SIMULATION OF THE EQUILIBRIUM OPERATION OF A CANDU REACTOR AND STUDIES OF THE COLLAPSING PROCEDURE IN THE FUEL MANAGEMENT DESIGN PROGRAM

by

Charles Olive, B.A. Sc.

PART B: McMASTER (OFF CAMPUS) PROJECT*

A report submitted to the School of Graduate Studies in partial fulfilment of the requirements for the degree of Master of Engineering

> Department of Engineering Physics McMaster University Hamilton, Ontario, Canada

> > April, 1977

* one of two project reports; the other part is designated PART A: ON CAMPUS PROJECT

MASTER OF ENGINEERING (1977)

McMASTER UNIVERSITY

Department of Engineering Physics

Hamilton, Ontario

TITLE: Simulation of the Equilibrium Operation of a CANDU Reactor and Studies of the Collapsing Procedure in the Fuel Management Design Program

AUTHOR: Charles Olive, B.A. Sc. (U of T)

SUPERVISOR: Dr. 0.A. Trojan

NUMBER OF PAGES: 80, vii

ACKNOWLEDGEMENTS

I would like to express my appreciation to Atomic Energy of Canada Limited, Power Projects, (Sheridan Park and Meadowvale) for allowing me to perform this study and for the use of their facilities.

Special thanks to Professor 0.A. Trojan and Dr. A.L. Wight for their encouragement and supervision. To a large extent, this report is a result of the latter's informative suggestions and detailed review of the early drafts.

I greatly appreciate the help of Dr. D.G. Parkinson with whom I had several fruitful discussions and I am indebted to N.J. Abush and R.S. Sibley for their technical assistance which was particularly valuable at the beginning of the project when the computing facilities were unfamiliar.

_ Several of the passages in this report which describe the FMDP calculations are reproduced, with minor changes from the FMDP documentation.

Financial support from Atomic Energy of Canada Limited is gratefully acknowledged.

ABSTRACT

Estimates of fuel management data for the equilibrium operation of a specific CANDU reactor have been obtained by simulating a period of the reactor's history using the Fuel Management Design Program (FMDP).

The collapsing procedure in FMDP has been tested and improved. This procedure prepares a coarse mesh model of the reactor core from a detailed fine mesh calculation. The program calculates a set of coarse mesh parameters which, when used in the flux calculation, will regenerate exactly the same eigenvalue and flux distribution as the fine mesh model. These parameters can then be used with the coarse mesh, to calculate flux distributions for a series of perturbations from the reference calculation used in collapsing.

Several coarse mesh models were generated and studied. It was found that coarse mesh calculations with collapsed parameters result in large savings in computing costs compared to the same calculations with fine mesh, but with very little loss in accuracy.

- 1. Introduction
 - 1.1 Project Objectives
 - 1.2 Description of FMDP
 - 1.3 Collapsing Procedure
 - 1.4 Description of Reactor
 - 1.5 Previous FMDP studies
- 2. Investigation of the Collapsing Procedure
 - 2.1 CP Factor Improvement
 - 2.2 Preliminary Testing
 - 2.3 Accuracy of Coarse Mesh Simulations with Collapsed Parameters
 - 2.4 Cost Analysis
 - 2.5 Further Testing of the Collapsing Procedure
 - 2.5.1 Instantaneous Collapsed Parameters2.5.2 Compound Collapsed Parameters
- 3. Discussion of Normal Mesh Simulation
 - 3.1 Fuelling Objectives
 - 3.2 Fuelling Rules
 - 3-3 Simulation Results
 - 3.4 Discussion of Simulation Results
- 4. Summary and Conclusions
- 5. References

Appendix A - Description of Calculations

Appendix B - Reactor Models

Appendix C - Refuelling History for Simulation

LIST OF TABLES

- Table 1 Summary of time-averaged results for the 8 bundle shift fuelling scheme
- Table 2 Results of Instantaneous Calculations (NRAN-6389) with Fine Mesh
- Table 3 Degree of perturbation of the instantaneous calculation (NRAN=6389) with fine mesh from the time averaged calculation
- Table 4Results of Instantaneous calculation (NRAN=6389) with
various coarse mesh models
- Table 5Comparison of coarse mesh instantaneous results with the
fine mesh answer as reference
- Table 6Excess reactivity history
- Table 7 Maximum channel power history
- Table 8 Maximum bundle power history
- Table 9 Average irradiation of discharged fuel in selected burnup intervals
- Table 10 Comparison of simulation with the 1*1*1 answer as reference
- Table IIBreakdown of system requirements for collapsing procedureand instantaneous calculation with half core geometries
- Table 12Breakdown of system requirements for collapsing procedure
and simulation with full core
- Table 13 Comparison of computing costs
- Table 14 Maximum channel and bundle powers obtained during simulation
- Table 15 Summary of equilibrium fuel management data obtained with normal mesh model
- Table 16 Power tilt and fuelling history
- Table 17 Comparison of core conditions about channels 0-7 and 0-19 in burnup interval 40 to 60 FPD
- Table 18 Left to Right power tilt and fuelling history in burnup interval 30 to 60 FPD

LIST OF FIGURES

Fig. la	Fine mesh cell boundaries
Fig. 1b	Normal mesh cell boundaries
Fig. 2	Half core fine mesh spacings
Fig. 3	Time-averaged channel power distribution
Fig. 4	Time-averaged bundle power distributions for 8 specific channels
Fig.5a	Reference thermal flux distribution along channel D-4
Fig. 5b	Cell flux distribution along D-4 which results after volume weight averaging the fine mesh distribution over the lattice cell array
Fig. 5c	Cell flux distribution which results after volume weight averaging the coarse mesh distribution over the lattice cell array
Fig.5d	CP FACTOR distribution for channel D-4
Fig. 6	Half core coarse mesh spacings
Fig. 7	Comparison of the channel powers obtained from the fine mesh instantaneous calculation (NRAN=6389) with the time-averaged values
Fig.8	Effect of the CP FACTORS on the accuracy of the l*1*6 instantaneous calculation with NRAN=6389
Fig. 9	Comparison of bundle powers generated by the instantaneous calculation (NRAN=6389) with fine mesh and normal mesh model without CP FACTORS
Fig. 10	Comparison of bundle powers generated by the instantaneous calculation (NRAN=6389) with fine mesh and various coarse mesh geometries
Fig. 11	Comparison of irradiation distributions with case l*l*l as reference
Figs. 12, 16, 20, 24,28	Comparison of bundle powers along channels E-14, N-13, L-1, A-14, and T-23 at 5 FPD
Figs. 13,17, 21, 25, 29	Comparison of bundle powers along channels E-14, N-13, L-1, A-14 and T-23 at 70 FPD

Figs. 14, 18, 22, 26, 30	Comparison of E-14, N-13, L-1, A-14 and T-23 channel powers throughout simulation
Figs. 15, 19, 23,27,30	Comparison of E-14, N-13, L-1, A-14 and T-23 channel average bundle irradiation simulation
Figs.23,33, 34,35,36	Comparison of channels E-14, N-13, L-1, A-14 and T-23 bundle irradiations
Fig. 37	Excess reactivity vs. core burnup
Fig. 38	Cummulative channels fuelled vs. core burnup
Fig. 39	Reactor condtiions at 30 FPD and refuelling in core burnup interval 30 to 40 FPD
Fig. 40	Reactor conditions about channels 0-7 and 0-19 at 60 FPD
Fig. A.l	Time averaged model
Fig. A.2	Simulation calculation
Fig. B.l	Mesh and cell arrays

(vii)

1. INTRODUCTION

1.1 Project Objectives

This study had two objectives. The first was to simulate a period of operation of a specific CANDU reactor using the Fuel Management Design Program (FMDP) to obtain estimates of the following equilibrium data:

- (i) the maximum channel and bundle powers,
- (ii) the refuelling rate required to maintain criticality,
- (iii) the average discharge bundle irradiation for the two regions (inner and outer core), and
- (iv) fuelling power changes

The method of selection of channels for refuelling will be discussed.

The second objective was to test and improve the collapsing procedure in FMDP. A description of this procedure and its uses is given in Section 1.3 following an outline of the types of calculations which can be done with FMDP.

1.2 Description of FMDP

FMDP is a two group, three dimensional, neutron diffusion computer program designed to do a wide range of fuel management calculations for CANDU reactors. Reactor operation is simulated by computing flux distributions at a series of time steps. Irradiation values for each fuel bundle in the core are increased at each time step using the current thermal flux. Cross sections for the flux calculation are obtained by interpolation in a table of cross sections as a function of irradiation. The tabulated cross sections are obtained from the lattice cell code POWDERPUFS-V⁽¹⁾.

The program is also capable of calculating flux distributions for a random distribution of fuel bundle burnups. This simulates a snapshot of a possible distribution of irradiation in the core at some possible instant during core life and will be referred to in this report as the instantaneous calculation. These calculations do not require a simulation of the previous history of the reactor.

In addition, the program does a time-averaged calculation. The code computes a flux distribution which is an average over a long period of equilibrium operation. This calculation also, does not require simulation of reactor history.

Details of these calculations are contained in Appendix A and in the FMDP documentation (2,3).

The method used by the code to simulate the reactor is described in Appendix B. Note that for the purpose of the flux calculation, the reactor can be modelled with fine mesh, normal mesh or coarse mesh as follows:

(i)

In the fine mesh model each controller is represented by small mesh volumes of the order of the physical size of the device. This model contains a large number of mesh cells and the flux calculation is detailed, but expensive. In the normal mesh model, the mesh planes coincide with the lattice cell planes, so that there is one mesh point per fuel bundle. The mesh cell size is one lattice pitch by 1 lattice pitch by 1 bundle length (1*1*1).

(ii)

(iii) In the coarse mesh model, there are fewer than 1 mesh point per fuel bundle.

For the normal and coarse mesh models, incremental cross sections for the controllers can be smeared across the mesh cells by volume weight averaging, or can be generated using the collapsing procedure. This is described in the following section.

FMDP is still under active development. Each modification is identified by a version number indicating the date and status of the version. TST indicates a test version. ALW indicates that the version has been approved by A.L. Wight. The later versions should give better answers to the calculations.

Calculations in this study were done on the CDC 6600 computer located at the Chalk River Nuclear Laboratories. The operating system was SCOPE 3.4. Towards the end of the project some calculations were done on the newly installed CYBER 175 computer with the NOS/BE operating system. Jobs were submitted through terminals located at AECL Power Projects, Sheridan Park and Meadowvale.

- 3 -

1.3 Collapsing Procedure

The collapse module in FMDP prepares a normal or coarse mesh model of the reactor core from a detailed fine mesh reference calculation. The program calculates a set of normal or coarse mesh parameters which, when used in the flux calculation, will regenerate exactly the same eigenvalue and flux distribution as the fine mesh model. These parameters can then be used with normal or coarse mesh to calculate flux distributions for a series of perturbations from the reference case. The decreased number of mesh points with respect to fine mesh, results in lower computing costs. A penalty in terms of some loss in accuracy is incurred.

- 4 -

The proposed use of the collapsing procedure is illustrated by considering the study to optimize the fuel load of a CANDU reactor at startup with fresh and depleted fuel. The study requires the simulation of the reactor operation from startup with various initial fuel loads to onset of fuelling in 5 or 10 Full Power Day (FPD) steps. This period is of a transient nature and lasts for about 100 FPD. The initial fuel load is the configuration of natural and depleted fuel at startup. The objective of the study is to determine the U0₂ content of the depleted bundles and their location which give the most satisfactory reactor operation over the initial transient. A detailed discussion of this study is contained in Ref. 4.

The study can be done with FMDP using the following procedure:

- (i) Generate a fine mesh reactor model.
- (ii) Convert to a coarse mesh model using the collapsing procedure.

- (iii) Run the simulation with coarse mesh for various initial core configurations. Select the optimum configuration.
- (iv) Repeat the simulation with the optimum core configuration but with the fine mesh model.

Step (iv) gives the 'correct' answer for operation with the optimum core configuration.

The degree of coarseness which can be tolerated in step (iii) depends upon the difference in the fuel management data which are obtained for each initial core loading. This difference must be significantly greater than the error which results from using the coarse mesh model. The error must be known from previous testing of the collapsing procedure (step (iv) serves as a check on the error). For example, suppose the maximum bundle power over the initial transient with a particular initial loading is A kW. A second initial loading gives a maximum bundle power of B kW. The predicted percentage error in these values is C%. The coarse mesh model used to obtain X and Y is acceptable if $\frac{A - B}{(A + B)/2} \times 100$ is significantly greater than C.

The advantage of simulating operation with coarse mesh in step (iii) is in terms of reduced computing costs - the coarser the mesh used, the cheaper the study. Note that in the design of the larger CANDU reactors, fine mesh simulations become prohibitively expensive.

The collapsing procedure is as follows: The reference fine mesh distribution is volume weight averaged over the coarse mesh cells. A Σ_2 and $\nu\Sigma_f$ is then calculated for each coarse mesh volume from

$$\nu \Sigma_{f}^{*} V \emptyset^{2} = k (\Sigma_{r}^{1} V \emptyset^{1} - \mathcal{A}^{1})$$

$$\Sigma_{2}^{*} V \emptyset^{2} = (\Sigma_{1} - 2 V \emptyset^{1} + \mathcal{A}^{2})$$
(1.3-1)
(1.3-2)

where

 $\mathcal{A}^{n} = \sum_{i=1}^{6} b_{i}^{n} \phi_{i}^{n}$ is the sum of the coupling coefficients times the neighbouring fluxes,

 $\nu \Sigma_{f}^{*}$, Σ_{a}^{*} are the fission source and thermal absorption cross-sections which will reproduce the given flux distribution,

 Σr^{l} is the group removal cross section,

 $(\Sigma_r^{l} = \Sigma_a^{l} + \Sigma_{l \to 2}), \Sigma_{l \to 2}$ is the group 1 to 2 transfer crosssection, and

k is the fine mesh eigenvalue.

Note that these are simply the seven point finite difference two group diffusion equations rearranged to solve for the unknown cross-sections with a given flux distribution.

The program then generates and stores the set of cross-section increments for further use. Thus

$$\Delta \nu \Sigma_{f} = \nu \Sigma_{f}^{*} - \nu \Sigma_{f}$$

 $\Delta \Sigma_{a} = \Sigma_{a}^{*} - \Sigma_{a}$

The $\nu\Sigma_f$ and Σ_a are the normal cell cross-sections unperturbed by an absorber.

(1.3-3)

(1.3-4)

The fine mesh reference flux distribution can be generated with a time-averaged calculation to produce time-averaged collapsed parameters, or by the instantaneous calculation to produce instantaneous collapsed parameters.

By way of example, consider the simplified section of a core shown modelled in fine mesh in Fig. 1a. It consists of one lattice cell, perturbed by a thermal absorber. One mesh point is at the centre of each of three fine mesh cells. Suppose we want to generate the normal mesh model. The normal mesh boundaries are shown in Fig. 1b and coincide with the lattice cell boundaries. In preparation for collapsing, a set of normal mesh cross-sections are calculated for the normal mesh cell; the thermal cross-sections are $\overline{\Sigma}_a = \Sigma_a^{\text{MODERATOR}} + \Sigma_a^{\text{FUEL}}$ and $\nu \Sigma_f = \nu \Sigma_f^{\text{FUEL}}$ where the fuel cross-sections are previously calculated by the lattice cell code by flux volume weight averaging. Note that the effect of the absorber is not included in these smeared cross-sections.

The next step is to generate a fine mesh reference flux distribution and eigenvalue. For the section of the core considered, there will be three values for the fast flux $(\emptyset_{CELL}^{1}, \emptyset_{CELL}^{1}, \emptyset_{CELL}^{1}, 0)$ and three values for the thermal flux $(\emptyset_{CELL}^{2}, 0)$ CELL 2, (0, 0) CELL 3.

The fine mesh flux distributions are collapsed to normal mesh by volume weight averaging

i.e.
$$\phi_{NM}^{1} = \frac{V_{1}\phi_{CELL}^{1} + V_{2}\phi_{CELL}^{2} + V_{3}\phi_{CELL}^{3}}{V_{1}}$$

and

The next step is to adjust two of the normal mesh cross-sections so that, when the diffusion equations are solved for our normal mesh cell, \emptyset^1_{NM} and \emptyset^2_{NM} will result. Most of the devices which are added to the core are strong thermal absorbers which strongly perturb the thermal flux distribution. For this reason the two thermal cross-sections $(\nu \Sigma_f \text{ and } \Sigma_a)$ are most affected and were selected as the adjusted cross-sections.

Thus for the cell in Fig. 1b,

$$v\Sigma_{f}^{*} V \emptyset_{NM}^{2} = k(\Sigma_{r}^{1} V \emptyset_{NM}^{1} - \mathcal{L}^{1})$$

and

$$\Sigma_{a}^{*} V \emptyset_{NM}^{2} = (\Sigma_{1 \rightarrow 2} V \emptyset_{NM}^{1} + \mathcal{K}^{1})$$

The cross sectional increments are then generated (Eq. 1.3-3 and 1.3-4) and stored for use in perturbation calculations.

A normal mesh model can also be generated by simple smearing of the absorber cross-section across the normal mesh cell. (The fine mesh model is not required for this.)

i.e.
$$\Delta \Sigma_{aNM}^{ABSORBER} = \frac{V_2 \Sigma_a^{ABSORBER}}{V_2 \Sigma_a}$$

where

 $\Sigma_{\rm a}^{\rm ABSORBER}$ is the cross-section of the pure absorber, and

 $\Delta\Sigma_{aNM}^{ABSORBER}$ is the smeared cross section for the cell.

However, when used in the unperturbed flux calculation the correct, collapsed reference values will not be regenerated. Perturbation calculations with a model generated by this procedure were not done in this study. The calculations will presumably be less accurate than when the same coarse mesh is used but with parameters generated by the collapsing procedure.

1.4 Description of Reactor

The reactor modelled in this study, is a right circular cylinder lying on its side and containing 480 horizontal fuel channels of which 208 are in the inner (high burnup) region and 272 are in the outer region. There are 13 bundles per channel of which 12 are in the active core. One half of a bundle at each end of the channel is outside the core. Refuelling occurs on power and is bidirectional. The reference refuelling scheme is eight bundle shift. The reactor is moderated and cooled with heavy water. Full core power is 2695 MW thermal to coolant. Spatial control is by vertical, light water zone controllers.

1.5 Previous FMDP Studies

The fine mesh model of D.G. Parkinson⁽⁵⁾ was used in this study. The mesh spacings for half core symmetry are shown in Fig. 2. Average discharge irradiations of 1.78 n/kb for the inner region and 1.50 n/kb for the outer region were obtained from an eight bundle shift timeaveraged calculation. This calculation was used as a reference throughout this project. The channel power distribution is shown in Fig. 3 and the bundle powers for eight specific channels are shown in Fig. 4.

A representative set of instantaneous power distributions have been obtained by D.G. Parkinson⁽⁵⁾. One of these was used in the preliminary testing of the collapsing procedure.

2. INVESTIGATION OF THE COLLAPSING PROCEDURE

2.1 CP Factor Improvement

The first two collapsed parameters ($\Delta\Sigma_a$ and $\Delta\nu\Sigma_f$) when used for the reference flux calculation with coarse mesh, exactly regenerate the same eigenvalue and flux distribution as the fine mesh model. However, the bundle power distribution is of more interest in fuel management studies. To regenerate the correct reference power distribution, a third collapsed parameter is required. Before this can be defined, the procedure used to calculate the bundle powers must be described.

This procedure is as follows. The thermal flux distribution obtained by the iterative solution of the diffusion equations, is volume weight averaged over the lattice cell array generating the unnormalized cell flux array, CELLFLUX. The unnormalized power is then computed for each bundle using the following equation:

POWER = CELLFLUX*H FACTOR

where the conversion factor, H Factor, is a tabulated function of the bundle irradiation obtained from POWDERPUFS-V. Powers and fluxes are then normalized using the core design thermal power to coolant.

The cell fluxes, and hence the bundle powers, which result from volume weight averaging the reference coarse mesh flux distribution are not the same as result from volume weight averaging the reference fine mesh distribution. This can be seen from the series of figures on Page 49.

