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INTROOOCr!ON 

Diffusion is tbe tJ>all$port of material du.t to the ~andoa thenaal 

IIJotions of tb.e matenal particles. In analoQ to Fo'IU'ier•s Law tor beat 

conduction F1ck1 tn 18:55 wrote a lineal' relationship between the nu.x, J, 

of a eubetuoe and its density graditnt1 llC, 

(1} J ,. •D\71: 

'l'h1s expr.ssion is g$uerally known aa Fick1s first law, but. s1Me there 

ia neither lm ~· priori reason for aseumiRC a linear f'elation betweR the 

flux and the $radieat, nor to call D a eonst.nt, (l) ia mere1y a defiftt~ 

tion ot the diffusion. coe:tfioient, )). HoweYer, in litany ca.a.es of pli'actica:l 

interest the concentrati.on $radienta OCCUl'l'ill$ ar. iJIIIall , 8b 'th.at hlgll~ 

order tel'#~& in th• ;radi•nt can be neslected. and in the eono ntl"ation 

ruge used• D can ottea be uefully approximated 'by an avet"Bge ~n$t~t 

value. If {1) ia combitJ.ed with t.he difterentlal fom ot the eonttnuit:r 

equation for the S\lbat.ance Wld~u· consldeJ:ation, one- <Jbt~ the diff'eren• 

tial equation of dtftwsion:, · 

~c<a) ii • "• (1110) • o 

In 191f.5 OnaageJ>2 seuraliz&d liek*:s liJrst law to the simultaneOU$ 

dt.ff'U.eion of se•eral compQnen:te 'b7 wJ>iting the flux of the ;i•1;h eompoa'&nt 

as a ll.near combination ot all gradiente ln the eystem 

tJ) 

• The swJmu~tion convention oYer doubly appeaJ'ins :b'1d:ices ia \&Sed 
throupout this thesis. S\lbacripts C&1'1".ying a pri•e are s'U.II.)4!ed oVett the 
ranse 1 to 1"-1, while the summation otbetwtse extends to r , the il:WZ.ber ot 
componente of the systera. In secU.ou where za.o d1fterent·!at1on betweea 
the ranges of summation is retuired, the pJ"imee ate omitted. 

1 
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An alternative ph•n0l.llenolo£P,cal description has been suggested by 

Onsager and FUoss3, 

(4) J tt • ... IJlolok. ' 

whe-re the "'k are the ch-emical potentials of the co ponents. Although this 

is mor6 fund ental,. ince the forces for diffusion ar represent.ed as 

free energy gradients, the description in terms of concentrations is chosen 

tor most diffusion p~bl~e. 

It. vill usuall7 be possi'bl to ellainat.e one ot the f'l.~es b7 an 

appropriate choice of coordinate axea . It the concentrations are expressed 

in ol. spe.r unit vol and if local equilibrium exists so fuat we can 

wtite c • c (c
1

.. ...e >r r · .,....1

Ji • "' 	 Dik• VOk• 


, ac • 

where Dik • Dik + .....£ Dirack 

The generali~d diffUsion equation becomes then 

(5) ac~ n (D v~ ·) 0n· v.• 1k' "'k" • 

whe:re the Dik: is now a square matrix. of order r-1 for an r-coraponent. 

syst . • 

Solutions of (2) are well lmown in atheraatieal ph)'sios, while 

intereet in ulticomponent diffusion has only comparativel.J recently 

rewlted. in olutions tor (5), ot wh1-oh par~icl1larl1 the work of Goating 

and Fujita4 for liquid electrolyte and of Duken' and K1rkaldy6•lO, who 

worked with metallic alloys. is to be noted. However• for 11ore tbal'l t~ 

components. the tb atieal and analytical diffi.cul.tle b co e rathel' 

pfOhibitive , and no work seems to have been done in y t e ot higher order 

• 
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Whenever two phases ot ditf•rent composition coeXist in a met l ­

1ic alloy. the growth ot one phase into the other will tn•olve a transfer 

of one or more components across the intertace. If the growth follows 

pa.l"abolic rate law, 1..~ . if x/tl/2. ie constant,. where x 1 the di•t·anee 

of advance and t the co~esponding time, one accepts this ae strong evi­

dence that the growth is diffusion controlled and that local equilibriu. 

obtaiM at all interfaces. Th case of morlng boundaries in binary systems 

has been tJ"eated by Danckverte11, and solutiona for tem&ey' syet s were 

given by Kirka.ldy8• 

The prtneiple of local equilibri-um ay be s·t ted as. tollows: 

u:ror most irreversible proee see involVing 11ode:rate gradiel'lts, it will 

enerally be true that the change in an intensive vuiable within one 

mean tree path will be. n gli.gible compared with the magnitude ot the vari• 

able at that point". When the above is pplied to a pha e transstormation. 

in puticular to the vol e el ent containing the oving interface, the 

concentration on both sides sf the plan~ interface can be apeeitied as 

the equilibrium coneentl'ations givt11n by the isothermal phase diagram.. 

Thia dlagvam 1$ the most ooayenifmt representation ot the equUtbriWD 

eonditiou between the componets of the s1st • In regions of composition 

1n which two pha.s•s coexist, tie-line connect the quilibriu.m eotnpoaitions 

ot these phases . (See Fig. 1) 

.. 




THEORY 

I (a) Multi:p,!e D!ttseiop §olu.t!ons !§ aq Eisenvalue Problf!D 

1) Review of eXisting binary diffusion olutions for constaat D 

In many eases of pr otical interest diffusion oocu~ ov r a range 

of concentrations saall enougb for the assumption of a concentration inde· 

pendent diftus1on coetfici nt to be a juet1tiable pproximation. The 

binary diftusion ttq;u.ation (2} becomes then 

(6) ~ = D92Cet 

Solutions to (6) are obtai.aed in t~e fundamentally differen.t ways. 

Boltaann1' sho'lfed that the substitution ~ • x/tl/2 redUced the one• 

dimens!oual form or (6} to an ord!Jw7 differential eqution.. A solution 

is then easily obtained as an integral ove~ the Gaussian function 
2 

(8) C(X) • C + c ·~ 14Dt1A ; ~ • -s/~l/2/e 
0 1 

where C and c1 are constants. This solution is st t1on&rf 1n >.-space , 
0 

whioh property 111ak s it p.:-rticularly usefUl in describins diffusion with 

moving boundaries. Becauee of the line&Ji'ity of (6) any given boundary 

conditione can be fitted by a superpos1tioa involvtns a finite or infinite 

n'Wl)ber of 80lut1ons of the type (8) . 

The ocourreace of th · Gaussian in (8) euggeS~ts th following 

89lution 1n x-epace: 

(9) C(x \) • 0 + c (4nDt)..lfc e"'(x .})
2
/ 4Dt

1 0 1 



That (9) satiSfies (6) is easily seen by direct substitution. Since 
2 

Lim (4~Dt)-ll2 e·(x.g) / 4Dt • S<x-~) • ~ ~ = ~ 
t-+0 

= 0 
-f(l) 

j{x-f) df • 1 
·-CO 

is on~ of the definitions ot th functional S(x), (9) obviously desf)rtbea 

the pace-tim beha..-tour of an amount c of the diff eing s.ubst$D.c . , which
1 

oocuptee the position x • gat time ~•-ro. lndfed. on . could ha"te gu..ea~ted 

(9) f.-oaJ the notion that random IIIOTeJiellts of the ps.rtiol. (atom$) are 

reeponsible for diffusion. "l'he aseWiption of a conatant 41ftus1on 

coe:tftci nt shows its physical meaning clearly t this point; it merelr 

say that every Gaussian distribution ot form (9) will spread indep nd• 

entlr of other $\lcb tunotiou in tts •eighbo\lrhooa. Therefore, the solu1tion 

tor any in1t1al concentration can be built up by superposition. 'l'h:las, if 

C(x,O) • c(x) 

(10) 

Thie supe osit~on leads to th well-known error function and related 

over finite intervals. 

