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ABSTRACT

The spread of infectious agents has been observed as long as their hosts have

existed. The spread of infectious diseases in human populations, however, is more

than an academic concern, causing millions of deaths every year, and prompting

collective surveillance and intervention efforts worldwide. These surveillance data,

used in conjunction with statistical methods and mathematical models, present both

challenges and opportunities for advancements in scientific understanding and public

health.

Early mathematical modeling of infectious diseases in humans began by assuming

homogeneous contact among individuals, but has since been extended to account

for many sources of non-homogeneity in human contact. Detecting the degree of

epidemic mixing between geographically separated populations, in particular, remains

a difficult problem. The difficulty occurs because although disease case reports have

been collected by many governments for decades, case reporting is imperfect, and

transmission events themselves are nearly impossible to observe.

The degree to which epidemic coupling can be detected from case reports is the

central theme of this thesis. We present a careful, biologically motivated and consis-

tent derivation of the transmission coupling (fully derived in Chapter 4). In Chapter 2

we consider the simple scenario of an epidemic spreading from one population to an-

other, and present both numerical and analytic methodology for estimating epidemic

coupling. Chapter 3 considers the problem of estimating epidemic coupling among

populations undergoing recurrent epidemics, such as those of childhood diseases which

have been widely observed. In Chapter 4 we present a method for estimating coupling

among an arbitrary number of populations undergoing an epidemic, and apply it to
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estimate coupling among the parishes of London, England, during the Great Plague

of 1665.
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Chapter 1

General Introduction

Human history is replete with epidemic events brought on by contact between geo-1

graphically separated populations. The spread of the Black Death throughout Europe2

in the 14th century [1,2], the spread of smallpox, measles, and other diseases into the3

Americas during the colonial era [3], and the Spanish Flu beginning in the final year4

of World War I [4] are a few well-known and devastating examples. The increase in5

contact between people from different geographic regions has continued to the present6

day, raising the risk of explosive epidemic and pandemic events in the future. Set7

against this, recent decades have seen a dramatic increase both in cheap computing8

power and digitized epidemiological data available for research. There is both a pro-9

found need and opportunity to advance our ability to understand and predict the10

spatial spread of epidemics, and it is the purpose of this thesis to contribute methods11

in mathematical modeling for doing so.12

The mathematical modeling of epidemiological systems is thought to have had its13

first expression in the 18th century with Daniel Bernoulli offering recommendations14

on the public health benefits of preventative measures against smallpox [5, 6]. A15

systematic approach to epidemic modeling arrived later with the concept, borrowed16

1
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from physics, of approximating the contact among humans spreading measles in a17

population [7], or humans exposed to malaria-infected mosquitos, with the “law of18

mass action”. This approach yielded a result that has become central to the field19

of mathematical epidemiology, first derived by Kermack and McKendrick [8] as the20

epidemic threshold1. Kermack and MacKendrick divided the population into sus-21

ceptible, infected, and recovered individuals, an approach now widely referred to as22

the susceptible-infected-removed (SIR) model [9–11]. The SIR model, and variants23

derived from it, have been used in investigations of many characteristics of infectious24

disease spread in humans [9, 12–19]. It has been extended to account for hetero-25

geneous population mixing due to separation into geographic regions [20–35], age26

structure [26,36–40], and social network structure [41–45], to name a few.27

This thesis is concerned with modeling the geographic spread of epidemics, fo-28

cusing on the problem of estimating the degree of coupling between geographically29

separated populations. There is a large body of work studying spatially struc-30

tured SIR models [20, 24, 46–48]. Spatial structure is sometimes represented with31

a meta-population, where a spatial region is separated into discrete areas with local32

populations [20–27, 27–35, 46, 47, 49]. Other times space is represented as continu-33

ous [50–54]. Grenfell et al. [24] implement a spatial version of a previously developed34

TSIR model [55, 56], a discrete time SIR model2. Among other things, they found35

that large population centres drove epidemics in smaller population centres among36

cities in England and Wales. Viboud et al. similarly studied the phase of recurrent37

1The epidemic threshold threshold is now encapsulated in the basic reproduction number, R0.
R0 is defined as the average number of new infections that will be caused by a single infection in a
population which is otherwise completely susceptible to disease. Thus when R0 > 1, a small number
of infections is expected to grow, resulting in an epidemic.

2The TSIR model used by Grenfell et al. [24] is a discrete time dynamical system model, where
the time step is two weeks. This time-step was well suited for the spatially structure measles data
the authors used, since measles has a combined latent and infectious period of approximately two
weeks, and the data were weekly case reports.
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influenza epidemics spreading through US cities, and used data regarding volumes of38

inter-city travel to replicate observed patterns [46, 47].39

The approach presented in this thesis uses a continuous-time SIR meta-population40

model intended to be generalizable to any disease for which the SIR model is appro-41

priate. The input data are assumed to be either case or mortality reports (simulated42

mock data throughout the thesis, and real-world data in Chapter 4). Our implemen-43

tation of meta-population cross-coupling is formalized with a contact matrix [9], in44

which we define entries to be the proportion of time residents of any infected status45

in one geographic location spend visiting another.46

Simulation models can be fitted to digitized real-world case or mortality reports,47

after which one can investigate interventions and future predictions theoretically with-48

out running real-world experiments. Such models are fitted by finding parameters49

which best predict the given data, where this best prediction is found using one50

of a few statistical frameworks [57]. The fitting method presented in this thesis is51

generally classified as maximum likelihood estimation with probe-matching, whereby52

optimal model parameters are found by fitting to a summary statistic that reduces53

the number of dimensions of the raw data [58]. We consider three types of data sets54

in Chapters 2, 3, and 4, with a different summary statistic in each case.55

In Chapter 2 we investigate a simple scenario in which two coupled populations56

are invaded by infection. The first population begins with one or more infected57

individuals, and as the epidemic in the first population grows, infection spreads to58

the second population. We pose the question of how well the degree of coupling59

between these populations can be estimated merely from the time to invasion of60

the second population. We obtain analytic formulae for estimating coupling, which61

we compare with results from numerical methods. The analytic formulae have the62

advantage of being computationally cheap, and can quickly find initial estimates of63

3
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coupling which can be refined afterward if necessary.64

In Chapter 3 we investigate a more complicated scenario than in Chapter 2,65

wherein two populations undergoing recurrent epidemics are coupled. This chap-66

ter is motivated by the well-studied phenomenon of hierarchical recurrent epidemics,67

wherein an endemically infected large population re-infects and drives epidemics in68

smaller populations [24, 59–62]. Keeling and Rohani in particular examine coupling69

between two equally sized populations undergoing endemic recurrent epidemics [62],70

but note the difficulty of inferring coupling in the presence of the complex dynamics71

that such systems are known to exhibit [16, 63]. Chapter 3 explores the feasibility72

of estimating the degree of coupling between two differently-sized populations un-73

dergoing recurrent epidemics [17], and with regular fadeouts in the smaller of the74

populations.75

Chapter 4 is a case study in the spread of plague throughout the city of London,76

England, in 1665. The so-called “Great Plague” was recorded in the London Bills of77

Mortality (LBoM), which have been completely digitized by David Earn’s research78

group at McMaster University (see [64] for previous work based on these data). The79

Great Plague was the last and largest of many that had hit the city since the arrival of80

plague in Europe in the 14th century [65–67]. Thanks to the digitization of the LBoM,81

we have weekly plague death totals for 130 of London’s parishes for the full duration82

of the epidemic. We investigate the importance of geographic location in the spread83

of the epidemic by fitting our coupled meta-population model to the distribution of84

times when parishes reported their first plague deaths.85

Chapter 5 summarizes and discusses the major results of the thesis, and discusses86

potential avenues of future research.87
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Chapter 2

Estimating epidemic coupling between

populations from the time to invasion
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Abstract

Identifying the mechanisms by which diseases spread among populations is im-88

portant for understanding and forecasting patterns of epidemics and pandemics. Es-89

timating transmission coupling among populations is challenging because transmis-90

sion events are difficult to observe in practice, and connectivity among populations91

is often obscured by local disease dynamics. We consider the common situation in92

which an epidemic is seeded in one population and later spreads to a second popu-93

lation. We present a method for estimating transmission coupling between the two94

populations, assuming they can be modeled as susceptible-infected-recovered (SIR)95

systems. We show that the strength of coupling between the two populations can96

be estimated from the time taken for the disease to invade the second population.97

Confidence in the estimate is low if only a single invasion event has been observed,98

but is substantially improved if numerous independent invasion events are observed.99

Our analysis of this simplest, idealized scenario represents a first step toward devel-100

oping and verifying methods for estimating epidemic coupling among populations in101

an ever-more-connected global human population.102
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2.1 Introduction103

Mechanistic mathematical models are powerful tools for understanding and predict-104

ing how infectious diseases spread in human populations [9, 15–18]. The spread of105

infections in well-mixed populations has been extensively studied, and continuing re-106

search is tackling the effects of seasonal forcing [13, 68, 69], intensity and duration of107

infectiousness [70–75], and contact network structure [41–44].108

One area of research that is important for public health policy is forecasting the109

spatial spread of diseases, which can be greatly advanced by improving estimates of110

model parameters from real-world data. Estimating parameters of spatial epidemic111

models is especially difficult [24, 47, 48], even for the well-studied, highly idealized112

class of meta-population models [20–22,28,31,34,44,63,76–78]. Here, we consider the113

simplest meta-population consisting of individuals who reside in one of two “habitat114

patches” (e.g., cities). We suppose an epidemic begins in one patch, and we attempt115

to estimate the degree of spatial coupling to the population in the second patch. In116

this situation, we investigate whether we can successfully estimate the magnitude of117

coupling using the observed time taken for the second patch to be infected (the time118

to invasion, tinv).119

The specific meta-population model that we use is a two-patch susceptible-infectious-120

recovered (SIR) model (§2.2). We consider both deterministic and stochastic versions121

of this model (§2.2) and show that the distribution of times to invasion can be ap-122

proximated analytically from model parameters (§2.3.1). We then show how, in the123

presence of stochasticity, the degree of coupling can be estimated using a maximum124

likelihood approach based on one or more observations of tinv (§2.3.4).125

7
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2.2 Two-population SIR model126

In the absence of coupling, we assume that disease dynamics in each patch evolve127

according to the standard SIR model,128

dS

dt
= −βS I

N
(2.1a)129

dI

dt
= βS

I

N
− γI (2.1b)130

dR

dt
= γI . (2.1c)131

132

The three state variables represent the numbers of individuals who are susceptible to133

infection (S), currently infected and infectious (I), and recovered and immune (R).134

The total population size, N = S + I +R, is necessarily constant (since dN/dt = 0).135

The two disease parameters are the rate of transmission (β) and the rate at which136

infected individuals recover (γ). The force of infection is137

Λ = β
I

N
. (2.2)138

The basic reproduction number, the average number of secondary cases that139

result from a single primary case in a completely susceptible population [9], is140

R0 =
β

γ
. (2.3)141

If we take the time unit to be the mean infectious period (1/γ) then R0 is the142

only disease parameter. Implicit in Equation (2.1) are assumptions that recovered143

individuals remain immune permanently and that vital dynamics (births and deaths)144

can be ignored (both these assumptions are reasonable for most infectious diseases145

8
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on the timescale of invasion that concerns us here). In addition, the population in146

any given patch is assumed to be homogeneously mixed.147

2.2.1 Form of transmission coupling148

We assume that coupling of disease dynamics between the two patches arises because149

residents of one patch sometimes visit the other patch temporarily. We model this150

with a coupling matrix c = (cij), where cij is the proportion of the residents of151

patch j visiting patch i at any time.1 Since we are considering only two patches, and152

the entries are proportions, the most general coupling matrix is153

c =

1−m1 m2

m1 1−m2

 , (2.4)154

where 0 ≤ mi ≤ 1. Note that with only two patches, if the focal patch is i then the155

other patch is j = 3− i. Thus, using subscripts on state variables to identify popula-156

tions (i.e., the patches in which individuals are resident), the number of individuals157

in patch i at any time is158

(1−mi)Ni +mjNj , i = 1, 2 , j = 3− i, (2.5)159

and the number of those that are currently infected is160

(1−mi)Ii +mjIj , i = 1, 2 , j = 3− i. (2.6)161

1Similar formulations of cross-coupling can be found in literature, such as Murray and Cliff,
1977 [27], Lloyd and May, 1996 [35], Lloyd and Jansen [79]. We derive our formulation of coupling on
a meta-population fully in §4.3.2, which we omit here since we are dealing only with two populations.

9
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The force of infection on residents of patch i arises from interactions that occur in162

both patches. For the (1−mi)Si susceptibles who are resident in patch i and currently163

located in patch i, the force of infection is164

β
(1−mi)Ii +mjIj

(1−mi)Ni +mjNj

, i = 1, 2 , j = 3− i. (2.7)165

whereas the force of infection on the miSi susceptible residents of patch i who are166

currently in patch j is167

β
miIi + (1−mj)Ij
miNi + (1−mj)Nj

, i = 1, 2 , j = 3− i. (2.8)168

The total force of infection on residents of patch i is the sum of these two contributions,169

namely170

Λi = β

[
(1−mi)

(1−mi)Ii +mjIj
(1−mi)Ni +mjNj

+mi
miIi + (1−mj)Ij
miNi + (1−mj)Nj

]
i = 1, 2 , j = 3− i.