(2.1-1)

Fig. 5a shows the reference (time-averaged) thermal flux distribution along channel D-4. Each point is the flux at the centre of a fine mesh cell. The open circles mark the coarse mesh values obtained after collapsing the fine mesh distribution to 1*1*4 cell size (see Fig. 6). Note that for this particular channel, the fine mesh, coarse mesh, and lattice cell boundaries coincide in the radial (x and y) direction and differ only in the axial (z) direction. This is not generally the case with other channels, and D-4 was chosen as an example to simplify the discussion. Volume weight averaging is required only in the axial direction.

Fig. 5b shows the cell flux distribution along D-4 which results after volume weight averaging the coarse mesh distribution over the lattice cells. These fluxes, when used in Eq. 2.1-1 do not generate the correct bundle powers for channel D-4.

The third collapsed parameter can now be defined:

 $CP FACTOR = \frac{CELL FLUX^{FM}}{CELL FLUX^{CM}} at each lattice cell$

CELL FLUX FM is the cell flux generated by the fine mesh reference flux distribution (Fig. 5b), and

(2.2-2)

CELL FLUX^{CM} is the cell flux generated by the coarse mesh flux distribution (Fig. 5c).

The CP FACTORS for channel D-4 which would be obtained from this particular reference fine mesh flux distribution and coarse mesh cell size, are shown in Fig. 5d. These would be used in subsequent perturbation calculations with coarse mesh 1*1*4 to give a better estimate of the bundle power distribution. This occurs after the perturbed cell fluxes are adjusted using the following equation:

Adjusted CELL FLUX = CELL FLUX*CP FACTOR at each lattice cell.

The increase in computing costs to generate, store and use the CP FACTOR array is negligible.

Preliminary testing of the collapsing procedure was carried out as follows:

- (i) A half core instantaneous calculation with NRAN = 6389 (see Appendix A) was done with fine mesh
- (ii) Time-averaged collapsed parameters (the $\Delta\Sigma_{a}$ and $\Delta V\Sigma_{f}$ of Eqs. 1.3-3 and 1.3-4 and the CP FACTORS of Eq. 2.2-2) were obtained by collapsing the time-averaged fine mesh calculation to coarse mesh.
- The instantaneous calculation of step (i) (iii) was repeated with the coarse mesh model of step (ii). The power and cell flux distributions were compared with the 'correct' distributions of step (i) using the analyze module in FMDP. This computed the ratio of each element in the distributions from the coarse mesh calculation to the corresponding element from the fine mesh distribution. The average ratio and the standard deviation were then calculated. The latter is a measure of the accuracy of the coarse mesh distribution - the larger it is the greater the inaccuracy and, assuming an average ratio of unity, the higher the maximum error.

Steps (ii) and (iii) were done for a series of coarse mesh, half core geometries. These are shown in Fig. 6.

Results of Preliminary Testing

Important data from the fine mesh instantaneous calculation are tabulated in Table 2. The calculation was done twice; with version JUN1776TST and with version DEC0176ALW about 6 months later. The answers obtained were significantly different. The reason for this inconsistency has not been determined. Note, however, that there was minimal difference in the time-averaged calculations with versions JUN1776TST and SEP0176ALW (Table 1).

Statistical comparison with time-averaged data is contained in Table 3. The standard deviation here is a measure of the degree of perturbation. Additional comparison of the channel powers, in Fig. 7 showed a mean difference from time-averaged values of 11.5 percent.

The effect of the CP FACTORS on the accuracy of the 1*1*6 calculation is shown in Fig. 8. The bundle powers along channel D-12 from the coarse mesh calculation with and without the CP FACTORS are compared with the fine mesh powers obtained from version JUN1776TST. The accuracy was considerably increased when the factors were used.

Results from the instantaneous calculation with 5 coarse mesh models are presented in Table 4. Note that the calculation with normal mesh (case 1*1*1) was done without the CP FACTOR improvement to be consistant with the normal mesh simulation described in the next section. This simulation was started before the program changes were ready.

Comparison with the fine mesh result is contained in Table 5. Case 1*1*1, run with version JUN1776TST, was compared with the JUN1776TST fine mesh calculation, while cases 1*1*2, 1*1*4, 1*1*6 and 2*2*2 run much later in the project, were compared with the DEC0176ALW fine mesh calculation. The results show that, of the coarse mesh calculations done, the most accurate answer is obtained from case $1 \times 1 \times 2$. The channel power distribution for case $1 \times 1 \times 1$ is second in order of accuracy, but the $1 \times 1 \times 1$ bundle and cell flux distributions are a little less accurate than the distributions for case $1 \times 1 \times 4$. If case $1 \times 1 \times 1$ were repeated with the CP FACTOR improvement, it would presumably give the most accurate results (i.e. closest to the fine mesh results). Of the coarse mesh models tested, the normal mesh model contains the largest number of mesh cells.

Note that all distributions for case 2*2*2, in which the reactor is modelled with 1440 mesh points, were closer to fine mesh than the 1*1*6 (with 2720 mesh points) distributions. Also, the maximum channel and bundle power and k_{eff} were more accurate in the former calculation. An explanation of this result is as follows. Suppose the error in the flux calculated at each coarse mesh cell is a function of the mesh spacings, and that this function is separable in the X,Y and Z directions:

i.e. Error =
$$C_1 \Delta X^n + C_2 \Delta Y^m + C_3 \Delta Z^P$$
 (2.2)

-1)

If the constants and powers have roughly the same value.

$$\text{Error} \approx C_1 \left(\Delta X^n + \Delta Y^n + \Delta Z^n \right)$$

For cell size 1*1*6, $\Delta X = 28.575$, $\Delta Y = 28.575$, $\Delta Z = 297.18$ For cell size 2*2*2, $\Delta X = 57.15$, $\Delta Y = 57.15$, $\Delta Z = 99.06$

$$\frac{\text{Error}_{2 \times 2 \times 2}}{\text{Error}_{1 \times 1 \times 6}} = \frac{57.15^{\text{n}} + 57.15^{\text{n}} + 99.06^{\text{n}}}{28.575^{\text{n}} + 28.575^{\text{n}} + 297.18^{\text{n}}}$$

For positive values of n greater than .25, this ratio is less than 1 and the flux calculated for a cell with 2*2*2 dimensional is the more accurate. The bundle powers obtained in specific channels, including D-12 which has the maximum value, are compared in Figs. 9 and 10. The percentage error is indicated after each value. Consider Fig.10 Most of the bundle powers calculated with coarse mesh in D-12 are slightly lower and closer to the time-averaged (reference) values. For example, consider bundle D-12, No. 5. The reference power is 685.1 kW (see Fig.4). The instantaneous power calculated with fine mesh is 883.5 kW. This is a 29.0 percent perturbation from reference. The instantaneous powers calculated with 1×1×2, 1×1×4, 1×1×6. 2×2×2 cell size are 883.1 (28.9), 878.7 (28.3), 861.6 (25.8), and 867.7 kW (26.7) respectively. The degree of perturbation from reference indicated, in parentheses after each value, is decreased for each coarse mesh case and for the 1×1×n series of geometries, decreases with increasing cell size.

Now consider channel Q-1 which has a high negative perturbation from reference. The bundle powers calculated with coarse mesh are generally greater than when calculated with fine mesh and, again, the degree of perturbation from reference generally decreases with increasing cell size.

These results apply to most of the bundle and powers, but not all. They are explained by the following hypothesis:

The degree of perturbation of an instantaneous calculation is generally reduced slightly when the calculation is done with coarse mesh using time-averaged collapsed parameters.

Note also that the excess reactivity obtained with coarse mesh is low and closer to the time-averaged value in all cases (see Table 4). This further supports the above hypothesis.

A 4*4*4 coarse mesh model was also generated. The instantaneous flux calculation did not converge. The incremental cross-sections

were printed so that the adjusted thermal cross-sections used in the flux calculation could be determined at various mesh points. It was found that at some mesh points, particularly at the core edge, a negative adjusted cross-section resulted. It was concluded that there is a limit in coarseness to the collapsing procedure which is exceeded by the 4*4*4 model.

2.3 Accuracy of coarse mesh simulations with Collapsed Parameters

The error in the power and flux distributions and excess reactivity obtained with a specific coarse mesh model at some time in a simulation, is compounded of two factors. These are:

- (i) The degree of perturbation from the fine mesh flux distributions and eigenvalue used in collapsing, and
- (ii) The error in the bundle irradiation distribution.

The first factor is investigated using the instantaneous calculation with the procedure of the previous section. The second is discussed below.

Consider a simulation with fine mesh. When the first time step is taken, the bundle irradiation array is incremented using the bundle flux and F factor from the initial flux calculation as shown in the following equation.

$$\omega_{\rm K}^{\rm FM}(t_{\rm l}) = \omega_{\rm K}^{\rm FM}(t_{\rm o}) + f_{\rm K}^{\rm FM}(\omega_{\rm o}) \emptyset_{\rm KO}^{\rm FM} \Delta t_{\rm l} \quad \text{for bundle K} \qquad (2.3-1)$$

The superscript indicates the fine mesh reactor model. The nomenclature is provided in Appendix A.

The corresponding equation for the reactor modelled in coarse mesh with collapsed parameters is

$$\omega_{K}^{CM}(t_{1}) = \omega_{K}^{CM}(t_{0}) + f_{K}^{CM}(\omega_{0}) \emptyset_{K0}^{CM} \Delta t_{1}$$
(2.3-2)

For the same starting conditions

 $\omega_{\rm K}^{\rm FM}(t_{\rm O}) = \omega_{\rm K}^{\rm CM}(t_{\rm O})$

$$f_{K}^{FM}(\omega_{o}) = f_{K}^{CM}(t_{o})$$

 $\emptyset_{KO}^{FM} = \emptyset_{KO}^{CM} + \delta \emptyset_{K}^{I}$

 $\delta \emptyset_{K}^{[1]}$ is the error in the bundle flux from the coarse mesh calculation with respect to the bundle flux calculated with fine mesh. For a particular coarse mesh geometry, this error depends upon the perturbation of the first flux distribution from the fine mesh flux distribution used in collapsing. If there is no perturbation, $\delta \emptyset_1$ is zero. The error in the irradiation of bundle K after the first time-step is therefore $\delta \emptyset_{K}^{1} f_{K}^{CM}(\omega_{0}) \Delta t_{1}$ and the lattice cell cross-sections, computed from fuel tables, for the coarse mesh flux calculation at t, will not be the same as those obtained for the fine mesh model.

After n times steps, the error in the irradiation at bundle K is $\delta \emptyset_{K} f_{K}(\omega_{0}) \Delta t_{1} + \delta \emptyset_{K}^{2} f_{K}(\omega_{1}) \Delta t_{2} + \dots + \delta \emptyset_{K}^{n} f_{K}(\omega_{n-1}) \Delta t_{n}.$

Note that the error in the F-factor, a weak function of irradiation, has been taken as megligible at each time-step. Note also that the number of error terms at each bundle location does not increase indefinitely. When the channel is refuelled and bundle K is replaced with a fresh bundle the error at this location becomes zero. (This is, of course, provided that the fuelling schedules for fine mesh and coarse mesh simulations are the same) The irradiation of each refuelled bundle is known exactly (i.e. 0.0 n/kb).

The irradiation distributions from a coarse mesh simulation can be compared, at each time step, with the exact fine mesh answer. Since $\delta \emptyset$ is as likely to be positive as negative, it is expected that the $\sum_{\Sigma}^{m} \left(\frac{\frac{\omega_{\rm K}}{{\rm FM}} \left| t \right|}{\frac{\omega_{\rm K}}{{\rm FM}} \left| t \right|} \right) = 1$ average ratio at each time step will be unity. i.e.

where m = number of bundles in core.

However, the standard deviation and maximum error would increase with time and approach steady state values. After a long period of simulation (greater than the average residence time of bundles in the core) the maximum error will always occur at a bundle location with the maximum (or close to) number of error terms.

To investigate the above rigorously, a fine mesh reference simulation is required, followed by the same simulation with a series of coarse mesh reactor models. Unfortunately, the full core fine mesh model required more central memory than was available at the time. The reference simulation was done with normal mesh. Time-averaged collapsed parameters (without CP FACTORS) were generated for normal mesh geometry (see Fig. 6) using the half core fine mesh model, and unfolded to full core. Start conditions were generated by the instantaneous module with a "patterned channel age distribution" (see Appendix A). This reduced power tilts and the clustering of channels with fresh fuel to a minimum and, hence, the initial core conditions could be regarded as optimized. The simulation proceeded for 70 Full Power Days (FPD) with a 5 or 10 FPD step between each flux calculation. Criticality was maintained with the manual refuelling procedure described in Sect. 3.2. Each zone controller was kept at 40 percent fill.

The simulation was repeated with two other coarse mesh geometries (1*1*4 and 1*1*6 cell size) and started for a third (2*2*2). Time-averaged collapsed parameters, including the CP FACTOR arrays, were used. The irradiation distributions were compared at each time step with the distributions generated with the normal mesh model.

Comparison of Simulation Data

The simulation data are compared in this section. A detailed discussion of the normal mesh simulation is contained in Sect. 3.

- 18 -

For convenience, the starting point for each simulation has been set to 0 FPD. Only one flux calculation was done at 0 FPD. This was for the normal mesh simulation. The coarser mesh simulations were started not only with the same irradiation distribution, but also with the same bundle and flux distributions. It would have been better to do the flux calculation at 0 FPD for each case. The burns for the first time step are identical.

Tables 6, 7 and 8 show respectively the bulk excess reactivity and the maximum channel and bundle powers, with location, for each simulation as a function of time. Although there is very little difference in the values at each time step, the order of accuracy was predicted from the instantaneous calculations of Sect. 2.2. Note, however, that the maximum powers obtained at the first flux calculation with 2*2*2 cell size seem less accurate than the 1*1*6 values (taking the 1*1*1 channel powers and 1*1*4 bundle powers to be the closest to the fine mesh answers) and are probably greater than the fine mesh result.

Average irradiations of bundles discharged in 4 specific timesteps are compared in Table 9. The values increase with increasing mesh coarseness and, as expected, the difference increases slightly with time.

The power and cell flux distributions were compared at four specific times in the simulation and the irradiation distributions were compared at every time step. These results are shown in Table 10 and Fig. 11. The difference in channel power and irradiation distributions increases with time as expected, although the difference in the bundle power distributions remains fairly constant. The average irradiation ratio at each time step was not unity but decreased with time. The reason for this may be because the CP Factor array was not used in the reference simulation, but was used for the other two cases. If a fine mesh simulation becomes possible, the analysis should be repeated with the fine mesh answer as reference.

Simulation results for 5 specific channels are presented in Figs. 12 to 36 permitting absolute comparison of the data. The percentage difference from reference is indicated after each value.

2.4 Cost Analysis

Sect. 2.2 and 2.3 have determined the loss in accuracy which results from Fuel Management calculations with **n**ormal and coarse mesh reactor models generated by the collapsing procedure in FMDP. The purpose of this subsection is to estimate the savings which result from lower computing costs.

The following equation has been used, until quite recently, by the computing centre for costing jobs

Cost in \$ = $\frac{0.29}{0.28} \left[0.293 \times CP + 0.109 \times I\emptyset + 0.408 \times 10^{-4} \times (CP + I\emptyset) \times (avg CM)^2 \right]$ (2.4-1)

where avg CM = $i \sum (0.001CP + 0.001I\emptyset)$ Fl, kilowords CP + IØ

FMDP periodically writes to output current memory and CP and IØ times during the execution of a module so that a value for each of these parameters can be estimated for each subcomputation within the module. The costing equation can then be applied to each subcomputation. This allows a more complete indication of the savings (and where they occur) for the calculations with coarse mesh.

Results

The breakdown of the system requirements and costs for the various computations and core models are given in Tables 11 and 12. The system requirements are based on version DEC0176ALW and the costs were calculated using equation 2.4-1. Note the following:

The value of the CP time for the flux calculation (in millisecs per iteration per mesh point) was the average over 14 runs done during November and December 1976 on the CDC 6600 computer. The standard deviation was 0.0102. The average CM for some of the computations was sometimes difficult to determine without detailed examination of the coding. The values recorded are the author's best estimate from the current CM which is periodically written to output during a job. The values for the flux calculation are, however, exact except for the full core fine mesh which, before reaching this step, exceeded the system CM available.

Total costs for various jobs were determined using Tables 11 and 12, and are shown in Table 13. Average CP and IØ times were used for reading data from tape to mass storage at the start of each job and for writing back to tape at the end. Note, however, that with coarse mesh there is less data than with fine mesh resulting in lower costs. This saving is not reflected in Table 18 but is relatively small. The fine mesh half core instantaneous calculation was about 2-1/2 times the cost of the calculation with 2*2*2 mesh.

FMDP uses considerable amounts of extended core storage. The maximum is printed at the end of each job. Less ECS is used with coarse mesh so_that savings would be greater than shown in Table 18 if there had been a charge for ECS.

A particular job was broken down into its components and the total cost estimated using the above procedure, but with the actual CP and IØ times for the flux calculation and for reading from and writing to tape. The answer agreed to within 4 percent of the cost for the job listed in the monthly statement.

2.5 Further Testing of the Collapsing Procedure

2.5.1 Instantaneous Collapsed Parameters

This study has examined the loss in accuracy and savings in cost for calculations with time-averaged collapsed parameters for various coarse meshes. FMDP also provides for the generation and use

- 21 -

of instantaneous collapsed parameters. For a simulation, these would be generated using the fluxes and eigenvalue from the fine mesh calculation with the start reactor conditions. The initial power distribution from the coarse mesh calculation is exactly the same as the distribution from the fine mesh calculation. It is therefore more accurate than the initial distribution obtained with time-averaged parameters. As the simulation proceeds and the irradiation distribution differs more and more from the initial distribution, the accuracy will decrease and eventually become less than the accuracy obtained with time-averaged parameters. However, a new set of instantaneous parameters can be generated periodically by a fine mesh calculation with the current reactor conditions.

2.5.2 Compound Incremental Cross-sections

The effect of a thermal absorber on the thermal cross-sections is increased in regions of high thermal flux and decreased in regions of low thermal flux. This means that, for each cell,

when $\emptyset^{P} > \emptyset^{R}$, $|\Delta v \Sigma_{f}^{P}| > |\Delta v \Sigma_{f}^{R}|$ and $|\Delta \Sigma_{a}^{P}| > |\Delta \Sigma_{a}^{R}|$ and when $\emptyset^{P} < \emptyset^{R}$, $|\Delta v \Sigma_{f}^{P}| < |\Delta v \Sigma_{f}^{R}|$ and $|\Delta \Sigma_{a}^{P}| < |\Delta \Sigma_{a}^{R}|$

The subscript indicates that the value is for the perturbation or reference calculation.

The cell flux will generally be greater than the time-averaged value if the cell contains fresh fuel and less than the time-averaged value if the fuel is high burnup. (This may not be the case with extreme cell boundary conditions). This means that generally the following conditions hold:

when
$$\emptyset^{P} > \emptyset^{R}$$
, $\Sigma_{a}^{P} < \Sigma_{a}^{R}$ and

and when $\emptyset^{P} < \emptyset^{R}$, $\Sigma_{a}^{P} > \Sigma_{a}^{R}$ and

 $\nu \Sigma_{f}^{P} < \nu \Sigma_{f}^{R}$

 $\nu \Sigma_{f}^{P} > \nu \Sigma_{f}^{R}$

The incremental cross-sections from the absorber can be made dependent upon cell conditions by storing compound incremental cross-sections.

These are $\Sigma_a^R \Delta \Sigma_a^R$ and $\frac{\Delta \nu \Sigma_f^R}{\nu \Sigma_c^R}$. Σ_a^R and $\nu \Sigma_f^R$ are the coarse mesh

reference cross-sections unperturbed by the absorber. $\Delta \Sigma_a^R$ and $\Delta \nu \Sigma_f^R$ are the incremental cross-sections generated in the normal way by the collapsing procedure.