It one assQme the existence -of a solution to (6} at th fel'lll 

(11) 	 C(x, t) • c1 he) c2(t) ·• 

then (6) separates into two o~dinary differ ntial quatiotla 

a2­
2~ + a c 	 ll!l 0 

~2 l 
(12) 	 and 


dc..i . 2
ht + n c 2 * 0 , where n is aoae con$tant, 

and one obtaiu the solutions 

• 
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This soiution te again fitted to the initial and boundary conditione by 

a superposition, which in general will now be a Fourier integral or a 

Fourier series expansion ot C(x,O). 

A third ethod of obtaining solutions for bina!'1 dift'llsion i& 

14tht use of the Laplace transformation • Its main ad.'f'antage 1a that the 

parUal differential equ.ation is changed into liUl ordiJUU7 ditterential 

equation in x.. lts soluti()n will be the Laplace transform of the time­

dependent solution. The latter is then obtained tram existing tables of 

14Laplace transformation • Both types of solutions, the error function 

as well as the trlgonOIIletric. ttpee, can be obtaifted in thi way. The 

tormer 1e pr$ferabl for short t~es, while the latter becomes usef't.U. 

at later til!les for tini te diffusion ranges. 

a) ~ul~isompontn\ ditfum~op 

!o find elutions tor ultiple diffusion satisfying (7), Kirk­

al.d;-o has suggested that the canbination Dt oecurriq :Ln all known 

time depend nt solutions of the binar.y case be replaced by the product 

~t and that the elution toT the j•th eo pon•nt. cj, be written as ~ 

linear sup rposition of functions ck 

c •a ck t ' 
j jk 


ck a C(E,~t) = c(,,t2) • 


'Th& ok ar• as~med to satisf1 the ~odified binatJ d1ftu&ton eq~ation 
k ac v2...k'(15) . rr. '\: " 

Subet1t\1tion of (14) into (7) gives 

aik artt/at • D1 j ajk v2ck 
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ack ack 
Bee ~se of at • 'it a

oL 
and ( 15) one has 

!.i! • v2ak 
at2 

end tht characteristic equatiOn$ giving the 'it becolf)e 

(16) 


lte" the ' are to 'be underetood as a diagonal matrix. It one interprets 

(16) as an equation between the row vectors ot the a-matrix, ~· one 

obtains the usual tor of an ei envalue problell15 

For a system of r dependent compOnents th eigenvalu ~ are given by 

the r-1 roots ot the polynomial in u 

(17) Det(Dij • ub13) • 0 

where 613 is th• K.ronecker delta. Corre$ponding to eaeh distinct eigenvalue 

an eigenvector, .!tc•· can be determined ...,hioh sat1stie.e (16) . For roots ot 

multiplicity m, exactly m linearly independent eigenvector-a e:xist15: , , 

(cf. also Section Ib and Append.b II). Howevel"• any ultiple of a vector, 

~· satisfying {16 a) will satisfy the same equations. Th refore, another 

r-1 conditione are needed to determin the a-matrix uaiqu ly; these will 

be found to be one of the boundary or initial eoll!litions on the cj•e . 

In the case of para~netric solutions of type (6), trial solution 

similar to (14) can be written, 

(18) cj • ajkak(4, '\) 

where ck ~st now eatiaf7 

x dgk . 1-ck 
·adA·'\:~

dA 

• 
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for diffusion along one dir otion. This leads to preci~ely the same 

eigenvalue proble as (16). Therefore (18) is also a solution for (?) . 

The replac ent of D by ~ in known solutions of the binary 

diffusion quation and a linear superposition of all t~etions, ck, 

thua fotmed, is thet-4tfore a generall7 valid proeedure to obtain solutions 

for the multicomponent diffusion equations witJl constant di:tt\url.on coetfi.. 

cieats. 

• 
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I (b) Prowrties of the .Diffusion Matrix 

The time dependence of the solutions of the binary diffusion 

equation were found to be ot the form exp(-x2/4Dt) and exp(•n2Dt) . Clearly, 

if trial solutions ck were formed by a sub titution of negative eigenvalues 

tor D, thes solutions would diverge with ti e. Similar diffi.oulties arise 

with the parametl"ic solution in A•space. The diffusion matrix therefore 

deserves a closer scrutiny. 

In the simplest case of a ternary system Kirkaldy? has stated the 

conditions for physically significant solutions. In a general notation these 

•are 

(20 . ~,b) 

To satisfy the first inequality it is sufficient, but not necessary. for the 

off-diagonal diffusion coefficients to have the same sign. This does not 

seem to be true in general, although in the few cases in which interaction 

coefficients of opposite sign have b en measUTed, one of them could have 

been equal to zero within the experimental error16• While the first 

inequality (20. a) prevents .complex eigenvalues. the condition (20. b) guar­

antees their positiveness. 

17In 1962, Haq subjected 	the condition (20.b) to a detailed investi­
7 the molar fluxes in

gation. He begins with the usual approximation forAsubstitutional alloys 

This me ns that lattice sites are conserved , and the effect ot vacancies 

is neglected. It can then b shown18 that the following relation exists 

b :tween the eoefficients of the phenomenological L-matrix (of'. equ. 4): 

• T:r:-(D) is the sum 	of the diagonal elements of D (trace or epur) 

• 
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(22) ! tik' • 0 
R 

To obtain more fundamental expression for the D- atrix on~7 no compar s 1 
equations (4) and (J. a) 

(23) -J1 =Dik' gradCkt ~ Lijgra~j =tij~jK' grad Ck ' 

OlJ.k 
where 14kj =ac . • Equating coefficients giv. 

j 

(24) 0ik ;: Lil'jk 

The term L, u j is eliminated usi~g (22) and the Gibbs-Duhe relationJ.r r 

(25) nidll :.; 0
1 

•Thu one arrives at 

(26) Dik • *Lij ' (n,e , + nr bj•.e•)p.£' k . 
r 

Haq now expresses the concentration Cj by the ole fraction of the component 

and arrives at 

(27) 

Here n is the total number of moles per unit volume , and G,e is the Hessian 
. 2 q 

m trix of the Gibbs ' free energy per unit volume : Ga ·*it is necessarily
1 n,e n 

positive definite for a stable aystem19., 'l'he L-matrixqis of order r-1 . 

It can be written in symmetric form and i then positive definite,18 . i . e . 

its determinant is positive. Raq further asserts that the det rminant of 

the second matrix is positive. For the determinant of the last term he 

gives an approximate expression, which again is positive. Since Det(D) 

is the product of these determinants condition (20. b) will hold for ternary 

dilute systems., 

• n,e is a mat:-ix with identical rows, viz. n1,n2, • •• • nr•l" Similarly, 
the m trix n in {2?) has ident ical columns. q . 
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The detailed conditi ons corresponding to (20. a) and (20. b) for 

poaitive eigenvalues of higher order system ar-e numerous and, for r >4 

become quite unmanag able. However, the inverse m trix occurring in (27) 

can be found explicitly. An expansion by diagonal elementa20 gives 

, ) r-1 r ...2 ( ) r-2(28) Det(n ojk-nj =n + n Tr n ~ n nr>O 

A similar exp.ansion can be used to find all minors, leading to 

~ -1 l . ~ t(28. a) (n jk-nu) =nnr (nr jk+~) 

( c f . Appendix I). 