(2.9)171

This formulation avoids the need to explicitly model the movements of individuals172

among populations (as is sometimes done [34]).173

2.2.2 Deterministic model174

Our two-population model is, for i = 1, 2,175

dSi
dt

= −SiΛi , (2.10a)176

dIi
dt

= SiΛi − γIi , (2.10b)177

dRi

dt
= γIi , (2.10c)178

179

10
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where Λi is defined in Equation (2.9) and the (constant) size of each population is180

Ni = Si + Ii +Ri for i = 1, 2.181

If all individuals are initially susceptible and a resident of patch i is infected then182

an epidemic will occur (in population i) if the number of cases in population i is183

initially increasing, i.e., if dIi/dt > 0 in the limit that Si → Ni and Ii → 0 (given184

Sj = Nj and Ij = 0). Retaining the notation R0, as in Equation (2.3), for the basic185

reproduction number of the uncoupled model (m1 = m2 = 0), and defining Ri,j via186

Ri,i = R0

[
(1−mi)

2Ni

(1−mi)Ni +mjNj

+
m2
iNi

miNi + (1−mj)Nj

]
, (2.11a)187

Ri,j = R0

[
(1−mi)mjNi

(1−mi)Ni +mjNj

+
mi(1−mj)Ni

miNi + (1−mj)Nj

]
, (2.11b)188

189

we can rewrite Equation (2.10b)190

d

dt

I1

I2

 =


R1,1 R1,2

R2,1 R2,2

 γ −
1 0

0 1

 γ

I1

I2

 , (2.12)191

192

from which it follows that the next generation matrix [80,81] is193

R1,1 R1,2

R2,1 R2,2

 . (2.13)194

The spectral radius of this matrix, i.e., the basic reproduction number of the two-195

patch system, is196

ρ =
R1,1 +R2,2

2
+
√
R1,2R2,1 + (R1,1 −R2,2)2 . (2.14)197
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In the special case that N1 = N2 and m1 = m2 (≡ m), Equation (2.11) reduces to198

Ri,i = R0[1− 2m(1−m)] , (2.15a)199

Ri,j = R02m(1−m) , (2.15b)200
201

and the spectral radius (2.14) simplifies to202

ρ = R0 , (2.16)203
204

i.e., the basic reproduction number of the two-patch system is the same as that of205

the single patch system. In this case, there is a simple partitioning of R0:206

R0 = Ri,i +Ri,j . (2.17)207

In addition, note that208

Ri,j = Ri,i − (1− 2m)2R0 ≤ Ri,i , (2.18)209

i.e. the reproduction number is higher when considering transmission within a patch210

as opposed to between patches.211

2.2.3 Stochastic model212

If the ODEs are not solved directly, but are instead used to define event rates for213

the corresponding stochastic process, then there is a distribution of possible times to214

invasion (tinv). We simulate the stochastic model using the standard “tau-leaping”215

adaptive time-step algorithm [82].216

We define the time between the first appearance of one infection in the first pop-217

12
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ulation (I1 = 1, t = 0), and the first appearance of one infection in the second218

population (I2 = 1, t > 0), to be the time to invasion, tinv. Since the ordinary219

differential equations (ODEs) in Equation (2.10) have a unique solution associated220

with any given initial state, there is exactly one value of tinv associated with each221

parameter set ({β, γ,N1, N2,m1,m2}). In Figure 2.1, we show a single realization of222

the model, and the corresponding time to invasion tinv.223

2.2.4 Notation summary224

Our notation for variables and parameters, and the initial conditions used in all sim-225

ulations and analyses, are summarized in Tables 2.1, 2.2, and 2.3. All our simulations226

were performed with equal populations in the two patches (N1 = N2). We also re-227

strict attention to symmetric coupling (m1 = m2), so there is only one coupling228

parameter m.229

Variable Description

t Time in units of the mean infectious period, 1/γ

S1, S2 Number of susceptible individuals in each population

I1, I2 Number of infected individuals in each population

R1, R2 Number of removed individuals in each population

Table 2.1

13
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Parameter Range Description

β > 0 Transmission rate

R0 > 0 Basic reproduction number of the disease

γ > 0 Rate of recovery from infection

m1, m2 ∈ [0, 1] Transmission coupling between populations

N1, N2 105 Total number of individuals in each population

Table 2.2

Initial Condition Value

S1(0) N1 − I1(0)

S2(0) N2

I1(0) ≥ 1

I2(0), R1(0), R2(0) 0

Table 2.3
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Figure 2.1: The time to invasion, tinv, is the time between an initial infection in
one population and the first case that appears in the other population. The figure
shows a single realization of the stochastic SIR model, generated using the Gillespie
algorithm [83, 84] (see §2.2). Parameter values were m = 0.01, R0 = 2, N1 = N2 =
105.

2.3 Stochastic time to invasion230

The distribution of the time to invasion (tinv) is shown in Figure 2.2 for four pa-231

rameter sets (R0 = 2, 4, m = 0.01, 0.1). The histograms are each based on 10, 000232

stochastic simulations [82]. The red curves show an analytical approximation that we233

derive below in §2.3.1. We present numerically computed and analytically approxi-234

mated maximum likelihood estimates (MLEs) for the coupling parameter m, given235

observation(s) of tinv, in §2.3.4 and §2.3.5.236
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2.3.1 Analytical approximation of time to invasion distribution237

Suppose that at time t = 0 the system is in the initial state specified in Table 2.3,238

i.e., there is a small number of individuals infected in the source population (pop-239

ulation 1). We are interested in the time tinv at which a first infection occurs in the240

target population (population 2). Until that time, there are no infections in pop-241

ulation 2 and we will assume that tinv is sufficiently short that susceptible depletion242

in population 1 is negligible. Thus, for 0 ≤ t ≤ tinv we have I2(t) = 0 and S1(t) ' N1,243

so—if we ignore demographic stochasticity2 in population 1—Equation (2.10b) with244

i = 1 implies that for 0 ≤ t ≤ tinv we can approximate the population 1 dynamics245

with the single equation,246

dI1

dt
= r1I1 , (2.19)247

where248

r1 ≡ γ(R1,1 − 1) , (2.20)249

and Ri,i is defined in Equation (2.11a). Our approximation is therefore250

I1(t) = I1(0) er1t , 0 ≤ t ≤ tinv. (2.21)251

Given Equation (2.21), and that no infections have occurred yet in population 2 (i.e.,252

S2 = N2, I2 = 0), Equation (2.10b) with i = 2 specifies the (mean field3) rate at253

2In the stochastic setting, with probability (1/R1,1)I1(0), an outbreak in population 1 fizzles out
without causing a full blown epidemic [85, §7.6.2, p. 321]. Nevertheless, the second population is
sometimes infected before the outbreak fizzles out in the first population. This effect is larger for
lower R0, and for sufficiently small R0 must be taken into account to understand the expected
distribution of tinv. We ignore fizzles in our analysis, but in Figures 2.2 and 2.3 we indicate the
number of simulations that fizzled and were therefore ignored.

3The mean field refers to the ensemble mean of all stochastic realizations.
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which infection events occur in population 2,254

µ(t) =
dI2

dt
= N2Λ2 = µ0 e

r1t , (2.22a)255

where µ0 = I1(0) γR2,1 , (2.22b)256
257

and R2,1 is defined in Equation (2.11b).4258

In a small time interval [t, t+ ∆t), we can assume that rate µ(t) is constant so the259

probability that an infection occurs in population 2 in this time interval is260

∫ ∆t

0

µ e−µs ds = 1− e−µ∆t ' µ∆t , (2.23)261

and this is therefore also the probability that tinv lies in the interval [t, t+ ∆t) given262

that an infection in population 2 has not already occurred, i.e.,263

Prob(t ≤ tinv < t+ ∆t | tinv ≥ t) ' µ∆t . (2.24)264

If we now denote the probability that invasion of population 2 occurs before time t265

by266

F (t) = Prob(0 ≤ tinv < t) , (2.25)267

i.e., F is the cumulative distribution function for tinv, then the probability that inva-268

sion occurs after time t is269

Prob(tinv ≥ t) = 1− F (t) . (2.26)270

4In the derivation that follows, we assume that the incidence in population 1 must be approx-
imated in order to estimate the distribution of the time to invasion, tinv. However, if the actual
trajectory of incidence in population 1 is known, then this distribution can be computed exactly,
since the force of infection on population 2 can be calculated at each point in time.
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5 In general, we have271

Prob(t ≤ tinv < t+ ∆t) = Prob(tinv ≥ t)× Prob(t ≤ tinv < t+ ∆t | tinv ≥ t) , (2.27)272

and hence273

F (t+ ∆t)− F (t) '
[
1− F (t)

]
µ(t)∆t . (2.28)274

Dividing by ∆t and taking the limit ∆t→ 0 we have275

F ′(t) =
[
1− F (t)

]
µ(t) , F (0) = 0. (2.29)276

This is a separable first order ODE for F (t), the solution of which is277

F (t) = 1− exp
[
−
∫ t

0

µ(s) ds
]
. (2.30)278

Consequently, we can approximate the probability density function for tinv by f(t) =279

F ′(t), i.e.,280

f(t) = µ(t) exp
[
−
∫ t

0

µ(s) ds
]
. (2.31)281

Inserting Equation (2.22a) in Equations (2.30) and (2.31) we obtain282

F (t) = 1− exp
[µ0

r1

(
1− er1t

)]
, (2.32)283

and284

f(t) = µ0 exp
[
r1t+

µ0

r1

(
1− er1t

)]
. (2.33)285

Recall from Equations (2.11), (2.20) and (2.22b) that r1 and µ0 depend implicitly on286

5The derivation presented here follows along the lines of standard survival analysis, where our
hazard function is characterized by the force of infection on population 2 by population 1. See, for
example, Cox and Oakes, 1984 [86, pp. 13].
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m1 and m2; this is important because we will need to think of f as a function of the287

coupling parameter(s) later.288

2.3.2 Approximation error in time to invasion distribution289

Our analysis leading to Equation (2.33) was based on the approximation of pure290

exponential growth of cases in the first population. We can better appreciate the291

approximation that is being made if we recognize that the underlying process is a292

continuous-time branching process in the early phase during which it behaves like a293

simple birth-death process. During this phase, the ensemble mean number of cases in294

population 1 can be approximated with Equation (2.21) and the associated variance295

is [85, p. 250]296

var[I1](t) = I1(0) er1t(er1t − 1) . (2.34)297

To approximate the standard deviation in the force of infection from population 1 to298

population 2 (which we denote by σ), we scale as in Equation (2.22), i.e.,299

σ(t) = σ0

√
er1t(er1t − 1) , (2.35a)300

where σ0 =
√
I1(0)

(
γR2,1

)
. (2.35b)301

302

We can indicate uncertainty in our analytical approximation (2.33) by replacing303

µ(t) −→ µ(t) + ασ(t) (2.36)304

in Equation (2.31), and then, for each t, finding the maximum and minimum values305

of f(t) for α in some specific range. Details of this calculation are given in Appendix306

A. The thin dashed blue lines in Figures 2.2 and 2.3 indicate uncertainty in f(t)307
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obtained for α ∈ [−0.5, 0.5]. Note that while the dashed blue curves emphasize that308

the time to invasion distribution is only approximately given by the solid blue curve,309

they do not represent formal confidence limits; the “α level” specified in (2.36) does310

not translate into a confidence limit on f(t).311

2.3.3 Comparison of simulations and analytical approximation312

For four different parameter sets, Figure 2.2 compares the approximate density func-313

tion (2.33) with the tinv distribution obtained from 10, 000 realizations of the fully314

stochastic model6. As expected from the approximate formula (2.33), the probability315

density for tinv is sensitive to both the underlying transmissibility of the pathogen316

(R0) and the degree of transmission coupling between the two patches (m).317

The discrepancy between the simulations and analytical approximation in Fig-318

ure 2.2 results from variance in the epidemic curve in population 1, which is less319

important when the initial number of cases in population 1 is larger. To see this,320

note from Equations (2.22) and (2.35) that the coefficient of variation in the force of321

infection in population 2 is322

σ(t)

µ(t)
=

√
1− e−r1t√
I1(0)

, (2.37)323

which decreases rapidly with I1(0). Figure 2.3 shows that as I1(0) is increased, the324

analytical approximation of the tinv distribution converges to the histogram obtained325

from simulations. A standard measure of the difference between two continuous326

6We keep a stochastic simulation only if two conditions are satisfied: (i) the second population
is eventually infected (I2(t) > 0 for some t > 0), and (ii) the first population does not fizzle. We
consider the outbreak to have fizzled in population 1 if the prevalence in that population drops to
zero before the cumulative proportion of the population infected reaches the level corresponding to
the peak of the deterministic epidemic curve. The number of susceptibles in the first population,
S1(t), does not increase, and decreases as individuals become infected. After the time t when the
condition S1(t) < N1

R1
is satisified, dI1

dt remains strictly negative. Thus the condition to avoid fizzles

is I1(t) = 0 for t > 0 and S1(t)
N1

< 1
R1

. (cf. Equations (2.10b) and (2.11)).
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probability distributions p and q is the Kullback-Leibler (K-L) divergence [87, p. 6],327

DKL(p‖q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx . (2.38)328

We define q(x) to be the heights of the histogram bins, produced from stochastic329

simulations, in Figure 2.3. p(x) is Equation (2.33) evaluated at the histogram bin330

midpoints. We use the K-L divergence to show the convergence of the analytic ap-331

proximation of the tinv probability distribution to the distribution obtained from332

simulations in Figure 2.4.333

21



Ph.D. thesis – Karsten Hempel; McMaster University – Mathematics and Statistics

m = 0.01
R0 = 2
R1,1 = 1.98

0.0

0.2

0.4

0.6

0.8

1.0

1.2
m = 0.01
R0 = 4
R1,1 = 3.96

m = 0.1
R0 = 2
R1,1 = 1.8

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

P
ro
b
ab

il
it
y
D
en
si
ty

m = 0.1
R0 = 4
R1,1 = 3.6

0 1 2 3

Figure 2.2: The probability density function for the time to invasion (tinv, in units
of the mean infectious period) estimated for four parameter sets (R0 = 2, 4; m =
0.01, 0.1; N1 = N2 = 105; R1,1 from Equation (2.11)). A single infectious individual is
assumed in population 1 at time 0 (I1(0) = 1). Grey bars show the estimated density
based on a frequency histogram constructed from 104 stochastic simulations [82] that
did not fizzle (see footnotes in §2.3.1 and §2.3.3). Solid blue curves show the analytical
approximation (2.33). Pale blue bands indicate uncertainty in the approximation,
based on Equation (2.46) with α ∈ [−0.5, 0.5].
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Figure 2.3: Probability density functions of the time to invasion tinv, as in Figure 2.2,
but for a single parameter set (R0 = 4, m = 0.01, N1 = N2 = 105). The six panels
differ in the initial numbers of infectives in population 1 (I1(0) ∈ {1, 2, 4, 8, 16, 32}).
Only simulations in which infection successfully spread to the second population and
did not fizzle out in the first population are shown (in grey); cf. footnote in §2.3.3.
DKL(p‖q) refers to the Kullback-Liebler divergence (cf. Equation (2.38) and [87]), and
shows the analytical approximation error when compared to the probability density
estimated from 104 stochastic simulations (2.33).