The incremental cross-sections for a particular perturbation calculation are generated as follows:

$$\Delta \Sigma_{a}^{P} = \frac{\Sigma_{a}^{R}}{\Sigma_{a}^{P}} \cdot \Delta \Sigma_{a}^{R}$$

and

 $\Delta \nu \Sigma_{f}^{P} = \frac{\Delta \nu \Sigma_{f}^{R} \nu \Sigma_{f}^{P}}{\nu \Sigma_{f}^{R}} .$

(2.5-1)

(2.5-2)

3. <u>DISCUSSION OF NORMAL MESH SIMULATION</u>

3.1 <u>Fuelling Objectives</u>

After each flux calcuation, the irradiation and channel power distributions were used in the selection of channels for refuelling in the next time step. Channels were selected in order to achieve the following objectives:

- 24 -

- (i) Minimize the maximum ratio of channel power to reference (time-averaged) channel power. This is abbreviated to''maximum channel overpower'' in this report and is expressed as a percentage. Since the reference power distribution is normally used to set channel flow rates, this parameter is an indication of channel outlet temperature or outlet quality if the channel is boiling. It is desirable to keep the channel overpower low in order to minimize problems associated with boiling in the channels.
- (ii) Minimize the maximum bundle power. To reduce fuel defects, fuel element centre temperatures and fission gas pressure, it is desirable to keep fuel rating low. The total power which can be obtained from the core is limited by this parameter.
- (iii) Minimize the fuelling rate which keeps the reactor critical.

To achieve the third objective, preference was given to the oldest channels. Channel ages were calculated at each time step using Eq. 3.2-1.

AVERAGE IRRADIATION OF THE 8 BUNDLES WHICH ARE (3.2-1) CHANNEL AGE = DISCHARGED WHEN CHANNEL IS FUELLED TIME AVERAGED EXIT IRRADIATION

The two major reasons for high channel overpowers are as follows:

- (i) The channel effect; the bundle power per unit flux varies with time. The power increases in a natural uranium bundle owing to plutonium buildup and then decreases until the minimum is reached at the time of refuelling.
- (ii) The local effect; the channel effect will be amplified if a channel is refuelled in a region that tends to show a clustering of fresh channels.
 P. Stevens⁷ obtained a relationship between the additional increase in power for a channel and the average burnup of the eight neighbouring channels.

When a channel was refuelled in the simulation, one of its neighbours was refuelled only after the core burnup had increased by at least 15 FPD to minimize the local effect.

To keep a uniform power distribution throughout the simulation, the core was divided radially into seven zones (Fig. 3). At each time step, the ratio of each zonal power to the corresponding time-averaged zonal power was calculated. Channels were selected for refuelling in the subsequent timestep in an attempt to obtain ratio values of unity for each zone. The fuelling rate in a zone with a ratio of less than 1 was increased, and decreased when the ratio was greater than 1.

3.3 Simulation Results

Fig. 37 shows the excess reactivity plotted against core burnup. The excess reactivity changes linearly with burnup for each step because of uniform refuelling.

The equilibrium fuelling rate, averaged over 70 FPD was 2.821 channels per FPD. This is an adjusted value to allow for the difference in excess reactivity at the start and end of the simulation. An excess reactivity decrease of 0.417 milli-k per FPD in the absence of fuelling was assumed.

The average discharge irradiations for outer and inner core bundles were 1.506 and 1.775 n/kb respectively. These are within 1/2 percent of the values obtained from the time-averaged calculation.

Maximum bundle and channel powers were 874 kW and 7100 kW respectively. The maximum channel overpower (12.5%) occured in the outer core at channel A-14 (see Table 14).

The above data are summarized in Table 15.

An example of fuelling is given in Fig. 39 which shows the channels chosen for fuelling in the interval 30 to 40 FPD. Each selected channel is marked with a 'X' and the age and power of the eight neighbouring channels at 30 FPD have been recorded. The complete fuelling history is contained in Appendix C.

Zonal overpowers, overall power tilts and the fuelling history by zones are recorded in Table 16. The maximum zonal overpower was 6 percent and occured in zone 3 at 20 FPD. The top to bottom power tilt at this time was 3.24 percent. No channels were fuelled in zone 3 in the next burnup interval and the zonal overpower decreased to -4.4 percent at the next flux calculation.

Note that the simulation was somewhat short to reliably estimate the maximum powers and the fuelling rate to be expected during equilibrium operation. The simulation should be continued to about 150 FPD.

3.4 Analysis of Simulation Results

The following is an attempt to identify the cause or causes of the maximum channel power and overpower which result at 60 FPD. First note that:

- the maximum channel power was 7091 kW
 occuring at 0-8 in the adjusted region.
- (ii) the maximum channel overpower was 10.75 percent occuring at 0-7 also in the adjusted region. 0-7 was refuelled at 56 FPD.
- (iii) channel 0-19 is almost symmetrically opposite to 0-7 and both channels have similar time-averaged powers (6380 and 6369 kW). 0-19 was refulled at 57 FPD but the overpower at 60 FPD was only 1.5 percent.

The age and power history of the channels in the section of the core containing 0-7 were compared with the history of the channels neighbouring 0-19 on the other side of the core. These two sections are defined in Fig. 40 and each contain 25 channels. The Local Average Age (LAA) and Local Average Power (LAP) about 0-7 and 0-19 have been calculated at 60 FPD and also at 50 and 40 FPD. These values and other relevant data are recorded in Table 17. Note that while the age and LAA at 60 FPD are similar, LAP $(0-7)_{60 \text{ FPD}}$ is considerably greater than LAP $(0-19)_{60 \text{ FPD}}$. This explains the high power at 0-7 at 60 FPD.

The reason for the high LAP $(0-7)_{60 \text{ FPD}}$ must now be decided. Relevant data are supplied in Table 18. The high value was caused by refuelling too many channels in the left half of the core in the energy interval 30 to 40 FPD.

A relatively large number of fresh bundles in the left half reach their plutonium peak 20 to 30 FPD after charging resulting in a large left to right power tilt. This reinforces the channel effect at 0-7 at 60 FPD.

During actual operation, the controllers would be filled differentially to remove the tilt and the high overpower at 0-7 would not occur. However, the fuelling engineer should attempt to keep the power distribution uniform to minimize stress on the control system.

4. SUMMARY AND CONCLUSIONS

Estimates of fuel management data for the equilibrium operation of a specific CANDU reactor, have been obtained using the code FMDP. Results are given in Table 15.

The collapsing procedure has been studied and improved. It was found that the use of time-averaged collapsed parameters in instantaneous calculations and simulations with coarse mesh gives a large saving in computing costs compared to fine mesh costs, with very little loss in accuracy.
Further testing needs to be done to determine the accuracy of calculations with instantaneous collapsed parameters. These would be used only in simulations when start conditions are known and can be regenerated periodically, after a fine mesh calculation with current reactor conditions, to maintain a desired level of accuracy.

The accuracy of coarse mesh calculations may be further increased by storing compound collapsed parameters. When these are used, the incremental cross-sections are dependent upon the cell conditions for the perturbation calculation.

5. REFERENCES

- D.M. Miller, "POWDERPUFS-V Users Manual, Part 2 of 3", TDA1-31, AECL Power Projects (Sept. 1973).
- A.L. Wight and R. Sibley, "Fuel Management Design Program
 Part 1 Program Description", TDAI-105, AECL Power Projects (to be issued).
- A.L. Wight and R. Sibley, "Fuel Management Design Program Part 2 Users Guide and Programmers Manual", TDA1-106, AECL Power Projects (to be issued).
- (4) A.L. Wight, "Fuel Management Studies for Bruce A Reactor", TDAI-77, AECL Power Projects.
- (5) D.G. Parkinson, private communication.
- P.H. Stevens, "Power Peaking Analysis for the CANDU-PHW(PB)
 Study", PHW(PB)-N-15, CRNL (Dec. 1975).
- (8) N.J. Abush, private communication.

TABLE 1 SUMMARY OF TIME-AVERAGED RESULTS FOR THE 8 BUNDLE SHIFT FUELLING SCHEME

VERSION OF FMDP	JUN1776TST	SEP0176ALW	
Fission Power (kW)	2854600	2854600	
Thermal Power (kW)	2695600	2695600	
Max. Channel Power (kW)	6484	6480	
Max. Bundle Power (kW)	796	799	
Excess Reactivity with Zone Controllers at 40% Fill milli-k	0.40	0.42	
Average Discharge Irradiation n/kb inner core Òuter core	1.78 1.50	1.78 1.50	
Zonal Power ⁺ Zone 1		364594	
2		366415	
3		416916	
4		402966	
5		413710	
6		364594	
7		366415	

+ See Fig. 3 for Zonal Boundaries.

VERSION OF FMDP	JUN1776TST	DECO176ALW
Number of Mesh Points	13984	13984
Excess Reactivity milli-k	2.17	3.61
Max. Channel Power (kW) and Location	7999 D-11	8268 D-12
Max. Bundle Power (kW) and Location	1017 D-12, No.7	1037 D-12, No.7

TABLE	3	DEGREE OF PERTURBATION OF THE INSTANTANEOUS
		CALCULATION (NRAN=6389) WITH FINE MESH FROM THE
		TIME-AVERAGED CALCULATION

		CHANNEL POWER RATIOS	BUNDLE POWER RATIOS
	Whole Core	0.9963	0.9935
verage	Outer Region		
A	Inner Region		
Std. Deviation		0.1331	0.1301
Maximum Ratio		1.25	1.289

				· · · · · · · · · · · · · · · · · · ·	
CELL SIZE NUMBER OF MESH POINTS	1*1*1 7616	1*1*2 4352	1*1*4 2720	1*1*6 2176	2*2*2 1440
VERSION OF FMDP	JUN1776TST ⁺	SEP0176ALW	DEC0176ALW	DEC0176ALW	DEC0176ALW
Excess Reactivity milli-k	2.22	3.61	3.56	3.42	3.44
Max. Channel Power (kW) and Location	8064 D-11	8270 D - 12	8200 D-12	8081 D-12	8176 E-11
Max. Bundle Power (kW) and Location	1017 D-12,No.7	1038 D-12,No.7	1037 D-12,No.7	1008 D-12,No.7	1014 D-12,No.7
Channel Power at +					
Location of Fine Mesh Maximum Value	8064	8270	8200	8081	8129
Percent Error	0.81	0.02	-0.82	-2.26	-1.68
Bundle Power at [‡]				· · · ·	
Location of Fine Mesh Maximum Value	1017	1038	1037	1008	1014
Percent Error	0.0	0.10	0.0	-2.30	-2.22

TABLE 4RESULTS OF INSTANTANEOUS CALCULATION (NRAN=6389)WITH VARIOUS COARSE MESH MODELS

+ This version did not contain the CP Factor improvement.

F See Table 2.

TABLE 5 COMPARISON OF COARSE MESH INSTANTANEOUS RESULTS WITH THE FINE MESH ANSWER AS REFERENCE

		CHANN	NEL POWER RA	TIOS	BUNDLE POWER RATIOS			CELL FLUX RATIOS		
		AVERAGE	STD. DEV.	MAX IMUM	AVERAGE	STD. DEV.	MAXIMUM	AVERAGE	STD. DEV.	MAX IMUM
	Whole Core	0.99985	0.01116	1.051	1.00893	0.03458	1.129	1.00883	0.03078	1.1154
<u>1*1*1 INSTAN</u> FINF MESH INSTAN	Outer	1.0008	0.00827	1.045						
	Inner	0.9987	0.01377	1.051						
	Whole Core	1.000666	0.004461	1.020	1.000892	0.0049	1.0236	1.00045	0.0048	1.0236
<u>1*1*2 INSTAN</u> FINE MESH INSTAN	Outer	1.000799	0.004691	1.020						
	Inner	1.000506	0.004161	1.0091						
	Whole Core	1.00211	0.0171	1.033	0.9925	0.01656	1.0612	0.99861	0.01649	1.0612
<u>1*1*4 INSTAN</u> FINF MESH INSTAN	Outer	1.0034	0.01328	1.033						
	Inner	1.000564	0.009261	1.0239						
	Whole Core	1.005054	0.02989	1.0747	1.00254	0.0293	1.1058	1.001445	0.02845	1.1058
1*1*6 INSTAN FINE MESH INSTAN	Outer	1.006417	0.03446	1.0747						
	Inner	1.00342	0.02314	1.0614						
	Whole Core	1.00269	0.0243	1.0666	1.00019	0.0240	1.0817	1.00145	0.0239	1.0817
Z*2*2 INSTAN FINE MESH INSTAN	Outer	1.00447	0.02349	1,0666						
FINE MESH INSTAN	Inner	0.9952	0.0243	1.0504						

TABLE 6 EXCESS REACTIVITY HISTORY

	CELL SIZE NO. OF MESH POINTS	1*1*1 14336	1*1*4 5120	1*1*6 4096	2*2*2 2592
ENERGY CLOCK					
5		0.014 milli-k	0.05	0.03	-0.103
10		-0.349	-0.259	-0.234	
20		-0.795	-0.697	-0.619	
25		-0.87	-0.762	-0.696	
30		0.08	0,11	0.08	
40 _		0.31	0.30	0.30	
50		-0.186	-0.147	-0.109	
60		0.18	0.18	0.22	
70		0.29	0.28	0.26	:

TABLE 7 MAXIMUM CHANNEL POWER HISTORY

	CELL SIZE	* *	1*1*4	1*1*6	2*2*2
ENERGY CLOCK FPD					
5		6918 kW at E-14	6870 D-14	6850 D-14	7046 D-14
10		6944 E - 14	6896 E - 14	6857 E-14	
20		7100 E-14	7049 E - 14	6967 E-14	
25		6900 N-5	6868 N-5	6843 N-5	
30		7034 E-14	6986 E - 14	6943 E - 14	
40		6932 N-4	6897 N-4	6825 N-4	•
50		6948 F-15	6912 F - 15	6869 F-15	r In
60		7091 0 - 8	7039 0-8	6986 0 - 8	
70		6902 F - 17	6881 N-4	6858 E-16	-

MAXIMUM BUNDLE POWER HISTORY

	CELL SIZE]*]*]	1*1*4	1*1*6	2*2*2
ENERGY CLOCK FPD					
5		853 kW D-13,No.7	856 D-13,No.7	865 D-14,No.6	884 D-13,No.7
10		864 V-14,No.7	871 V-14,No.7	861 V-14,No.6	
20		867 Location not known	867 D-15,No.7	858 D-13,No.7	
25		867 Location not known	840 0- 4,No.7	837 0-4,No.7	
30		862 D-15,No.7	866 D-15,No.7	854 D-15,No.7	
40		855 N-4,No.7	861 N-4,No.7	842 N-4,No.7	
50		826 D-11,No.7	829 D-11,No.7	828 D-11,No.7	
60		872 0-4,No.7	875 0-4,No.7	862 0-4,No.7	
70		860 N-4,No.7	868 N-4,No.7	852 N-4,No.7	

+ The bundle power data at this time step were lost.

TABLE 9 AVERAGE IRRADIATION OF DISCHARGED FUEL IN SELECTED BURNUP INTERVALS

			AVERAGE IRRADIAT FUEL IN BURNUP	ION OF D	ISCHARGED (n/kb)
		CELL SIZE]*]*]]*]*4	1*1*6
BURNUP	INTERVAL	- -			
_			Inner region = 1.770	1.770	1.770
5 to	IO FPD		Outer region = 1.501	1.501	1.501
10 to	20 FPD		1.8107	1.8112	1.81145
	20 110		1.5108	1.5112	1.51146
-			1.7871	1.7886	1.7893
50 to	OU FPU		- 1.5149	1.5163	1.5177
60 +-	70 EPD	<u></u>	1.7427	1.7449	1.7454
			1.5024	1.5038	1.5052

7.000	CHANN RATIOS	JEL POWER	BUNDLE RATIOS	Power	CELL FL	۲, N	CLOCK FR	8	UNDLE IRRADIAT	TION RATIOS
CLOCK FPD	144/44 4	1+1+1/9+1+1	144/4+1+1	1+1+6/1+1+1	14-24/ 41 +1 +1	1+1-1-9-4+4		=	1+4/1+1+1	1+1+6/1+1+1
	AVERAGE WHALE O. 99999	0.99996	1.501.0	920400	0.99021	0.09038	ې ۲	RPGE TEU	1.0000	1.0000
I	DUTER 0.9999550 1144 EK 1.000 & 15	0.99100.1					Σ, Σ	y y	1.0000	1.0000
ß	STUDER WHILE O.00264	0.00 4449	0.03/3	0.03677	D.031312	0.03677	AN	RAGE	0.19150	0.991423
	HUNCE O DO TOP	0.0034.1					10 s n	DEV	D.00537	D.00654
	MAX . WHOLE 1.00562 00716 1.00537 1NWIG 1.00562	1.01159	1.0549	1.08665	1.0549	1.04665	Ĩ	ž	1.001	1.0839
	ANERAGE N 1.000199	1.000367	0.99057	0.99074	0.99058	0.99076	Αn	RNG	D.94878	0.99865
	0 1.000509 I D.41474	1.000810					20 21	D.DEV	0,00930	0.01097
4 D	STD. DEV. W 0.0012001	0.00 61 11	11020.0	34150.0	0.03100	82150.0	Σ	ЧX	٦٤٩٥٥٦	1.08454
DC	0 0.003440 T D B03805	0.005070					An	RACE	1.5866.0	0.49836
	MAX W 1007265	1.01.59		1.04414	1.050.4	106593	72 til	Dev .	0.01067	0.0124
	53724001 J	1.01459			-	!	Ē	X	21840.1	1-108174
	AVERAGE W LOOOJ	1.000 To 8	0.99157	tialpia	0.99158	0.99041	Ave	E AFE	61819	0. 99.796
	100110 101101	1.00343		,			30 511	DEV	0.012.07	0,01341
60	STD. DEV W 0.00 HILS	0.008764	84080.0	0'03230	59050.0	PH1220.0	J.	×	1.04174	74101
	0 0.003702 T	0.008561					AR	ROCE	0.94777	0.99750
	MAX. W LOOGES	1.01.48	1.04638	10901	1.0464	0210 0.1	110 211	DEV	0.01471	7 P + 10.0
	1.00812 II 1.00983	8+12011			-	-	μ	<u>×</u>	0.119	1.06592
	AVERAGE W 1.000099	+ ANALYZE	73099.0		0.99089		AVE	96	0.99731	1120.9711
	T 1.000702	Not DONE					50 Stb	DEV	.01601	0.016741
70	STD. DEV W O. 40 3758	CASE AT	0.03034		0.03056		чų		121-01-732	1.06745
	1 0.001578	THIS BURNUZ					UYE	Q 398:	79967	0.99667
	11. W 1.0090 0 1.0090 T 1.0090		ا. 1.0408 ک		1.048		09 1	• - ~	,01724 4589	1 - 1 - 1 - 1 - 1
	1						AVE	BLE D.	44666	0.99631
			-		-			ہ م	.01835	0.019068 1.06238

TABLE IC COMPARISON OF SIMULATION RESULTS WITH THE INIXI ANSWER AS REFERENCE

TABLE IL BREAKDOWN OF SYSTEM REQUIREMENTS INC. COLLAR NO PROCLAURE AND

INSTANTANEOUS CALCULATION WITH HALL CORE GEOMETRIES

				. ł	MOP COM	PUTATION (FOR VERSION DECOITS)				
·				GENERATION OF	COLLAPS IN G	LAPS IN G INSTANTE		INEOUS CALCULATION		
CELL SIZE	NO. OF MESH POINTS	MNX. CM REQUIRE D	MAX, ECS REDVIRED	COARSE MESH (ROSS SECTIONS IN PREPAR- ATION FOR COLL- APSING	PROCEDULE	READ DATA TROM MASS STORAGE. FENERATE RANDOM DISTELBUTION OF IRRADIATION COMPUTE CROSS SECTIONS FOR EACH MESH POINT	ITERATIVE FLUX CALCULATION 0.0776 m.ll.sec.lifen I mesh foint IID Heratums	CALCULATION OF BWER DISTRIBUTION HRITE DATA TO MASS STORAGE		
FINE MESH	13984	2140008	561363 B. WITH OVERFLOW TO SCRATCHTILE			175000 B 64000 69 7.8 35.	132000 B 46080 119.4 0 47.	14000 B 5 1200 1.74 13 3.6		
* +	7616	NOT KNOWN	NOT KNOWN	1540008 55296 15. 4. 7.5	120000B 40960 14. 3. 5.8	1400008 49152 45 6.7 20.	127000 8 44544 65 0 25.	135000B 47616 1.5 10. 2.7		
1*1*2	4352	1500006	253123B	1440008 51200 13.4 2. 6.0	1040008 34816 12. ^{3.} 4.8	140000 B 49152 23. 6. 10.	1220008 41984 37.1 0. 14.	135000B 47616 3. 4. 2.0		
1*1*4	1720	1500008	1701238	1360008 48128 12.3 2. 5.4	740008 30720 12 3 - 4.6	135000B 47616 21. 3.8 9.2	122000 B 41984 23.2 0. 8.8	135000 B 147616 1.5 2.		
* \ * 6	2176	150000 B	153323B	1340008 47104 12.3 2. 5.4	720 000 B 29696 12: 3. 4.6	135700 & 47616 20. 2.5 8.5	1200008 41984 18.6 0. 7.0	135000B 47616 2. 1.5		
2+2+2	۱440	- 150000 B	672478	1320008 46080 11.1 2. 4.8	66000 B 27648 12. 3. 4.6	1350008 47616 2.0. 3.4 8.7	1020008 33792 12.3 0, 4.3	110000 B 47616 1.5 2.0		