This is, except for the constant, the transpose of the second factor. 

and the diffusion atrix can no be written as 

(29) 


with on = (nrbjk + ~} . Since L and G are positive definite, G can be 

twJ>itten• as gg , and one obtains 

(30) D = n/n2 (L)(Ng)(Ng)t ; n/n2 (L)(S)
r r 

•whete S is positive definite • The diffusion matrix will only be symmetric 

if L and S commute, which generally will not be the case. However. the 

eigenval ues of a product of t o positive definite matrices are positive, 

as is proven in Appendix II, and therefore, the diffu ion matrix, as ~ritten 

by Haq has only positive characteristic roots. 

In a system containing one or more interstitially diffusing com­

ponents , equation (21) mu t be replaced by 

(31) 

• A nee ssary and sufficient condition for a matrix A to be positive 
definite is that it can be written A = aa (cf. Ref. 15). 
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The a1 will be zero, or nearly so, for interstitial components, and will 

18 . 18have a positiV'e value for othe~ components . DeGroot and Mazur have 

shown that fo~ a s;ymmetric choice of the L-matrix the restriction (31) 

leads to 

(32) 

Using this expression instead of (22) one arrives , inste d of (26). at 

l 
D1k ='"C Lij• (aj ,c£, + t'crbj'.l')ll.e•k 

r r 

lf now mole numbers per unit volume . instead of mole fraotions1 are used 

as units of concentrations one sees that }.Llk = G£k which is the same 

positive definite Hessian atrix appears in (2?) . The term in brackets 

must be, investigated. lts eigenvalues are given by the equation 

(34} 

Using an expansion by diagonal element (of. App. I) one obtains 

(35) (a C ~u)r•l + (a C •u)r-2 Tr( jCo) =0 • r r r r ~ 

since all minors of the dy&d al£ of order two or higher are zero. Hence 

the eis~value are 

u •• • , r - =arC-/o(r.oot of multiplicity r•2)
1 2 

and 
ur-1 

The :rank of the matrix {C....ui) z:: (ajC,e + arcr ~j£ - ui ~j,t), i =1 ••• r-2, 

is unity, which 1e a necessary and sufficient oond1tion21 for C to be 

similar to a diagonal matrix. It is dernonst~ated in Appendix II th~t 

therefore the diffuGion matrix a$ written in (33) also has positive 

oharaote~istie roots only. 

• 
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I (c) An Example of a rernarx Non-parametric Solutton 

8 . 4Kirkaldy , and Gosting and Fujita have given solutions for 

ternary diffusion whieh are expressed as superposition of functions of 

the parameter A =x/tl/2• Kirkaldy has also given an example of a non­

parametric solution of a spherical ternary diffusion field about a point 

10source in an infinite matrix • 

Another extension of a familiar solution of the diff.e:rential 

equation (?) to a finite ternary diffusion field will be given here. It 

was shown in the previous section that the as umption of separability of 

the solution sati fying (6) in one dimension and Cartesian coordinates 

leads to the expression 

• ...A,2Dt iA. XC (x,t)= a e n e n n 

For a diffusion field that is symme.tric about the origin one preferably 

chooses the real part of the oscillatory exponential and writes the binary 

symmetri'c s.olution 

~AGot(3?) C (x, t ) =a e n cos Axn n 

The trial solution for the multicomponent diffusion equation (7) becomes 

now 

-A.2 u t{}8) Ck (x,t) =~0 + akjn e n j cos X nx 

wh re the '\:jn and u:k must satisfy (16);· 

A pa.Fticular case of int re t, which will serve \'Jell to illu.etrate 

the g neral case, is a three•layer diffusion couple (see Fig. 2). with 

component two initially distributed uniformly throughout all three layers, 

while cQmponent one is initially confin@d to the center slab, there having 

a con tant cone ntration c10• If th~ origin for this one-dim$nsional 
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p~blem is chosen to b th~ center of the central slab, the boundary condi• 

tions are: 

(39) C ( 0) · C • f x· < 1:: C (x,.O) ;; c ;1 x • "" ·1o• - ::< ;, 2 20 

a o ; l~klx\<ILI ...Lc:: x<+L 

The thickness of the central slab is then 2i, while the outside layers 
1 

measure (L ... ~) each. The second bound r.t condition is simply the require­

ment of zero· flux across the boundaries; 
...A,2 \1 t 

(4o) J1(,!L , t) =0 • !Pik ~jn e n j sini.nL 

These conditions will be satisfied if 

(41) A. =rm/Ln 

The Uniqueness Theorem22 :f'or solutions of the diffusion equations then 

assures the uniqueness of the solutions (38) . Using (39) one obtains the 

~0 by integrating (38} over all x between ...L and +L 

(42) alO =clO~/t 

The rows of the ~jn atricea are now the eigenvectors Qf D1 and their scale 

factors are obt ained from an expansion of the initial conditions (39) by 

the usual procedure for finding Fourier coefficients as follows¢ 

a. . bj =2 Ck(x,O) cos Xx • b.k ,KJn n - · n 
•where the bar designates the average ov0r the whole range* ~~s 

(44) 
aljnbj ~ 2/L fc

L 

1(x,O)cos(nu/L x)dx =!n°1o sin(nnj/L) 
0 

.!:. A 11 

• Note; the sum ia still over j 

• 
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The uk are given a~cording to {16) by 

( 45) Det(D .. ul) ~. o ,, or 

u2 -uTr(D) + Det(D) • 0 , 

where Tr(D) denotes ~h . trace of the D- atrix. The eigenvectors are then 

obtainttd by ing the roots o:t (45) in (16), and their acale factors are 

dete:nnined from (44) . The solutions for the a ' s: can be written in matrix 

form as tollowG: 

Aln ; (D22..u2 ; 
(46) 

ll2n i·D21 

with 

(46. a) u
1 

z =l/2 (Tr(D)! (T:r2(D) ... 4Det(D) ) l/2) 
t 

and ll.1 , 211def'ined by (4!}) , Fo:r ~= L/2. i . e; the center lay T having 

Cio1.1ble the thicknes of the outer ones , the complete olution becomes: 

ClO rQ) (-)m+l2C (Dll- u2 ; D22-u2 (• ~ult 11.; 

( 4?) c =2 + . . .. 10 , ...u t cos A.mx 


k c ~.2/(2Jn..1Hu1-u2) ; e 2
( 20 
D21 -D21 


i2m..l)tt
where now "-m = L • If u should equal 1;1 the solutions break down;1 2 

however, a limiting solution can easily be obtained by t~Hospital ' s rule. 

An example of su¢h a solution is gj.ven by Kirk.aldy?. 

The solutions (47} coul4 be useful for a measurement of the inter~ 

ction coefficient o21• To detaonstrate a special case. it wil.l be assumed 

that n D <<o11D22, while D and D22 a.x·e appr0:ximately the· same. Then21 12 11 

{46. a) reduce to 

(47.a) 

( 4?. b) 
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(4?. b) 

The amplitude of the ourier components of c1 decay from th belJ!nn±ns, 

the second t ~ being one third Of the first at time zero; after a tim 

D11.~t ...l, the coneent:zoation of component one is given by the first cosine 

tettn ot (47. a) with an accuracy of about one part in ten thousand. The 

temporal beha;Viour o i (47. b) is lese simple. At very short times the 

contribUtion of the terms withhigh m is large. '!'hey will add to giTe 

the initially uniform concent~ation c2 a small kink at x ~!g. However, 

the terms of high order will soon reach their maximum amplitud at a 

titne tDA.: • 1, and then decay rapidlf. 'l'hus, when the fi~st cosine 

term in (47.b) reaches its peak, the second one has decayed to ca. 0.1% 

o£ the former. and both solutions c1 and c2 can well be approximated b7 

one cosine term. The _olutions for the time t # L2/~2D are thus (cf. 

ig. 2): 

(4?. c) 

(4?. d) 

l(d) jl\! OogJ;.ete §g;l.ution f9:r; a ones Inte~~rttc! in,AA Intinite .Med!\W! 