23



Ph.D. thesis – Karsten Hempel; McMaster University – Mathematics and Statistics

1 2 3 5 10 15 20

0.00

0.05

0.10

0.15

I1(0)

K
-L

d
iv
er
ge
n
ce

Figure 2.4: K-L divergence between tinv distributions produced from simulations and
from the analytic approximation (cf. Equation (2.31) and Equation (2.38)). The K-L
divergence shows the degree of difference between observed and predicted probability
density distributions. Parameters used were: R0 = 4, m = 0.01, N1 = N2 = 105.
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2.3.4 Maximum likelihood estimation of coupling parameter m334

If we know the values of the underlying parameters (R0, m, N1, N2), then Equa-335

tion (2.33), or easily-computable histograms like those shown in Figure 2.2, allow us336

to estimate the probability of observing any particular time to invasion (tinv) [58].337

Our goal is to start with knowledge of338

• the patch population sizes (N1, N2),339

• the disease reproduction number of the uncoupled system (R0),340

• the mean infectious period (1/γ),341

and342

• one or more observations of the time to invasion (tinv),343

and then estimate the underlying transmission coupling m between the two patches.344

To that end, in standard fashion, we interpret the probability density of observing345

tinv given knowledge of the underlying parameter set as the likelihood of observing m346

given an observation of tinv. If we use our approximation (2.33), we have7
347

L(m | tinv) ' f(tinv) . (2.39)348

Based on this approximation, Figure 2.5 shows the maximum likelihood estimate349

(MLE) of the coupling parameter m as a function of the observed time to invasion350

tinv, for several reproduction numbers.351

We can also approximate L(m | tinv) by constructing many simulation-based his-352

tograms like those in Figure 2.2, for a range of values of m [58]. In Figure 2.6 we353

show (as a heat map) a likelihood surface constructed in this way. To obtain an MLE354

7Note that the likelihood is not a probability density, since it is not normalized by
∫ 1

0
f(tinv) dm.
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Figure 2.5: Maximum likelihood estimates (MLEs) of coupling m vs. observed
time to invasion tinv (in units of the mean infectious period), according to our
analytical approximation (cf. Equations 2.33 and 2.39). The population sizes are
N1 = N2 = 105, and the initial number of infections in population 1 is I1(0) = 1.
Grey bands under the black MLE curves indicate the effect of 10% uncertainty in
the value of R0.
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of m for a given tinv from this simulation-based likelihood surface, we (i) obtain a355

likelihood profile as a function of m by slicing the surface at tinv, (ii) smooth the356

profile with a cubic spline, and then (iii) find the maximum point of the smoothed357

profile (see Figure 2.7).358

Whether we use the analytically approximated or simulation-based likelihood, we359

compute confidence limits based on the likelihood ratio test (LRT) [57, Ch. 6, pp. 254–360

258]. The LRT, applied to our estimate mest, assumes that the deviance,361

− 2 log

[L(mest | tinv)

L(m | tinv)

]
= −2[logL(mest | tinv)− logL(m | tinv)] , (2.40)362

is approximately chi-squared distributed with one degree of freedom. In order to363

compute 95% confidence limits, we find the interval along the likelihood profile of m364

for which365

logL(mest | tinv)− logL(m | tinv) < χ2
1(0.95)/2 = 1.92 . (2.41)366

The MLE and confidence interval for m for a particular observation of tinv are367

shown with a black dot and error bars in Figure 2.6 (see Appendix B for computational368

details). The solid blue curve shows the MLE as a function of tinv obtained from our369

analytical approximation (2.39), and the dashed blue curves show confidence bands.370
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Figure 2.6: Likelihood of coupling parameter m given observed tinv, L(m | tinv), com-
puted from stochastic simulations. The fixed parameters are N1 = N2 = 105 and
R0 = 2 (4) in the left (right) panel. The heavy black dot shows the maximum likeli-
hood estimate (MLE) of m given an observed tinv = 4 (1.5) infectious periods on the
left (right). The vertical black lines enclose likelihood profiles of m for the observed
tinv, and are shown in further detail in Figure 2.7. 25% and 75% confidence limits are
shown with horizontal black bars. The solid blue curves in each panel show the MLE
of m according to the analytical approximation Equation (2.39) and correspond to
particular curves in Figure 2.5. The dashed blue curves show 25% and 75% confidence
limits for the analytical approximation (see Appendix B for details).
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Figure 2.7: Likelihood profiles for the coupling parameter m. Black curves show
the likelihood profile obtained from stochastic simulations (cf. Figure 2.6) and blue
curves are obtained from our analytical approximation Equation (2.39). Heavy dots
show the MLE and error bars show the 25% and 75% confidence limits. The grey
dots correspond to the column enclosed with vertical black lines in the heat map
in Figure 2.6; we smooth these log-likelihood values with a cubic spline and define
the MLE and confidence limits using the spline.

2.3.5 MLE based on multiple observations of time to invasion371

If multiple events of disease spread from one population to the other have been ob-372

served then much more accurate estimation of the transmission coupling parameter373

m is possible. It is important to emphasize in this context that since we are aim-374

ing to estimate a parameter of the social contact network—as opposed to a disease375

parameter—there is no need to restrict attention to repeated invasions by a single376

pathogen. Independent invasions by unrelated infectious diseases with the same mode377

of transmission could, in principle, be just as valuable for this purpose. Estimates of378
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m from independent invasions would require the assumption that m does not change379

between events, along with accurate estimates of disease parameters, R0 and γ, for380

each invading disease.381

Suppose n independent invasions have been observed and let θi denote the set of382

observations {R0, γ
−1, tinv} associated with the ith invasion event. Then the likelihood383

of the coupling parameter being m, given this sequence of n observed invasions, is384

L(m |{θ1, . . . , θn}) =
n∏
i=1

L(m | θi) . (2.42)385

Each factor L(m | θi) can be approximated using Equation (2.33) or via a simulation-386

based, smoothed likelihood profile, as in Figure 2.7.387

Figure 2.8 shows four examples of how an estimate of m using the simulation-based388

approach improves as the number of observed invasions increases from 1 to 64. In each389

of four panels, the 64 invasions are assumed to be by the same disease (so the same390

R0 and mean infectious period). Exactly how the MLE and 95% confidence intervals391

change as additional invasions are observed depends on the sequence in which the392

observations occur. Each panel of Figure 2.8 shows three extreme cases, in which the393

64 tinv observations occur from (i) shortest to longest, (ii) longest to shortest, and394

(iii) from the median of the 64 observations to median of the remaining 63, and so395

on. The equivalent figure based on the analytical approximation (2.39) is shown in396

Figure 2.9.397
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Figure 2.8: Estimates of the coupling parameter (m) improve as more independent
invasion events are observed. The underlying R0 and coupling (m) are indicated
above and to the right of the panels, and the underlying m is shown with a red
dashed line. Populations sizes are N1 = N2 = 105 in all panels. In each case, 64
invasion events were simulated with the stochastic model (§2.2.3). The lower and
upper curves show the MLE of m estimated from the subset of the 64 simulations
corresponding to the largest and smallest observed times to invasion (note that high
observed tinv implies low coupling m, and vice versa). The MLEs shown with the
middle curve correspond to the subset of simulations for which the observed tinv was
closest to the median. The shaded regions shows 95% confidence limits. In this figure
we show estimation of coupling m using stochastic simulations (cf. Figures 2.6 and
2.7, and §2.3.5). See Figure 2.9 for the equivalent graphs based on the analytical
approximation (2.39).
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Figure 2.9: The equivalent of Figure 2.8 based on the analytical approximation (2.33)
rather than simulations.

2.4 Discussion398

We have explored the feasibility of using the time taken for an infectious disease to399

spread from one population to another (the time to invasion, tinv) to estimate the400

degree of social contact between two populations. We quantified the degree of social401

contact with the proportion (m) of time that individuals typically spend outside their402

home region.403

We have considered only the most idealized situation in which there are only two404

populations and the basic reproduction number, R0, and mean infectious period, 1
γ
,405

of the disease are known precisely. Even so—if based on a single observed disease406

invasion—the confidence intervals we obtain for the degree of coupling (m) stretch407
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over an order of magnitude (Figure 2.7), which therefore provides only crude infor-408

mation about the social connectivity of the two populations. However, if multiple409

invasions are observed, much more accurate estimation of m is possible (Figure 2.8),410

and the independent invasions need not be of same disease (§2.3.5).411

We estimated the likelihood profile for the coupling parameter m in two ways412

(Figure 2.7), one based on large numbers of stochastic simulations and the other based413

on an analytical approximation that we derived in §2.3.1. The simulation approach414

is more accurate (Figure 2.2 and Figure 2.8 vs. 2.9), but significantly so only if the415

number of cases in the seed population is very small when the estimate is made416

(Figure 2.3). The large computational expense of the simulation approach could be417

reduced by, for example, iterated filtering [88] beginning from the analytically derived418

maximum likelihood estimate (MLE), but simulations would be hard to justify if & 10419

cases had already occurred in the seed population (Figure 2.3).420

Our analytical approximation facilitates exploration of how the relationship be-421

tween observed tinv and MLE of m depends on underlying disease characteristics—422

such as R0 and the mean infectious period—and on uncertainty in estimates of those423

properties (Figure 2.5).424

Limitations425

If attempts are made to apply our methodology to real epidemics, a number of limi-426

tations are important to bear in mind.427

• The time to invasion tinv can be difficult to estimate because of incomplete or in-428

accurate reporting, reporting delays, asymptomatic cases, and lack of temporal429

resolution in reporting (especially for historical data).430

• If multiple invasions are observed, with long breaks between them, the possi-431
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bility of changes in population characteristics in the times between epidemics432

should be considered. This can be a particularly significant concern when ex-433

amining historical epidemics separated by decades or centuries.434

• In general, changes in human behaviour and other factors may alter the social435

contact network during an epidemic and consequently the coupling of subpop-436

ulations of a meta-population.437

Possible further developments438

There are several natural directions for enhancement of the methods developed in439

this paper.440

• Rather than relying on the exponential growth approximation, as in §2.3.1, the441

actual time series of observed cases in the seed population could be used instead442

of Equation (2.21) (for example, by assuming each case is infectious for exactly443

the mean infectious period). This would lead to a (presumably more accurate)444

estimate of µ(t), the expected rate at which new infections occur in the target445

population; this estimate would replace Equation (2.22a) and, after insertion446

in Equation (2.31), lead to an alternative version of Equation (2.33) for the447

probability density of the time to invasion.448

• In a meta-population with more than two populations, the time at which a first449

case occurs in each subpopulation could be used to inform the overall coupling450

in the system. In principle, it could turn out to be easier to estimate the average451

inter-population transmission coupling when there are more subpopulations. On452

the other hand, potentially different degrees of coupling between each pair of453

subpopulations increases the range of possible contact networks.454
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• In Figure 2.5, we indicated the effect of uncertainty in R0. A more systematic455

and complete analysis of the effects of uncertainty in estimates of non-coupling456

parameters would be valuable.457

• We have focussed on the time to invasion, but if there are more than two458

subpopulations then the locations of the source subpopulations that seed each459

invasion could also be used to constrain estimates of connectivity.460

• If age-stratified incidence or mortality data are available, more detail about461

transmission coupling could be extracted, in principle. Different age-groups462

have been observed to make contact at different rates [89], and the age distri-463

bution of infections in the source population along with the age of the first case464

in the target population could better inform estimations of inter-population465

coupling than the time to invasion alone.466

• In some situations, information about travel volumes and destinations may be467

available, in which case ways to use such data to constrain connectivity estimates468

(such as with the use of Bayesian priors [90]) could be useful.469

• In a situation where multiple independent invasions can be observed, an esti-470

mate of m from earlier events, along with another from later events, may have471

non-overlapping confidence intervals. This would be evidence of changes in the472

underlying social contact network.473

Our analysis in this paper has shown that while estimating coupling from the time474

to invasion is difficult, it is possible. Enhancing methods of doing so will advance475

understanding of the mechanisms and predictability of infectious disease outbreaks476

in meta-populations.477
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Appendix A: Approximation error on tinv distribution481

The ensemble mean and variance of the force of infection from the source to the target482

(population 1 to population 2) are given in Equations (2.22) and (2.35), respectively.483

To quantify uncertainty on the distribution of the time to invasion of population 2,484

we must evaluate the integral in Equation (2.31) for µ(t) + ασ(t) rather than µ(t),485

i.e., we must calculate486

fα(t) =
[
µ(t) + ασ(t)

]
exp
{
−
∫ t

0

[
µ(s) + ασ(s)

]
ds
}
. (2.43)487

(Note that f(t) in Equation (2.31) corresponds to f0(t) in this notation.) To evaluate488

the integral in Equation (2.43) explicitly, we use489

∫ t

0

√
ers(ers − 1) ds =

1

r

[√
ert(ert − 1)− log

(√
ert − 1 +

√
ert
)]
. (2.44)490

Thus, with µ and σ given by Equations (2.22) and (2.35), respectively, and writing r491

for r1 to reduce clutter, we obtain the explicit expression,492

493

fα(t) =
[
µ0e

rt + ασ0

√
ert(ert − 1)

]
× exp

{µ0

r

(
1− ert

)}
494

× exp
{
− ασ0

r

[√
ert(ert − 1)− log

(√
ert − 1 +

√
ert
)]}

(2.45)495

496
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For a given α range (αmin ≤ α ≤ αmax, where normally αmin = −αmax), we then497

define upper and lower error estimates,498

fU(t) = max
α
{fα(t) : αmin ≤ α ≤ αmax} , (2.46a)499

fL(t) = min
α
{fα(t) : αmin ≤ α ≤ αmax} , (2.46b)500

501

which correspond to the dashed blue curves in Figures 2.2 and 2.3. For any given t,502

at least one of the upper and lower estimates is obtained at an edge of the α range;503

solving ∂fα/∂α = 0 for α, we find a single critical point,504

αcrit(t) =

√
ert − 1 (r − µ0e

rt) + µ0e
rt
2 log

(√
ert − 1 + e

rt
2

)
σ0

[
e
rt
2 (ert − 1)−

√
ert − 1 log

(√
ert − 1 + e

rt
2

)] . (2.47)505

506

Appendix B: Numerical details of simulation-based likelihood507

This appendix relates to the construction of Figure 2.6, as described in §2.3.4.508

For each of 100 m values, we measured time to invasion tinv from 104 stochastic509

simulations using the adaptivetau package in [82], and grouped these tinv values510

into 100 bins on the tinv axis. More precisely, our 100 m values, which we refer to511

as mi, were spaced logarithmically between 0.001 and 0.1. For each mi, and for512

R0 = 2, 4, we produced nsim = 104 simulations and measured the corresponding tinv513

for each simulation. We then divided the full range of resulting tinv values into 100514

bins, bj. We produced a grid where Cell(i, j) contained the number of simulations515

with m = mi and tinv in bin bj. We used the grid of m vs. tinv simulation frequencies516
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to produce likelihoods of tinv given m,517

