculation of step (i) was repeated with the coarse mesh model of step (ii). The power and cell flux distributions were compared with the 'correct' distributions of step (i) using the analyze module in FMDP. This computed the ratio of each element in the distributions from the coarse mesh calculation to the corresponding element from the fine mesh distribution. The average ratio and the standard deviation were then calculated. The latter is a measure of the accuracy of the coarse mesh distribution - the larger it is the greater the inaccuracy and, assuming an average ratio of unity, the higher the maximum error.

Steps (ii) and (iii) were done for a series of coarse mesh, half core geometries. These are shown in Fig. 6.

Results of Preliminary Testing

Important data from the fine mesh instantaneous calculation are tabulated in Table 2. The calculation was done twice; with version JUNI776TST and with version DECOIT6ALW about 6 months later. The answers obtained were significantly different. The reason for this inconsistency has not been determined. Note, however, that there was minimal difference in the time-averaged calculations with versions JUNl776TST and SEPOI76ALW (Table I).

Statistical comparison with time-averaged data is contained in Table 3. The standard deviation here is a measure of the degree of perturbation. Additional comparison of the channel powers, in Fig. 7 showed a mean difference from iime-averaged values of 11.5 percent.

The effect of the CP FACTORS on the accuracy of the $1 \% 1 * 6$ calculation is shown in Fig. 8. The bundle powers along channel D-12 from the coarse mesh calculation with and without the CP FACTORS are compared with the fine mesh powers obtained from version JUNI776TST. The accuracy was considerably increased when the factors were used.

Results from the instantaneous calculation with 5 coarse mesh models are presented in Table 4. Note that the calculation with normal mesh (case $1 * 1 * 1$) was done without the CP FACTOR improvement to be consistant with the normal mesh simulation described in the next section. This simulation was started before the program changes were ready.

Comparison with the fine mesh result is contained in Table 5 . Case $1 * 1 \% 1$, run with version JUN1776TST, was compared with the JUNI776TST fine mesh calculation, while cases $1 \% 1 \% 2,1 * 1 * 4,1 \% 1 \% 6$ and $2 * 2 * 2$ run much later in the project, were compared with the DECO176ALW fine mesh calculation.

The results show that, of the coarse mesh calculations done, the most accurate answer is obtained from case $1 \div 1 \div 2$. The channel power distribution for case $1 * 1 \% 1$ is second in order of accuracy, but the $1 * 1 * 1$ bundle and cell flux distributions are a little less accurate than the distributions for case $1 * 1 * 4$. If case $1 \% 1 \% 1$ were repeated with the CP FACTOR improvement, it would presumably give the most accurate results (i.e. closest to the fine mesh results). Of the coarse mesh models tested, the normal mesh model contains the largest number of mesh cells.

Note that all distributions for case $2 * 2 \% 2$, in which the reactor is modelled with 1440 mesh points, were closer to fine mesh than the $1 * 1 * 6$ (with 2720 mesh points) distributions. Also, the maximum channel and bundle power and $k_{e f f}$ were more accurate in the former calculation. An explanation of this result is as follows. Suppose the error in the flux calculated at each coarse mesh cell is a function of the mesh spacings, and that this function is separable in the X, Y and Z directions:

$$
\begin{equation*}
\text { i.e. Error }=c_{1} \Delta x^{n}+c_{2} \Delta y^{m}+c_{3} \Delta z^{P} \tag{2.2-1}
\end{equation*}
$$

If the constants and powers have roughly the same value.

$$
\text { Error } \approx c_{1}\left(\Delta X^{n}+\Delta y^{n}+\Delta z^{n}\right)
$$

For cell size $1 * 1 * 6, \Delta X=28.575, \Delta Y=28.575, \Delta Z=297.18$
For cell size $2 * 2 * 2, \Delta X=57.15, \Delta Y=57.15, \Delta Z=99.06$

$$
\therefore \frac{\text { Error }_{2 * 2 * 2}}{\text { Error }_{1 * 1 * 6}}=\frac{57.15^{n}+57.15^{n}+99.06^{n}}{28.575^{n}+28.575^{n}+297.18^{n}}
$$

For positive values of n greater than .25 , this ratio is less than 1 and the flux calculated for a cell with $2 * 2 * 2$ dimensional is the more accurate.

The bundle powers obtained in specific channels, including D-12 which has the maximum value, are compared in Figs. 9 and 10. The percentage error is indicated after each value. Consider Fig. 10 Most of the bundle powers calculated with coarse mesh in D-12 are slightly lower and closer to the time-averaged (reference) values. For example, consider bundle D-12, No. 5. The reference power is 685.1 kW (see Fig. 4). The instantaneous power calculated with fine mesh is 883.5 kW . This is a 29.0 percent perturbation from reference. The instantaneous powers calculated with $1 * 1 * 2,1 * 1 * 4,1 * 1 * 6$. $2 * 2 * 2$ cell size are $883.1(28.9), 878.7(28.3), 861.6$ (25.8), and $867.7 \mathrm{~kW}(26.7)$ respectively. The degree of perturbation from reference indicated, in parentheses after each value,is decreased for each coarse mesh case and for the $1 \% 1 \%$ n series of geometries, decreases with increasing cell size.

Now consider channel $Q-1$ which has a high negative perturbation from reference. The bundle powers calculated with coarse mesh are generally greater than when calculated with fine mesh and, again, the degree of perturbation from reference generally decreases with increasing cell size.

These results apply to most of the bundle and powers, but not.all. They are explained by the following hypothesis:

The degree of perturbation of anstantan calculan is generally reduced slightly when the calculation is done with coarse mesh using time-averaged collapsed parameters.

Note also that the excess reactivity obtained with coarse mesh is low and closer to the time-averaged value in all cases (see Table 4). This further supports the above hypothesis.

A $4 \times 4 \div 4$ coarse mesh model was also generated. The instantaneous flux calculation did not converge. The incremental cross-sections
were printed so that the adjusted thermal cross-sections used in the flux calculation could be determined at various mesh points. It was found that at some mesh points, particularly at the core edge, a negative adjusted cross-section resulted. It was concluded that there is a limit in coarseness to the collapsing procedure which is exceeded by the $4 \div 4 \div 4$ mode 1 .

2.3 Accuracy of coarse mesh simulations with Collapsed Parameters

The error in the power and flux distributions and excess reactivity obtained with a specific coarse mesh model at some time in a simulation, is compounded of two factors. These are:
(i) The degree of perturbation from the fine mesh flux distributions and eigenvalue used in collapsing, and
(ii) The error in the bundle irradiation distribution.

The first factor is investigated using the instantaneous calculation with the procedure of the previous section. The second is discussed below.

Consider a simulation with fine mesh. When the first time step is taken, the bundle irradiation array is incremented.using the bundle flux and F factor from the initial flux calculation as shown in the following equation.

$$
\begin{equation*}
\omega_{K}^{F M}\left(t_{1}\right)=\omega_{K}^{F M}\left(t_{o}\right)+f_{K}^{F M}\left(\omega_{o}\right) \emptyset_{K o}^{F M} \Delta t_{1} \quad \text { for bundle } K \tag{2.3-1}
\end{equation*}
$$

The superscript indicates the fine mesh reactor model. The nomenclature is provided in Appendix A.

The corresponding equation for the reactur modelled in coarse mesh with collapsed parameters is

$$
\omega_{K}^{C M}\left(t_{1}\right)=\omega_{K}^{C M}\left(t_{o}\right)+f_{K}^{C M}\left(\omega_{o}\right) \emptyset_{K o}^{C M} \Delta t_{1}
$$

For the same starting conditions

$$
\begin{aligned}
& \omega_{K}{ }^{F M}\left(t_{o}\right)=\omega_{K}{ }^{C M}\left(t_{o}\right) \\
& f_{K}{ }^{F M}\left(\omega_{o}\right)=f_{K}{ }^{C M}\left(t_{o}\right) \\
& \emptyset_{K o}{ }^{F M}=\emptyset_{K o}{ }^{C M}+\delta \emptyset_{K}{ }^{1}
\end{aligned}
$$

$\delta \emptyset_{K}^{l}$ is the error in the bundle flux from the coarse mesh calculation with respect to the bundle flux calculated with fine mesh. For a particular coarse mesh geometry, this error depends upon the perturbation of the first flux distribution from the fine mesh flux distribution used in collapsing. If there is no perturbation, $\delta \emptyset_{1}$ is zero. The error in the irradiation of bundle K after the first time-step is therefore $\delta \emptyset_{K}{ }^{1}{ }_{K}{ }^{C M}\left(\omega_{0}\right) \Delta t$, and the lattice cell cross-sections, computed from fuel tables, for the coarse mesh flux calculation at t_{1} will not be the same as those obtained for the fine mesh model.

After n times steps, the error in the irradiation at bundle K is $\delta \emptyset_{K}{ }^{1} f_{K}\left(\omega_{o}\right) \Delta t_{1}+\delta \emptyset_{K}{ }^{2} f_{K}\left(\omega_{1}\right) \Delta t_{2}+\ldots+\delta \emptyset_{K}{ }^{n_{K}}{ }^{\prime}\left(\omega_{n-1}\right) \Delta t_{n}$.

Note that the error in the F-factor, a weak function of irradiation, has been taken as negligible at each time-step. Note also that the number of error terms at each bundle location does not increase indefinitely When the channel is refuelled and bundle K is replaced with a fresh bundle the error at this location becomes zero. (This is, of course, provided that the fuelling schedules for fine mesh and coarse mesh simulations are the same) The irradiation of each refuelled bundle is known exactly (i.e. $0.0 \mathrm{n} / \mathrm{kb}$).

The irradiation distributions from a coarse mesh simulation can be compared, at each time step, with the exact fine mesh answer. Since $\delta \emptyset$ is as likely to be positive as negative, it is expected that the average ratio at each time step will be unity. i.e.

However, the standard deviation and maximum error would increase with time and approach steady state values. After a long period of simulation (greater than the average residence time of bundles in the core) the maximum error will always occur at a bundle location with the maximum (or close to) number of error terms.

To investigate the above rigorously, a fine mesh reference simulation is required, followed by the same simulation with a series of coarse mesh reactor models. Unfortunately, the full core fine mesh model required more central memory than was available at the time. The reference simulation was done with normal mesh. Time-averaged collapsed parameters (without CP FACTORS) were generated for normal mesh geometry (see Fig. 6) using the half core fine mesh model, and unfolded to full core. Start conditions were generated by the instantaneous module with a "patterned channel age distribution" (see Appendix A). This reduced power tilts and the clustering of channels with fresh fuel to a minimum and, hence, the initial core conditons could be regarded as optimized. The simulation proceeded for 70 Full Power Days (FPD) with a 5 or 10 FPD step between each flux calculation. Criticality was maintained with the manual refuelling procedure described in Sect. 3.2. Each zone controller was kept at 40 percent fill.

The simulation was repeated with two other coarse mesh geometries ($1 * 1 \div 4$ and $1 * 1 * 6$ cell size) and started for a third ($2 * 2 * 2$). Time-averaged collapsed parameters, including the CP FACTOR arrays, were used. The irradiation distributions were compared at each time step with the distributions generated with the normal mesh model.

Comparison of Simulation Data

The simulation data are compared in this section. A detailed discussion of the normal mesh simulation is contained in Sect. 3 .

For convenience, the starting point for each simulation has been set to 0 FPD. Only one flux calculation was done at 0 FPD. This was for the normal mesh simulation. The coarser mesh simulations were started not only with the same irradiation distribution, but also with the same bundle and flux distributions. It would have been better to do the flux calculation at 0 FPD for each case. The burns for the first time step are identical.

Tables 6, 7 and 8 show respectively the bulk excess reactivity and the maximum channel and bundle powers, with location, for each simulation as a function of time. Although there is very little difference in the values at each time step, the order of accuracy was predicted from the instantaneous calculations of Sect. 2.2. Note, however, that the maximum powers obtained at the first flux calculation with $2 * 2 * 2$ cell size seem less accurate than the $1 \% 1 \% 6$ values (taking the $1 \% 1 \% 1$ channel powers and $1 \% 1 \% 4$ bundle powers to be the closest to the fine mesh answers) and are probably greater than the fine mesh result.

Average irradiations of bundles discharged in 4 specific timesteps are compared in Table 9. The values increase with increasing mesh coarseness and, as expected, the difference increases slightly with time.

The power and cell flux distributions were compared at four specific times in the simulation and the irradiation distributions were compared at every time step. These results are shown in Table 10 and Fig. 11. The difference in channel power and irradiation distributions increases with time as expected, although the difference in the bundle power distributions remains fairly constant. The average irradiation ratio at each time step was not unity but decreased with time. The reason for this may be because the CP Factor array was not used in the reference simulation, but was used for the other two cases. If a fine mesh simulation becomes possible, the analysis should be repeated with the fine mesh answer as reference.

Simulation results for 5 specific channels are presented in Figs. 12 to 36 permitting absolute comparison of the data. The percentage difference from reference is indicated after each value.

2.4 Cost Analysis

Sect. 2.2 and 2.3 have determined the loss in accuracy which results from Fuel Management calculations with normal and coarse mesh reactor models generated by the collapsing procedure in FMDP. The purpose of this subsection is to estimate the savings which result from lower computing costs.