In th part of this thesis dealing with the exper1.121$ntal deter­

mination of transformation rate of sup reatu~ated faee-centered (y-)tron 

into body centered cubic (a• )iron (Sect . II.b) a diffusion couple is 

described which eonsi ts of an Fe-Mn-C alloy initially present in the y• 

v 	 phase and an electrolytically pure layer or a-iron. If held at tempera­

tures b l0\'1 the equilibrium point of the a+"( and y phases. the austenite 

matli'ix decomposes into a and 1' iron of compositions given by a tie...lin 

• 
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in th constitutional diagram, as shown in Figure 1. At low aupersatura­

tions the phase change begins at the interface of the eouple. where the 

electrolyt ic iron serves as a nucleus. However, if growth occurs, the 

« .. iron to:rmed from the original y•phase will not be in equcil1brium w1th 

the elect rolytic iron. Diffusion of oarbon and manganese into the plated 

ferrite will therefore occur. To analyse this ituation, a ternary 

diffusion solution for the oving interface, taking into account diffusion 

ot bot h components in front and behind the interfac . is required, (cf. 

Fig . :;) . 

Th concentrations in front of the a:y boundary are given by 

8Kirkaldy , or can be found by fd:t.tin a solution of the form (18) with C 

.gtven by (8) to the particular boUJ1~ condi.tions. Xt a is the stationary 

position of the inte:rface in X-ap ce, the boundary conditions are 

(48) at X • + oo01 -= cio 


ci 011
::I' 

and the solutions for the carbon (co~ponent l) and anganese (component 2) 

concentrations in front of the interf •ce becort~e 

(49) 

The ~ and the aik are given by (16), the latter except for an 

arbitrary eonatant . Because of the peu-ticular choieG of H.m.its for the 

'int egrar . in (8) the aio become the c1 at A:= + CX). It one now defiztes 

(50) 


The boundlU'y condit ions for e+ lead t o 

(51} =dikok •a1 

wher e. dik =aikGr!c(a/4~) has been used. 
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The quations (51) are formally identical with (44) , only the 81 have 

different meaning, and dij stand f()r aijn• The solutions (46) ar<t the:r:-e• 

foro applicabl and ~ead: 

(52) 1 [ · Dll-u2 ;
d . =-­
ij ~-u2 D . 

. 21 t 

.• 
The eigenvalues ot the D.-matrix are as before 

(52. aJ u
1 

, ;; l/2 (Tr(D) ! (Ti~(D) ... 4l>et(D) )l/2 }
2 

For diffu ion opposite to the direct ion of advance of the inter­

face, solutions can be written similarly to (49) 

{53) 

•whe:t"e the primes. denote quantities. referring to backward diffusion. 

The velocity, v, of the growing ferrite face becomes in "-• space 

(;4) v ~ a/2t~2 

wh re A~ is the tationary position of the face in "-•space. To d termine 

the paramet er a, the mass balance equations tor all co ponents must be 

solVed simultaneously. Each balance equation contains t hree unknowns, viz . 

the eonoentrations Cj of the j-th component in front and behind the inter­

face, and a. . One further relation betw en the intert ce concentt-ations of 

each eompon nt is obtained from th constitutional diagram. 1hu the 

balance equations fully determine a.. Conversely, with ~ known, information 

about the phase diagram could be obtained. 

The term forw rd will be used to refer to quantities and direction 
on the austenite side of the interta.ce and the direct ion ot its advance ; 
the term backward for thecpposite .. 

• 


http:interta.ce
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• 8
On usually writes an instantaneous aas balance as follows 

(55) 

Using (54) this beco e 

A different way of writing the mas balance ie to quat the total 

23 . 
mass changes before and behind th interface • One th n obtains: 

.... • f'
ro 

. l/2(57) {Cio ... "'iot)a. • (Ci ... C10)d"- ~ 2a1juj ierfc{ j) 
o( 

The function ierfc(z) is hereby .defined as the integral oveT erlc(z) r.rom 

z to infin1tr. 

The place of a simple exponential in the first form of the balance 

equation (55) is taken by an i nteg,ral over the complementary error t\lnction 

in the second fol'm,equation {56)J however, the latter contains only one 
'· 

trix, while the former i the prod~ct of two 2 by 2 Sq~ matrices. 

Also , tables of the tuncti·On ie:tfe(z) e:dst2\ and therefore th• secol!d 

expression for the ma balances eems g nerally pref rable . The mathe­

matical identity ot the two equations ean .be proven via the indicial equa• 

tions for the ~· (ef. Appendix III) 

Using the total mass balance in the following one can write, with 

reference to Figure ,; , 

Areas (I + II) =Ar a (III) 

Inserting the olutions (49) and (53) one obtain& 

• Diffu ion in the forward direction only is written for the purpose 
of compari on of the instantaneous and total mass balances. 
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0 

'l/2 f . 	 '·={C -c )ex ...2u. a1 
I . dy erfc(-y) io ioJ J ' 

J' - a> ~J 
*1/2 

1 

~2uj a1 j . dy erf'c~) 
0 

ObVious simplifications ,and the use of i rfc as defined !n (57) finally 

leads to 

The notable contrast between equation(58)and the solution for 

diffus.ion on one side of the moving interface only, as given by Kirkaldy8, 

is that the functions of concentration and of ex are not separable. There• 

fore (58) ean not be solved graphically; 1nsteadf a nUQ1erieal iteration 

must be applied. 

On first •ight one may be tempted to write an approximat mae 

balance, replacing the error functions by triangles, as Zener23 has done. 

Howe"V'er, he obtains the height .of these triangles from an estimate of the 

slope of the concentration function at the intet"face . Tllie is equivalent 

to keeping the ratio iertc/erfc fixed at some first trial value,. which 

later must be adjusted, i.e. it is the first step of an iteration. ·For 

small values of cx it is an excellent approximation to replace. the ratio 

by 1/'lil/2, but for lcu-ger 1/alues of the argument (from about ) onwal"d) 

1t approaches l/2~ . (cf. Figure 4) 

I {e) 	 Approximate Solution for the Special Case of the Advancing Inter 
Face in the Fe·Mn·C System 

For an application to the Fe~Mn-0 system the seeming e~mplexity 

of the equations {58) can ~ortun~telybe reduced to relatively a~ple 

equations by the introduction of the known diffusion data and eome features 

ot the isothermal section of th phase diagram of this system. lt will 
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prove worth while to connect the terms in (58) to specific phenomena in 

the overall diffusion proc~es . The firetterm on the left minus the first 

•two terms on the right red~ce to the total segregation behind the inter­

face if both coefficients for diffusion into the ferrite go to zero . With 

these coefficients not beina zero, th co ple entar,r error functions in 

the denominator represent the rounding of the edges at 'he o~iginal inter­

face, due \o back diffusion. The second set of terms on the right repre­

ents the leakage into the ferrite due to the combined effect of both 

gradie»ts, while the last terms give the amount of both co ponents pushed ' 

ahead of ~he interface on their ut~l gradients. It sho~ld be kept in 

ind. however .• that this ie a very qualitative picture, prompted by the 

similarity of the last two sets of terms, and that the t wo sets o'l ba~k 

flow terms cannot trietly be sepat'ated. · 

The diffusion coeffiei nts for a~atenite at ?45°¢ were established 

as follows: 
1 ; ..o.Oll 

-8 2;(59) .Oij • 10 em ec 
0 10"'4•6 

The te:rm for cal>bon diffusion on its own gradient, D11, was taken from 

the work of Wells, Batz and Mehl25 and ha been corrected for 	 ~gan~s 
26cont,ent . An xtrapolation of results of the latter two authors leads 

to a d1:£fusion coefficient for mangane e in austenite of about lO..l..5cm2/ 

sec ; however, it wa recent ly reported by Kurdiumov27 that the diffusion 

coeffieient of substitutional elements 1n austenite is greatly enhanced 

upon up ...quencbins. The value for n22 in {59) is therefore talwn aa about 

The segregation ot a compound i the difference in its concentr tion 
in the original austenite and the gr owing phase. 
•• lt eho\tld be obsened that the diagonal terms of the D I!Ultrix are 
independent ot the unit in which the concentrations are xpressed, but 
this is not true for .the off-dia~nal t erms . D12 in (59) must be us d wi.th 
concentrations in weight percent . 