KEY MEAN CM IN OCTAL MEAN CM IN DECIMAL CP TIME IN SECONDS TO TIME IN SECONDS COST IN SCONT

READ DATA (~380 Runs) FROM SEQUENTIAL FILE TO RANDOM ACCESS MAS, STORAGE	WRITE DATA (~380 BIKKS) FROM MASS STORAGE TO TAPE
102000B	102000B
33/92	33792
40.	40
0. 9.5	2 7.21

TABLE 12 BREAK DOWN OF SYSTEM REQUIREMENTS TOR COLLAFS DE PROCESSE AND SIMULATION WITH FULL CORE

					FMDP COMPUTATION (TOR VERSION DECOIDE)							
				GENERATION OF	COLLAPSING		SIMULATION TIME STEP					
			1	COARSE MESH CROSS- SECTIONS IN PREPARATING FOR COLLARSING	MOCEDURE	READ DAT MASS STOP FOR 10 FPT	A FROM AGE, BURN D WITH	COMPUTE CROSS - SECTIONS FOR EACH MESH POINT AS	ITERATIVE FLUX CALCULATION 0.0776 m. Nisec/iter	CALCULATION OF POWER DISTRIBUTION WRITE DATA TO		
CELL SIZE	NO. OF MESH POINTS	MAX. CH REQUIRED	MAX ECS REQUIRED			CHANNELS		FUNCTION OF IRRADIATION	10 iterations	MASS STORAGE FOR RESTART		
FINE MESH	27360	>310000B	NDT KNOWN	· · · · ·			1	270000 8 94728 70, 9, 52,	2500008 86016 233.5 0, 144.	2700008 94208 1.7 30. 16.		
* *	14336	2660008	5673268 WITH OVERFORM TOSCRATCH FILE	230000 B 77824 28.3 15. 21.	140000B · 49152 20, 10,	226 (WITH NO BUNDLES 768 1. 10.	000B FRESH IN POOL) 00 7 64	230000 B 77824 50, 6, 31,	214000B 71680 122.4 0.	2360008 80896 1.6 23. 8,		
1*1*4	5120	266000B	316000B	1640008 59392 30. 9. 16.	104000B 34816 15 7.	6.5		1640008 59392 41. 4. 20.	1500008 53248 43.7 0. 19.	174000B 63488 1.3 4.5 2,		
1*1*6	4096	2660008	3113268	164000B 59392 28, 11. 16.	1000008 32768 15, 7,	6,3		۱ 64,0008 59,392 41. 4. 20.	1500008 53248 35.0 0. 15.	174000B 63488 1.3 3.8 1.7		
2+2+2	2592	2660008	1431328	1550008 55808 25.3 11. 14,	72600B 29696 15, 7,	6.2		122000 B 33. 37. 122008 33.	112.000 g 37888 27.1 0. 10.	174000B 63488 1.3 4.		

KEY MEAN CM IN OCTAL MEAN CM IN DECIMAL	READ DATA FROM SEQUENTIAL FILE TO MASS STORAGE (~ 850 BLOCKS)	WRITE DATA FROM MASS STORAGE TO SEQUENTIAL FILE (~ 850 BLOCKS)
CP TIME IN SECONDS IO TIME IN SECONDS COST IN,	1020008 33792 80. 20. 20	102000B 33792 80. 4. 14.

TABLE 13 COMPARISON OF COMPUTING COSTS

ELL SIZE (1/2 Core)	COMPUTING COSTS ⁺ \$					
	TOTAL FOR 1 READ TAPE 1 COLLAPSING PROCEDURE 1 INSTANTANEOUS CALC. 1 RITE TAPE	TOTAL FOR 10 READ TAPES 1 COLLAPSING PROCEDURE 10 INSTANTANEOUS CALCS. 10 RITE TAPES				
FINE MESH	102	1020				
]*]*]	77.5	655				
1*1*2	53.3	436				
1*1*4	45.5	365				
1*1*6	43.0	340				
2*2*2	39.9	314				
ELL SIZE (FULL CORE)	TOTAL FOR 1 READ TAPE 1 COLLAPSING PROCEDURE 1 SIMULATION TIME STEP (10 FPD WITH REFUELLING) 1 WRITE TO TAPE	TOTAL FOR 1 READ TAPE 1 COLLAPSING PROCEDURE 10 SIMULATION TIME STEPS 1 WRITE TO TAPE				
FINE MESH	252	2214				
]*]*]	166	1075				
1*1*4	104	531				
1*1*6	99	483				
2*2*2	81	322				

+ Calculated from TABLES 11 and 12.

ENERGY CLOCK	MAXIMUM CHANNEL POWER	MAXIMUM BUNDLE POWER	MAXIMUM CHANNEL OVERPOWER
FPD	(kW) AND LOCATION	(kw) AND LOCATION	(%) AND LOCATION
0	6865 M-5	832	8.48 M-1
5	6918	853	9.10
	E-14	D-13,No.7	E-14
10	6944	864	9.50
	E-14	V-14,No.7	E-14
20	- 7100	867	12.5
	E-14	LOCATION NOT KNOWN ⁺	A-14
25	6900	867	9.50
	N-5	LOCATION NOT KNOWN ⁺	N-1
30	7034	862	10.92
	E-14	D-15,No.7	E-14
40	6932	855	6.57
	N-4	N-4,No. 7	N-1
50	6948	826	11.00
	F-15	D-11,No.7	E-22
60	7091	872	10.75
	0-8	0-4,No. 7	0-7
70	6902	860	9.40
	F-17	N-4,No. 7	A-16

+ The bundle power data at this time step were lost.

OBTAINED WITH NORMAL	MESH MODEL	
Fission Power (kW)		2854600
Thermal Power (kW)		2695600
Maximum Channel Power (kW)		7100
Maximum Bundle Power (kW)		874
Average Maximum Channel Power (kW)		6963
Average Maximum Bundle Power (kW)		856
Feed Rate (Bundles/Day)	Whole Core Inner Region Outer Region	22.569 10.237 12.332
Average Exit Irradiation	Whole Core Inner Region Outer Region	1.628 1.775 1.506

-

												-	
	-	70		7701	581.0	020	184.0	0.936	1.037	1.007		2.63	- 0.687
				÷.	÷	Ь	7	М	S	ور		5	4-2
		60		1.036	1-10-1	0.984	1.035	0.986	0.956	1960		- 0.292	2.64
				÷.	۰ . د	÷	ს	<u>ب</u>	2	مر		وت	きき
		50	i	500.1	0.151	5401	11011	0.456	1.050	0.485		3.20	-1.64
				Ъ	M	~	m	£	ы	Ь		55	12
		rto Ito		1.015	1.01	0.973	4710-1	146.0	86.0	-181° 0		- 0.275	0.9
				. م	Ь		δ	و	ر	æ		19	5=
		30		2110.0	120.0	1.036	1.001	1.008	1.020	799.0		0.996	
510 8.1		t		ب	<u></u>		m	بو	2	2		= 5	<u>ح</u> =
H SN		12		1.016	1.035	0.956	0.995	1.024	479.0	1.004		- 1.95	1121
110				ς	m	0	2	-	ч	٣ ١		50	~~
T AND T		20		1.001	0.963	1.060	2113	2962	1.046	0.972		3.13	-1,225
11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			,	5	£	m	£.	m	<u>ب</u>	£		212	n=
PWER		2		0.972	0.983	1.037	111-0	1.039	0.776	0.989		- 0.4S	6899.0 -
E 16			1	4	-	5	4	M	-	0		7 5	ف ما بو
Tak		ما 		0.983	0.990	1.022	111.0	1.017	0.417	1.0.1		-0.32	8 0 1
			NO. DF CNANNELS FUELLED IN NEXT ENERFY INTERVAL	0	~	Ł	0	ہے۔	٥		No. OF CHANNELS FUELED IN NEXT ENERSY INTERVAL	TOP 4 Bernun 4	LEFT 2 RIGHT 6
		0	ZONAL T OVERPMER	l.o.e	1.027	0.972	100.1	0.944	0.984	699.0	·	2390-2	1.355 %
		ENERSY CLOCK		ZONE	-7	Ň	J	· · · ·	و	~	QNF	1 100 26 - 2 Parts	שלא של הפרחות אווזרסל סאפעשרר נסאבע

T ZONAL OVER POWER = IP ROWEL TIME AVERAGED IP ROWEL

46

ENERGY CLOCK FPD		Cł	ANNEL 0-7		CHANNEL 0-19				
	AGE	POWER kW	LAA ⁺ 8chnls	LAP [‡] 8chnls kw	AGE	POWER kW	LAA 8chnls	LAP 8CHNLS kW	
40	0.925	6295	0.535	6698	0.918	6151	0.531	6530	
50	0.965	5858	0.578	6280	0.958	6022	0.564	6441	
60	0.343	7071	0.618	6883	0.336	6462	0.607	6282	

ł

+ LAA $_{8CHNLS}$ (0-7) is the average age of the 8 channels next to 0-7 (see Reference 5)

+ LAP $_{8CHNLS}$ (0-7) is the average power of the 8 channels next to 0-7

TABLE 18LEFT TO RIGHT POWER TILT AND FUELLING HISTORYIN BURNUP INTERVAL 30 - 60 FPD

ENERGY CLOCK FPD	LEFT TO RIGHT POWER TILT PERCENT	NUMBER OF CHANNELS FUELLED IN NEXT BURNUP INTERVAL
30	-2.1	Left 17 Right 11
40	0.91	Left 12 Right 18
50	-1.64	Left 14 Right 14
60	2.64	

FIG. 16 NORMAL MESH CELL BOUNDARIES

X-D11	RECTION									÷.,		
1	2	3	4	5	6		7	8	9	10	11-	12
0.0	22.85	28.575	28.575	5 28.57	5 28.	575	28.575	28.575	24.13	8.89	9.843	28.575
13	14	15	16	17	18	19	20	21	22	23		
9.84	3 8.89	24.13	24.13	8.89	24.13	24.1	3 8.89	9.843	14.288	0.0		
Y-DII	RECTION											
1	2										31	32
0.0	22.85				28 x 2	8.575					22.85	0.0
					. '							
											•	
Z-DII	RECTION										-	
1	2	3	4	5	6	7	8	9	10	11	12	
0.0	47.625	50.8	49.53	49.53	15.24	8.89	35.56	35.56	8.89	35.56	35.56	
13	14	15	16	17	18	19						
8.89	15.24	49.53	49.53	50.8	47.625	0.0						

FIG. 2 HALF CORE FINE MESH SPACINGS (REF. 4)

ATOMIC ETERGY OF CATACA LITITE , PETER PROJECTS , FOR MACAGEDENT OFSTCE PROGRAM , VERSION - SEDULIBALS

DATE 21/11/75	TL** 22,02.30.	(THERE TO PERCARE TEEPIDES STRDS)	USFN NATE -	C.0119F	6+531	
*PRT*I				RUP ITTF	223.576 IN TIME	138,178

1

CHANNEL POLENS IN RELIVATES

TOTAL REACTOR POLARE	15	2695.00	MEGANATIS
TOTAL FISSION FORFR	15	2854.00	********
MAXINUM CHAN LEL PUSER	15	n:174.9h	KLLIWAITS
чахімым манасін рахем	15	744,76	N 11-12 A 1 T 4

	1	2	3	4	4	h .	1 -	*	٩	10	11	15
							ı			-	5	
4							I	3422	5645	3994	4181	4219
н						3432	1 5792	4375	4742	5072	5240	5257
с		1			3611	4255		5331	5704	5940	6866	6157
D				3714	4500	5971	5491	5944	6268	641A	6480	642A
£			3610	4392	5113	5063	5900	6331	6379	6451	6542	6553
F		3258	4195	5025	562*	5970	6042	6318	6300	<u> 6568</u>	6240	6033
G		5453	4775	551,6	5930	606×	6019	1550	6265	0262	6179	5444
н		4396	5260	5458	692H	5974	5970	6199	6569	6260	6181	5948
J	3723	4740	5614	6116	6050	5925	5951	6210	6276	6284	6214	6006
×	3944	5044	Барр	6508	6173	5983	6005	6239	6313	6517	6585	6143
L	4140	5257	6155	0357	6272	6102	6(149	0309	6350	6554	6323	6206
*	4310	5352	6151	NU25	6376	6264	0209	6371	6390	نا 6370	T 0330	62 00
N	4311	5308	6162	6465	6419	6350	6340	6431	6413	0385	6313	6145
f)	4219	5274	6110	6430	6424	n 164	6580	6449	6437	6391	6305	6083
P	3000	5080	5940	6407	6544	0323	e \$ \$ \$	A432	6420	5959	6310	6100
n	57 54	4755	5660	5177	6202	6195	6234	n 160	6347	6375	6335	619H
R		4415	5278	5904	5090	6104	HOH9 .	6242	n 547	6 57 1	6352	6244
9		5867	4797	5522	5924	5995	5963	6227	6324	6354	6354	6253
T .		5224	4124	51.2	554	5173	-	n254	6240	6334	6327	621 Y
U	2	•	84H4	4340	2004	5438	5750	6212	6511	6372	6270	61 04
≁-			•	fre		4841	5.343.	<u>ــــــــــــــــــــــــــــــــــــ</u>	+102	8541	~ 541 *	\$149
ы			<u>_</u>		5000	4223	4584	5245	5600	5803 5	- 5873	5165
x			REGION	BOUNDAR	~	3431	3751	4519	4703	4957	5093	5106
۲			το NE	ROON DU	RY			<u>3 3 H 1</u>	3632	19119	4085	4143

FIG. 3 TIME-AVERAGED CHANNEL POWER DISTRIBUTION

5

PAGE 9

BUN)LE	NO.
-----	-----	-----

	1	2	3	4	5	6	7	8	9	10	11	12	13
D-12	65.0	255.5	458.7	599.9	685.1	778.9	796.8	779.7	682.4	586.3	436.8	241.2	61.8
M-11	70.6	264.8	463.3	602.5	641.7	707.9	708.3	710.5	652.2	633.7	505.8	292.3	76.0
Q-1	25.7	116.9	232.2	339.0	412.0	467.5	479.3	472.2	425.1	357.6	251.1	127.7	28.0
E-11	68.7	268.0	474.4	616.2	664.0	74 7. 2	750.5	750.1	661.2	594.4	439.7	243.9	63.5
N-12	71.2	265.6	457.8	571.8	604.2	698.6	698.2	699.5	611.2	599.0	498.5	291.4	76.0
L-1	34.1	145.6	278.4	390.3	462.2	521.8	538.4	529.6	471.1	390.3	268.6	137.2	32.0
A-11	34.5	146.8	279.9	389.9	461.7	523.7	537.1	524.8	460.9	382.8	267.8	138.6	32.5
T-2	19.3	97.6	202.3	297.8	361.7	412.7	425.2	417.6	372.7	313.9	219.5	107.2	21.2

FIG. 4 REFERENCE (TIME-AVERAGED) BUNDLE POWERS FOR 8 SPECIFIC CHANNELS

FIG. 6 HALF CORE COARSE MESH SPACINGS

BUNDLE
NUMBER

	1	2	3	4	5	,6	7	8	9	10	11	12	13
ΣP ∳ 8268	80.6	318.8	582.0	768.8	883.5	1012.6	1037.5	1012.4	878.5	751.7	557.5	305.3	77.5

1*1*6 WITHOUT 7796 CP FACTORS	322.9 300	650.3 104	657.1 12.9	659.3 -14.2	659.0 -25.4	657.7 -35.0	657.4 -36.6	657.8 -35.0	656.6 -25.3	646.0 -14.1	632.7 13.5	626.5 105	312.7 303
1*1*6 WITH 8082 CP FACTORS	80.4 -0.25	315.3 -1.10	571.0 -1.89	752.1 -2.30	861.6 -2.48	982.2 -3.00	1007.5 -2.89	987.7 -2.44	861.4 -1.95	737.0 -1.955	547.0 -1.88	301.2 -1.34	76.9 -0.77

CHANNEL D-12

KEY

FINE MESH

> BUNDLE POWER PERCENT ERROR

> > FIG. 8 EFFECT OF THE CP FACTORS ON THE ACCURACY OF THE 1*1*6 INSTANTANEOUS CALCULATION WITH NRAN=6389

В	UN	D	LE
N	UM	В	ER

		1	2	3	4	5	6	7	8	9	10	11	12	13
FINE MESH	ΣP ↓ 7997	75.6	300.4	554.1	743.1	861.3	992.0 I	1017.1	991.8	854.8	722.6	527.2	285.1	71.9
[* <u>]</u> *]	8052 0.69	81.2 7.41	298.7 -0.57	557.7 0.65	748.4 0.71	884.4 2.68	983.7 -0.84	1017.1 0.0	983.0 -0.89	878.2 2.74	727.6 0.69	530.6 0.64	283.5 -0.56	77.4 7.65

CHANNEL D-12

F I NE MESH	5803	67.4	248.0	425.9	546.2	584.1	640.3	638.7	640.3	596.5	584.4	476.1	282.0	73.4
]*]*]	5797	71.7	244.7	424.9	544.9	599.5	621.0	640.7	621.7	612.0	583.3	475.4	278.5	78.2
	-0.10	6.38	-1.33	-0.23	-0.24	2.64	-3.01	0.31	-2.90	2.30	-0.19	-0.15	-1.24	6.54

CHANNEL M-11

FINE MESH	3285	24.0	107.6	209.8	301.8	364.7	406.6	412.0	403.7	367.1	314.8	228.0	118.9	26.1
] *]*]	3270	26.1	105.4	208.4	299.7	367.9	400.3	408.0	398.3	370.6	313.4	227.1	116.9	28.3
	-0.46	8.75	-2.04	-0.67	-0.69	0.88	-1.55	-0.98	-1.34	0.95	-0.44	-0.39	-1.68	8.43

CHANNEL Q-1

FIG. 9 COMPARISON OF BUNDLE POWERS GENERATED BY THE INSTANTANEOUS CALCULATION (NRAN=6389) WITH FINE MESH AND NORMAL MESH MODEL WITHOUT CP FACTORS

	5
	Þ
	٦
9	W
	2
	Z
1	E
Ż	Ŧ

. ~	1.214
7	1.171
-	J.SL
	ertus
5	2.rt
21	305.3
=	5.7.52
0	T.IZ
6	878.5
00	1012.4
٢	1037.5
ى	1017.6
4	883.5
-	769.8
~	581.0
ç	318.8
-	80.6
BUNDLE BUNDLE	EP +

13-

12

10 11

0

00

Г

4

1:

CHANNEL M-11

604.9 641.7 701.1 698.7 701.4 656.4 648.9 533.2

-	5.18	80.6	79.9	85.1	
	215.3	310.7	2.808.2	318.0 3.5	
	533.3	1.1-	522.9	5.46.3	
	11.0-	F1.3	645.9 -0.46	1.1.1	
	11.02	5.6.2	6635	6.46 4.1	
	150-	701.0	718.1	7.717 1.81	
	694.7 - 0.57	P.8P2	TISH	714.8	
	0.81.0	698.6 -0.3h	4.41L	713.8	
	636.2 -0.85	638.8 -0.45	646.3 0.12	6.83.9 P.1	
	601.1 -0.63	504.0 -0.15	4.10g	616.8	
	10:0	4-68.7	151- 1.3341	4842 1.9	
	1.171	277.0	270.8	786.0 3.9	
	75.1	73.7	13.4 1.87	76.0 1:1	
	1381	5:9- 1829	220	657	
Г	1.81	77.0	P.97	77.3	
T	59.0	01.6 1.2	301.2	02.7 28.0	
	m	m'		m 1	
F	554.0 3	547.9 31	547.0	- 1419 -	
	752.1 554.0 3'	738.0 547.9 31	737.0 547.0	74-0.0 549.6 3 -1.56 -1.41 -	
	878.2 1.22 1.28.6 3'	876.7 738.0 547.9 31 - 0.2 -1.32 -1.32	861.4 737.0 547.0 -1.95 -1.95	\$65.2 740.0 549.6 3 -1.5 -1.56 -1.41	
	10.0.8 878.1 752.1 554.0 3	1014-1 876.7 738.0 547.4 3	987.7 861.4 737.0 547.0 -2.44 -1.95 -1.88	947.14 865.2 740.0 549.6 3 19.1 - 1.5 -1.56 -1.4	
	1038.0 1010.8 878.1 752.1 559.0 3	1036.9 1014.1 876.7 738.0 547.4 3	1007.5 987.7 861.4 737.0 547.0 -1.89 -2.144 -1.95 -1.83	1014-6 992.4 865.2 740.0 549.6 3	
	100 2 122 200 818 2010 254.0 31 254.0 3	1013.1 1034.9 1014.1 874.7 738.0 547.4 3	981.2 1007.5 987.7 861.4 737.0 547.0 -3.0 -1.89 -2.144 -1.95 -1.83	991.2 1014.6 992.4 865.2 740.0 549.6 3 -2.2 1.7 -15 1.5 -156 -14.1 -	
	88.01 10.01 2.00 10.01 2.01 1.188 71.0 10.0 20.0 10.01 2.01 2.01 1.188 71.0 10.0 20.0 10.0 20.0 20.0 20.0 20.0 2	876.7 1013.1 1034.9 1014.1 874.7 738.0 5474 3	861.6 98.12 1007.5 987.7 861.4 737.0 54.70 -2.49 -3.00 -2.89 -2.44 -1.45 -1.85	- 141- 821- 219 11- 451- 212- 621- 12- 621- 213- 14-6 3	
	100 Lat 1.85 3.01 Lat 2.01 Lat	751.1 878.7 1.55 0.55 1.41101 8.260 1.5101 7.378 1.157 - 2.5. 4.1 - 2.5.	751.1 861.6 981.2 10075 9877 881.4 237.0 547.0 -130 -145 -185 -1.89 -1.47 -185 -185	755.5 867.7 991.2 1014.6 99.2 26.2 74.0.0 14.6 3	
	581.1 764.6 881.1 [010.3 [018.0 [010.8 818.1 751.1 554.0 3	- 141- 141- 101 111 111 111 111 111 111 111 111 1	571.0 751.1 861.6 981.2 1007.5 9877 261.4 737.0 547.0 -1.81 -230 -1.48 -301 -1.89 -2.144 -1.27 -1.852	574.0 755.5 867.7 991.2 1014.6 992.4 865.2 740.0 549.6 3	
	3726.6 581.7 769.6 883.1 1010.3 1038.0 1010.8 838.7 752.7 554.0 3 556 543 - 543.6 883.1 1010.3 1038.0 1010.9 838.7 757.1 554.0 3	314.4 570.7 751.1 878.7 1013.1 103.4 1014.1 876.7 738.0 5474 3	0123 571.0 7551 - 28.1 - 28.2 102 28.2 102 28.1 4 72.2 57.0 57.0 5.1 - 01.2 5.1 - 01.2 5.1 - 01.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5	317.6 574.0 755.5 8677 991.2 1014.6 992.4 865.2 740.0 549.6 3	
	60.01 370.6 58.1.1 761.6 88.11 [0103 018.0 [010.8 818.1 75.1.1 554.0 3 0.37 256 0.03 -000 -000 -005 010 0.00 0.00 -001 -001 0.00 0.00 0.00	- 171- 181- 20- 111 000 1200 1200 1200 1200 1200	014 315.3 571.0 751.1 861.6 92.2 1007.5 987.7 861.4 737.0 54.70 -0.16 -1.80 -1.81 -2.00 -2.49 -3.00 -2.49 -2.44 -1.45 -1.455 -1.85	81.0 317.6 574.0 755.5 8677 991.2 1014.6 99.2 266.2 740.0 549.6 3 05 -0.34 -1.17 -1.85 -1.79 -2.1 -2.2 1.7 -1.5 -1.56 -1.4	
	810 80.9 370.58 581.7 769.6 88.01 10.03 1038.0 50.01 1.28 3.02 1.58.7 1.58 3.00 10.0 10.0 10.0 10.0 10.0 10.0 10.0	8 100 80.3 June 570. 751.1 878.7 [10] 1.210 103 103 104 131. 738.0 570.7 33	2882 804 315.3 571.0 751.1 861.6 981.2 1007.5 987.7 861.4 737.0 54.70 -1.27 -0.16 -1.80 -1.80 -1.90 -1.91 -1.49 -1.49 -1.495 -1.85	8129 81.0 317.6 574.0 755.5 8677 991.2 1014.6 992.4 865.2 740.0 549.6 3	

2	7.412
2	112.4
=	2.215
10	296.7
	345.5
8	379.4
r	386.9
9	381.7
2	317.6
4	2.83.8
E	SILAI
2	1.101
-	ריו
Numero Num	3090
0-I	FINF HESH
CHANNEL	

2+1	3091	11.0 -	P.0 01	198.0	283.6	3413	382.4	381.1 5.08	380.4	345.1	296.6	7.215	111.9	24.6
+ *	3114	11.1-	1.001	196.4 -0.56	284-6	341.4	382.6	341.4	386.1	351.5	303 4	P.912	8.111	24.3 -1.6
9+1	3137	22.3	2.001	116.7	285.0	347.2	392.1	397.9 2.84	389.6	353.7	301.3	21515	11.1 -1:16	24.1
1+1+	3125	22.6	101.6	13.0-	282.6	342.3	385.0	343.3	2.125	354.0	303.8	218.0	1.51	24.7

FIG 10 COMPARISON OF BUNDLE POWERS GENERATED BY THE INSTANTANEOUS CALCULATION (NRAN = 6389) WITH FINE MESH AND VARIOUS COARSE MESH GEDMETRIES

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-					Г	09		y I		
$ \frac{1}{16} \left[\frac{1}{12} + \frac{1}{12} + \frac{1}{16} + \frac{1}{12} + \frac{1}{16} + \frac{1}{12} + \frac{1}{16} + \frac{1}{12} + \frac{1}{12$		13.9	68.1	70591		70	180	0.82	78.0		Not
$ \frac{10^{44}}{16} = \frac{1}{25} = \frac{1}{10} = $		267.9	268- 1-01 1-01-	F.		60	792	1.1	759		RADIA
$ \frac{100}{16} \frac{1}{12} - \frac{1}{12}$		1 88 S	149.1			-	0	0	0		רב 18
$ \left[\frac{1}{12} - \frac{1}{$		و در ۱. م و در ۱.	636.4 -086 642.3	NE L		so	0.69	0.689	0.638		gung
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$		118.7	4367 -3.2 -3.6.7	CHAN			5	5	0		RALE
$ F(c_1 + \frac{1}{12}, \frac{1}{2}, \frac{1}{12}, \frac{1}{1$		8	789.6 2.8 2.8 2.6 1.6 1.6	SNO		اد ا	9.0 0	9.0	0.61		A VE
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$		7	740.1	25 41		30	str.	247	o.S'46		<u>ب</u>
$ = \frac{1}{12^{6}} = \frac{1}{22^{2}} = \frac{1}{22^{2}} = \frac{1}{22^{2}} = \frac{1}{2^{2}} = \frac{1}{2^$		767.9	746.1 2.5 3.7 3.7	POUE			<u>+</u>	2			NHEL
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		718.0	648.6 -1.7 -2.3 -2.3	UNDLE		52	0.5	0.5	15.0		CHP
$\frac{1}{118} \left[\frac{7.6}{75.6} + \frac{1.2}{275.0} \frac{1}{30.4} + \frac{5}{20.4} + \frac{6}{27.6} + \frac{7}{27.6} + \frac{8}{212.1} + \frac{10}{20.5} + \frac{10}{10.4} + \frac{11}{12.15} + 1$		4 631.3	637.8 1.03 631.8 631.8	ړ مد		20	476	112	stt.		5
$ \left[\frac{1}{125} - \frac{1}{12750} - \frac{1}{5114} - \frac{1}{1245} - \frac{5}{1245} - \frac{2}{1243} - \frac{8}{1244} - \frac{1}{1243} - \frac{1}{1244} - \frac{1}{1243} - \frac{1}{1244} - \frac{1}{1243} - \frac{1}{1244} - \frac{1}{1243} - \frac{1}{1244} -$		2	5:254 5:254 5:254	NOSIZ		ł	0	0	0		NISON
$\frac{1}{12} \left[\frac{1}{72.6} - \frac{1}{2750} - \frac{1}{51.11} - \frac{5}{120} - \frac{5}{2} - \frac{5}{7} - \frac{2}{8} - \frac{1}{91.11} - \frac{11}{70.12} - \frac{11}{121.11} - \frac$		2 2	101 101	OMPA		<u>_</u>	0.40	0,49	0.40		e lo ne
$\frac{10000}{12} \left[\frac{1}{75.6} - \frac{1}{21500} - \frac{1}{50144} - \frac{1}{61044} - \frac{1}{774.6} - \frac{1}{715.6} - \frac{1}{21500} - \frac{1}{50144} - \frac{1}{61044} - \frac{1}{12644} -$			64.7 6.8.6 -7.4 -7.4	13		· 6	363	363	363	363	trs T
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $			13) 13) 13) 13) 13) 13)	10 11	_	L	0	0	ó	0	F16
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$		2 3	1.32			•	80	5 #			
$\frac{1}{11} \begin{bmatrix} 75.6 & 75.5 & 51.1.4 & 540.4 & 771.5 & 84.6 & 811.1 & 81.6 & 75.1 & 64.1.3 & 42.1.8 & 24.1.4 \\ \hline 75.6 & 725.0 & 51.1.4 & 540.4 & 723.1 & 81.6 & 811.1 & 81.6 & 725.1 & 64.1.3 & 42.1.2 & 24.1.4 & 24.1 $	-	2.97	6	SFPD		ř	66	999	668		To
$\frac{1}{16} \left[\frac{1}{75.6} - \frac{1}{275.0} \frac{1}{51.14} - \frac{3}{610.4} - \frac{6}{724.6} - \frac{6}{714.5} - \frac{7}{812.14} - \frac{8}{786.7} - \frac{6}{771.5} - \frac{10}{144.3} - \frac{11}{12} - \frac{10}{12} - \frac{11}{14} - \frac{10}{14} - \frac{11}{14} - \frac{10}{14} - \frac{10}{14}$		1.8 26	2 22	T AT		ço	2320	351	376		LAJUM
Market 1 2 3 4 5 6 7 8 4 1 19 75.6 77.5 57.14 6904 759.6 771.5 81.1 88.6 771.5 81.1 88.6 771.5 10 18 75.1 71.3 51.5 51.1 51.0 51.1		1 2 1 2	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			ļ		8	9 9 9		15
0466 1 2 3 4 5 7 8 7 18 75.6 275.0 5 1 6 10.4 753.6 7 7 7 18 75.6 275.0 5 1 6 10.4 753.6 7 7 7 18 75.6 275.0 5 1.4 6 7 7 8 1 18 7 78 5 5 5 10 7 7 10 1 17 27 5 10 20 6 2 3 1 1 633 7 7 5 10 10 10 10 10 10 10 17 27 5 10 20 10 10 10 10 10 16 17 27 5 10 10 10 10 10 10 16 633 632 634 704 632 642 642 16 17 204 632 632 642 642		149	5.1 62 5.1 62 5.1 62 5.1 62	HANNE		50	640	289	684 - 0.8		JCHON
0466 1 2 3 4 5 6 7 8 75.6 275.0 511.4 630.4 757.6 717.5 815.6 74.5 814.1 70 18 75.6 275.0 511.4 630.4 757.6 511.4 530.4 757.6 511.4 530.4 757.6 511.4 510.4 717.7 815.6 804.6 74 13 71.1 277 510.6 68.7 71.4 517.5 514.4 514.5 514.4 74.1 13 71.1 277 510.6 68.7 71.4 51.5 51.4 74.1 74.5 13 71.1 277 510.6 68.7 71.4 51.4 51.4 74.5 13 71.1 277 510.6 64.5 73.4 54.6 74.5 74.5 13 71.1 277 50.4 61.5 61.4 703.4 6 74.5 14 61.8 694.4 700.4 61.4 703.4 6 61.4 50.4 51.4 16 63.7 64.7 63.7 54.7 54.7 51.5 51.4 56.4 16 63.5		6 2		NG O		۲۹	1+17	524	0-61 0-61		THRO
PONER 1 2 3 4 5 6 7 6 PIB 75.6 275.0 511.4 640.4 754.6 745.5 81.4 PIB 75.1 2 233 71.3 215.0 511.4 640.4 754.6 745.5 81.4 PIB 7.1 2 233 71.3 2185.4 151.3 614.5 71.3 81.6 81.4 PIB 7.1 2.7 510.6 64.5 71.3 81.4 81.9 PIB 7.1 2.7 510.5 510.4 51.4 64.4 70.3 PIB 7.1 2.7 510.5 2.6 21.4 81.6 81.4 PIB 69.6 704.4 710.0 6.1.4 703.4 51.4 6.6 PIB 69.6 704.4 710.0 6.1.4 703.4 6.6 6.4.4 PIB 69.6 704.4 710.0 6.1.4 703.4 6.4.2 PIB 69.6 704.4 6.3.5 6.9.4.3 6.4.2 PIB 69.6 704.4 6.3.5 6.9.4.3 6.9.4.3 PIB 69.6 704.4 6.5.5 6.9.4.3 <		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	ALO		ŀ	<u> </u>	0	5		JERS
PUNKA 1 2 3 1 5 6 74. PIB 75: 6 275.0 511.4 640.4 759.6 741.5 R64 71.9 280 509.4 681.3 727.5 81.4 13.3 285.4 511.3 510.4 511.4 511.4 511.4 13.3 285.4 511.3 510.4 728.7 73.4 835. 13.3 285.4 511.3 510.4 511.4 511.4 512.5 13.3 285.4 510.4 510.4 721.7 513.4 51.4 13.3 285.4 510.4 70.4 721.4 51.4 51.4 69.3 69.4.4 710.0 61.4.9 51.4 51.4 69.3 69.4.4 710.0 61.9 63.53 5.4.9 69.3 69.4.4 710.0 61.9 63.53 5.4.9 69.3 69.5 69.4.4 710.0 61.9 5.5 69.3 69.5 69.4.7 70.4 5.5.5 69.3 69.5 69.4 70.9 5.4.9 69.3 69.5 69.6 7.4.9 5.5.5 69.3 69.5 69.6<		2 824		OWERS		30	1034	819	69 43 - 13		الح الح
0466 1 2 3 4 5 918 75.6 275.0 511.4 690.4 751. 364 7.4 280 509.5 51.1 727. 364 7.4 280 509.5 51.1 727. 363 733 285.4 51.0 583.7 737. 333 733 285.4 51.1 51.3 733.7 433 71.1 277 510.4 56.7 733.4 533 733 285.4 510.4 745.7 734.4 633 71.1 277 510.4 51.4 713.4 633 733 285.7 51.4 710.0 61.2 6133 694.4 710.0 61.4 63.6 635 695.7 696.7 733.4 66.5 633 635.7 696.7 69.7 65.8 633 635.7 696.7 63.7 65.7 633 635.7 696.7 69.7 65.7 633 635.7 696.7 63.7 65.8 633 635.7 696.7 63.7 65.8 633 635.7 696.7 63.7 <		9 744	2 4 6 6 8 7 7 1 7 1 7 1 7 1	DUCE P		S	66.	6-3	223		
0466 1 2 3 4 076 75 275.0 511.4 640.1 086 71.4 280 500.5 640.1 0.1 -1.1 2.85 511.4 640.1 0.1 -1.1 2.85 511.4 640.1 0.1 -1.1 2.85 2.85 640.1 1.1.1 2.80 59.44 510.6 641.4 0.3 -5.4 0.71 -2.2 0.14 1.1.1 2.77 510.6 641.4 710.0 1.1.5 -0.11 -2.0 2.04 0.04 0.3 -5.4 0.71 -2.2 0.04 0.3 -5.4 0.71 -2.0 0.04 0.3 -5.4 0.71 -2.0 0.04 0.3 -5.4 0.71 -2.0 0.04 0.3 -1.2.5 0.444 7100 0.465 1.6 1.4 -1.00 -1.2 0.044 0.3 -1.2.5 0.046 -0.044 0.3 -1.2.5 0.046 -0.044 0.3 -1.4 0.304 0.046 0.3 -1.4 0.35 0.046		s + 759.	717.7 2 2 11	BUNT			6 2	\$ \$	6.00		ANNEL
01464 1 2 3 0146 1 1 1 3 11 15 6 275.0 501.4 11 1 1 1 1 3 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 12 1 1 1 1 1 133 1 1 1 1 1 133 1 1 1 1 1 133 1 1 1 <		4	5 6831 6 64 6 6 88 -	OF		10	7100	140-	1969		CH
11 11 1 11 11 11 1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 13 13 13 13 13 13 13 13 13 13 13 13 11 12 11 13 13 13 13 13 13 13 13 13 11 17 14 12 693 69 69 633 633 63 63 16 11 Contracted 14		2 II +	21-21-21-21-21-21-21-21-21-21-21-21-21-2	RISON]	-		وي	<u> </u>		o
11. 12. 12. 12. 12. 12. 12. 12. 12. 12.		2. 275.0	280 1.8 2.85 4 2.85 4 2.77 2.77 2.77	Comen	I	2	63	689	685		ARISOT
			14- 733 1- 1-17 1-17 1-17 1-17	5.15		2	8 16	18.61	833	939	+ Cont
		NUMER 5918	6861 n. n. n. n. n.	۲(۲		_ ۲	»	ţ.	<u>ل</u> میں چ	7 7	FI & 1
BUNDLE BUNDLE +++++ +++++ +++++ +++++ ++++++	•	BUNTE	+141+ * 46]*12*2			ENERGY	Ĩ			1*1	

		-= 03		 t		m	M	1	•
	13	02 L:		20		0.95	0.95		No
	11 13 51.1 26	002 624 100 1100 102 2.15 2.15 2.15	JOFPD.	60 0.887		283.0	0.886		REAUIT
	562.0 4	++++++++++++++++++++++++++++++++++++++	1-13 AT	20		178	820		ND LE 16
	4	595.2 -144 -144 -16.8 -16.8	и Е		^	o M	0 M		8
	665.5	640.6 3.77 3.713 3.713 5.90.3	N N N N N N N N N N N N N N N N N N N	40		C.75	0.75	!	AVLER
	2	1100 2163	ALONG	02 7.83.0		0.687	0.687		ANNEL
	0 6642	1.4 689.8 1.16 689.8	Powers	52		، ودع	وي		H) D -
	812 621	46.5 604 1.6 604 1.1 606	RUNDLE	0		20 0	20 0		N 10
	2	11-8 11-8 11-2 25 25 25 25 25 25 25 25 25 25 25 25 25	U C C C C C C C C C C C C C C C C C C C			0	9°		N. S. D.
	2 14 14	1 1 282.3 1.1 285.2 1.1 1.1 255.2	OM PARIS			ه در د	0.552		COMP AG
	- 8.	74.7 -571 -571 -634	Пе, 17 9	5 0.519		his.o	ه.5 ام	0.519	हा. 14
	3			<u>ہ۔۔۔</u> ،				7 7	
	13	70.0		70		059	6071 0.46		
-	0 21	1.0 264.7 2.0 264.7 2.0 267. 1.3 265. 58 4.76	C 5F90	03		5.5	604		ALAT ICA
	11 11	8 0 446 	¥ EI	0					JT SIM
		10.3 57 13.0 57 13.0 57 13.0 57	INEL N	2		1.0-	20-		12113000
	672.8 63	09:6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	NG CHAN	40		6491	-0.475 -0.475		11 5
	7	703.1 1.207 1.107 1.107 1.107 1.219 1.219	RS ALO	30		328	322		POUL R
	6 679.2	703.6 1.6 778.6 1.7 1.0 1.44	90.05			8 8	.و • ۲		NNCC
	د: ۲: ويه	1,112 1,112	8 va DLE	57		634	633]	2 (40
	+ + - - - - - - - - - - - - - - - - - -	4 605.7 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.16	v o z	102	9279	19.0-	4110-		- Z
	3.1 4.94	85.6 498. 94, 0.81 1.4, 505 1.14, 505 1.14, 1.14 335 4.86	01 698.150	0		004	7257		No No
	nere	22 - 12 - 12 22 - 12 23 - 12 24 - 12 2	ان س				9		MPARIS
	Sound in Nu		LT L			1719	6179	1603	- - -
		1+1+ +++e		Eucery cuock FPD * +		オキキ	974	2+1+1	110