The following equation has been used, until quite recently, by the computing centre for costing jobs
cost^{8} in $\$=\frac{0.29}{0.28}\left[0.293 * C P+0.109 * I \emptyset+0.408 * 10^{-4} *(C P+I \emptyset) *(\text { avg CM })^{2}\right]$
where avg $C M=\frac{\sum \sum(0.001 C P+0.001 I \varnothing)}{C P+I \varnothing} \mathrm{Fl} ;$ kilowords

- FMDP periodically writes to output current memory and CP and ID times during the execution of a module so that a value for each of these parameters can be estimated for each subcomputation within the module. The costing equation can then be applied to each subcomputation. This allows a more complete indication of the savings (and where they occur) for the calculations with coarse mesh.

Results

The breakdown of the system requirements and costs for the various computations and core models are given in Tables 11 and 12. The system requirements are based on version DECOI76ALW and the costs were calculated using equation 2.4-1. Note the following:

The value of the CP time for the flux calculation (in millisecs per iteration per mesh point) was the average over 14 runs done during November and December 1976 on the CDC 6600 computer. The standard deviation was 0.0102 .

The average CM for some of the computations was sometimes difficult to determine without detailed examination of the coding. The values recorded are the author's best estimate from the current CM which is periodically written to output during a job. The values for the flux calculation are, however, exact except for the full core fine mesh which, before reaching this step, exceeded the system CM available.

Total costs for various jobs were determined using Tables 11 and 12, and are shown in Table 13. Average CP and Iø times were used for reading data from tape to mass storage at the start of each job and for writing back to tape at the end. Note, however, that with coarse mesh there is less data than with fine mesh resulting in lower costs. This saving is not reflected in Table 18 but is relatively small. The fine mesh half core instantaneous calculation was about $2-1 / 2$ times the cost of the calculation with $2 \% 2 \% 2$ mesh.

FMDP uses considerable amounts of extended core storage. The maximum is printed at the end of each job. Less ECS is used with coarse mesh se that savings would be greater than shown in Table 18 if there had been a charge for ECS.

A particular job was broken down into its components and the total cost estimated using the above procedure, but with the actual $C P$ and Iø times for the flux calculation and for reading from and writing to tape. The answer agreed to within 4 percent of the cost for the job listed in the monthly statement.

2.5 Further Testing of the Collapsing Procedure

2.5.1 Instantaneous Collapsed Parameters

This study has examined the loss in accuracy and savings in
cost for calculations with time-averaged collapsed parameters for various coarse meshes. FMDP also provides for the generation and use
of instantaneous collapsed parameters. For a simulation, these would be generated using the fluxes and eigenvalue from the fine mesh calculation with the start reactor conditions. The initial power distribution from the coarse mesh calculation is exactly the same as the distribution from the fine mesh calculation. It is therefore more accurate than the initial distribution obtained with time-averaged parameters. As the simulation proceeds and the irradiation distribution differs more and more from the initial distribution, the accuracy will decrease and eventually become less than the accuracy obtained with time-averaged parameters. However, a new set of instantaneous parameters can be generated periodically by a fine mesh calculation with the current reactor conditions.

2.5.2 Compound Incremental Cross-sections

The effect of a thermal absorber on the thermal cross-sections is increased in regions of high thermal flux and decreased in regions of low thermal flux. This means that, for each cell,
when $\emptyset^{P}>\emptyset^{R},\left|\Delta \nu \Sigma_{f}^{P}\right|>\left|\Delta \nu \Sigma_{f}^{R}\right|$ and
$\left|\Delta \Sigma_{a}^{P}\right|>\left|\Delta \Sigma_{a}^{R}\right|$
and when $\emptyset^{P}<\emptyset^{R},\left|\Delta \nu \Sigma_{f}^{P}\right|<\left|\Delta \nu \Sigma_{f}^{R}\right|$ and

$$
\left|\Delta \Sigma_{a}^{P}\right|<\left|\Delta \Sigma_{a}^{R}\right|
$$

The subscript indicates that the value is for the perturbation or reference calculation.

The cell flux will generally be greater than the time-averaged value if the cell contains fresh fuel and less than the time-averaged value if the fuel is high burnup. (This may not be the case with extreme cell boundary conditions). This means that generally the following conditions hold:
when $\quad \emptyset^{P}>\emptyset^{R}, \quad \Sigma_{a}^{P}<\Sigma_{a}^{R}$ and

$$
\nu \Sigma_{f}^{P}>\nu \Sigma_{f}^{R}
$$

and when $\emptyset^{P}<\emptyset^{R}, \quad \Sigma_{a}^{P}>\Sigma_{a}^{R}$ and

$$
\nu \Sigma_{f}^{P}<\nu \Sigma_{f}^{R}
$$

The incremental cross-sections from the absorber can be made dependent upon cell conditions by storing compound incremental cross-sections. These are $\Sigma_{a}^{R} \cdot \Delta \Sigma_{a}^{R}$ and $\frac{\Delta \nu \Sigma_{f}^{R}}{\nu \Sigma_{f}^{R}} . \Sigma_{a}^{R}$ and $\nu \Sigma_{f}^{R}$ are the coarse mesh reference cross-sections unperturbed by the absorber. $\Delta \Sigma_{a}^{R}$ and $\Delta \nu \Sigma_{f}^{R}$ are the incremental cross-sections generated in the normal way by the collapsing procedure.

The incremental cross-sections for a particular perturbation calculation are generated as follows:

$$
\begin{equation*}
\Delta \Sigma_{a}^{P}=\frac{\Sigma_{a}^{R}}{\Sigma_{a}^{p}} \cdot \Delta \Sigma_{a}^{R} \tag{2.5-1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \nu \Sigma_{f}^{P}=\frac{\Delta \nu \Sigma_{f}^{R} \nu \Sigma_{f}^{P}}{\nu \Sigma_{f}^{R}} \tag{2.5-2}
\end{equation*}
$$

3.1 Fuelling Objectives

After each flux calcuation, the irradiation and channel power distributions were used in the selection of channels for refuelling in the next time step. Channels were selected in order to achieve the following objectives:
(i) Minimize the maximum ratio of channel power to reference (time-averaged) channel power. This is abbreviated to'maximum channel overpower' in this report and is expressed as a percentage. Since the reference power distribution is normally used to set channel flow rates, this parameter is an indication of channel outlet temperature or outlet quality if the channel is boiling. It is desirable to keep the channel overpower low in order to minimize problems associated with boiling in the channels.
(ii) Minimize the maximum bundle power. To reduce fuel defects, fuel element centre temperatures and fission gas pressure, it is desirable to keep fuel rating low. The total power which can be obtained from the core is limited by this parameter.
(iii) Minimize the fuelling rate which keeps the reactor critical.

To achieve the third objective, preference was given to the oldest channels. Channel ages were calculated at each time step using Eq. 3.2-1.

CHANNEL AGE $=\frac{\begin{array}{c}\text { AVERAGE IRRADIATION OF THE } 8 \text { BUNDLES WHICH ARE } \\ \text { DISCHARGED WHEN CHANNEL IS FUELLED }\end{array}}{\text { TIME AVERAGED EXIT IRRADIATION }}$
The two major reasons for high channel overpowers are as follows:
(i) The channel effect; the bundle power per unit flux varies with time. The power increases in a natural uranium bundle owing to plutonium buildup and then decreases until the minimum is reached at the time of refuelling.
(ii) The local effect; the channel effect will be amplified if a channel is refuelled in a region that tends to show a clustering of fresh channels. P. Stevens ${ }^{7}$ obtained a relationship between the additional increase in power for a channel and the average burnup of the eight neighbouring channels.

When a channel was refuelled in the simulation, one of its neighbours was refuelled only after the core burnup had increased by at least 15 FPD to minimize the local effect.

To keep a uniform power distribution throughout the simulation, the core was divided radially into seven zones (Fig. 3). At each time step, the ratio of each zonal power to the corresponding time-averaged
zonal power was calculated. Channels were selected for refuelling in the subsequent timestep in an attempt to obtain ratio values of unity for each zone. The fuelling rate in a zone with a ratio of less than 1 was increased, and decreased when the ratio was greater than 1.

3.3 Simulation Results

Fig. 37 shows the excess reactivity plotted against core burnup. The excess reactivity changes linearly with burnup for each step because of uniform refuelling.

The equilibrium fuelling rate, averaged over 70 FPD was 2.821 channels per FPD. This is an adjusted value to allow for the difference in excess reactivity at the start and end of the simulation. An excess reactivity decrease of $0.417 \mathrm{milli}-\mathrm{k}$ per FPD in the absence of fuelling was assumed.

The average discharge irradiations for outer and inner core bundles were 1.506 and $1.775 \mathrm{n} / \mathrm{kb}$ respectively. These are within $1 / 2$ percent of the values obtained from the time-averaged calculation.

Maximum bundle and channel powers were 874 kW and 7100 kW respectively. The maximum channel overpower (12.5%) occured in the outer core at channel A-14 (see Table 14).

The above data are summarized in Table 15.

An example of fuelling is given in Fig. 39 which shows the channels chosen for fuelling in the interval 30 to 40 FPD. Each selected channel is marked with a ' X ' and the age and power of the eight neighbouring channels at 30 FPD have been recorded. The complete fuelling history is contained in Appendix C.

Zonal overpowers, overall power tilts and the fuelling history by zones are recorded in Table 16 . The max imum zonal overpower was 6 percent and occured in zone 3 at 20 FPD. The top to bottom power tilt at this time was 3.24 percent. No channels were fuelled in zone 3 in the next burnup interval and the zonal overpower decreased to -4.4 percent at the next flux calculation.

Note that the simulation was somewhat short to reliably estimate the maximum powers and the fuelling rate to be expected during equilibrium operation. The simulation should be continued to about 150 FPD.

3.4 Analysis of Simulation Results

The following is an attempt to identify the cause or causes of the maximum channel power and overpower which result at 60 FPD. First note that:
(i) the maximum channel power was 7091 kW occuring at $0-8$ in the adjusted region.
(ii) the maximum channel overpower was 10.75 percent occuring at $0-7$ also in the adjusted region. $0-7$ was refuelled at 56 FPD .
(iii) channel 0-19 is almost symmetrically opposite to $0-7$ and both channels have similar time-averaged powers (6380 and 6369 kW). 0-19 was refulled at 57 FPD but the overpower at 60 FPD was only 1.5 percent.

The age and power history of the channels in the section of the core containing 0-7 were compared with the history of the channels neighbouring 0-19 on the other side of the core. These two sections
are defined in Fig. 40 and each contain 25 channels. The Local Average Age (LAA) and Local Average Power (LAP) about 0-7 and 0-19 have been calculated at 60 FPD and also at 50 and 40 FPD. These values and other relevant data are recorded in Table 17. Note that while the age and LAA at 60 FPD are similar, LAP $(0-7) 60$ FPD is considerably greater than LAP $(0-19) 60 \mathrm{FPD}$. This explains the high power at 0-7 at 60 FPD.

The reason for the high LAP $(0-7) 60$ FPD must now be decided. Relevant data are supplied in Table 18. The high value was caused by refuelling too many channels in the left half of the core in the energy interval 30 to 40 FPD.

A relatively large number of fresh bundles in the left half reach their plutonium peak 20 to 30 FPD after charging resulting in a large left to right power tilt. This reinforces the channel effect at $0-7$ at 60 FPD.

During actual operation, the controllers would be filled differentially to remove the tilt and the high overpower at $0-7$ would not occur. However, the fuelling engineer should attempt to keep the power distribution uniform to minimize stress on the control system.

4. SUMMARY AND CONCLUSIONS

Estimates of fuel management data for the equilibrium operation of a specific CANDU reactor, have been obtained using the code FMDP. Results are given in Table 15.

The collapsing procedure has been studied and improved. It was found that the use of time-averaged collapsed parameters in instantaneous calculations and simulations with coarse mesh gives a large saving in computing costs compared to fine mesh costs, with very little loss in accuracy.

Further testing needs to be done to determine the accuracy of calculations with instantaneous collapsed parameters. These would be used only in simulations when start conditions are known and can be regenerated periodically, after a fine mesh calculation with current reactor conditions, to maintain a desired level of accuracy.

The accuracy of coarse mesh calculations may be further increased by storing compound collapsed parameters. When these are used, the incremental cross-sections are dependent upon the cell conditions for the perturbation calculation.
5. REFERENCES
D.M. Miller, "POWDERPUFS-V Users Manual, Part 2 of 3", TDAI-3I, AECL Power Projects (Sept. 1973).
A.L. Wight and R. Sibley, "Fuel Management Design Program Part 2 Users Guide and Programmers Manual', TDAI-106, AECL Power Projects (to be issued).
(4) A.L. Wight, "Fuel Management Studies for Bruce A Reactor", TDAI-77, AECL Power Projects.
(5) D.G. Parkinson, private communication.
(7) - P.H. Stevens, "Power Peaking Analysis for the CANDU-PHW(PB) Study' ${ }^{\prime \prime}$ PHW(PB)-N-15, CRNL (Dec. 1975) .
(8) N.J. Abush, private communication.

TABLE 1 SUMMARY OF TIME-AVERAGED RESULTS FOR THE 8 BUNDLE SHIFT FUELLING SCHEME

VERSION OF FMDP	JUNI776TST	SEP0176ALW
Fission Power (kW)	2854600	2854600
Thermal Power (kW)	2695600	2695600
Max. Channel Power (kW)	6484	6480
Max. Bundle Power (kW)	796	799
Excess Reactivity with Zone Controllers at 40% Fill	0.40	0.42
milli-k		
Average Discharge		
Irradiation n/kb inner core	1.78	1.78
outer core	1.50	1.50
Zonal Power ${ }^{+}$		
Zone 1		364594
2		366415
3		416916
4		402966
5		413710
6		364594
7		366415

+ See Fig. 3 for Zonal Boundaries.