• 




the upper permissible limit, since the efteot of a larg~D should have 

become conspicuous in recent electron micro analysis work. which was 

don$ on couples used in growth measl.U'emt!t~'!ts ot the type described in this 

28 D . . d 0-2' . 29paper ,._ 21 was esbmate to be ca. l . em21sec,· whi® is comp1ete11 

negligible; it waa therefof'e set ectual. to zero. The other cross tent; 

D12, tor carbon diffusion on a manganese gradient was measured b7 Purd.:y29. 

!he D for diffusion into the territe are 

-150 X 0.011(60) • ...a 2D =10 ern /sec 
10•2. 9 

n11 is taken from a recent pape~ by R. P. Smith3°, the D~zlD~ ~atio has 

been asew1led to. 'be the same as in auatenite di:tf'\lsion. The mal')ganese 

te:rm is obtained from a best fit of the experimental data (cf. Section 

tll e) its value ie irrelevant fQr the present purpose of simplifying (5)6) . 

For the abc.rVe values of the D-ma.triees the equations (52.a) reducft to 

{61} 

to a very good approximation. Substitution into (52) then shows that all 
t 

terms containins a aad d21 in (58) are ze:ro. N-ext, the terms arising21 

t;rQJQ the leakage of carbon into the ferrite sbou~d be dropped , s:i.Me the 

solubil1ty of carbon in a.-iron is negligible {ct. Fis. 1) . It mtq be 

argued; though, that despite the small solubility the large diffUsion co• 

efficient of carbon wil1 spread the carbon far enough int.o the fer:ri te to 

make the loss signiticant. ·' i, :However, the , J=~ge · anganese gradient toward 

the a.-phase will combine w~th the negative interaction coefficient t o ·halt 
' ' ' '. ' 

the c~bon flow almost completely, and the carbon which does leak out 

will soon be reflected from the outside of the thin ferrite layer. 'l'hus, 
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the high carbon diffusion coefficient looses its effectiveness . From 

the mathematical point of view one "'hould, rather than use physical 

arguments, substitute the D-values into equations (50), (52), {52. a) and 

(58) and compare the relative sizes of the terms in (58} . This procedure 

has been carried out; as expected, it leads to tll.e omis$ion of the same 

terms as the physical argument does. Howeve~ no account was taken in 

the derivation of (58) of the finite width of the ferrite layer. This 

is a very good pproximation for mang nese diffusion, since the 0. 05 to 

0. 1 	mm width of the ferrite becomes comparable to the diffusion length 

2 ~n f 106 sec . F b th~-f.or manganese on 1y a t a time, t = x 1 u , · o. ca. or car on .u;) 

time is only about 100 sec , , i..e . t he ass~ption of an infinite medium 

will not hold for carpon diffusion into ~-iron. 

The qualitative reasoning for the omission of the carbon back-

flow terms is therefore to be preferred as the better one . To facilitate 

numerical investigation of (58), and to aid in later comput at ions , the 

functions 

ierfc(z) f(z) i~:rfc(z) (z)anderfcCz) 
:Q 

erto(-z) :;: ll 

have been plotted and are reproduced in Figure 4. 

The approximate; but greatly simplified, mass balances for the 

two components are nov 

I 

where Cio ;~~~ 0 has been used . 

The first equation says in effect that the carbon segregation is 

equal to the forward flow of carbon due to th~ combined effect of its own 
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i 

and the anganese gradients, while (6l . b) expresses that the manganese 
f 

segregation, c20. - c2l' is ehiev d by both forward and backward diffusion 

on ita own gradient only. 

Equation (61. b) could be re-written in various fornu;, one of whieh 

:particularly convenient for the present case. .Because of the relative 

magnitude of th two anganese diffusion coefficients , the l~ading term 

will arise from backward diffusionp It is therefore advantageous to write 

(62. b) 

The function F(z} is defined by . 

F(z) c z erfc( - z)/(2z + ierfe(z) ) t 

and is also plotted in Fi~re 4. 

The two equations to be solved s1multaneously for~ are now {62. b) 

and 

(62 . a} 

It was pointed out before , that in contrast to the equations for a. given 

by Ki rkaldy only the seeond can be separated into two parte cont ining a., 

respectively concent .rat!ons only, while the first one cannot. The simu­

ltaneous solution therefore cannot be obtained by a r phical method. 



II EXPERIMENTAL 

II (a) Determination o.t the Phase DiMram of the 'Fe-Mn-C Syst 

For any quantitative investigation of growth rates, the super• 

saturation must be known a funct~on of t• perature and composition, 

i . e . the phase diagram must be known. Data on the binar.J iron system 

ar found in the l iterature31; a urvey of the data tor the iron-carbon 

system was made by Kirkaldy32, while for the ternary F -Mn-C system 

information is scarce. For the purpos o·f the present investigation it 

was thereto~e decided to det rmine some intermediate points between the 

known endpoints ot the a.+y:y. curves, instead of ue1ng the phase diag.r:atn 

as suggested by Wells33. 

lt is found that ferrite, which has precipitated along the austenite 

grain boundaries, is quickly redissolved upon heating. It can be assumed 

that this redia olution takes place at a temperature for whieh the 

respective al1or composit ion lies on the 11+y:y phase boundary curve. 

To determine this temperature of redissolution, samples were held 

at ca. ?10°C to 7}0°C, according to co position, for about 15 minutes, 

then examined 111 tallographically fof' fef'rite ¢ontent . They- were then .kept 

at progressively higher temp ratures tor 10 inutes, and the ferrite con• 

tent examined fter eaeh heat treat ent . The redissolution tempet-ature 

0could b determined t6 ca. ! 2 c. Temperature measur ents and ethod 

of heat tr tment are described in Section II b . 

In the standard thod of det11rmining a ternary diagram. which 

was used b;y Wells , an alloy is kept at high t mperature f'or a time long 

25 
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nough (c • 1200°C) so that a complete auateniti~ation is assured. The 

specimen is then taken to a specific temperature and held there long 

enough until equilibrium has been reached. Its ferrite content ia then 

used as an indication whether the lover reaction temperature vas above 

the phase boundary. However, a.s wa reported by Kurdiwnov2?, the diffusion 

coeffici nt of substitutional elements in austenite is greatly enhanced 

by up-quenching. A much raster approach to equilibrium should th$refore 

b exp eted if substitutional alloy is taken from low temper ture bath 

to higher temperature. This explains the fa.at redissolution ob erved 

and described above. It see s to make this met hod d redissolut ion super­

ior to the standara method. 

The alloys used in thia determination were the same as tbe ones 

~se f or growth rate measurements described in Section li b. They were 

prepal"ed in a non.Jconsumable electrode arc furnace under a helium at os• 

phere. The 100 g_ram buttons vere turned and m lted four times . The ingot 

was then cold rolled to 5 thickness , annealed in argon at ll00°C , then 

rol led into l mm sheet. The Fe-Mn alloy were oarburieed at 950°0 in 

mixtures of constant CO : co ratio for about 10 hours . a time sufficient2 

to insure homogeneity. The sampl es were then quenched in silicone oil 

and analysed for carbon. 