4433 38.2 14.5 138.9 409.9 447.5 549.0 566.0 550.1 500.9 447.1 2875 142.9 255.6	4421 35.6 1505 287.2 404.9 1486.0 553.2 571.1 566.7 4.95.6 413.8 285.1 44.9 15. 57. 57.1 12. 56.7 14.1.6 413.8 285.1 14.7 57. 57.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 1	FIG.2.1 COMPARISON OF BUUDLE POUGRS ALONG CHANNEL L-1 AT 70FPD	5 10 20 25 30 40 50 60 70 0.989 1.011 1.054 1.076 1.098 1.141 1.185 1.226 0.328	0.989 1.011 1.054 1.076 1.098 1.141 1.184 1.226 0.327 0.989 1.011 1.054 1.076 1.098 1.141 1.184 1.226 0.327	FIG. 23 COMPARISON OF CHANNEL L-1 AVERAGE BUNDLE IRRADIATION
Burner NUMBER TEP 1 2372 146-1 282.6 392.3 4459 504.3 515.2 419.9 4153.2 367.1 254.5 129.9 53.4 414.9 4153.2 367.1 254.5 129.9 53.4 1414	$ \begin{array}{c} +1 \mathrm{k} k$	FIG. 20 COMPARISON OF BUNDLE POWERS ALONG CHINNEL L-I AT 5FPD	Every 5 10 20 25 30 40 50 60 70	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	FIG. 23 CONFARISON OF CHANNEL L-1 POUCAS THROUGHOUT SIMULATION

~ =	0 M 2 Z			0 0	· · · · · · · · · · · · · · · · · · ·
	47 -8- 75 -8- 75 - 1-1- 75 - 25 - 25 - 25 - 25 - 25 - 25 - 25		70	850	
1 Lob	11.12.14 11.12.14 11.12.14	oftD	0.5144 0.504	2750	
10 10	- 151- - 151- 5 - 111- 5 - 101- 5 - 10-	1 H H - 7	20	+9+	
206.5	-2.05 -2.05 -2.47	CEL A.I	0	0 0	
e 564.1	2.0-2 2.1-2.	A A A A A A A A A A A A A A A A A A A	400.45	0.449	
2821	584.8 580.5 -0.3/	s Plan	30	1 tel	
2 5 5	5.64.8 2.89.2 2.89.2	Pauers	6 8	5 8	
6 ac.		N D L E	10	12:0	
		0 E	155.0 0.504	E2E 0	
3 292	1000 11 000 1000 11 000 1000 11 000 1000 11 000 11 000 11 000 11 000 11 000 11 000 11 000 11 000 11 000 1100 1100 1100 1100 1000 1100 1000 1100 1000 1100 110000 110000 10000 110000 110000 110000 110000 110000 110000 10	No212A	to E	304 . .304	
1 2	151 5e	2 Con	0		e-
5 5	S- S	FIG. 1	0 5	2.0	2.0
137.12			t 0	2 2 2 20 2	
145.3	145.8 145.8 145.2 145.2 145.0 150.0 150.0 152.0 152.2	8	L T	10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	277.6 277.6 277.6 277.5 277.5 211.7 2.01.7 2.5.5 2.01.7	AT SE	60	1824	
101	377.6 -2.92. -2.92 -2.92 -2.92	A-14	50	921 125 025	
1.14.7	2 4-8 5-9 - 2.17 - 2.17 - 4-6-9 - 4-0 - 4-8 - 4-0 - 4-8 - 4-0 - 4-8 - 4-0 - 4-8 - 4-0 - 4-8 - 4-8 - 1 - 4-8 - 1 - 1 - 4-8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	TAUNEL			
8	11-1-221 233:0 233:0 233:0 233:0 2420 233:0 2420 233:0 2420 233:0 2420 233:0 2410 233:0 2410 2410 2410 2410 2410 2410 2410 241	LANG CH	1 + +	413. 0.49 1415. 0.47	
2 <u>2</u> 2	578 570 570 570 570	E.R.S. A.	30	- 0.63 - 0.63 - 1.35	
	71.9 56 91.16 01 11.9 57 11.9 57 11.9 57 11.9 57	DLE PO	5.8	۲ و ۲ و ۲ و	
20.6	36.2 5 4 36.2 5 36.5 5 37.5 5 37.5 5 37.5 5 37.5 5 37.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	F 800		ot of	
و 		RISON 6	20	14666 -0.81 14607 -2.13	- it
2 1:451	1 12.2 151.5	Conten	0	- 0.66 - 0.66 - 1.78	05
1.152	39.5 1. 7.15 1.12 1.12 1.12 1.12 1.12 1.12 1.12	F16.2 t		222	st su
Anny Werk	+18:1 +18:5 +18:5 11- 8:11-8:11-	•			6 Certe
			ENERCY GLOCK FP3 H+ I+ I	9 * 1 × 1 + + + 1	14122

M 22 +	101 - 101 - 101 - 100 -			ł	0/0 01:0		0.430	054.0									
2 11 701 2.223	301 0 P1-	TOTA			0,395		245.0	0.346		No							
0	-2.44 2 44.2- 44.2- 1.1.8 8 314.3 1 4.2- 1.068	4 (2-1 -1			0.3 60		0.360	1920		LE ADIATI							
8	102 2.03 191- 103 191- 103	CHANNE			315		215.0	.325		L'N'ELE 19							
7	1 2:059 1 2:059	D KON S		4	0, 188 D	. •	2 881.	2 881.0									
	010 09 010 09	LE PONCR		1<	841	-	178 0	.178 0		NEL AL							
t 222	122.0 381 122.0 381 -181-1 37.16 38	OF BUND		02			162	1 291		L3 CHAN							
21177	2112 10-2 10-2 10-2 112 2112	1815 CN	~	- 	1 621		1 1.	1 62		-7 TO L							
1 2	-101 1.12 101 1.12 101 1.18 101 1	e 29 COMPI		· h	1 211		1.1 21	11 21	115	MR DU CHOU							
		ع بلا 			[_]	l	-		-	2 F. 12.9							
 E 11 0	14 1 - 10 8 - 14 6 - 14 6 - 14 6 - 14 6			70	3 493	Ĩ	3474	3448									
1 11	202.7 99 	A		60	3169	-	3180	3145		2							
6 296.0	6 243.5 -0°4 15 2812 11 -1.30	I AT SFP		ς	3133	-	3235 0.062	3246		JUNUTUR 1							
8 d 401,1 364	11-1-2 364 11- 0.0 3895 348 -2.89 -4-4 -2.89 -4-4 -2.89 -4-4 -2.89 -4-4 -2.89 -4-4 -2.89 -4-4 -2.89 -4-4 -4.83 -4 -4.83 -4 -4.84 -4 -	NEL. T-21		ę.	240	-	3247	717		TUNHOU							
2 6 4 16.3	12.12 12.12 12.12 12.13	NC CHAN		30	348 3	-	345	339 3		UBH1 52							
2 6	11.1 4.04 1.1.1 4.04 1.1.1 0.66 1.1.1 0.61 1.1.0 4.17.4 1.1.0 4.17.4	WERS ALO		. L ₇	36	-	130	34 3		LL PONE							
314-1 3	- 72.0 318.5 318.5 318.0 310.0 318.0	UNDLE PC		0	12 24	-	0 0	12 55		CHUNN							
3	8.125 8.10- 5 8.10- 5 8.105 7.015 7.025 7.027	Son of B		6	7 29	-	ہ م ب	2		1 1-13							
NUMBER	217 217 217 217 217 217 217 217 217 217	Conpari	,	2	118 1	+	314	215 1		IRISON O							
Howng W + Sig	3358 3741 3741 3741 3741 3741 3741 3751 3741 3751 3751 3751 3751 3751 3751 3751 375	Fic. 28		Accock	325	L	325	324	122	O CONFL							
 ± ±	1414C			ENER	- 土 土	-	+ + + +	1+1+6	1+1+1	FI6. 3							
12 13	86524-1 2778-4-1 21152	100 1.445 1.4356	1306 1.4344 1.4356		1121 11221 1122	1000 1000 1000 1000 1000 1000 1000 100	4544 1.5544 1 4554		2684-1 [222 9-1 TES9	1354 1 02231 4513 4554 1 02231 4513	6563 1.6735 1.4255		2005 1.7108 1.5002	1215 1117.1 2127 18.0-1 2117.1 2127	22171 8551 22171 8551 01.0 - 2300- 01.0		
---	--	--	---	---------------------	--	--	---	--------------------	---	--	--	----------------------	---	---	---	----------------------	---
0]	0.90147 ¹ .	1010-	0.400 6 1.		1.0620	1.0592	1 2820-1		1.3034	1. 29 66 1.	1.2477 1.	-	11 1582.1	1.3769	- 84.0-		
٩	4L140 12	2 0.4160 2	44 0.4148 -0.63		EEP2.0 23	11.1-	17 0.5 209	-	1.0 P.SST4	LI 0.8371	1330L		[240.0 6:	11 0.9214	8 0.9154		
8	137 0.744	10 - 1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	191 0 161		64t 0.4S	1 2 L	11 0.45		54 0.740	124 0.711	742 0 747		42 0.535	10 0.860	100		
5 7	192.0 2.1.59	20 57	1 0.2		4.0 2454	1-0 +1-0 +1-1 -1-1 -1-1 -1-1 -1-1 -1-1 -	4-241 0.4		7450 0.76	7.0 0.7	10 tru		8.0 1048	2602 0.66	8-0 LIL		
	1.0 2112.0	1367 0.	1 LIN -		0 4510 0.	. 1.0	0 4163 0.		. 1983.0	0 30L3.	0.6760 0.1		1777 0.	0 89510	-101		
Ŀ.	\$ 30 ET.0	0.2310 0	0, 21 EJ .0	FPD	0. به ۲۹	0.40 0.40	sitro b Satro	e e	0.6575	10,447	0.65 1 b	0	8thL.o	1541.0	8646.0	FPD)
3	SEI DI 182	51.0 51.0 91	0110	01 + 200	85EE.0 0	0 0.3770 0.35	2 0.3373	10F # 30	14 o.ST444	26-20 2	1 0.24	6 = 60F	1 0.6172	7 0.6199	31.0 2.6163	02 - 40	
1 2	210 0 112	2075 0.1129	2013 O.113	C BUR	11.0 211	101 455	111 SL	48	Pt7 0.3147	671 0.313 A3 0.313	1647 0.323	E BURNU	111 0.361	1447 0.746	01 1181	E BURN	
	0.0 122.0	0.01.0.0	0.552 0.0	اق	0.M7 0.05	0.07 0.0	0.687 0.9	[8]	lage of Lawl.o	0.0 [36.0	- - -	ð	0.92140	0.963 0.0	0.953 0.0	رد ه	
- 51	0.00124	0,0071L	0.0079.2 - 1.98	•	5620.0	420.0	0.02764		0.0614	50.3 - 772	0.0579 - 5.7		51 60.0	51 y - [Lya'0	17.2 -		
-	51	2			1 1	1		(1		- m -	1 1			
<u>ــ</u>	10.5	7 0 0	6.0298		1901'0	0 Lal 0	0.1044		0.2197	C.2112	0.1 21 9		0.155	17:0	10.10		
1	10. 8 54754.0 5	+ 0 + E 5 0 9	HE 0 SET		0.1127 0,1061	0701-0-191.	5200 10110		2 412 0 454 0	0.3419 C.2112	0.7457 0.7219 - 0.48 1.00		557.9 2854.0	12.0 (434.0 -	0.45 cr 0.15 74		
10 11 1	4 0.0183 0.05(p3 6 UT	120'0 +ESO 9EALO 0+	40.0 25.1 21.2 2.248	1.	1901'0 LZ11'0 4552.0	58:0 501 081-	52.0 LOI 381-		4112 0 WE 0 2113	89.0 10.1- SS1- 2.112.3 1116.0 9.515.0	001 830 - 521-		0.6033 0.4587 0.255	12:0 28:0- 11E1- 12:0 24:54:0 4585:0	101 1 10 11 510 1 10- 4		
4 10 11 1	10 8 (4) 0.0183 0.02180 0	+0 (11)- 500 (1000)	+10.0 2130 2002 2002 2002 48	2.	1901'a LIN'A HITLO 5883 0	0201-0 2011 80510 9622.0	0.1710 0.2500 00.1904 0.1044		4.5848 0.5117 0.3454 0.2147	890 101- 551- 11- 112-3 118-0 9815-0 98250	001 83.0 - 321- 81.5 0 - 15.5 0		+ 0. 1778 0. 1033 0.4587 0.255	12.0 28.0- 11E1- 20.5- 12.52.9 2434.0 4385.0 ELS7.0	0.1944 0.5113 0.45 (1 0.2574		
8 4 10 11 1	10 \$ 2435 0 28180 0 71800 h52800	to (11- 501- 151- 162 tta'a +ESa'O 9EaLa o +EbLaro E9180-0	0.0860 0.071 0.0703 0.0533 0.0748	2.	1901'0 LILIO HSTI 0 5882 0 401E 0	2810 501 83510 9622 505 50	220 201 201 2012 011.0 1250		0.6114 0.5868 0.5117 0.2454 0.217	890 10-1- 557- 11- 01E	0.6314 0.5514 0.5152 0.7219 0.7219		1 0.7164 0.1778 0.6033 0.4587 0.255	15.0 600 - WEI- 705- WEI 15.0 0042.0	101 1, 50- 484 0, 513 0, 512 0, 15 74		
7 8 4 10 11 1	10 \$ 20120 SULE 0.012 0.0 45280 0 221600	100 - 502 - 502 - 502 - 502 - 502 - 500 -	400 2810 1010 1244 921- 1290 1000 1244	1.	1901'a LINO HITO 1820 ANEO 121E 0	2810 4011 281- 201- 201- 4412 4 3022 0	250 101 281- 1855 440- 411-		2 412 0 45 K 0 2115 0 8985 0 4117 0 8239 0	880 101- 551- 11- 01E 050- 2112-3 111E-0 9515-0 9825-0 1849-0 5059-0	0.144 0.6314 0.5546 0.5152 0.3437 0.7219		557.9 LE54.0 EE03.0 \$221.0 4722.0 CHEL.0	152.0 (434.0 1121- 705- 112 340- 152.0 (434.0 4365.0 21370 0642.0 2051-0	101 120 1180 1180 11849 0 211 0 120 120 1		
6 7 8 9 10 11 1	0.0880 0.09126 0.08126 0.08126 0.05250 0.05250 0.02	50 - 11- 501- 501- 11- 11- 11- 11- 11- 11- 11- 11- 11-	4100 5210 (112-0 1440 01800 81900 21600 86209 25509 20400 16600 01800 81900 21600	×.	0-3125 0-3121 0-3100 0-3282 0-3224 0-1122 0-1001	91.0 401.1 3021.6 3475.0 4115.0 3016 1016.0	220 101 281- 125 410 4120 1120 2012 50 50 50 50 50 50 50 50 50 50 50 50 50		2 412 0 45K 0 2115 0 8985 1 4173 0 8239 0 4153 0	880 10-12 551- 112- 015 50590 02410	0.6532 0.444 0.6314 0.5516 0.5152 0.7453 0.214		227.9 234.0 2503.9 2427.9 4927.9 5427.0 10EC.0	120 280- 1121 2022 01420 2020 80420 100 200 80420 100 100 100 100 100 100 100 100 100 1	101 120- 610- 410- 410- 410 201- 410- 410- 410- 410- 410- 410- 410- 4		
2 6 7 8 4 10 11 1	2 0 5 2 47 2 8 10 2 8 16 0 9 21 20 0 4 21 80 0 9 21 40 0 4 38 80 0 25 2 0	50 417- 507- 557 65 8980 a bobe a Lesare 1281 0	4100 3511 (112-1 124- 911-1 0910 13600 1360- 2552 40-		1901'a LIV.0 4352 0 2882 0 00150 1212.0 SIL 0 Lith.0	04124 0.367 0.3168 0.3144 0.2746 0.1508 1.1407 0.1970 -212 1.48 -0.56 1.03 -1.02 -1.04 0.1508 1.100 0.867	1011 1011 1011 10110 1110 1110 01110 01100 010000 01000000		2412.0 4514.0 21150 8985.0 417.50 8239.0 4155.0 4042.0	1115-0 1115-0 9815-0 18490 2050-011-0 912-0	0115 0.6532 0.644 0.6314 0.5514 0.5152 0.1213 0.2119		227.0 2854.0 160 0 821.0 4112.0 CHIL.0 10EL.0 41180.0	11.0 480- 11E1- 705- 115 800- 1522 30420 30420 30420 30420	101 120 1340 1180 14649 3186 3186 3187 3187 318 318 318 318 318 318 318 318 318 318		
lt 5 6 7 8 4 10 11 1	10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	50 11- 501- 151- 161 160- 111 160- 10-	400 321 JUL- 14+ 91- 0980 1000 1000 5120 000		1901'0 LIN'0 4352 0 882 0 00120 5212 0 JUN 0 LINO	2810 4011 281- 701- 101 4012 4012 4010 4010 400-	0.115 0.4356 0.3118 0.311 0.5077 0.1130 0.1504 0.1406 0.1064 0.150 1.300 -152- 4 ⁻¹ 0- 4 ⁻¹ - 4 ⁻¹ 0- 1.20		1.0866 0.1404 0.6319 0.6536 0.6144 0.5868 0.5147 0.3474 0.147	1840 101- 251- 11- 01E 0250 04110 9121-0 1200 2112-3 1116-0 99150 96250 184990 2029- 211 451- 2200	000 0.715 0.6532 0.644 0.6634 0.554 0.5157 0.715 0.714		227.0 4854.0 10.038 0 471.0 4712.0 C452.0 1061.0 41188.0 9111	14.0 480- 1161- 705- 116 350- 622 52- 8200 14.520 43340 5350 62370 03420 20520 39440 30180 34414	1101 1201 1201 1010 1010 1010 1010 1010		
3 lt 5 6 7 8 4 lo 11 1	20 8 20720 0 28160 0 751800	200 - 201 -	10546 0.644 0.444 0.251 4.74 0.086.0 4.890.0 1.190.0 7.248 0.0513 4.004	0410	1901'0 LIN'0 HITE \$\$\$2.0 001E 0 JIE 0 JIE 0 Lith 0 LIZO 1501 1Ebil	11,11 20 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 122 - 1	11114 0.1115 0.4356 0.3118 0.311 0.501 0.501 0.1100 0.1504 0.1064 0.1064 0.1064 0.1064 0.1064	Dereb	1.3112 1.0566 0.7444 0.514 0.6536 0.6236 0.5144 0.5868 0.5117 0.3474 0.247	11.1.2 1116.0 3212 111 011 0200 01410 111 111 111 1111 1	000 027 - 228 02444 06344 0554 0554 05545 05157 050	60 FPD	222.0 1914 0.193 0.1914 0.1742 0.1742 0.1928 0.1933 0.185 0.255	160 680- 1161- 705- 116 840- 622 52- 8810 7010 16229 64340 43850 66370 04460 20520 82460 30100 41411 05541	14444 11709 0.3141 0.3524 0.37464 0.3146 0.4444 0.5013 0.45279	- TO FPD	
2 3 lt 5 6 7 8 9 lo 11 l.	1.1355 1.0511 0.0448 0.1355 0.04956 0.04956 0.04956 0.04956 0.05653 4.02	1.31524 1.0524 0 4.4.1 0.2133 0.0297 0.0404 0.04161 0.1.1 2.01 2.01 2.01 1.31 1.01 1.01 1.01 1.01 1.01 1.01 1	LIIS 1.0546 0.444 0.1345 0.0911 0.0618 0.0840 0.011 0.073 0.0533 0.0248 410 0.444 0.444 0.1345 0.0911 1.44 0.160 1.100 1.115 0.0533 0.0248	0016 = 10600	1901'a LINO HITLO 2882 0 001E'0 JINE 0 JINE 0 LILO LILON 1ELI 9804 1	2810 4011 081- 705- 505 9305 6417 4417 07100 4417 0710 4417 0710 4417 0710 4417 0710 4417 0710 4417 0710 4417 0710 4417 0710 4417 0710 4417 0710 4417 0710 4417 0710 4417 0710 4417 0710 4417 0710 4417 0710 4417 0710 4417 0710 4410 44	الله المرابع الم المرابع المرابع	RAUF = JOFPD	1.5163 1.3112 1.0866 0.7404 0.6131 0.6538 0.6244 1.508 0.2112 0.247	1.5.1 1.342 1.0.1 1.1. 01.1 0.500 0.6434 0.5400 1.0.1 1.1.1 0.1.2 0.1.2.1 0.1.	000 (810- 511- 100 (11- 100 (11- 100)) 11-100 (11-100) 11-100 (11-100) 11-100 (11-100) 11-100 (11-100) 11-100 (11-100) 11-100	and = 60 FPD	252.0 1111 2 201.0 1111 0 1111 0 1111 0 1111 0 1111 0 1111 0 123	11.0 480- 11E1- 702- 11E 840- 1522 8110 7018-0 11111 055911 425511	101 1300 13500 184090 91220 49420 301- 942 341- 110 800 121	Jorde = 70 FPD	
4 2 3 4 5 6 7 8 9 10 11 1	20 2 20 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 10 10 10 10 10 10 10	2011 0.11 1.25524 1.05244 0.6471 0.2233 0.00877 0.0109 0.08463 0.07140 0.703 0.0214 0.014	100- 1354 1.0546 0.0449 0.0414 0.0418 0.0840 1.000 1.000 2.2 2.001 1.0114 0.013 0.013 0.0144 0.001 0.0144 0.014	RE GURDUP = lofo0	1901'0 LIN'0 HITLO 2882'0 001E'0 121E'0 SILO LIN'0 LIZO 1261 1804'1 1/11	2810 4011 081- 701- 501 950- 811 71- 1100- 1000 510 400-	المبلغ المالية (110 من 120 م 120 من 120 من	ere evraur = Jored	1444-1 1.5183 1.3112 1.486 4.144 0.511 0.6538 0.5144 1.518 0.511 1.818 0.511	14624 1.512 1.342 1.342 1.342 1.342 1.342 1.342 1.342 1.342 1.341 1.342 1.341 1.342 1.341	000 001 001 001 0010 0112 0144 06914 0511 011 -112 011 000	CORE BURNUP = 60 FPD	222.0 1111 2530 1111 2530 10 1111 2427.0 2427.0 2527 2011 2523 2523 2523 2523 2523 2523 2523 25	11.0 480- 11E1- 705- 115 800- 612 52- 8010 7010 12531 42531 44241	101 1300 13810 11850 184990 91220 19420 13500 14120 1011 141841 02511 14111	OBE BURNUP = TO FPD	
fuvece Normet Manution 1 2 3 1 5 6 7 8 4 10 11 1.	20 \$ 20750 0 1312 0 0 15280 0 23160 0 2360 0 2860 0 23 2 0 0 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200 111 - 501 - 1212 121 - 121	4100 321 1.2.1. 124+ 91-1- 0910 21600 21810 0910 2110 400 9023 4021 01141 0010	CORE BURNUP = 10FPD	1901'a LIVI'a 4352.0 4310 0 1210 0 1210 LO LIVA 0 LIVA 1121 1384 1 1411 1840	2810 4011 081- 701- 101 9302 4110 121- 110 121- 1000 110 111 1111 1111	101 101 101 101 101 101 101 101 101 101	Core burnup = Jord	0.741 L4441 L5183 13112 L.0866 0.7444 0.6319 0.6516 0.6144 1.5818 0.5117 0.3454 0.247	1112-3 1116-0 9215-0 1245-0 1250-061-10 9121-0 1246-1 1250-1 2534-111-012-0 212-3 1116-0 9215-0 124-0015-015-015-015-015-015-015-015-015-01	001 8830 - SZI- 1997 110 881- 110 851- 120 100 520 010 520 024- 61720 28460 25150 91550 91890 84990 25590 5320 04401 1261 1751 25191 4520	CORE BURNUR = 60 FRD	227.0 125.10 120.20 0 1261.0 4712.0 C+52.0 1061.0 4188.0 9111 25.541 0223 bl411 8280	11.0 480- 1121- 705- 115 800- 622 52- 8000 7010 12551 42521 44471 2520 1250 1250 1250 1250 1250 1250 125	101 1201 1201 1201 1201 1201 1201 1201	CORE BURNUP = TO FPD	