TABLE 2 RESULTS OF INSTANTANEOUS CALCULATION (NRAN=6389)

WITH FINE MESH

VERSION OF FMDP	JUNI776TST	DECOI76ALW
Number of Mesh Points	13984	13984
Excess Reactivity milli-k	2.17	3.61
Max. Channel Power (kW) and Location Max. Bundle Power (kW) and Location1999 D-11 D-12, No.7	8268 D-12, No.7	

TABLE 3 DEGREE OF PERTURBATION OF THE INSTANTANEOUS CALCULATION (NRAN=6389) WITH FINE MESH FROM THE TIME-AVERAGED CALCULATION

TABLE 4 RESULTS OF INSTANTANEOUS CALCULATION (NRAN=6389) WITH VARIOUS COARSE MESH MODELS

CELL SIZE NUMBER OF MESH POINTS	$\begin{aligned} & 1 * 1 * 1 \\ & 7616 \end{aligned}$	$\begin{aligned} & 1 * 1 * 2 \\ & 4352 \end{aligned}$	$\begin{aligned} & 1 * 1 \div 4 \\ & 2720 \end{aligned}$	$\begin{aligned} & 1 * 1 * 6 \\ & 2176 \end{aligned}$	$\begin{aligned} & 2 \div 2 * 2 \\ & 1440 \end{aligned}$
VERSION OF FMDP	JUNI776TST ${ }^{+}$	SEP0176ALW	DEC0176ALW	DEC0176ALW	DECO 176ALW
Excess Reactivity milli-k	2.22	3.61	3.56	3.42	3.44
Max. Channel Power (kW) and Location	$\begin{aligned} & 8064 \\ & D-11 \end{aligned}$	$\begin{aligned} & 8270 \\ & D-12 \end{aligned}$	$\begin{aligned} & 8200 \\ & D-12 \end{aligned}$	$\begin{aligned} & 8081 \\ & D-12 \end{aligned}$	$\begin{aligned} & 8176 \\ & E-11 \end{aligned}$
Max. Bundle Power (kW) and Location	$\begin{gathered} 1017 \\ \mathrm{D}-12, \mathrm{No} .7 \end{gathered}$	$\begin{gathered} 1038 \\ \mathrm{D}-12, \mathrm{No} .7 \end{gathered}$	$\begin{gathered} 1037 \\ \mathrm{D}-12, \text { No. } 7 \end{gathered}$	$\begin{gathered} 1008 \\ D-12, \text { No. } 7 \end{gathered}$	$\begin{gathered} 1014 \\ \mathrm{D}-12, \mathrm{No} .7 \end{gathered}$
Channel Power at Location of Fine Mesh Maximum Value	8064 0.81	8270	8200 -0.82	8081 -2.26	8129 -1.68
Percent Error -	0.81	0.02	-0.82	-2.26	-1.68
Bundle Power at Location of Fine Mesh Maximum Value	1017	1038	1037	1008	1014
Percent Error	0.0	0.10	0.0	-2.30	-2.22

+ This version did not contain the CP Factor improvement.
\neq See Table 2.

		CHANNEL POWER RATIOS			BUNDLE POWER RATIOS			CELL FLUX RATIOS		
		AVERAGE	STD. DEV.	max imum	AYERAGE	STD. DEV.	maximum	AVERAGE	STD. DEV.	maximum
	Whole Core	0.99985	0.01116	1.051	1.00893	0.03458	1.129	1.00883	0.03078	1.1154
	Outer	1.0008	0.00827	1.045						
FINE MESH INSTAN	Inner	0.9987	0.01377	1.051						
	Whole Core	1.000666	0.004461		1.000892	0.0049	1.0236	1.00045	0.0048	1.0236
$\frac{1 * 1 * 2 \text { INSTAN }}{\text { FINF MESH INSTAN }}$	Outer	1.000799	0.004691	1.020						
FINE MESH INSTAN	Inner	1.000506	0.004161	1.0091						
	Whole Core	1.00211	0.0171		0.9925	0.01656	1.0612	0.99861	0.01649	1.0612
$\frac{1 * 1 * 4 ~ I N S T A N ~}{\text { PINE }}$	Outer	1.0034	0.01328	1.033						
FINE MESH INSTAN	Inner	1.000564	0.009261	1.0239						
	Whole Core	1.005054	0.02989	1.0747	1.00254	0.0293	1.1058	1.001445	0.02845	1.1058
$\frac{1 * 1 * 6 \text { INSTAN }}{\text { FINE MESH INSTAN }}$	Outer	1.006417	0.03446	1.0747						
	Inner	1.00342	0.02314	1.0614						
	Whole Core	1.00269	0.0243	1.0666	1.00019	0.0240	1.0817	1.00145	0.0239	1.0817
$\frac{2 * 2 * 2 \text { INSTAN }}{\text { FINE MESH INSTAN }}$	Outer	1.00447	0.02349	1.0666						
	Inner	0.9952	0.0243	1.0504						

TABLE 6 EXCESS REACTIVITY HISTORY

CELL SIZE NO. OF MESH POINTS ENERGY CLOCK FPD	$\begin{aligned} & 1 * 1 * 1 \\ & 14336 \end{aligned}$	$\begin{aligned} & 1 * 1 * 4 \\ & 5120 \end{aligned}$	$\begin{aligned} & 1 * 1 * 6 \\ & 4096 \end{aligned}$	$\begin{aligned} & 2 * 2 * 2 \\ & 2592 \end{aligned}$
5	$0.014 \mathrm{milli}-\mathrm{k}$	0.05	0.03	-0.103
10	-0.349	-0.259	-0.234	
20	-0.795	-0.697	-0.619	
25	-0.87	-0.762	-0.696	
30	0.08	0.11	0.08	
40 -	0.31	0.30	0.30	
50	-0.186	-0.147	-0.109	
60	0.18	0.18	0.22	
70	0.29	0.28	0.26	