II (b) Growth Rate Measurem~nts 

A procedure which was developed by Purdy}5 for controlled gro~th 

rate easur ent in the F~Mn~C syst m was followed with minor modifi­

c tiona. The alloys prepared as described in the preceeding section were 

hand ground to ca. 0 . 7 mm thickness, to remove any surfac inhomogehei t.ies. 

The samples were then plated with a 1 yer of approxim tely 0. 05 mm of 
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iron in a standard ~leotroplating bath. Thi was followed by a thin 

copp r flash in a standard Cuso4 bath; upon which another thin layer or 
iron wa deposited. This treatment was thought to suppress a change in 

effective composition and structure of the iron pl ting a:f'tet> multipl e 

heat treat ent . 

'l'he diffusion heat tre tmenta were carried out at various temper• 

atures within the a+y region at the phase diagram in l-ead baths , t he 

temperatul" s of which wer controlled (+ 10 C) b.Y' proportioning controllers-
and frequently e sured during the course of the anneal using chromel­

alumel thermocouples. which in turn were eompared with an NRC standard 

couple. One couple was annealed at a time and then quenched in brine. 

As expected, the pl ated iron acted as nucleus for ferrite growth , 

and a very closely planar interface grew towards the center of the sample. 

The original interf'ac could b determined by a line-up of pores at s veral 

points in every specimen. These pores were probably due to dirt particles 

deposited on th ground surface before plat ing. A typical line~up of pore 

is shown in Fi~re 5. 

The low anganese alloys (1 . 5%) were not brougllt direct ly to their 

respectiv diffusion temperatures. Since the diffusion times for these 

co"~Jples we:re r ther short ( 20 to 200 sec) , the t im taken tor wal'ming•up,, 

which tak s the samples through high superl!iaturations , would have intro­

duced too large an . rror into the measurement . The samples were there­

fore aust nitized for one~half minute at 825°0 in a second le d pot . 

According to Pu.r~5 th aver ge ti requ.ired for .sampl to co e to 

within 2°C of the reaction bath temperature after transferring it from 

the high t mperature bath was nine seconds. This time was subtracted 

• 
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fJ>Om the total time in the low temperatu.-e bath to obtain the isothermal 

re ction time . The d1 tance of advance of the interface was measured 

etallographically. Betw en five and thirty easurements were taken for 

each couple, using a calibrated filar eyepi ce with an oil•immersion 

objective lens . The approximate gnification was 1400 X. The results 

of these measu.;re nts are given. in Table It. Figures 6 and 7 s how so.me 

representative plots of growth versus square-root of time . 



III DlSOttSSION AND CALCULAT~ON$ 

II! (a) 'l'he Phase Diyram 

· In a recent survey articl- Kirkaldr'2 hae collected and appraised 

known data on th binary iron-carbon yet Using his averaged curves , 

the end pointe of the « : ~+y and a+y:y phase boundaries in the ternary 

F -Mn·C diagram ean be found. The corresponding end points of these 

curves on the manganese axis can b taken from the work of Troiano and 

McGuire31 on t he binary iron...manganese system. However , points of these 

curves in the ternary region of th F ~Mn~c diagram given by Wells and 

hl>3 do not agree with the in.termediate points as determin d by th~ 

write;ro by the method of fenite redissolution. The latter results are 

not only consistent within themse·lves, but th y also agree ith extra­

polations to zero growth rates of grqwth rate curves obtained by Purd,-35 

and the writer. As pointed out in Section ll a, equilibrium hould have 

been obtained much faster with the method used in thi work than with the 

method used in 1941 by Wells and M hl. The results of the present ~edis~ 

solution method are therefore used for further talQulations and are 

collected in T ble I, together with the extrapolated te peratures of zero 

growth of Purdy and the writer. The same data are plotted in Figure 1, 

and the 'beat f'itti~ a.+y :y boundary curve for ome temperatures 'between 

730°C and 7?0°0 are shown. The o.:cu-y boundary i of relatively little 

importance, because of the amall solubility ot carbon in ferrite. The 

end pointa of this curve on the earbon axis is very n arly independent 

ot tempe:ra.tuxoe, while its cluing on th manganes axis, as given by 

29 
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Troiano's work, is of some consequence for the temperature dependence 

of the $lope of the tie-lines. 

III(b) "Growth Mea.surem nts 

In Figur~s 6 and 7 sOGle representative plots of growth of the 

ferrit interface versus the square root of the corresponding time are 

shown. For short tim the plots are linear which can be accepted as 

strong eVidence. that the transfol"!Tlation is diffusion controlled. The 

convex portion at the high ti e end is thought to be caused by beginning 

impingement of the diffusion ~ields of internally precipitated ferrite and 

o! the advancing inter!ac , thereby slowing down the transformation rate. 

III(c) femperat9re Dependence of Diffusion Coefficients 
$ . . . 

The temperature dependence of the diffusion coefficients ie of 

D(T) D •E/kT= o e • 

which can be approxi ted by a linear relation over the temperature range 

cottaidered. The values of ~ tor carbon diffusion are approximately 1.3 

eV while the value of E for manganesa is rather uncertain, pe~haps 2 ov36• 

All caleulation in this section will therefore be based on the ratios 

of the diffusion coefficients. The t mperature dependence ot thee ratios 

is then neglect d. since it will approximately cancel out. The only 

remaining directly temperature dependent parameter is (3 ~::;; ~2n1i:,l'2 • In 

order to compare experimental results with calculations, the fo er were 

all reduced to ~ using the temperature dependence of n11 as given above, 

<745°c> ~a 2with E ~ l • .}eV, d D11 =10 em I ec, giving J3 = (1 ... o.oo:<T .. 
. ' 

745°C)) 10•8 «/2. The f3...values of the experin:lental growth rates are' · 

• 
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given ill the last column of Table 2. They are also used in Fi re 8. 

To compl~te the proposed phase diagram discussed in Section: III a, 

at least one equilibrium tie-line must be found, from which other neigh­

bouring lines can be obtained approximately• thus making !u.rther growth 

rate calculations possible. The mos.t g:rowth rate data for th syst 

were obtained for the 1. 52 %manganese, 0. 210 % carbon alloy. Moreover, 

for this alloy appreciable growth rates without the necessity of anganese 

segregation are obtainabl • theretore the assumption ot local equilibrium 

across the interface does not aeem unreaaonable. This was one of the 

reasons why Purdy based his proposition of a stable tie-line for the 

system on measurements taken with this particular alloy. To calculate 

stable tie-line under the present assumption of forward and backward 

diffusion of manganese, a value or ~ = 0. 12, averaged ever both Purdy ' and 

the writer•e results, is substituted into (62 a) and, a d11 calculated. 
t 

The same value of ~ used in (62 b) gives a segregation ratio, c2~/C20 , 

of practically unity, i . e •. no segregation. This fixes the termination of 

the tie-line on the a:«"*'Y curve. Equation (62 a) is now draw directly 

onto the phase diagram as a line with the slope given by ~1~0=A1-0.0llA2 , 

and intercepting the line c =1. 52% Mn at the point C1 =c (l+P1/f(f31)) .2 10

The interc pt of this line and the a.+y:y phase boundary curve for 76J0 C 

gives the second end point of the tie-line. At different temperatures 

thi tie-line should remain nearly par~l l, sine , with th exception of 

the termination of the a.;a+y boundary at the manganese axis, only the 

rel tive po i ti.on, rather than the shape of the phase boundaries changes 

cqnsiderably o~er the small temperature ranges considered. This one 
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calculated tie-line can now be swung over the other portions of the phase 

diagram in a. regular and continuous fashion. The s otions of t he phase 

boundary curves below the calculat d line were divided in equal ratios. 

