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INTRODUCTION
Diffusion is the transport of material due to the random thermal

motions of the material particles. In analogy to Fourier's Law for heat
conduction Fick® in 1855 wrote a linear relationship between the flux, J,
of a substance and its density gradient, VC,

(L J = -DVC
This expression is gemerally known as Fick's first law, but, since there
is neither an a priori reason for assuming a linear relation between the
flux and the gradiemt, nor to call D a constant, (1) is merely e defini-
tion of the diffusion coefficient, D. However, in many cases of practical
interest the concentration gradiemts occurring are small, so that higher
order terme in the gradient can be neglected, and in the concentration
range used, D can often be usefully approximated by an average constant
value, If (1) is combined with the differential form of the contimuity
equation for the substance under consideration, one obtains the differen~
tial equation of diffusion,

(2) v =0

In 1945 Wa generalized Fick's first law to the simultaneous

diffusion of several components by writing the flux of the ienth component
as a linear combination of all gradients in the system

(3 J, = <D}, VC .

i ik 'k

The summation convention over doubly appearing indices is used
thrmmt this thesis. Subscripts carrying a prime are summed over the
range 1 to r-l, while the summation otherwise extends to r, the number of
components of the system. In sections where no differentiation between
the ranges of summation is required, the primes are omitted,

1
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An alternative phenomenological description has been suggested by

Onsager and Fuoss®,
(%) Iy = Ly Vi

where the W, are the chemical potentials of the components, Although this
is more fundamental, since the forces for diffusion are represented as
free energy gradiemts, the description in terms of concentrations is chosen
for most diffusion problems,

It will usually be possible to eliminate one of the fluxes by an
appropriate choice of coordinate axes., If the concentrations are expressed
in molesper unit volume and if local equilibrium exists so that we can

wkite 3r = c’(clgvtﬁewl)

equations (3) can be re-written as

{3oﬁ) Ji "o ”ik' wek' (11 = 114601'*’1)'
; ' ac '
where Dy =Dy + 3.5: D”

The generalized diffusion equation becomes then
(5) 8i- vo(o0 90,0) 5 0
where the D hnmu-qw«utm,erwdwrmizwmiwwmm

ik
system,

Solutions of (2) are well known in mathematical physies, while
interest in multicomponent diffusion has only comparatively recently
resulted in solutions for (5), of which particularly the work of Gosting
and Fujita® for 1iquid electrolytes and of Darken® and Kirkaldy" 2°, who
worked with metallic alloys, is to be noted. However, for more than three
components the mathematical and analytical difficulties boem_ rather

prohibitive, and no work seems to have been done in systems of higher order
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than ternary.

Whenever two phases of different composition coexist in a metal-
lie alloy, the growth of one phase into the other will involve a transfer
of one or more components across the interface. If the growth follows a
parabolic rate law, i,e, if x/tl‘/ 2 is constant, where x is the distance
of advance and t the corresponding time, one accepts this as strong evi-
dence that the growth is diffusion controlled and that local equilibrium
obtains at all interfaces. The case of moving boundaries in binary systems
has been treated by mmnn
given by mmma.

The principle of local equilibrium may be stated as follows:

y and solutions for ternary systems were

"For most irreversible processes involving moderate gradients, it will
generally be true that the change in an intensive variable within one

mean free path will be negligible compared with the magnitude of the vari-
able at that point", When the above is applied to a phase transformation,
in particular to the volume element containing the moving interface, the
concentrations on both sides of the planar interface can be specified as
the equilibrium concentrations given by the isothermal phase diagram.

This diagram is the most comvenient representation of the egquilibrium
conditions between the components of the system, In regions of composition
in which two phases coexist, tie-lines connect the equilibrium compositions
of these phases, (See Fig. 1)



I (a) Multiple Diffusion Solu
1) Review of existing binary diffusion solutions for constant D

In many cases of practical interest diffusion occurs over a range
of concentrations small enough for the assumption of a concentration inde-
pendent diffusion coefficient to be a justifiable approximation, The
binary diffusion equation (2) becomes then

(6) %% = Wzﬂ
while (5) reads
ac :
(7 té = Bﬂ; vack

Solutions to (6) are obtained in three fundamentally different ways.
Boltsuann'> showed that the substitution A = x/tY2 reduced the one-
dimensional form of (6) to an ordimary differential equation. A solution
is then easily obtained as am integral over the Gaussian function

2
(8 o) = € + 0 / o Mp i A s 2

where cu and 031 are constants, This solution is stationary in A-space,
which property makes it porticularly useful in describing diftpaian with
moving boundaries. Because of the linearity of (6) any given mmry
conditions can be fitted by a superposition involving a finite or infinite
number of solutions of the type (8),
The occurrence of the Gaussian in (8) suggests the following

solution in x-space:

(9 Clx,t) = €, + €, (hupe)"M/2 (% -£)%/ot



That (9) satisfies (6) is easily seen by direct substitution. Since
Iﬁﬁg (hmDe)~ 2 u*(”"ﬂaﬁm‘- Mxf) e § x= §

o "8 ) wpE

and /ﬁx-f) af = 1

is one of the da;zuitim of the functional 8({x), (9) obvicusly describes

the space-time behaviour of an amount 61 of the diffusing substance, which

occupies the position x =f at time zero. Indeed, one could have guessed

(9) from the notion that random movements of the particles (atoms) are

responsible for diffusion. The assumption of a constant diffusion

coefficient shows its physical meaning clearly at this point: it merely

says that every Gaussian distribution of form (9) will spread independ-

ently of other such functions in its neighbourhood, Therefore, the solution

for any initial concentration can be built up by superposition, Thus, if
¢(x,0) = elx)

@
(10) Glx,t) = (bnbe)" V2 ;tf) ."‘"“5’2/ el 13

This superposition leads to the w;ﬁ-kaon error function and related

solutions, if C(x,0) is of simple analytic form, e.g. if it is constant

over finite intervals.

If one assumes the existence of a solution to (6) of the form

(1) Clx,t) = al{n) czﬁt) i

then (6) separates into two ordinary differential equations
%
;23 + aacl =2 0

(12) and

Bas * azca « 0 , wvhere n is some constant,

and one obtains the solutions
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(13) Clxt) = ey(x) op(8) = A o™ D inx

This solution is again fitted to the initial and boundary conditions by
a superposition, which in gemeral will now be a Fourier integral or a
Fourier series expansion of C(x,0).

A third method of obtaining solutions for binary diffusion is
the use of the Laplace ﬁmtmtionn. Its main advantage is that the
partial differential equation is changed inio an ordinary differential
equation in x. Its solution will be the Laplace transform of the time-
dependent solution., The latter is then obtained from existing tables of
Laplace tmfomtimﬁ. Both types of solutions, the error function
as well as the trigonometric types, can be obtained in this way. The
former is preferable for short times, while the latter becomes useful
at later times for finite diffusion ranges.