TABLE 7 MAXIMUM CHANNEL POWER HISTORY

TABLE 8 MAXIMUM BUNDLE POWER HISTORY

```CELL SIZE ENERGY CLOCK FPD```	$1 * 1 * 1$	$1 * 1 * 4$	$1 * 1 * 6$	$2 * 2 * 2$
5	$\begin{array}{r} 853 \mathrm{~kW} \\ \mathrm{D}-13, \mathrm{No} .7 \end{array}$	$\begin{gathered} 856 \\ \text { D-13, No. } 7 \end{gathered}$	$\begin{gathered} 865 \\ \mathrm{D}-14, \text { No. } 6 \end{gathered}$	$\begin{gathered} 884 \\ \text { D-13, No. } 7 \end{gathered}$
10	$\begin{gathered} 864 \\ \mathrm{~V}-14, \text { No. } 7 \end{gathered}$	$\begin{gathered} 871 \\ \mathrm{~V}-14, \mathrm{No} .7 \end{gathered}$	$\begin{gathered} 861 \\ \mathrm{~V}-14, \mathrm{No} .6 \end{gathered}$	
20	$867$   Location not known ${ }^{+}$	$\begin{gathered} 867 \\ \mathrm{D}-15, \mathrm{No} .7 \end{gathered}$	$\begin{gathered} 858 \\ \mathrm{D}-13 \text {, No. } 7 \end{gathered}$	
25	$867$   Location not known ${ }^{+}$	$\begin{gathered} 840 \\ 0-4, \text { No. } 7 \end{gathered}$	$\begin{gathered} 837 \\ 0-4, \text { No. } 7 \end{gathered}$	
30	$\begin{gathered} 862 \\ \mathrm{D}-15, \mathrm{No} .7 \end{gathered}$	$\begin{gathered} 866 \\ \mathrm{D}-15, \mathrm{No} .7 \end{gathered}$	$\begin{gathered} 854 \\ \mathrm{D}-15, \mathrm{No} .7 \end{gathered}$	
40	$\begin{gathered} 855 \\ \mathrm{~N}-4, \mathrm{No} .7 \end{gathered}$	$\begin{gathered} 861 \\ \mathrm{~N}-4, \mathrm{No} .7 \end{gathered}$	$\begin{gathered} 842 \\ \mathrm{~N}-4, \mathrm{No.} 7 \end{gathered}$	
50	$\begin{gathered} 826 \\ \mathrm{D}-11, \text { No. } 7 \end{gathered}$	$\begin{gathered} 829 \\ \mathrm{D}-11, \mathrm{No.7} \end{gathered}$	$\begin{gathered} 828 \\ \mathrm{D}-11 \text {, No. } 7 \end{gathered}$	
60	$\begin{gathered} 872 \\ 0-4, \text { No. } 7 \end{gathered}$	$\begin{gathered} 875 \\ 0-4, \text { No. } 7 \end{gathered}$	$\begin{gathered} 862 \\ 0-4, \text { No. } 7 \end{gathered}$	
70	$\begin{gathered} 860 \\ \mathrm{~N}-4, \mathrm{No.} 7 \end{gathered}$	$\begin{gathered} 868 \\ \mathrm{~N}-4, \mathrm{No} .7 \end{gathered}$	$\begin{gathered} 852 \\ \mathrm{~N}-4, \mathrm{No} .7 \end{gathered}$	

+ The bundle power data at this time step were lost.

TABLE 9 AVERAGE IRRADIATION OF DISCHARGED FUEL IN SELECTED BURNUP INTERVALS

BURNUP INTERVAL CELL SIZE	AVERAGE IRRADIATION OF DISCHARGED FUEL IN BURNUP INTERVAL ( $\mathrm{n} / \mathrm{kb}$ )		
	$1 * 1 * 1$	$1 * 1 * 4$	$1 * 1 * 6$
5 to 10 FPD	$\begin{aligned} & \text { Inner } \\ & \text { region } \\ & \text { Outer } \\ & \text { region } \end{aligned}=1.770$	1.770   1.501	$\begin{aligned} & 1.770 \\ & 1.501 \end{aligned}$
10 to 20 FPD	$1.8107$   1.5108	1.8112   1.5112	$\begin{aligned} & 1.81145 \\ & 1.51146 \end{aligned}$
50 to 60 FPD	$\begin{aligned} & 1.7871 \\ & 1.5149 \end{aligned}$	$\begin{aligned} & 1.7886 \\ & 1.5163 \end{aligned}$	1.7893   1.5177
60 to 70 FPD	$\begin{aligned} & 1.7427 \\ & 1.5024 \end{aligned}$		$\begin{aligned} & 1.7454 \\ & 1.5052 \end{aligned}$

TABLE ICCOMPARISON OF SIMULATION RESULTS WTH THE $1 * 1 * 1$ ANSWER. AS RETEP VICE

ENERG: CLOCK FPD		Bundle irradiation ratios	
5	AVERRGE STD. DEV. MAX	$1 * 1 * 4 / 1-1 * 1$	1+1+6/1+1+1
		$\begin{aligned} & 1.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 0.0000 \end{aligned}$
		1.0000	1.0000
10	Arcagce	0.99950	0.991423
	Stodev	0.00537	0.00654
	max	1.0512	1.0839
20	Areence	0.99878	0.99865
	sto.pey	0.00930	0.01097
	Max	1.05032	1.08454
25	Areance	0.99851	0.99836
	StD.DEY	0.01067	0.0124
	MAX	1.14812	1.08174
30	A verase	0.99819	0.99796
	STD.DEy	0.01207	0.01341
	Max	1.04774	1.0747
40		0.99772	0.99750
	STDDEL	0.01421	0.01497
	Max	1.04729	1.06592
50	averrge	0.99731	0.99711
	STD.DEV	0.01602	0.016741
	max	1.04732	1.06745
60	Arcrace	0.99697	0.99667
	max	0.01724	0.01795
	max	1.04589	1.0744
70	Ayerpge	0.44666	0.99631
	CTD.CEV Max.	$0.01835$ $1.04559$	0.019068 $1.06238$



TABLEII BREAKDOWN OF SYSTEM RERUIREMENIS ISE COLIMI NG fEEG UURE DMD INSTANTANEOUS CALCULATION WITH HALI CORE GEOMEIRIES

Cell size	NO. OF MESH POINT	MAX.CM REQUIRED	MAX.ECS REQUIRED	FMOP CO		OMPUTATION	(FDR VERSIONDECOIT6)	
				Generation of ConREE MESH CROSS sections inpriparation tor collapsing	Collaps ing Procen jut	INSTANTANEOUS CALC ULATION		
						RGAD data rkom mass STORAGE GEMERATE RANDOM DISTR:Bution of IRRADITIION Compou cross stcioois for EACH MESH P FOR	iterative tiux calculation $0.0776 \mathrm{~m} .1 \mathrm{lisec} / i$ ter I meshpoint. 110 Hesations	calculation of powler dist ribution hrite patato MASE STBRASE
FINE MESH	13984	2140008		-	-	$\begin{array}{cc} 175000 \mathrm{~B} & \\ 64000 & \\ 69 & \\ 7.8 & 35 . \\ \hline \end{array}$	$\begin{gathered} 132000 \mathrm{~B} \\ 46080 \\ 119.4 \\ 0 \end{gathered}$	$\begin{gathered} 14000 B \\ 51200 \\ 1.74 \\ 13 \end{gathered}$ $3.6$
$1 * 1 * 1$	7616	NOT KNowid	Not knawn	$\begin{aligned} & 1540008 \\ & 55296 \\ & 15 . \\ & 4 . \\ & \hline \end{aligned}$	120000 B 40960 14. 3. 5.8	$\begin{array}{\|cc\|} \hline 140000 B \\ 49152 \\ 45 & \\ 6.7 & 20 \\ \hline \end{array}$	1270008 44544 65 0. 25.	$\begin{aligned} & 135000 \mathrm{~B} \\ & 47616 \\ & 1.5 \\ & 10 . \\ & \hline \end{aligned}$
$1 * 1 * 2$	4352	150000 B	2531238	$\begin{gathered} 1440008 \\ 51200 \\ 13.4 \\ 2 . \\ \hline \end{gathered}$	$\begin{gathered} 1040008 \\ 34816 \\ 12 . \\ 3 . \\ \hline \end{gathered}$		$122000 B$ 41984 37.1 0. $14$	$\begin{aligned} & 1350008 \\ & 47616 \\ & 3 . \\ & 4 . \quad 2.0 \end{aligned}$
$1 * 1 * 4$	2720	1500008	$170123 B$	$\begin{array}{ll} 1360008 \\ 48128 \\ 12.3 & \\ 2 . & \\ \hline \end{array}$	$\begin{gathered} \hline 740000 \mathrm{~B} \\ 30720 \\ 12 . \\ 3 . \quad 4.6 \\ \hline \end{gathered}$	$\begin{gathered} 1350008 \\ 47616 \\ 21 . \\ 3.8 \quad 9.2 \\ \hline \end{gathered}$	$\begin{gathered} 122000 \mathrm{~B} \\ 41984 \\ 23.2 \\ 0 . \end{gathered}$   8.8	$\begin{gathered} 135000 \mathrm{~B} \\ 47616 \\ 1.5 \\ 2 . \end{gathered}$   1.0
$1 * 1 * 6$	2176	1500008	153323 B	$\begin{gathered} 1340008 \\ 47104 \\ 12.3 \\ 2 . \\ \hline \end{gathered}$	$\begin{gathered} 7200008 \\ 29696 \\ 12 . \\ 3 . \quad 4.6 \\ \hline \end{gathered}$	$\begin{aligned} & 135000 \text { B } \\ & 47616 \\ & 20.0 \\ & 2.5 \quad 8.5 \\ & \hline \end{aligned}$	1200008    41984    18.6    0. 7.0  	$\begin{aligned} & 135000 B \\ & 47616 \\ & 2 . \\ & 1.5 \quad 1.0 \\ & \hline \end{aligned}$
$2+2 * 2$	1440	1500008	672478	$\begin{array}{cc} 1320008 & \\ 46080 & \\ 11.1 & \\ 2 . & 4.8 \end{array}$	$\begin{gathered} 66000 \mathrm{~B} \\ 27648 \\ 12 . \\ 3 . \\ \hline .6 \end{gathered}$	$\begin{aligned} & 1350008 \\ & 47616 \\ & 20 . \\ & 3.4 \quad 8.7 \end{aligned}$	$\begin{aligned} & 1020008 \\ & 33792 \\ & 12.3 \\ & 0 . \end{aligned}$	$\begin{aligned} & 1100008 \\ & 47616 \\ & 1.5 \\ & 2.0 \end{aligned}$

KEY

READ DATA ( 2580 llacr) Fromsequental fie To Random. accessmes; STORAGE	WRITE DATA (~3808BCKS) FROM MASS STDRAGE TO TAPE
$\begin{array}{cc} 102000 \overline{3} & \\ 33742 & \\ 40 . & 9.3 \\ 8 . & \end{array}$	$\begin{gathered} 102000 \mathrm{~B} \\ 33792 \\ 40 \\ 2 \end{gathered}$

 SIMULATION WIII TULL CORE

CELL Size	NO. of MESH POINTS	$\left\lvert\, \begin{gathered} \operatorname{Max}, C M \\ R \in Q U R E D \end{gathered}\right.$	Max ECS REQUIRED	FMDP COMPUTATION (TOR VERSION DEGO176)					
				GENERT TON OF conrese mesh crossScctions in priparation for collapsing	COLLAPSING procigupe	SIMULATION TIME STEP			
						READ DATA FROM mass storage. Burn FOR 10 FPD WITH refuelling of 27 channcls	Compute cross SECTIONS FOR EACH mesh pant as Function of irRadimtion	merative flux calculation 0.0776 m.lisec litar 1 mesh point 110 iteratoons	CALCULATION OF Power distribuion Wr.te daia to mass sidrage for RESTART
Fine mesh	27360	$>3200008$	Not known	$\underline{ }$	$\square$	$\uparrow$	$\begin{array}{cc} 2700008 & \\ 944208 \\ 70 . & \\ 9 . & 52 \end{array}$	$\begin{gathered} 2500001 \\ 86016 \\ 233.5 \\ 0 . \quad 144 . \\ \hline \end{gathered}$	$\begin{gathered} 2700008 \\ 94208 \\ 1.7 \\ 30 . \quad 16 . \\ \hline \end{gathered}$
$1 * 1 * 1$	14336	2660008	$\begin{aligned} & 5673268 \\ & \text { WiTH OVERICOW } \\ & \text { TOSCRATCH FLLE } \end{aligned}$	$\begin{gathered} 230000 \mathrm{~B} \\ 77821 \\ 28.5 \\ 15 . \\ \\ \hline \end{gathered}$	140000 B   - 49152   20.   10.   10.	$2260008$   (With no fresh BUMDLES IN POOL) $76800$ $\begin{array}{ll} 1.7 \\ 15 & 6.4 \\ \hline \end{array}$	230000 B 77824 50. 6.	$\begin{array}{cc} 214000 B \\ 71680 \\ 122.4 & \\ 0 . & 64 \end{array}$	$\begin{aligned} & 2360008 \\ & 80896 \\ & 1.6 \\ & 23 . \\ & \hline \end{aligned}$
$1+1 * 4$	5120	$266000 B$	316000 B	164000 B    59392    30.    9. 16.	$\begin{gathered} 1040008 \\ 34816 \\ 15 . \\ 7 \end{gathered}$	- - -	1640008 59392 41. $4$ $20 .$	$\begin{array}{cc} 1500008 \\ 53248 \\ 43.7 & \\ 0 . & 19 \\ \hline \end{array}$	$\begin{gathered} 174000 B \\ 63488 \\ 1.3 \\ 4.5 \\ \hline \end{gathered}$
1*1*6	4096	2660008	3113268	$\begin{gathered} 1640008 \\ 59392 \\ 28 . \\ 11 . \end{gathered}$	$\begin{gathered} 1000008 \\ 32768 \\ 15 . \\ 7 . \end{gathered}$	- -	$\begin{gathered} 1640008 \\ 59392 \\ 41 . \\ 4 . \end{gathered}$   20.	$\begin{gathered} 1500008 \\ 53248 \\ 35.0 \\ 0 . \end{gathered}$	$\begin{aligned} & 174000 B \\ & 63488 \\ & 1.3 \\ & 3.8 \end{aligned}$
$2+2+2$	2592	266000 B	1431328	$\begin{array}{ccc}1550008 & \\ 55808 & \\ 25.3 & \\ 11 . & 14 .\end{array}$	72000 B 29696 15 7 7	$\downarrow$	$\begin{gathered} 155000 \mathrm{~B} \\ 55808 \\ 33 . \\ 3 . \end{gathered}$	$\begin{gathered} 1120008 \\ 37888 \\ 22.1 \\ 0 . \end{gathered}$   10	$\begin{gathered} 174000 B \\ 63488 \\ 1.3 \\ 4 \quad 1.7 \end{gathered}$

## KEY

MEAN CM	IN OCTAL
MEAN CM IN DECIMAL	
CP TIME	IN SECONDS
IO TIME	IN SCCONDS
	COST IN


READ DATA FROM	WRITE DATA FROM
SEQUENTIAL FILE TO	MASS STORAGE TO
MASS STORAGE (~	SEQUENTIAL FILE
85O BLOCKS)	$(2850$ BLOCKS)
1020008	1020008
33792	33792
80.	80.
20.	20.
	4.

TABLE 13 COMPARISON OF COMPUTING COSTS

ELL SIZE ( $1 / 2$ Core)	COMPUTING COSTS ${ }^{+}$\$	