L(tinv|mi) ≈
Cell(i, j)

nsim

. (2.48)518

We produced a full grid of log-likelihoods, i.e., logL(tinv|mi) (see Figure 2.6). We519

select the bin bj that contains the observed tinv. The log-likelihoods of column j yield520

the likelihood profile of the observed tinv with respect to m, and the cell with the521

maximum likelihood indicates the maximum likelihood estimate (MLE) of m given522

tinv (see Figure 2.7).523

38



Chapter 3

Estimating transmission coupling from

fadeout times of infectious diseases

39



Ph.D. thesis – Karsten Hempel; McMaster University – Mathematics and Statistics

Abstract

Advancing our understanding of the mechanisms by which infectious diseases524

spread within and between human populations is critical in efforts to understand525

and predict widely spread epidemics and pandemics. Mathematical modeling pro-526

vides many tools to understand disease spread, but parameterizing transmission be-527

tween populations is a difficult problem, since the process itself is not practically528

observable. We present a method for estimating coupling between one large and one529

small population, each undergoing recurrent epidemics, and modeled as susceptible-530

infected-recovered (SIR) systems. We show that the strength of coupling between the531

two populations can be estimated from the time the small population spends unin-532

fected. Confidence in the estimate is increased the longer recurrent epidemics are533

observed. The method presented, though simple, shows that information about epi-534

demic coupling can be successfully inferred from spatiotemporal disease data, which535

is becoming ever more widely available in digital form.536
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3.1 Introduction537

Mathematical models provide a powerful range of tools for understanding and predict-538

ing the spread of infectious diseases in human populations [9,13,15–18,68]. In partic-539

ular, the mechanistic SIR model (susceptible-infected-recovered), which approximates540

a population as being well-mixed (contact occurs uniformly at random) and where541

infection confers permanent immunity upon recovery, has had remarkable success ex-542

plaining observed dynamics. Various areas of study aim to address oversimplifications543

inherent in the basic model, including the effects of seasonal forcing [9,13,16,68,91],544

intensity and duration of infectiousness [70–75], vital dynamics [69], network struc-545

ture within populations [41–45], and others. This area of research has been motivated546

in part by large quantities of digitized disease data which have become available in547

recent decades [13, 19,68,92,93].548

Many infectious disease data sets are spatiotemporal in nature, and show evidence549

of epidemic coupling between populations. However, one of the central difficulties of550

modeling infectious diseases is the unobservable nature of the transmission process,551

necessitating the development of methods for indirectly inferring transmission param-552

eters [94]. This problem is compounded when considering epidemic coupling between553

geographically separated populations.554

In this paper, we focus on the latter problem, and present a method for estimating555

the degree of coupling between a large and a small population from case report data556

alone. Our goal is to show how well the degree of coupling between two populations557

undergoing recurrent epidemics can be estimated in an ideal scenario. To this end,558

we construct a theoretical scenario in which two populations undergoing recurrent559

epidemics differ in size such that only the smaller of the two populations sees oc-560
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casional disease fadeouts12. We then show that the degree of coupling between the561

two populations, formalized with a single parameter (specified with a parameter m,562

defined in §3.2), can be estimated from the proportion of total time the small popu-563

lation spent faded out, tf (time faded out)3. We furthermore show that the quality of564

the estimate is improved the longer the system is observed, as more fadeout events565

in the small population are observed.566

Recurrent epidemics in a host population typically occur when periods of low dis-567

ease prevalence allows a build-up of susceptible individuals, either through births,568

immigration, or waning immunity. These periods are then followed by epidemics569

due to the re-introduction of disease or to an increase in disease transmission. Sea-570

sonal patterns in contact rates between individuals [13,68], birth rates [69], changing571

weather [97], and other seasonally varying factors can be drivers of seasonally varying572

disease prevalence. We model seasonally recurring epidemics with seasonal variation573

in transmission, which is sufficient to generate recurrent epidemics, and represents re-574

alistic phenomena such as increased contact rates between children during the school575

term in the winter. We model the susceptible recruitment required to generate recur-576

rent epidemics as births, which occur at a rate relative to the total population size.577

Finally, we model the scenario stochastically in order to capture the phenomenon578

of randomly occurring disease fadeouts in the troughs between recurring epidemics.579

The frequency and duration of disease fadeouts in a population undergoing recurrent580

1The recurrent reintroduction of disease in small populations by large population centres has
been noted in previous research [20,24,59,95].

2We refer to the temporary absence of disease in populations undergoing recurrent epidemics as
either a ’fadeout’ or an ’endemic fadeout’, avoiding the term ’epidemic fadeout’, which has been used
to refer to the extinction of an invading pathogen in the trough after the first epidemic wave [96].

3The time faded out, tf, is connected conceptually to the concept of the time to invasion, tinv,
presented in Chapter 2. After a fadeout in the small population, there is a time to re-invasion,
and the total time taken for re-invasion across one or more fadeouts is measured by tf. The state
of the system at the beginning of a fadeout is almost certainly different than the initial conditions
considered in Chapter 2, but this does not preclude a potential theoretical bridge between the
concepts.

42



Ph.D. thesis – Karsten Hempel; McMaster University – Mathematics and Statistics

epidemics is negatively correlated with the size of the population [75, 98]. We make581

use of this property of fadeouts to choose parameters in which fadeouts in the smaller582

population are common, and fadeouts in the larger population are virtually absent583

(see §3.2).584

Parameter estimation methods vary greatly depending on the natural phenomenon585

a model is intended to capture. Our use of time faded out, tf, to estimate degree of586

coupling m between two populations undergoing recurrent epidemics is motivated by587

several key features of coupling between populations. We note first that individual588

members of two populations separated geographically typically interact far more with589

their respective local populations than with members of the other population. As-590

suming this holds true for disease transmission, we expect the amount of transmission591

between populations to be low relative to the amount of local transmission. As a re-592

sult, when disease prevalence in a population is high, the effect of coupling can be593

difficult to observe and distinguish from stochasticity. Without detectable features in594

the data driven by coupling, coupling parameters can be practically unidentifiable.595

However, when one population’s prevalence is low, infection from another popula-596

tion is detectable. In the case of a disease fadeout in one population, re-infection597

is driven completely by coupling with another infected population, and the duration598

of the fadeout is negatively correlated with the degree of coupling with the infected599

population, all else being equal. Estimating coupling parameters without observing600

low prevalence is difficult, and requires the observation of other dynamical patterns601

or transitions caused by coupling, such as synchrony in recurrent epidemics [63]. Our602

aim is to present the best possible case for estimating a single coupling parameter,603

m, with the methodology presented. To this end we assume perfect knowledge of all604

parameters except m in the estimation process. In §3.3, we test the methodology605

presented on stochastic simulations, and can thereby compare the effectiveness of es-606

43



Ph.D. thesis – Karsten Hempel; McMaster University – Mathematics and Statistics

timation with known true values of m. This approach furthermore has the advantage607

of showing the degree of error present in estimates of m that results only from the608

methodology, absent the additional uncertainty in other parameter estimates.609

3.2 Two population recurrent epidemics610

We model a two-patch meta-population stochastically, where each population has611

an SIR (susceptible-infected-recovered) compartmental structure, and coupling takes612

place in the transmission term. We first define deterministic rates of state transition613

as a system of ordinary differential equations (ODE), and then define the stochastic614

system by interpreting the deterministic transition rates as probabilistic event rates.615

The system of ODEs for a single population is given as follows616

dS

dt
= νN − ΛS − µS (3.1a)617

dI

dt
= ΛS − (γ + µ)I (3.1b)618

dR

dt
= γI − µR (3.1c)619

620

The state variables S, I, and R are the numbers of susceptible, infected, and recovered621

individuals, with the total population N = S+ I+R. All births enter the susceptible622

compartment at the rate νN , where ν is the per capita birth rate. All compartments623

lose individuals at the per capita death rate µ. Throughout this paper, we set the624

death rate equal to the birth rate, µ = ν.625

New infections occur according to the assumption of uniform mixing of suscepti-626

ble and infected individuals, where the rate per unit time of susceptibles becoming627
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infected is the force of infection628

Λ = f(t)β
I

N
. (3.2)629

where β is the transmission rate. We modify this definition of Λ later in §3.2.1 to630

incorporate cross-coupling in the meta-population, using the coupling parameter m.631

The only non-autonomous component of the system is the forcing function f(t),632

which we define as a sinusoidal function with amplitude α and a one-year period633

f(t) = 1 + α cos(2πt) (3.3)634

The oscillation of f(t) is intended to represent the realistic phenomenon of higher635

transmission in the winter and lower transmission in the summer. While sinusoidal636

forcing is sufficient for our purpose of driving seasonally recurring epidemics, real-637

world seasonal forcing, especially in childhood infectious disease, is often caused by638

school terms, and term-time forcing is a realistic alternative to the sinusoidal form of639

f(t) we use [99]. Infected individuals recover at constant rate γ, which results in an640

exponentially distributed period of infection with mean 1/γ. The basic reproduction641

number of an infectious disease, R0, is defined as the mean number of new infections642

caused by a single infected individual in an otherwise completely susceptible pop-643

ulation. Throughout this paper, we make use of R0 as defined for one population644

without seasonal forcing or coupling (m = 0, α = 0), i.e.645

R0 =
β

γ + µ
(3.4)646

We use R0 for the definition of initial conditions in the model, noting that in the647

deterministic case for a population in isolation (m = 0) and without seasonal forcing648
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(α = 0), the system yields an endemic equilibrium of649

(S∗, I∗) =

(
N

R0

,
N(R0ν − µ)

R0γ

)
(3.5)650

We initialize state variables in stochastic simulations in each population to be the651

closest whole numbers to these quantities, (S0, I0) ≈ (S∗, I∗). These initial conditions652

result reliably in endemic disease prevalence with recurrent epidemics in the large653

population.654

3.2.1 Coupling in Transmission655

Coupling between host-populations in an epidemiological system can be modeled656

in many ways, including—though not limited to—any combination of implicitly or657

explicitly defined movement of susceptible or infected individuals between the geo-658

graphic regions (”patches”), and with rates of contact between members of the meta-659

population occurring proportional to a static or dynamic social network, or propor-660

tional to geographic distance between individuals or population centers [48, Ch. 4].661

We implement a coupling framework in which two patches each have a resident pop-662

ulation, and residents of each patch visit one another some proportion of the time.663

We express this by means of a coupling matrix664

c =

1−m m

m 1−m

 , (3.6)665

This formulation of coupling is more fully developed in §2.2.1. At any given time,666

the proportion of population i present in patch j is given by cij, and we refer to m667

throughout the paper as the coupling parameter. Each patch j has a local force668
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of infection, Λj, to which all susceptibles present are exposed, and which is given by669

Λj = βf(t)

∑2
i=1 cijIi∑2
i=1 cijNi

, j = 1, 2 (3.7)670

The susceptibles of population i are distributed between patches j according to the671

matrix c, and thus the rate of new infections in population i is given by672

2∑
j=1

cijSiΛj = Si

2∑
j=1

cijΛj , i = 1, 2 (3.8)673

The complete system of rates with population cross-coupling is therefore given by674

dSi
dt

= νNi − Si
2∑
j=1

cijΛj − µSi (3.9a)675

dIi
dt

= Si

2∑
j=1

cijΛj − (γ + µ)Ii (3.9b)676

dRi

dt
= γIi − µRi , i = 1, 2 (3.9c)677

678

We produce stochastic simulations with the rates in Equation (3.9) to produce event679

probabilities, using an adaptive time-step approximation algorithm. The standard680

Gillespie algorithm [83,100] for computing exact realization of the stochastic process681

requires event rates to remain fixed while no event occurs, which is only approxi-682

mately true in our system on account of the seasonal forcing function f(t). An exact683

stochastic simulation algorithm for the seasonally forced case does exist [101], but684

sampling one event at a time is far too computationally costly for the population685

sizes and time-scales we consider. We therefore use adaptive time-step methodology,686

or “tau-leaping” [100], which samples numerous events over some time step from ei-687

ther Poisson or Binomial distributions parameterized by the rate questions. These688
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methods are approximations, and balance the trade-off between accuracy and com-689

putational cost by adjusting time step length while simulating4. We use the methods690

implemented in the adaptivetau package in [82].691

When the seasonal forcing amplitude α is positive, trajectories of the deterministic692

SIR system shown in Equation (3.9) converge to periodic orbits or more complicated693

attractors. Realizations of the stochastic model also approach these periodic attrac-694

tors, but in the stochastic case trajectories are perturbed by demographic stochas-695

ticity, and disease fadeouts are possible since the number of infecteds may randomly696

reach zero. Trajectories in the deterministic case can approach periodic attractors697

after a transient period. Demographic stochasticity prevents close asymptotic ap-698

proach to attractors in the stochastic case, resulting in more complicated dynamics699

in stochastic realizations [17,103].700

3.2.2 Duration of endemic fadeouts701

When disease prevalence reaches low levels, fluctuations due to demographic stochas-702

tic may result in prevalence reaching zero. Once no infections remain in a popula-703

tion, no new local infections can occur, and prevalence remains zero until external704

re-infection of the population. Populations undergoing recurrent epidemics, such as705

those driven by seasonal forcing, reach low levels of prevalence in the troughs be-706

tween epidemics. The closer the troughs in prevalence are to zero, the higher the707

probability of extinction, thus the probability of extinction is negatively correlated708

with population size, and positively with the magnitude of fluctuations. The relation-709

ship between the magnitude of seasonal prevalence fluctuations and the magnitude710

4The accuracy of approximation for tau-leaping realizations can be affected by the inclusions
of non-homogenous terms such as our seasonal forcing function, f(t). However, since the relative
change in event rates over the τ -step is held below a threshold [102], the loss of accuracy is small if
f(t) does not change significantly within the τ -step, which is the case in our simulations.
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of the seasonal forcing that drives them is not straightforward. It depends on dis-711

ease parameters R0 and γ, magnitude of seasonal forcing α, and birth rate ν, on712

demographic stochasticity, and on dynamical resonance [17, 93, 104]. An analytical713

examination of characteristics of fadeouts during prevalence troughs, such as when714

they begin and how long they last, could be a useful direction for future research715

(see §3.4). When extinction events occur in the small population, the fadeouts are716

ended by a re-infection by infected individuals in the large population. Therefore, the717

duration of endemic fadeouts in the smaller population is negatively correlated with718

the degree of coupling m. In our model, we set the larger population to be the first719

(i = 1), and smaller population to be the second (i = 2), i.e. N1 > N2, where i refers720

to the index used in Equation (3.9). Given a time-series of observed prevalence in two721

populations, we define tf to be the proportion of total time during which prevalence722

in the small population is 0. We show an example of tf observed for a simulated723

time-series in Figure 3.1.724
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Figure 3.1: Example of two-population recurrent epidemics showing periods of fadeout
in the smaller population. The simulation shown was run for a 150 year burn-in
period prior to the 50 years shown. Red bands show periods of fadeout in the small
population.