1 2 3 4 5 6 7 8 9 10 11 12 13	118 113 118 118 118 118 118 118 118 118	103-4 112121 11.00 2012 0.2012 0.2014 0.0140 0.0140 0.0140 0.0140 0.0140 0.0128 0.0128 0.0128 0.00301 400 101-4 100-	000000 25110,0 111- 131- 1.2- 2.E- 1.0- 4210 0 2110,0 211,0 0 211,0 0 1124,0 41135 0 120,0 120,0 400 400 400 400 400 400 400 400 400	CORT QUENUE 10 FRD	איזן מאריד ונוצון ורומיון ורומיון מינידע מינידע מינידע מיניאנע מיניאנע מיניאנע מיניעע מיניעע מיניעע מיניעע מיניע איז מינידע מינידע מינידע מינידע מיניעע מינ	11- 16-0 - 511- 18-1- 10 12-1 8820 25-0 12-11- 1500- 1700 10-0 10-0 10-0 10-0 10-0 10-0 1	72 0.401 126138 111041 0.84716 0.55747 0.24135 0.21167 0.21220 0.20137 0.17744 D.14850 0.10587 0.85548 00135 73 -0.06 0.125 0.197 0.140 -0.79 1.60 -0.852 -2.28 -4.37 -1.12 1.406 0.54 -3.26	CORE BURNUP = 30FPD	101 0544 0151 01515 0 12515 01215 01215 01215 01215 01215 01215 01215 02211 02211 02211 02211 01880 02204	عديات 110 112 120 110 1120 120 120 120 120 12	472/- 980 2861 2511- 141- 801- 920- 901 221- 110 41211 129211 12921 155 155 155 155 155 155 155 155 155 1	Core burnup = 60 FPD	515562 515210 HTTO 551120 HOSTO 20050 01150 11150 295350 625120 15610 1118181 151821 0250 118	المراحب محدد المحلفا المولا المراحب المحدد مجمعه محدد محدد محدد محدد محدد محدد محدد محد	CORE QUANUP = 70FPD NOTE CHANNEL REFUELED AT LEPD	TIG. 3 5 COMPARISON OF CHANNEL A-14 BUNDLE IRRADIATIONS
12 12	1.408 H.	43693 1.400	1-0.0		+7385 1.417	115-1 22-24-4 115-1 22-54-4	47391 1.4167 1004 -0.0		124.1 82815	1.0- 1.400	52.865 1.429		17979 1.388	18665 1.37 0.013 -0.0	0-1100-	
=	1 19101	111010	+110.0-		1 1384	1 9/2/4	1 41 50.0 -		1 964.65	10.0-	1 96865.		85426	1 885.28	- 0.18 5 F P D	
10	1 101/2	+ 60122.	1120-		1.3828	1.32241 1.	- 0.042		surs.	3416.0	24285		י אואיס	41:0 105110	1 6	52
Ь	13007	10.0	12121		53423	- 0.058	12.22.71		+110+1+1.	-0.013	14.0-		794410	1 81541.0	-1.16 A	DIATIO
to	1 +15191	16232 1	16133 1		1 30135	1.30497	Pace -		Soset 1	450	1.50477 1		392 Eo.0	0.03836	REFUE	IRAA
7	1 92061	1 95061	1 100		334.61	580:0 52555	1.335977		1124	1.54+16 0.U	10170		0.03884	705000 6.50 8.50	1.51 ANNEL	UNDLE
9	1 6227	1 12291	111		1 18505	-10'0- 195202	73805.0		1.506.99	1.50453	1915		0.03712	291.0- 291.0- 798.0-	1.11 L. 1.	
S	03942	3861 L.	1 8562		5887	1 (437	01.0		35 yes	110-015	15131	-	03475	-23 -23 03440	101- N	VEL V
د	1.0	01 81 W.	at 1:0		1.1 81881	1 1931	1 220.		4387 1.	1 11	120.0		0 8061.	0 9711-20 0 9711-20	. 65 0	CHANN
~	10 1105 .	0 88 05	0 5115	190	Sife	- ISOO	o Jopol	DFPD	11 53128	1 11128	1 110 81051	0 FPD	0 08020	0 1.02 0.	TOFPE	40 7
7	1455	13604 D.C	9.0 81955	8 - 10	L.0 PSTT	IF	37814 0.7	P = 30	10 P2(14	- 170	43871 0.1	s = 6	·o Ibaia	01096 0.	- 400 = 400	PARISO
-	0 11130	0 16080 0.15	0 8694 0	BURNI	0 42260	0 51150	0 4114 0'	BURNI	10838	10,00	121	BURN	0 48100.	0 45200	-10.6 J	+ Com
JUNDLE UNALE	0 + =	10	0 110.	CORE	1.0 8 po.	0 840.1	1.098 0.	CoRE	1221	1.776 0	911.1	Coge	0.318 0	0.317 0 0.317 0	Lek L	FIC.31
	r 0		-		-	-	100		10.10		and the second second		CTOL DOT	+ 5	,	

												·					
Ň	PT114:1	110.0-	19214	····	132186	13191	132773		I alte I	15837	133104		1.425.1	132008	1.33374		
15	LSol tr	1.47060 0.002	Soo.o-		ויו בו	1.11646	1.11627	•	15623	1.15 Rt6 0.167	0.17		1.16966	1.1718	17193		
=	1.48757	100.0-	1.2871		SEapt.o	150.0	Soft.0	•	129280	0.87665	0.01697		Stat.0	121000	125060		ر ۲
0	1.31740	1.39.773	1.31744	.* .	0.31698	0.3114 0.11	0,3973 0.011		hitzso	د. درایک م	0.52482		0.51512	0.565 L	0.21		0001
! •	1.2.9.73	0.0	1.24264		2480%	0.0834	101-		0.14439	0.2411S	281- Silt80		53512 C	150-	0.19tz		
8	1.37873	1.37159	ENTTEN		0.005.84	11:1	1500.0		0.18 312	17781.0	0.61		0 11 023	21.1	10.11	FPD	2 C
٢	5221411	1800	1.4124		0.00644	0.00608 0.00608	1.81		0,18951	2 4 9 4 2 4 2 4 4 7 4	0.111.7		0.1476	0.24	0.108	- - -	ł
و	1.37942	1.37960	1.38085		0.00588	0.0059	0.00 tr.T	•	0 18425	0.18524 0.54	01.1		0.24.057	4,0	011538	.H (17)	1
ы	[11,13	173:0- 218221	112-11-1		28200.0	4127- E1200/0	0.00 530 - 0.43		0.16 664	-1.1 -1.1	0.16461		14112.0	71110	511- 1-1-1-	r Refue	
ا ر	1.03741	110 ° 1	1120.) BU 0.0		D. Dout	0.006.45 2.14	12100.0	8	0.13602	24.0	1120	1	0.17151	45.0 17847	11811-	PD	
~	6 73367	0.73364	17521.0	1050	1 0 0506	0.0	8 0.00 Je	- 30F	111,40.0	120	54.0	60	11110	5 0.12323	020	- 70 F	
4	21 235:0	7 0.36596 0.016	0.36603	TURNUP	0.00148	0.680	-0.61	BURNU	0.045	11.1	1.5	SUR NUP	90.0588	1 0.0602	14 0.064	SURNUF	
40LE	D.o.TUS	52.0-	1111	CeRET	5 000°0	•2030 -9,4	0.002	CoRE	0.01006	1400 C	10000	LENE	0.01311	0.0120	10-00	CORE	
B UT NUP	1.114	1.129	6 1.12		9.758	882'9 +	5 0. ² 15		1 0.395	3150 1	r6 031		0:430	لر 13	r6 c.431		I
U	- ± +_	」 上 土	1-1-			1*1*1) <u>+</u> +		工 土	1 1			1+1+	± +	1 1	-	

							1	-		7 0.349	0 674	0.796		Ĺ				T		1					24	VAL.
					_		-		-	8 0 85	100	235									1				23	01-10
				22	- ?	50	-	4.4	H	2 0.58	6118	10 976	0.0	27		50	2.0	20				1			"	
State State <th< td=""><td></td><td></td><td>-t.on</td><td>315 3</td><td>10 to to</td><td>1 2.18</td><td>-</td><td>6 0.64</td><td>10.51</td><td>2,623</td><td></td><td>3 0.62</td><td>15.0 2</td><td>15.0 20</td><td>-</td><td>5 0 3</td><td>15.0</td><td>1 0.81</td><td>8.9</td><td>28 +</td><td></td><td></td><td>1</td><td></td><td>*</td><td></td></th<>			-t.on	315 3	10 to to	1 2.18	-	6 0.64	10.51	2,623		3 0.62	15.0 2	15.0 20	-	5 0 3	15.0	1 0.81	8.9	28 +			1		*	
		0.0	5 378	19.0 11	No to	110 1	-	1 518	200	1 0.42	-	112 1	+0	79 0.4	11.0 81	2 0.81	404	15 2.39	515	1 0.5			-	1	ĸ	c 1
3959 3959 3145 4145 513		136 2	10	5 544	597	0.76	-	0.5	0.68	5870		0.56	0.61	5 0.8	50	4 0.55	0.6	1 5.1	100	\$ 9.53	-	-	-		19	
3550 3550 <th< td=""><td>- 10</td><td>15.0</td><td>510</td><td>285</td><td></td><td></td><td>-</td><td>20</td><td>-</td><td>4</td><td></td><td>24</td><td></td><td>259 8</td><td>0.47</td><td>87,</td><td>-</td><td>0.57</td><td>0.1</td><td>51:0</td><td></td><td>-</td><td>-</td><td><u> </u></td><td>≊ 1</td><td>3</td></th<>	- 10	15.0	510	285			-	20	-	4		24		259 8	0.47	87,	-	0.57	0.1	51:0		-	-	<u> </u>	≊ 1	3
50% 50% <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>43 64</td> <td>15.5</td> <td>18 0 81</td> <td></td> <td>50 0.63 6 643</td> <td>0.52</td> <td>1 637</td> <td>-</td> <td>-</td> <td>-</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>11</td> <td>-11-</td>		<u> </u>				-	-	43 64	15.5	18 0 81		50 0.63 6 643	0.52	1 637	-	-	-	•						-	11	-11-
1374 3135 4.245 54.1 3135 4.245 54.1 1314 1915 1315 2.415 5.415		-				-	-	12, 2, 28	100	86 03°	100	119 51	4.5	10 0.4		-	-	-	-		-			-	1	11 11 .
9564 9585 9584 <th< td=""><td></td><td>-</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>519</td><td>0.6 547</td><td>54 0.8</td><td>38</td><td>5.0 4.9</td><td>0.6</td><td>0.0</td><td>-</td><td> ·</td><td>-</td><td>-</td><td></td><td>-</td><td></td><td>-</td><td>-</td><td></td><td></td><td>DIT.</td></th<>		-			-	-	-	519	0.6 547	54 0.8	38	5.0 4.9	0.6	0.0	-	·	-	-		-		-	-			DIT.
1354 1354 1355 1,16 <th< td=""><td></td><td>-</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td> ·</td><td>0.60</td><td>102</td><td>45 0.7</td><td>28</td><td>101</td><td>-</td><td>25</td><td>. 551</td><td>5 2</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>3</td><td></td></th<>		-			-	-	-	-	·	0.60	102	45 0.7	28	101	-	25	. 551	5 2					-		3	
9584 9583 9744 9583 9744 9584 9583 9533 9533 9533 9533 9584 9533 9533 9533 9533 9533 9533 9584 9533 <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>16</td> <td>エン</td> <td>E.</td> <td>-</td> <td>1</td> <td>-</td> <td>19 62</td> <td>10.10</td> <td>12 0.8</td> <td>=5</td> <td>56 62</td> <td>2.0.5</td> <td>13 617</td> <td>75</td> <td>27</td> <td>· ·</td> <td>111</td> <td>22</td> <td>52</td> <td>2</td> <td>-</td>			-		-	16	エン	E.	-	1	-	19 62	10.10	12 0.8	=5	56 62	2.0.5	13 617	75	27	· ·	111	22	52	2	-
7.544 0.545 7.544 0.545 7.145 9.517 7.145 7.145 7.145 9.517 19.57 7.145 7.145 9.518 19.57 7.145 7.145 9.511 19.57 19.51 7.145 9.512 19.15 19.15 1.145 9.514 9.514 9.514 9.514 9.515 7.145 7.145 7.146 9.515 7.145 7.145 7.146 9.515 7.145 7.145 7.146 9.515 7.145 7.145 7.146 9.516 7.146 7.146 7.146 9.517 7.146 7.146 7.146 9.518 7.146 7.146 7.146 9.516 7.146 7.146 7.146 9.516 7.146 7.146 7.146 9.516 7.146 7.146 7.146 9.516 7.146 7.146 7.146 9.516 7.146 7.146 7.146 9.516 7.146 7.146 7.146 9.516 7.146 7.146 7.146 9.516 7.146 7.146 7.146 9.516 <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>13 0.4</td> <td>505</td> <td>15 59</td> <td>-</td> <td> ·</td> <td>-</td> <td>82 0.8</td> <td>200</td> <td>11 6.1</td> <td>105</td> <td>51 51</td> <td>100E</td> <td>08 63</td> <td>1.0</td> <td>31 5.4</td> <td></td> <td>110 20</td> <td>200</td> <td>11 0.8</td> <td>-</td> <td>DEPD</td>		-	-	-		13 0.4	505	15 59	-	·	-	82 0.8	200	11 6.1	105	51 51	100E	08 63	1.0	31 5.4		110 20	200	11 0.8	-	DEPD
0.554 0.554 0.545 0.145 0.541 0.555 0.545 0.545 0.541 0.555 0.545 0.545 0.541 0.555 0.545 0.545 0.541 0.555 0.545 0.545 0.541 0.545 0.541 0.545 0.541 0.545 0.541 0.545 0.541 0.545 0.541 0.545 0.555 0.545 0.541 0.545 0.555 0.545 0.541 0.545 0.555 0.541 0.541 0.541 0.555 0.541 0.541 0.541 0.555 0.541 0.541 0.541 0.555 0.541 0.541 0.541 0.555 0.541 0.541 0.541 0.555 0.541 0.541 0.541 0.555 0.541 0.541 0.541 0.555 0.541 0.541 0.541 0.555 0.541 0.541 0.541 0.555 0.541 0.541 0.541 0.555 0.541 0.541 0.541 0.555 0.541 0.541 0.541 0.541 0.541 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>43 508</td> <td>100</td> <td>10 0.5</td> <td>-</td> <td>-</td> <td></td> <td>6.5</td> <td>0.0</td> <td>10 20</td> <td>100</td> <td>50 95</td> <td>0.0</td> <td>10 200</td> <td>102</td> <td>84 0.</td> <td></td> <td>10 010</td> <td>100</td> <td>10 + 0</td> <td></td> <td>5</td>					-	43 508	100	10 0.5	-	-		6.5	0.0	10 20	100	50 95	0.0	10 200	102	84 0.		10 010	100	10 + 0		5
0.51 0.51 0.55 0.51 0.51 0.53 0.54 0.55 0.54 0.51 0.53 0.54 0.54 0.54 0.51 0.53 0.54 0.54 0.54 0.51 0.54 0.54 0.54 0.54 0.55 0.54 0.54 0.54 0.54 0.55 0.54 0.54 0.54 0.54 0.55 0.54 0.54 0.54 0.54 0.55 0.54 0.54 0.54 0.54 0.55 0.54 0.54 0.54 0.54 0.55 0.54 0.54 0.54 0.54 0.55 0.54 0.54 0.54 0.54 0.55 0.54 0.54 0.54 0.54 0.55 0.54 0.54 0.54 0.54 0.55 0.54 0.54 0.54 0.54 0.55 0.54 0.54 0.54 0.54 0.55 0.54 0.54 0.54 0.54 0.55 0.54 0.54 0.54 0.54 0.55 0.54 0.54 0.54 0.54 0.55 0.54 0.54 <t< td=""><td></td><td>-</td><td></td><td></td><td>58</td><td>9.0 640</td><td>0.4</td><td>119 01</td><td>25</td><td>50</td><td>-</td><td>tu</td><td>505</td><td>40 0.5</td><td>0.1</td><td>1.0</td><td></td><td>0.6</td><td>6.7</td><td>75 0.7</td><td>1-1</td><td>52 57</td><td>40</td><td>3.8</td><td>-</td><td>TA</td></t<>		-			58	9.0 640	0.4	119 01	25	50	-	tu	505	40 0.5	0.1	1.0		0.6	6.7	75 0.7	1-1	52 57	40	3.8	-	TA
0.50 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 <td></td> <td>1.8</td> <td>Jer.</td> <td>25</td> <td>1.2</td> <td>2.9</td> <td>12</td> <td>5, 62</td> <td>10</td> <td>8.0 2.8</td> <td>-</td> <td>21 2.6</td> <td>6.5</td> <td>1.0 0.1</td> <td>20</td> <td></td> <td>-</td> <td>-</td> <td></td> <td>19 61</td> <td>200</td> <td>2.2</td> <td>-</td> <td>+-</td> <td></td> <td>2 140</td>		1.8	Jer.	25	1.2	2.9	12	5, 62	10	8.0 2.8	-	21 2.6	6.5	1.0 0.1	20		-	-		19 61	200	2.2	-	+-		2 140
0.544 0.810 0.410 0.513		1:0 99	10	54 0.8	000	10 62	105 K	11 0.8	50	5.0 81	-	43 0.8	100	10 12	1.0	5 601	-	-	-	E F	mo 05	58 0.5	-	-] ~	1911
314 0.800 0.400 0.114 0.800 0.400 0.115 0.410 0.115 0.410 0.115 0.410 0.115 0.410 0.115 0.410 0.115 0.410 0.115 0.410 0.115 0.410 0.115 0.410 0.115 0.410 0.115 0.410 0.115 0.410 0.115 0.410 0.115 0.410 0.115 0.410 0.115 0.411 0.115 0.411 0.115 0.411 0.115 0.411 0.115 0.411 0.115 0.411 0.115 0.411 0.115 0.411 0.115 0.411 0.115 0.411 0.115 0.411 0.115 0.411 0.115 0.411 0.115 0.411 0.115 0.411 0.115 0.411 0.115 0.411 0.115 0.411 0.115 0.411 0.116 0.411 0.115 0.411		17 35.7	1 10	30 0.8	0.6	12 56	201	200	1.0	5.0	-	0.51	9.0	8.0 583 20 583	5	10 45	-	-	-	5.0	5.0	6.0 4				Col
9.344 0.840 0.440 9.344 0.840 0.440 9.344 0.840 0.440 9.345 0.840 0.440 9.345 0.355 0.831 1044 0.355 0.831 1145 5.445 0.440 1145 5.445 0.440 1145 5.445 0.440 1145 5.445 0.440 1145 5.445 0.440 1145 5.445 0.440 1145 5.445 0.440 1145 5.445 0.440 1145 5.445 0.440 1145 5.445 0.440 1145 5.445 0.440 1145 5.445 0.440 1145 5.445 0.440 1145 5.445 5.445 1146 5.445 5.445 1146 5.445 5.445 1146 5.445 5.445 1146 5.445 5.445 1146 5.445 5.445 1146 5.445 5.445 1146 5.445 5.445 1146 5.445 5.445 1146 5.445 <td< td=""><td></td><td>330</td><td>4.4</td><td>0.6 H10</td><td></td><td>0.5</td><td>100</td><td>1.0</td><td>-</td><td>-</td><td>-</td><td>129</td><td>25</td><td>10 20</td><td>105</td><td>10 0.1</td><td>22</td><td>52</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>]</td><td></td><td>CLOR</td></td<>		330	4.4	0.6 H10		0.5	100	1.0	-	-	-	129	25	10 20	105	10 0.1	22	52	-	-		-	-]		CLOR
9.110 9			L	-	-	101	22	57	-	-	+	19 18	6.5	4.0.6	10	54 0.6	35	8.0 EN	-	-	-	-]			REA
37.14 37.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14			,	L	-	52 44	50	54 0.8	-	-	-	85 0.8 12 5°	202	11 61	55	56 0.8	55	55 0.3		-		1				
F					L	44 0.8	12	87 52	-	-	-	6.0	05	76 56	6 5+	38 0.5	5.0	ê Ŧ	-	-		•			2	5 M
						32.5	187	£-0.	-	-	-	-	-	5.0	0.1	r.o.	-	<u> </u>	I	J						fic.
	-		v						L	L	1			L	L	L]		-	-		>	~			
																										AT THE
																									ke/	X