	TOTAL FOR 1 READ TAPE    1 COLLAPS ING PROCEDURE    1 INSTANTANEOUS CALC.    1 RITE TAPE	TOTAL FOR 10 READ TAPES 1 COLLAPSING PROCEDURE 10 INSTANTANEOUS CALCS. 10 RITE TAPES
FINE MESH	102	1020
$1 * 1 * 1$	77.5	655
$1 * 1 * 2$	53.3	436
$1 * 1 * 4$	45.5	365
$1 * 1 * 6$	43.0	340
$2 * 2 * 2$	39.9	314
ELL SIZE (FULL CORE)	TOTAL FOR 1 READ TAPE    1 COLLAPS ING PROCEDURE   1 SIMULAT ION TIME STEP   $(10$ FPD WITH REFUELLING)    I WRITE TO TAPE	TOTAL FOR 1 READ TAPE    1 COLLAPSING PROCEDURE    10 SIMULATION TIME STEPS    1 WRITE TO TAPE
FINE MESH	252	2214
$1 * 1 * 1$	166	1075
$1 * 1 * 4$	104	531
$1 * 1 * 6$	99	483
$2 * 2 * 2$	81	322

+ Calculated from TABLES 11 and 12.

TABLE 14 MAXIMUM CHANNEL AND BUNDLE POWERS OBTAINED DUR ING SIMULATION

ENERGY CLOCK FPD	MAXIMUM CHANNEL POWER   (kW) AND LOCATION	MAXIMUM BUNDLE POWER (kW) AND LOCATION	MAXIMUM CHANNEL OVERPOWER   (\%) AND LOCATION
0	$\begin{aligned} & 6865 \\ & M-5 \end{aligned}$	832	$\begin{aligned} & 8.48 \\ & \mathrm{M}-1 \end{aligned}$
5	$\begin{aligned} & 6918 \\ & \mathrm{E}-14 \end{aligned}$	$\begin{gathered} 853 \\ \mathrm{D}-13, \text { No. } 7 \end{gathered}$	$\begin{aligned} & 9.10 \\ & E-14 \end{aligned}$
10	$\begin{aligned} & 6944 \\ & E-14 \end{aligned}$	$\begin{gathered} 864 \\ \mathrm{~V}-14, \mathrm{No} .7 \end{gathered}$	$\begin{aligned} & 9.50 \\ & E-14 \end{aligned}$
20	$\begin{array}{r} 7100 \\ -\quad E-14 \end{array}$	LOCATION NOT KNOWN ${ }^{867}$	$\begin{aligned} & 12.5 \\ & A-14 \end{aligned}$
25	$\begin{aligned} & 6900 \\ & \mathrm{~N}-5 \end{aligned}$	LOCATION NOT KNOWN ${ }^{+}$	$\begin{gathered} 9.50 \\ \mathrm{~N}-1 \end{gathered}$
30	$\begin{aligned} & 7034 \\ & E-14 \end{aligned}$	$\begin{gathered} 862 \\ \mathrm{D}-15, \mathrm{No} .7 \end{gathered}$	$\begin{array}{r} 10.92 \\ E-14 \end{array}$
40	$\begin{aligned} & 6932 \\ & \mathrm{~N}-4 \end{aligned}$	$\begin{gathered} 855 \\ \mathrm{~N}-4, \mathrm{No.} 7 \end{gathered}$	$\begin{aligned} & 6.57 \\ & \mathrm{~N}-1 \end{aligned}$
50	$\begin{aligned} & 6948 \\ & F-15 \end{aligned}$	$\begin{gathered} 826 \\ \mathrm{D}-11 \text {, No. } 7 \end{gathered}$	$\begin{array}{r} 11.00 \\ E-22 \end{array}$
60	$\begin{aligned} & 7091 \\ & 0-8 \end{aligned}$	$\begin{gathered} 872 \\ 0-4, \text { No. } 7 \end{gathered}$	$\begin{gathered} 10.75 \\ 0-7 \end{gathered}$
70	$\begin{aligned} & 6902 \\ & F-17 \end{aligned}$	$\begin{gathered} 860 \\ \mathrm{~N}-4, \mathrm{No.} 7 \end{gathered}$	$\begin{aligned} & 9.40 \\ & \text { A-16 } \end{aligned}$

+ The bundle power data at this time step were lost.


## TABLE 15 SUMMARY OF EQUILIBRIUM FUEL MANAGEMENT DATA OBTAINED WITH NORMAL MESH MODEL

Fission Power (kW)		2854600
Thermal Power (kW)		2695600
Maximum Channel Power (kW)		7100
Maximum Bundle Power (kW)		874
Average Maximum Channel Power (kW)		6963
Average Maximum Bundle Power (kW)		856
	Whole Core	22.569
Feed Rate (Bundles/Day)	Inner Region	10.237
	Outer Region	12.332
	Whole Core	1.628
Average Exit Irradiation	Inner Region	1.775
	Outer Region	1.506

TAGLE 16 POWER TILT ANS TJELLA'G MISTOP:

$\frac{\sum P_{\text {zone }}:}{\text { Time-Avergged } \sum P_{\text {zoni }} i}$

ENERGY CLOCK FPD	CHANNEL 0-7				CHANNEL 0-19			
	AGE	POWER kW	$\text { LAA }{ }_{8 \mathrm{CHNLS}}^{+}$	$\begin{gathered} \text { LAP } \\ \quad \mathrm{kW} \end{gathered}$	AGE	POWER   kW	$\mathrm{LAA}_{8 \mathrm{CHNLS}}$	$\mathrm{LAP}_{8 \mathrm{CHNLS}}$   kW
40	0.925	6295	0.535	6698	0.918	6151	0.531	6530
50	0.965	5858	0.578	6280	0.958	6022	0.564	6441
60	0.343	7071	0.618	6883	0.336	6462	0.607	6282

+ LAA $_{8 \text { CHNLS }}(0-7)$ is the average age of the 8 channels next to $0-7$ (see Reference 5)
$\neq$ LAP $_{8 \text { CHNLS }}(0-7)$ is the average power of the 8 channels next to $0-7$


## TABLE 18 LEFT TO RIGHT POWER TILT AND FUELLING HISTORY IN BURNUP INTERVAL $30 \rightarrow 60$ FPD

ENERGY CLOCK   FPD	LEFT TO RIGHT   POWER TILT   PERCENT	NUMBER OF   CHANNELS FUELLED IN   NEXT BURNUP INTERVAL	
30	-2.1	Left   Right	
40	0.91		
50	-1.64	Left    Right 12   18	
60	2.64	Left    Right 14	



-     -         -             - Fine mesh cell goundipies

Fig. la fine mesh cell boundmbies

-     - Normal mesh cell Bounuarics


Fig. Ib Norial mesh cell boundorkies

X-DIRECTION             1 2 3 4 5 6 7 8 9 10 11	12											
0.0	22.85	28.575	28.575	28.575	28.575	28.575	28.575	24.13	8.89	9.843	28.575	
13	14	15	16	17	18	19	20	21	22	23		
9.843	8.89	24.13	24.13	8.89	24.13	24.13	8.89	9.843	14.288	0.0		

Y-DIRECTION

1	2		31	32
0.0	22.85	$28 \times 28.575$	22.85	0.0

Z-DIRECTION

1	2	3	4	5	6	7	8	9	10	11	12
0.0	47.625	50.8	49.53	49.53	15.24	8.89	35.56	35.56	8.89	35.56	35.56


13	14	15	16	17	18	19

$\begin{array}{lllllll}8.89 & 15.24 & 49.53 & 49.53 & 50.8 & 47.625 & 0.0\end{array}$




BUNDLE NO.




FIG. 6 HALF CORE COARSE MESH SPACINGS

FIG. 7 COMPARISON OF THE CHANNEL POWERS OBTAINED FROM THE FINE MESH INSTANTANEOUS CALCULATION (NRAN=6389) WITH THE TIME-AVERAGED VALUES

BUNDLE
NUMBER

FINE
MESH

80.6	318.8	582.0	768.8	883.5	1012.6	1037.5	1012.4	878.5	751.7	557.5	305.3	77.5


$1 * 1 * 6$   WITHOUT   CP FACTORS	7796	$\begin{aligned} & 322.9 \\ & 300 \end{aligned}$	$\begin{aligned} & 650.3 \\ & 104 \end{aligned}$	$\begin{array}{r} 657.1 \\ 12.9 \end{array}$	$\begin{array}{r} 659.3 \\ -14.2 \end{array}$	$\begin{array}{r} 659.0 \\ -25.4 \end{array}$	$\begin{array}{r} 657.7 \\ -35.0 \end{array}$	$\begin{aligned} & 657.4 \\ & -36.6 \end{aligned}$	$\begin{aligned} & 657.8 \\ & -35.0 \end{aligned}$	$\begin{aligned} & 656.6 \\ & -25.3 \end{aligned}$	$\begin{array}{r} 646.0 \\ -14.1 \end{array}$	$\begin{array}{r} 632.7 \\ 13.5 \end{array}$	$\begin{aligned} & 626.5 \\ & 105 \end{aligned}$	$\begin{aligned} & 312.7 \\ & 303 \end{aligned}$
$1 * 1 * 6$														
WITH CP FACTORS	8082	$\begin{aligned} & 80.4 \\ & -0.25 \end{aligned}$	$\begin{aligned} & 315.3 \\ & -1.10 \end{aligned}$	571.0 -1.89	$\begin{aligned} & 752.1 \\ & -2.30 \end{aligned}$	$\begin{aligned} & 861.6 \\ & -2.48 \end{aligned}$	$\begin{gathered} 982.2 \\ -3.00 \end{gathered}$	$\begin{gathered} 1007.5 \\ -2.89 \end{gathered}$	$\begin{aligned} & 987.7 \\ & -2.44 \end{aligned}$	$\begin{gathered} 861.4 \\ -1.95 \end{gathered}$	$\begin{aligned} & 737.0 \\ & -1.955 \end{aligned}$	$\begin{array}{\|c} 547.0 \\ -1.88 \end{array}$	$\begin{gathered} 301.2 \\ -1.34 \end{gathered}$	$\begin{aligned} & 76.9 \\ & -0.77 \end{aligned}$

CHANNEL D-12

FIG. 8 EFFECT OF THE CP FACTORS ON THE ACCURACY OF THE $1 * 1 * 6$ INSTANTANEOUS CALCULATION WITH NRAN=6389

BUNDLE
NUMBER

		1	2	3	4	5	6	8		9	10	11	12	13
$\begin{aligned} & \text { FINE } \\ & \text { MESH } \end{aligned}$	$\begin{gathered} \Sigma P \\ \stackrel{1}{7997} \end{gathered}$	75.6	300.4	554.1	743.1	861.3	992.0 1	1017.1	991.8	854.8	722.6	527.2	285.1	71.9
$1 \% 1 \% 1$	$\begin{aligned} & 8052 \\ & 0.69 \end{aligned}$	$\begin{gathered} 81.2 \\ 7.41 \end{gathered}$	$\begin{gathered} 298.7 \\ -0.57 \end{gathered}$	557.7 0.65	$\begin{gathered} 748.4 \\ 0.71 \end{gathered}$	$\begin{array}{r} 884.4 \\ 2.68 \end{array}$	$\begin{gathered} 983.7 \\ -0.84 \end{gathered}$	$\begin{array}{r} 1017.1 \\ 0.0 \end{array}$	$\begin{aligned} & 983.0 \\ & -0.89 \end{aligned}$	$\begin{gathered} 878.2 \\ 2.74 \end{gathered}$	$\begin{array}{r} 727.6 \\ 0.69 \end{array}$	$\begin{aligned} & 530.6 \\ & 0.64 \end{aligned}$	283.5 -0.56	$\begin{gathered} 77.4 \\ 7.65 \end{gathered}$

## CHANNEL D-12

FINE MESH	5803	67.4	248.0	425.9	546.2	584.1	640.3	638.7	640.3	596.5	584.4	476.1	282.0	73.4
$1 * 1 * 1$	5797	71.7	244.7	424.9	544.9	599.5	621.0	640.7	621.7	612.0	583.3	475.4	278.5	78.2
$1 \times 1 \times 1$	-0.10	6.38	-1.33	-0.23	-0.24	2.64	-3.01	0.31	-2.90	2.30	-0.19	-0.15	-1. 24	6.54

CHANNEL M-11

FINE MESH	3285	24.0	107.6	209.8	301.8	364.7	406.6	412.0	403.7	367.1	314.8	228.0	118.9	26.1
$1 * 1 * 1$	3270	26.1	105.4	208.4	299.7	367.9	400.3	408.0	398.3	370.6	313.4	227.1	116.9	28.3
	-0.46	8.75	-2.04	-0.67	-0.69	0.88	-1.55	-0.98	$-1.34$	0.95	-0.44	-0.39	-1.68	8.43

CHANNEL Q-1

FIG. 9 COMPARISON OF BUNDLE POWERS GENERATED BY THE INSTANTANEOUS CALCULATION (NRAN=6389) WITH FINE MESH AND NORMAL MESH MODEL WITHOUT CP FACTORS

 AND YARIOUS COARSE MESH GEOMETRIES


FIG. 11 COMPARISON OF IRRADIATION DISTRIBUTIONS WITH CASE $1 * 1 * 1$ AS REFERENCE


FIF. 13 COMPARISON OF SUNDLE POUERS ALONG CHANNEL E-14 AT TOFPD


FIG. 12 COMPARISON OF BUNDLE POWERS ALONG CHANNEL EHI AT 5FPD

	5	10	20	25	30	40	50	60	70
$1 * 1+1$	6918	6944	7100	6299	7034	6417	6902	6320	6680


6861 -0.92	6896 -0.69	7049 -0.72	6329 0.48	6987 -0.67	6435	$\underbrace{6878}_{-685}$	6351	6665 -0.22
${ }_{\substack{6833 \\-1.23}}$	6857 -1.25	$\underset{-1.87}{696}$	$\begin{array}{r}6353 \\ 0.86 \\ \hline\end{array}$	6943 -13	$\begin{array}{r}6456 \\ 0.61 \\ \hline\end{array}$	6846   -0.8	6376 0.89	6681
$\begin{gathered} 6939 \\ 0.30 \end{gathered}$								

Fig. 14 COMPARISON OF CHANNEL E- 14 POWERS THROUGHOUT SIMULATION
FIG. 15 COMPARISON of CHANNEL E-H AVERAGE BUNOLE IRRADIATION

5	10	20	25	30	40	50	60	70
0.363	0.401	0.476	0.514	0.548	0.623	0.69	0.762	0.828


$\underset{\sim}{\hat{\infty}}$	0 $\infty$ 0 0	
$\stackrel{\vdots}{\grave{0}}$	5 $\stackrel{5}{2}$ 0	
$\stackrel{\circ}{9}$	-	
5 0 0	0 3 0 0	
\%	$\stackrel{\sim}{4}$	
$m$ $\stackrel{\rightharpoonup}{5}$ 0	N $\vdots$ 0	
䂞	n   $\substack{\text { a } \\ 0 \\ \\ \hline}$	
O   it      0	0 0 0 0	
$M$ $\stackrel{3}{M}$ 0	\%	N

1



$$
\begin{aligned}
& \begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline 5 & 10 & 20 & 25 & 30 & 40 & 50 & 60 & 70 \\
\hline 0.517 & 0.552 & 0.620 & 0.654 & 0.687 & 0.753 & 0.821 & 0.887 & 0.954 \\
\hline
\end{array}
\end{aligned}
$$

0.819	0.552	0.620	0.653	0.687	0.753	0.821	0.887	0.953
0.519	0.552	0.620	0.653	0.687	0.753	0.820	0.886	0.953
0.517								


H\|+4	6177	- $\begin{gathered}6400 \\ -0.23\end{gathered}$	6287 0.02	6348 -0.06	$\begin{array}{r} 6328 \\ -0.16 \\ \hline \end{array}$	6491 -0.40	6319 -0.13	${ }_{6}^{6427}$	6059
$1+166$	6179 0.16	6387 -644	6277 -014	6334 -0.28	$\begin{array}{r} 6322 \\ -0.25 \\ \hline \end{array}$	$\begin{gathered} 6475 \\ -0.64 \end{gathered}$	$\begin{array}{r} 6313 \\ -0.22 \\ \hline \end{array}$	6409 -0.51	6071 0.46