For a single parameterization of the model, repeated stochastic realizations will725

produce a distribution of observed tf. We show examples of this distribution in Fig-726

ure 3.2 for different numbers of years.727
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Figure 3.2: Distributions of time population 2 spends faded out, tf, as a proportion
of total time. For a window of a given number of years (x-axis), the distribution of tf
is shown as a violin plot (y-axis). Plotted data were produced from 256 simulations,
each run for a 100 year burn-in period followed by another 100 years. tf value for 200
year windows were produced by averaging tf from two 100 year simulations, likewise
from 200 to 400, and so on. The horizontal black line shows the average tf across all
256 simulations.

3.3 Estimating coupling with MLE728

We use maximum likelihood estimation to estimate the coupling parameter m from729

large numbers of simulations [58]. The distributions shown in Figure 3.2 are an730

approximate probability distribution of the proportion of time population 2 spent731

faded out, tf, given chosen parameters. Fixing all parameters except for m, we write732
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p(tf|m) as the probability of observing some tf givenm. The inverse relationship of this733

p is the likelihood of m given tf, L(m|tf). The m that maximizes the likelihood L(m|tf)734

for a given observed tf is the maximum likelihood estimate (MLE). We compute735

approximate probability distributions p(tf|m), as in Figure 3.2, for a set of fixed736

parameters, by simulating nsim realizations. To find the MLE of coupling m for a737

given observation of tf, we select nm values of m spaced logarithmically within a fixed738

range, m ∈ [mmin,mmax], and compute L(m|tf) in each case (see Figure 3.3 for an739

example). In addition to locating the MLE of coupling m by this method, we can740

also show the precision of the estimate from the relationship between L(m|tf) and m,741

referred to as the likelihood profile (see Figure 3.4).742

We compute confidence limits on MLEs based on the likelihood ratio test (LRT) [57,743

Ch. 6, pp. 254–258]. The LRT approximates the deviance, −2[logL(mest | tinv) −744

logL(m | tf)], to be chi-squared distributed with one degree of freedom. We then745

compute 95% confidence limits by cutting off m above and below the MLE such that746

logL(mest | tf)− logL(m | tf) < χ2
1(0.95)/2 = 1.92 . (3.10)747

We show an example of maximum likelihood estimation ofm along with corresponding748

confidence intervals for a given observed tinv, assuming different durations of observa-749

tion of the time series (10, 33, and 100 years), in Figure 3.4. We note that increasing750

the duration of observation of the time-series narrows the confidence intervals of the751

m estimation, thus improving the estimate with more data.752
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Figure 3.3: Likelihood of coupling parameter, m, given fadeout time, tf: L(m|tf).
Parameters: R0 = 4, α = 0.05, N2 = 103, N1 = 106, 1

γ
= 10 yr. Duration of time-

series: 100 years. Each vertical slice is a likelihood profile for observed fadeout time,
tf,obs, vs m. Produced from nm = 50 different m values and nsim = 500 simulations
each. Likelihood profiles are shown for 50 tf values spaced uniformly from [0, 1].
Contours are shown for the maximum likelihood and 95% confidence intervals.
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Figure 3.4: Likelihood of coupling parameter m given observed proportion population
2 spent in fadeout, tf,obs ≈ 0.0897. Solid dots show approximate log-likelihoods of m
spaced logarithmically from [10−4, 10−2], and solid lines show spline fits to approx-
imate likelihood points used for estimation. Likelihood profiles shown for observed
time-series lasting 10, 33, and 100 years, along with associated 95% confidence inter-
vals. tf,obs was generated from a simulation using a true value m = 0.0005, shown
as the red dotted line. Other parameters: R0 = 4, 1

γ
= 10 yr, ν = µ = 0.02 yr−1,

α = 0.05, N2 = 104, N1 = 106.

3.3.1 Effect of Parameters on Estimation753

Estimating parameters using MLE depends on the feasibility of locating global max-754

ima in the likelihood profiles of those parameters. Under certain conditions, the755

coupling parameter m cannot be estimated from an observed tf. In order to un-756

derstand the preconditions for producing an estimate of m, we show the likelihood757

surface over a range of m and tf (see Figure 3.3, and note that the likelihood profile758

shown in Figure 3.4 for a 100 year window is enclosed in black lines). Each vertical759
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column of the grid shown is a likelihood profile computed in the same manner as760

in Figure 3.4. In order to obtain an estimate of m for a given tf, the likelihood profile761

must contain a distinct maximum, and can fail to do so for reasons described in §3.4.762

Other grids similar to Figure 3.3 for R0 ∈ {2, 4, 8}, N2 ∈ {103, 104, 105}, and763

α ∈ {0.01, 0.05, 0.1} are shown in Figures 3.5, 3.6, and 3.7.764
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Figure 3.5: Likelihood of coupling parameter, m, given fadeout time, tf: L(m|tf)
(Similar to Figure 3.3, with the same scale). Parameters: R0 ∈ {2, 4, 8} (columns),
N2 ∈ {103, 104, 105} (rows), with fixed α = 0.1, N1 = 106, and 1

γ
= 10 yr. Duration of

time-series: 100 years. Each vertical slice is a likelihood profile for observed fadeout
time, tf,obs, vs m. Produced from nm = 50 different m values and nsim = 500 simula-
tions each. Likelihood profiles are shown for 50 tf values spaced uniformly from [0, 1].
Contours are shown for the maximum likelihood and 95% confidence intervals.
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Varying α and N2
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Figure 3.6: Similar to Figure 3.5, with α ∈ {0.01, 0.05, 0.1} (columns), N2 ∈
{103, 104, 105} (rows), and fixed R0 = 4.
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Varying α and R0
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Figure 3.7: Similar to Figure 3.5, with α ∈ {0.01, 0.05, 0.1} (columns), R0 ∈ {2, 4, 8}
(rows), and fixed N2 = 104.

3.4 Discussion765

The use of the time the smaller population (population 2) spent faded out, tf, as a766

probe to inform estimates of the coupling coefficient m can be successful under certain767
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conditions. We show in various regions of parameter space (see Figures 3.5, 3.6, and768

3.7) that likelihood profiles yield clear maxima. However, for all parameterizations769

displayed in the figures in §3.3.1, high values of the coupling parameter m are indis-770

tinguishable above a threshold that depends on the other underlying parameters. We771

separate these instances of unidentifiability into two cases.772

Small population too large. Referring to the bottom left panel of Figure 3.6 (α = 0.01773

and N2 = 105), we note that for all m ≥ 0.001, the likelihood remains at its highest774

value for tf ≈ 0. This phenomenon arises when the small population does not fade775

out in the observed time period for the majority of simulations throughout the upper776

range of m. If the small population does fade out it appears to be reinfected very777

quickly regardless of variation in m. Consequently, the small population rarely fades778

out.779

Small population too small. Referring to the top left panel of Figure 3.6 (α = 0.01780

and N2 = 103), we note that for m ≥ 0.01, the likelihood remains at its highest value781

for tf ≈ 0.45. In this case, for all values of the coupling parameter above some level,782

the small population remains faded out for some fixed amount of time (on average)783

despite the presence of some force of infection all of the time. This occurs in partic-784

ular when N2 is small (in our example, N2 = 1000), and results from the depletion785

of susceptibles following outbreaks, preventing further reinfection despite the force of786

infection from the large population.787

These two cases show a limitation of the method presented, namely that above some788

threshold, levels of coupling cannot be distinguished. The complete absence of fade-789

outs in a time-series naturally precludes use of this method, but for sufficiently small790

populations, tf is uninformative even in presence of fadeouts.791
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The method we have presented shows the best possible case for using tf as a probe792

for coupling, having assumed all other parameters are known and held fixed. It is793

evident from the results shown in §3.3.1 that the size of the population undergoing794

fadeouts strongly affects the relationship between likelihood of m and observed tf.795

However, spatiotemporal disease case report data are usually accompanied by rel-796

atively accurate population and vital statistics, so population sizes can usually be797

estimated fairly accurately. The amplitude of the seasonal forcing driving the recur-798

rent epidemics, α, does not strongly affect the relationship between likelihood of m799

and observed tf, suggesting that accurate estimates of this amplitude are not needed800

to estimate coupling (this is fortunate, since α is difficult to estimate accurately). The801

disease parameters, R0 and γ, do affect the relationship between likelihood of m and802

observed tf, and accuracy of coupling estimates will depend on accuracy of estimates803

of disease parameters. This cannot be avoided, since coupling between populations804

depends on the transmission rate of the disease.805

The presented method explores the potential of the proportion of time faded out,806

tf, as a tool for estimating coupling between large population centers and smaller satel-807

lite populations undergoing recurrent epidemics, and we identify key considerations in808

doing so. Other methods for estimating coupling could focus on the brief time period809

when infection re-invades the small population following a fadeout. However, aside810

from measuring the time of the re-invasion, the only other information informing the811

magnitude of the force of infection is the rate of growth of the outbreak in the small812

population. This depends on, among other things, the number of susceptibles present813

in the small population at the moment of invasion, which is not an observable quan-814

tity. Estimating the proportion of the population that is susceptible at any given time815

requires the reconstruction of the susceptible time series [105]. Susceptible reconstruc-816

tion depends on consistently accurate statistics regarding susceptible recruitment and817
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case reports throughout the time series, since sampling error accrues in the recon-818

struction process. If the relationship between serological markers of immunity and819

level of protection against infection is known, then susceptibility in a population can820

be assessed with serological surveys (for example, see [106]). Reporting inefficiency is821

much less likely to affect the time when a first case of infection is observed following822

a fadeout. A natural extension of this research would be using the distribution of the823

number of cases between observed fadeouts as a probe. Another potential alternative824

for the estimation of coupling in the presence of recurrent epidemics is observing the825

degree of synchrony between multiple populations [40, 59, 60]. Such a method would826

have the advantage of not requiring observed fadeouts, and thus being constrained by827

the sensitivity of fadeout patterns to population sizes. However, the driving causes of828

recurrent epidemics, such as seasonal changes in human contact rates, are typically829

common between coupled populations, and could produce synchrony independent of830

coupling. Moreover, once two populations are synchronized, coupling is likely very831

difficult to detect, and only observations of the populations becoming synchronized832

could inform estimates of coupling strength. An additional method for estimating833

coupling has been suggested by Schneeberger and Jansen, 2006 [107], who propose834

using covariance of fluctuations in prevalence to detect coupling.835

3.5 Conclusion836

Techniques for estimating epidemic coupling from spatiotemporal disease case re-837

port data are promising avenues of research for understanding and forecasting spatial838

epidemics. The effect of epidemic coupling between weakly coupled populations is839

largely obscured by local dynamics, but focusing on characteristics of the data that840

inform coupling through probe statistics can yield estimates. Total time spent with841
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the disease absent in the smaller of two populations undergoing recurrent epidemics842

can inform estimates of the coupling strength between the populations, provided cou-843

pling is sufficiently weak. In all cases, levels of coupling between the populations844

above some threshold are indistinguishable.845

Though the research presented here deals only with the estimation of coupling,846

assuming all other parameters are known, and assuming only two populations, the847

results are easily extended to encompass a larger scope of problems. The methods848

can be applied to real data for which disease and population parameter estimates are849

available, with sensitivity analyses measuring the dependence of estimates on error850

in parameters. Additionally, while we assume a large population and only one small851

population, tf is a useful probe to estimate the force of infection that a small pop-852

ulation is receiving in general. Future research could examine examples where this853

infection originates from numerous sources, or where numerous satellite populations854

are reinfected by one large population center. Finally, the estimates of coupling pro-855

duced with this methodology is not, in principle, disease dependent. The predictive856

power of these methods could be tested in a context where recurrent epidemics of857

two or more diseases coincide, assuming the diseases share similar modes of trans-858

mission. In general, the exploration of more advanced methodology for estimating859

epidemic coupling from case reports alone, despite the notable difficulties in doing so,860

can nonetheless provide useful improvements in our understanding of and capacity to861

predict disease transmission.862
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London, 1665
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Abstract

Developing methods to understand and predict the manner in which infectious866

diseases spread within and among human populations is critical not only for the867

advancement of scientific understanding, but for the development of public health868

measures to control harmful transmissible infections. Since the transmission process869

itself is largely unobservable, methods for inferring patterns of transmission are ex-870

tremely useful for epidemic modeling efforts. We consider the problem of estimating871

transmission coupling between populations, and estimate coupling in the city of Lon-872

don, England, during the Great Plague of 1665. Estimates are produced from weekly873

mortality reports for 130 parishes contained in the London Bills of Mortality. We874

model each parish as a compartmental SIR (susceptible-infected-recovered) system,875

where the parishes are coupled through the transmission process with one of four876

spatial coupling schemes. We show that the degree of coupling among parishes and877

the basic reproduction number can be estimated, with better fits for the two least878

geographically constrained coupling schemes.879
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4.1 Introduction880

Mathematical models are widely used to describe biological systems, and have greatly881

enhanced our ability to understand and forecast the spread of infectious diseases [9,882

13,15–18,68]. In particular, mathematical modeling of transmission, whether within883

or among geographically separated populations, provides useful opportunities to in-884

crease our understanding of how diseases spread, since the transmission process is885

very difficult to observe in practice. We focus on the problem of estimating cou-886

pling between geographically separated populations, using methodology that exploits887

spatiotemporal incidence or mortality reports to produce estimates of the degree of888

coupling in a population over the course of an observed epidemic.889

Restricting the type of data used to only spatiotemporal incidence or mortality890

reports has numerous advantages. Recent years have seen a dramatic increase in the891

quantity of available digitized spatiotemporal infectious disease data [13,24,64,68,92,892

93], making the development of methodology to exploit such data valuable. Even if893

methodology for estimating spatial parameters includes other data regarding spatial894

transmission (such as data regarding host movement, see [46,47] for example), a bet-895

ter understanding of the degree to which such data can inform estimates is important.896

Finally, in circumstances when no other quantitative information descriptive of cou-897

pling is available, as is the case presented in this paper, the only approach available898

is methodology applicable to incidence or mortality reports.899

Our goal in this paper is to present the application of methodology capable of esti-900

mating coupling strength in a meta-population using reported mortality data during901

a single epidemic. The data in question are of an epidemic of plague that took place902

in the city of London, England, in the year 1665. The data are contained within the903