2)

To find solutions for multiple diffusion satisfying (7), Kirk-
nldym has suggested that the combination Dt occurring in all kmown
time dependent solutions of the biw case be replaced by the product
ukt and that the solution for the j-th component, C 3 be written as a
linear superposition of functions G"

’ =a cf
(1) ¢ iy W
: ok ‘ 2
where the = Oz, t) = C(g,17) .

The Gk are assumed to satisfy the modified binary diffusion equation

(15) §§5 . u v%c"
Substitution of (14) into (7) gives
By ac®/ot = 33“ 84 v2ck



Mmof%n%ﬁ;

and (15) one has

%m&

and the characteristic equations giving the W, become

(16) Bt = “k.ll = !’15‘3
Here the w, are to be understood as a diagonal matrix, If one interprets
(16) as an equation between the row vectors of the a-matrix, 8+ one
obtains the usual form of an eigenvalue pwbluw
For a system of r dependent components the eigenvalues w, are given by
the r-l1 roots of the pdlynomial in w

a7 ”'“”1; - néu) =0

vhere O, ; is the Kronecker delta. Corresponding to each distinct eigenvalue
an eigenvector, 3 , can be determined which satisfies (16). Por roots of
multiplicity m, exactly m linearly independent eigenvectors existl®, |
{ef. also Sectionm Ib and Appendix II), However, any multiple of a vector,
8, satisfying (16 a) will satisfy the same equations. Therefore, another
r~1l conditions are needed to determine the a-matrix uniquely; these will
be found to be one of the boundary or initial conditions on the Gs's.
In the case of parametric solutioms of type (8), a trial solution

similar to (14) can be written,

(18) ¢, » “31;"1‘“' w)

where Gk mast now satisfy

(19) -gg-uﬁi";



for diffusion along one direction, This leads to precisely the same

eigenvalue problem as (16). Therefore (18) is also a solution for (7).
The replacement of D by u, in known solutions of the binary

diffusion equation and a linear superposition of all functions, C*,

thus formed, is therefore a generally valid procedure to obtain solutions

for the multicomponent diffusion equations with constant diffusion coeffi-

cients,
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The time dependence of the solutions of the binary diffusion
equation were found to be of the form esp(-xg/kbt) and exp(*aabt). Clearly,
if trial solutions 3k were formed by a substitution of negative eigenvalues
for D, these solutions would diverge with time, Similar difficulties arise
with the parametric solution in A-space. The diffusion matrix therefore
deserves a ¢loser scrutiny.

In the simplest case of a ternary system Kirkaldy7 has stated the
conditions for physically significant solutions. In a general notation these
are

(20,a,b)  Tr3(D) > bDet(D) > 0
To satiefy the first inequality it is sufficient, but not necessary, for the
aff—diagonal diffusion coefficients to have the same sign. This does not
seem to be true in general, although in the few cases in which interaction
coefficients of opposite sign have been measured, one of them could have
beon equal $¢ sere vithin the expevimntal erwart, WVhile the fires
inequality (20,a) prevents complex eigenvalues, the condition (20,b) guar-
antees their positiveness.

In 1962, anly subjected the condition (20.b) to a detailed investi-

molar fluices in

th
gation, He begine with the uaunl? approximation f;;Auabstitut onal alloys
(21) S, =0

3
(9

This means that lattice sites are conserved, and the effect of vacancies

is neglected. It can then be shown18 that the following relation exists

between the coefficients of the phenomenological L-matrix (cf. equ. ¥):

90 A A i SR

" Tr(D) is the sum of the diagonal elements of D (trace or spur)
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(22) ZRLik» = 0
To obtain a more fundamental expression for the D~natrix)oae7 now compares

equations (4) and (3.a)

(23) ~J, = D, , gradC,, = Lugraduj = x.upjk, grad C,,
8
where pka = 5§§ « Bquating coefficients gives

The term Lirprj is eliminated using (22) and the Gibbs-Duhem relations
(25) nidui =0

L ]
Thus one arrives at

(26) Dik = %r Lij‘ (n‘. + nréj.g')“‘e'k .
Haq now expresses the concentration QJ by the mole fraction of the components
and arrives at
- P
(27) D, =n"/n Lij'(“l'*nréj‘l‘) " .(aJ Ky )

Here n is the total number of moles per umnit volume, and qt is the Hessian
matrix of the Gibbs' free energy per unit volume 35&;*» it is necessarily
positive definite for a stable nyntculg The mentrix is of order r-l.

It can be written in symmetric form and is then positive dot&nita. i.0.

its determinant is positive., Hagq further asserts that the determinant of
the second matrix is positive. For the determinant of the last term he
gives an approximate expression, which again is positive. Since Det(D)

is the product of these determinants condition (20,b) will hold for ternary
dilute systems,

. n, is a matrix with identical rows, viz. n s e LR R Similarly,
the matrix n in (27) has identical columns,
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The detailed conditions corresponding to (20.,a) and (20.b) for
positive eigenvalues of higher order systems are numerous and, for r>h
become quite unmanageable, However, the inverse matrix occurring in (27)
can be found explicitly. An expansion by diagonal aluuoutszo gives

(28) Det(nbyon) = 01 + 872 te(a) = 8% >0

since -Tr(n) = ni.ﬁi. = “161 -n =n-=-n,

A similar expansion ¢an be used to find all minors, leading to
=1 t
(28,a) (ut -n“) ;l; (n 81;*“1:)

(ef. Appendix I),

This is, except for the constant, the transpose of the second factor,
and the diffusion matrix can now be written as

(29) (0) = w/nZ (LY(W)(@) ()
with (N) = (:m,,&‘,a,z +n), Since L and G are positive definite, G can be
written as gg’, asd one obtains

(30) Da n/nf, (L) (wg) (ng)* = n/nf, (1)(8)

where 5 is positive definite . The diffusion matrix will only be symmetric
if L and S commute, which generally will not be the case, However, the
eigenvalues of a product of two positive definite matrices are positive,
as is proven in Appendix II, and therefore, the diffusion matrix, as written
by Haq has only positive characteristic roots.

In a system containing one or more interstitially diffusing com~

ponents, equation (21) must be replaced by
() ‘1"1 =0 ,

A necessary and sufficient condition for a matrix A to be poeitivt
definite is that it can be written A = aa® (ef. Ref. 15).