$2+2+2$	$6096$								




35.6 -6.8	$150.5$ $1.35$	$\begin{array}{\|c} 287.2 \\ 0.6 \end{array}$	$\begin{array}{r} 404.9 \\ \hline 1.2 \\ \hline \end{array}$	$\begin{array}{r}416.0 \\ -2.3 \\ \hline\end{array}$	$\begin{gathered} 553.2 \\ 0.76 \\ \hline \end{gathered}$	$\begin{aligned} & 521.1 \\ & 0.90 \end{aligned}$	$\begin{gathered} 560.7 \\ 10 \end{gathered}$	$\begin{array}{r} 495.6 \\ -1.06 \\ \hline \end{array}$	413.8	$\begin{aligned} & 285.1 \\ & -0.04 \\ & \hline \end{aligned}$	M2.9	${ }^{3} 3_{5}^{1}$
$\begin{array}{r} 35.5 \\ -7.1 \\ \hline \end{array}$	$\begin{gathered} 150.4 \\ 130 \end{gathered}$	$\begin{gathered} 286.9 \\ -0.69 \\ \hline \end{gathered}$	$\begin{aligned} & 404.4 \\ & -1.34 \end{aligned}$	$\left.\right\|_{481.3} ^{-3.2}$	$\begin{aligned} & 565.6 \\ & -0.62 \end{aligned}$	$\left\lvert\, \begin{aligned} & 562.7 \\ & -058 \end{aligned}\right.$	$\begin{gathered} 551.9 \\ 0.3 \end{gathered}$	$\left\lvert\, \begin{aligned} & 492.0 \\ & -1.28\end{aligned}\right.$	418.1   0.05	$\begin{gathered} 288.1 \\ 0.4 \end{gathered}$	[1454	$\begin{aligned} & 33.4 \\ & -6.7 \end{aligned}$
											.	

FIG. 21 COMPARISON OF BUNDLE POWERS ALONG CHANNEL L-I AT TOFPR

$1+1+4$	$\begin{gathered} 4082 \\ 0.0 \end{gathered}$	$\begin{aligned} & 34.4 \\ & 7.5 \end{aligned}$	$\left[\begin{array}{c} 147.5 \\ 0.7 \end{array}\right.$	$\begin{array}{r} 281.8 \\ -0.78 \end{array}$	$\begin{gathered} 392.3 \\ 00 \end{gathered}$	$\begin{array}{r} 453.7 \\ -2.62 \end{array}$	$\begin{gathered} 504.6 \\ 0.06 \end{gathered}$	$\begin{aligned} & 5.9 .7 \\ & 0.17 \end{aligned}$	${ }_{5}^{511.5}$	$\xrightarrow{4} 52.0$	${ }^{367.9}{ }^{3}$	254.5	$\begin{array}{r} 131.1 \\ 0.92 \\ \hline \end{array}$	30.7
1+1+6	$\begin{aligned} & 4101 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 34.8 \\ & -6.5 \end{aligned}$	144.6 2.4	$\begin{aligned} & 285.7 \\ & 1.1 \end{aligned}$	397.9 1.43	$14.68 .3$	$\begin{aligned} & 525,6 \\ & 4.226 \end{aligned}$	$\begin{aligned} & 523.0 \\ & 1.51 \end{aligned}$	$\begin{aligned} & 496.9 \\ & -0.6 \end{aligned}$	442.0 -1.5	$\begin{aligned} & 364.6 \\ & -0.61 \end{aligned}$	$\begin{gathered} 252.2 \\ -0.90 \\ \hline \end{gathered}$	$129.9$	$\begin{array}{r} 30.5 \\ \hline 8.7 \\ \hline \end{array}$
$2+2+2$	76	$\begin{array}{r}33.9 \\ -8.4 \\ \hline\end{array}$	145.6 -0.34	$\begin{aligned} & 278.7 \\ & 1.58 \end{aligned}$	$\begin{array}{r}388.3 \\ -1.02 \\ \hline\end{array}$	${ }_{-2.5}^{4.4}$	$\begin{aligned} & 508 \\ & 0.73 \end{aligned}$	520.7	510.1   2.04	${ }_{4}^{450.8}$	$\begin{aligned} & 368.7 \\ & 0.43 \end{aligned}$	$\begin{aligned} & 254.8 \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 130.9 \\ & 0.77 \end{aligned}$	$\left\lvert\, \begin{aligned} & 30.7 \\ & -8.1 \end{aligned}\right.$

## Bundele <br> 

FIG.2O COMPARISON OF BUNDLE POWLRS ALONG CHINNEL L-I AT SFPD
1


[^0]
$1 * 1+4$
$1 * 1 * 6$
$2+2 * 2$




$\stackrel{0}{7}$	$\begin{aligned} & 0 \\ & 7 \\ & 0 \end{aligned}$
1 0 0 0	0 $\stackrel{3}{0}$ 0
0 0 0 0	M 0 0
4 3 0	$\begin{aligned} & 3 \\ & 3 \\ & 0 \end{aligned}$
$\stackrel{\infty}{\infty}$	$\begin{gathered} \infty \\ \underset{\infty}{\infty} \\ \underset{0}{\infty} \end{gathered}$
$\stackrel{\infty}{5}$	$\stackrel{\infty}{\sim}$
3 - $=$	3 - -
$\stackrel{\square}{\square}$	$\stackrel{\sim}{2}$
$\stackrel{N}{\sim}$	$\stackrel{N}{\sim}$


1	2	3				7	$\ell$	9	10	11		13
520.03106	011256	0.19185	0.2308	0.23125	0.26542	0.26837	0.264	0.41742	0.90147	1.33117	1.4884	1.43598
0.55   $\left[\begin{array}{c}0.03675 \\ -1.0\end{array}\right.$	0.11296 0.355	$\left[\begin{array}{c} 0.19213 \\ 0.15 \end{array}\right.$	0.2310 0.19	$\begin{array}{r}0.2367 \\ -0.65 \\ \hline\end{array}$	$\begin{gathered} 0.269 \\ 0.63 \\ \hline \end{gathered}$	$0.2684$	$\begin{gathered} 0.2665 \\ 0.85 \\ \hline \end{gathered}$	$\begin{array}{r} 0.4160 \\ .034 \end{array}$	$\left\lvert\, \begin{aligned} & 0.1010 \\ & -0052 \end{aligned}\right.$	$\left[\begin{array}{c} 1.3309 \\ -0.020 \end{array}\right]$	$\left[\begin{array}{c} 1.4845 \\ 0.082 \end{array}\right.$	$\left\lvert\, \begin{gathered} 1.4356 \\ -0.03 \end{gathered}\right.$
$0.352\left[\begin{array}{c}0.03083 \\ -0.74\end{array}\right.$	0.11323   0.59	${ }^{0.19261} \begin{aligned} & 0.40\end{aligned}$	0.2315   0.40	0.23785	0.2687 13	0.2182	0.1644	0.4148 -0.63	0.9006		$\left\lvert\, \begin{aligned} & 1.4844 \\ & -0.005\end{aligned}\right.$	$\begin{aligned} & 1.4356 \\ & -0026 \end{aligned}$




CORE BURNUP = TOFPD
FIG.33 COMPARISON OF CHANNEL N-13 BUNDLE IRRADIATIONS

FIG.32 COMPARISON OF CHANNEL E-IL BUNDLE IRRADIATIONS
$1{ }^{1}$


## CORE BURNUP $=$ 30FPD

$1+1+1$	0.762	1.4692.	1.5183	1.3912	1.0886	0.74at	0.6329	0.6538	0.6294	1.5868	0.5217	0.3459	0.2197	0.0614
$1+1+$	0.761	$\left\|\begin{array}{l} 1.4652 \\ -0.20 \end{array}\right\|$	$\begin{array}{r} 1.5220 \\ 024 \\ \hline \end{array}$	$\begin{array}{r} 1.392 .1 \\ 0.005 \\ \hline \end{array}$	$\begin{gathered} 1.0889 \\ 0000 \\ \hline \end{gathered}$	$\begin{array}{r} 0.7216 \\ -2.54 \\ \hline \end{array}$	$\begin{gathered} 0.1470 \\ 2.13 \\ \hline \end{gathered}$	$\begin{array}{r} 0.6505 \\ \hline 0.50 \\ \hline \end{array}$	$\begin{gathered} 0.6489 \\ 3.10 \end{gathered}$	$\left\{\begin{array}{c} 0.5626 \\ -1.1 \end{array}\right.$	$\left[\begin{array}{l} 0.5136 \\ -1.55 \end{array}\right]$	$\begin{array}{r} 0.3919 \\ -1.01 \\ \hline \end{array}$	$\begin{gathered} 0.2212 \\ 0.68 \\ \hline \end{gathered}$	$\left[\begin{array}{l} 0.0577 \\ -6.03 \end{array}\right.$
$1+1 \times 6$	0.759	$\xrightarrow{1.4652}$-8.20	1.524   0.25	1.3922 0.07	$\begin{aligned} & 1.0840 \\ & 0087 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.725 \\ -1.08 \end{array}$	0.6532   3.21	$\begin{aligned} & 0.644 \mathrm{P} \\ & -1.38 \end{aligned}$	0.6314 032	$\left[\begin{array}{l} 0.546 \\ -4.63 \\ \hline \end{array}\right.$	$\begin{array}{r} 0.5152 \\ -1.25 \\ \hline \end{array}$	$\left[\begin{array}{l} 0.3433 \\ -0.68 \end{array}\right.$	$\begin{gathered} 0.2219 \\ 1.00 \end{gathered}$	$\begin{gathered} 0.0579 \\ -5.7 \end{gathered}$

Core Buanue $=60$ FPD

$1 * 1 * 1 \quad 0.828$	1.4779	1.5530	1.4532	'1.1696	0.8314	0.7301	0.7543	0.7264	0.6778	0.6033	0.4587	0.2553	0.0715
$1 * 1 * 4 \quad 0.82$	$\begin{aligned} & 1.4746 \\ & -0.24 \end{aligned}$	$\left[\begin{array}{c} 1.5574 \\ 0.283 \end{array}\right.$	$\left[\begin{array}{l} 1.4550 \\ 0.14 \end{array}\right.$	$\begin{array}{\|} 1.1718 \\ 0.188 \end{array}$	$\begin{aligned} & 0.8106 \\ & -2.5 \end{aligned}$	$\begin{array}{r} 0.7468 \\ \hline \end{array}$	$\begin{aligned} & 0.7507 \\ & -0.48 \\ & \hline \end{aligned}$	$\left[\left.\begin{array}{c} 0.7490 \\ 3.11 \end{array} \right\rvert\,\right.$	$\left[\begin{array}{l} 0.657 \\ -3.02 \end{array}\right.$	$\left[\begin{array}{l} 0.5954 \\ -1.319 \end{array}\right.$	$\left[\begin{array}{l} 0.6547 \\ -0.87 \\ \hline \end{array}\right.$	$\begin{array}{r} 0.2571 \\ 0.71 \\ \hline \end{array}$	$\left[\begin{array}{l} 0.0671 \\ -615 \end{array}\right.$
$1 * 1 * 60.826$	$\begin{array}{r} 1.4743 \\ -0.4 \\ \hline \end{array}$	$\left\lvert\, \begin{gathered} 1.5570 \\ 0.26 \end{gathered}\right.$	$\begin{gathered} 1.4544 \\ 2.08 \end{gathered}$	$\left[\begin{array}{c} 11709 \\ 0.11 \\ \hline \end{array}\right.$	$\begin{gathered} 0.8149 \\ -1.98 \\ \hline \end{gathered}$	$\begin{aligned} & 0.7554 \\ & 3.46 \end{aligned}$	$\begin{gathered} 0.7464 \\ -1.05 \\ \hline \end{gathered}$	$\left[\begin{array}{c} 0.7316 \\ 0.74 \\ \hline \end{array}\right.$	$\left[\begin{array}{l} 0.6484 \\ -4.34 \end{array}\right]$	$\begin{array}{r} 0.5173 \\ -0.99 \end{array}$	$\begin{aligned} & 0.456 \\ & -0.54 \end{aligned}$	$\begin{gathered} 0.2579 \\ 1.02 \end{gathered}$	$\left[\begin{array}{l} 0.0678 \\ -5.79 \end{array}\right.$

CORE Burnup $=70$ FPD
CORE DURNUP $=70 \mathrm{FPD}$


$1 * 1+1 \quad 1.098$	0.09224	0.37759	0.70915	0.98818	1.16885	1.30381	$133461$	1.30135	1.25653	1.3828	1.47389	1. 47385	1.41776
$1+1 * 4 \quad 1.098$	$\left[\begin{array}{l} 0.09115 \\ -1.18 \end{array}\right.$	$\begin{gathered} 0.37799 \\ 0.11 \\ \hline \end{gathered}$	$\begin{array}{r\|} 0.70814 \\ -0.053 \\ \hline \end{array}$	$\begin{array}{r} 0.98801 \\ -0.017 \\ \hline \end{array}$	$\begin{aligned} & 1.16437 \\ & -0.38 \\ & \hline \end{aligned}$	$\begin{gathered} 1.30356 \\ -0.02 \end{gathered}$	$\begin{gathered} 1.33575 \\ 0.095 \\ \hline \end{gathered}$	$\begin{gathered} 1.30497 \\ 0.28 \end{gathered}$	$\begin{gathered} 1.25580 \\ -0.058 \\ \hline \end{gathered}$	$\begin{gathered} 1.38241 \\ 0.002 \end{gathered}$	$\begin{aligned} & 1.47376 \\ & -0.009 \end{aligned}$	$\begin{gathered} 147423 \\ 0.026 \\ \hline \end{gathered}$	$\left[\begin{array}{l} 1.41679 \\ -0.068 \end{array}\right.$
$1 * 106 \quad 1.098$	$\left[\begin{array}{c} 0.09119 \\ -1.14 \end{array}\right.$	0.37814   0146	$\begin{aligned} & 0.70902 \\ & -0.018 \end{aligned}$	$\left[\begin{array}{c} 0.9884^{0} \\ 0.022 \end{array}\right]$	$\begin{aligned} & 116764 \\ & -0.10 \\ & \hline \end{aligned}$	$\left[\begin{array}{c} 1.30887 \\ 0.39 \end{array}\right.$	$\begin{gathered} 1.33597 \\ 0.10 \end{gathered}$	$\begin{aligned} & 1.30009 \\ & -0.097 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.25257 \\ & -0.32 \end{aligned}$	$\begin{aligned} & 1.38152 \\ & -0.062 \end{aligned}$	$\left\lvert\, \begin{gathered} 147314 \\ -0.051 \end{gathered}\right.$	$\begin{gathered} 1.47391 \\ 0.004 \end{gathered}$	$\left\|\begin{array}{c} 1.41672 \\ -0.073 \end{array}\right\|$

CORE BURNUP $=30 \mathrm{FPD}$

1*1+1 1.226	- 0.10838	$0.43759$	0.81153	114382	1.35489	1.50619	15.299	50364	1.44014	1.53325	1.57196	1.52838	1.43181