London Bills of Mortality (LBoM), an extensive and diverse set of records detailing904
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the deaths of residents of the city of London from 1662–1829, recently digitized [64].905

The LBoM contain weekly reports of deaths from plague in the 130 parishes of the city906

during the 1665 so-called Great Plague of London (GPL), which killed approximately907

20% of the city’s residents [108]. These data show a devastating epidemic spreading908

through its many geographically distributed parishes in sufficiently high spatial and909

temporal resolution to facilitate the estimation methodology we present.910

We use a meta-population model where each population is defined as an SIR911

system (susceptible-infected-recovered). The SIR model approximates contact within912

a population as being well-mixed (contact occurs uniformly at random), and where913

infection confers permanent immunity upon recovery [9]. Various areas of study aim914

to further develop components of the basic model, such as the effects of seasonal915

forcing, intensity and duration of infectiousness [70–75], vital dynamics [69], network916

structure within populations [41–44], and others. We model coupling between parishes917

through the transmission process by parameterizing the proportion of time individuals918

spend interacting with individuals distributed throughout the meta-population. We919

implement four different contact structures in our model (See §4.3).920

Methods for estimating model parameters vary greatly depending on the charac-921

teristics of real world data that the model is intended to capture. We are primarily922

interested in estimating the degree of coupling among parishes in the city of London,923

which we capture with a single parameter m (see §4.3). We also, simultaneously,924

estimate the basic reproduction number R0, which quantifies the potential a disease925

has to spread within a population (see §4.3 for description of R0). R0 has been es-926

timated for pneumonic plague in modern settings [109], but we do not know if these927

estimates are appropriate for the study of an outbreak over 350 years ago in a pre-928

industrial population. We use a probe-matching [58] method to estimate both m and929

R0 (see §4.4), comparing the real-world LBoM data with large numbers of stochastic930
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simulations. We complete the estimation procedure for each of the four spatial con-931

tact structures to investigate the significance of geographic distance in the spread of932

the GPL §4.5.933

4.2 Data describing the GPL934

The plague, or Black Death, arrived in and spread throughout Europe in the 14th935

century, resulting in the death of approximately one third of its population [67]. The936

city of London, England, sustained repeated epidemics of plague over centuries since937

the initial European pandemic of Black Death in 1348, and saw the last of these938

epidemics in 1665 [65,66] during what is commonly referred to as the GPL. Based on939

reports in the London Bills of Mortality (§4.2.2), this epidemic killed approximately940

70,000 people of a total population of approximately 400,000 [110], accounting for941

nearly 17% of the population1. The weekly reports of Great Plague deaths available942

in the Bills of Mortality are distributed among 130 parishes. The fine spatiotemporal943

detail in these digitized data permit the analysis of spatial spread of the epidemic944

presented in this paper. We begin by describing the nature of the disease and sources945

of data used.946

4.2.1 Causative agent and natural history of infection947

Plague is caused by the bacterium Yersinia pestis, shown to have been responsible for948

the Plague of Justinian, the European Black Death, and modern plague [1, 2]. The949

infection of humans by this pathogen is categorized in one of three ways: bubonic,950

septicemic, and pneumonic plague [111]. Bubonic and septicemic plague refer to951

1The true percentage was almost certainly higher, since only Christian burials are recorded in
the LBoM.
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the infection of the lymphatic system and blood stream, respectively, and can have952

numerous causes, including infections from flea bites, which in turn can carry the953

pathogen from small rodents such as rats. Pneumonic plague refers to the infection954

of the respiratory tract through airborne droplets containing pathogen particles, and955

can be spread directly from human to human. Bubonic plague is fatal in 40-70% of956

cases, and virtually always fatal in its septecemic and pneumonic forms. A single957

epidemic may contain one or more types of plague, and may spread by numerous958

modes of transmission [112]. It is not known which types of plague and mode of959

transmission were present or dominant during the GPL.960

We use estimates for pneumonic plague [109] to obtain a mean infected period of961

6.8 days (summing the estimated mean latent period of 4.3 days and mean infectious962

period of 2.5 days). We do not explicitly represent vector transmission in our model,963

since we are not aware of parameter estimates necessary to produce such a model. Our964

results are, therefore, heavily contingent on the assumption that the primary driver965

of spread during the Great Plague was human-to-human transmission2. The SIR966

model we use removes both recovered and deceased individuals from the transmission967

pool, and thus our results are unaffected by the accuracy of estimated disease-induced968

mortality. The difference between the types of plague are practically very significant,969

and differences in the nature of transmission intuitively impact patterns of spatial970

spread. However, we are not able, in this study, to distinguish between these types971

of transmission (see §4.3).972

2An example of modeling plague with a subpopulation of rats can be found in Keeling and
Gilligan, 2000 [113]. It would be interesting to investigate the effect of a rat population on our
results. This would require either data or assumptions regarding the number and spatial distribution
of rats, the rates of transmission between rats and humans (which can occur through fleas as well
as directly), and the spatial transmission dynamics among the rats themselves.
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4.2.2 The London Bills of Mortality973

In the 16th century, frequent outbreaks of plague in and around London prompted974

efforts by London’s city administrators to record deaths during these outbreaks [65,975

Ch. 6]. Few of these early bills of mortality survive. They generally follow the resur-976

gence of plague in the city, and were discontinued soon after the temporary fadeout977

of plague. However, plague observed throughout England along with cases in the978

vicinity of the city resulted in the commencement of weekly record-keeping in the979

Bills, at first sporadically in 1563, and then continuously in 1662.980

Though records were not kept for all parishes in the country-side around London,981

records for 130 parishes—including all parishes within the city walls—were kept for982

the full duration of the epidemic, including the first recorded death of the epidemic983

in late 1664. The early commencement of record-keeping during this epidemic is984

particularly relevant to our case-study, since most of the information regarding the985

spatial spread of the epidemic is found in the early stages of the outbreak. We986

show spatial coverage of the LBoM in Figure 4.1, including the location of the first987

reported death of the epidemic. We furthermore make use of published estimates of988

parish populations [108] to produce initial conditions needed to generate stochastic989

simulations (see §4.3 for details regarding our simulation model).990
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1

London Bills of Mortality data coverage
Parish of first reported plague death

Figure 4.1: Map of data coverage throughout the parishes of London in 1665. We use
parish-level imputed population [108] and weekly plague mortality reports from our
LBoM plague data (also used in Tien et al. [64]). The parish St. Giles in the Fields
(shown in red) saw the first plague death of the great plague in late 1664 [65, Ch. 12,
pp. 679–682]. Thick black lines show the city walls. The Thames river is shown in
pale blue.

70



Ph.D. thesis – Karsten Hempel; McMaster University – Mathematics and Statistics

4.2.3 Epidemic onset991

In §4.4, we show the process of estimating the degree of coupling from the LBoM992

data, but we make an assumption in advance of using this methodology. We assume993

that in the geographically distributed population of London, there is significantly994

more contact between individuals living in the same parish than between individuals995

living in different parishes. Thus from the outset, we expect the degree of coupling996

among parishes to be small relative to local contact. As a result, once the plague997

has begun to spread within a parish, it becomes very difficult to detect the effect998

of infections from other parishes. Thus the most useful information concerning the999

spatial spread of the epidemic is found from the times of observing first cases of1000

plague throughout the parishes of London. We therefore use a summary statistic of1001

the data for the estimation of coupling, comparing this statistic of the LBoM data1002

to that of stochastic simulations. The summary statistic we use is the number of1003

parishes reporting their first death due to plague in each week of 1665, which we refer1004

to throughout this paper as the epidemic onset distribution3. We show the epidemic1005

onset distribution for the data from the LBoM in Figure 4.2.1006

3spatiotemporal data describing epidemic onset has been used to characterize spatial transmis-
sion rates elsewhere. See, for example, Smith et al. 2002, which examines the spatial spread of
rabies [114].
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Figure 4.2: Top: Weekly deaths from plague during the Great Plague as reported in
the London Bills of Mortality.
Bottom: Distribution of parishes by week of first reported plague death during the
Great Plague of London, 1665. The first recorded plague death occurred in the parish
St. Giles in the Fields the week of December , 1664 [65, Ch. 12, pp. 679–682].

4.3 Modeling the Spread of the Great Plague1007

In order to estimate coupling m and basic reproduction number R0, we construct1008

a stochastic simulation model that takes these parameters as input, and produces1009

data resembling the GPL for comparison using probe-matching (cf. §4.2.3 and §4.4).1010

We begin by defining the meta-population compartmental model as a deterministic1011
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system of ordinary differential equations, and then use the transition rates of this1012

system to define event rates in a stochastic simulation model.1013

4.3.1 Deterministic simulation model1014

We represent the 130 parishes of the city of London in 1665 as nP = 130 coupled1015

populations in a meta-population model. The dynamics of disease spread within each1016

population are modeled using an SIR (susceptible-infected-recovered) system, and1017

coupling between populations occurs through the transmission process. We define1018

the rates of change governing dynamics for the resident populations of each parish1019

using the following system of ODEs1020

dSi
dt

= −SiΛi , (4.1a)1021

dIi
dt

= SiΛi − (γ + µd)Ii , (4.1b)1022

dRi

dt
= γIi (4.1c)1023

1024

where Si, Ii, and Ri represent the number of susceptible, infected, and removed1025

individuals in population i, respectively, andNi = Si+Ii+Ri. The force of infection1026

acting on susceptible members of population i, Λi, depends on meta-population cross-1027

coupling, which we define precisely in §4.3.2. γ is the rate of recovery from infection,1028

and µd is the rate of death from infection. These two rates of leaving the infected class1029

result in a mean time infected of 1
γ+µd

. We fix the mean time an individual spends1030

in the infected class to be 6.8, noting that this combines both latent and infectious1031

periods (see §4.2.1). The latent and infectious stages of infection can be modeled1032

explicitly, but they are short relative to the weekly temporal resolution of the LBoM1033

data, and so we consider only a single infected class I.1034
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We do not model births or natural deaths, due to the short time-period studied in1035

this paper, and as a result the total population of each infected parish decreases over1036

the course of the epidemic due to disease-induced mortality. The basic reproduction1037

number R0 is defined as the mean number of new infections caused by a single in-1038

fected individual in a completely susceptible population. We emphasize here that our1039

definition of R0 is for an individual parish in the absence of coupling, rather than for1040

the meta-population as a whole.1041

The SIR model represents situations in which individuals become infected with1042

a disease at most once. It is appropriate in situations where individuals either die1043

or acquire immunity, or when the time interval being considered is sufficiently short1044

to preclude waning immunity and reinfection. It is appropriate for the GPL because1045

the greater part of the epidemic took place in the span of five months in 1665. The1046

SIR model assumes human-to-human transmission, which can occur in the spread of1047

pneumonic plague (see §4.2.1). We note the omission of any mechanism representing1048

the potential of vector transmission, through small rodents such as rats, of plague1049

during the GPL. We cannot distinguish types of plague infections from the LBoM,1050

and have no empirical information for the inclusion of vector transmission mechanisms1051

in our model.1052

4.3.2 Form of transmission coupling1053

We implement coupling by assuming nP distinct geographic patches, along with nP1054

distinct populations, where a member of population i is defined as a resident of patch1055

i. We assume that infection within patch i is driven by mixing according to the law1056

of mass action, so the rate at which new infections occur (incidence) is1057

βSiIi/Ni (4.2)1058
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where β is the transmission rate [115]. For clarity, we index the compartments Sj,1059

Ij, and Nj always to mean members of population j. Members of population j are1060

residents of patch j, but may be visiting other patches at a given time. We define the1061

levels of individual movement among patches with the contact matrix (cij), where1062

cij = proportion of members of population j visiting patch i at any time. (4.3)1063

We do not explicitly model movement, but use the contact matrix (cij) to define1064

rates of infection.4 We note that (cij) is column-stochastic, i.e., all elements of a1065

column sum to 1. Considering patch i, and taking into account members of the local1066

population currently absent, and visiting members of other populations present, the1067

total number of individuals in patch i at any given time is1068

nP∑
k=1

cikNk . (4.4)1069

Likewise, the total number of infected individuals in patch i is1070

nP∑
k=1

cikIk . (4.5)1071

Now considering only the proportion of susceptible individuals from population j that1072

are currently visiting patch i, the rate of infection is1073

− d

dt
(cijSj) = βcijSj

∑nP

k=1 cikIk∑nP

k=1 cikNk

. (4.6)1074

4Our formulation of implicit movement allows an infected individual to simultaneously affect
a force of infection on all other individuals in the meta-population, and maybe therefore infect
two individuals in difference patches closely in time. Coupling could be implemented such that
individuals only interact with individuals in the same patch as they are resident or visiting. The
difference between these implementations is analogous to that between deterministic and stochastic
simulation in that we model individuals mix partially in all patches simultaneously, rather than
completely in one patch at a time.