The ‘1 will be zero, or nearly so, for interstitial components, and will

18 18

have a positive™ value for other components. Delroot and Masur™ have

shown that for a symmetric choice of the Lematrix the restriction (31)

leads to
(32) ab,, =0

Using this expression instead of (22) one arrives, instead of (26), at
(33) Py * "‘.i‘é; Byge (850000 + 8,0 0000000y

If now mole numbers per unit volume, instead of mole fractions, are used
as units of concentrations one sees that o ® E& which is the same
positive definite Hessian matrix as appears in (27). The term in brackets
must be investigated., Its eigenvalues are given by the equation

(34) Dat(adcl + nrcrby - uéﬂi e 0

Using an expansion by diagonal elements (cf. App. I) one obtains
(35) (u,,crm)r'l + (a.rcr-u)r'a Tr(ajc‘e) =0,

since all minors of the dyad asﬁ‘: /) of order two or higher are zero, Hence
the eigenvalues are

W ossey

1 = arﬂ x_>0(!'¢:ot of multiplicity r-2)

Pz

and

Upel

= ‘3""3* tagl, = a363>o
The rank of the matrix (c"ﬂ1> = (‘jcl + arcray - aih“). G T SR r—r2,

is unity, which is a necessary and sufficient emditimm

for C to be
similar to a diagonal matrix, It is demonstrated in Appendix II that
therefore the diffusion matrix azs written in (33) also has positive

characteristic roots only.
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Kirhaldys, and Gosting and Fujitah have given solutiomns for

ternary diffusion which are expressed as superposition of functions of
the parameter A = x/tlfa. Kirkaldy has also given an example of a non-
parametric solution of a spherical ternary diffusion field about a point
source in an infinite natrix;o.

Another extension of a familiar solution of the differential
equation (7) to a finite ternary diffusion field will be given here, It
was shown in the previous section that the assumption of separability of
the solution satisfying (6) in one dimension and Cartesian coordinates
leads to the expression '

(36) ¢ (x,t) e ahe"kint othn®
For a diffusion field that is symmetric ﬁbﬂut the origin one preferably
chooses the real part of the oscillatory exponential and writes the binary
symmetric solution

22t

(37) ¢ (x,t) = 8, ¢ n cos Ax

The trial solution for the multicomponent diffusion equation (7) becomes
N :
22 dt
(38) C, (x,t) = 80 * %jn © B 1" eos A o
where the 8 in and w, must satisfy (16)J

A particular case of interest, which will serve well to illustrate
the general case, is a threewlayer diffusion couple (see Fig., 2), with
component two initially distributed uniformly throughout all three layers,
while component one is initially confi®8d to the center slab, there having
a constant concentration °19‘ If the origin for this one-dimensional
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problem is chosen to be the center of the central slab, the boundary condi-
tions are:
(39) Gl (x,0) = Qloi-ézx(’s' GE (x,0) = 620 )
= 0 ; IEl<|xi<inl] Lex<+l
The thickness of the central slab is then 25, while the outside layers
measure (L «§) u’c& The second boundary condition is simply the require-
ment of zerc flux across the boundaries:

\ -lz u,t
(40) Ji(;gl»,t) =0s 2D Sygn ¢ B 3 amnx.

These conditions will be satisfied if
(41) A = mn/L

The Uniqueness Thmz’z for sclutions of the diffusion equations then
assures the uniqueness of the solutions (38). Using (39) one obtains the
8, b7 iiugmtin( (38) over all x between -L and +L

(42) 890 = Cyo¥/L

S0 * O
The rows of the & in matrices are now the eigenvectors of Dl and their scale
factors are obtained from an expansion of the imitial conditions (39) by
the usual procedure for finding Fourier coefficients as follows:

(43) Begndy = 2 Gk(x;oi cos A x = 4, ,

L
where the bar designates the average over the whole range, Thus
W

(k) 8 4nby = 2/L fclﬁx,o)ce-(m/l- x)dx = %;Qm sin(on§/L)
283y
"23u% * © 2 %2n

Note: the sum is still over jJ
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The u, are given according to (16) by
(45) Det(D - ul) = 0, or
u® ~uTr(D) + Det(D) = © ,
where Tr(D) denotes the trace of the D-matrix. The eigenvectors are then
obtained by using the roots of (45) in (16), and their seale factors are
determined from (44). The solutions for the a's can be written in matrix
form as follows:

Di.=u, § D A D, 0, § =D,
i § il 11" ¥y 1n| , |"22 %2 12
% in w -, Dyy 3 Dyp=uof| 8y “Dyy & Dyyeu,|la
with
(H.0) w5 =12 (2e(D) L (265D) - Do) V)

and &) , defined by (4h), For e /2, i.e. the center layer having
double the thickness of the outer ones, the complete solution becomes:

c i
22 2 ()™ Dyy=up 5 Dppedy ¢

(47) ©,=(® *Z T | b 4o |leet| %N
Ca0| A &ty 2t Pn

where now An = ﬁéﬁ%&l& . X8 uy should equal u, the solutions break down;
however, a limiting solution can easily be obtained by L'Hospital's rule.
An example of such a solution is given by Kirkal 7.

The solutions (47) could be useful for a measurement of the inter-
action coefficient 921‘ To demonstrate a special case it will be assumed
that ”21”124<”11”h2' while 911 and Eaz are approximately the seme, Then
(46.a) reduce to

(47.a) U 2 $D,, £D,, # D and the solutions become
228, 0-) ™ ady

2C
0 m
(47.0) (31 e a5+ m—- e cos lux

m=d
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20, («)* ~DA%g

(47.0) C, = ayy + ;-(%D— Dakit e " cos AyX
The amplitude of the Fourier components of (—31 decay from the beginning,
the second term being one third of the first at time zero; after a time
mital, the concentration of component one is given by the first cosine
term of (47.a) with an accuracy of about one part in ten thousand. The
temporal behaviour of (47.b) is less simple. At very short times the
sontedbution of the Serms withhigh » is large. They will add to give
the initially uniform concentration 63 a small kink at x = 3% « However,
the terms of high order will soon reach their maximum amplitude at a
time tDA2 = 1, and then decay rapidly., Thus, when the first cosime
term in (47.b) reaches its peak, the second one has decayed to ca. 0.1%
of the former, and both solutions Gl and C, can well be approximated by

2
one cosine term, The solutions for the time t = La/uzb are thus (ef.

Fig. 2):
6, 20
(47,¢) ¢, -«%g*—:%gcu%x

26.. D
‘ . &k %®
(47.4) "a"""zo"“‘m -§3mgx

In the part of this thesis dealing with the experimental deter-

mination of transformation rates of supersaturated face-centered (y-)iren
into body centered cubic (a~)iron (Sect. II.b) a diffusion couple is

described which consists of an Fe-Mn-C alloy initially present in the y-
phase and an electrolytically pure layer of a~iron. If held at tempera-
tures below the equilibrium point of the a+y and y phases, the austenite

matrix decomposes into a and y iron of compositions given by a tie-line
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in the comstitutional diagram, as shown in Figure 1. At low supersatura-
tions the phase change begins at the interface of the couple, where the
electrolytic iron serves as a nucleus., However, if growth occurs, the
a~iron formed from the original y-phase will not be in equilibrium with
the electrolytic iron, Diffusion of carbon and manganese into the plated
ferrite will therefore occur. To analyse this situation, a ternary
diffusion solution for the moving interface, taking into aemn; diffusion
of both components in front and behind the interface is required, (cf.
Fig. 3).