Not much can be said about the tie-lines in the upper region of the phase 

diagram, since the argument for keeping the slope of the linea independent 

of temperatur fails there . 

III(e) Calculation,ot the Di'f'fu:sion O.oefficient of Manganese in FerJ>ite 

No diffusion data on manganese in ferrit were vailable; theJ;>e.. 

fore the growth rate at ?60°C is used to obtain an estimate . Again , a 

dll is obtained from the measured growth rate and plott d as before . The 

intersection of the line with the 760°C phase curve gives the upper end 

of' the tie...line. t1sing the tie-line net proposed above; the manganese 

segregation is found; (61 b} is then solved for F(~2
t >; 132 

' can then be 

r ad from the plot of F(z) in Figure 4. The value thus obta.itled for D' 
22 

is (~)2 o11 • l0-10•9 c 2/see which was already cited in (59} . 

III(f) Calculation of Grow~h Curves 

Making use of the information obtained und r (d) and (e) above a 

complete gl"'wtb curve of the 1 . ,5~n ; 0 .. 2l?SC alloy can now be caloulated. 

A. trial value of ~ tor a temperature T is used in (62 a) and d11 plotted 

as befor • The intercept of the d11-lin with the phase boundary curve 

for the t perature coo idered selects tie-line. Its lower end deter­

•mines the segregation of manganese . Then (62 b) is solved for F{fl ), using2
•the trial value for the correction term in ~2 • This yields ~2 from the 

•plot of F(z) . A second trial value is obtained from ~2 and the calculation 

repeated 9 if desired. The curv thus calculated is reproduced in Figure 8 

• 
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tog~ther with the pertinent experimental results . The rather sudden 

break at approximately 7350 C reflects the very quick flattening of the 

F(z) function, enhanced by the relation b&tw n d11 and the mangan se 

segregation ratio gi'lren by the phase diagr The agrement between 

the calculated earve and the e~eri ental one is good and can be accepted 

as strong evidence for the existence of local quilibrium across the 

lii(g) Calculations for Higg M§PSane§ Concentrations 

If growth rate curves are calculat d ceording to the above out­

line for alloys whose initial manganese concentrations lie abo'll'e the 

endpoint ot the ~ta.+y boundary curve , it will be fotlnd that t .he calculated 

curves remain invariably below the observed ones (cf. 'Figure 8) . Indeed. 

for these concentrations equations (62 a} and (62 b) predict a axim 

possible growth Yate which is exc eded by experimental values. This call 

to mind Purdy ' s35 postulate of "constrained local equilibrium" across 

the interface~ It must then b assumed that the approximate local equili­

brium, which for low mnnganeee concentrations could justifiably be russumed, 

no longer holds. Equations (62 a) and (b) are still valid, as they were 

det1v d from the m sa balance , whil the r lation between the interfacial 

concentrations previously given by the tie-lines i now lost . The probl 

beco es then exceedingly complex, and a possible method of approach is 

pointed out in Appendix IV. 

• 




SUMMARY 

(1) 	 Solutions for multicomponent diffusion have been written in eigen­

1Tal.ue proble formulation . 

(2) 	 It has been established th t the g ner 1 ulticomponent diffusion 

Matrix haa only positive eigen1Tal.ues. The possibility of oscillatory 

or divergent diffusion solutions is thus excluded. 

(3) 	 The mathematical equivalence of the total and the instantaneous ma a 

balartces has b•en demonstrat d. 

( 4) 	 The a.+y: y phas · boundary of the iron-rich corner of the Fe-Mn-C 

phase diagl"am has been determined in tbe tem:peratut"e range tn · 

?2.5°0 to 770°0. 

(5) 	 An equilibrium tie-line for the above phase di ram has been calculated 

and a tie..line net for the lo\111 manganese portion. is proposed. 

(6) 	 The diffusion coefficient or ganese in a,-i:ron has been determined 

as lo-10•9cm2/see. 

(7) 	 Transformation r t s ot Fe-Mn-0 ternary austenites have been calculated 

and. have been found to agree with experimental data for low manganese 

concentrations. 

(8) 	 Fo~ high manganese concentrations {N3%) the sumption of local 

equilibrium across th intertaee does not appear to hold • 

• 




APPENDIX I 
1

The Inverse Matrix (nbjk•nJ­
f J 

'l'he inverse at amatrix, ajk' i. giv~tn by the matrix 

-l ( )/j-k/ t; )ajk == ... (Ajk) Det(ajk , 

where t designates the transposed atrix and the Ajk are the determinants 

obtained fro ajk by deleting the j-th row and the k-th column. For th 

calculation of Det(N•) =Det(nbjk • nj) and its minora, an expansion by 

20diagonal el ments see s most appropriate . If the general matrix ajk' 

of order r•l, is written as (:x:j 6jk + b jk), then thi eJCpa.naion consists 

of a $Urn of products of xj• taken m at a time, each product mutliplied 

by its compl entary inor of order r-1- in bjk' the sum taken over such 

products for all values of !I! from r.-1 to zero. Identifying (n bjk .;. n l = 
3

(xj bjk + bjk), one sees that all principal minors of nj of order two or 

higher vanish because their rows are id .ntic l. D t(N•)~ being o! order 

r•l , therefore. reduces to Det(nbjk .. nj) • nl"·l .. n~'.. 2Tr(nj) =n,.;n~2 , 

while the diagonal terms in the inverse of N* become 

Njj1 ::; 1/Det(.N•) {nr...a ... nl"-}(Tr(nj ') ... nj) ..,. 1/Det(N•) :rl...3(nr + nj), 

sine Tr(njt) a n-n~-nj . 

By the interchange of /k- j/ - l columns the minors giving the 

off-diagonal terms of Ajk can be changed into a to very similar to the 

original one, but having -~ in the diagonal position formerly occupied 

by n""'it• In the general notation, :1CJc and hence 'JI xj is now zero while 

the second and only non•zero term tn Ajk becomes •nknr-}. If the proper 

35 

• 



sign, (... )/k.... j/, of the minor. and the /k·j/..1 column changes are taken 

into aooount one <Jbtains after some rearranging: 

• 




APPENDIX II 

Eigenvglues of Certain Matrix Products 

The eigenvalue of the generally non-symmetric matrix product AB 

of the positive definite matrices A and B are given by the secular equ tion 

Det(AS - ui) : 0 

A necessary and sufficient condition15 for B to be positive d finite is 

that it can b written B =btb. Since Det(b) 1- O, one obtains the equi... 

valent equation 

Det(b)Det(Abtb ... ui)Det(b-l) =0, 
or 

Det(bAbt ... ui) =0 

Applying the above quoted theorem to bAbt twice one sees that this pro­

duct is positive definite . Therefore, the eigenvalue of the product of 

two positive definit-e atrioee are positive. 

To obtain ore specialized result for the ei envalueo of th 

product of the matrix C =(aict + aror&jl) and positive definite matrices. 

as occurring in equation (33) the follovtillg considerations are needed. 

(ct , Ref, 15) A real matrix A with dimensions n by n can be considered 

ae giving a certain transformation of n-space with respect to a given 

set of orthogonal axes. If the matrix is singular, it represents a 

projection of n-space 6nto a space of lower dimension. If A has n 

linea:-ly independent eigenvectors it is magnification or r flection of 

n-spaee along the directions of this (in g neral triolinic) eet of 

•igenvectora. It A is positive definite it repr sente magnification 

along an orthogonal et of axes. If A has a negativ igenvalue, the 
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eigenvector corresponding to it will be r fleeted through the origin, i . e. 

the relativ~ orientation of the axes will change. If a sequence of 

magnifications is applied to n-space represented by the matrices G, C and 

L, and neither of these transformations changes the ori ntation of the 

re pective axes , the total resulting tran fo~ation, represented by the 

atrix product (L)(C)(G~ will leave th relative orient tion of any n 

independent. vectors invariant. This total transformation can therefore 

not include any reflections and hence cannot have negative igenvalues. 