$1 * 1 * 4$	$\left\|\begin{array}{l} 0.10600 \\ -2.19 \end{array}\right\|$	$\left\|\begin{array}{c} 0.43852 \\ 0.4 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0.82111 \\ & -0.05 \end{aligned}\right.$	$\left.\right\|_{1} ^{114.36} \begin{gathered} 0.047 \end{gathered}$	$\left\lvert\, \begin{gathered} 1.34643 \\ -0.62 \end{gathered}\right.$	$\left[\begin{array}{c} 1.50453 \\ 0.036 \end{array}\right]$	$\begin{gathered} 1.54616 \\ 0.3 \\ \hline \end{gathered}$	$\begin{array}{r} 1.5117 \\ 0.54 \\ \hline \end{array}$	$\begin{array}{r} 1.4388 \\ -0.013 \\ \hline \end{array}$	$\begin{gathered} 1.53348 \\ 0.046 \\ \hline \end{gathered}$	$\begin{array}{\|c} 1.57969 \\ -0.02 \\ \hline \end{array}$	$\begin{aligned} & 1.52903 \\ & 0.042 \end{aligned}$	$\begin{aligned} & 1.42963 \\ & -0.15 \end{aligned}$
61.226	( $\begin{gathered}0.10592 \\ -227\end{gathered}$	$\begin{gathered} 0.43821 \\ 0.141 \\ \hline \end{gathered}$	$\begin{aligned} & 0.82052 \\ & -0,12 \end{aligned}$	$\begin{array}{r} 114354 \\ -0.024 \\ \hline \end{array}$	$\begin{gathered} 1.35731 \\ -0.26 \\ \hline \end{gathered}$	$\left[\begin{array}{c} 1.51641 \\ 0.63 \end{array}\right.$	$\left[\left.\begin{array}{c} 1.54702 \\ 0.26 \end{array} \right\rvert\,\right.$	$\left\lvert\, \begin{gathered} 150447 \\ 0.055 \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 1.43413 \\ -0.42 \end{gathered}\right.$	$\begin{aligned} & 1.53292 \\ & -0.020 \end{aligned}$	$\left[\left.\begin{array}{c} 1.57896 \\ -0.063 \end{array} \right\rvert\,\right.$	$\begin{array}{\|c} 1.52865 \\ 0.018 \end{array}$	1.42954 -0.16



$1 * 1 * \mid 0.328$	0.00284	0.01092	0.02080	0.02908	003475	0.03792	0.03884	0.03766	014497	0.4745	285926	117979	1.38891
$1 * 1.4$	${ }_{-8.8}^{0.00259}$	$\left.\right\|_{0.01096} ^{0.37}$	$\left[\begin{array}{c} 0.0209 \\ 0.48 \end{array}\right.$	$\begin{gathered} 0.02246 \\ 1.31 \end{gathered}$	$\left.\begin{aligned} & 0.03395 \\ & -2.3 \end{aligned} \right\rvert\,$	$\left\|\begin{array}{c} 0.01785 \\ -0.185 \end{array}\right\|$	$\begin{array}{\|c\|} 0.03907 \\ 0.59 \\ \hline \end{array}$	$\begin{gathered} 0.03836 \\ 1.86 \\ \hline \end{gathered}$	$\begin{gathered} 0.14218 \\ 1.92 \\ \hline \end{gathered}$	$\begin{gathered} 0.47587 \\ 0.24 \\ \hline \end{gathered}$	$\begin{aligned} & 0.8587 \\ & -0.055 \end{aligned}$	$\left[\begin{array}{c} 1.18065 \\ 0.013 \end{array}\right]$	$\begin{gathered} 1.37149 \\ -0.942 \\ \hline \end{gathered}$
$1 * 1 * 6^{0.377}$	0.00154 -10.6	$\begin{gathered} 0.01076 \\ 146 \end{gathered}$	$\left[\begin{array}{l}0.02051 \\ -129\end{array}\right.$	0.02891   0.58	$\begin{gathered} 0.03440 \\ -1.01 \\ \hline \end{gathered}$	$\begin{gathered} 0.03899 \\ 2.92 \\ \hline \end{gathered}$	$\begin{gathered} 003943 \\ 1.52 \\ \hline \end{gathered}$	$\left\|\begin{array}{c} 0.03792 \\ 0.69 \end{array}\right\|$	$\begin{gathered} 0.14170 \\ -2.16 \\ \hline \end{gathered}$	$\begin{gathered} 0.47512 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 08578 \\ -0.18 \\ \hline \end{gathered}$	$\begin{array}{r} 1.17925 \\ -0046 \end{array}$	$\begin{aligned} & 1.38475 \\ & -0.30 \end{aligned}$

$$
\text { NOTE CHANNLL REFUELLED AT } 65 \text { FPD }
$$



 CORE BURNUP = 30 FPD


CORE BURNUP $=60 \mathrm{FPD}$

NOTE CHANNEL REFUELLED AT YFPD

CORE BURNUP $=70$ FPD
TIG. 35 COMPARISON OF CHANNEL A- 14 BUNDLE IRRADIATIONS


	E－	N：
$\stackrel{\bar{\omega}}{\Xi}$	－	
0   0   0   0   0	蓉－1	W
－	5	¢
尔	年	
$\begin{array}{r}5 \\ \hline 8 \\ \hline 8 \\ \hline\end{array}$	5－	$\begin{aligned} & 6 \\ & 6 \\ & 0 \\ & 0.0 \\ & \hline \end{aligned}$
		$\begin{aligned} & \text { た } \\ & 0 . \\ & 0 . \\ & 0 . \end{aligned}$
¢ $\begin{gathered}0 \\ 0 \\ 0 \\ 0 \\ 0\end{gathered}$		
प N̂ 0 0 0		
	年	$\begin{aligned} & 5 \\ & 8 \\ & 8 \\ & 0 \\ & 0 \end{aligned}$
－	号。	
－		年1
\％	范	年
	$\begin{gathered} \text { Q } \\ \stackrel{N}{5} \end{gathered}$	$\begin{aligned} & \infty \\ & \substack{\infty \\ 0 \\ \hline} \end{aligned}$
$\frac{4}{4}$	$\frac{t}{t}$	$\begin{aligned} & 0 \\ & \underset{*}{*} \end{aligned}$


$\frac{\overline{\mathrm{D}}}{\mathrm{~B}}$	$\begin{aligned} & \text { EN } \\ & \text { En } \\ & \end{aligned}$	$\begin{aligned} & \text { F! } \\ & \frac{1}{6}! \\ & \underline{m}! \end{aligned}$
$\stackrel{\sim}{0}$	近	－
$\begin{aligned} & \hat{6}, \\ & \text { 人 } \\ & 0 \end{aligned}$		F\％
$\xrightarrow{5}$	第	
－	－	
－	彦 ${ }_{5}^{5}$	－
$\begin{aligned} & \stackrel{n}{2} \\ & \frac{\pi}{0} \\ & \hline \end{aligned}$		Mo＇
¢	¢	
－	50\％1	年
－	4 7 8 8 8 0	
	年	彦
\％	产 $\begin{gathered}\text { ¢ } \\ 0 \\ 0 \\ i\end{gathered}$	
$\begin{aligned} & 6 \\ & 6 \\ & 0 \\ & 0 \end{aligned}$	$6$	
$-$	＋	$\pm$
$\underline{H}$	＊	$\underline{4}$

$$
\text { CIRE BURNuP }=60 \text { FPD }
$$

$1+1410.430$	0.01316		0，1224	$0.171510 .21747$	$0.24057$	$0.24761$	$\|04.052\|$	$0.29553$		$0.9047$	1.16966	$1.354 \cdot 1$
$\mathrm{HF}+4 \quad 0.430$	0.01201 -8.74	0.06023	$\left[\begin{array}{l}0.12322 \\ 0.67\end{array}\right.$	0.17847 .0 .21247   0.54	0.24210	$0.24 \% 11$ 0.76	0．24466	0．24285	0.56544	0.90474 0.016	1.1718 0.18	$\begin{array}{r}1.33008 \\ -0.29 \\ \hline\end{array}$
$1+1+60430$	$\begin{array}{r} 0.04199 \\ -8.89 \end{array}$	$\left[\begin{array}{c}0.06012 \\ 2.19\end{array}\right.$	012301 050	$\left\lvert\, \begin{array}{cc}1.17817 & 0.21474 \\ 0.37 & -1.23\end{array}\right.$	$\left\lvert\, \begin{aligned} & 0.24538 \\ & 2.0\end{aligned}\right.$	$\underline{0.25018} 1$	$\underbrace{0.42977} 1$	$\left\lvert\, \begin{aligned} & 0.29 t 2 \\ & 1.12\end{aligned}\right.$	0.56624   0.21	$\left\|\begin{array}{c} 0.90524 \\ 0.07 \end{array}\right\|$	$\left\lvert\, \begin{gathered} 1.17193 \\ 0.194 \end{gathered}\right.$	$\left[\begin{array}{c} 1.33376 \\ -0.019 \end{array}\right]$

 $=70$ FPD
NDIE CHAND
NDIE CHANNEL REFUELES AT 29FPD

FIG． 36 COMPARISON OFCHANNEL T－23 BUNDLE IRRADIATIONS


FIG. 37. EXCESS REACTIVITY VS CORE BURNUP


1


## APPENDIX A DESCRIPTION OF CALCULATIONS

The three main types of calculations done in this study are outlined below.

## 1. Time Averaged Calculations

Flux and power distribtuions are computed using input physics parameters for fuel bundles which are averaged over each bundle's residence time in the core at a given position in the channel. The distributions can be interpreted as an average over a sufficiently long time.

The basic steps are as follows. Note that this is an iterative calculation.
(i) An initial estimate is made of the exit irradiation in the two regions, the size and shape of the inner region, and a starting guess for the axial flux distributions.
(ii) The initial and discharge irradiations for each bundle are computed from the exit irradiation; the axial flux shape, and the fuelling scheme.
(iii) For each position in the channel, average cross sections are calculated by integrating from initial to final irradiation. Figure A.l illustrates this procedure.
(iv) With these cross sections, the flux distribution, the eigenvalue and the power distribution are calculated.
(v)

Steps ii to iv are repeated until the axial flux shape has converged.
(vi) The inner region irradiation is adjusted to get a flat channel power distribution in this region, the outer region irradiation is adjusted to produce the required excess reactivity and the inner region size and shape is adjusted to get the required form factor. All of these factors are not necessarily adjusted at every iteration. Currently this step is done manually.
(vii) Steps ii through vare repeated until the desired form factor and excess reactivity are obtained.

Note that step $v$ is a manual step done externally to the computer so that the job must be resubmitted at each iteration.

2, Instantaneous Calculations

Power distributions which are more representative of those which might be obtained at a particular time during operation are obtained using an instantaneous calculation. This gives a snapshot of the reactor core at a particular moment in the reactor's history. The code assigns each channel in the core an age which represents the time since
the channel was last fuelled as a fraction of its total residence time. These fractions were selected from a uniform random distribution over the interval $(0,1)$ using a numerical random number generator. Knowing the irradiations at the beginning and ending of the dwell period from a time-averaged calculation, the irradiation of each bundle in a channel can be calculated from the fractional age.

A different distribution is produced if a different starting value (the variable NRAN) is used for the random number generator.

The age distribution may also be obtained other than with the random number generator. A fuelling sequence may be read in to produce a patterned distribution of channel ages.

## 3. Simulations

The time history of the flux and power distribution is calculated at discrete time steps, with the irradiation distribution incremented from the previous step using the previous flux distribution. The flow chart is shown in Fig. A.2.

When a time step is to be taken, the new irradiation for each bundle is calculated from:

$$
\omega_{K}\left(t_{i+1}\right)=\omega_{K}\left(t_{i}\right)+f_{K}\left(\omega_{i}\right) \emptyset_{K} \Delta t_{i}
$$

where $\omega\left(t_{i}\right)=\omega_{i}$ is the previous irradiation
$\omega\left(t_{i+1}\right)$ is the new irradiation
$f_{K}\left(\omega_{i}\right)$ is the flux depression factor for the particular bundle
$\emptyset_{K}$ is the bundle flux from the previous time step
$\Delta t_{i}$ is the time increment


13	12	11	10	9	8	7	6	5	4	3	2	1

Fuelling Direction

Each channel is

1. Refuelled
2. Is irradiated undisturbed for dwell time $i$
3. Is refuclled again
4. Bundles are shifted along channel $N$ positions

Irradiation at end of $T$ is:

$$
\begin{aligned}
& \omega(k)=\omega(k-i)+\int_{0}^{T} \emptyset(k) d t \\
& \bar{\Sigma}(k)=\frac{1}{\Delta \omega(k)} \int_{\omega}^{\omega} \Sigma(\omega) d \omega
\end{aligned}
$$

1


## APPENDIX B REACTOR MODEL

1. Core Model - Mesh and Cell Arrays

For purposes of the flux calculation, the reactor is partitioned by perpendicular mesh planes into small parallelepiped volumes. The flux in each of these volumes is assumed constant, and is assigned to the point at the geometric centre of the volume.