The concentrations in fromt of the a:y boundary are givem by
Kirblﬁya. or can be found by fitting a solution of the form (18) with C
given by (8) to the particular boundary conditioms. If a is the stationary b
position of the interface in A-space, the boundary conditions are

(48) ¢, =C at A = + @

| io

ci-:cu

at A = a*
and the solutions for the carbon (component 1) and manganese {component 2)
concentrations in fromt of the interface become

(49) G ma, + ‘1& orfe(k/hk) .

The w, and the a,, are given by (16), the latter except for an
arbitrary constant. DBecause of the particular choice of limits for the

integral. in (8) the a,, become the C, at)=+ w. If one now defines

(50) 3 = Cp 28y
The boundary conditions for a* lead to
(s1) 8y = dikdk "
where di.k = nikorfc(a/bmk) has been used,
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The equations (51) are formally identical with (44), onmly the A, have

different meaning, and dij stand for ‘lju‘ The solutions (46) are there-
fore applicable and read:
172 | Dy 4 Dggemyl|a, |t Dy 4 Dypeusfla,

The eigenvalues of the D-matrix are as before

(52.0) uy 5 = V2 (15(0) & (D) - UDet(D) )V/2)

For diffusion opposite to the direction of advance of the inter-
face, solutions can be written similarly to (49)
(53) Gy = Gy + 4y, erte (-h/bu))/ erfe(=a/bu)
where the primes denote quantities referring to haakwnrd. diffusion,
The welocity, v, of the growing ferrite face becomes in A-space
(54) v = a/2t¥/?
where A=a is the stationary position of the face in A-space. To determine
the parameter o, the mass balance equations for all components must be
solved simultaneously, ZKach balance equation contains three unknowns, viz.
the concentrations Gj of the j~th component in front and behind the inter-
face, and a. One further relation between the interface eoaccntrati&nn of
each component is obtained from the constitutional diagram. Thus the
balance equations fully determine a, Conversely, with o known, information
about the phase diagram could be obtained.

> -

The term forward will be used to refer to quantities and direction
on the austenite side of the interface and the direction of its advance;
the term backward for thegpposite.
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One usually wrltes' an instantaneous mass balance as fellma

(55) -3, (@) =<0, - °;1" = Dyt d/dx(orfc(x/za}""')

As=a

Using (54) this becomes

(56) 0y = €yy)a/2 = Dy (o/aatertolpy) )

J

where 3; = m/aui‘/a
A different way of writing the mass balance is to equate the total

sass changes before and behisd the interface™>. One then obtmins:

! N T g !
(57) (G = C“)a = ﬁﬂi - C ) = 2&1‘1&’ hrtu(BJ)
L
The function ierfe(z) is hereby defined as the integral over erfc(z) from

z to infinity.

The place of a simple exponential in the first form of the balance
equation (55) is taken by an integral over the complementary errvor function
in the aeoénd form, equation (56); however, the latter contains only one
matrix, while the former is the product of two 2 by 2 square matrices.

Also, tables of the function ierfe(z) emtak

+ and therefore the second
expression for the mass balances seems generally preferable. The muﬁu—
matical identity of the two equations can be proven via the imdicial equa~
tions for the w .. (cf. Appendix III)

Using the total mass balam§ in the following one can write, with
reference to Figure 3, ‘ |

Areas (I + II) = Area (III)

Inserting the solutions (49) and (53) one obtains

Diffusion in the forward direction only is written for the purpose
of comparison of the instantaneous and total mass balances.,



(o] o
2&3/2 a;j j;y ortc(-y) + auy/z aijvf;y erfe(y) = (Ci°~c;°)a - ‘
D pd. Pd‘

*2“31/2 ;3 .ody erfety)

Obvious simplifications and the use of ierfc as defined in (57) finally

leads to " ) X5
' 2d i jerfe(p’ d, Jderfe(p,
(58) (C,-0,,) = e 5. S 3 AP st

erzc(-@3> B} .rratusj) £y crfv(*ﬂji

The notable contrast between equation (58) and the solution for
diffusion on one side of the moving interface only, as given by Kirkuldyg,
is that the functions of concentration and of « are not aepnrghle. There-
fore (58) can not be solved graphically; instead, a numerical iteration
must be applied.

On first sight one may be tempted to write an approximate mass
balance, replacing the error functions by triangles, as ﬁonm&aB has done.
However, he obtains the height of these triangles from an estimate of the
slope of the concentration function at the interface. Th&a‘ic equivalent
to keeping the ratio ierfc/erfc fixed at some first trisl value, which
later must be adjusted, i.e, it is the first step of an iteration, Tor
small values of a it is an excellent approximation to replace the ratio
by 1/%*’2. but for larger values of the argument (from about 3 onward)
it approaches 1/2p., (ef, Figure &)

I (e) Approxinatc 3a1ution rer the Special Gnse of the Advancing Inter
Pag 2-Mn :

For an application to the Fe-Mn-C system the seeming complexity
of the equations (58) can fortunatelybe reduced to relatively simple
equations by the introduction of the known diffusion data and some features
of the isothermal section of the phase diagram of this system. It will



prove worth while to comnect the terms in (58) to specific phemomena in
the overall diffusion process. The first term on the left minus the first
two terms on the right reduce to the total segregation behind the inter~
face if both coefficients for diffusion into the ferrite go to zero, With
these coefficients not being zero, the complementary error functioms in
the denominator represent the rounding of the edges at the original inter-
face, due to back diffusion. The second set of terms oﬁ the right repre~
sents the leakage into the ferrite due to the combined &f!oee of both
gradients, while the last terms give the amount of both compoments pushed
ahead of the interface on their mutual gradients, It should be kept in
- mind, however, that this is a very qualitative picture, prompted by the
similarity of the last two sets of terms, and that the two sets of back
flow terms cannot strictly be separated,

The diffusion coefficients for austenite at 745°C were established

as fullow-:"
1 b4 0, 011

0 3 10"“‘5

(59) D, $* 1@’301\!2/ sec

The term for carbon diffusion on its own gradient, 911, was taken from
the work of Wells, Batz and Mehl®? and has been corrected for manganese
content, An extrapolation of results of the latter two autharuzﬁ leads
to a diffusion coefficlent for manganese in austenite of about 10™  en/
sec; however, it was recently reported by Kurdiumov>’/ that the diffusion
coefficient of substitutional elements in sustenite is greatly emhanced

upon up-quenching, The value for D,, in (59) is therefore taken as about

The segregation of a compound is the difference in its concentration
in the original austenite and the growing phase,
b It should be observed that the diagonal terms of the D matrix are
independent of the units in which the concentrations are expressed, but

this is not ¢ for the off-diagonal terms. D.. in (59) must be used with
concentrations in weight percent, 12 o



the upper permissible limit, since the effect of a large D should have
become conspicuous in recent electron micro analysis work, which was

done on couples used in growth measurements of the type described in this
paper®’, D, was estimated to be ca. 10"Pen®/sec; 27 ubich is completely
negligible; it was therefore set equal to zero. The other cross term,

¢ for carbon diffusion on a manganese gradient was measured by Purdyag.