75



Ph.D. thesis – Karsten Hempel; McMaster University – Mathematics and Statistics

Members of population j are distributed throughout the patches, and we can obtain1075

the total rate of new infections for population j by summing up the rates of infection1076

for each of the patches i.1077

−dSj
dt

= −dSj
dt

nP∑
i=1

cij = −
nP∑
i=1

cij
dSj
dt

=

nP∑
i=1

βcijSj

∑nP

k=1 cikIk∑nP

k=1 cikNk

, (4.7a)1078

= βSj

nP∑
i=1

cij

∑nP

k=1 cikIk∑nP

k=1 cikNk

. (4.7b)1079

1080

From this we complete our definition of the force of infection introduced in §4.3,1081

Λj = β

nP∑
i=1

cij

∑nP

k=1 cikIk∑nP

k=1 cikNk

, (4.8)1082

where Equation (4.8) refers to the rate, per unit time, at which susceptible members1083

of population j become infected.1084

This formulation simplifies to nP uncoupled SIR systems if we take (cij) to be the1085

identity matrix (cij = 1 if i = j, and cij = 0 if i 6= j), since in that case1086

−dSj
dt

= βSj

nP∑
i=1

cij

∑nP

k=1 cikIk∑nP

k=1 cikNk

, (4.9a)1087

= βSj

∑nP

k=1 cjkIk∑nP

k=1 cjkNk

, (4.9b)1088

= βSj
Ij
Nj

(4.9c)1089

1090

noting the change of index from i to j in the fraction in the second step. This for-1091

mulation also simplifies to a single SIR system, such that members of all populations1092
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are indistinguishable, if cij = 1
nP

for all i, j, as follows1093

−dSj
dt

= βSj

nP∑
i=1

cij

∑nP

k=1 cikIk∑nP

k=1 cikNk

, (4.10a)1094

= βSj

∑nP

k=1 cikIk∑nP

k=1 cikNk

, (4.10b)1095

= βSj

∑nP

k=1 Ik∑nP

k=1Nk

. (4.10c)1096

1097

Note that the force of infection does not depend on j, so if we take S =
∑nP

j=1 Sj,1098

I =
∑nP

j=1 Ij, N =
∑nP

j=1Nj, we have1099

−dS

dt
= −

nP∑
j=1

dSj
dt

=

nP∑
j=1

βSj

∑nP

k=1 Ik∑nP

k=1 Nk

, (4.11a)1100

= β

nP∑
j=1

Sj
I

N
, (4.11b)1101

= β
SI

N
. (4.11c)1102

1103

We also verify that the total number of effective contacts5 per unit time between1104

individuals of population j and population k is the same, whether viewed from the1105

perspective of population j or k. It follows from the definition of cij in Equation (4.3)1106

and the specification of the infection rate in Equation (4.6) that the number of effective1107

contacts per unit time between population j and population k in patch i is given by1108

cijNjcikNk∑nP

`=1 ci`N`

. (4.12)1109

The total number of effective contacts between populations j and k is obtained by1110

5We say a contact event between two individuals is effective if transmission will occur if one of
the individuals is infectious and the other is susceptible.
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summing Equation (4.12) over all patches i,1111

nP∑
i=1

cijNjcikNk∑nP

`=1 ci`N`

=
1∑nP

`=1 ci`N`

( nP∑
i=1

cijcik

)
NjNk . (4.13)1112

we obtain equivalent expressions whether we consider the number of effective contacts1113

with population k seen by population j or vice-versa.1114

We define the elements of the coupling matrix (cij) by means of the parameter m,1115

which represents the average proportion of time residents of one parish spend in any1116

other parish. Thus we define the diagonal entries of the contact matrix cii = 1 −m1117

for 1 ≤ i ≤ nP. The sum of all entries in a column not found on the diagonal is1118

therefore the degree of parish cross-coupling,1119

m =

nP∑
j=1

cij , j 6= i. (4.14)1120

The precise values of off-diagonal entries of the contact matrix (cij) are defined1121

depending on the type of contact structure used. As noted in §4.1, a central aim1122

of this paper is to determine the importance of geographic location in the spread of1123

the GPL throughout the city as detectable from the mortality reports alone. We1124

incorporate geographic information in the modeled contact structure by filling the1125

off-diagonal entries using the three schemes. We begin by defining the off-diagonal1126

entries of a matrix (aij) based on each scheme, and we then scale the rows of (aij)1127

such that Equation (4.14) is satisfied, thus obtaining (cij),1128

cij ≡


m

aij∑nP
k=1,k 6=i aik

i 6= j

1−m i = j

. (4.15)1129

The three contact schemes we use are as follows:1130
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1. Uniform: All off-diagonal entries of (cij) are equal:1131

aij =
1

nP − 1
, i 6= j. (4.16)1132

This uniform coupling scheme ignores distance between parishes, and thus as-1133

sumes distance has no effect on disease spread.1134

2. Gravity: Off-diagonal entries scaled inversely with the square of the distance1135

between parish i and parish j [21, 116]:1136

aij =
1

d2
ij

, i 6= j. (4.17)1137

Where dij refers to euclidean distance between parish i and parish j (computed1138

using the centroids of the parishes as shown in the map in Figure 4.1). Gravity1139

coupling is typically defined as proportional to
NiNj
d2ij

, but standard transmission1140

already contains factors in units of the coupled populations, namely S and I1141

(see Equation (4.2)). Gravity coupling takes geographic proximity into account1142

while ignoring the city layout.1143

3. Near-Neighbour: Off-diagonal entries are scaled with a power law through1144

nearby parishes1145

aij =


mp , p ≤ 4

0 , p > 4.

(4.18)1146

Where p refers to the degree of separation between parish i and j, and p = 11147

between parishes that share an edge (see Figure 4.1). Note that we limit the1148

degrees of separation for which coupling is non-zero in this scheme. This results1149

in coupling being heavily constrained by local neighbourhood, and geographic1150
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barriers such as the River Thames and the city walls become relevant. We test1151

two implementations of this scheme, both including and precluding infections1152

across the city wall.1153

4.3.3 Stochastic Simulations1154

We produce stochastic simulations using the rates in Equation (4.1) as event probabil-1155

ities, using an adaptive time-step approximation algorithm. Methods for computing1156

exact stochastic simulations from rate equations exist [83, 100], which require event1157

rates to remain fixed while no event occurs. For our purposes, however, sampling one1158

event at a time is far too computationally costly. Adaptive time-step methodology,1159

or “tau-leaping” [100], samples many events over some time step from either Poisson1160

or Binomial distributions parameterized by the rate equations. These methods are1161

approximations, and balance the trade-off between accuracy and computational cost1162

by adjusting time step length while simulating. We use the “tau-leaping” methods1163

implemented in the adaptivetau package in .1164

The information available to us about the spread of the plague in London is1165

mortality data reported weekly by parish, and thus the observable quantity in our1166

simulation model is disease-induced mortality. The stochastic simulation model pro-1167

duces unobserved states, and samples the total number of disease induced deaths at1168

the desired weekly interval, for each parish. Disease incidence can often be signifi-1169

cantly under-sampled since not all instances of infection are reported or documented.1170

In the case of the London parishes, officials were tasked with recording a cause of1171

death for burials, and though the plague was widespread and recognizable, it is likely1172

that there is underreporting of plague-induced mortality in the LBoM. We rely on1173

the week of the first plague reports being correct, which is affected by underreporting1174
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when a previously uninfected parish fails to report any of its first cases. It is possible1175

that incidences of plague were, in some cases and for variable amounts of time, delib-1176

erately concealed, but we do not have information to control for this. We furthermore1177

do not take into account a delay between the time of plague death and the time of1178

its reporting. We have no information about the distribution of this delay, so we1179

assume it to be roughly equal for all parish plague reports, that it is on the order of1180

the weekly time resolution of reporting, and since we are concerned with the relative1181

times of plague onset in the different parishes (see §4.4), that it does not significantly1182

affect our results.1183

4.4 Estimating spatial transmission parameters1184

We estimate the coupling parameter m and the basic reproduction number R0 using1185

maximum likelihood inference [58]. In §4.2.3, we describe the summary statistic of the1186

epidemic onset distribution which we use for statistical inference. We now describe1187

how we use this summary statistic in conjunction with simulated data to produce1188

maximum likelihood estimates of m and R0.1189

We label the weeks since the first recorded plague death as 1 ≤ k ≤ nweeks, where1190

we take the number of weeks, nweeks = 32, to be the number of weeks prior to the end1191

of the epidemic. If y is either the observed time series or a simulation of the GPL,1192

we define the function g such that g(y, k) is the number of parishes reporting their1193

first plague death in week k. We define x to be a stochastic simulation sampled from1194

Xθ, where the parameter set θ = {m,R0} is the subset of model parameters we wish1195

to estimate, assuming all other parameters are held fixed, and Xθ is the set of all1196

realizations possible from θ.1197

To estimate parameters θ from the GPL data y, we estimate a probability of1198

81



Ph.D. thesis – Karsten Hempel; McMaster University – Mathematics and Statistics

observing y given θ. To this end, we generate nsim = 100 stochastic simulations,1199

{xi}nsim
i=1 . From these we obtain the mean number of new parishes reporting plague1200

each week,1201

xk = {g(xi, k)}nsim
i=1 (4.19)1202

If we assume that deviations from xk are approximately normally distributed [117]6,1203

we can obtain an expression for the probability of observing g(y, k),1204

p(g(y, k) | θ) ≈ 1√
2πσ2

k

e
− (g(y,k)−xk)

2

2σ2
k (4.20a)1205

σ2
k = var({g(xi, k)}nsim

i=1 ) (4.20b)1206
1207

To obtain an expression for the probability of observing y, if we assume independence1208

of deviations from the mean, we take the product of Equation (4.20) over all the1209

weeks of the GPL7,1210

p(y | θ) ≈
nweeks∏
k=1

1√
2πσ2

k

e
− (g(y,k)−xk)

2

2σ2
k (4.21)1211

We use Equation (4.21) to estimate θ using maximum likelihood estimation (MLE).1212

The likelihood of θ given y, L(θ | y), is defined to be p(y | θ). We adhere to the1213

6Alternatively, one could use the observed probability distributions of {g(xi, k)}nsim
i=1 , provided

they can be sufficiently sampled. We found that nsim = 100 simulations per parameter set θ
were insufficient to do so, and assumed normally distributed deviations from the mean due to
computational limitations.

7The assumption that deviations from the mean number of onsets each week are independent is
an approximation, since each realization has only a fixed total number of onsets in all weeks.
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convention of minimizing the negative log-likelihood,1214

− logL(θ | y) = − log[p(g(y, k) | θ)] (4.22a)1215

− ≈ log

{
nweeks∏
k=1

1√
2πσ2

k

e
− (g(y,k)−xk)

2

2σ2
k

}
(4.22b)1216

= −
nweeks∑
k=1

{
log(

√
2πσ2

k) +
[g(y, k)− xk]2

2σ2
k

}
(4.22c)1217

1218

Note that the likelihood function given in Equation (4.22) is a synthetic likelihood [58],1219

comparing the epidemic onset distributions of simulations and LBoM data, rather1220

than the spatiotemporal mortality reports themselves.1221

We find the maximum likelihood estimate of θ by computing − logL(θ | y) for1222

a grid of values of θ, and identifying the θ with the least negative log-likelihood.1223

For 21 values of R0 ∈ [1.0625, 2] and 32 values of m ∈ [10−3.5, 10−0.5], we compute1224

nsim = 100 simulations for each combination of R0 and m, and plot the corresponding1225

− logL(θ | y) in Figure 4.3. To generate Figure 3, a total of nR0×nm×nsim = 67, 2001226

simulations were required8. We compute this grid of log-likelihoods for the four spatial1227

coupling schemes: uniform, gravity, and near-neighbour with and without coupling1228

between parishes on opposite sides of the city wall (cf. Figure 4.1 and §4.3.2).1229

8This took 253, 232 CPU hours on the SHARCNET server “Orca”. Jobs were run on 2688 cores
(168 nodes × 16 cores), where each core operates maximally at 2.6 − 2.7 GHz, with 32 − 128 GB
memory. SHARCNET (www.sharcnet.ca) is a consortium of 18 colleges, universities and research
institutes operating a network of high-performance computer clusters across south western, central
and northern Ontario.
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Figure 4.3: Negative log-likelihood of parameter pairs θ = {m,R0} given the LBoM
data y, − logL(θ | y) (see Equation (4.22)). Each grid cell was produced from 100
simulations. Dotted black line shows the likelihood profile, with the solid dot showing
the maximum likelihood estimate. The four panels shown correspond to the four
coupling schemes used (see Equations (4.16), (4.17), and (4.18)).

To obtain confidence limits on our estimates of θ, we first compute likelihood1230

profiles with respect to R0 and m. A likelihood profile is computed by holding one of1231

the parameters in θ fixed while fitting the other parameter. This process is repeated1232

for a range of values of the fixed parameter near the MLE. The likelihood profile for a1233

given parameter shows how quickly the goodness of fit diminishes as one moves away1234

from the MLE, thus producing confidence limits. We obtain these confidence limits1235

on our estimate of θ using the likelihood ratio test (LRT) [57, Ch. 6, pp. 254–258].1236
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The LRT assumes that the deviance along the likelihood profile of m (i.e. fixing R01237

at the best estimate),1238

− 2[− logL(mest | y)− (− logL(m | y))] , (4.23)1239

is chi-squared distributed with one degree of freedom. Thus, for the 95% confidence1240

interval, we find the m along the likelihood profile above and below the MLE such1241

that1242

− logL(mest | y) + logL(m | y) < χ2
1(0.95)/2 = 1.92 , (4.24)1243

and similarly for for R0. We show likelihood profiles for MLEs of both R0 and m, for1244

each of the four coupling schemes, in Figure 4.4.1245
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Figure 4.4: Likelihood profiles showing negative log-likelihood versus each parame-
ter, m (left) and R0 (right). Profiles are obtained from grids such as that shown
in Figure 4.3, with minima showing best estimates of m and R0 for the GPL from
observed data in the LBoM. The profile corresponds to the greatest likelihood in the
grid for each value of the focal parameter (dots), smoothed with a cubic spline (line).
Profiles shown correspond to each of four coupling schemes: uniform, gravity, and
near-neighbour with and without contact across the London city wall (see §4.3.1).
95% confidence intervals are shown for each profile based on Equation (4.24).

Maximum likelihood estimates and 95% confidence intervals for m and R0, as1246

shown in Figure 4.4, are listed in Table 4.1. We also assess the fits with the Akaike1247

information criterion (AIC) [118],1248

AIC = 2k − 2 ln L̂ , (4.25)1249

where L̂ is the likelihood of the best fit parameters, and k is the number of parameters1250

fit, which in all four cases is 2. We find gravity coupling to produce the best fit with1251
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AICfit = 97.9, and refer to this value as ÂIC. In Table 4.1, we compare other fits to1252

gravity with the difference1253

∆AIC = AIC− ÂIC . (4.26)1254

.1255

Coupling Scheme m R0 ∆AIC

Uniform 0.00222 (0.000316, 0.00856) 1.43 (1.33, 1.79) 4.5

Gravity 0.00277 (0.000713, 0.00850) 1.45 (1.35, 1.74) 0

Near-Neighbour (walled) 0.207 (0.135, 0.364) 1.35 (1.29, 1.44) 25.3

Near-Neighbour (unwalled) 0.154 (0.0973, 0.233) 1.37 (1.30, 1.47) 21.8

Table 4.1: Maximum likelihood estimates of coupling m and basic reproduction R0,
with 95% confidence limits. The best performing coupling scheme (in bold) is deter-
mined by applying the Akaike information criterion (AIC [118]), and we show ∆AIC
for other models (see Equation (4.26)).