•

1

i

69

APPENDIX A DESCRIPTION OF CALCULATIONS

The three main types of calculations done in this study are outlined below.

1.

(i)

Time Averaged Calculations

Flux and power distributions are computed using input physics parameters for fuel bundles which are averaged over each bundle's residence time in the core at a given position in the channel. The distributions can be interpreted as an average over a sufficiently long time.

The basic steps are as follows. Note that this is an iterative calculation.

- An initial estimate is made of the exit irradiation in the two regions, the size and shape of the inner region, and a starting guess for the axial flux distributions.
- (ii) The initial and discharge irradiations for each bundle are computed from the exit irradiation, the axial flux shape, and the fuelling scheme.
- (iii) For each position in the channel, average cross sections are calculated by integrating from initial to final irradiation.
 Figure A.1 illustrates this procedure.

- (iv) With these cross sections, the flux distribution, the eigenvalue and the power distribution are calculated.
- (v) Steps ii to iv are repeated until the axial flux shape has converged.
- (vi) The inner region irradiation is adjusted to get a flat channel power distribution in this region, the outer region irradiation is adjusted to produce the required excess reactivity and the inner region size and shape is adjusted to get the required form factor. All of these factors are not necessarily adjusted at every iteration. Currently this step is done manually.
- (vii) Steps ii through v are repeated until the desired form factor and excess reactivity are obtained.

Note that step v is a manual step done externally to the computer so that the job must be resubmitted at each iteration.

2, <u>Instantaneous Calculations</u>

Power distributions which are more representative of those which might be obtained at a particular time during operation are obtained using an instantaneous calculation. This gives a snapshot of the reactor core at a particular moment in the reactor's history. The code assigns each channel in the core an age which represents the time since

the channel was last fuelled as a fraction of its total residence time. These fractions were selected from a uniform random distribution over the interval (0,1) using a numerical random number generator. Knowing the irradiations at the beginning and ending of the dwell period from a time-averaged calculation, the irradiation of each bundle in a channel can be calculated from the fractional age.

A different distribution is produced if a different starting value (the variable NRAN) is used for the random number generator.

The age distribution may also be obtained other than with the random number generator. A fuelling sequence may be read in to produce a patterned distribution of channel ages.

3. <u>Simulations</u>

The time history of the flux and power distribution is calculated at discrete time steps, with the irradiation distribution incremented from the previous step using the previous flux distribution. The flow chart is shown in Fig. A.2.

When a time step is to be taken, the new irradiation for each bundle is calculated from:

$$w_{K}(t_{i+1}) = w_{K}(t_{i}) + f_{K}(\omega_{i}) \emptyset_{K} \Delta t_{i}$$

where $\omega(t_i) = \omega_i$ is the previous irradiation

 $\omega(t_{i+1})$ is the new irradiation $f_{K}(\omega_{i})$ is the flux depression factor for the particular bundle \emptyset_{K} is the bundle flux from the previous time step Δt_{i} is the time increment

Each channel is

1. Refuelled

2. Is irradiated undisturbed for dwell time T

3. Is refuelled again

4. Bundles are shifted along channel N positions

Irradiation at end of T is:

$$\omega(k) = \omega(k-N) + \int_{0}^{T} \mathcal{O}(k) dt$$

$$\overline{\Sigma}(k) = \frac{1}{\Delta \omega(k)} \int_{0}^{\omega_2} \Sigma(\omega) d\omega$$

A.7 -----

APPENDIX B REACTOR MODEL

1.

Core Model - Mesh and Cell Arrays

For purposes of the flux calculation, the reactor is partitioned by perpendicular mesh planes into small parallelepiped volumes. The flux in each of these volumes is assumed constant, and is assigned to the point at the geometric centre of the volume.

Mesh planes are spaced closely in regions of rapidly changing flux or material properties and farther apart elsewhere.

There is no fixed geometrical relationship between mesh points and bundles. If each bundle is considered to occupy a volume equal to one lattice pitch in the x and y directions and one bundle length in the z direction (called a lattice "cell") the mesh volumes defined by the mesh planes do not necessarily coincide with these cell volumes. There may be more than one mesh point per lattice cell, or one cell may overlap several mesh points.

Mesh arrays are converted to cell arrays by volume weight averaging all mesh point values which overlap each cell. This permits the calculation of the power and burnup of the fuel bundles. These quantities are of most interest in fuel management.

2. Lattice Cell Homogenization

Cross sections for the flux calculation calculated by lattice physics codes (such as POWDERPUFS) are flux-volume weight averaged over the entire volume occupied by the lattice cell. Thus, when more than one mesh point is placed in a physical lattice cell to reduce discretization error in regions of rapidly changing flux, the variation in the flux values of individual mesh points within the geometric region of the cell does <u>not</u> represent the flux distribution through the cell. Rather, the average of the mesh point values is an approximation to the average cell flux. The microscopic flux distribution through the cell is treated by the flux depression factor F.

The material composing the bundle and pressure tubes and moderator are considered to be smeared out uniformly throughout the cell. Thus the model produces power, irradiation, and burnup from mesh points which may be geometrically within the moderator.

When structural material and control elements are present in the region of a lattice cell, appropriate cross section increments are <u>added</u> to the cell cross sections of the affected mesh points. This is to ensure that the total effective number of U, Zr, etc., atoms is unaffected by the introduction of additional material. The displacement of moderator and the change in microscopic flux distribution through the cell, in general non-zero increments will be added to all cross sections. The correct values of increments are obtained from CHEBY "supercell" calculations.

3. Structural Materials and Controllers

Extraneous structural materials, control elements, etc., which are not included in the lattice cell calculation, are treated by adding cross section increments to the cell cross sections at the affected mesh points. Extra materials are considered to be of two types; "fixed" structural material, and "moveable" controllers.

Figure B1 shows how the moveable absorber increments are added to the mesh properties. Consider controller A. It overlaps the mesh volume between 1=1 and 2 and J=1 and 2 by 1/3, so that 1/3 of the incremental cross sections of A are added to mesh properties for this mesh point. Similarly for the other mesh volumes overlapped. Thus the increment is smeared over the entire mesh volume. Controller B shows the more normal situation in which the controller occupies the entire mesh volume except at its tip. Controller A is modelled in coarse mesh. Controller B is modelled in fine mesh.

Figure B.1 Mesh and Cell Arrays

APPENDIX C

REFUELLING HISTORY FOR SIMULATION

NERGY LOCK FPD	CHANNEL REFUELLED	REGION AND DIRECTION	AVERAGE EXIT IRRADIATION (n/kb)	ENERGY CLOCK FPD	CHANNEL REFUELLED	REGION AND DIRECTION	AVERAGE EXIT IRRADIATION (n/kb)
1 2 2 3 4 4 5	V-14 W-16 F-16 E-14 R-22 S-8 B-8 A-14 K-12	- 0 + 0 + I - I - 0 + I + 0 - 0 + I	1.443 1.503 1.7781 1.7167 1.448 1.7683 1.509 1.4668 1.800	22 22 23 23 23 23 24 24 24 24	0-12 J-22 K-8 R-18 W-20 J-6 K-24 R-2 T-15	+ I - 0 + I - I + 0 - I + 0 - 0 + T	1.86 1.515 1.853 1.797 1.560 1.787 1.542 1.501 1.787
5566778899	R-6 S-16 R-14 B-16 J-18 K-4 J-2 W-12 N-14 F-12	- 0 + I - I + 0 - I + 0 - 0 + 0 - I + 1	1.467 1.799 1.736 1.516 1.733 1.5297 1.462 1.529 1.742 1.810	25 25 25 25 26 26 26 26 26 26 27 27 27	N-18 T-17 E-16 C-15 R-8 G-15 R-16 V-16 L-3 L-11	- I + 0 - 0 + 0 - I + I - I - 0 + 0 + I	1.737 1.832 1.533 1.491 1.53 1.732 1.812 1.728 1.491 1.538 1.805
10 10 11 11 12 12 12 12 13	K-20 Y-10 F-20 J-10 0-16 E-10 0-8 E-18 F-4	- + I - 0 + 0 - I + I - 0 + I - 0 + 0 + 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27 27 28 28 28 28 28 29 29 29 29 29 29	J-12 P-15 V-12 G-19 J-4 X-15 E-12 L-19 T-23 C-11	- I + I - 0 + 0 - 0 + 0 - I + I + 0 + 0	1.725 1.792 1.484 1.535 1.484 1.533 1.732 1.803 1.473 1.53
13 14 14 15 15 16 16 16 16 17 7 8 8 9 9 20 0 1 1	N-22 K-16 V-18 S-12 N-6 F-8 R-10 B-12 J-14 0-20 E-22 0-4 N-2 0-24 A-10 S-20 E-6 W-8 N-10 S-4 V-6	- 0 + I - 0 + I - I + 0 - I + 0 - I + 1 - 0 + 1 - 0 + 0 - 0 + 0 - 0 + 0 - 0 + 0 - 1 + 0 - 0 + 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1.496 1.496 1.497 1.829 1.829 1.829 1.495 1.495 1.496 1.827 1.827 1.827 1.774 1.774 1.775 1.55 1.551 1.551 1.778 1.778 1.779 1.55 1.55 1.55 1.776 1.777 1.777 1.84 1.844 1.844 1.46 1.460 1.461 1.850 1.850 1.850 1.502 1.503 1.503 1.551 1.552 1.552 1.482 1.483 1.483 1.565 1.513 1.566 1.794 1.507	30 30 31 32 32 32 33 34 34 34 34 34 35 35 35 35 36 36 36 37 37 37	E-8 P-3 N-16 G-11 J-20 X-11 R-20 C-7 V-8 P-7 E-20 L-15 N-8 T-11 R-4 T-19 J-16 P-19 R-12 G-3 N-4 P-11	- 0 + 0 - I + I - I + 0 - 0 + 0 - 0 + 1 - 1 + I - 1 + 1 + 0 - 1 + 1 + 1 - 1 + 0 - 1 + 1 - 1 + 1 - 1 + 0 - 0 + 0 - 0 + 1 - 1 + 1 - 1 + 0 - 0 + 0 - 0 + 0 - 0 + 0 - 0 + 0 - 0 + 1 - 1 + 1 - 1 - 1 - 1 - 0 + 0 - 0 + 1 -	1.468 1.524 1.739 1.815 1.74 1.535 1.468 1.533 1.474 1.82 1.49 1.824 1.752 1.829 1.48 1.538 1.76 1.826 1.758 1.54 1.76 1.822

IERGY LOCK FPD	CHANNEL REFUELLED	REGION AND DIRECTION	AVERAGE EXIT IRRADIATION (n/kb)	ENERGY CLOCK FPD	CHANNEL REFUELLED	REGION AND DIRECTION	AVERAGE EXIT IRRADIATION (n/kb)
38 38 39 39 39 39	N-20 G-7 N-12 L-23 J-8 C-19	- I + I - I + 0 - I + 0	1.768 1.819 1.75 1.535 1.747 1.51	55 55 56 56 56 57	K-15 P-17 S-11 G-21 O-7 L-13	- I + I - I + 0 - I + I	1.754 1.757 1.757 1.820 1.821 1.821 1.756 1.759 1.761 1.543 1.544 1.544 1.766 1.762 1.764 1.830 1.830 1.830
40 40 41 41 41	V-20 P-23 A-16 L-7 N-24 G-23	- 0 + 0 - 0 + I - 0 + 0	1.470 1.563 1.465 1.827 1.460 1.501	57 57 58 58 59 59	0-19 T-9 0-11 C-17 K-7 P-9	- 1 + I - I + 0 - I + I	1.755 1.757 $1.7601.824$ 1.826 $1.8271.750$ 1.753 $1.7541.544$ 1.544 $1.5441.724$ 1.726 $1.7271.833$ 1.835 $1.8351.602$ 1.602 1.502
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A-12 C-13 F-15 G-13 S-15 L-9 A-8 X-19 W-15 T-3 V-4 X-7 K-11 X-7 K-11 X-13 F-19 T-17 J-24 G-5 O-15	- 0 + 0 - I + I - 1 + 1 - 0 + 0 - 0 + 0 - 1 + 0 - 0 + 0 - 1 + 0 - 0 + 0 - 1 + 0 - 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 - 1 + 0 - 0 + 0 - 0 - 0 + 0 - 0 - 0 + 0 - 0 - 0 + 0 - 0 - 0 - 0 + 0 -	1.465 1.512 1.71 1.76 1.71 1.76 1.467 1.512 1.477 1.52 1.461 1.508 1.718 1.507 1.47 1.52 1.44 1.507 1.47 1.52 1.44 1.508 1.718 1.507 1.47 1.52 1.47 1.508 1.718 1.508 1.718 1.508 1.718 1.508 1.718 1.508 1.718 1.508 1.718 1.509	60 60 61 61 62 62 62 63 63 63 63 63 63 64 64 64 64 64 64 65 65 65 65	0-23 L-21 B-11 D-16 F-17 U-16 K-23 X-9 W-13 U-8 S-5 D-12 W-7 D-8 S-23 L-1 W-19 H-20 K-9	$\begin{array}{c} - & 0 \\ + & 1 \\ - & 0 \\ + & 0 \\ - & 0 \\ + & 0 \\ - & 0 \\ + & 0 \\ - & 0 \\ + & 0 \\ - & 0 \\ + & 0 \\ - & 0 \\ + & 0 \\ - & 0 \\ + & 0 \\ - & 0 \\ + & 0 \\ - & 0 \\ + & 0 \\ - & 0 \\ + & 0 \\ - & 0 \\ + & 0 \\ - & 0 \\ + & 0 \\ - & 0 \\ - & 0 \\ + & 0 \\ - & 0 \\$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
48 49 49 49	S-7 L-17 K-19 L-5	- I + I - I + I	1.72 1.62 1.71 1.75	66 66 67 67	H-4 F-13 Q-4 K-17 M-12	+ 0 - I + 0 - I + T	1.523 1.524 1.524 1.708 1.711 1.711 1.529 1.531 1.532 1.711 1.714 1.714
50 50 50 51 51	E-4 P-21 K-3 T-23 F-11 G-17	- 0 + 0 - 0 + I - I + I	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	68 68 68 69 69 69	S-17 H-16 K-5 Q-20 S-21 M-4	- I + I - I + I - 0 + I	1.673 1.675 1.677 1.803 1.804 1.804 1.661 1.663 1.663 1.747 1.750 1.752 1.460 1.471 1.474 1.8002 1.802 1.8023
51 52 52 53 53 53 54 54 54	W-11 G-9 F-7 T-5 O-3 T-21 B-15 P-13 S-19 P-5	- 0 + I - 0 + 0 - 0 + 0 + 1 - 0 + I	1.497 1.499 1.501 1.808 1.810 1.810 1.480 1.482 1.484 1.553 1.555 1.556 1.497 1.498 1.500 1.530 1.531 1.532 1.476 1.477 1.478 1.814 1.815 1.815 1.483 1.485 1.488 1.812 1.814 1.815	Note: A O FPD ar This is starting simulati for chan exceeded value fo generall	bout the f e fuelled a peculiar pattern s on, averag nels fuell the time- r channels y lower th	irst 27 ol in the pos ity of the elected. e discharg ed positiv averaged v fuelled r an the tim	dest channels at itive direction. a particular Throughout the ge irradiations rely generally ralue, while the megatively was me-averaged value.