Dya
The D for diffusion into the ferrite are
£y ¢ & . 150 § «150 x 0,011
(60) B. = lﬂ”ama/aw 2.9
: S b [ M

Bll is taken from a recent paper by R. P, Smith™ , the Bia/bil ratio has
been sssumed to be the same as in austenite diffusion, The mangsnese

term is obtained from a best fit of the experimental data (ef. Section

111 e¢) ite value is irrelevant for the yiaﬁtae purpose of simplifying (58).

For the above values of the D-matrices the equations (52.a) reduce to
. )

(60 L ORE S I PR LA
to a very good approximation. Substitution into (52) then shows that all
terms containing d,, and 4;1 in (58) are zero, Next, the terms ;riaing
from the leakage of carbon into the ferrite should be drepped, since the
solubility of carbon in a-iron is negligible (ef. Fig, 1). It may be
argued, though, that despite the small solubility the large diffusion co-
efficient of carbon will spread the carbon far enmough into the ferrite %o
make the 1@50 significant . . However, thé large manganese gradient toward
the dwphaao wi&ibedﬂﬁine with the negative interaction coefficient $o halt
the carbon flow almb#tjc$ﬁp1atoly. and the carbon which does leak out
vill soon be reflected from the outside of the thin ferrite layer. Thus,
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the high carbon diffusion ceefficient looses its effectiveness., From
the mathematical point of view ome should, rather than use physical
arguments, substitute the D-values into equations (50), (52), (52.a) and
(58) and compare the relative sizes of the terms in (58). This procedure
has been carried outj as expected, it leads to the omission of the same
terms as the physical argument does. However, no account was taken in
the derivation of (58) of the finite width of the ferrite layer. This
is a very good approximation for menganese diffusion, since the 0.05 to
0.1 mm width of the ferrite becomes comparable to the diffusion length
for manganese only at a time, t = x?/b..of ca, 106 sec. For carbon this
time is only about 100 sec,, i.e. the assumption of an infinite medium
will not hold for carbon diffusion into a~irom,

The qualitative reasoning for the omission of the carbon back-
flow terms is therefore to be preferred as the better one, To facilitate
a numerical investigation of (58), and to aid in later computations, the

functions

ar%n%wg = #(2) ond er%ef»z; = g(z)

have been plotted and are reproduced in Figure 4,
The approximate, but greatly simplified, mass balances for the

two components are now

(61.a,b) Cio = (8y = 0.0114,) £(§,)/By

Cpo = 205,/ ertel=E)) + Cog(BI)/B, + 8,8(R,)/P,

where Gii = O has been used.
The first equation says in effect that the carbon segregation is
equal to the forward flow of carbon due to the combined effect of its own



2k

and the manganese gradients, while (61.b) expresses that the manganese
segregation, Czo - G:a. is achieved by both forward and backward diffusion
on its own gradient only. 4
Equation (61.b) could be re-written in various forms, one of which
is particularly convenient for the present case. Because of the relative
magnitude of the two manganese diffusion coefficients, the leading term
will arise from backward diffusion, It is therefore advantageous to write

(62.%) Cyy/Caq = FUBL) (1 = 8,/C,0 £(B,)/B,)
The function F(z) is defined by.
F(z) = 2z erfe(-2)/(22 + ierfe(z) ) ,
and is also plotted in Figure 4. :
The two equations to be solved simultaneously for a are now (62.b)

and

It was pointed out before, that in contrast to the equations for ci given
by Kirkaldy only the second can be separated into two parts containing a,
respectively concentrations only, while the first one cannot., The simu-
ltanecus solution therefore cannot be obtained by a graphical method,



For any quantitative investigation of growth rates, the super-
saturation must be known as a function of temperature and composition,
i.,e, the phase diagram must be known, Data on the binary iron system
are found in the litcratnr031; a survey of the data for the iron-carbon
system was made by Kirklldysz. while for the ternary Fe-Mn-C system
information is scarce, For the purpose of the presemt investigation it
was therefore decided to determine some intermediate points between the
known endpoints of the a+y:y curves, instead of using the phase diagram
as suggested by Wells”>, ‘

It is found that ferrite, which has precipitated along the austenite
grain boundaries, is quickly redissolved upon heating., It can be assumed
that this redissolution takes place at a temperature for which the
respective alloy composition lies on the a+y:y phase boundary curve.

To determine this temperature of redissolution, samples were held
at ca. ?1000 to ?30°C. according to composition, for about 15 minutes,
then examined metallographically for ferrite content. They were then kept
at progressively higher temperatures for 10 minutes, and the ferrite con-
tent examined after each heat treatment., The redissolution temperature
could be determined t6 ca. 2°c. Tewperature measurements and method
of heat treatment are described in Sectiom II b,

In the standard method of determining a ternary diagram, which

was used by Wells, an alloy is kept at high temperature for a time long
25
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enough (ca. 1200°C) so that a complete austenitization is assured. The
specimen is then taken to a specific temperature and held there long
enough until equilibrium has been reached, Its ferrite content is then
used as an indication whether the lower reaction temperature was above
the phase boundary, However, as was reported by Kurdiumov>', the diffusion
coefficient of substitutional elements in austenite is greatly enhanced
by up~quenching, A much faster approach to equilibrium should therefore
be expected if a substitutional alloy is taken from a low temperature bath
to a higher temperature, This explains the fast redissolution observed
and described above., It seems to make this method & redissolution super-
ior to the standard methed.

The alloys used in this determination were the same as the ones
used for growth rate measurements described in Section II b, They were
prepared in a non~consumable electrode arc furnace under a helium atmos-
phere., The 100 gram buttons were turned and melted four times. The ingot
was then cold rolled to 5 mm thickness, annealed in argon at 1100°C, then
rolled into 1 mm sheet, The Fe-Mn alloys were carburized at 950°C in
mixtures of constant CO : CO_ ratio for about 10 hours, a time sufficient

2
to insure homogeneity, The samples were thenm quenched in silicome oil

and analysed for carbon,

A procedure vhich vas developed by Purdy’’ for controlled growth
rate measurement in the Fe~Mn-C system was followed with minor modifi-
cations., The alloys prepared as described in the preceeding section were
hand ground to ca, 0.7 mm thickness, to remove any surface inhomogéneities.