We additionally test the effectiveness of our estimation method by observing how1256

well we are able to estimate θ from simulated data, for which we know the true1257

values. We simulate ntest = 100 stochastic realizations, {xi}ntest
i , using m = 0.002771258

and R0 = 1.45, our estimates from our best model fit (gravity), shown in Table 4.1.1259

We then apply the same methodology to estimate m and R0 for these simulated data1260

sets. Distributions of estimates mMLE, R0MLE, and ∆AIC, are shown in Figure 4.5.1261
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Figure 4.5: Distributions of estimates from ntest = 100 test simulations. Left and
center panels show distributions of MLE of m and R0, respectively. The red dotted
lines show values from our best fit to the LBoM data (gravity, see Table 4.1), which
were used to generate test simulations. The right panel shows the distribution of
∆AIC for the test fits, with the red dotted line showing the negative log-likelihood of
the best fit to LBoM data (see Figure 4.4). The violin plots shown are a combination
of a vertical density plot with a boxplot, where the box shows 25%–75% quartiles.

4.5 Discussion1262

We asses the goodness of fit of each of the four coupling schemes with AIC, where1263

the model with the least AIC is the best (see Table 4.1). Our results show clearly1264

that both uniform and gravity coupling fit the LBoM data much better than near-1265

neighbour coupling using our methodology. Furthermore, ∆AIC = 4.5 for uniform1266

coupling, which can be taken as weak evidence that gravity is more plausible [119].1267

In Figure 4.5 we test our methodology on simulations, and obtain high variation in1268
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∆AIC when the underlying parameters are known, suggesting that this evidence is1269

at best weak.1270

We designed our test case in part to obtain information about the importance of1271

geographic location in the spread of the plague throughout London. While our im-1272

plementation of gravity coupling reduces contact between distant parishes compared1273

with uniform coupling, infection is still able to spread directly from one end of the1274

city to the other. On the other hand, our implementation of near-neighbour coupling1275

precludes spread beyond a fixed number of parish connections, and was compara-1276

tively much worse in replicating the epidemic onset distribution in the GPL. Our1277

results suggest that infections of parishes only by other nearby parishes is insufficient1278

to explain the pattern of infection during the GPL. However, we cannot infer from1279

our results to a precise degree what factor distance played, and further research is1280

required to answer this question. Such research can include the fitting of p (see Equa-1281

tions (4.17) and (4.18)), since identifiability of these parameters would be evidence1282

of some effect of distance on the epidemic onset distribution. We also note that our1283

grid-search for the MLE as presented in §4.4 can be fine-tuned by means of stochastic1284

optimization algorithms [58], and would be necessary for the estimation of more than1285

two parameters simultaneously due to an increased computational cost.1286

A challenging aspect of parameter estimation is determining the characteristics of1287

the data relevant to the parameters being estimated. The use of the epidemic onset1288

distribution to fit parameters has the advantage of obscuring the precise order in which1289

the epidemic spread throughout London’s parishes, allowing for simulations to be1290

“close” to the GPL while spreading to the city by substantially different routes. While1291

facilitating estimation, a disadvantage of this method is that information regarding1292

coupling in the particular sequence of onsets throughout the city could be lost in the1293

summary statistic. An alternative probe could be matching the onset times of each1294
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parish as closely as possible. A different approach could calculate the probability of1295

observing each onset, given the subset of parishes known to be infected up to the1296

week of onset. Such an approach would make better use of information in the LBoM,1297

but would be more sensitive to reporting efficiency, since accurate estimates of parish1298

prevalence in each week would be required.1299

Estimates of the basic reproduction number for pneumonic plague exist [109], but1300

we chose to fit R0 along with coupling m due to the inherent difficulty in comparing1301

the population of 17th century London to other populations studied in the 20th cen-1302

tury. However, for our best estimates of R0 using either gravity or uniform coupling,1303

we find comparable estimates of the basic reproduction number.1304

If we take our best estimate of the coupling parameter m at face value, then we1305

infer that typical residents of London in 1665 spent 0.28% of their time visiting other1306

parishes. Future research could compare this estimate of population movement with1307

other historical information, if other relevant data can be found.1308

Numerous avenues of further research beyond those mentioned can be pursued. We1309

have altogether avoided the question of vector transmission, and it is not known which1310

mode of plague transmission dominated the GPL. Our approach is consistent with a1311

purely pneumonic epidemic, but the modeling of a rat population and estimating the1312

parameterization of this additional mode of transmission may prove informative. We1313

furthermore note that assuming uniformity in behaviour among parish populations1314

significantly over-simplifies the historical reality, and while paucity of available infor-1315

mation may preclude parish-specific parameter estimates, differences between rural1316

and central city parishes could be made explicit in the model and fitted. Finally,1317

we have assumed that a single initial case of plague sparked the epidemic, but the1318

presence of plague elsewhere in England [66, Ch. 12] at the time of the GPL suggests1319

the possibility of multiple exogenous infections throughout the epidemic. This could1320

90



Ph.D. thesis – Karsten Hempel; McMaster University – Mathematics and Statistics

be investigated, and the inclusion of multiple exogenous infections in the model could1321

significantly impact estimates of the coupling rate and the best fit spatial scheme.1322

4.6 Conclusion1323

Our aim in this paper was to present a case study in the application of probe-matching1324

to estimate coupling strength in a meta-population using reported mortality during1325

an epidemic. We explored the degree to which these methods could determine the1326

relevance of geographic location in the spread of the epidemic. We were able to1327

successfully obtain fits of coupling m and the basic reproduction number R0, with1328

the best fits corresponding to spatial coupling schemes that did not restrict the range1329

of infection to nearby parishes. The use of a summary statistic of the epidemic onset1330

distribution as a probe was able to facilitate estimation, while obscuring information1331

about the precise path of invasion of the epidemic. Our estimates of R0 agree with1332

estimates for modern data, while our estimate of m provides an insight into the level1333

of intra-city movement in the 17th century London population.1334

Research in advancing our modeling tools for epidemics are invaluable in efforts1335

to forecast and to understand the spread of diseases in human populations. The use1336

of historical data sets such as the LBoM provide unique opportunities to develop1337

and test such tools, while providing insights into the dynamics of disease spread1338

during moments of historical interest. Our results show that spatiotemporal mortality1339

reports during an epidemic are sufficient to obtain quantifiable information about1340

population movement and the importance of geographic location to the spread of1341

disease. Spatiotemporal disease reports, whether describing death or infection, are1342

therefore a valuable and useful source of information for the understanding both of1343

the dynamics of the disease, and of the behaviour of the population being infected.1344
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Chapter 5

General Conclusions

The combination of cheap and widely available computing power with researchers’1348

increased access to digitized epidemiological data presents tremendous opportunities1349

for advancing the science of epidemics. Our ability to explain phenomena observed1350

in documented real-world epidemic events and to develop predictive models promises1351

substantial public health utility, especially in forecasting and assessments of potential1352

interventions. The contributions to this area of research presented in this thesis focus1353

on our ability to estimate spatial coupling parameters from real-world data. We used1354

maximum likelihood estimation with probe-matching, tested methods on simulated1355

mock data in Chapters 2, 3, and 4 and a real-world data set in Chapter 4, as well as1356

presented an analytic approximation for estimation in Chapter 2.1357

Chapter 2 focused on coupling between two populations undergoing an epidemic1358

invasion, and presented both analytic and numerical methodology for estimating the1359

degree of coupling from the time to invasion of the second population. Single invasion1360

events produce estimates of coupling degree with broad confidence limits, but the1361

observation of multiple independent invasions yields much more accurate estimates.1362

Multiple invasion events can be observed, in principle, not only between the same two1363
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populations at different times, but at the same time for two different diseases with the1364

same mode of transmission. Comparisons between analytic and numerical estimation1365

methods show that numerical methods are more accurate, but analytic methods can1366

produce initial estimates of coupling that are close to the correct values.1367

Future research can explore improvements in the quality of the analytic approx-1368

imation, as well as extending it to encompass more general scenarios, such as an1369

arbitrary number of spatial patches. These methods could also additionally be use1370

to estimate coupling in real-world systems. In particular, it would be interesting to1371

compare estimates of coupling produced from data describing two different diseases1372

with similar modes of transmission.1373

Chapter 3 explored the possibility of estimating coupling from complex recurrent1374

epidemics, which have been observed and studied extensively in real-world situations1375

(see Chapter 1). We modeled two coupled populations, each undergoing recurrent1376

epidemics, with only the second population small enough to experience disease fade-1377

outs. We showed that estimates of the degree of coupling between the populations1378

can be obtained from the proportion of time the smaller population spends faded out.1379

In the idealized case where all non-coupling parameters are known exactly, the effec-1380

tiveness of this method depends on potential of the smaller population to respond to1381

re-infection by the larger population. When the small population is too small or too1382

large, degree of coupling above a certain threshold ceases to affect the proportion of1383

time the disease is faded out.1384

This research can be extended with examinations of the idealizing assumptions1385

we made, such as sensitivity analyses of disease and population parameters, or addi-1386

tionally fitting unknown parameters parameters along with coupling. Applying these1387

methods to real-world data is a natural extension of this research, since such data1388

is becoming ever more widely available [13, 19, 68, 92, 93], but fitting efforts must be1389
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tailored for individual data sets. For example, reporting efficiency and immunization1390

levels are important in modern data sets, and estimates of these and other factors1391

are required for effective estimation of coupling. As with Chapter 2, expanding these1392

methods to be applicable to an arbitrary number of populations is another avenue1393

of future research. However, given the well-studied phenomenon in which a large1394

population centre drives epidemics in smaller populations [24, 59–62], analyses using1395

only the large population and one small population could be reasonable, even in a1396

system with many coupled populations.1397

Chapter 4 presented a third probe-matching approach to estimating spatial cou-1398

pling, this time applicable to an arbitrary number of geographically separated patches,1399

and applied to the Great Plague of London, England, of 1665. We fitted four im-1400

plementations of spatial coupling to weekly parish-level mortality data collected in1401

the London Bills of Mortality. We were able to fit the data much more successfully1402

with coupling formulations that did not constrain spread only to nearby parishes,1403

but more research is required to determine the nature of geographic spread more1404

precisely. Since we characterized coupling in our model as the proportion of time1405

individuals spend visiting other parishes, our results, taken at face value, give this1406

proportion to be approximately 0.28%. We furthermore obtained an estimate of the1407

basic reproduction number for plague (R0 ≈ 1.45 (1.35, 1.74), see Chapter 4, Ta-1408

ble 4.1) that is comparable with modern estimates (see Gani and Leach, who found1409

that R0 ≈ 1.3 (0.96, 2.3) [109]).1410

Future research on the same data set could include vector transmission in the1411

model, which can be significant in the spread of plague in humans [111]. The methods1412

we present can also be extended by fitting additional spatial parameters1, along with1413

1For example, our implementation of gravity coupling scales with the inverse square of the dis-
tance between parishes (see Chapter 4, Equation (4.17)), but this exponent could be made variable
and estimated along with m.
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performing sensitivity analyses on fixed parameters. Another interesting avenue of1414

future research could compare results from our estimate of the volume of travel with1415

independent information about such travel, where such data can be found. We are1416

not aware of such data being available for London, England in 1665, but travel data1417

have been used for spatial analyses of disease spread in modern contexts [46, 47].1418

The use of stochastic and analytic model fitting tools promises to substantially1419

advance our understanding and capacity to forecast epidemics in human populations.1420

This thesis presented numerical and analytic approaches to probe-matching, which1421

we applied to both mock data and one real-world data set, and is part of a larger1422

effort to expand the set of modeling tools available in mathematical epidemiology.1423

It is our hope that this research contributes to further advances in a field promising1424

both increased scientific understanding and utility to the public at large.1425
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[108] Cummins N, Kelly M, Ó Gráda C. Living standards and plague in London,

1560–1665. The Economic History Review. 2016;69(1):3–34.

[109] Gani R, Leach S. Epidemiologic determinants for modeling pneumonic plague

outbreaks. Emerging Infectious Diseases. 2004;10(4):608–614.

[110] Finlay R. Population and metropolis: the demography of London, 1580-1650.

vol. 12 of Cambridge Geographical Studies. Cambridge: Cambridge University

Press; 1981.

[111] Perry RD, Fetherston JD. Yersinia pestis–etiologic agent of plague. Clinical

microbiology reviews. 1997;10(1):35–66.

[112] Gage KL, Kosoy MY. Natural history of plague: perspectives from more than

a century of research. Annu Rev Entomol. 2005;50:505–528.

[113] Keeling MJ, Gilligan CA. Metapopulation dynamics of bubonic plague. Nature.

2000;407:903–906.

[114] Smith DL, Lucey B, Waller LA, Childs JE, Real LA. Predicting the spatial

dynamics of rabies epidemics on heterogeneous landscapes. Proceedings of the

National Academy of Sciences of the United States of America. 2002;99(6):3668–

72.

[115] Begon M, Bennett M, Bowers RG, French NP, Hazel S, Turner J. A clarification

of transmission terms in host-microparasite models: numbers, densities and

areas. Epidemiology & Infection. 2002;129(1):147–153.

[116] Erlander S, Stewart NF. The gravity model in transportation analysis: theory

and extensions. vol. 3. Vsp; 1990.

109



Ph.D. thesis – Karsten Hempel; McMaster University – Mathematics and Statistics

[117] Von Mises R. Mathematical theory of probability and statistics. Academic

Press; 2014.

[118] Akaike H. A new look at the statistical model identification. IEEE Transactions

On Automatic Control. 1974;19(6):716–723.

[119] Burnham KP, Anderson DR. Model selection and multimodel inference: A

practical information-theoretic approach. 2nd ed. New York: Springer; 2002.

110


	General Introduction
	Estimating epidemic coupling between populations from the time to invasion
	Introduction
	Two-population SIR model
	Form of transmission coupling
	Deterministic model
	Stochastic model
	Notation summary

	Stochastic time to invasion
	Analytical approximation of time to invasion distribution
	Approximation error in time to invasion distribution
	Comparison of simulations and analytical approximation
	Maximum likelihood estimation of coupling parameter m
	MLE based on multiple observations of time to invasion

	Discussion
	Acknowledgments

	Estimating transmission coupling from fadeout times of infectious diseases
	Introduction
	Two population recurrent epidemics
	Coupling in Transmission
	Duration of endemic fadeouts

	Estimating coupling with MLE
	Effect of Parameters on Estimation

	Discussion
	Conclusion
	Acknowledgements

	Inferring contact patterns from observed mortality during the Great Plague of London, 1665
	Introduction
	Data describing the GPL
	Causative agent and natural history of infection
	The London Bills of Mortality
	Epidemic onset

	Modeling the Spread of the Great Plague
	Deterministic simulation model
	Form of transmission coupling
	Stochastic Simulations

	Estimating spatial transmission parameters
	Discussion
	Conclusion
	Acknowledgments

	General Conclusions
	Bibliography