The matrix C has precisely the r quired properties for above 

argument to hold. Its eigenvalues are given in the text as u =a C r r 

(with ult1plicity r-2) and ajCj (simple root) . According to reference 

(1J), the · ufficient condition for C to have r--1 independent eigen.veetora 

is that the atrix {C - ~I) have ~ank r-l·m =1. where m ie the multi­

plicity ot any ultipl root . Cl arly, the rank of the remaining dyad 

ajnt is one . eince all mino:rs of order two cr higher are zero. 

Therefore the product (L)(C)(G) has only positive eigenvalues. 



A.PPENDJ;X III 

The Math9ma.tical IQ.estity of the Ingta.ntaneous. and the Total Ja.as Balances 

To prove the mathematical equivalence of (56) and (57) one needs 

th identity 
2 

(III ., l) ierfe(x) * e-x /Jt.l/2 - x rtc(x) • 

which is easily obtain d by partial inte ration. The limit 

(II1 . 2) lim x erf'¢(x) =0 J 

X-+G> 

as i seen fro the asymptotic expansion for large x, 

,... ) 

The 

(1Il . 4) 

The. equality of the first terms follows at once from the indicial equation, 

(16), while the second terms are equal by th boundary conditions for~+. 

}9 




APPENDIX IV 

A Possible .A;e:et"oaoh to Non-Esu:Llibriu,m Across the Interface 

Equations ( 62. a) and ( 62. b) ean only be solved for ~ i f a relation 

between the interfacial concentrations of the eompon$%1ts ia known. The 

assumption of local equilibrium assigns these concentrations their equili• 

brium values, but for t .h.e particular case of the. growing interface this 

will at best be a good approximation, since there must always be some 

tree energy difference across the interface i:f the boundary is to mti.grate. 

As the expel"imental results :tndieate, the approJtimation may become rather 

unjustitied in some e~treme cases. No approximate relation between the 

interface concentrations can then be written and one equation tor the 

calculation of a growth rate is lost. fhe system is $eem:i.nal1 t:ree to 

ehoo&e ~.my two inte;rfacial concentrations tor ita compOnents, i . e. each 

of the two end-points ot th non..equiH.brium ti ...line CM 'be chosen from 

an infinity of points. For irreveraible processes having s~ch a degree 

ot freedom {or more) the use of variational principles, sirnila.r to 

Hamilton ' s principle in classical rnechanios or Fermat•s principle in 

optics has been suggested37• Under ceJ"ta.in restrictions it can be show 

that the steady state ia defined by a minimum in the rate of entropy 

production18• The limitations of this principle have been reviewed by 

Callen38• As a generalization of this principle to nonstationary states 

the principle of ~:~ti~imum dissipation has been suggested 'by Onsager-'9 and 

amplified with specific reference to metallurgical transformations by 

Kirka1Qy40• His formalism will be used in the following . 

• 
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'I'h.e principle states that the variation 


(IV, l) ~2J1X1 • Li~iXk)dV a 0 

vol ume 

specifies the integral behaviour of an unconstrained heterogeneous con-

duction-diffusion-xeaction-viscous flow process, subject to tb non• 

holonomic constraint Ji "' constant . In the isothermal system under 

consider tion the fluxes are the diffusive currents of the co pon nts 

while ~he x are the corresponding thermodynamic forces, i . e . th nega­
1 

.tive chemical potential gradients. The Lik are the phenomenological 

coefficients defined in equation (4). JiXi is th ent;-opy production 

18rate • It is easily s en that the Euler-Lagrange equations of (IV. l) 

r duce to the ph nomenological equations, if Lij is assumed to be con­

stant. In most applications they are not constant which is one of the 

major difficulties, restricting the use of the principle. 

To solve the ease of non-equilibrium across the interface (IV. l) 

could be applied to the problem. To simplify atters the extre e case 

of zero manganese partitioning shall be considered. This will certainly 

not he the case; inst ad, the manganese segregation can be anything 

between zero and its equilibrium valu • However, the assumption of 

partial equilibrium will not help to clarify the approach ,. but will, on 

the Contrary, introduce further complication • As an additional unjusti~ 

tied assumption, only the dissipation due to forward diffusion is taken 

into account. The left end of the non•equilibrium tie-line is thus 

fixed while its ter ination at the y-boundary must b determined. The 

integral in IV. 1 is performed approximately, then the variation is taken 

with respect to the growth rate p r eter t3 . For the values of the 
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diffusion coefficints given in (59) the entropy production due to carbon 

flow by far exceeds the other terms in the v riational integral, which 

turns out to be: 

(IV. 2) 

where the subscript m indicates the terms to be held constant and where 

J)f :;: f3m for a variation f3<f.\n and ~f "" f3 for ll>~ms du to the fact that 

the product J x will be non-zero frorn th di cont inuity of either factor1 1 

with the larg r 13 to infinity. For d the equation (62. 1) can be used.11 

Differentiation leads then to the trivial solution ~ .; O, if no terms 

are retained which w re previously neglec\ed. This is a very obvious 

extremtllll .of t he dissipation, but it does not represent an acceptabl 

solution for t he problem. It does, however, illustrate tb variational 

approach , and it is thought that a calculation in which higher order 

terms are ~arried, and in which not only partial manganese segregation 

but also chemical processes at the interface , driven by the interfacial 

chemical potent ial diff renee, are taken into account, may lead to a non­

trirtal soluti on. 

• 
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Table I; Temperature of Ferrite Dissolution 
and of Extrapolated Zero GrQwth Rates 

Alloy 

3.80 wt% Mn, 0.096 wt% C 
0.155 wt% C" 0.230 wt% C" 

3.16 wt% Mn, 0.159 wt% C 
0.289 wt% C" 

1.52 wt% Nn, 0.335 wt% C 
II 0.405 wt% C 

0.455 wt% C 

Temperature (oC) 

770 
760 
740 

770 .) 

750 •)p) 

770 *)P) 
760 *)P) 
748 

Table II; Measured. Ferrite Growth Parameters 

Alloy Temperature
(oC) 

1.52 wt% Mn , 0.210 wt% C 725 
" II 730 

" II 735 
II II 760 

" II 725 
" " 735 

3.16 wt% Mn, 0.159 wt% c 750 
II II 760 

3o80 wt% Mn, ~.155 wt% c 735 
II II 740 
" " 750 

*) Extrapolated Data ,/. 

f3 •• )2 o(.l/2 -6
(em /sec xlO ) 

23.8 + 1.3 0.136 
17.6-; 2.6 0.097 
11.9-:; 1.5 0.064 

6.8 -:; o.6 P) 0.030 
18.0 -:; 1. 0 P) 0.103 
10.4 + o.5 P) 0.056 

9-7 + 1.0 0.047 
7.1 + 1.0 0.032 

6.4 + o.5 0.()34 
5o3 -:; o.5 0.028 
3o0 + o.3 0.015 

7f.S"°C) ~:.Z. /.. )•• ) p :or C~C/.Z. (/)II ( 1 - 0. 0 0 7 t1 T 
P) From Purdy35 
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Figure 1. 	 Iron, c a rbon, ma nganese constitution diagram, showing 
e quilibrium tie-lines. 
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Figure 4. The functions g(z) , f ( z ) and F ( z ). 

Figure 5. A t ypic a l diffusion couple, showing pores 
delineating the original interface (X 2240) . 
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Figure 8. Calculated and experimental growth c urves. 
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