The samples were then plated with a layer of approximately 0,05 mm of



iron in a standard electroplating bath. This was followed by a thin
copper flash in a standard eusa‘ bath, upon which another thin layer of
iron was deposited. This treatment was thought to suppress a change in
effective composition and structure of the irom plating after multiple
heat treatment,

The diffusion heat treatments were carried out at various temper-
atures within the a+y region of the phase diagram in lead baths, the
temperatures of which were controlled (+ 1°C) by proportioning controllers
and frequently measured during the course of the anneals using chromel-
alumel thermocouples, which in turn were compared with an NRC standard
couple, One couple was annealed at a time and then quenched inm brine,

As expected, the plated iron acted as nucleus for ferrite growth,
and a very closely planar interface grew towards the center of the sample.
The original interface could be determined by a line-up of pores at several
points in every specimen. These pores were probably due to dirt particles
deposited on the ground surface before plating., A typical line-up of pores
is shown in Pigure 5.

The low manganese alloys (1.5%) were nmot brought directly to their
respective diffusion temperatures. Since the diffua;an times for these
couples were rather short (20 to 200 see¢), the time taken for warming-up,
which takes the samples through high supersaturations, would have intro-
duced too large an error into the measurements. The samples were there-
fore austenitized for ome-half minute at 825°C in a second lead pot.
According to Purﬁ;§5 the average time required for a sample to come to
within 2°C of the reaction bath temperature after transferring it from

the high temperature bath was nine seconds. This time was subtracted
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from the total time in the low temperature bath to obtain the isothermal
reaction time. The distance of advance of the interface was measured
metallographically. Between five and thirty measurements were taken for
each couple, using a calibrated filar eyepiece with an oil-immersion
objective lens. The approximate megnification was 1400 X, The results
of these measurements are given in Table II, Figures 6 and 7 show some

representative plots of growth versus square-root of time,



III DISBUSSION AND CALCULATIONS
IIT (a) The Phase Diagram

-In a recent survey article Kirkuldy} . has collected and appraised
known data on the binary iron-carbon system., Using his averaged curves,
the end points of the a:a+y and a+y:y phase boundaries in the ternary
Fe-Mn~C diagram can be found, The corresponding end poiﬁta of these
curves on the manganese axis can be taken from the work of Troiano and
naeairc) A on the binary iron-manganese system, However, points of these
curves in the ternary region of the Fe-Mn-C diagram given by Wells and
Meh1”” do not agree with the intermediste points as determined by the
writer by the method of ferrite redissolution. The latter results are
not only consistent within themselves, but they also agree with extra-
polations to zero growth rates of growth rate curves obtained by P\u'da} 3
and the writer. As pointed out in Section II a, equilibrium should have
been obtained much faster with the method used in this work than with the
method used in 1941 by Welle and Mehl, The results of the present redis~
solution method are therefore used for further calculations and are
collected in Table I, together with the extrapolated temperatures of zero
M of Purdy and the writer., The same data are plotted in Figure 1,
and the best fitting a+y:y boundary curve for some temperatures between
730°C and 770°C are shown. The w:a:y boundary is of relatively little
importance, because of the small solubility of carbon in ferrite. The
end points of this curve on the carbon axis is very nearly independent
of temperature, while its change on the manganese axis, as given by

29



Troiano's work, is of some consequence for the temperature dependence

of the slope of the tie-lines,

I1I(b)

In Figures 6 and 7 some representative plots of growth of the
ferrite interface versus the square root of the corresponding time are
shown, For short times the plots are linear which can be accepted as
strong evidence, that the transformation is diffusion controlled. The
convex portion at the high time end is thought to be caused by beginning
impingement of the diffusion fields of internally precipitated ferrite and

of the advancing interface, thereby slowing down the transformation rate,

I11(e)

The temperature dependence of the diffusion coefficients is of

the form
D(T) = D o Ve '

which can be approximated by a linear relation over the temperature range
considered., The values of E for carbon diffusion are approximately 1.3
eV while the value of E for manganese is rather uncertain, perhaps 2 ¢V36.
All caleulations in this section will therefore be based on the ratios

of the diffusion coefficients. The temperature dependence of these ratios
is then neglected, since it will approximately cancel out. The only
remaining directly temperature dependent parameter is P = q/&nlifz, In
order to compare experimental results with calculations, the former were
all reduced to P using the temperature dependence of °11 as given above,

(745°¢) -8

with E = 1,3eV, and D = 10™en"/sec, giving B = (1 - 0,00%(T -

b b §
745°¢)) 1078 o/2, The P-values of the experimental growth rates are
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given in the last column of Table 2, They are also used in Figure 8.

111(4)

To complete the proposed phase diagram discussed in Section III a,
at least one equilibrium tie-line must be found, from which other neigh-
bouring lines can be obtained approximately, thus making further growth
rate calculations possible, The most growth rate data for the system
were obtained for the 1.52 ¥ manganese, 0.210 % carbon alloy, Moreover,
for this alloy appreciable growth rates without the necessity of manganese
segregation are obtainable, therefore the assumption of local equilibrium
across the interface does not seem unreasonable. This was one of the
reasons why Purdy based his proposition of a stable tie-line for the
system on measurements taken with this particular alloy. To calculate
a stable tie-line under the present assumption of forward and backward
diffusion of manganese, a value of f = 0,12, averaged over both Purdy's and
the writer's results, is substituted into (62 a) and a d), calculated.

The same value of P used im (62 b) gives a segregation ratio, c;xiﬂ *

of practically unity, i.e. no segregation, This fixes the termination of
the tie-line on the ata+y curve, BEquation (62 a) is now drawn directly
onto the phase diagram as a line with the slope given by éllaﬁual-e;Olléz,
and intercepting the line C, = 1,52% ¥n at the point C, = clo(l*ﬁx/f(ﬁl))'
The intercept of this line and the a+y:y phase boundary curve for 760%C
gives the second end point of the tie~line, At different temperatures
this tie~line should remain nearly parallel, since, with the exception of
the termination of the ata+y boundary at the manganese axis, only the

relative position, rather than the shape of the phase boundaries changes
considerably over the small temperature ranges considered. This one



calculated tie-line can now be swung over the other portions of the phase
diagram in a regular and continuous fashion, The sections of the phase
boundary curves below the calculated line were divided in equal ratios.
Not much can be said about the tie~lines in the upper region of the phase
diagram, since the argument for keeping the slope of the lines independent
of temperature fails there,

IIICe)

No diffusion data on manganese in ferrite were available; there-

fore the growth rate at 260°C is used to obtain an estimate. Again , a
dll is obtained from the measured growth rate and plotted as before. The
intersection of the line with the 760°C phase curve gives the upper end
of the tie-line., Using the tie-line net propesed above, the manganese
segregation is found; (61 b) is then solved for F(B;); 9; can then be
read from the plot of F(s) in Figure 4. The value thus obtained for D,
is (3% D, = 1071%% cu?/sec which was already cited in (59).