Mesh planes are spaced closely in regions of rapidly changing flux or material properties and farther apart elsewhere.

There is no fixed geometrical relationship between mesh points and bundles. If each bundle is considered to occupy a volume equal to one lattice pitch in the $x$ and $y$ directions and one bundle length in the $z$ direction (called a lattice "cell") the mesh volumes defined by the mesh planes do not necessarily coincide with these cell volumes. There may be more than one mesh point per lattice cell, or one cell may overlap several mesh points.

Mesh arrays are converted to cell arrays by volume weight averaging all mesh point values which overlap each cell. This permits the calculation of the power and burnup of the fuel bundles. These quantities are of most interest in fuel management.

## 2. Lattice Cell Homogenization

Cross sections for the flux calculation calculated by lattice physics codes (such as POWDERPUFS) are flux-volume weight averaged over the entire volume occupied by the lattice cell. Thus, when more than one mesh point is placed in a physical lattice cell to reduce discretization error in regions of rapidly changing flux, the variation in the flux values of individual mesh points within the geometric region of the cell does not represent the flux distribution through the cell. Rather, the average of the mesh point values is an approximation to the average cell flux. The microscopic flux distribution through the cell is treated by the flux depression factor $F$.

The material composing the bundle and pressure tubes and moderator are considered to be smeared out uniformly throughout the cell. Thus the model produces power, irradiation, and burnup from mesh points which may be geometrically within the moderator.

When structural material and control elements are present in the region of a lattice cell, appropriate cross section increments are added to the cell cross sections of the affected mesh points. This is to ensure that the total effective number of $U, Z r$, etc., atoms is unaffected by the introduction of additional material. The displacement of moderator and the change in microscopic flux distribution through the cell, in general non-zero increments will be added to all cross sections. The correct values of increments are obtained from CHEBY "supercell" calculations.

## 3. Structural Materials and Controllers <br> Extraneous structural materials, control elements, etc.,

 which are not included in the lattice cell calculation, are treated by adding cross section increments to the cell cross sections at the affected mesh points. Extra materials are considered to be of two types; "fixed" structural material, and "'moveable" controllers.Figure Bl shows how the moveable absorber increments are added to the mesh properties. Consider controller A. It overlaps the mesh volume between $1=1$ and 2 and $J=1$ and 2 by $1 / 3$, so that $1 / 3$ of the incremental cross sections of $A$ are added to mesh properties for this mesh point. Similarly for the other mesh volumes overlapped. Thus the increment is smeared over the entire mesh volume. Controller B shows the more normal situation in which the controller occupies the entire mesh volume except at its tip. Controller A is modelled in coarse mesh. Controller B is modelled in fine mesh.


Figure Bil Mesh and Cell Arrays

$\begin{aligned} & \text { NERGY } \\ & \text { LOCK } \\ & \text { FPD } \end{aligned}$	CHANNEL REFUELLED	$\begin{aligned} & \text { REGION } \\ & \text { AND } \\ & \text { DIRECTION } \end{aligned}$	AVERAGE EXIT IRRADIATION ( $\mathrm{n} / \mathrm{kb}$ )	ENERGY CLOCK FPD	CHANNEL REFUELLED	$\begin{aligned} & \text { REGION } \\ & \text { AND } \\ & \text { DIRECTION } \end{aligned}$	AVERAGE EXIT IRRADIATION ( $\mathrm{n} / \mathrm{kb}$ )
1	V-14	- 0	1.443	22	0-12	+ I	1.86
1	W-16	+ 0	1.503	22	J-22	- 0	1.515
2	F-16	+ I	1.7781	22	K-8	+ I	1.853
2	E-14	- I	1.7167	23	R-18	- I	1.797
3	R-22	- 0	1.448	23	W-20	+ 0	1.560
3	S-8	+ I	1.7683	23	J-6	- I	1.787
4	B-8	+ 0	1.509	24	K-24	$+0$	1.542
4	A-14	- 0	1.4668	24	R-2	- 0	1.501
5   5   5   6   6   7   7   8   8   9   9	K-12	+ I	1.800	24	T-15	+ I	1.787
	R-6	- 0	1.467	25	$\mathrm{N}-18$	- I	1.832
	S-16	+ I	1.799	25	T-17	+ 0	1.533
	R-14	- I	1.736	25	E-16	- 0	1.491
	B-16	+ 0	1.516	25	C-15	+ 0	1.53
	J-18	- I	1.733	26	R-8	- I	1.732
	K-4	$+0$	1.5297	26	G-15	+ I	1.812
	J-2	- 0	1.462	26	R-16	- I	1.728
	W-12	+ 0	1.529	26	V-16	- 0	1.491
	$\mathrm{N}-14$	- I	1.742	27	L-3	+ 0	1.538
	F-12	$+\mathrm{I}$	1.810	27	L-11	+ I	1.805
10	K-20	+ I	1*1*4 1*1*6	27	J-12	- I	1.725
			1.8261 .8261 .826	27	P-15	+ I	1.792
10	V-10	- - 0	1.489 1.489 1.489	28	V-12	- 0	1.484
10 11	F-20 J-10	+0$+\quad 1$	$\begin{array}{lll}1.533 & 1.533 & 1.533 \\ 1.772 & 1.772 & 1.773\end{array}$	28	G-19	+ 0	1.535
11	J-10		1.7721 .7721 .773	28	J-4	- 0	1.484
11	0-16	$+\mathrm{I}$	$1.825 \quad 1.8251 .825$	28	X-15	+ 0	1.533
12 12	E-10	- 0	1.5021 .5021 .502	29	E-12	- I	1.732
12	0-8	+ I	$1.821 \quad 1.8211 .821$	29	L-19	$+\mathrm{I}$	1.803
12	E-18	- 0	$1.492 \quad 1.4921 .492$	29	T-23	$+0$	1.473
13	F-4	$+0$	1.5391 .5401 .540	29	C-11	$+0$	1.53
13	$\mathrm{N}-22$	- 0	1.4961 .4961 .497	30	E-8	- 0	1.468
14	K-16	+ I	$1.829 \quad 1.8291 .829$	30	P-3	+ 0	1.524
14	V-18	- 0	1.4951 .4951 .496	30	N-16	- I	1.739
14	S-12	$+\mathrm{I}$	$\begin{array}{llll}1.827 & 1.827 & 1.827\end{array}$	31	G-11	+ I	1.815
15	N-6	- I	1.7741 .7741 .775	31	J-20	- I	1.74
15	F-8	+ 0	$1.55 \quad 1.5511 .551$	32	$\mathrm{X}-11$	+ 0	1.535
16	R-10	- I	1.7781 .7781 .779	32	R-20	- 0	1.468
16	B-12	+ 0	$\begin{array}{lll}1.55 & 1.55 & 1.55 \\ 1.776 & 1.777 & 1.777\end{array}$	32	C-7	+ 0	1.533
16	J-14	- I	$\begin{array}{llll}1.776 & 1.777 & 1.777\end{array}$	33	V-8	- 0	1.474
17	0-20	+ I	$1.84 \quad 1.8441 .844$	33	P-7	+ I	1.82
17	E-22 $0-4$	- 0	$\begin{array}{lll}1.46 & 1.460 & 1.461 \\ 1.850 & 1.850 & 1.850\end{array}$	34	E-20	- 0	1.49
8	0-4 $\mathrm{N}-2$	+ I	$\begin{array}{lll}1.850 & 1.850 & 1.850\end{array}$	34	L-15	+ I	1.824
8	N-2	- 0	1.5021 .5031 .503	34	N-8	- I	1.752
9 9	O-24 A-10	$+0$	1.551 1.552 1.552   1.482 1.483 1.483	35	T-11	+ I	1.829
$\frac{9}{0}$	A-10	- 0	$1.482 \quad 1.4831 .483$	35	R-4	- 0	1.48
10 10 0	S-20	+ 0	1.565	35	T-19	+ 0	1.538
'0	E-6	- 0	1.513	36	J-16	- I	1.76
'0	W-8	+ 0	1.566	36	P-19	+ I	1.826
1	$\mathrm{N}-10$	- I	1.794	36	R-12	- I	1.758
1	S-4	$\begin{array}{r} +0 \\ -\quad 0 \end{array}$	1.570	37		+ 0	1.54
1	V-6		1.507	37	$\mathrm{N}-4$	- I	1.76
				37	P-11	+ I	1.822

APPENDIX C - continued

JERGY   LOCK   FPD	CHANNEL REFUELLED	$\begin{array}{\|c} \text { REGION } \\ \text { AND } \\ \text { DIRECTION } \end{array}$	AVERAGE EXIT IRRADIATION ( $\mathrm{n} / \mathrm{kb}$ )	ENERGY CLOCK FPD	CHANNEL REFUELLED	$\begin{gathered} \text { REGION } \\ \text { AND } \\ \text { DIRECTION } \end{gathered}$	AVERAGE EXIT IRRADIATION ( $\mathrm{n} / \mathrm{kb}$ )
38	N-20	I	1.768	55	K-15	- I	1.7541 .7571 .757
38	G-7	+ I	1.819	55	P-17	+ I	1.8201 .8211 .821
38	$\mathrm{N}-12$	- I	1.75	56	S-11	- I	1.7561 .7591 .761
39	L-23	+ 0	1.535	56	G-21	+ 0	1.5431 .5441 .544
39	J-8	- I	1.747	56	0-7	- I	1.7661 .7621 .764
39	C-19	+ 0	1.51	57	L-13	+ I	$\begin{array}{llll}1.830 & 1.830 & 1.830\end{array}$
40	V-20	- 0	1.470	57	0-19	I	1.7551 .7571 .760
40	P-23	+ 0	1.563	57	T-9	+ I	1.8241 .8261 .827
40	A-16	- 0	1.465	58	0-11	- I	1.7501 .7531 .754
41	L-7	+ I	1.827	58	C-17	+ 0	1.5441 .5441 .544
41	N-24	- 0	1.460	59	K-7	- I	$1.724 \quad 1.7261 .727$
41	G-23	+ 0	1.501	59	P-9	+ I	1.8331 .8351 .835
42	A-12	- 0	1.465	60	0-23	- 0	$\begin{array}{llll}1.498 & 1.499 & 1.502\end{array}$
42	C-13	+ 0	1.512	60	L-21	+ I	$\begin{array}{llll}1.830 & 1.833 & 1.833\end{array}$
42	F-15	- I	1.71	61	B-11	- 0	1.5021 .5031 .504
43	G-13	+ I	1.76	61	D-16	+ 0	1.5401 .5401 .539
43	S-15	- I	1.71	61	F-17	- 0	$\begin{array}{llll}1.473 & 1.475 & 1.475\end{array}$
43	L-9	$+\mathrm{I}$	1.76	62	U-16	+ 0	1.5441 .5461 .546
44	A-8	- 0	1.467	62	K-23	- 0	$1.4691 .470 \quad 1.472$
44	X-19	+ 0	1.512	62	X-9	+ 0	$\begin{array}{llll}1.538 & 1.539 & 1.541\end{array}$
44	W-15	- 0	1.477	63	W-13	- 0	$\begin{array}{lllll}1.463 & 1.466 & 1.468\end{array}$
45	T-3	+ 0	1.52	63	U-8	+ 0	1.5371 .5381 .540
45	V-4	- - 0	1.461	63	S-5	- 0	$\begin{array}{llll}1.460 & 1.465 & 1.465\end{array}$
45	x-7	+ 0	1.508	64	D-12	+ 0	$1.5421 .542 \quad 1.542$
46	K-11	- I	1.718	64	W-7	- 0	$\begin{array}{llll}1.460 & 1.462 & 1.465\end{array}$
46	X-13	+ 0	1.507	64	D-8	+ 0	$\begin{array}{llll}1.534 & 1.535 & 1.537\end{array}$
46	F-19	- 0	1.47	64	S-23	- 0	1.4511 .4521 .454
47	T-17	+ 0	1.52	65	L-1	+ 0	1.5321 .5331 .533
47	J-24	- 0	1.44	65	W-19	- 0	1.4571 .4591 .461
47	G-5	+ 0	1.504	65	H-20	+ 0	$1.527 \quad 1.5301 .530$
48	0-15	- I	1.73				$\frac{1 * 1 * 41 * 1 * 6}{1.761 .717}$
48	C-9	+ 0	1.508	66	K-9	- I	$1 . 7 1 3 \longdiv { 1 . 7 1 6 1 . 7 1 7 }$
48	S-7	- I	1.72	66	H-4	+ 0	1.5231 .5241 .524
49	L-17	+ I	1.62	66	F-13	- I	1.7081 .7111 .711
49	K-19	- I	1.71	67	Q-4	+ 0	$\begin{array}{llll}1.529 & 1.531 & 1.532\end{array}$
49	L-5	$+\mathrm{I}$	1.75	67	K-17	- I	1.7111 .7141 .714
			1.518 $\frac{1 * 1 * 41 * 1 * 6}{1.5191 .521}$	67	M-12	+ I	$\begin{array}{llll}1.781 & 1.781 & 1.781\end{array}$
50	E-4	- 0	$1.518 \overline{1.5191 .521}$	68	S-17	- I	$\begin{array}{llll}1.673 & 1.675 & 1.677\end{array}$
50	P-21	+ 0	1.5611 .5641 .565	68	H-16	+ I	1.8031 .8041 .804
50	K-3	- 0	1.4971 .4981 .499	68	K-5	- I	$\begin{array}{llll}1.661 & 1.663 & 1.663\end{array}$
30	T-23	+ I	1.8101 .8111 .811	69	Q-20	+ I	1.7471 .7501 .752
¢	F-11	- I	1.7361 .7381 .739	69	S-21	- 0	$1.460 \quad 1.4711 .474$
ו	G-17	+ I	1.8021 .8041 .803	69	M-4	+ I	1.80021 .8021 .8023

Note: About the first 27 oldest channels at 0 FPD are fuelled in the positive direction. This is a peculiarity of the particular starting pattern selected. Throughout the simulation, average discharge irradiations for channels fuelled positively generally exceeded the time-averaged value, while the value for channels fuelled negatively was generally lower than the time-averaged value.


[^0]:    