I1I(8)

Making use of the information obtained under (d) and (e) above a
complete growth curve of the 1.5%Mn; 0.21%C alloy can now be calculated,
A trial value of B for a temperature T is used in (62 a) and d;, plotted
as before. The intercept of the éllolins with the phase boundary curve
for the temperature considered selects a tie-line., Its lower end deter-
mines the segregation of mamganese., Then (62 b) is solved for F(ﬁé?. using
the trial value for the correction term in ﬁa. This yields B; from the
plot of F(z). A second trial value is obtained from ﬁ; and the calculation

repeated, if desired. The curve thus calculated is reproduced in Figure 8
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together with the pertinent experimental results, The rather sudden
break at approximately ?35°O reflects the very guick flattening of the
F(z) function, enhanced by the relation between dyy and the manganese
segregation ratio as given by the phase diagram. ‘The agreement between
the calculated curve and the experimental one is good and can be accepted
as strong evidence for the existence of local equilibrium across the

interface,

If growth rate curves are calculated according to the above out-
line for alloys whose initial manganese concentrations lie above the
endpoint of the aja+y boundary curve, 1£ will be found that the calculated
curves remain invariably below the observed ones (ef, Figure 8). Indeed,
for these concentrations equations (62 a) and (62 b) predict a maximum
possible growth rate which is exceeded by experimental values, This calls
to mind Pnrdy'a35 postulate of "constrained local equilibrium" across
the interface, It must then be assumed that the approximate local equili-
brium, which for low monganese concentrations could justifiably be assumed,
no longer holds. Equations (62 a) and (b) are still valid, as they were
derived from the mass balances, while the relation between the interfacial
concentrations previously given by the tie-lines is mow lost, The problem
becomes then exceedingly complex, and a possible method of approach is
pointed out in Appendix IV,



(1

(2)

(3)

(&)

(3

(6)

(7

(8)

SUDLARY
Solutions for multicomponent diffusion have been writtem in eigen~
value problem formulation.
It has been established that the general multicomponent diffusion
watrix has only positive eigenvalues. The possibility of oscillatory
or divergent diffusion solutions is thus excluded.
The mathematical equivalence of the total and the instantaneous mass
balances has been demonstrated.
The a+y:y phase boundary of the iron-rich cormer of the Fe-Mn-C
phase diagram has been determined in the temperature range from
725°%¢ to 770°C.
An equilibrium tie-line for the above phase diagram has been calculated
and a tie-line net for the low manganese portion is proposed.
The diffusion coefficient of mangenese in a-iron has been determined
as 107209 /sec.
Transformation rates of Fe-Mn-C ternary austenites have been calculated
and have been found to agree with experimental data for low manganese
concentrations,
For high manganese concentrations (v3%) the assumption of local
equilibrium across the interface does not appear to hold,



APREIXE

The Iafom Matrix (”bgk - ni)‘l

The inverse of a matrix, a sk is given by the matrix

~1 /3=, 4t
oy = ()3 (g /Detlag)

where t designates the transposed matrix and the A, are the determinants

Jk

obtained from a, by deleting the j-th row and the k-th column. For the

jk
calculation of Det(N*) = Det(n 631‘ - ns) and its minors, an expansion by

20

diagonal elements™ seemes most appropriate. If the general matrix ask.

of order r-l, is written as & 3 6jk +b Sk)' then this expansion consists

of a sum of products of xa. taken m at a time, each product mutliplied
by its ganplmtm minor of order r-l-m in b 3k the sum taken over such
products for all values of m from r-l to gzero. Idemtifying (n 6‘1& . ud) "

(xjé + b, ), one sees that all principal minors of n, of order two or

- B J
higher vanish because their rows are idemtical. Det(N*), being of order
; & & & Pel PRl ) re-2
r-l, therefore reduces to %t(nﬁjk “3) = n n ?rfuj) = nn 4
while the diagonal terms in the inverse of N* become
”331' = 1/Det(8*) (a2 « 2" (Tr(n,") - ng) = 1/Det(n*) " n + n,),
since Tr(nj.) = n-n*-aj.

By the interchange of /k-j/ - 1 columns the minors giving the

3

off-diagonal terms of A, can be changed into a form very similar to the

Jk
original one, but having -, in the diagonal position formerly occupied

by n-n, . In the general notation, %, and hence 57: 5 is now zero while

the second and only non-zero term in A ik becomes ‘nknl‘@ « If the proper
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sign, (-)/k"'v s of the minor, and the /k-j/~1 column changes are taken

into account one obtains after some rearranging:

‘ «l & t
{“éxk - 3‘1} = Un% (“'rbjk +n)" .



The eigenvalues of the generally non~symmetric matrix product AB
of the positive definite matrices A and B are given by tﬁo secular eqguation
Det(AB ~ ul) = 0
A mecessary and sufficient condition’” for B to be positive definite is
that it can be written B = b'b, Since Det(b) # O, one obtains the equi-
valent equation

Det(b)Det(Ab%d - uI)Det(v™}) = 0,
or

Det(bAb® - ul) =0

Applying the above quoted theorem to bAbg twice one sees that this pro-
duct is positive definite., Therefore, the eigenvalues of the product of
two positive definite matrices are positive, |

To obtain a more specialized result for the eigenvalues of the
product of the matrix C = (a,C, + a rcréﬂ) and positive definite matrices,
as occurring in equation (33) the following considerations are needed,
(ef, Ref, 15) A real matrix A with dimensions n by n can be considered
as giving a certain transformation of n-space with respect to a given
set of orthogonal axes, If the matrix is singular, it represents a
projection of nespace énto a space of lower dimension, If A has n
linearly independent eigenvectors it is a magnification or reflection of
n-space along the directions of this (in gemeral triclinic) set of
eigenvectors, If A is positive definite it represents a magnification
along an orthogonal set of axes. If A has a negative eigenvalue, the

37
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eigenvector corresponding to it will be reflected through the origin, i.e.
the relative orientation of the axes will change. If a sequence of
magnifications is applied to n-space represented by the matrices G, C and
L, and neither of these transformations changes the orientation. of the
respective axes, the total resulting transformation, represented by the
matrix product (1)(C)(G), will leave the relative orientation of any n
independent vectors invariant. This total transformation can therefore
not include any reflections and hence cannot have mgnthe eigenvalues,
The matrix C has precisely the required properties for above
argument to hold, Its eigenvalues are given in the text as u = ;gcf

(with multiplicity r-2) and 4.C, (simple root). According to reference

i3
(21), the sufficient condition for C to have r-l independent eigenvectors
is that the matrix (C - ul) have rank r-l-m = 1, where m is the multi-
plicity of any multiple root., Clearly, the rank of the remaining dyad
‘j“.t is one, since all minors of order two or higher are zero.

Therefore the product (L)(C)(G) has only positive eigenvalues,



To prove the mathematical equivalence of (56) and (57) one needs
the identity

(111,1) ierfe(x) = o""z/t"/z - xerfe(x) ,
which is easily obtained by partial integration. The limit
(111.2) limx erfe(x) = 0 |
xX->®
as is seen from the asymptotic expansion for large x,

2
. . -X b ‘
(111.3) xerfe & x ¢ (1-—;:5 ® axsd @

The two equations (56) and (57) can be rewritten as

_ «f
(11I.%) ' Ve _ "3 . ,
(cio & cil) a/2 = D"nu I/(nés) e - (cu - Gio)uli
va % /2

The equality of the first terms follows at once from the indicial equation,
(16), while the second terms are equal by the boundary conditions for a'.
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Equations (62,a) and (62.b) can only be solved for p if a relation
between the interfacial concentrations of the components is known. The
assumption of local equilibrium assigne these concentrations their equili-
brium values, but for the particular case of the growing interface this
will at best be a good approximation, since there must always be some
free energy difference across the interface if the baanﬁa&y is to migrate.
As the experimental results indicate, the approximation may become rather
unjustified in a@hu extreme cases. No approximate relation between the
interface concentrations can then be written and one equation for the
calculation of a growth rate is lost. The system is seemingly free to
choose any two interfacial concentrations for ita‘eamyaneutg. i.e, each
of the two end-points of the non-equilibrium tie-line can be chosen from
an infinity of points. For irreversible processes having such a degree
of freedom (or more) the use of variational principles, similar to
Hamilton's principle in classical mechanics or Fermat's principle in
optics has been auggoatodj7. Under certain restrictions it can be shown
that the steady state is defined by a minimum in the rate of entropy
mﬁaaﬁo&m; The limitations of this principle have been reviewed by
Gallanzﬁ. As a generalization of this principle to nonstationary states
the principle of minimum dissipation has been suggested by Gnmagerﬁg and
amplified with specific reference to metallurgical transformations by
K&rkaléy&g. His formalism will be used in the following.

ko
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b1

The principle states that the variation

(1v,1) /(zai T Likxixk)dv a0

volume

specifies the integral behaviour of an unconstrained heterogeneous con-
duction~diffusion=reaction-viscous flow process, subject to the non-
holonomic constraint Ji = constant. In the isothermal system under
consideration the fluxes are the diffusive currents of the components
while the xi are the corresponding thermodynamic forces, i.e. the nega-
tive chemical potential gradients. The Lik are the phenomenological
coefficients defined in equation (4), J,X, is the entropy production
ru&als. It is easily seen that the Euler-lagrange egquations of (IV,1)

reduce to the phenomenological equations, if L,, is assumed to be con-

id
stant, In most applications they are not constant which is one of the
major difficulties, restricting the use of the principle.

To solve the case of non-equilibrium across the interface (IV,1)
could be applied to the problem., To simplify matters the extreme case
of zero manganese partitioning shall be considered, This will certainly
not be the case; instead, the manganese segregation can be anything
between zero and its equilibrium value, However, the assumption of
partial equilibrium will not help to clarify the approach, but will, on
the contrary, introduce further complications., As an additional unjusti-
fied assumption, only the dissipation due to forward diffusion is taken
into account, The left end of the non-equilibrium tie-line is thus
fixed while its termination at the y-boundary must be determined, The
integral in IV,l is performed approximately, then the variation is taken

with respect to the growth rate parameter B, For the values of the
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diffusion coefficients given in (59) the entropy production due to carbon
flow by far exceeds the other terms in the variational integral, which

turns out to be:

24, (8 (8 .rf.(zlfznsg 2 (Bhuyy erte(2/2p)
" O 0 B T (O () R

where the subscript m indicates the terms to be held constant and where

e = B, for a variation f<f  and ﬁg = P for f>B , due to the fact that
the product Jixi will be non-zero from the discontinuity of either factor
with the larger P to infinity, For d,, the equation (62.1) can be used.
Differentiation leads then to the trivial solution f = O, if no terms
are retained which were previously neglected. This is a very obvious
extremum of the dissipation, but it does not represent an acceptable
solution for the problem, It does, however, illustrate the variational
approach, and it is thought that a calculation in which higher order
terms are carried, and in which not only partial manganese segregation
but also chemical processes at the interface, driven by the interfacial
chemical potential ﬁiffcrtnee, are taken iﬁto account, may lead to a non~

trivial solution,
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Table I; Temperature o er t

a w a
Alloy Temperature (°C)
3.80 wt% Mn, 0.096 wt% C 770
" 0.155 wt% C 760
" 0.230 wt% C 740
3,16 wt% Mn, 0.159 wt% C 770 *)
Al 0.289 wt% C 750 *)p)
1.52 wt% Mn, 0.335 wt% C 770 *)P)
" 0.405 wt% C 760 *)P)
0.455 wt% C 748

Table II: Measured Ferrite Growth Parameters

Alioy Tempsrature oL

("c) (cma/seol/2x10“6)
1.52 wt% Mn, 0.210 wt% C 725 23.8 + 1.3
" " 730 17.6 + 2.6
" " 735 11.9 + 1.5
" " 760 6.8 + 0.6 P)
" " 725 18.0 + 1.0 P)
" " 755 lo."" 1 005 P)
3.16 wt% Mn, 0.159 wt% C 750 9.7 + 1.0
" " 760 7.1 % 1.0
3.80 wt% Mn, 0.155 wt% C 735 6.4 + 0.5
" 1" 740 5°3‘: 0.5
" " 750 3°0_: 0.3

*) Extrapolated Data .
vy = o2 (0,77%)" (1 - 0.007AT)
P) From Purdy35

St

0.136
0.097
0.064
0.030
0.103
0.056

0.047
0.032

0-031‘
0.028
0.015
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Figure 1. 1Iron, carbon, manganese constitution diagram, showing
eguilibrium tie-lines.



| ¢, at taliivb

% M

S= 0468 C, D, /D
T
wg LI. Tle

Figure 2. Finite three layer diffusion couple.
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Figure 3. Moving interface in M-space with forward and backward diffusion.
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Figure 5. A typical diffusion couple, showing pores
delineating the original interface (X 2240).
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Figure 6. Ferrite growth data for ternary 1.52% Mn, 0.210% C
diffusion couples.
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Figure 7. PFerrite growth data for ternary 3.16% Mn, 0.159% C
diffusion couples.
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Figure 8. Calculated and experimental growth curves.
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